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Abstract 

 

Global logistics systems met a crisis from the pandemic, diminished workforce, supply reductions, 

and demand surges. Maritime ports in particular are vulnerable to these disruptions. There is a 

need for methods to address system resilience. This dissertation introduces the cyber-physical 

systems requirements methodology (CPSRM), an approach for developing resilience of cyber-

physical systems to disruptions. The CPSRM and associated tools are demonstrated in four parts 

on a maritime port and surrounding region as follows. First, it describes an approach to the 

development of a system specification as well as a hazard and gap analysis of resilience techniques. 

Second, it describes a mathematical simulation to account for key factors, focusing on bottlenecks 

in the supply chain. Third, it adapts reinforcement learning to understand and control these 

processes in scenarios of disruption. Fourth, it describes how to manage the disruption of system 

orders by the scenarios. The CPSRM improves on existing methods by incorporating particular 

tools from cybersecurity and risk analysis; a) red and blue team exercises for the negotiation of 

system requirements and b) quantification of risk as the degree of order disruption. The approach 

is of interest across topics of systems engineering, particularly for requirements elicitation, gap 

analysis, modeling and simulation, reinforcement learning, performance evaluation, and risk 

analysis. Practitioners will benefit by using the CPSRM to design and evaluate alternatives for 

system resilience.  

Keywords: Systems engineering, risk analysis, enterprise systems, scenario-based 

preferences, modeling and simulation, hazard analysis, augmented intelligence, MuZero 
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Chapter 1: Introduction 

1.1 Overview 

This chapter provides an overview of the purpose and scope of this dissertation as well as 

an overview of the organization of the document. Section 1.2 describes the motivation and 

philosophical approach of this dissertation and introduces the new methods and models. Section 

1.3 describes the purpose and scope of the dissertation derived from the motivation. Section 1.4 

describes the contributions to the theory, methodology, and philosophy of systems engineering. 

Section 1.5 describes the structure and organization of the dissertation. 

1.2 Motivation  

Systems engineering management is critical in the design, implementation, and 

maintenance of large, complex, and interconnected systems. Systems engineering management 

expands beyond project management, focusing on technical and engineering components of the 

system with an emphasis on technical planning (SeBOK 2023). Technical planning begins at the 
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design phase but is performed throughout the system lifecycle. Technical planning requires inputs 

from multiple disciplines, integration of risk and resilience management, and proper control of 

schedules, costs, and broader impacts to society. Further, there is a need to develop systems design 

processes that can incorporate risk, resilience, security, and equity at scale (United Nations CEB 

2022). This process becomes increasingly difficult with the proliferation of cyber-physical systems 

(CPS). CPS are systems that utilize computing hardware, software, and networks that interact with 

physical processes and activities in the real world (ISO 2023). The cyber layer (also called the 

intelligent layer) of CPS introduces new solutions and opportunities for improving systems, but 

also introduces new sources of risk (Khalil et al. 2023).  

This dissertation introduces a novel framework and approach for the design of cyber-

physical systems, the cyber-physical systems requirements methodology (CPSRM) as described 

in Figure 1.1. The CPSRM is executed across six steps and utilizes four teams of experts. The 

CPSRM is used throughout the system lifecycle, assisting with the development of system 

requirements that address resilience. The CPSRM aligns with best practices for resilience analysis 

of CPS, incorporating: 

1. An in-depth system specification for normal operating conditions 

2. An analysis of disruptive scenarios and the consequences on system priorities 

3. Resilience strategies to mitigate the impacts of disruptions and for performance 

restoration  

There are several existing frameworks for the development and analysis of CPS. However, 

many of these techniques lack several key activities and definitions including delineation of 

responsibilities and scope, active collaboration with cross functional experts, and other limitations 

(Cassottana et al. 2023). These features are essential for the sustained success of complex CPS 
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(SeBOK 2023). That is, many frameworks for CPS design neglect sets of critical stakeholders with 

different perspectives and expertise. The CPSRM expands on these best practices by incorporating 

regimented and specific activities for multidisciplinary teams, accessing knowledge from multiple 

disciplines and defining the interdependencies of each task in the analysis, per the best practices 

of the Systems Engineering Body of Knowledge (SeBOK 2023). The CPSRM presents an 

opportunity for iterative analysis that can be performed throughout the CPS lifecycle, a key activity 

that is lacking from many existing frameworks for resilience analysis of CPS (McDermott et al. 

2022). Further, the CPSRM utilizes reinforcement learning as a core element of CPS design and 

analysis of analysis, addressing another limitation of existing CPS design methods – that the 

system must be able to “learn from history and be unsupervised” (Darwish and Hassanien 2018). 

The CPSRM is an extension of an earlier approach for requirements development for CPS, 

the cyber-security requirements methodology (CSRM) (Bakirtzis et al. 2022, Carter et al. 2019). 

The CPSRM presented in this dissertation expands on the CSRM by including a set of risks to the 

CPS beyond cybersecurity and includes natural and human-caused hazards. Second, the CPSRM 

expands on the CSRM by including an assessment of disruptive scenarios in aggregate, analyzing 

the impacts different hazards have on system priorities. This dissertation considers risk to be the 

influence of scenarios to priorities (Lambert et al. 2022). Given this perspective, the inclusion of 

the analysis of disruptive scenarios on system priorities in the CPSRM provides greater insight 

into the risks to the system and their influence on various aspects of the system. 
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Figure 1-1. Flow chart diagram of the CPSRM including stages and teams 
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Managing disruptions to CPS is critical for maintaining operations during periods of 

disruption in large logistics systems (Eddy et al. 2022). Hazards such as hurricanes, flooding, 

pandemics, and climate change-induced disasters disrupt global supply chain networks (Wu et al., 

2022, 2021, Loose et al. 2021). Further, resources are limited and balancing the costs and benefits 

of resilience measures is a critical decision point for the design and maintenance of CPS (Bonato 

et al. 2021). This dissertation demonstrates the CPSRM on operations at a large maritime container 

port – the Port of Virginia in Norfolk, Virginia – and a surrounding 500-mile radius. This 

demonstration explores how disruptions influence the design of systems, how simulations can be 

used to test new resilience measures, and how reinforcement learning can be applied to controls 

problems in CPS to manage operations. These results are analyzed to understand how disruptive 

scenarios influence system priorities. This system is of particular interest for several reasons. First, 

it is a priority of the port to increase automation and reliance on cyber-systems to address supply 

chain disruptions and constraints – therefore the port needs a reliable way to develop new 

requirements for enterprise systems. Second, improving the performance of ports and maritime 

logistics at large presents an opportunity to increase equality and equity, improving future living 

conditions at a global scale. This demonstration presents an opportunity to implement 

sustainability and fairness at ports, explore the ethics of artificial intelligence in CPS, and explore 

the future of systems engineering as a discipline. 

Growing interconnection across global markets has increased the importance of reliable 

logistics systems (Kamalahmadi et al. 2022, Chopra and Sodhi 2014). There is a relationship 

between social equity along racial, ethnic, and gender lines, and supply chain reliability. It is 

critical when evaluating supply chains to consider geographic, socioeconomic, racial, and gender 

diversity in decision making (CSIS 2022). The COVID-19 pandemic revealed weaknesses in 
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global supply networks. In the United States alone, total freight movement decreased by nearly 

22% in the wake of supply shocks caused by COVID-19 (US DOT 2022). This shock exacerbated 

inequities in the racial wealth gap (White House 2021).  

Ships deliver over 80% of world trade across dozens of sectors including food, energy, and 

medicine. This 80% figure is higher for developing countries, driving the need for building 

resilience to disruptions that inhibit supply chains. The COVID-19 pandemic exposed limitations 

to the maritime shipping industry as prices rose to historic levels. Figure 1-2 describes the change 

in container price index before and during the pandemic.  
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Figure 1-2. Depiction of the rapid rise and fall of shipping costs in the period before and 

during the COVID-19 pandemic. The COVID-19 pandemic caused supply chain shocks that 

increased the costs of containerized and bulk shipping. Though prices have lowered from their 

peak in January 2022, shipping costs remain higher than pre-pandemic levels. Adapted from 

(UNCTAD 2022). 

As such, the shipping industry is being asked to invest in new technologies and processes 

that allow supply chains to withstand disruption. Further, this technology should be sustainable 

with respect to the environment and focus on equity (UN News 2022). Major maritime ports are 

often constructed in locations already facing poor socioeconomic conditions, introducing 

compounding harms due to the emissions of the port (Hendrickson 2023). The United Nations 
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Conference on Trade and Development (UNCTAD) Secretary General Rebecca Grynspan said on 

the modernization and automation of ports: 

“We must change course and we must do it now. To prepare for the 

future, we need shipping and supply chains to be more efficient, 

more resilient, and far greener. The world should prepare for 

unpredictable future with volatile shipping costs.” (Grynspan 2022).  

Volatility in shipping rates impacted low- and middle-income countries more than high-

income nations. Figure 1-3 describes the price changes of food items across three types of nations: 

high, medium, and low-income. Low-income countries face a 0.82% increase in grain prices 

compared to 0.47% increase for high income countries during the shipping shocks due to the 

COVID-19 pandemic. Further, midline income nations face 1.27% total increase in food prices 

compared to a 0.81% increase in food prices in high-income nations. While shipping costs rose 

and have begun to fall in the aftermath of the pandemic, the price of goods remains high due to the 

shock (UNCTAD 2022).  
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Figure 1-3. Long term impact of global fluctuations in shipping costs on food prices in low, 

middle, and high-income nations. The supply chain shocks of COVID-19 have not impacted all 

nations equally. Nations with developing and emerging economies face greater price increases for 

food than wealthy nations. Adapted from (UNCTAD 2022). 

These price increases are not expected to return to 2019 levels. In response to this, the 

UNCTAD 2022 report on the state of maritime trade and transportations calls for: 

“1. Governments and operators to expand and upgrade port 

infrastructure and land transport connections, and accelerate trade 

facilitation reforms, especially digitalization. 

2. Port operators and shipping companies to invest in increasing 

storage facilities and reducing equipment shortages. 
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3. Shipping companies to invest in sustainable shipping and deploy 

the necessary ship-carrying capacity.” (UNCTAD 2022). 

 A primary focus of the 2030 United Nations Agenda for Sustainable Development is the 

improvement of port performance, connectivity, and automation (UNDESA 2022). A long-term 

lack of investment has affected port performance across the globe, weakening markets and 

economic growth. African, Latin American, and Caribbean ports lost more than 10% of direct 

shipping connections in the wake of the pandemic. Contrast this with ports in India, China, and 

Norway, which focused on modernization and increasing connectivity throughout the pandemic 

and realized slight growth (UNCTAD 2022). Affordable, actionable techniques for improving port 

performance and container handling are necessary steps for reducing this disparity. Specifically, 

the UN calls for: 

“… [Supporting] developing countries to improve port performance 

and productivity, including by upgrading port capacity and 

strengthening regional transport connections.” (UNDESA 2022). 

Container ports are critical elements in the development and growth of emerging 

economies. Increasing the attractiveness of these ports to industry and governments is an 

opportunity to reduce inequalities between these nations and the existing powers. Further, many 

developing nations have borne the brunt of the effects of climate change. Policies and technologies 

that improve sustainability may be expensive, and new policies limiting emissions may prevent 

developing economies from keeping pace (UNEP 2021). It is critical for the international 

community to ensure that climate and disruption mitigation efforts do not severely inhibit new 

growth in developing nations. Nichola Peltier-Thiberge, the Global Practice Director of Transport 

for The World Bank, describes how port investments can stimulate growth in emerging economies: 
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“In many cases, the development of high-quality container port 

infrastructure, operated efficiently, has been a prerequisite to 

successful export-led growth strategies. It can facilitate investment 

in production and distribution systems, supporting the expansion of 

manufacturing and logistics, creating employment, and raising 

income levels.” (WBG 2022)  

Managing logistics through maritime ports is critical for reducing inequalities in already 

wealthy nations. In the United States, as of November 2022, 68% of the total wealth of citizens is 

owned by the top 10% of earners. Further, the bottom half of all earners own only 3.3% of the total 

wealth of the United States (Statista 2023, US Census 2022). Since 1993, the income inequality 

between low and high earners has steadily increased, a total of an 8.8% in the Gini index (a measure 

which reflects the amount that two incomes differ when compared to the mean income). Income 

inequality had been steadily falling since 2011, but the COVID-19 pandemic reversed this trend, 

with income inequality growing by 1.2% from 2020 to 2021 (Semega and Killar 2022).  

Maritime ports present an opportunity to reduce this inequality. As of 2018, US ports 

supported over 30.8 million jobs and fueled 26% of US GDP. Seaports are often located near or in 

metropolitan areas and the decisions made by ports may impact millions of individuals, especially 

with respect to sustainability and the environment. These communities are often low or middle-

income and have limited input on port activities. Thus, there is a need for innovation, in particular 

in advanced analytics and automation to improve sustainability, resilience, and emissions (ASCE 

2022).  Per the American Society of Civil Engineers: 

“Advanced analytics… aid ports in becoming more resilient as 

predictive approaches driven by machine learning ensure flexible, 
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responsive, and adaptive management amid highly complex and 

dynamic scenarios.” (ASCE 2022) 

 This need is reflected in national policy. Over $2.7 billion is invested in funding focused 

on improving American ports and waterways for fiscal years 2022 and 2023 alone. Much of this 

funding targets environmental justice projects – infrastructure improvement plans that improve 

quality of life in disadvantaged communities (The White House 2022). Beyond this, general 

improvements to port infrastructure to bolster resilience to disruption is a primary national 

concern. 

“The top economic priority of the [United States] White House is 

fighting inflation… through managing port disruptions and [easing] 

bottlenecks. [The goal] is not only to get through the current 

bottleneck, but to address the longstanding weaknesses in our supply 

chain that this pandemic exposed.” 

President Joseph Biden, June 2022 

 The goal of not only improving current performance but increasing resilience moving 

forward requires careful, clear, regimented systems engineering design. This design will require 

inputs from diverse stakeholders to meet the many myriad objectives of port improvements, 

including increased efficiency, reduced emissions, and social equity. The CPSRM presented in 

this dissertation addresses these design needs, providing an approach for identifying requirements, 

addressing resilience, testing new analytic techniques, and understanding disruptions. 
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1.3 Purpose and Scope 

The purpose of this dissertation is to describe and provide a demonstration of the CPSRM, 

a philosophical methodology for the design and analysis of resilience in cyber-physical systems. 

The methodology advances systems design by incorporating aspects of cyber-security, systems 

planning, and risk analysis into a single framework for requirements gathering. This approach 

enables organizations to address the systemic and global issues that impact logistics systems, 

vulnerable communities, and sustainability. 

This methodology can be applied to any CPS, and preliminary versions have been used on 

defense and medical systems with an increased focus on cyber threats (Beling, Loose et al. 2021, 

2020). This dissertation expands the CPSRM and is demonstrated on a maritime port and 

surrounding industrial region to address the motivating factors in the previous section. First, the 

CPSRM is used to identify areas of opportunity in port processes, generate a description of this 

process, and analyze potential disruptors, including a gap analysis. Second, the CPSRM uses the 

description to create a simulation model, providing a tool on which new resilience techniques can 

be tested and new ideas explored. Third, this dissertation implements the MuZero reinforcement 

learning algorithm to a port logistics system as a method for improving system resilience. Finally, 

the system is analyzed at a macro-level using a mathematical framework to identify how system 

priorities change when exposed to disruption. 
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1.4 Contributions 

This dissertation describes an approach for developing requirements for the design of 

resilient cyber-physical systems. The development of this approach advances systems engineering 

as a discipline in six respects. 

Contribution 1. Development of the CPSRM. Developed the cyber-physical systems 

requirements methodology (CPSRM) as an approach for identifying and collecting requirements 

for cyber-physical systems to improve system resilience. The CPSRM algins with the standard 

framework for the design and analysis of CPS, and expands on this standard by incorporating 

elements from multiple disciplines including cybersecurity and risk. The CPSRM also advances 

CPS design paradigms by incorporating cross and multifunctional teams throughout. The CPSRM 

is demonstrated on the Port of Virginia – specifically the container handling process – and the 

surrounding regions (Beling, Loose et al. 2021, 2020).  

Contribution 2. System specification. Developed a system specification process for 

considering the goals, missions, and other factors influencing the CPS. The system specification 

builds on work from the computer science discipline, generating the process for systems 

engineering. The system specification includes disruptive scenarios and their outcomes as a factor 

in the system design. The system specification is demonstrated on the Port of Virginia, specifically 

the dynamics and performance of a container stacking block for ten stacks and five tiers, handling 

more than 175 containers across a week of operation (Loose et al. 2023(b), Hamdy, Loose et al. 

2022). 

Contribution 3. Gap analysis. Developed a hazard and gap analysis methodology to 

address system resilience to natural and human-caused hazards that impact the operations of the 
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CPS. The hazard and gap analyses are inductive methods for enumerating known threats to the 

CPS, outlining the potential impacts to performance metrics due to disruption. The hazards are 

described for the Commonwealth of Virginia and the Hampton Roads region containing the Port 

of Virginia, addressing the risk profiles of each hazard. The gap analysis identifies new resilience 

techniques to be tested with the CPSRM for potential inclusion in the final set of resilience 

requirements. The gap analysis identifies a reinforcement learning control algorithm as a hazard 

mitigation method for reducing the harms of disruption to the container stacking problem (VDEM, 

Loose et al. 2023, Hill, Loose et al 2023). 

Contribution 4. System simulation. Developed a simulation as a part of a solution for 

mitigating the impacts of disruptive scenarios. The simulation utilizes the system specification, 

hazard analysis, and gap analysis in its design and serves as a test bed for implementing new 

resilience techniques in the system. The simulation is used to test the performance of the 

reinforcement learning algorithm, as well as examine how system design decisions may impact 

operations. The simulation of a container stacking block is used to compare performance across 

key metrics such as the number of container moves, and is the test bed for the MuZero control 

algorithm (Loose et al. 2023(b), Costello, Loose et al 2023). 

Contribution 5. Reinforcement learning. Developed and trained a reinforcement 

learning algorithm as a method for increasing system resilience. This dissertation is the first to 

apply the MuZero reinforcement learning algorithm to the container stacking problem as a trained 

model to control the simulation of the container stacking block. The model is used for planning 

and operational improvements to the container stacking process. The algorithm serves as a 

resilience technique, improving port performance in disrupted and non-disrupted scenarios. 

MuZero achieves similar performance to the Port of Virginia in terms of touches per container 
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under typical conditions and demonstrates how performance can be improved during periods of 

disruption (Loose et al. 2023(b)). 

Contribution 6. Mathematical framework. Developed and applied a mathematical 

framework for assessing how disruptive scenarios influence system priorities. This dissertation 

expands on prior work by analyzing how stakeholder disposition and risk tolerance impacts the 

order of priorities. The framework is demonstrated across three cases in a region near the Port of 

Virginia, and focuses on supply chain and logistics resilience (Loose et al. 2023(a), 2022(a), 

2022(c)). These contributions are described in this dissertation as outlined in Table 1-1. 

Table 1-1. Relationship between contributions to systems engineering and the chapters in 

which the contributions are described 

Contribution Related Chapters 

I Ch.3, Ch.4, Ch.5, Ch.6, Ch.7 

II Ch.3, Ch.4 

III Ch.3, Ch.4 

IV Ch.5 

V Ch.6 

VI Ch.3, Ch.4, Ch.7 

 

Chapter 3 describes the CPSRM including its purpose, use cases, and an overview of the 

constituent elements focusing on how it differs from and improves upon existing systems 

engineering and systems design methodologies. Chapter 4 describes the first two stages of the 

CPSRM, including the process for conducting a system specification, outlining the potential 
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disruptors of the system, and providing a gap analysis of resilient solutions. Chapter 5 describes 

the development of a simulation of a particular process of the maritime port system, specifically 

developed for designing and testing the performance of a control algorithm. Chapter 6 describes 

an example control algorithm, a novel use of a reinforcement learning algorithm to automatically 

control processes, improve system resilience, and investigate how design changes may impact 

performance. Chapter 7 describes an extension of a mathematical framework used to analyze 

systems, focusing on how emergent conditions impact the prioritization of resilience requirements 

and a quantification of disruption, as well as exploring the sensitivity of the framework. 
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Figure 1-4. A graph exploring the degree to which each contribution is an innovation and 

the degree to which each contribution is applicable in a general or specific use case 

These contributions are accepted, published, or under review in three journal papers (Loose 

et al. 2023, Eddy, Loose et al. 2023, Andrews, Loose et al. 2023), four conference papers 

(Lambert, Loose et al. 2022, Eddy, Loose et al. 2022, Hamdy, Loose et al. 2022(b), Loose et al. 

2023(a)), four presentations to conferences and government (Loose et al. 2022(b), Loose et al. 

2022(c), Loose et al. 2021, Beling, Loose et al. 2020), and three published reports (Lambert, Loose 

et al. 2022, FEMA, Loose et al. 2023, Beling, Loose et al. 2020). A further three papers are 
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accepted, in revision, or submitted to conferences or journals (Loose et al. 2023(a), 2023(b), Hill, 

Loose et al. 2023). 

Table 1-2. Research and its venue of publication or presentation, including the distribution 

across chapters 

Presentation or Publication Related Chapter 

SERC, Beling, Loose et al. 2020 Ch.3 

SERC, Beling, Loose et al. 2021 Ch.3, Ch.5 

CESUN, Loose et al. 2021 Ch.7 

CPDC, Lambert, Loose et al. 2022 Ch.7 

CPDC, Loose et al. 2022(a) Ch.7 

IEEE SYSCON, Loose et al. 2022(b) Ch.7 

IEEE SYSCON, Eddy, Loose et al. 2022 Ch.3 

IEEE SYSCON, Loose et al. 2022(c) Ch.7 

IEEE SIEDS, Hamdy, Loose et al. 2022 Ch.4, Ch.5, Ch.6 

Wiley journal Risk Analysis, Andrews, Loose et al. 2022 Ch.7 

Submitted Wiley journal Risk Analysis, Loose et al. 2023(a) Ch.7 

Wiley journal Systems Engineering, Eddy, Loose et al. 2023 Ch.5 

VDEM HIRA, VDEM, Loose et al. 2023 Ch.4 

IEEE SIEDS, Costello, Loose et al. 2023 Ch.5, Ch.6 

Working Paper, Hill, Loose et al. 2023 Ch.4, Ch.7 

Submitted IEEE CoDIT, Loose et al. 2023(b) Ch.5, Ch.6 
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1.5 Organization 

Chapter 2 provides the history of and need for this work based on relevant literature from 

the systems engineering, cyber-physical systems, logistics, machine learning, hazard analysis, and 

other domains. Chapter 3 introduces and explains the CPSRM in detail. Chapter 4 outlines the 

system specification and gap analysis for the demonstration on the maritime port. Chapter 5 

describes the development of the system simulation including, inputs, outputs, motivating issues, 

and other key parameters. Chapter 6 describes the implementation and training of a reinforcement 

learning algorithm for controlling the target system. Chapter 7 describes an extension of a 

mathematical framework for analyzing disruptions of system priorities.  Chapter 8 summarizes the 

conclusions of this dissertation, including contributions, plans for future work, and broader 

implications. These are followed by a References section and Appendices with supplementary 

data. Figure 1-5 describes the breakdown of chapters into categories. 
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Chapter 2: Literature review 

2.1 Overview 

This chapter describes the history and leading research for each of the chapters in this 

dissertation. Section 2.2 describes the state-of-the-art for cyber physical system design and 

analysis. Section 2.3 describes the process for developing a system specification. Section 2.4 

describes the process for completing a hazard and gap analysis. Section 2.5 describes the use of 

simulation for resilient design. Section 2.6 describes the use of reinforcement learning for controls 

and designing resilience. Chapter 2.7 describes the use of mathematical frameworks for 

understanding disruption to system order. 

2.2 Models and methods for resilient design of cyber physical systems 

The CPSRM described in this dissertation is an extension of the cyber security 

requirements methodology (CSRM) (Carter et al. 2019). The CSRM focuses on cyber 

vulnerabilities in CPS such as code weaknesses and other digital exploitations. Design changes 



23 

 

become more expensive to implement as CPS grow and mature. As such, it is advantageous to 

implement resilience techniques early in the design process. Resilience techniques are tools, 

processes, or technologies that system managers can implement to reduce the impact of disruption 

(Sgobbu and Codara 2022, Yang and Hsu 2018).  The CSRM is executed during the requirements 

gathering phase of systems design, enabling stakeholders to analyze the target system and select 

resilience techniques. Four teams coordinate to analyze, prototype, and prioritize requirements for 

the target system. The CSRM is paired with the systems-theoretic resiliency assessment tools 

(STRAT), a set of methods used to accelerate the CSRM process. The CSRM has been applied to 

CPS such as defense and healthcare systems (Beling, Loose et al. 2020). The CSRM is effective 

for defining and applying resilience techniques to CPS, but the focus on cyber security alone is a 

limitation. The CPSRM expands the CSRM to include threats and hazards outside of the cyber 

domain. The CPSRM maintains the four-team structure of the CSRM with alterations to 

responsibilities and tools, such as reducing the role of the red team to focus on assessing solutions 

rather than developing attack patterns. The CPSRM utilizes tools similar to STRAT to collect, test, 

and prioritize resilience capabilities. These tools are outlined in Chapters 4, 5, 6, and 7.  

There are many CPS modeling approaches, each with different focuses, benefits, and 

drawbacks – for example, the ISO/SAE 21434 for road vehicle cybersecurity or the NIST SP 1500-

201 Framework for cyber-physical systems. Some research indicates that these various methods 

are different specialized arrangements of tools, models, and methods, tailored to a specific process. 

Table 2-1 describes where the CPSRM falls in this spectrum including the tools used for analysis 

across the three primary phases for CPS (Cassottana et al. 2023). Table 2-2 describes the relevant 

literature to the analysis of the CPSRM method. 
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Table 2-1. Relationship between CPSRM and general-purpose CPS analysis models. CPSRM 

elements are in bold and underlined. The inclusion of Automation as a resilience technique is a 

contribution of this dissertation. Adapted from (Cassottana et al. 2023). 

Resilient design for CPS Object of analysis Tool/Model/Method 

System description Physical components 

Control components 

Cyber components 

Attribute-based models: 

• Graph theory models 

• Complex network theory models 

• Finite-state machines 

• Petri nets 

Performance-based models: 

• Dynamic system models 

• Agent-based models 

• Simulation-based models 

Disruptive scenarios Physical disruptions 

Cyber disruptions 

Inductive methods: 

• Contingency analysis 

• Event trees 

• Attack graphs 

• Bayesian networks 

• Markov processes 

Deductive methods: 

• Fault trees 

• Attack trees 

• Heuristic optimization methods 

Resilience techniques Hardening components 

Redundant components 

Component restoration 

 

Early warning systems 

Intrusion tolerance 

Authentication 

 

Automation  

Reactive methods: 

• Control theory methods 

• Game theoretical models 

 

Proactive methods: 

• Analytical models 

• Time-series analysis 

• Machine learning 

• Reinforcement learning 
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Table 2-2. Summary of literature on the design, development, analysis, and implementation 

of resilience for cyber physical systems. 

Aspect of Resilient Design for CPS References 

Methods for the resilient development of 

CPS 

Martin 2020 

Weilkiens 2011 

Carter 2018 

Zachman 1987 

Resilient design of CPS to evolving and 

persistent threats 

CISA 2022 

Sgobbi and Codara 2022 

Development of CPS design techniques to 

address societal change 

Collier et al. 2021(b) 

Collier et al. 2020(a) 

Analysis of security of CPS 

Khalil et al. 2023 

Beteto et al. 2022 

Bakirtzis et al. 2018 

Designing CPS with a focus on broader 

missions and objectives 

Laarni et al. 2022 

Goldman et al. 2011 

Engineering resilience in CPS 

Bakirtzis et al. 2022 

Jin et al. 2022 

Beling, Loose et al. 2021 

Beling, Loose et al. 2020 

Majumder et al. 2017 

Ali and Ronaldson 2012 
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Methods and techniques for establishing 

organizational alignment in CPS design 

Chowdjury and Gkioulos 2022 

McDermott et al. 2022 

UNCEB 2016 

Considering complexity when analyzing or 

designing CPS 

Henning et al. 2022 

Liu and Li 2021 

 

2.3 System specification and analysis 

The first stage of the CPSRM is the development of a high-level system description based 

on a system specification and requirements gathering exercise. Systems analysis and specification 

has been investigated for decades, primarily in the software development domain (DeMarco 1979, 

IEEE CS 1998, Bødker 2021). In recent years, system specification documents have become more 

common for broader systems design, especially in CPS (Suhail et al. 2022) Systems analysts assess 

the needs of stakeholders to design a system that addresses organizational missions. Several 

methods exist for collecting specifications for development such as interviews, document analysis, 

prototyping, and workshopping (Tracy 2021). The CPSRM does not specify the method of system 

specification in the general case, but utilizes interviews and document analysis for the maritime 

container port case study. Table 2-3 describes the literature motivating the development of the 

system specification and gap analysis in the general and specific cases. 
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Table 2-3. Summary of literature on the development of a system specification for cyber 

physical systems and maritime ports 

Aspect of system specifications References 

Development, maintenance, and execution of 

system specifications 

Suhail et al. 2022 

Tracy 2021 

Verasetti 2021 

Stern et al. 2005 

Sindre and Opdahl 2005 

IEEE CS 1998 

Davis 1982 

DeMarco 1979 

Analysis of port metrics and performance 

Hassan and Gurning 2020 

PoV 2018 

Supply chain resilience  

Sadiq et al. 2022 

Bonato et al. 2021(a) 

Helo et al. 2018 

Chopra and Sodhi 2014 

Analysis of port planning processes 

Cho 2021 

Chao and Lin 2019 

Almutairi 2017 

Port systems and equipment 

PoV 2023 

Virginia Port Authority 2021 

Benutzer 2004 
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Innovations to port equipment 

AAPA 2023 

PoV 2022 

Motivations for improvement to port processes 

SHIPA Freight 2023 

Statista 2023 

ASCE 2022 

Grynspan 2022 

ISO 2022 

Semega and Killar 2022 

US Census 2022 

WBG 2022 

Requirements engineering 

Kuzmanovic 2019 

 Hull et al. 2005 

Van Lamsweerde 2000 

Lie 1998 

 

2.4 Hazard and gap analysis 

The second stage of the CPSRM is a gap analysis of resilience capabilities. Gap analysis 

has been used to enhance resilience in several types of systems, including environmental systems 

(Thomas et al. 2021) and supply chains (Jensen and Orfila 2021). The objective of such an analysis 

is to take inventory of existing capabilities and identify ways the system can be changed and 

improved. That is, identifying the resilience techniques required to navigate from the “as-is” 

system, to the desired “to-be” system. The gap analysis techniques used in this dissertation are 

based on and extend methods outlined in (Mineraud et al. 2016). The process begins with an 
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assessment of known risks through techniques such as risk filtering via hierarchical holographic 

modeling to prioritize and assess risk scenarios (Haimes et al. 2002). The system is then examined 

to determine which resilience techniques address these risk scenarios (VDEM 2018, 2023). Other 

similar systems and requirements are examined to identify gaps between current capabilities and 

state of the art capabilities (Mittal and Cane 2016). Table 2-4 describes a summary of relevant 

literature regarding hazard and gap analysis. 

Table 2-4. Summary of literature on methods and techniques for conducting hazard and gap 

analyses. Also provides current literature used to execute the hazard and gap analyses in this 

dissertation. 

Aspect of hazard or gap analysis References 

Supply chain and logistics resilience to hazards 

VDEM 2023 

CSIS 2022 

Mclean 2020 

Resilience techniques and mitigation strategies 

for reducing harms from hazards 

DCR 2021 

USCG 2019 

DHS 2018 

VDEM 2018 

Changes to operations in presence of hazards 

Wu et al. 2022 

Thorisson et al. 2020 

Ambrosino and Anna 2018 



30 

 

Systems-of-systems resilience to natural hazards 

Andrade and Hulse 2022 

UNEP 2021 

VCC 2021 

Disruptions to transportation networks 

UNCTAD 2022 

Andrews et al. 2020(b) 

Andrews et al. 2020(c) 

Metrics and analytics for resilience and 

sustainability 

The World Bank 2022 

UNDESA 2022 

Collier et al. 2021(a) 

Risk modeling under threat of hazards 

Bonato et al. 2021 

Collier et al. 2020(d) 

Assessment of compounding and hybrid hazards 

Hill, Loose et al. 2023 

Collier et al. 2020(e) 

Gap analysis methods and frameworks 

Thomas et al. 2021 

Mineraud 2016 

Mittal 2016 

Jennings 2002 

Simulation and system specifications for 

development of resilience 

Zhan et al. 2020 

Kawahara et al. 2009 

 

2.5 Simulation for resilient design 

The third stage of CPSRM utilizes model-based simulations to explore new resilience 

capabilities on the system of interest. Simulation has been used to assess resilience in logistics 
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systems (Coelho 2022, Pascual et al. 2016), supply chains (Carvalho et al. 2019), and 

environmental systems (Andrade and Hulse 2022). Simulation can take many forms such as Monte 

Carlo simulation or through use of systems modeling languages (Rabe et al. 2021, Thorisson et al. 

(2) 2019, Carter et al. 2019).  

There are many existing simulation methods, leveraging expert systems (Chou and Fang 

2021, Kim et al. 2019), specialized software (Larsen and Pacino 2020), or general-purpose 

software (Brockman et al. 2016) used in port systems specifically. The technique used in the 

CPSRM and for this demonstration is a general-purpose simulator, specially tailored for maritime 

port operations. There are many benefits to this method, as it allows for greater flexibility in the 

design and fidelity of the simulation (Cho et al. 2021, Thorisson et al. 2019, Guan et al. 2002). 

Further, it creates a more stable integration with machine learning resources (Duvaud and Hainaut 

2020). Table 2-5 describes a summary of literature regarding simulation and resilience for CPS in 

general and port operations specifically. 

Table 2-5. Summary of literature on methods and techniques for the development of 

simulations 

Aspect of simulation and resilience References 

Simulation and analysis of port processes 

Costello et al. 2023 

Vlahavas and Refanidis 2013 

Guan et al. 2002 
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Simulation of container stacking operations 

Larsen 2020 

Kim et al. 2019 

Jimena et al. 2016 

Pascual et al. 2016 

Simulation for supply chains 

Coelho and Barbosa-Povoa 2021 

Rabe et al. 2021 

Carvalho et al. 2012 

Schmitt et al. 2009 

Analysis of port systems, performance, and 

operations 

Aegis Environmental 2019 

Almutairi 2016 

Expert knowledge and simulation design 

Wang et al. 2019 

Chou and Fang 2018 

Simulations for the development of control 

strategies 

Powell 2022 

Blum et al. 2021 

Rei et al. 2008 

Design and analysis of simulations 

Boedker et al. 2021 

Carey and Rossler 2020 

Coad and Yourdon 1991 

Advancements in simulation technologies 

Marttunen and Mustajoki, 2018 

Brockman et al. 2016 
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2.6 Reinforcement learning for control and resilience 

The fourth and fifth stages of the CPSRM use the model-based simulation to implement 

and test resilience capabilities. For this dissertation, the resilience capability of interest is a 

planning algorithm which controls port operations to reduce delays during and after disruptive 

events. Control algorithms utilizing reinforcement learning are a leading method for decision 

support in logistics and supply chains (Yan et al. 2022). MuZero is a program and reinforcement 

learning algorithm developed by DeepMind (Schrittwieser et al. 2020). The program was 

developed to play games such as chess, shogi, go, and Atari, but the underlying algorithm is known 

to improve operations of systems and tasks such as robotics (Zhan et al. 2020) and air traffic 

control (Yilmaz et al. 2021). The algorithm combines Monte Carlo Tree Search (MCTS) with a 

learned model to perform various tasks, including achieving superhuman performance at chess, 

and other rules-based games. Planning algorithms that utilize lookahead search such as MuZero 

have been successful in several domains, but in particular logistics (Powell 2022, Vlahavas and 

Refanidis 2013). This dissertation expands on research and applies MuZero to port operations, 

tuning the algorithm to integrate with the simulation-based solution (Hamdy et al. 2022, Duvaud 

and Hainaut 2020). Table 2-6 describes the use of machine learning, reinforcement learning, and 

other methods for improving the resilience of process controls. 
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Table 2-6. Summary of literature on machine learning, reinforcement learning, and other 

techniques for improving resilience of logistics systems. 

Aspect of machine and reinforcement learning References 

Development of new reinforcement learning 

techniques and algorithms 

Long et al. 2023 

Liu et al. 2022 

PoLA 2022 

Duvaud and Hainaut 2020 

Schrittwieser et al. 2020 

Zhang et al. 2017 

AI for controls 

Chen 2022 

Oroojlooyjadid et al. 2022 

Pireva et al. 2017 

Hatzi et al. 2011 

AI for transportation 

Yilmaz et al. 2021 

Abduljabbar et al. 2019 

Thorisson et al. 2019(a) 
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AI for container management 

Loose et al. 2023(b) 

Bosch 2022 

Hamdy, Loose et al. 2022 

Sikorra et al. 2021 

Maldonado et al. 2019 

Guven and Eliiyi 2014 

Fotuhi et al. 2013 

Lee et al. 2007 

Integration of simulators and reinforcement 

learning techniques 

Yan et al. 2022 

Cutler et al. 2014 

Algorithmic approaches for decision systems and 

CPS 

Collier et al. 2021(b) 

Jung and Jazizadeh 2019 

Yang and Hsu 2018 

Analysis of reinforcement learning techniques 

Moerland et al. 2023 

He et al. 2018 

Bello et al. 2016 

 

2.7 Analysis of disruption of system orders 

The sixth and final stage of the CPSRM is the selection of resilience techniques to include 

in the system design. To assist in the process, this dissertation applies a model for prioritizing 

resilience measures under uncertainty as an aspect of risk analysis (Loose et al. 2022 (a), 2023(a)). 

Traditional approaches consider risk to be a function of probability, consequences, and 

vulnerability (Bouchat and Asveld 2020, Conrow 2007). Still others define risk as the “effect of 
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uncertainty on objectives” (Hutchins 2018).  The CPSRM utilizes a complementary perspective 

through the use of a mathematical ranking framework in which risk is the measure of disruption 

of scenarios to priorities (Loose et al. 2023(a), Lambert, Loose et al. 2022). Disruptions such as 

severe weather and pandemics alter system priorities in the short and long term (Hennig et al. 

2022, Stern et al. 2021). The model utilizes scenario analysis to determine how priority rankings 

change due to disruption (Hassler et al. 2020). It is difficult to balance competing metrics, 

objectives, and perspectives when designing resilient systems (Hollenback et al. 2020). The 

decision model enables organizations to evaluate conflicting criteria to improve selection across 

the set of resilience measures (Almoghathawi et al. 2017, Andrews et al. 2020 (2)). Table 2-7 

describes the literature regarding risk analysis in sociotechnical systems, logistics systems, supply 

chains, and similar domains.  

Table 2-7. Summary of literature on risk and scenario analysis, the disruption of system 

orders, logistics, and supply chains 

Aspect of risk or scenario analysis References 

Analysis of disruption of priority orders due to 

disruptive scenarios 

Loose et al. 2023(a) 

Lambert, Loose et al. 2022 

Loose et al. 2022(c) 

Thorisson and Lambert 2021 
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Preference modeling under uncertainty 

Loose et al. 2022(a) 

Collier et al. 2021(c) 

Quenum et al. 2021 

Bouchaut and Asveld 2020 

Hassler et al. 2020 

Haimes et al. 2002 

Preference modeling for maritime ports 

Almutairi et al. 2022 

Gacek et al. 2021 

Preferences, security, risk, and trust for supply 

chains 

Eddy, Loose et al. 2022 

Loose et al. 2022(b) 

Collier et al. 2021(e) 

Collier et al. 2021(f) 

Jensen 2021 

Pennetti et al. 2020(c) 

Systems analysis with evolving preferences 

Chmura 2021 

CPDC 2021 

VEC 2021 

Collier and Lambert 2020(c) 

Klasa et al. 2020 

Keisler et al. 2020 

Pennetti et al. 2020 (1) 
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Risk in transportation 

Alsultan et al. 2020 

Pennetti et al. 2020(b) 

Pennetti et al. 2020(d) 

Levenson 2004 

Trust, security, and understanding of complex 

systems 

Moghadasi et al. 2022 

VanYe et al. 2021 

Collier and Lambert 2020(a) 

Analysis of stakeholder disposition changes 

under uncertainty 

Alsultan et al. 2021 

Bonato et al. 2021(b) 

Donnan et al. 2020 

Resilience of ports to disruptions 

Andrews et al. 2020(a) 

Thorisson et al. 2019(b) 

Project planning and management 

Eddy, Loose et al. 2023 

Collier and Lambert 2021 

Crater PDC 2021 

VDEP 2021 

Evolution of risk analysis, risk metrics, and 

resilience 

Wheeler et al. 2022 

Pennetti et al. 2021 

Hollenback et al. 2020 

Linkov et al. 2020 

USBLS 2020 

Hutchins 2018 

Conrow 2007 
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Chapter 3. Methods 

3.1 Overview 

This chapter describes the cyber-physical systems requirements methodology (CPSRM) 

and a brief overview of the tools used for executing each stage. The CPSRM is a framework for 

the development of requirements for resilience in cyber-physical systems. Section 3.2 describes 

the CPSRM including the relevant context for the methods when compared to other cyber-physical 

systems analysis frameworks. Section 3.3 describes the four teams of the CPSRM and their roles, 

skills, and responsibilities. Section 3.4 describes the six sages of the CPSRM, including the 

relevant inputs and outputs of each stage. Section 3.5 describes the tools and methods used to 

execute each stage of the CPSRM. 
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3.2 Cyber-physical systems requirements methodology 

This dissertation introduces the cyber-physical systems requirements methodology as a 

technique for describing, developing, and analyzing resilient cyber physical systems. The CPSRM 

is an extension of the cyber resilience requirements methodology (Carter et al. 2019). The CPSRM 

is a six-stage process involving four teams: T1 - purpose, T2 - function, T3 - blue, and T4 - red. 

Figure 3-1 describes the CPSRM stages, teams, and workflow. 

 

Figure 3-1. The workflow and swimlane diagram for the Cyber-Physical Systems 

Requirements Methodology. The CPSRM is executed across six stages and four teams. 

The CPSRM and related terms and teams are derived from cybersecurity research 

(Chowdhury and Gkioulos 2023). Cybersecurity analysis and design methods are critical for 

minimizing the risks of cyber-threats to digital systems. Cyber systems span multiple user groups, 

objectives, and design paradigms – a cohesive design philosophy enables system owners to tailor 

design elements to the objectives, needs, and concerns of the user base. The principles developed 

for cybersecurity are expanded to apply for any cyber-physical system using the CPSRM. 
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Latest research focuses on the analysis and design of cyber-physical systems for resilience 

(Cassottana et al. 2023). Effective CPS design for resilience has three primary parts; 1) a 

description of the CPS, 2) an analysis of disruptive scenarios, and 3) the development of resilience 

techniques. Figure 3-2 describes the framework for analysis and design of CPS. 

 

Figure 3-2. Representation of the critical phases of a cyber-physical systems design and 

analysis technique. There are three key parts – a system description, analysis of disruptive 

scenarios, and an assessment of resilience techniques. Adapted from (Cassottana et al. 2023). 
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Part one – system description has three elements. First, the individual CPS components are 

assessed, including the cyber and physical layers. This includes the collection of data and 

knowledge about system missions, structures, and interdependencies. Once components are 

collected, analysts identify measures of performance – quantitative values used to assess how the 

system operates under normal and disrupted conditions. The system components and measures of 

performance are converted into a model – this could be a simulation, statistical model, or 

represented in a modeling language.  

There are three elements of part two – disruptive scenarios. The objective of part two is to 

perform a hazard analysis in which information about possible hazards that influence the measure 

of performance is collected. Hazards can be developed via inductive methods in which analysts 

predict influence of known hazards on performance. Hazards can also be developed via deductive 

methods in which disruptive scenarios are traced backwards – from the impact of the disruption to 

the triggering event. 

Part three – resilience techniques is the assessment and development of strategies that can 

mitigate or prevent damages caused by disruptive scenarios. A resilience technique is a particular 

technology, process improvement, program, or structure that improves system resilience. In this 

part, information about existing resilience and mitigation techniques is collected. New resilience 

techniques may be researched, tested, and implemented in this part. Techniques can be reactive or 

proactive. Reactive methods are implemented to return to normal operations after disruption has 

occurred. Proactive methods are used to prevent or reduce the influence of disruptive scenarios on 

operations. 

The CPSRM encompasses all three parts of the CPS resilience assessment framework, 

corresponding to the six phases. Preliminary work and stage S1 – generate system description 
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correlates to part one – system description. Stage S2 – perform risk assessment correlated to part 

two – disruptive scenarios.  Stages S3 through S6 correlate to the development of part three - 

resilience techniques. Figure 3-3 demonstrates which stages of the CPSRM correspond to which 

parts of the CPS resilience assessment framework. The three colors in Figure 3-3 correspond with 

the colors of the three parts of a CPS design and resilience technique from Figure 3-2. 

 

Figure 3-3. Relationship between the CPSRM and the CPS resilience assessment framework. 

While the CPS resilience assessment framework provides guidelines for how to analyze 

and design resilient systems, the specific tools, models, and methods depend on the target system 

and the needs of stakeholders. Table 3-1 describes the objects of analysis and tools, methods, or 

models used for the demonstration of the CPSRM in this dissertation. Other tools may include 

graph-theory models, finite-state machines, event trees, attack graphs, Markov processes, and 

game-theoretical models. 
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Table 3-1. Overview of the tools, models, and methods of the CPSRM and the relationship 

to the phases of CPS design 

Resilient design for CPS Object of analysis Tool/Model/Method 

System description 
Control components 

Cyber components 
Simulation-based models 

Disruptive scenarios 
Physical disruptions 

Cyber disruptions 
Contingency analysis 

Resilience techniques 
Hardening components 

Automation 

Analytical models 

Control theory-based models 

Reinforcement learning 

 

In this dissertation, the CPSRM is used to analyze a critical element of the container 

handling process in the Port of Virginia. A simulation-based model is used to emulate the 

movement of physical components and the system controller. A contingency analysis is used to 

identify disruptive scenarios and their impacts on operations. Reinforcement learning models, 

control theory models, and analytical models are used to implement resilience techniques. 

3.3 Review of the teams of the CPSRM  

There are four teams that interact throughout the CPSRM. These are teams with varied 

expertise regarding the target system, disruption, and modeling capabilities. Utilizing cross 

functional teams as part of requirements elicitation is a best practice in systems design and analysis 

(SeBOK 2023). Varied experience across teams allows for greater depth and breadth of analysis 

and more robust results.  

The first team T1 consists of stakeholders and experts on the target system and define the 

system purpose. T1 may be users of the system, maintenance personnel, management, or 
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customers. T1 members have a vested interest in the continued performance of the system. T1 may 

be questioned or provide insight into how the system is used, identify objectives of the system, or 

describe limitations of the system. Experts are personnel who have in-depth and first-hand 

knowledge of the system including operational procedures. Members of T1 may be a part of the 

remaining three teams of the CPSRM. T1 provides the information required to develop a system 

description. This includes the initial design documents of the system, a record of changes to the 

system, and other relevant information. They may provide a Concept of Operations (CONOPS) – 

a plain language description of the missions, operations, and mechanics of the system. A CONOPS 

defines the scope of operations for users under normal operating conditions. A CONOPS may also 

describe design constraints, providing context for why various features were implemented or 

excluded. A CONOPS provides the high-level description of the functionality of the system 

including inputs, outputs, processes, and feedback (Laarni et al. 2022). 

The second team is T2 and consists of systems design experts responsible for defining 

system functions. T2 is comprised of analysts with cross-functional skillsets including risk and 

resilience analysts, programmers, modelers, and other domains. The primary responsibility of the 

T2 is to design and implement a model of the target system based on the documentation provided 

by T1. T2 uses the model to design and test resilience techniques, utilizing feedback from the red 

and blue teams. T2 team generates a system description in stage one of the CPSRM – a set of high-

level requirements for the model that can describe the inputs, outputs, architectures, and internal 

dynamics of the system. T2 team uses this model to implement resilience techniques, generating 

new requirements for the system in stages three and five of the CPSRM. 

The third team is the blue team. The blue team is comprised of operations-oriented 

stakeholders who create the finalized set of system requirements. Members of the blue team are 
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typically system owners or the primary users. The blue team leverages the expertise of its members 

who have operated the target system in both typical and disrupted conditions, making them the 

ideal team for identifying and collecting disruptive scenarios and hazards to the system. Disruptive 

scenarios are possible future states of the system that influence operational performance and 

disrupt system priorities. The blue team performs a risk assessment in stage two of the CPSRM, 

providing information and requirements regarding disruptive scenarios to T2 as they develop the 

model of the system. In stage six of the CPSRM the blue team selects the final set of new resilience 

requirements to implement into the real-world version of the target CPS. 

The fourth team is the red team. The red team is comprised of experts on disruption and 

resilience who can provide feedback on the efficacy of resilience techniques to T2. In traditional 

cybersecurity tabletop analysis, the red team represents hackers and other cyber vulnerability 

experts. In the CPSRM, the red team represents experts on hazard analysis and resilience. The red 

team assesses the performance of the resilience techniques that T2 implements, providing feedback 

as necessary. Table 3-2 provides an overview of the four teams in the CPSRM.  
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Table 3-2. Overview of the four teams of the CPSRM and associated responsibilities 

Team Description 

T1 - Purpose 

T1 are system owners, analysts, and designers who can provide 

insight to the purpose, scope, and function of the system. This team 

may share personnel with the three other teams of the CPSRM. The 

purpose of this team is to provide design documents, the Concept of 

Operations for the system, and other relevant information to assist the 

remaining teams with the development of the system description, 

disruptive scenarios, and resilience techniques.  

T2 – Function  

T2 consists of analysts with cross-functional skillsets who are 

responsible for the design and implementation of a systems model for 

testing and analysis. T2 uses information from the stakeholders and 

experts to identify system requirements. T2 team develops a system 

description, then uses risk assessment information to build a model 

of the system including resilience techniques. T2 coordinates with the 

red team to refine results and develop new resilience techniques. 

T3 - Blue  

The blue team consists of operations-oriented stakeholders who are 

experts on the target system with an understanding of disruptions to 

the system. The blue team performs the operational risk assessment, 

which includes the collection and analysis of disruptive scenarios and 

their impact on the system design. The blue team finalizes the system 

description and requirements. 

T4 - Red 

The red team is a group of hazard, attack, and resilience experts who 

identify and address specific risks. The main focus of the red team is 

to provide feedback to T2 during solution development, giving 

insight to the efficacy of resilience techniques. 

 

3.4 Review of the stages of the CPSRM  

There are six stages in the CPSRM; S1 – generate system description, S2 – perform risk 

assessment, S3 – develop solutions, S4 – assess solutions, S5 – revise system descriptions, and S6 

– accept system description. Some stages are executed multiple times based on feedback. The goal 

of executing the CPSRM is to generate new requirements that improve the resilience of the target 

system to disruptive scenarios.  The initial input to the system is a description of the high-level 
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goals and operations of the system, and the final output is a set of new requirements for 

implementation with an emphasis on new resilience techniques.  

In S1 – generate system description, T2 converts design documents and the CONOPS into 

high-level requirements for the system model. The objective is to generate a model of the system 

that can be analyzed or manipulated to understand the impacts of disruptive scenarios. The system 

description includes the inputs, outputs, and goals of the system model. The system description 

defines the measures of performance used to assess the effectiveness of the system. This may 

include existing resilience techniques to be modeled in later phases. T2 may begin to consider new 

resilience methods at this stage. 

In S2 – perform risk assessment, the blue team identifies disruptive scenarios that may 

influence the performance of the system based on the system description. The primary tool of this 

stage is a hazard analysis – an inductive method in which the blue team iterates over a list of known 

disruptions, ranking each based on its ability to disrupt operations. This can include the probability 

of a disruptive scenario occurring. Existing resilience techniques can raise or lower the rank of a 

disruptive scenario – if the system is already well protected against flooding, the risk rank of 

flooding may decrease. Thus, it is necessary to also perform a gap analysis. In this case, a gap 

analysis is a review of existing resilience techniques and strategies that are already applied to the 

system. Once the list of existing techniques is set, the blue team identifies new resilience 

techniques that can be implemented to address disruptive scenarios. The blue team then identifies 

“gaps”, or a set of new techniques or technologies than can be implemented to improve system 

resilience. 

In S3 – develop solutions, T2 converts the system description into a model. This can be a 

graph theory model, dynamic system model, Petri net, or other type of system representation. In 
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this dissertation, T2 utilizes a simulation-based model. The model is a representation of the real-

world CPS, and is used to test new resilience techniques. The model should be able to integrate 

the effects of disruptive scenarios. The model should be functional, but does not need to be 

complete – the model is sent to the red team in stage four for further assessment. 

In S4 – assess solutions, the red team analyzes the model, paying particular attention to the 

effectiveness of the resilience techniques. They analyze the measures of performance across 

scenarios to determine how effective the techniques are in improving system resilience. Using their 

expertise on hazards, the red team provides feedback on potential changes for the model to T2, 

who will adjust and develop new solutions accordingly. This process can be completed as many 

times as necessary. In this dissertation, the red team provides feedback on the parameters of the 

reinforcement learning model for the container handling process. 

In S5 – revise system descriptions, T2 rewrites the system description incorporating the 

new resilience techniques developed in stages three and four. There may be one or more new 

techniques implemented at one time. The revised description is given to the blue team who 

approves the new requirements, updating the system description.  

In S6 – accept system description, the blue team finalizes the updated system description 

and prepares to implement the new resilience techniques. If the blue team rejects the revised system 

description the CPSRM restarts in S2 – perform risk assessment. This way, the blue team can 

perform the gap analysis again using new context provided in the updated system description. It is 

not necessary that the blue team accept all new resilience techniques or requirements. The blue 

team can perform a metanalysis of the new requirements, sorting them by priority and assessing 

how priorities change under disruptive scenarios as outlined in the hazard analysis. Through this 

process, the blue team gains clarity on which disruptive scenarios are most relevant and which 
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requirements are the highest priority. Table 3-3 provides an overview of the six stages of the 

CPSRM. Table 3-4 provides an overview of the inputs and outputs required for each stage of the 

CPSRM 

Table 3-3. Overview of the six stages of the CPSRM and descriptions 

Stage Description 

S1 – Generate System 

Description 

In stage one, T2 generates the system description – a high-level 

overview of system goals, components, inputs, outputs, and 

strategies. These are the components of the system that will be 

modeled in subsequent steps of the CPSRM. 

S2 – Perform Risk 

Assessment 

In stage two, the blue team performs a risk assessment to identify 

scenarios that may disrupt the performance of the system. This 

includes a gap analysis to understand which capabilities the system 

utilizes to reduce the impact of disruption and what new capabilities 

may improve system resilience.  

S3 – Develop Solutions 

In stage three, T2 creates a model of the target system using the 

system description and input on disruptive scenarios from the blue 

team. This model is used to test resilience techniques and generate 

new resilience requirements 

S4 – Assess Solutions 

In stage four, the red team analyzes the models of T2 to assess the 

efficacy of the resilience techniques. They provide feedback T2 so 

they can adjust the model accordingly 

S5 – Revise System 

Descriptions 

In stage five, T2 updates the model and resilience solutions to address 

the feedback from the red team. Stages three and four are repeated as 

needed.  

S6 – Accept System 

Description  

In stage six, the blue team accepts or rejects the new requirements. 

The blue team determines which new requirements will be 

implemented in the system, especially with respect to resilience 

requirements addressing disruptive scenarios. The blue team is 

interested in understanding the ordered priority of the requirements 

and how different disruptive scenarios influence this priority.  
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Table 3-4. Descriptions of the inputs and outputs of each stage of the CPSRM 

Stage Inputs Outputs 

S1 – Generate 

System Description 

Design documents, 

CONOPS, expert advice 

System objectives and specification, 

preliminary requirements 

S2 – Perform Risk 

Assessment 

System objectives, 

specification, and 

requirements; Information 

on disruptive scenarios 

Assessment of existing resilience 

capabilities, gaps in resilient design, 

resilience requirements 

S3 – Develop 

Solutions 

System specification, 

resilience requirements 

Model of target system, including resilient 

design components  

S4 – Assess 

Solutions 

Model of system, 

including resilient design 

components 

Feedback regarding efficacy of resilient 

components, including how well they 

address disruptive scenarios 

S5 – Revise System 

Descriptions 
Feedback from red team Updated system description 

S6 – Accept System 

Description  

Updated system 

description 

Finalized list of new resilience 

requirements for the target system 

 

3.5 Tools and methods used for the execution of the CPSRM  

Each stage of the CPSRM utilizes different sets of analysis tools and methods. This section 

focuses on the tools used in this dissertation to execute a demonstration of the CPSRM on a 

maritime port and surrounding region, specifically the container handling process. 

S1 – generate system description utilizes the system specification process – also called the 

system requirement specification (Suhail et al. 2022). A system specification is a document that 

outlines the expected behavior and outcomes of the system. A system specification includes the 

purpose of the system (what does the system do?) and the need for the system (why should the 

system be built?). The system specification may include preliminary functional requirements – a 

set of the capabilities of the system. These may be things that the system will and will not do, 

setting boundaries on functionality. A system specification also includes a description of the 
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existing system, including what currently exists, what the new requirements may be, and who the 

users will be. Other information in the system specification includes the constraints of the system 

(timelines, technical software limitations, legal obligations) and assumptions regarding 

dependencies that may impact development (Verasseti 2021). 

S2 – perform risk assessment utilizes two methods – a hazard analysis and gap analysis. A 

hazard analysis is the process by which experts enumerate as many of the known and relevant 

hazards as they can, and determining which hazards pose the greatest risk to operations. This 

process also highlights the impacts of the disruptions – that is, multiple hazards may have the same 

influence on system performance. A gap analysis consists of taking inventory of existing resilience 

techniques and identifying a desired target state for the system. The difference between the as-is 

system and the target to-be system is called a gap. The gaps are presented as requirements for 

inclusion in the system model. The gaps are presented to T2 for inclusion in the simulation. 

S3 – develop solutions utilizes simulation and reinforcement learning algorithms. The 

simulation is implemented in Python and provides a digital representation of the environment, 

actions, and internal dynamics of the system. It also incorporates randomness, emulating a real-

world environment. This randomness can be manipulated to resemble the impacts of a disruptive 

scenario. Reinforcement learning is used to train control algorithms, specifically the 

implementation of the MuZero algorithm. The algorithm learns how to respond to various system 

states, improving decision making. The algorithm also learns the underlying dynamics of the 

simulation, allowing it to more effectively respond to disruption. 

S4 – assess solutions and S5 – revise system descriptions both iterate on the algorithm, 

selecting hyperparameters that best match the system. This may include changes to the simulation 
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to more closely resemble the real-world system. This process includes monitoring the measure of 

performance as well as monitoring the performance of the RL algorithm.  

S6 – accept system description utilizes a mathematical analysis framework to prioritize 

resilience requirements and understand how this priority changes under disruption. This produces 

two main artifacts. First, the framework produces an analysis of priority orders, indicating how 

individual priorities change due to disruption. A new requirement may be high priority in the 

baseline, but falls in importance due to disruption. Second, the framework quantifies how 

disruptive scenarios are, allowing the blue team to see which disruptive scenarios influence 

priorities most and least. Table 3-5 describes the tools and methods associated with each stage of 

the CPSRM, including the chapters of this dissertation that discuss these tools.  

Table 3-5. Relationship between CPSRM stages, chapters, and tools or methods 

Stage Chapter Tool(s) or Method(s) 

S1 – Generate System 

Description 
Chapter 4 System Specification 

S2 – Perform Risk 

Assessment 
Chapter 4 Hazard Assessment and Gap Analysis 

S3 – Develop Solutions Chapter 5 
System Simulation and 

Reinforcement Learning Algorithm 

S4 – Assess Solutions Chapter 6 Train Algorithm, Assess Results 

S5 – Revise System 

Descriptions 
Chapter 6 Train Algorithm, Assess Results 

S6 – Accept System 

Description  
Chapter 7 

Mathematical analysis of disruption 

of priorities 
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Chapter 4: System specification and gap analysis 

4.1 Overview 

This chapter describes the development of a system specification of the Port of Virginia 

and surrounding region. A key element of this is the development of a hazard and gap analysis to 

provide context for the risks to the port. Section 4.2 provides an overview and description of the 

system used for the demonstration of the CPSRM, including the port, its missions, and the 

surrounding region.  Section 4.3 provides an overview of the system specification of the port, 

including section 4.3.1 providing details of the Port of Virginia and its macro-objectives, and 

section 4.3.2 providing details of the specific port processes analyzed in this demonstration. 

Section 4.4 provides details on the hazard analysis, the first phase of the gap analysis, including 

Section 4.4.1 providing an overview of the hazard analysis process, and Section 4.4.2 providing a 

description of the hazards. Section 4.5 describes the gap analysis, the process through which new 

resilience techniques are assessed for viability in the updated system specification. 
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This chapter represents stages one and two of the CPSRM. Prior to the execution of the 

CPSRM, T1 delivers design documents and other requirements to T2. In stage S1 – Generate 

System Description, T2 utilizes the design documents to develop a high-level system description. 

In stage S2 – Perform Risk Assessment, the blue team performs a risk assessment by developing a 

hazard analysis and gap analysis. Figure 4-1 describes the relationship between the content of this 

chapter and the CPSRM. 

 

Figure 4-1. Relationship between CPSRM stages one and two, and Chapter 4 – System 

specification and gap analysis. Chapter 4 describes stages one and two of the CPSRM, in which 

the T2 develops a system description in the form of a system specification, and the blue team 

performs a risk assessment in the form of a hazard and gap analysis 
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4.2 Description of system used for demonstrations 

This section provides an overview of the system of analysis in this dissertation. The 

primary focus is on the Port of Virginia. As the port is beholden to local, state, and federal 

regulations, these aspects are analyzed as well. This section provides an overview of the state of 

Virginia, the Hampton Roads region, and Port of Virginia facilities. 

The Commonwealth of Virginia is on the Mid-Atlantic coast of the United States. The 

western portion of the state overlaps with the Blue Ridge and Cumberland Mountains. The central 

portion of the state, the Piedmont region, is a plateau bounded by the coastal plains to the east and 

the Blue Ridge Mountains to the west. The eastern portion of the state is bordered by the 

Chesapeake Bay and Atlantic Ocean. The Port of Virginia falls in the Outer Coastal Plain, and is 

strategically located at the intersection of the Chesapeake Bay and Atlantic Ocean (DCR 2021).  

Virginia has a population of over 8.3 million as of 2022. The three most populous regions 

in Virginia are Northern Virginia (The Washington, D.C. metropolitan area), Richmond, and 

Hampton Roads (the location of the Port of Virginia) – over 70% of the population of the state 

lives in one of these regions. These regions are critical to the economy of the state. The remainder 

of the population is largely rural, with several small urban centers throughout. The Port of Virginia 

is strategically and practically important to the state – goods arriving through the port are 

distributed to the dense population areas via rail and truck. As the seat of the federal government, 

consistent supplies of goods to Northern Virginia are critical. Further, as the Port of Virginia is 

located in one of the most populous areas in the state, the port has a responsibility to reduce 

emissions and develop sustainable operations to ensure the continued health and wellbeing of 

nearby citizens. Figure 4-2 describes the population density of Virginia. 
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Figure 4-2. A population density map of the Commonwealth of Virginia in 2020. The map 

highlights the location of the main Port of Virginia terminals in the southeast corner of the state. 

The state is divided into dozens to hundreds of administrative regions, including cities, 

counties, and federal land. Hazard analysis is conducted at the planning district commission (PDC) 

level. PDCs are associations of local city and county governments that coordinate projects and 

resources to benefit the region. There are 21 PDCs in Virginia. The four largest terminals of the 

Port of Virginia are located in the Hampton Roads PDC. While some facilities such as the 

Richmond Marine Terminal fall outside of the Hampton Roads PDC, this hazard analysis focuses 

on the four primary port terminals. Figure 4-3 shows the borders of the 21 PDCs of Virginia and 

highlights the location of the Port of Virginia within the state. 
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Figure 4-3. A map of the 21 planning district commission of the Commonwealth of Virginia. 

The main marine terminals of the Port of Virginia are located in the Hampton Roads PDC. Adapted 

from (VDEM and Loose 2023). 

The Port of Virginia is a group of facilities and marine terminals in Hampton Roads 

managed by the Virginia Port Authority – an autonomous agency within the government of the 

Commonwealth of Virginia. As an agency of the state government, the Virginia Port Authority 

reports to the Virginia Secretary of Transportation. The Virginia Port Authority provides input and 

guidance to the hazard analysis for the state of Virginia, with special instruction for the Hampton 

Roads region around the main port facilities. The four primary port facilities are the Norfolk 

International Terminals (NIT), Virginia International Gateway (VIG), Portsmouth Marine 

Terminal (PMT), and the Newport News Marine Terminal (NNMT). Craney Island is a planned 
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fifth facility located near the four existing terminals. With a new facility currently under 

development, the Port of Virginia is seeking new ideas, techniques, technologies, and practices to 

improve port performance and increase sustainability (POV 2023). Table 4-1 describes the four 

main Port of Virginia facilities as well as two auxiliary inland facilities run by the Port Authority 

and the Craney Island facility. Figure 4-4 provides the specific locations of the four primary 

facilities in Hampton Roads. 

The Port of Virginia is one of the four largest ports on the Atlantic coast of the United 

States, and third in total containers handled. The port is strategically located between the Port of 

New York and New Jersey to the north, and the Georgia Ports to the south (SHIPA 2023). The 

mission of the Port of Virginia is to drive business, innovation, and sustainability in the 

Commonwealth of Virginia. These missions are reflected in specific objectives such as the 

reduction of truck turn times, net-zero emissions by 2040, and investments in local infrastructure 

(Virginia Port Authority 2021). The scope of port operations spans the four primary terminals, 

each with vessel, rail, truck, crane, and yard operations. Stakeholders from the Port of Virginia 

provided system specifications for each terminal, but this dissertation will focus on a single process 

– the control of rail mounted gantry cranes for the organization of container stacking blocks to 

improve the resilience of the container handling process. 
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Table 4-1. Overview of the facilities managed by the Port of Virginia 

Port Facility Description 

Norfolk International Terminals (NIT) The primary marine terminal in the Virginia Port 

Authority’s control. Has the capacity to call the 

newest class of Ultra Large Container Vessels. 

Virginia International Gateway (VIG) A privately owned container terminal, and one of the 

Port of Virginia’s first semi-automated terminals. 

Portsmouth Marine Terminal (PMT) Able to handle containers, break-bulk, and roll-

on/roll-off cargo. However, PMT is currently (2023) 

closed to container traffic.  

Newport News Marine Terminal (NNMT) A multi-use terminal, NNMT boasts direct, on-dock 

rail service and the capability to house specialized 

cargo. 

Virginia Inland Port (VIP) An inland dry port and container transfer facility 

located 60 miles west of Washington, DC. 

Richmond Marine Terminal (RMT) An inland port located on the James River that 

specializes in handling temperature-controlled 

containers, break-bulk, bulk, and neo-bulk cargo. 

Craney Island A planned expansion for the Port of Virginia to 

provide additional cargo capacity and implement 

new container handling techniques.  
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Figure 4-4. Locations of the four primary Port of Virginia facilities  

 

4.3 System specification 

This section describes the system specification (sometimes called a system requirements 

specification) process for the demonstration of the CPSRM on the Port of Virginia. A system 

specification is a structured and regimented method for collecting the requirements of a system 

(IEEE CS 1998). A system specification corresponds to stage one of the CPSRM, S1 - Generate 

System Description. A system specification outlines high level considerations such as system 

goals, missions, and objectives. It outlines the limitations on the system such as rules, regulations, 

and budgets. S system specification outlines the specific, actionable requirements of the system – 

that is “the system shall…” perform some action within a timeframe yielding a specific result.  
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System specifications are typically performed on subsystems or processes rather than at 

the organizational level. The system specification describes the operations of the system under 

normal operating conditions. It is an objective of the CPSRM to develop requirements that make 

the system resilient to disruptive scenarios, as well as improve performance. Section 4.3.1 

describes the Port of Virginia at a high level, including its missions, objectives, and motivation for 

the development of new resilience techniques. Section 4.3.2 describes the container handling 

process – the specific subsystem of analysis in this dissertation – including performance metrics 

and desired outcomes. 

4.3.1 Port of Virginia Mission and Objectives 

The Port of Virginia is a maritime container and bulk cargo port with primary facilities 

centered on Hampton Roads, Virginia. The Port of Virginia considers the 500-mile radius 

surrounding port facilities to be its zone of influence. Port of Virginia operations directly impact 

390,000 jobs in Virginia, representing nearly 10% of the workforce in the state. This drives nearly 

$21 billion in compensation and over $2 billion in taxes (POV 2023). The self-described mission 

of the Port of Virginia is to “[drive] business to, and through, the Commonwealth [of Virginia]” 

(PoV 2023). This is notable, as the first order objective implies an obligation first to the state of 

Virginia. As the Port of Virginia is operated by the Virginia Port Authority, the objectives of the 

state and port must align. The vision of the Port of Virginia is to leverage its diverse talent pool, 

technology, and industry expertise to set the standard for supply chains now and into the future. 

The Port of Virginia especially values innovation through technology and computing, helpfulness 

to the community, fortitude, accessibility to customers, mindfulness in coordination with 

customers and the state, and sustainability with respect to environmental impacts. These are broad 

missions and a guide for the creation of subsystems within the Port of Virginia at large. 
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Figure 4-5. Map of the 500-mile radius zone of influence of the Port of Virginia. The port 

influences cities as far north as Boston, as south as Savannah, and west and Columbus. Developed 

using (CalcMaps 2015). 

The short and medium-term goals of the port provide specific motivations for the 

development of enhanced technology systems. The Port of Virginia focuses on customer service 

with respect to process efficiency and innovation – that is, ensure customers receive prompt and 

reliable service and information from the Port. The Port of Virginia also has a target to become 

carbon neutral by 2040. Finally, the Port of Virginia desires to meet or exceed all federal, state, 
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and local guidelines for operations. By 2065, the port plans to deliver several projects that improve 

operations, including the integration of new equipment and technologies to enhance port processes. 

These goals are fairly broad, so this dissertation will narrow the process down further to the 

container handling process specifically. 

The container handling process is discussed in greater detail in subsequent sections, but in 

brief, the container handling process is the movement of cargo containers – twenty-foot 

equivalents (TEUs) – from vessels into the port, within the port, and out of the port. Figure 4-6 

provides an image of a typical 40-ft. container, equal to two TEUs. There are many goals and 

objectives within the container handling process. For example, minimizing truck turn times, 

optimizing vessel-berth assignments, yard truck charging optimization, and minimizing container 

touches are a few specific goals and metrics that the Port of Virginia monitors.  The demonstration 

of the CPSRM in this dissertation focuses on the container yard portion of the container handling 

process, also called the “container stacking problem”. The container yard is the area within the 

port where TEUs are stacked and stored while awaiting pickup by truck. Storing and moving 

containers within this stack and during pick up by trucks is a known bottleneck – trucks often have 

to wait several minutes for the proper container to arrive to their vehicle. The Port of Virginia 

seeks methods to improve this process, reducing the average number of times a container is moved, 

called a “touch”. This aligns with larger port mission of driving business in Virginia, reducing 

carbon emissions, improving customer service, meeting regulations, and minimizing container 

touches and truck turn times. 
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Figure 4-6. A 40-foot shipping container. The 40-foot shipping container (sometimes called an 

intermodal container) is the standardized container for intermodal freight. A 40-foot container is 

equal to two TEUs. Adapted from (Benutzer 2004). 

4.3.2 Container yard and container handling process  

This section describes the container yard and container handling process, including the 

measures of performance, current performance, and other important factors for consideration. This 

information is used to generate the requirements of the system specification. This specification is 

the main output of stage one of the CPSRM, S1 - Generate System Description. The issue at the 

heart of the container handling process is the container stacking block. A container staking block 

is a set of container stacks that are all serviced by the same rail mounted gantry (RMG) cranes. 
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Figure 4-7. Overview of the container yard and container handling process. Adapted from 

(Port of Virginia 2018). 

Figure 4-7 shows the major stages of container handling process processing from vessels 

to trucks. Quay cranes remove containers from vessels and place them in staging areas. Then, 

shuttle trucks move containers from staging to a container stacking block – there are multiple 

container stacking blocks within the container yard. RMGs place containers and manage container 

stack configuration. Figure 4-8 shows an RMG servicing a single container stacking block at the 

Port of Virginia. A container yard consists of multiple container stacking blocks. When trucks 

arrive, the RMGs deliver containers directly to trucks with human-in-the-loop assistance. The 

trucks then exit the port.  
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Figure 4-8. A rail mounted gantry crane servicing a container stacking block at the Port of 

Virginia (AAPA 2023) 

The particular process of interest is the container stacking problem – the assignment of 

containers to locations in storage. Containers follow a probability distribution called dwell time in 

port analyses. Dwell time is the distribution of days that a given container may remain in the stacks. 

Current port operations utilize dwell time in decision making – a container that is likely to remain 

in the stacks for several more days is safe to place under containers with shorter dwell times. 

However, the uncertainty of when a container will leave the stacks strains effective decision 

making. New containers are placed atop old containers - however, this means that in many cases 

the newer container must be moved to a new location within the stacking block to retrieve older 

containers and deliver them to trucks. Ideally, a container is only moved twice – once to place the 
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container on a stack, and a second time to deliver it to a truck. In reality, a container must be moved 

several times before they are removed from the stacking block. The Port of Virginia reports 

between 4 and 4.5 touches per container. Each move requires energy as the crane lifts and moves 

a container. Furthermore, a container located at the bottom of a stack when a truck arrives to 

retrieve it will require several minutes to reach. There are many strategies for resolving the 

container stacking problem. Some ports attempt to stack containers from a single customer in one 

stack – when trucks arrive, they can take the top container as it has the same destination as the 

lower containers. Others attempt to place containers in stacks in order of departure time, with 

sooner departure times in higher tiers (van Asperen et al. 2011). Both of these approaches see 

limited success, as it is difficult to collect data of high quality on truck arrival times, and it takes 

significant computing power to get information on time for delivery (Kemme 2020).  

There are many considerations in the container stacking problem, often in competition with 

one another. Minimizing the number of moves (touches) per container would save energy and is 

trivial if stacks are never more than one container high. However, this would reduce the utilization 

of the stacking block – the percentage of container slots occupied by a container. This would also 

cause container stacks to have a much larger geographical footprint, increasing the distances 

RMGs travel to move containers. The distance an RMG must travel is a factor in truck turn times 

– in a stacking block 30 containers long, it may take a full minute to move a container from one 

end to the other. Moving a container at low-energy use times such as at night is less expensive 

than during operating hours so reshuffles – container movements within the stacking block – may 

not count against the touches per container metric. 

For this demonstration, the measure of performance is touches per container. This measure 

aligns with the Port of Virginia goal to reduce energy usage. It is known that a stacking block with 
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high utilization require more touches per container, but higher stacks reduce the footprint of the 

stacking block. Higher stack utilization and greater touches per container also increases the length 

of truck turn times. However, for this demonstration, it is determined that the touches per container 

alone is an adequate proxy for many of the other objectives of the port. 

Using this information, T2 generates a high-level system description in stage one of the 

CPSRM. The system description centers on a single container stacking block and the associated 

controller. According to port documents, each container stacking block is 30 units long, eight units 

wide, and five units tall. Stacks are rarely completely full, though utilization levels vary with 

demand from 50% to 80%, though during surges the stacks can have greater than 100% utilization 

(stacks are allowed to be one TEU taller). Each stack utilizes two automated RMGs that can each 

make 40 to 50 touches per hour. Each stack services roughly 20 trucks per hour and can service 

up to five trucks at a time. Truck drivers can schedule pick-ups up to 48 hours from the time of 

their expected arrival, though nearly one-third of reservations are made same-day. For the 

simulation in Chapter 5, these dimensions are adjusted as part of the testing of new resilience 

measures for the CPSRM.  

It is difficult to effectively stack containers under typical conditions. Port managers 

anecdotally claim that a plan made at 8:00 AM is useless by 10:00 AM. This is exacerbated when 

there are disruptions to operations such as severe weather. The port desires resilience techniques 

to reduce the impact of disruptive events with respect to managing container stacking blocks. In 

stage two of the CPSRM, the blue team identifies operational risks to the port to identify candidate 

resilience measures through a hazard analysis and gap analysis. 
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4.4 Hazard analysis 

This section describes the hazard analysis undertaken by the blue team in stage two of the 

CPSRM. The hazard analysis includes an assessment of historical data to identify what future 

disruptive events are the most disruptive to operations. The hazard analysis presented in this 

section represents an analysis for the entire state of Virginia – a region within the 500-mile radius 

zone of influence of the Port of Virginia. Section 4.4.1 presents an overview of the hazard analysis, 

including important context for the hazard analysis and the methodology for selecting and ranking 

hazards. Section 4.4.2 describes the hazards that were analyzed.  

4.4.1 Hazard analysis overview  

The hazard analysis presented in this dissertation closely follows the research performed 

for the Commonwealth of Virginia Hazard Identification and Risk Assessment (HIRA), a key 

aspect of the Virginia Hazard Mitigation Plan (HMP) (VDEM, Loose 2023). The objective of this 

assessment is to identify the primary natural and human-caused hazards that threaten the safety of 

citizens in the Commonwealth of Virginia in terms of life, injury, and economic factors. The report 

then utilizes a gap analysis to identify existing techniques that mitigate the impacts of these 

hazards, as well as identify techniques that can be implemented to improve the resilience of the 

state. The Port of Virginia participates in the hazard analysis exercise, providing internal data on 

the highest risk hazards to port infrastructure as well as existing and planned mitigation actions. 

Though the hazard analysis provides results for the entire Commonwealth of Virginia, special 

attention will be paid to the Hampton Roads region, the area containing and immediately 

surrounding the port terminals. 
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Hazard analysis is an inductive method for collecting and assessing future disruptive events 

or conditions that impact a system. In this case, the system is the Commonwealth of Virginia with 

special emphasis on the Hampton Roads region. The hazard analysis consists of a regimented 

program of collecting existing research and consulting with experts to identify the largest threats 

to the state and region. These hazards are then profiled based on the history of occurrence (number 

of events since recordkeeping began), the vulnerability of the people in the area (population 

density, population vulnerability, annualized fatalities), the geographic extent of the hazard area 

(percent of jurisdiction in hazard area, annualized frequency), and damages in terms of property 

(annualized property damage in dollars, number of state facilities in hazard area) (VDEM, Loose 

2023). Once the hazards are collected and profiled, they are assessed by the Advisory Committee 

– a council of government representatives who rank the hazards as high, medium, or low rank for 

the state as a whole. These ranks are based on point values from the hazard profiles and weights 

as assigned by the committee. Table 4-2 describes the results of this analysis for the 

Commonwealth of Virginia. The high-risk hazards are flooding, hurricanes, non-rotational and 

severe wind, winter storms, ice storms, and extreme cold.  
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Table 4-2. The risk rank of each hazard as described by the VDEM Advisory Committee for 

the Virginia 2023 Hazard Mitigation Plan. Adapted from (VDEM, Loose 2023) 

Hazard Category Risk Rank 

Flooding High 

Hurricane/Tropical Storm High 

Non-rotational Wind High 

Severe Wind High 

Winter Storm/Weather High 

Ice Storm High 

Extreme Cold High 

Extreme Heat Medium 

Coastal/Shoreline Erosion Medium 

Wildfire Medium 

Communicable Disease Medium 

Tornado Medium 

Drought Medium 

Hazmat/Biological Hazard Medium 

Landslide Low 

Karst/Land Subsidence Low 

Earthquake Low 

Dam/Levee Failure Low 

Terrorism/Active Threat Low 

Space Weather Low 
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Table 4-3 describes the results of this analysis for the Hampton Roads PDC and Port of 

Virginia. The high-risk hazards are flooding, hurricanes, and karst/land subsidence. The hazards 

with a risk rank of “-” and a grey background are hazards the Hampton Roads PDC either did not 

deem a threat to the region or did not assess. The following sections describe the identified hazards 

for the hazard analysis and provides insight into their impact on the state and region. 
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Table 4-3. The risk rank of each hazard for the Hampton Roads region of Virginia, including 

input from the Port of Virginia. Adapted from (VDEM and Loose 2023) 

Hazard Category Risk Rank 

Flooding High 

Hurricane/Tropical Storm High 

Non-rotational Wind - 

Severe Wind - 

Winter Storm/Weather Medium 

Ice Storm - 

Extreme Cold - 

Extreme Heat Medium 

Coastal/Shoreline Erosion - 

Wildfire Low 

Communicable Disease Low 

Tornado Medium 

Drought Medium 

Hazmat/Biological Hazard Medium 

Landslide - 

Karst/Land Subsidence High 

Earthquake Low 

Dam/Levee Failure Low 

Terrorism/Active Threat - 

Space Weather - 
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4.4.2 Hazards  

Flooding is a condition in which a normally dry area is covered with water. Flooding can 

occur anywhere – near streams, tidal waters, rivers, or away from water sources altogether.  

Flooding may be caused by many factors, including thunderstorms, hurricanes, rapid icemelt, or 

due to the failure of levees or dams. Floods are largely unpredictable but many areas experience 

flooding with regularity. If these areas are inhabited or contain infrastructure, they are referred to 

as “repetitive loss” areas. Flooding on coasts is often caused by a storm surge – a rapid shift in sea 

level caused by storm winds. Flooding can cause substantial damage to large areas, rotting 

infrastructure, eroding the ground, and posing an immediate danger to vulnerable populations. 

Figure 4-9 describes the “100-year floodplain” of eastern Virginia, or the areas where there is a 

1% chance of annual flooding. Floods pose a large risk to port operations, as it endangers vessels, 

rail, and trucks simultaneously. The Virginia HMP and Hampton Roads HMP, including the port, 

determined that flooding was a high-risk hazard.  

 

Figure 4-9. 100-year floodplain of Southeast Virginia. Adapted from (VDEM, Loose 2023) 
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Hurricanes and tropical storms are rotating storms with low-pressure centers, bringing high 

winds, heavy rains, and tornados. Rain may cause flooding and high, sustained winds can shear 

taller infrastructure elements. Hail and lightning are both threats during a hurricane or tropical 

storm event. It is possible for a hurricane to produce more than one foot of rain in a single day, 

leading to flash flood and mudslides. Though both coastal and inland areas are susceptible to the 

damage brought by hurricanes, coastal areas are especially vulnerable due the occurrence of storm 

surges. In Virginia, the flat topography of the coastal regions makes the area especially susceptible 

to storm surges. The lack of natural drainage paths leads to high accumulation of water and a slow 

retreat. Furthermore, the Hampton Roads region is one of the most populous and highest-risk areas 

for hurricane damage. The maximum of maximum envelope of high water (MEOW) is a National 

Hurricane Center metric for determining how far inland a storm surge may cause flooding given 

“perfect” storm conditions. Figure 4-10 describes the MEOW for the Hampton Roads region, 

including the Port of Virginia. This region is extremely susceptible to storm surges, with flooding 

occurring several miles inland under several conditions. Both the Virginia HMP and Hampton 

Roads HMP determined that the hurricane/tropical storm hazard was a high-risk event. 
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Figure 4-10. Maximum of maximum envelope of high water for category 1-4 hurricanes in 

the Hampton Roads region of Virginia. Adapted from (VDEM, Loose 2023) 
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Non-rotational wind and severe wind are winds caused by non-hurricane or tornado events 

such as thunderstorms, windstorms, or derechos. Derechos are wind storms caused by a long series 

of thunderstorms, causing damage comparable to tornados over extended periods. These wind 

events are uncommon in most of the Commonwealth, but have historically occurred semi-regularly 

in the Northern Virginia region. As this is a high-population area, the total risk of high winds is 

increased. Though it is less common in the Hampton Roads area, high winds are a threat to Port 

operations as various cranes and other port infrastructure are relatively tall and susceptible to wind 

shearing. The Virginia state HMP ranked the non-rotational and high wind hazards as high risk 

due to the population density, tall infrastructure, and frequency of occurrence in Northern Virginia. 

However, due to the low frequency of occurrence, in Hampton Roads the local HMP did not assess 

the high wind hazard. Figure 4-11 describes the one percent annual chance wind speeds for the 

Chesapeake Bay region of Virginia, including the port. The one percent annual chance of high 

winds in the port facilities is between 105 and 110 miles per hour. 
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Figure 4-11. Map of the one percent annual change wind speeds in southeast Virginia. 

Adapted from (VDEM, Loose 2023) 

Winter storms and ice storms consist of cold temperatures, snow or ice accumulation, and 

potentially strong winds. Winter storms can have severe impacts on roadway conditions, utility 

services, and the health of the populace. Winter weather events can cause days-long outages of 

communication, electricity, and road networks. The cold weather alone is a health risk through 

frostbite and freezing conditions. Accumulation of frozen precipitation has the ability to fell trees, 

powerlines, and other structures. The areas that most susceptible to winter storms are central and 

northern Virginia. Though snow accumulation is low in the Hampton Roads region, ice is common, 
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severely disrupting road networks. Disrupted roads lead to reduced truck arrivals and longer truck 

turn times, severely inhibiting port operations. For these reasons, the Virginia HMP determined 

that winter weather and ice storms are high threat hazards. The Hampton Roads HMP determined 

that winter weather was a medium risk hazard. Figure 4-12 describes the winter weather risks for 

Virginia, with special attention to the Hampton Roads and Port of Virginia regions. The area is at 

low or very low risk to the population. However, winter weather is disruptive to supply chains and 

logistics systems, increasing the risk level for the region. 

 

Figure 4-12. Map of relative winter weather risk, including estimated annual losses, social 

vulnerability, and community resilience. Adapted from (VDEM, Loose 2023) 

Extreme cold is a cold weather event that lacks precipitation. The event may be acute, such 

as a wind chill advisory, but the greater threat is a long and sustained period of extreme cold. 

Definitions for how cold and how long an event must last differ across localities, even within 

Virginia, but a few days at or below 32 degrees Fahrenheit will typically meet the conditions. 
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Extreme cold has a severe impact on poor communities, both urban and rural. The Virginia HMP 

determined extreme cold was a high risk hazard due to the major risks to life. The Hampton Roads 

HMP did not assess the extreme cold hazard. 

Extreme heat or a heat wave is a prolonged period of hotter than expected temperatures – 

typically defined as a weeks-long period with temperatures more than 10 degrees Fahrenheit over 

average for that time of year. The threat of this hazard increases in areas with high humidity. As 

with extreme cold the threat of this hazard is primarily one of public health. Heat exhaustion, heat 

stroke, chronic dehydration, and other heat related illnesses are common during an extreme heat 

event, often inundating or overloading medical systems. Furthermore, increased energy usage 

during periods of high heat may lead to black or brownouts, compounding the issue. The Hampton 

Roads area experiences high temperatures regularly – the maximum average high temperature for 

summer months is higher than 90 degrees Fahrenheit. Further, the Hampton Roads region is getting 

hotter on average – the hottest months on record since 1895 have occurred in the last three years 

(2019-2022). This poses a long-term threat to port operations, as increased temperatures hurt 

productivity and endanger workers. Figure 4-13 shows the high temperatures for Virginia, 

including specifically the Hampton Roads and Port of Virginia areas. The Virginia HMP and 

Hampton Roads HMP both determined that extreme heat was a medium risk. 
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Figure 4-13. Maximum monthly average high temperatures for Virginia. Adapted from 

(VDEM, Loose 2023) 

Erosion is the natural geologic process through which materials such as stone or soil are 

displaced by water, wind, or other phenomena. In the context of hazard analysis, erosion typically 

refers to coastal erosion, or the process through which beaches and banks are altered by weathering 

over time. Coastline erosion is a natural process, but it often accelerated by human activities, 

including the influence of climate change, rising sea levels, poor land use, and the destruction of 

protective measures. Erosion depends on a variety of factors such as the soil composition of the 

area, but all erosion is a threat to local infrastructure, including roads, bridges, and buildings. The 
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opposite of erosion is accretion, the process by which new sediment is added to a region. Accretion 

is especially harmful to the Port of Virginia, as new sediment decreases the depth of the berths, 

leading to an increase in need for dredging projects, deepening the area around the port. Figure 4-

14 shows the areas in Virginia with the greatest shoreline change over the last 100 years – note the 

black square in the southeast portion of Virginia, highlighting the areas around the Port of Virginia. 

Erosion elsewhere in the state, especially from the north in the Chesapeake Bay, leads to more 

sediment deposit in the area around the port. The statewide HMP determined that coastal erosion 

was a medium risk hazard. The Hampton Roads HMP did not assess coastal erosion.  
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Figure 4-14. Map of shoreline change in Virginia, 1937 – 2009, highlighting the Port of 

Virginia and Hampton Roads region. Adapted from (VDEM, Loose 2023) 
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Wildfires are uncontrolled fires in natural environments such as grasslands, forests, or 

brush. Wildfires are typically started on accident by humans, but some are caused by lightning 

strikes or other natural occurrences. The severity of wildfires is heavily influenced by weather, 

with drought and high wind conditions leading to the rapid, uncontrolled spread of fire. The short-

term impacts of wildfires include loss of property, including potentially severe impacts to local 

wildlife and vegetation. Loss of vegetation may lead to a loss of stabilization in soil, increasing 

the impacts of flooding and landslides. Wildfires are fairly common in Virginia, with about 700 

occurrences per year on average, mostly in the mountains regions where steep slopes inhibit fire 

control measures. Wildfires thrive in rural communities which are often ill-equipped to handle the 

fires without state resources. Further, climate change leading to drier conditions in Virginia is 

expected to increase the frequency of wildfires. As such, the Virginia HMP ranks wildfires as 

medium risk. The Hampton Roads HMP ranks wildfires as low risk.  

Communicable disease or a pandemic hazard is a widespread occurrence of an illness 

through an infectious agent such as bacteria, viruses, fungi, parasites, or prions. “Infectious” refers 

to the ability of an illness to survive and multiply within a host, while “infectiousness” refers to 

the ability of the infection agent to spread from host to host. Though infectious diseases can affect 

animal populations, this hazard refers to diseases that impact humans – however, animal-borne 

diseases are closely tracked to determine if they may mutate to affect humans. Infectious diseases 

include the COVID-19 SARS-CoV-2 virus, Zika virus, influenza, and Ebola, each of which has 

led to pandemic conditions. Pandemics are especially dangerous in poorer and more dense 

population areas. This includes parts of the Hampton Roads region. Figure 4-15 describes the CDC 

Social Vulnerability Map based on pandemic exposure. The blue regions are more susceptible to 

the impacts of pandemics. The Hampton Roads area is one of the most vulnerable regions in the 
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Commonwealth. The Virginia HMP ranked pandemics as medium risk hazards. The Hampton 

Roads HMP ranked pandemics as low risk hazards. 

 

Figure 4-15. Map of the CDC Social Vulnerability Index – Pandemic Exposure for Virginia. 

Adapted from (VDEM, Loose 2023) 

Tornados are windstorms characterized by a rotating funnel cloud extending to the ground. 

Tornados develop due to the interaction of cool, dry air and moist warm air, resulting in the 

twisting shape. Tornados produce high winds and can blow debris at high speeds – tornado wind 

speeds can range from 40 to 200 miles per hour. Most tornadoes are a few dozen feet in diameter 

and only touch down for a few minutes, but even smaller tornadoes are capable of massive damage. 

Tornadoes are ranked on the Enhanced Fujita scale, a 0-5 scale (EF0 lowest, EF5 highest), which 

indicates the top wind speed and likely damage caused by a tornado. EF2 tornadoes are 

exceedingly rare in Virginia, though have occurred before. Of particular interest to the Port of 

Virginia and Hampton Roads is the waterspout phenomenon – a tornado that forms over water. 
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Waterspouts are uncommon in Virginia, but do pose a special risk to container vessels and other 

maritime equipment. As such, both the Virginia HMP and Hampton Roads HMP consider 

tornadoes to be a medium hazard. 

Drought is an extended period of limited rainfall within a large geographic area. The 

impacts of droughts are multifaceted. An extended period of drought can lead to water shortages 

that endangers the citizens of the region. Droughts also have economic impacts on farmers through 

increased irrigation coasts, increased feed costs, and impacts to animals. Wildlife may be impacted 

by the forced migration of local species. Fish and other aquatic wildlife may lose their habitats 

entirely. Drought combined with wind, high temperatures, and low humidity can lead to wildfires. 

There are four primary classifications of droughts – meteorological, agricultural, hydrological, and 

socio-economic. Meteorological droughts are due to abnormally high dryness over extended 

periods. Agricultural droughts are characterized by the specific impacts of low water levels – for 

example, water may be available, but not in the proper levels for the proper growth and 

development of crops. Hydrological drought is a shortage of groundwater supplies due to a lack 

of rainfall. Socio-economic droughts are caused by water shortages that limit water supplies of 

citizens for drinking and/or personal use. Both the statewide and Hampton Roads hazard analysis 

determined that droughts are a medium risk. 

Hazardous materials (HAZMAT) incidents are the accidental or intentional release of 

chemicals or other materials that present a significant risk to public health, infrastructure, or the 

environment. HAZMAT incidents may last from a few hours to several days, while the impacts of 

the incident can be felt for longer periods. There are five primary classifications of HAZMAT 

incidents in the Virginia HMP – fixed site, waterway, highway, pipeline, and railway. All five of 

these may impact the Port of Virginia, though waterway, highway, and railway may impact 
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operations more directly. There are nine classes of HAZMAT – explosive, gas, flammable liquid, 

other flammable substance, oxidizing agent and organic peroxide, toxic and infection substance, 

radioactive substance, corrosive substance, and miscellaneous. HAZMAT incidents may pose 

immediate health risks or damage infrastructure at the port, and the fallout of an incident may 

impact future business. Figure 4-16 describes the major assets of eastern Virginia and their 

locations, including the HAZMAT buffer zones of railroads. There is a high density of critical 

assets and railroad buffer zones south and east of the Port of Virginia. For this reason, both the 

Virginia and Hampton Roads HMPs rank HAZMAT incidents as a medium risk hazard.

 

Figure 4-16. Hazardous materials incident buffers for rail with critical assets. Adapted from 

(VDEM, Loose 2023) 
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Landslides are a class of ground movements that includes the transport of soil, rock, mud, 

or debris, typically from an elevated position to a lower position. Landslides can be triggered by 

heavy rains, earthquakes, erosion, or human-caused disturbances. Landslides may occur quickly 

or slowly over extended periods. Landslides have the potential to destroy buildings, fracture roads 

or rail, destroy pipelines and water systems, and destroy power and communication lines. Different 

types of landslides have different effects. Rockfalls occur when large blocks of bedrock break from 

a cliff face. Rockslides occur when a mass of rocks slide down an inclined surface. Earthslides are 

the movement of soil across sheets of bedrock. Creep is the slow movement of earth over time. 

Debris flow is the development of a slurry of rock, earth, and human-constructed edifices due to 

an increase in water, falling down slopes. Landslides do occur in the Blue Ridge Mountain region 

of Virginia, but are typically small scale and occur far from urbanized areas. Due to the limited 

scope of landslide incidence and low risk to the population and infrastructure, the Virginia HMP 

determined that the landslide hazard was low risk. As the region around Hampton Roads and the 

Port of Virginia is a coastal plain with little slope, the Hampton Roads HMP did not assess the 

landslides hazard. 

Land subsidence is the vertical movement of land either quickly or over extended periods 

of time, differentiated from landslides by the lack of sloping surfaces. Sinkholes are a type of land 

subsidence. Subsidence is frequently caused by human activity such as groundwater removal, oil 

pumping, or the removal of natural gas or minerals. Subsidence can also be caused by natural 

events, such as a karst – the collapse of land due to the erosion of underground soluble rocks. Land 

subsidence that occurs in populated areas can damage infrastructure. Subsidence can also occur 

slowly over time, as it has in the coastal region of Virginia. As the land sinks, sea level rises and 

threaten coastal communities. Land subsidence is not widespread across Virginia, so the statewide 
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HMP ranks it as a low risk hazard. However, due to its coastal location and the exceptionally high 

extraction of groundwater, the Hampton Roads HMP ranks land subsidence as a high risk hazard. 

Figure 4-17 describes the groundwater level decline due to groundwater extraction in the Hampton 

Roads region. The Port of Virginia falls within the 35-to-40-meter groundwater decline level.  
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Figure 4-17. Map of the aquifer-system compaction caused by the withdrawal of 

groundwater. Adapted from (VDEM, Loose 2023) 
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Earthquakes are the shaking of the ground caused by sudden changes to the Earth’s crust, 

resulting in seismic waves. Earthquakes can impact very large areas at once, potentially resulting 

in high levels of loss, mostly through the damage or destruction of buildings. Earthquakes vary in 

magnitude, with small earthquakes occurring more frequently than large earthquakes. Earthquakes 

are traditionally measured by the Richter Scale, the logarithm of the amplitude of seismic waves 

caused by the ground movement. More recent research indicates that assessing earthquakes by the 

intensity of effects on people and structures on the surface is a more reliable scale. This method 

more adequately describes how damaging an earthquake is to the affected area. Virginia contains 

two seismic zones – the Central Virginia Seismic Zone and the Giles County Seismic Zone.  There 

are single digit to tens of earthquakes in Virginia each year, the overwhelming majority of which 

have little influence on people and structures. The low frequency and intensity of Virginia 

earthquakes lead to the statewide and Hampton Road to a low risk rating. 

Impoundment failure is the flooding and destruction caused by the collapse or breach of 

dams or levees. Impoundment failure can occur without warning, sometimes due to heavy rains, 

though often due to poor impoundment upkeep leading to a failure. Total impoundment failure 

may occur within a few minutes of the initial breach and are difficult to predict. Impoundment 

failures that occur near population centers pose a significant risk to public health, and may damage 

or destroy buildings and other infrastructure. Flooding into natural areas may cause severe 

environmental damage, felling trees and leveling habitats. Dams are rated has no, low, medium, 

and high hazard based on their size, condition, and location relative to population centers. Figure 

4-18 describes the dams ranked as a high hazard threat in Virginia. There are 23 high hazard dams 

in the Hampton Roads region. Strict regulations and monitoring of these dams led to the Virginia 

and Hampton Roads HMPs rating impoundment failure as a low risk hazard. 
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Figure 4-18. Map of the locations of high hazard dams in Virginia. Adapted from (VDEM, 

Loose 2023) 

Terrorism and active threats include shooters, bomb threats, and other human caused 

complex coordinated attacks.  These are acts that require the synchronized actions of individuals 

or teams across multiple locations that act with little warning and employing weapons to terrorize 

or harm the population (DHS 2018). Individual active shooters are also included in this category. 

This type of active threat poses immediate concerns to affected populations and has the potential 

to lead to infrastructure damage. These events are unpredictable. However, a low incidence of 

occurrence led Virginia HMP to list terrorism and active threats as a low risk hazard. Hampton 

Roads did not assess this hazard. 

Space weather is a broad term used to describe any conditions that originate outside the 

Earth’s atmosphere. There are three classes of space weather. Geomagnetic storms produce 
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electrical currents that severely disrupt energy networks, causing blackouts and other failures. 

These are frequently long-term as equipment can become damaged.  Geomagnetic storms may also 

disrupt GPS networks. Solar radiation storms occur high in the Earth’s atmosphere – high levels 

of radiation exposure can cause illness or be deadly. Special precautions are taken to prevent high 

doses of radiation for aircraft operators and passengers operating in these regions at the relevant 

altitudes. Radio blackouts can also occur, impacting high frequency communications. The Virginia 

HMP determined that space weather is a low risk threat. The Hampton Roads HMP did not assess 

space weather. 

4.5 Gap analysis 

This section describes the gap analysis portion of the risk assessment. The purpose of a gap 

analysis is to highlight deficiencies in a system relative to the desired state. This is accomplished 

by assessing the current status, establishing expectations for performance, identifying gaps 

between current status and expectations, and identifying a set of recommendations for closing 

gaps. In the context of the Virginia and Hampton Roads HMPs, the gap analysis identifies existing 

resilience techniques for addressing the impacts of hazards outlined in the previous section. 

Resilience techniques are methods utilizing teams of people, processes, technology, and structures 

that can reduce the impact of or hasten recovery from a disruptive hazard event. For example, the 

Flood Mitigation Assistance Grant program administered by FEMA is a resilience technique that 

reduces the impact of flooding. This technique addresses multiple hazards such as hurricanes, 

flooding, and dam failure. Once the current set of capabilities are cataloged, the blue team 

identifies a desired future state of resilience techniques. The difference between existing and 

desired capabilities are called gaps. Figure 4-19 describes the gap analysis process utilized by the 

blue team. 
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Figure 4-19. Gap analysis process for identifying hazard resilience techniques. The current 

and desired state are assessed for people, processes, technology, and structures that can reduce the 

harm caused by a hazard. Techniques that address climate change and social equity are of particular 

interest. 

The first stage of the gap analysis is to establish categories – in this instance the categories 

are a set of hazards, or potential events that would harm the operations of the port. The next stage 

is to identify current mitigation capabilities of the Port of Virginia, Hampton Roads, and Virginia 

as a whole for each hazard. The Virginia Port Authority and other agencies across the state release 

reports detailing existing mitigation strategies (VDEM 2018). These reports are used to generate 

the current state. To create a vision for the future state, the blue team looks to federal guidelines, 

other ports, or other states to identify state-of-the-art mitigation strategies and resilience 

techniques, as well as developing new in-house strategies. Differences between current capabilities 

and the state-of-the-art are noted as gaps. Once gaps are identified the blue team generates 
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recommendations for remediation. This may include adopting new strategies or finding other ways 

to address gaps.  

Gaps are assessed across four primary dimensions including (i) the people and teams who 

execute mitigation actions such as the Silver Jackets and fire marshals, (ii) the processes in place 

for reducing harm during and after hazards such as the Virginia Know Your Zone hurricane 

program, (iii) mitigating technologies such as a hardened electric grid and model-based 

forecasting, and (iv) structures used to support individuals and organizations such as flood 

insurance. 

The blue team also determines how hazards impact the Port of Virginia. A single new 

resilience technique may address multiple gaps if the hazards have the same impact on system 

performance. This dissertation focuses on hazards that impact the arrival of vessels and trucks to 

the port. For example, a hurricane, winter weather, and tornadoes may all have the similar effect 

on the port of reducing truck traffic during and immediately after the event. Once conditions return 

to normal, truck traffic may increase rapidly as drivers return to work at the same time leading to 

congestion. The results of the system description and gap analysis are supplied as artifacts to the 

T2 and red team as part of stages three, four, and five in the CPSRM. 

The primary artifact of the gap analysis is a set of potential new resilience techniques that 

are given to T2 for implementation in stage three of the CPSRM. These capabilities should have a 

description, an origin, a list of the hazards addressed, a lead agency, a status, and a further 

comments and details. Table 4-4 provides an example of a new resilience technique uncovered by 

the gap analysis for the Port of Virginia. Appendix A.2 Gaps contains the complete set of proposed 

resilience techniques.  
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Table 4-4. Example of a new resilience technique developed as part of the gap analysis. This 

particular technique is specific to the Port of Virginia. The Port of Los Angeles has developed 

several models and simulations as part of standard operations. This identified gap develops a 

unique solution to the container stacking problem as outlined in this dissertation. 

Machine Learning Enhanced Container Handling 

Description: 

A digital solution for addressing known bottlenecks in the 

container handling process, especially the container 

stacking problem in container yards. The software utilizes 

machine learning and optimization to forecast demand and 

predict truck turn times. These results are shared with 

trucks, assisting with planning. 

 

The program has shown promising results, improving 

productivity and efficiency, reducing total emissions. 

While many ports utilize data and machine learning as part 

of operations, many processes remain black box and rules 

based. 

 

This resilience technique proposes a simulation and 

reinforcement learning based solution, specific to the Port 

of Virginia. In particular, the MuZero RL algorithm is 

applied due to its plan ahead capabilities and other factors. 

Origin: Port of Los Angeles 

Hazard(s) Addressed: Flooding, hurricane, winter weather, tornado 

Lead Agency: Virginia Port Authority 

Status: Planning, Ongoing 

Comments: 

The proposed resilience technique utilizes reinforcement 

learning and simulation due to data constraints. The 

reinforcement learning algorithm can be used as a 

companion to the controller for the rail mounted gantry 

cranes in a container stacking block.  

Further Details: 

https://www.portoflosangeles.org/business/supply-chain/port-optimizer%E2%84%A2 

 

https://www.prnewswire.com/news-releases/quantum-computing-application-sees-real-

world-success-at-pier-300-at-the-port-of-los-angeles-301455106.html 

 

  

https://www.portoflosangeles.org/business/supply-chain/port-optimizer%E2%84%A2
https://www.prnewswire.com/news-releases/quantum-computing-application-sees-real-world-success-at-pier-300-at-the-port-of-los-angeles-301455106.html
https://www.prnewswire.com/news-releases/quantum-computing-application-sees-real-world-success-at-pier-300-at-the-port-of-los-angeles-301455106.html
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Chapter 5: Development of system simulation 

5.1 Overview 

This chapter describes the simulation of the container stacking problem as outlined in 

previous chapters. The simulation is used for the development and testing of reinforcement 

learning algorithms to act as controllers for the container stacking process. Section 5.2 describes 

background information for the development of the simulation. Section 5.3 describes the 

development of the simulation in the Gym environment, including Section 5.3.1 outlining the 

components of the simulation, Section 5.3.2 describing the Container class, Section 5.3.3 

describing the ContainerStack class, and Section 5.3.4 describing the GymStackEnvironment class. 

Section 5.4 describes a sample of results and performance of the simulation. 

This chapter presents stages three, four, and five of the CPSRM. In stage S3 – Develop 

Solutions, T2 utilizes inputs from the blue team regarding the risk assessment to form a model of 

the target system, in this case a simulation model. In stage S4 – Assess Solutions, the red team 
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implements and tests capabilities for the for simulation. Based on the feedback of the red team, T2 

may adjust the resilience solutions. In stage S5 – Revise System Description, the updated system 

requirements based on T2 and red team feedback are submitted to the blue team for approval. 

Figure 5-1 describes the relationship between the content of this chapter and the CPSRM. 

 

Figure 5-1. Relationship between CPSRM stages three, four, and five, and Chapter 5 – 

Development of system simulation. Chapter 5 describes stages three, four, and five of the 

CPSRM, in which T2 develops a simulation model of the target system to address the operational 

risks provided from stage two. The red team validates and tests resilience techniques, such 

reinforcement learning-based controllers. 

5.2 Background 

 This chapter develops a high-fidelity simulation model than can be used to test 

reinforcement learning solutions to the container stacking problem. A high-fidelity simulation is a 

model with a high degree of realism or exactness in parameters and design. The simulation 

presented in this research follows the physical mechanics of a container stacking block, allowing 
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for the integration of various control algorithms for planning and resilience in ports. The container 

stacking blocks are a known source of process inefficiency, forcing trucks to idle while they await 

containers that are stacked under one or more other containers. Further, each container move 

requires energy to operate the cranes and a human-in-the-loop to ensure operations are not harmful 

to the container or trucks. As such, minimizing moves is an important cost saving and environment 

sustaining measure. The development of a simulation provides two benefits. First, it allows the 

port to set a baseline performance and analyze operations without interacting with real containers 

or RMGs. This includes testing the impacts of disruptions as well as testing new operational 

techniques. The second benefit is that the simulation enables the training of reinforcement learning 

models. 

Simulation is an effective tool for and testing different inputs, parameter changes, noise, 

and alterations to systems due to disruptive scenarios (Blum et al. 2021, Carter 2018). Previous 

efforts have used simulation to predict and plan port activities – for example, to assign vessels to 

berths and for fleet management (Almutairi 2017, 2016). Modeling and simulating port operations 

is a major area of new research. Improving operations with simulations reduces the environmental 

impact of the port, reduces wait times, and saves energy (Port of Los Angeles 2022). Simulation 

for various aspects of the container handling process is a subject of active research. Some research 

focuses on reducing truck turn times (Bosch 2022, Fotuhi et al. 2013). Other research focuses on 

the allocation of container slots to reduce the total number of container moves (Sikorra et al. 2021). 

Industrial software suites are available for simulating port processes as a whole, and container 

handling specifically (Simio 2022). 

The simulation presented in this dissertation advances the existing research of container 

handling in two respects. First, this dissertation develops a simulation using the Gym framework 
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developing a container stacking block is already populated by containers when the simulation 

begins. Second, this dissertation presents a simulation environment that enables the agent to choose 

inaction as a valid activity. This simulation has more time steps than moves required to place, 

reshuffle, and deliver all containers to trucks. This flexibility in the simulation allows the 

reinforcement learning algorithm to explore opportunities to reshuffle the container stack during 

downtime, ultimately reducing the number of touches per container. 

5.3 Overview of simulation 

This section provides an overview of the simulation and its development. Section 5.3.1 

provides a summary of relevant details for the development of the simulation. Section 5.3.2 

describes the Container class of the simulation. Section 5.3.3 provides a description of the 

ContainerStack class. Section 5.3.4 provides a description of GymStackEnvironment class.  

5.3.1 Simulation components 

The system specification outlined in Chapter 4 provides the requirements necessary for the 

development of a system simulation. This section describes the formation of the simulation, 

including environmental parameters, available actions, and other critical elements of the model. 

Figure 5-2 provides the high-level overview of the activity of simulated environment.  

There are three primary elements of the simulated environment – the arriving containers 

(in-containers), the container stacking block, and the departing containers (out-containers). There 

is one agent in the simulation – the controller that determines which containers should move where 

and at what time. The in-containers arrive and are placed into a valid location within the container 

stacking block by the agent. Within the container stacking block the agent has the ability to move 
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containers between stacks at any time. The out-containers are removed from the container stacking 

block and delivered to trucks, exiting the simulation. 

Many confounding factors are abstracted out of the simulation. For example, two RMG 

cranes service each container stacking block in the Port of Virginia. The simulation removes this 

nuance, sending only instructions on which containers move and to which locations rather than on 

which crane would perform which activity. Another factor is the element of time – that is, it takes 

more time for a container to traverse the length of the entire stack than half of the stack, altering 

the wait time of a truck. These factors have limited relevance on the ultimate performance metric 

– the minimization of container touches – and would increase the computational complexity of the 

reinforcement learning model if included.   

 

Figure 5-2. The high-level system specification for the container handling process for a single 

container stacking block. In this simulation, containers arrive to the stack, receive an initial 

placement, are rearranged as needed, and are delivered to a truck. 
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Figure 5-3 shows a graphical representation of a container stack. The figure defines critical 

elements of the simulation environment. A “stack” is a single set of containers oriented vertically, 

placed one on top of the other. A stack may be empty with zero containers, up to the maximum 

allowable height of a stack (in Figure 5-3, the maximum height is four). A “bay” is a set of stacks 

oriented crosswise, and is limited by the width of the RMGs servicing the block. A “lane” is a set 

of stacks oriented lengthwise from the entry point to the exit point of the container stacking block. 

A “tier” is a set of containers (or container slots) that corresponds with the height of a stack. The 

maximum number of tiers in a stack is limited by the height of the RMG and health and safety 

protocols. 

 

Figure 5-3. Graphical representation of a container stacking block. Adapted from (Guven and 

Eliiyi 2014) 

Various ports manage the container stacking problem in different ways – these are largely 

heuristic in nature and are trade secrets (Pascual et al. 2016). The container stacking problem is 

difficult to resolve due to substantial uncertainty in the movement of containers when outside of 
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the port (vessel arrival) and when containers will leave the port (truck departures).  This uncertainty 

is captured as the dwell time of a container. 

Dwell time is the distribution of time that a given container may remain in the stacking 

block. Current port operations utilize dwell time in decision making – a container that is likely to 

remain in the stacks for several more days is likely to be placed under containers with shorter 

remaining dwell times. However, the uncertainty of when a container will leave the stacks strains 

effective decision making. This is further exacerbated by disruptive events such as winter weather 

or thunderstorms – the departure of containers changes in unpredictable ways. The simulation of 

the container stack utilizes this information to develop a model that closely reflects actual stacking 

operations. Figure 5-4 describes container dwell time distributions. Actual dwell times vary based 

on a number of factors including freight volumes, local demand, weather, and other confounding 

factors. However, research indicates that the dwell time of containers follows a normal distribution 

in aggregate (Hassan and Gurning 2020). Dwell time is an input to the simulation model based on 

existing Understanding the dwell time of containers is critical for the development of an accurate 

simulation. 
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Figure 5-4. Container dwell time distributions. Ideally containers require two moves – one to 

place the container in the stack, and again for placement on a truck. Usually, three or more moves 

are required to reach the appropriate container. This is exacerbated in disruptive conditions 

(Hamdy, Loose et al. 2022). 

The simulation is implemented in the Python programming language and leverages the 

Gym simulation environment. There are three primary programming elements of the simulation: 

1. The Container class – the class for creating a container object. A container object 

includes several properties such as arrival time, dwell time distribution parameters, 

departure time, and others. The container class contains the logic required to sample a 

container from arrival and dwell time distributions and prepare the container for 

placement in the stack. 
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2. The ContainerStack class – the class for creating a container stacking block. A 

ContainerStack object includes several properties such as the number of stacks, tiers, and 

bays and the number of arriving containers. The ContainerStack class generates a set of 

containers that exist within the block before the simulation begins. A ContainerStack 

object provides important functions for manipulating containers in the block, including 

instructions for moving containers, determining which containers need to move, 

calculating legal moves, and visualizing the environment. 

3. The GymStackEnvironment class – an implementation of the Gym environment for 

integration with reinforcement learning algorithms. The class contains all of the 

semantics necessary for performing a simulation. A GymStackEnvironment object 

includes several properties, including the observation space, the action space, and system 

time. The GymStackEnvironment also includes the core functions for running the 

simulation, including the step function, the set of legal actions, the render function, and 

the collection and delivery of other relevant metadata. 

5.3.2 The Container Class 

The Container class is used to create container objects. Figure 5-5 describes the 

pseudocode for the Container class. The full code can be found in Appendix A.3. A container 

object provides several parameters necessary for the development of the simulation. The class 

takes ID number, simulation run time, and the mean and standard deviation values of the dwell 

time distribution. 

The ID number of the container is user-provided at the time of generation. The following 

section details how ID numbers are created, but the ID variable is represented by an integer. The 

simulation run time is listed in minutes and represented by an integer. The length of the simulation 
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can vary based on testing and training needs. The length of the simulation also impacts the arrival 

rate of containers entering the system. The parameters for calculating the dwell time of the 

containers are drawn from existing research and based on real-world performance and both 

represented as integers (Hassan and Gurning 2020). For example, in a simulation equivalent of 

four weeks of operation, the distribution for dwell time is drawn from N(1200, 306) using minutes 

during operating hours as the unit, or roughly a 2.5 day average dwell time. 

The class initializes three variables. First, the coordinates of the container as a [stack, tier] 

paired list of integers (initially [0,0] until placed). The coordinates correspond with the location of 

container in the stacking block. The coordinates will change as the container is moved. The 

container stacking block environment is represented as a Python list, whose first and last elements 

are reserved for arriving containers and departing containers respectively. The second variable is 

a Boolean flag indicating if a container begins the simulation in the container stacking block or is 

awaiting arrival. This influences how arrival and departure times are generated – generally a 

container that begins in the stacking block will have an arrival time before t = 0 and an earlier 

departure time than containers that have not yet arrived. The third variable is a Boolean flag 

indicating if a container is scheduled to exit the simulation. The flags are used in the Gym 

environment to determine which containers need to move and when. 

Upon creation of a Container object, the class generates an arrival time sampled from a 

uniform distribution based on the length of the simulation. That is, the simulation assumes that 

containers are equally likely to arrive at any point during the simulation time. To ensure most of 

the arriving containers depart the simulation during the simulation time, the arrival time may be 

compressed to the first 80% of the simulation. Arrival times are represented by integers 

corresponding to system time. The class also has the capability to change the arrival rate to a 
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triangle or other distribution to simulate disruptions. Containers that begin the simulation in the 

container stacking block can have arrival times from times less than zero, indicating that they 

arrived in the “past”. Once all containers have an arrival time, the dwell times are created. A noise 

term samples from a normal distribution with mean and standard deviation from the class 

parameters to generate the dwell time. This term is added to the arrival time such that arrival time 

+ dwell time = departure time. The class then checks to ensure that all departure times occur after 

simulation time t = 0, regenerating departure times if this check fails. 

There are three class methods. setPosition sets the coordinates of a container, 

corresponding to its location in the stacking block. setArrival sets the arrival time of a container 

based on a user provided argument.  setDeparture sets the departure time of the container based 

on a user provided argument. Table 5-1 describes the variables of the Container class. Table 5-2 

describes the methods of the Container class. 

 



109 

 

 

Figure 5-5. Pseudocode for the Container class 
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Table 5-1. Overview of the key variables in the Container class 

Variable Data 

Type 

Units Description 

ID Integer None 
Identification number for individual containers. Used 

primarily in visualization of the environment. 

Arrival 

Time 
Integer Minutes 

The arrival time of the container listed as minutes after 

the beginning of the simulation, t=0. Used to determine 

when a container needs to be placed in the container 

stacking block and in the calculation of departure time. 

Mean Integer Minutes 

The mean value parameter of the container dwell time 

distribution. This value is used to calculate the departure 

time of a container. 

Standard 

Deviation 
Integer Minutes 

The standard deviation parameter of the container dwell 

time distribution. This value is used to calculate the 

departure time of a container. 

Dwell Time Integer Minutes 

The amount of time the container waits to depart the 

container stacking block, listed in minutes after the 

beginning of the simulation, t=0. It is sampled from a 

normal distribution using the mean and standard 

deviation parameters.  

Departure 

Time 
Integer Minutes 

The departure time of the container listed as minutes 

after the beginning of the simulation, t=0. Used to 

determine when a container needs to depart the container 

stacking block. Is calculated as arrival time + dwell 

time. 

Max Run 

Time 
Integer Minutes 

The maximum run time of the simulation, discretized 

into minutes. This value is used to create the arrival 

times and arrival distribution of containers entering the 

container stacking block. 

Position 

Coordinates 
List None 

The [stack, tier] coordinates of the container. This 

variable is initialized to [0,0] on creation of the 

container. The value is edited when the container enters 

or moves in the container stacking block environment. 

Arrival Flag Boolean None 

Boolean flag indicating if the container is eligible to be 

placed in the container stacking block. It is True if the 

arrival time is greater than or equal to the system time. 

Departure 

Flag 
Boolean None 

Boolean flag indicating if the container is eligible to be 

removed from the container stacking block. It is True if 

the departure time is greater than or equal to the system 

time. 
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Table 5-2. Overview of the methods in the Container class 

Method Parameters Returns Description 

setPostition 
Two 

integers 
None 

Used to update the position coordinates variable of an 

individual container. Called in subsequent classes to 

update the container position in the container stacking 

block, indicate that a container has left the simulation, 

and determine legal moves. 

setArrival Integer None 

Used to update the arrival time of a container to the 

parameter provided. This function is used in 

subsequent classes when resetting a container 

stacking block, restarting the simulation, or 

generating new containers  

setDeparture Integer None 

Used to update the departure time of a container to 

the parameter provided. This function is used for 

ensuring departure times are realistic (i.e., that a 

container does not depart before it arrives) and do not 

break the simulation. 

 

5.3.3 The ContainerStack Class 

The ContainerStack class is used to create a container stacking block object, including 

arriving and departing containers. Figures 5-6, 5-7, and 5-8 describe the pseudocode for the 

ContainerStack class. Appendix A.3 describes the full code of the ContainerStack class. A 

ContainerStack object contains the variables and methods necessary for the simulation of a single 

container stacking block. As all container moves are considered equally and move distance is not 

part of performance metrics for the reinforcement learning algorithm, the container stack is 

represented in two dimensions only – length (in number of stacks) and height (in number of tiers). 
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Figure 5-6. Pseudocode for variable declaration, initialization, and generation for the 

ContainerStack class 

The ContainerStack class requires five parameters. The Length parameter is an integer 

indicating the number of stacks in the simulation. The first and last elements of the environment 

are reserved for the set of incoming and outgoing containers, so the total number of stacks in the 

container stacking block is equal to Length – 2. The Tiers parameter is an integer that indicates the 

maximum height of each stack. The Runtime parameter is an integer that indicates the maximum 

run time of the simulation in minutes. The NumberIncoming parameter is an integer that indicates 



113 

 

the number of containers that will arrive during the simulation. The Seed parameter is used by the 

Gym environment to reset and repopulate the entire environment to a new, random state.  

The ContainerStack class initializes two variables. The counter for the ID number of 

containers is set to 0. The empty list that will become a list of lists representing the container 

stacking block, incoming containers, and outgaining containers is initialized.  

The class also generates three elements of the environment: the containers in the container 

stacking block, the arriving containers, and a check on departure times of all containers. The 

container stacking block creates a list of lists, where the inner lists represent the height of stacks 

and stores arriving and departing containers. The outer list contains a number of elements equal to 

the Length parameter. To populate the initial container stacking block, a random floating point 

value samples from a uniform distribution between 0 and 1 for each container slot. If the value is 

greater than or equal to a user defined threshold, a container is generated in that position in the 

stack. For example, if the threshold were set to 0.5, the initial container stacking block would be 

roughly 50% filled as around half of the container slots would have a random value of greater than 

0.5. That is, if there are 50 container slots, roughly 25 slots will be filled at the start of the 

simulation. One open container slot is always reserved and left empty at the beginning of the 

simulation as part of error handling in the Gym environment. 

The ContainerStack class then generates the incoming containers. The number of incoming 

containers is a user defined parameter. Incoming containers have an arrival time sampled from a 

uniform distribution beginning at t=0 and ending at the maximum run time of the simulation. Some 

iterations of the simulation, including the simulations in Chapter 6, use some fraction of the 

maximum run time to increase the proportion of arriving containers that will also depart during 

the simulation (for example, arrival times will be sampled uniformly between 0 and 0.8 of the 
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maximum runtime). The simulation also provides the capability to sample from other distributions 

– for example a triangle distribution – to emulate the effects of an external disruption.  

The number of arriving containers depends on the number of container slots in the 

container stacking block. At the Port of Virginia, during normal operations, a container stacking 

block will receive about 20 containers per hour, or one arrival every three minutes. However, Port 

of Virginia container stacking blocks are in an 8-bay x 5-tier x 30-lane configuration, or 1200 

container slots. Several factors contribute to this arrival rate – available slots, the destination of 

the containers, expected dwell time, and the availability of other slots in other stacking blocks. 

Many of these elements are not included in the simulation. A benefit of the simulation is that users 

can increase or decrease arrivals and adjust arrival times to meet the current need. 

Finally, the class checks the departure times of all containers in the environment, both 

arrivals and containers in the stacking block, to ensure they are compliant with environment rules 

(i.e., a container cannot be scheduled to depart before it arrives). This is helpful for the Gym 

environment which runs the simulation. 

Figures 5-7 and 5-8 provide an overview of the ContainerStack class methods. The 

resetStack method is used to create a new random environment, including a new set of arrivals and 

prepopulated container stacking block. It is critical to note here that the resetStack method has the 

ability to preserve the “shape” of the initial container stacking block, including the number of 

containers in each stack and the arrival times of these containers. This feature is helpful for tuning 

the reinforcement learning algorithm, which relies on predictability when choosing actions in the 

environment. 
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Figure 5-7. Pseudocode for the first seven methods of the ContainerStack environment 

The moveContainer method moves the top container of one stack to the top tier of another 

stack, taking these two integer values as parameters. The ability to move a specific container that 

may be placed below other containers is handled in the following section. The moveContainer 

method alters the location of containers within the list of lists, as well as updating the position 

coordinates of the container. No other values are changed. 
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The setArrived method iterates over all containers in the arrival element of the 

environment, checking if their arrival time parameter is greater than the system time. The method 

takes an integer as the time parameter. The arrival time of each container is compared to the time 

parameter of the method; if the provided time is greater than the arrival time of the container, the 

arrival flag of the container is set to True. The getArrived method iterates over all containers in the 

arrival element of the environment, checking the arrival flags. If the arrival flag is set to true, it is 

added to the list of containers that are ready for placement in the container stacking block. The 

method returns this list. 

The setDepart method iterates over all containers in the container stacking block element 

of the environment, determining if the departure time parameter is greater than system time. The 

method takes an integer as the time parameter. This value is compared to the departure time of 

each container; if value is greater than or equal to the departure time, the departure flag of the 

container is set to True. The getDepart method iterates over all containers in the container stacking 

block, checking departure flags. All containers marked for departure are added to a list, which the 

getDepart method returns. 

The showStack method is used to visualize the environment. All elements are printed to 

the terminal on individual rows, including the arriving containers, the stacking block, and the 

departed containers. The showStack method takes a String parameter, which corresponds to the 

parameter of interest for the visualization. For example, a user could enter “ID” when calling the 

method, which would display the ID numbers of containers, as well as their position within the 

environment. Examples of these visualizations can be seen in subsequent sections. 
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Figure 5-8. Pseudocode for the final two methods of the ContainerStack environment 

The Moves method is used to generate the set of all possible actions in the environment. 

There are three types of moves – moves from the arrival section to the stacking block, reshuffles 

that move containers from one stack to another within the block, and moves from the block to the 

exit node. The rules for which moves are legal at a given simulation time are defined in the 

GymStackEnvironment, so all possible pairwise moves are generated here. There are a few 

exceptions to reduce the size of the decision space and improve the performance of the 

reinforcement learning algorithm. For example, the Moves method does not generate moves with 

the same initial and final stack (ex. [0,0], [1,1], etc.). Though the reinforcement learning algorithm 

would eventually determine that this action is unhelpful, reducing the size of the action space 

improves training performance quickly. Other restrictions include eliminating the ability to move 
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containers that have departed the system – that is, there are no valid moves from the exit node of 

the environment to the stacking block. The set of moves is stored as a Dictionary object, with 

{integer:list} as the key-value pair. The integers range from 0 to the maximum number of moves 

for the stack (for a stack of length 12, there are 110 moves). These each correspond with the two-

element list of action pairs. After all action pairs are generated, a final move is appended to the 

list, “inaction”, in which no containers move in the environment. As examples, a sample of actions 

are {0: [0,1]}, a move from the arrival node to stack one; {64: [6,4]}, a reshuffle from stack six to 

stack four and; {111: ‘pass’}, a no move action. 

The validStackDestination method is used to determine which stacks are available for 

placement of containers. That is, the method determines which stacks have fewer containers than 

specified by the Tiers parameter. The method iterates over all stacks in the stacking block and 

checks the current number of containers in the stack. If this number is less than the Tiers parameter, 

the stack location is added to a list of valid stacks.  
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Table 5-3. Overview of the key variables in the ContainerStack class 

Variable Data 

Type 

Units Description 

Length Integer Stack 

The total number of elements of the stacking block 

environment. The first and last elements of the 

environment are reserved for arrivals and departures, so 

the total number of stacks is equal to Length-2.  

Tiers Integer Stack 
The maximum height of an individual stack for the 

simulation.  

Number 

Incoming 
Integer Container 

The number of containers that enter the stacking block 

during the simulation. 

Runtime Integer Minutes 
The maximum runtime of the simulation, used to 

determine when containers arrive. 

Seed Integer None 
Used to change the randomly generated environment to 

new configurations. 

ID Integer None 
The counter for assigning ID numbers to containers 

upon generation in the environment. 

Environment List None 

The list of lists used to store arriving containers, 

containers in the stacking block, and departed 

containers. The containers are moved to new positions 

within the list of lists such that containers can be 

efficiently placed, added, and removed from the 

environment. 
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Table 5-4. Overview of the key methods in the ContainerStack class 

Method Parameters Returns Description 

resetStack None None 

Used to regenerate a new container stacking block 

environment, including new arrival and departure 

times, block utilization, and other factors. Has the 

ability to maintain the initial configuration of the 

stacking block and base stack arrival times for 

reinforcement learning. 

moveContainer Two integers None 

Used to move a container within the environment. 

This can be from the arrival queue to the stacking 

block, reshuffles within the stacking block, and 

from the block to the exit node. 

setArrived Integer None 

Used to set the arrival flag for containers within 

the arrival node to True if arrival team is less than 

or equal to system time. 

getArrived None List 

Used to generate a list of containers that need to 

be moved from the arrival node and into the 

stacking block. 

setDepart Integer None 

Used to set the departure flag for the containers 

within the stacking block to True if the departure 

time is less than or equal to system time. 

getDepart None List 

Used to generate a list of containers that need to 

be moved from the container stacking block to the 

exit node. 

showStack String None 

Used to print a visualization of the environment 

to the console. Can take any container parameters 

as input and display this information. Each stack 

is printed on its own line, mimicking the layout of 

the container stack. 

Moves None Dict 

Used to generate the dictionary of all possible 

legal moves, including from arrivals to the 

stacking block, within the block, and exiting the 

block. This is used as the action space for the 

Gym environment and to run the simulation. 

validStack 

Destination 
None List 

Used to generate the list of stacks within the 

stacking block that have open tiers. 
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5.3.4 The GymStackEnvironment Class 

The GymStackEnvironment class is an implementation of the Gym environment. The Gym 

environment is a common framework for the development of simulation environments for testing 

reinforcement learning algorithms (Moerland et al. 2023, Brockman et al. 2016). Figures 5-9 and 

5-10 describe the pseudocode for an implementation of the Gym environment for the container 

stacking problem. 

The environment initializes five attributes – two are required by the Gym API and three 

are custom implementations. The Gym environment requires an “action space”, which is the set of 

legal actions. These can be discrete actions (e.g., the direction a robot should travel in cardinal 

directions) or continuous (e.g., the direction a robot should travel in degrees from north). For this 

simulation, the action space is the dictionary of legal actions provided by the Moves method of the 

ContainerStack class that outlines the full set of possible actions. That is, the set of actions in the 

action space is a list of integers corresponding to the set of possible moves in the container stacking 

block environment. Gym also requires the an “observation space”, or the representation of the 

simulated environment. Actions alter the observation space. For this simulation, the observation 

space is a randomly generated ContainerStack object with user defined parameters. The system 

time is initialized to zero (t=0) when a new GymStackEnvironment object is generated. The class 

also generates a move counter which tracks the number of container moves during the simulation 

to assist with performance assessments. The class initializes an empty list used to track which 

containers require a move at a given system time.  

The step function is a core feature of Gym. The step function runs a single time step of the 

simulation utilizing the dynamics of the environment. The step function takes a single action as an 

input and provides a reward value, new information about the environment, and other metadata. 
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In this simulation, there are three types of step. The first type of step is a container move from the 

arrival bay into the container stack environment. As the arrivals do not follow the same system 

dynamics as the stacking block – for example, an arrival does not need to be “top picked” and can 

be moved from any position within the list – special logic is required to ensure the correct container 

is moved from the arrival bay to the stacks. The first type of step provides a reward of -1. The 

second type of step is any other container move – either between individual stacks or from a stack 

to the exit node. These moves do not specify which container needs to move, simply moving the 

top container of a stack to a new location. The second type of step provides a reward of -1. The 

third step is “inaction”, a step in which no containers move. The third type of step provides a 

reward of 0. Once the step is executed and the environment is altered, the time step increments by 

one, and the step function checks if the simulation is over. If there are no legal moves or if the 

simulation time has completely elapsed, the simulation is terminated. The step function returns the 

reward value of the single action, a flag for ending the simulation, and other metadata. 



123 

 

  

Figure 5-9. Pseudocode for attribute initialization and step function of the 

GymStackEnvironment class 
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The LegalActions function is another feather of Gym. The LegalActions function is used 

to determine what subset of actions in the action space are available to the environment at a given 

time step. The purpose of the LegalActions function is twofold: first, it forces the agent to select 

moves that do not violate the dynamics of the system – for example, a container cannot be placed 

on a full stack; second, it can reduce the size of the action space to improve reinforcement learning 

training and performance – for example, by forcing a container that is set to depart the system to 

move to the exit node. The LegalActions method initializes two variables – the set of containers 

that need to move (containers that are arriving or departing), and a list of integers corresponding 

to the set of legal actions in the action space. The method first checks if any containers are flagged 

for arrival or departure. If there are arrivals, the method checks for stacks with empty container 

slots and stores these values to a list. This list is used to generate the valid action pairs which 

correspond to the list of integer actions in the action space (from the arrival node at element 0 to 

an open element of the container stacking block, [0,1], [0,2], etc.). Next, the list checks if the 

container is scheduled to depart and is on top of the stack. If this is true, the legal actions are 

restricted to one choice – from the current stack to the exit node. Finally, if a container is scheduled 

to depart but is not on top of its stack, the set of legal actions is restricted to moving containers 

from the departing container’s stack. This reflects the reality of a container stacking yard – if a 

truck is awaiting a container, the controller will only make moves to retrieve the target container 

as quickly as possible. If no containers are arriving or departing, the method allows all intra-

stacking block moves (reshuffles) or no action. The method returns the set of legal moves as a list 

of integers corresponding to the Dictionary object in the action space. 
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Figure 5-10. Pseudocode for the LegalActions, render, and get_observation methods of the 

GymStackEnvironment class 

The render method is used to provide a visualization of the environment. For this 

simulation, the render function prints the stacking block to the terminal, displaying a single 

container parameter at a time, such as arrival time, departure time, or ID. The get_observation 

function returns a snapshot of the environment for training. Occupied slots are represented by a 
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floating point 1.0, while empty slots are represented by a 0.0. The reset method is used to return 

the simulation to the t=0 state. The function calls the resetStack method of the ContainerStack 

class to generate a new environment, resampling the set of containers from the given distributions. 

Table 5-5. Overview of the key variables in the GymStackEnvironment class 

Variable Data Type Units Description 

Time Integer Minutes 

The term used to track the runtime of the 

simulation. Each time the step method is called, 

the time variable is incremented by one. The 

simulation ends when this variable is equal to the 

maxruntime of the ContainerStack object in the 

Observation Space 

Observation 

Space 
ContainerStack None 

The randomly generated ContainerStack object 

which the agent performs actions on. The 

Observation Space is manipulated by the step 

method at each time step. 

Action Space Dictionary None 

The set of integer:move pairs representing all 

possible actions within the environment. At each 

time step, the agent selects an action to perform in 

the Observation Space. 

Move 

Counter 
Integer None 

A counter representing the number of touches for 

a given simulation. 

needMove List None 

A list which stores the containers that are either 

arriving to or departing from the container stacking 

block. This assists with the development of the set 

of legal moves at a given time step 
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Table 5-6. Overview of the key methods in the GymStackEnvironment class 

Method Parameters Returns Description 

step Integer 

Reward, 

completion 

flag, 

metadata 

Used to run a single time step within the container 

stacking environment. The step method takes an 

integer as an argument – the integer corresponds 

with the set of legal actions provided by the 

LegalActions method.  

 

The step method also contains the logic necessary 

to differentiate various types of moves – from the 

arrival node to the stacking block, intra-block 

moves, and no action. The method also returns the 

value of the reward for the step (typically -1 for a 

container move and 0 for no action), the flag for 

ending the simulation (if the full runtime has 

elapsed or there are no legal moves), and metadata 

from the get_Observation method. 

LegalActions None List 

Used to create and return a subset of legal actions 

from the full action space. There are two types of 

restrictions: dynamics restrictions and training 

restrictions. 

 

Dynamics restrictions limit the set of legal moves 

based on the dynamics of the environment. For 

example, a container cannot be placed on a full 

stack, cannot enter or leave the stacking block 

before it is ready, or be returned to the arrival node. 

 

Training restrictions are in place to improve the 

performance of the reinforcement learning 

algorithm. For example, a container that is flagged 

for arrival must be placed in the container stacking 

block before any other actions can occur. If a stack 

has a container that is scheduled to depart, only 

containers from this stack may be moved until the 

target container reaches the exit node. 

render None None 

Used to print the environment to the terminal. Used 

primarily for assessment of training performance 

and for testing new features. 



128 

 

get_ 

Observation 
None Array 

Used to provide the format of valid observations. 

In this case, the observation format is an array in 

the shape of the Observation Space, indicating 

which container slots are filled and which are open. 

reset None None 

Used to return the Observation Space to the t=0 

state, reset the environment time variable, and 

empties the list of containers that need moves. 

Utilizes the resetStack method of the 

ContainerStack class to generate a new random 

environment sampled from the established 

distributions. The method can create an entirely 

new stack or produce a stack of the same original 

configuration – with the same number of 

containers in the stacking block at t=0, each with 

the same arrival times, varying only the departure 

times. 
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5.4 Simulation performance 

This section provides an overview of how the simulation is operated on a small example 

problem. The purpose of this demonstration is to provide context for understanding the 

performance of the simulation for the development of the reinforcement learning algorithm. Figure 

5-11 describes the code executed to generate the GymStackEnvironment. The stack in this example 

has seven elements (five stacks, an arrival node, and an exit node), five tiers, 10 arriving containers, 

a maximum runtime of 1200 time steps, and a dwell time parameters of N(100, 25). 

 

Figure 5-11. Code used to create an instance of the GymStackEnvironment 

Figure 5-12 describes the code used to generate the set of all legal actions and the output 

of the code. There are 31 total actions in the environment – 30 valid moves and one action with no 

moves called “pass”. 

 

Figure 5-12. Code used to show the entire action space of the GymStackEnvironment instance 

Figure 5-13 describes the code used to observe the environment at t=0, including the 

arriving containers and initial container stacking block. The code also generates the set of legal 

actions at t=0. As there are no stacks with containers on the maximum tier (five), and no containers 
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scheduled for arrival or departure, all intra-stacking block moves are legal, as well as the “pass” 

action. The first row of containers is the set of 10 arriving containers. The following five rows are 

the stacks in the stacking block, where the first element (the value furthest to the left) is the bottom 

of a stack. The final row, initially empty, is the exit node of the simulation. 

 

Figure 5-13. Code and output of the initial state of the GymStackEnvironment instance 
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Figure 5-14 describes the code used to step through the simulation. The code executes one 

time step using an action from the set of legal actions, then displays the system time, legal actions, 

and the stack arrival and departure times. In this case, the action taken is ‘31’ or the “pass” action 

in which no containers move in the environment. 

 

Figure 5-14. Code used to execute single time steps and display the updated environment 
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Figure 5-15 describe the results of taking the first two steps of the simulation, in which 

both actions taken were ‘31’ or “pass”, with no containers moving. As there are no containers 

scheduled to arrive or depart, there is no need to take any moves at this time. 

 

Figure 5-15. The results of the first two steps of the example simulation 
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Figure 5-16 shows the results at time steps seven and eight. In time step seven, the container 

located in the second stack is scheduled to depart the system. This restricts the set of legal actions 

to only “15”, or the [2, 6] move, removing the container from the stacking block and placing it in 

the exit node. Once the container has moved, the full set of legal actions is available again. 

 

Figure 5-16. The output from the terminal at t=7 and t=8, showing the movement of a 

container from the stacking block to the exit node 

 

 

 

 

 

 



134 

 

Figure 5-17 skips ahead to time step 12, in which a container that needs to exit the stacking 

block is beneath a container that does not yet need to depart. The set of legal actions is first 

restricted to the four intra-block moves (from the first stack to all four remaining stacks). In this 

case, action “6” was chosen. In time step 13, the legal actions are reduced to one action, “10”, 

moving the container from the stacking block to the exit node.  

 

Figure 5-17. The output from the terminal at t=12 and t=13, showing the movement of a 

container within the stacking block 
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Figure 5-18 skips ahead to time step 111, the first time that a container arrives to the system. 

The step method is used to execute action “1”, the [0,2] move from the arrival node to the second 

stack in the environment.  

 

Figure 5-18. The output from the terminal at t=111 and t=112, showing the movement of a 

container from the arrival node into the container stacking block 

This process is repeated for the 1200-time step duration of the simulation. When the 

simulation is complete, the reinforcement learning algorithm will call the reset function, returning 

to the t=0 state and resampling the set of containers. The next following chapter describes the 

reinforcement learning algorithm, its parameters, and its performance for this study. Further, the 

next chapter will utilize the algorithm to test the impacts of various changes to the container 

stacking block environment on performance. 
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Chapter 6: Integration of reinforcement learning for process control 

and resilience 

6.1 Overview 

This chapter describes the integration of the MuZero reinforcement learning algorithm, 

serving as a controller for the simulation outlined in Chapter 5. The algorithm prioritizes 

minimizing the number of container touches, an objective of the Port of Virginia, and is able to 

react to changes in arrivals and departures. The algorithm also provides insights and heuristics 

which can be included in the existing black box controllers used at the port. Section 6.2 describes 

a brief overview of the objectives of using the MuZero in the context of this demonstration. Section 

6.3 describes the MuZero algorithm in greater detail. Section 6.4 describes the performance of 

MuZero across several implementations. Section 6.5 outlines several findings derived from 

executing the MuZero algorithm on the container stack environment. Section 6.6 describes several 
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heuristics discovered by running the algorithm. Section 6.7 describes the application of the 

MuZero algorithm to the disruptive scenarios as outlined in the previous chapters, exploring how 

the controller performs under abnormal conditions. 

This chapter represents stages three, four, and five of the CPSRM. Both Chapters 5 and 6 

cover these stages. However, this chapter focuses on the Adjust Solutions decision, as represented 

by adjusting the parameters of the MuZero algorithm. T2 implements the reinforcement learning 

solution, while the red team provides feedback to tune results. Figure 6-1 describes the relationship 

between the content of this chapter and the CPSRM. 

 

Figure 6-1. Relationship between CPSRM stages three, four, and five, and Chapter 6 – 

Integration of Reinforcement Learning for Process Control and Resilience. Chapter 6 

describes stages three, four, and five of the CPSRM, in which T2 develops a simulation model of 

the target system to address the operational risks provided from stage two. The red team validates 

and tests resilience capabilities through reinforcement learning. 
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6.2 Reinforcement learning for logistics 

Ports, including the Port of Virginia, use planning algorithms to improve logistics 

operations such as for berth allocation and scheduling (Cho et al. 2021, Thorisson et al. 2019). 

Such algorithms are useful for improving everyday operations, but also enable the port to be 

resilient to disruptions. That is, better planning leads to a reduction in the impact of disruptions. 

While many planning operations utilize machine learning in diction making, port operations are 

often expert systems governed by heuristics and knowledge (Chou and Fang 2018). This is an 

effective method for expected operational conditions, but can be strained in times of disruption 

(for example, the supply chain slowdown of September 2021). To combat this, this dissertation 

presents a reinforcement learning algorithm approach for controlling container yard operations.  

Reinforcement learning is a type of machine learning that trains an agent to take actions 

(Moerland et al. 2023). Reinforcement learning is especially helpful in contexts where traditional 

optimization is cost or computationally prohibitive. The agent is trained via self-learning, typically 

in a simulated environment. When the agent selects an action, it updates the environment. The 

environment provides a reward and updates the current state of the system. Based on the reward, 

the agent selects a new action. If previous actions provided positive rewards, the agent is generally 

more likely to choose these actions again. In this way the algorithm learns the dynamics of the 

environment and when (in terms of various system states) it is advantageous to take certain actions. 

The process of choosing certain actions at a certain time is called the policy. Developing a new 

policy is performed during the training phase, when the algorithm explores the impacts of 

decisions. The agent begins training by choosing random actions and examining the impact to the 

environment. Actions that yield a positive reward are more likely to be chosen again. However, 

some decisions are only beneficial given particular state of the environment – the algorithm is able 
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to understand this nuance to make good decisions given particular states. A benefit of 

reinforcement learning algorithms is that once they have been trained, they can be applied to the 

real world – either as a fully automated service (robotics) or for providing insight to more complex 

decisions. Further, these algorithms can be used to test system resilience. There are many 

hyperparameters to tune the performance and training of reinforcement learning algorithms – these 

are discussed in greater detail in subsequent sections. Figure 6-2 describes the process of training 

an agent using reinforcement learning.  

 

Figure 6-2. Overview of the reinforcement learning process. In reinforcement learning, an 

algorithm is trained to take actions based on the learned policy. These actions influence the 

environment, which is updated according to underlying system dynamics. The environment then 

provides a reward, telling the agent if a given action was “good” or “bad”, and provides an updated 

state for the next action. 
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Reinforcement learning is the chosen approach for the development of a control algorithm 

for several reasons. First, reinforcement learning does not require historical data for training – it 

learns via self-play on a simulator. Second, reinforcement learning algorithms can handle 

uncertainty well, especially when compared to other types of machine learning. Third, 

reinforcement learning algorithms are adaptable to new environments and inputs – an especially 

useful feature when comparing performance across disrupted and non-disrupted scenarios. Finally, 

reinforcement learning algorithms are human understandable, providing clear metrics for 

performance as an output. That is, one can calculate the expected value of a particular decision in 

terms of points, metrics, scores, or value, a powerful tool for stakeholders. This also enables 

decision makers to derive heuristics from the algorithm by observing self-simulated environments. 

The reward for the algorithm is -1 for a container move and 0 for no move, per Port of Virginia 

specification. The specific reinforcement learning algorithm used in this dissertation is the MuZero 

algorithm. 

The MuZero algorithm and program was developed by DeepMind as a framework for 

operating in various games or game-like systems. MuZero was first used to achieve superhuman 

performance in board games such as chess, shogi, and go. MuZero was selected as the 

reinforcement learning algorithm over other leading algorithms for a few reasons. First, the 

simulation of the container handling process benefits from the lookahead feature – this allows the 

algorithm to estimate the arrival and departure times of containers. Other algorithms such as Q-

learning are reactive to the state the agent receives (Long et al. 2023). MuZero is able to develop 

more robust strategies due to the lookahead feature. Further, MuZero is a model-based 

reinforcement learning algorithm – that is, it learns on a model of the environment (in this case a 

deep neural network) rather than directly from the environment itself. The relative simplicity of 
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the simulation in this dissertation makes it a candidate for the faster and more powerful model-

based algorithm than a model free algorithm such as Deep Q-Networks (DQN) (Oroojlooyjadid et 

al. 2023). The decision to use MuZero is also due in part to its ability to scale to larger 

environments, incorporating multiple variables, objects, and other confounding factors. MuZero 

also utilizes value (the action taken in a given environment state) and policy (the reward of taking 

that action) learning networks, contrasting it with other models such as DQN, which only learns 

the value of a specific action in a specific state. Other reinforcement learning algorithms such as 

Dyna-Q also take this approach – however, MuZero stands out as it is trained end-to-end (the value 

and policy networks are trained simultaneously) allowing it to better generalize to new situations 

and environments (Liu et al. 2022).  
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Figure 6-3. Example of the performance of the MuZero algorithm over 1 million training 

steps across chess, shogi, and go. The orange line represents the highest achieved performance 

of existing algorithms in terms of Elo. The blue line is the improving performance of MuZero 

during training. MuZero met or exceeded the best computer performance in these three games. 

Adapted from (Schrittwieser et al. 2020). 

In this dissertation, the MuZero algorithm is used to control the actions of the rail mounted 

gantry crane that manipulates a container stacking block, as simulated using the Gym environment 

outlined in Chapter 5. The agent develops a policy that controls which actions to take from the 

action set at a given time step system state. This action updates the environment, which provides 

a reward and new environment state. This process is repeated across millions of training steps to 

develop a consistent policy. The reward used for the algorithm is the number of container moves, 
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also called container touches. Each time the agent takes an action moving a container (from the 

arrival node to a stack, a reshuffle within the stack, or a move from the stack to the exit node), a 

reward of -1 is provided. If the agent idles, choosing to not move any containers at a given time 

step, it receives a reward of 0. The objective of MuZero is to maximize rewards, so the agent is 

incentivized to make as few moves as possible. 

Ultimately, the MuZero algorithm is learning the dwell times of the containers, discovering 

where to place incoming containers and how to reshuffle containers currently in the stacking block 

based on estimates for when the containers depart. This type of uncertainty is where reinforcement 

learning, particularly MuZero, excels. Subsequent sections outline the technical elements of the 

MuZero algorithm, the hyperparameters used, and a sample of results. 

6.3 Review of MuZero operations 

This section outlines the training process for the MuZero algorithm. MuZero receives an 

observation (for example, the arrangement of containers in the stacking block) as an input and 

generates a hidden state which is updated iteratively via a recurrent process. This process receives 

the previous state and an input and outlines a hypothetical next action. Across each of these steps, 

the algorithm creates a policy p (the next move), a value function v (a prediction of the cumulative 

reward of the policy), and immediate reward prediction r (the value of playing the move). The 

objective of the model is to estimate these values, compare the estimates to the realized values, 

and minimize the difference. There is no requirement that the hidden state capture all information 

necessary to recreate the original observation. Hidden states can represent any state that correctly 

estimates the policy, value function, and reward predictions. That is, the agent can perform any 

physically permissible action that leads to accurate planning (Schrittwieser et al. 2020). 
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Figure 6-4 outlines the planning, action, and training functions of the algorithm. Consider 

the planning process in a. The process begins with an input from a previous hidden state – in the 

context of recurrent neural networks, a hidden state is the set of inputs used in the current set of 

operations. Given a previous hidden state sk-1 and some potential action ak (in this case, the set of 

legal actions at time t), the dynamics function g produces a reward rk and a new hidden state sk. 

The algorithm then uses the prediction function f to generate the policy and value function for sk, 

pk and vk respectively. s0 is generated by past observations of the system via the representation 

function h.  

In b a Monte Carlo tree search (MCTS) is performed for each timestep t in process a. A 

hypothetical next action at+1 is sampled from the search policy πt which is based on the visit count 

for each possible action from the root node. Using this new action, the environment generates an 

observation ot+1 and reward ut+1. These values are stored in the replay buffer, and are used to 

compare the relative values of one action to another.  

In c, the algorithm trains the model based on trajectory data stored in the replay buffer. A 

past observance from o1,…,ot is taken as an input. The model then assesses performance recurrently 

for K steps (until reaching a termination condition). At each k, the dynamics function g receives 

the hidden state sk-1 form the previous step and the action at+k. At each step the policy, value 

function, and reward are trained together, end-to-end via backpropagation. Each function is 

estimated via recurrent neural networks or by traversing value networks. The first objective is to 

minimize the error between actions predicted by the policy pt
k and the search policy πt+k. The 

second objective is to minimize the error between the value function and value target. The third 

objective is to minimize the difference between the predicted an observed immediate reward. 
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These are combined into a single loss function. An L2 regularization term scaled by the constant 

c is added to the loss function. This is outlined in the loss function in Equation 6.1. 

 

 

Figure 6-4. An overview of the main processes for training the MuZero algorithm. There are 

three primary phases – a) the algorithm traverses various system states based on previous states, 

policy, and values, b) the algorithm performs a Monte Carlo tree search for each timestep in a, and 

c) the algorithm samples a trajectory of events from the replay buffer and calculates the policy, 

value function, and reward values for each state. Adapted from (Schrittwieser et al. 2020). 

6.4 MuZero parameters and performance 

There are eight primary structures, parameters, and hyperparameters that make up the 

MuZero algorithm. These govern how deeply the algorithm examines the MCTS, how the 

algorithm balances exploration and exploitation of actions, how it forms the underlying dynamics 
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model for the environment, how it optimizes the reward function, and other factors. Table 6-1 

describes these elements at a high level and will be discussed in greater detail. 

Table 6-1. Overview of the primary parameters and hyperparameters used to train the 

MuZero algorithm 

Parameter/ 

Hyperparameter 

Description 

Neural Network  

The architecture of the deep neural networks used in the MuZero 

algorithm. The neural networks are used to derive values for the dynamics 

model, value function, and policy. 

Simulations 

The number of future time steps the algorithm utilizes to develop optimal 

control policies – this is the number of future moves self-simulated by the 

algorithm when determining which action to take. 

Training steps 

A training step is a moment in the simulation time in which the MuZero 

algorithm performs the number of self-play simulations. To master chess 

and shogi, the algorithm took roughly 1 million training steps.  

Temperature 

The value used to determine the exploration-exploitation tradeoff when 

generating a policy. A higher temperature will encourage exploring new 

actions, while a lower temperature leads to a policy of selecting the current 

“best” action. 

Replay Buffer 

The data structure used in many reinforcement learning algorithms 

(MuZero, DQN) to store prior observations and results of the environment, 

actions, and rewards. The size of the buffer describes how many prior 

observations are used to select new actions. 

Discount Factor 

The weight of future rewards – the higher the weight, the more value 

ascribed to long-term rewards. Smaller weights give more value to 

immediate or short-term rewards. The discount factor ranges from 0 (the 

immediate reward fully dominates the decision) to 1 (all rewards have an 

equal weight across the time horizon). 

Optimizer 

The optimizer determines how the parameters of the neural network are 

updated during training based on the gradient of the loss function. SGD 

and Adam are two common optimizers used to find solutions. 

Learning Rate 
The value used in conjunction with the optimizer to determine the step 

size of weight changes during optimization.   
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The neural network architecture is a core element of the MuZero algorithm. It is used to 

approximate the value and policy functions of the model, as well as maintain the dynamics model 

of the environment. It consists of four neural networks – a value function, policy network, 

dynamics function, and representation network. The representation network creates the latent 

representation of the current state, converting the environment into a model – in this dissertation, 

a fully connected neural network is used. The value function takes the latent representation output 

(h) and generates an estimation of the expected long-term reward from that state – for this 

dissertation, this is the expected number of moves in a simulation. The policy network takes the 

latent representation output and provides a probability distribution across all possible actions – 

that is, each action has an associated probability of selection given a current state of the 

environment. The dynamics function takes ht as an input, and generates the next state ht+1. The 

parameters of the neural network are updated across training steps – the dynamics function is used 

to simulate future possible scenarios, and these predictions are used to update the parameters of 

the neural network architecture (Schrittwieser et al. 2020). 

The number of simulations is a parameter used to determine how many future time steps 

the algorithm uses to make decisions. At each time step in the simulation MuZero performs a 

MCTS, selecting actions and generating hypothetical future scenarios. A higher number of 

simulations allows the algorithm to make more informed decisions by generating a more robust 

simulation. A lower number of simulations will provide less robust results, but can generate results 

more quickly (Cutler et al. 2014). In this scenario, the number of simulations has a secondary 

effect – as the departure times of containers are hard-coded (though randomly sampled), the agent 

has the ability to see when a container will depart during lookahead. This emulates the real-world 

process of truck scheduling times for picking up containers from the terminal. The information is 
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incomplete – the agent does not look to the end of the simulation, and it still must plan given the 

uncertainty of departure times. 

Training steps are related to the simulation parameter and are a critical element for training 

the MuZero algorithm.  A training step is a moment in the simulation in which the agent takes the 

observation from the time t, selects an action based on the existing policy, and updates the policy 

using observations from the replay buffer. Each training step looks ahead based on the number of 

simulations parameter above – that is, at each training step the algorithm will look ahead in the 

MCTS to t + num simulations. Generally, the more training steps used when training the model, 

the better the performance of the algorithm as it has more time to learn. However, selecting a 

number of training steps that is too large can lead to overfitting, reducing the flexibility of the 

model. To combat this, many RL algorithms, including MuZero, recommend reducing the 

temperature parameter as the number of training steps rises (Bellow et al. 2016).  

The temperature parameter (τ) is used to control the exploration-exploitation trade off - that 

is, the percent of the time that the algorithm chooses the “best” action or selects a new action. The 

temperature parameter takes a value greater than 0, and typically [0,1]. The visit count of each 

child node is raised to the 1/τ prior to the selection probability being calculated – this encourages 

the selection of actions that have not been taken as often. A larger temperature parameter results 

in greater variety in action selection, while a lower temperature parameter converges on the actions 

with high visit counts and selection probability. For environments such as the container stacking 

block with a large number of actions, a larger temperature parameter is preferred (He et al. 2018).  

The replay buffer is a data structure used to store previous training examples and 

experiences. The replay buffer stores an environment, action, reward, and updated state of the 

environment. The results of a potential action are compared to the current action selection at a 



149 

 

training step to determine the next best action using previous experience. This helps the algorithm 

avoid overfitting. The replay buffer is also used to update the parameters of the neural network 

architecture during training. The replay buffer also dictates the number of “unroll steps” – the 

number of simulated moves saved from each batch element – and the number of future moves to 

consider when calculating new weights. The primary tradeoffs on the size of the replay buffer are 

memory considerations (Zhang and Sutton 2017). 

The discount factor is used to determine the relative importance of near-term and long-

term rewards. For example, the simulation in this dissertation considers all container moves with 

equal weight, regardless of simulation time. However, in chess, a stronger move in the short term 

may be more valuable than strong moves several turns from now. The discount factor is 

represented by γ and has a value between 0 and 1. When the agent calculates the future rewards of 

an action, it calculates using the sequence R = r1 + γ r2 + γ2 r3 + … + γ(n-1) rn where R is the total 

reward over time steps n, with ri being the reward received at time i. It follows that a discount 

factor closer to 1 will give more (or equal) weight to future rewards, while smaller values will 

reduce the value of future rewards. For the simulation of the container stacking block in this 

dissertation, the discount factor is 1. 

The optimizer is an algorithm used to update the weights and parameters of the neural 

network. There are many types of optimizers – however, MuZero uses either Adam or stochastic 

gradient descent (SGD) most commonly. SGD is the simpler algorithm, with less stringent memory 

requirements and fast learning. It is less likely to overfit than Adam. Adam is more flexible than 

SGD and adjusts learning rates adaptively. Adam can take larger batch sizes and run more 

efficiently than SGD, and is better suited for deep networks. The optimizer also takes weight decay 
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and momentum as inputs. Weight decay is a regularization technique that penalizes large positive 

or negative loss values. Momentum is a tool used in optimizers to assist in faster convergence.  

The learning rate of the optimizer determines how quickly the weights update during 

optimization. A high learning rate can lead to fast convergence, quickly finding an optimal 

solution. However, the solution may be unstable or overfit. A lower learning rate can take longer 

to find optimal solutions but has higher degree of accuracy, stability, and flexibility. 

6.5 Findings 

This section describes the performance and findings of the MuZero algorithm applied to 

the container stacking block simulation. The simulation presents a reduced-size environment for 

testing the algorithm, decreasing training times and computational resource requirements. The 

model is run using research computing resources with 24 cores, 192 GB of memory, and four 

GPUs with 12 GB VRAM each. The model was trained using the parameters outlined in Table 6-

2. It takes roughly 12 hours for the model to converge on a solution for an environment with 10 

stacks, five tiers, and ~175 containers entering and exiting the system. This contrasts with an 8 

lane x 30 bay x 5 tier stacking block at the Port of Virginia, with roughly 20 containers/hour 

arriving to the block continuously during operating hours. The algorithm is executed from a 

command line and written in the Python programming language, leveraging the PyTorch machine 

learning framework (Duvaud and Hainaut 2020).  

To execute the program, the user runs the module in a command line terminal and selects 

the simulation of interest. Figure 6-5 describes the initial output to the terminal.  0: Train is used 

to execute the algorithm and begin training the model. 1: Load pretrained model is used to load a 

previously trained model for further training, analysis, or other uses. 2: Diagnose model is used to 
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access various metadata about a trained model such as information about the trajectory (rewards, 

policies) at each time step, information about the optimizer, and visualizations of the MCTS. 3: 

Render some self-play games provides a visualization of a random, simulated environment and 

executes the simulation using the loaded model. 4: Play against MuZero is used for multiplayer 

environments and allows a human to compete with the trained models – this feature is not available 

for the container stacking block simulation. 5: Test the game manually allows a user to select 

actions in the simulated environment. MuZero will recommend a move, but the user is free to take 

any legal action – MuZero can then score the quality of the move in terms of policy and reward. 

6: Hyperparameter search reveals the hyperparameters used in the currently loaded model. 7: Exit 

terminates the program, unloading the model from memory. 

 

Figure 6-5. The main selection screen for the implementation of the MuZero algorithm. There 

are seven actions available.  

Training the MuZero model is computationally expensive for conventional desktop 

computers. Figure 6-6 describes the memory usage for a typical run of the algorithm on the 

container stack environment with 10 stacks, five tiers, and ~150 incoming containers over a 1200-

time step simulation. The model takes roughly 44 GB of memory to operate and train. For 

comparison, the model for the full Port of Virginia container stacking block with 240 stacks has a 
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nearly 150 GB size requirement and a nearly constant 92% CPU usage rate. While training, the 

algorithm provides a summary of information to the user.  

 

Figure 6-6. Example of the computational requirements to run MuZero on the simulated 

container stacking block environment.  

 

Figure 6-7. Computational requirements for a full Port of Virginia container stacking block 

(30 bays, eight lanes, five tiers, for 1200 total container slots) 

Figure 6-8 describes the summary information provided by the algorithm during training. 

The Last test reward describes the total reward from the last completed game – in this case, the 

last completed simulation had a total of 760 moves – roughly 4.4 touches per container. The 

Training step shows the current training step of the training cycle. Played games shows the number 

of completed games. Loss shows the value of the loss function at the last training step.  



153 

 

 

Figure 6-8. Summary information provided in the command line terminal during training. 

While this information is useful, it only provides a snapshot of performance. The software 

produces several graphs showing how performance changes over training steps. Figure 6-9 

describes the policy, reward, value, and total weighted loss values for an implementation of 

MuZero. This model, whose parameters and hyperparameters are described in greater detail later 

in this section, began to converge on a solution around training step 30,000. It converged on an 

optimal policy around training step 10,000. It also converged on a on an optimal reward loss around 

training step 10,000. This indicated that the algorithm was quickly able to develop short term 

policies. The value loss function, the function responsible for calculating and estimating the total 

reward for a given policy, converged around training step 30,000. The total weighted policy loss, 

the weighted sum of the three other loss functions, begins to converge at step 10,000, and reaches 

stability around step 30,000.  
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Figure 6-9. Graphs depicting the policy, reward, value, and total weighted loss values over 

roughly 35,000 training steps for an implementation of the MuZero algorithm 

Table 6-2 describes the parameters, hyperparameters and architectures used for the model 

trained in Figure 6-9. These parameters were used to generate the experimental results outlined 

below. These values were derived over dozens of experiments via trial and error. The model 

balances complexity, training time, and performance. Table 6-3 describes the relevant simulation 

environment parameters used to develop a baseline performance 
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Table 6-2. The set of parameters, hyperparameters, and neural network architectures used 

to develop results for the MuZero algorithm applied to the container stacking problem.  

Parameter/ 

Hyperparameter 
Description 

Neural Network  

Fully connected network: 

• Support size: 40 

• Encoding size: 25 

• Representation layers: 1 

• Dynamics layers: 16 

• Reward layers: 16 

• Value layers:16 

• Policy Layers: 16 

Simulations 240 

Training steps 100,000 

Temperature 0.25 

Replay Buffer 

Replay Buffer: 

• Buffer size: 100 

• Unroll steps: 64 

• Future steps: 64 

Discount Factor 1 

Optimizer 

SGD 

• Weight decay: 0.0004 

• Momentum: 0.9 

Learning Rate 0.005, constant learning rate 
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Table 6-3. Overview of relevant environmental parameters used to measure the performance 

of the MuZero algorithm. This framework is used in the baseline algorithm used for analysis. 

Environment Value Description 

Number of 

Arrivals 
150 

The number of containers arriving to the simulation during 

the simulation time. All containers are generated per the 

logic outlined in Chapter 5, with a randomly sampled 

arrival and dwell times. 

Simulation 

Time 
1200 

The length of the simulation in discrete time units. As the 

real-world terminal takes an average of three minutes per 

container move, three times this value is the number of 

minutes of simulation. The 1200-time units for the example 

case is equal to roughly 7.5 days of operation. 

Dwell Time N(200, 50) 

The dwell time distribution from which the randomly 

generated containers are sampled. In this example case, the 

dwell time is roughly equal to 1.25 days of waiting in the 

container stacking block. 

Stacks 10 
The number of container stacks used in the simulation for 

the example case.  

Tiers 5 
The number of tiers in the container stacks in the baseline 

example case 

 

A primary objective of applying MuZero to port operations is to reduce the number of 

touches per container. As the MuZero algorithm completes simulations and examines tens of 

thousands of possible future conditions, there is no single value for touches per container for a 

given model and environment – however, an average range of touches per container is provided. 

The algorithm was applied to a container block with 10 stacks, five tiers, and 150 arriving 

containers over 1200 training steps. The stacking block is prepopulated with a random sample of 

containers at roughly 50% utilization at the start of the simulation. 

A benefit of using these types of models, especially in the context of designing resilience 

for CPS, is the ability to compare the relative performance of different environmental 
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configurations. This can provide critical information to the port regarding new stacking policies. 

Results are tested across four models. There is a test model (greatly reduced arriving containers), 

the baseline model as described in previous sections, a “tall” model trained on an environment 

with six tiers rather than five, and a “wide” model trained on an environment with 12 stacks rather 

than 10. Table 6-4 describes the results for the four models. The two metrics of interest are the 

average utilization of the stacking block and average touches per container. Utilization refers to 

the percentage of container slots that are occupied at a given time. Utilization can vary greatly 

depending on several factors – utilization is the average occupancy rate of the container stacking 

block during the period of the simulation in which arrivals are added to the stack. Touches per 

container also varies depending on several factors – early and late in the simulation, when 

utilization is lower, there are substantially fewer touches per container. A range of touches per 

container are provided to consider these factors. 

The test scenario had the best performance. Given the relatively few arrivals to the 

environment, utilization remained low and drove down the total number of touches. The model 

was able to take no action during most time steps. The optimal number of touches per container is 

two (one arriving and one departing), and the performance of 3.5 to 3.7 touches per container is 

considered good performance – consider that the Port of Virginia currently realizes between 4 and 

4.5 touches per container. The baseline model ranges from 4.6 to 5.6 touches per container, with 

an average utilization around 80%. 

Compare these results with the “tall” model in which each of the 10 stacks has the 

maximum number of tiers raised to 6. There are now 60 container slots rather than 50 as in the 

base model. The number of arrivals is held constant. The tall model sees slightly improved 

performance from the baseline model, with a range of 4.6 touches in favorable conditions (lower 
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utilization) to 5.3 touches in unfavorable conditions (higher utilization). The tall model realizes an 

average of 75% utilization. The tall model has no improvement over the baseline model in 

favorable conditions, with both models at about 4.6 touches per container. There is an 

improvement in performance during unfavorable conditions, from 5.6 touches in the baseline to 

5.3 in the tall model. The tall model demonstrates the same heuristics as the baseline model, 

favoring one or more empty stacks when possible, and broadly keeps stacks below their maximum 

height. Heuristics are explored in greater detail in subsequent sections.  

These results are compared to the “wide” configuration model, in which there are two 

additional stacks for a total of 12, each with five tiers – again with 60 container slots as opposed 

to the 50 in the baseline. The wide model had better performance than the baseline and tall models 

in both favorable and unfavorable conditions, with 4.3 touches per container in favorable 

conditions (0.3 fewer than the baseline and tall models), and 5.2 touches per container in 

unfavorable conditions (0.4 fewer than the baseline and 0.1 fewer than the tall model). A notable 

difference in performance is the number of time steps in which the wide model makes no container 

moves. Through the first 80% of the simulation, the most active portion of the simulation, the 

baseline and tall models make no moves in 2-5% of time steps. Contrast this with the wide model, 

which takes no action in 8-10% of available time steps. That is, the additional stacks are more 

valuable in terms of touches per container than additional tiers. This information can be used to 

further refine the system description for the CPSRM 
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Table 6-4. Overview of specialized model performance trained on augmented environments 

Parameters    Results 

Model Sim Time Stacks Tiers Arrivals Utilization Touches/container 

Test 1200 10 5 25 (~50 total) ~30% ~3.5 - 3.7 

Baseline 1200 10 5 150 (~175 total) ~80% ~4.6 – 5.6 

Tall 1200 10 6 145 (~175 total) ~75% ~4.6 – 5.3  

Wide 1200 12 5 145 (~175 total) ~75% ~4.3 – 5.2 

Port N/A 240 5 20/hour Varies ~4 - 4.5 

 

6.6 Heuristics  

Another useful feature of MuZero and reinforcement learning in general is the ability to 

examine the agent while it operates in the environment to identify heuristics and patterns that the 

algorithm discovers. Figure 6-10 describes a visualization of the baseline MuZero environment. 

There are eight primary elements of the visualization. First, the tree depth is an integer that 

indicates how many future nodes the algorithm examines to make a decision. Second, the root 

value for player 1 (recall this simulation has a single player) indicates the expected reward for the 

simulation given the current state and lookahead conditions. Next is the played action, which 

indicates which action was played at the last time step that led to the current state. Simulation time 

and container moves indicate how many time steps the simulation has taken, and how many 

container moves have been made to this point. The next element is a list of arrivals – this is the set 

of containers that are scheduled to arrive to the stacking block during the simulation time. 

Containers are listed by their ID number, beginning at 0 and incrementing by one for each 

container in the simulation. The next set of elements (usually elements for this dissertation) is the 

set of stacks in the container stacking block. The stacks are oriented vertically, from left to right. 
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That is, each row is a different container stack, and each element in each row is a container. 

Containers at the beginning of the row – the first element and further left – is the bottom of the 

stack. Containers to the right are stacked “on top” of containers to the left – that is, if the agent 

takes an action to move a container from a given stack, it will pick the last element of the row. The 

final element of the list is the exit node – this is where containers that have departed the simulation 

are stored. Finally, the user manually moves the simulation forward one time step – the agent 

selects an action according to policy and updates the environment. For this demonstration, the 

stacking block and exit node will be the primary elements of interest for deriving performance 

heuristics – the tree depth, root value, action played, simulation time, container moves, and arrivals 

are often excluded for clarity of view. The heuristics that the algorithm learns can be applied to 

new and unknown systems as well. 
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Figure 6-10. Overview of the simulated stacking block environment. 
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Figure 6-11 describes the beginning stages of a simulation using a trained MuZero model 

as the agent with the architecture of Table 6-2 and the inputs of Table 6-3. There are 24 containers 

in the initial stack, with 150 incoming arrivals. At the beginning of the simulation, in time step 

one, the algorithm moves container 0 from the first to the tenth stack. This highlights a recurring 

theme and important heuristic discovered by MuZero – the algorithm strongly favors leaving 

empty stacks. By time step 23, the algorithm has created two empty stacks, and by time step 55 

three stacks are empty. This is the case despite eight new containers arriving to the stacking block. 

There are several potential reasons for this. First, when reshuffling containers to reach a container 

on a lower tier, the empty stacks are used to temporarily store containers. Second, new arrivals are 

often placed on an empty stack temporarily before being moved to a higher tier stack.  

 

Figure 6-11. Demonstration of the MuZero algorithm prioritizing the creation of empty 

stacks early in the simulation 
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Figure 6-12 demonstrates the use of empty stacks to reach lower containers. At time step 

61, container 15 has reached its departure time and needs to be moved to the exit terminal. To do 

this, containers 16 and 17 must be moved first. Container 17 is moved to the empty first stack in 

time step 62. Container 16 is moved to the top of the fifth stack. Container 15 is then moved to the 

exit node. By time step 68, containers 16 and 17 have been returned to the seventh stack. This 

process – reshuffling containers to separate and empty stacks – is seen frequently when observing 

the performance of the algorithm. 

 

Figure 6-12. Overview of a reshuffle to place a departing container in the exit node. The 

algorithm utilizes an empty stack as one of the destinations for the reshuffle before returning the 

container to its starting stack.  
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The algorithm also uses the empty stacks as storage for new arrivals. New containers are 

often placed in the empty stacks first before being moved to taller stacks. Figure 6-13 describes 

this process in which a new arrival, container 116, is placed first in the empty first stack. The agent 

performs a few reshuffles before moving container 116 to the fifth stack. There are a few potential 

reasons for this. First, when the stack is at a low utilization, there is a chance that a new container 

will only be touched twice (initial placement and departure). When the number of touches per 

container for a given simulation is around 4.5, two touches is a good reward. Second, placing the 

new container on an empty stack prevents it from blocking a container scheduled to depart sooner. 

The lag between the initial placement and reshuffle allows the agent time to arrange the stacking 

block in a more advantageous state. As this stacking block is at 76% utilization, the agent had 

limited options for placement. 
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Figure 6-13. Empty stacks are often used as for storing arrivals. These are then moved to taller 

stacks within a few time steps. 
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Figure 6-14 provides a demonstration of the algorithm reshuffling over several time steps 

to enter a more advantageous position. Broadly, containers in the initial stacking block (containers 

0 through 24 in this simulation) will exit the stacks before new arrivals (25 through 174). In time 

step 224, several initial containers are at the bottom of stacks – containers 9, 18, and 0 are all below 

new arrivals. By time step 243, these initial containers are at the top of their own stacks, ready for 

departure. Further, note the utilization of the empty second and third stacks for the reshuffling 

operation. This is not a fixed rule – note that container 7 remains beneath four new arrivals, and 

containers 3 and 22 are below two new arrivals. However, there is a tendency for the algorithm to 

group containers from the initial stack together, separated from the new arrivals. 

 

Figure 6-14. Demonstration of the algorithm self-correcting out of a difficult system state 
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Another heuristic is the tendency of the algorithm to ignore the highest tier container slot 

in a stack. That is, if there are five tiers, the algorithm will attempt to fill as many stacks to four 

tiers as possible before moving to five. Figure 6-15 demonstrates this heuristic, as four of the ten 

stacks are filled to four tiers at time step 271. However, this heuristic is secondary to the creation 

of empty stacks – consider the same simulation at time step 400. Six of the ten stacks are full, 

while two are completely empty.  

 

Figure 6-15. Demonstration of the algorithm filling stacks to one fewer tier than the 

maximum value. This heuristic is not favored over the empty stack heuristic. 
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It should be noted that there is an option for the algorithm to make no moves and take no 

action. Figure 6-16 describes this simulation at time step 1146. At this time, there were 973 total 

container moves. This means that the agent chose the “no move” action 173 times. This indicates 

that the algorithm learned to take no action, when possible, as there are still containers in the 

stacking block at this time step. However, many of these no move actions were taken toward the 

end of the simulation when stack utilization was very low (at time step 1146, it is at 12%). 

Ultimately, the simulation took 979 total moves to place 174 containers for a final touches per 

container of 5.6 over the entire run.  

 

Figure 6-16. Demonstration of the algorithm choosing the “no move” action to reduce the 

number of touches per container 
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Another useful feature of the algorithm is the ability to show the expected value of a move. 

Consider another simulation using the same algorithm on a reduced size space. Figure 6-17 

describes the change in root value from time step 74 to time step 75. At step 74, the algorithm 

calculates that the entire simulation has an expected reward of 172 moves – roughly 3.9 touches 

per container. At step 75, performance has improved – moving container 7 from stack two to stack 

seven reduced the number of expected moves by about six, reducing the expected total number of 

moves from 172 to 166, an improvement of about 0.14 touches per container. Note that this move 

created another empty stack – this highlights the value of an empty stack to the algorithm in 

quantitative terms. An individual may use this method to test new expert controls systems. This 

can also be leveraged to examine the impacts of disruptions and measure system resilience. 
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Figure 6-17. Demonstration of the algorithm providing the value of a move. In this case, the 

algorithm improved expected performance by six total moves. 
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6.7 MuZero and system resilience 

In the previous section, MuZero was used to minimize the number of container touches 

and explore the impacts of changes to the container stacking block configuration. It was shown 

that a taller stacking block has similar performance to the baseline stack, while two additional 

stacks in the block improve performance by around 0.4 touches per container. This section 

observes how the algorithm responds to disruptive scenarios as outlined in Chapter 4.  

Consider the following scenario – a hurricane off the coast of Virginia prevents vessels 

from reaching the port. Limited rains and flooding allow trucks to continue operations in the 

meantime. The result of this is many containers already in the container stacking block will leave 

the port before new arrivals. However, new arrivals will enter the system in a sharp wave. This 

sharp incoming wave is represented by a triangle distribution, which creates a period of no arrivals 

followed by a period of dense and frequent arrivals. Table 6-5 describes the performance of the 

non-disrupted scenario, the disruption scenario of the base model, and the performance of a 

specialized model trained on the disruptive scenario specifically. This will demonstrate the 

flexibility of the MuZero algorithm as a solution for improving system resilience to disruption. 

The disrupted scenarios have two distinct phases – before the disruption begins (in this 

example around time step 100), and after. Prior to disruption, the container stack begins around 

50% utilization, and this decreases until step 100 as containers exit the block. Lower utilization 

correlates with fewer touches per container, so prior to the arrival of containers, performance is 

better. When the disruption begins utilization can be raised to 90% and above, vastly increasing 

the number of touches required to handle containers. 
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Table 6-5. Sample of results comparing baseline model performance, performance under 

disruption, and performance using a model trained on disruption 

Model Arrivals Utilization Touches/container 

Baseline 150 [U(0,1000)] ~70-80% ~4.6 – 5.6 

Baseline 

(disrupted) 

150 [Triangular 

(100,600,1200)] 

~30-40% (pre-disruption) 

~90% (disruption) 

~3.5 – 4.0 (pre-disruption) 

~10.2 (disruption) 

Trained on 

disrupted 

150 [Triangular 

(100,600,1200)] 

~30-40% (pre-disruption) 

~90% (disruption) 

~4.5 – 5.5 (pre-disruption) 

~10 (disruption) 

 

Ultimately, the baseline algorithm has similar performance to the specialized model. The 

baseline model outperforms the specialized model in the non-disrupted portion of the simulation 

by about 1.0 touches per container, while the specialized model has better performance during 

disruption by roughly 0.2 touches per container. Ultimately, the two models had similar overall 

performance, with the base model around 3.5 – 4.0 touches per container in the non-disruption 

period and 10.2 touches per container in the disrupted period. The specialized model makes around 

4.5 – 5.5 touches per container in the non-disrupted period and 10.0 in the disrupted period. It is 

notable that the model trained on the disrupted scenario has worse performance in the pre-

disruption period. By observation, the model appears to make significantly more “wasted” moves, 

such as moving a container to a new stack in one time step before immediately moving it back in 

the next time step. This may reflect the increased uncertainty of the disrupted arrival distribution 

compared to the uniform baseline arrival distribution. 

Similar heuristics to the baseline model are applied across both phases of the simulation, 

though it should be noted that the model trained on the disruptive scenario tends to rapidly empty 

stacks early in the simulation. Further, the model trained on the disrupted scenario goes to great 

lengths to avoid mixing stacks of incoming and pre-populated containers. This highlights the 



173 

 

ability of the algorithm to react to uncertain future conditions – as noted above, the behavior of the 

two models is different in the non-disrupted periods. It should be noted that using both the baseline 

and specialized models, the container stack semi-regularly meets the early termination state (that 

is, there are no legal moves remaining). While the Port of Virginia has the flexibility to send 

containers to another stacking block or otherwise store surplus containers, the simulation does not 

have this capability.  

The results of this simulation and the MuZero model are resilience techniques that form 

the new requirements for the system of interest for the CPSRM. These are the results of stages 

three, four, and five of the CPSRM. Updating the parameters of the algorithm to understand 

performance is a key part of the decision process between T2 and red team. The results gathered 

here are collected and sent to the blue team for stage six of the CPSRM. 
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Chapter 7: Mathematical framework for analysis of the disruption 

of system orders 

7.1 Overview 

This chapter describes the mathematical framework for disruption analysis and shows how 

it is integrated into the CPSRM. Section 7.2 describes the relevant background needed to 

understand the system using the mathematical framework. Section 7.3 describes the methodology 

for executing the mathematical framework. Section 7.4 describes three cases using the 

mathematical framework. Section 7.4.1 describes the first case analyzing a set of potential projects. 

Section 7.4.2 describes the second case analyzing the largest employers of the region. Section 7.4.3 

describes the third case analyzing logistics assets. Section 7.4.4 presents a sensitivity analysis of 

the mathematical framework. Section 7.5 presents conclusions from the mathematical framework 

and concludes the CPSRM process. 



175 

 

This chapter represents stage six of the CPSRM. In stage S6 – Accept System Description, 

the blue team determines which resilience capabilities to incorporate based on the analysis by the 

T2 and red team. To accomplish this, the blue team utilizes a scenario-based mathematical 

framework to examine organizational priorities and assess how these priorities change due to 

disruption. Ultimately, the blue team finalizes the systems design, including the new and updated 

resilience techniques. This framework utilizes and extends a model applied to a sociotechnical 

system of systems (Loose et al. 2022(c), Loose et al. 2022(a)). 

 

Figure 7-1. Relationship between CPSRM stages and Chapter 7 – Mathematical framework 

for analysis of the disruption of system orders. Chapter 6 describes stage six of the CPSRM, in 

which the blue team analyses the priority orders of the resilience capabilities outlined in previous 

steps. The team utilizes a scenario-based mathematical framework to collect stakeholder 

perspectives and priorities and provide insight into how orders change due to disruptive scenarios. 

The system the blue team analyzes here is a large industrial region in Southeast Virginia, 

within the 500-mile radius of influence of the Port of Virginia. Stakeholders within the Port of 
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Virginia were consulted as experts of the region and were asked to assist in the development of 

priorities and in the analysis of results (Lambert et al. 2022(c), Lambert, Loose et al. 2022).  

7.2 Background of the industrial region and relevance to the Port of Virginia 

The decision maker for this analysis is the Crater Planning District Commission (CPDC), 

a regional planning agency that coordinates and provides policy recommendations for 11 member 

jurisdictions (VCC 2021). These includes seven counties (Charles City, Chesterfield, Dinwiddie, 

Greensville, Prince George, Surry, Sussex) and four cities (Colonial Heights, Emporia, Hopewell, 

Petersburg). The region services two large cities – Richmond to the north, and Newport News to 

the East. The region has a population of roughly 180,000 across 2,500 square miles of territory 

within the CPDC jurisdiction (Crater PDC 2021). The CPDC goals and objectives largely align 

with that of the Port of Virginia, which is headquartered East of the region in the Hampton Roads 

region. The Port of Virginia has several assets in or adjacent to the CPDC region, including the 

Richmond Marine terminal. Given this, the analysis of the CPDC will serve as a demonstration 

case of the CPSRM. 

The CPDC is empowered by the state government, and “emphasizes transportation, 

economic and small business development, the environment, and serves as a convener for major 

military-related discussion among the region’s communities” (CPDC 2021). The missions of the 

CPDC are: 

1. Identifying interjurisdictional issues and opportunities, and establishing plans and policies 

to address these issues 

2. Identifying mechanisms for local governments, the private sector, and non-profits to 

implement plans and policies 
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3. Promoting cooperation among state and local jurisdictions 

4. Providing technical assistance and information services to member jurisdictions 

 

Figure 7-2. A map of the 11 member communities of the CPDC. The CPDC makes 

recommendations to improve regional government cooperation and planning to improve economic 

outcomes, safety, and sustainability (CPDC 2021). 

The CPDC region hosts several facilities that are critical to the Port of Virginia, the state, 

and the nation as a whole. Interstates 95 and 85 pass through the region. Interstate 295 and Route 

288 link directly to I-64, a critical roadway for the logistics systems of the state. With respect to 

the Port of Virginia, Routes 10, 58, and 460 all pass through the Crater region and connect the port 
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to the district. The James River borders the CPDC region and links the Norfolk terminals of the 

port to inland terminals. Norfolk Southern and CSX railroads operate throughout the district, 

merging in the city of Petersburg and extending east to the Port. There are two major military 

installations within the CPDC as well – Fort Lee is contained entirely within the district, and is 

responsible for a large proportion of the economic activity within the region. About 10% of the 

economic activity in the Crater region is generated by Fort Lee (CPDC 2021). Fort Lee hosts “the 

U.S. Army Combined Arms Support Command/Sustainment Center of Excellence, the U.S. Army 

Quartermaster school, the U.S. Army Ordnance School, the U.S. Army Transpiration School, the 

Army Logistics University, Defense Contract Management Agency, and the U.S. Defense 

Commissary Agency” (U.S. Army 2021). These agencies and divisions are the heart of logistics 

training and operations for the U.S. Army, and rely on the supply chain infrastructure of the region. 

Fort Pickett, a National Guard installation, is partially contained within the region and serves as 

another major driver of economic activity in the region. 

The public sector is the largest employer in the CPDC region, with over 27% of employed 

citizens working for a government agency. This includes the Department of Defense, state and 

federal agencies, local governments, state correctional facilities, and schools. 13.3% of working 

population is employed in healthcare including hospitals, clinics, and other medical facilities. 

Retail is the third largest employment sector with 13.2% of workers employed by organizations 

such Wal-Mart, Amazon, or Food Lion. The next largest sector is manufacturing, which accounts 

for 10.3% of employment in the region (USBLS 2021). The COVID-19 pandemic led to 

widespread job loss and a reduction in employment – at its peak in April 2020, unemployment 

reached 11.1%, down from the 2019 average of roughly 3%. This change represented 21,175 jobs 

lost (VEC 2021, Chmura 2021). This disruption, in conjunction with other disruptors such as 
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unexpected budget changes and larger technological and demographic trends spurred the need for 

analysis of regional priorities with the assistance of the Port of Virginia as a key stakeholder. 

It is critical for stakeholders in complex sociotechnical systems of systems, such as the 

CPDC and Port of Virginia, to understand the risks to their systems. Risk and uncertainty can be 

defined in several ways. Some organizations consider risk to be the loss of capabilities due to 

disruption across two metrics: the probability of disruption and the consequences of disruption 

(Conrow 2007). Other organizations consider a third metric – vulnerability, or the conditional 

probability that a system is damaged given a disruption has occurred. Still other definitions exist 

– the International Organization for Standardization considers risk to be “the effect of uncertainty 

on objectives” (ISO3100 2018). This dissertation, as well as the demonstration in Chapter 7, uses 

a similar perspective, extending the definition to be “the measurement of the influence of scenarios 

on priority orders” (Loose et al. 2023(a), 2022(c), 2021, Hassler 2020).  

The mathematical framework presented in this chapter is used to understand risk to systems 

given the definition above. It is difficult to prioritize sets of projects, technologies, assets, and 

policies under standard conditions, especially in large and distributed systems such as the CPDC 

region. Disruptive scenarios such as the pandemic and natural disasters are a further compounding 

factor, making it more difficult to prioritize initiatives. The framework presented here enables 

analysts to organize their priorities such that they align with organizational goals and provide 

insight into how scenarios disrupt these priorities. This dissertation extends the framework by both 

defining how scenarios disrupt priorities and quantifying how different stakeholder perspectives 

influence priorities. This is accomplished by creating various stakeholder “profiles”, which 

represent analysts with varying degrees of tolerance for risk. The framework calculates how the 

ranking of policies, projects, and assets change due to disruption. This results in two major outputs 
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– an examination of how the ranks of individual priorities rise and fall due to disruption, and an 

assessment of which scenarios are most disruptive to priority orders. This information is then be 

used by analysts to determine how to continue developing the system given uncertainty in future 

conditions.  

7.3 Methodology of the mathematical framework 

The mathematical framework is used to assist analysts with understanding what potential 

future conditions are most disruptive to system priorities and how priorities change due to these 

disruptions. To utilize the framework, analysts – in this case the blue team in the CPSRM 

framework – execute several steps to provide inputs, calculations, and generate outputs. Figure 7-

3 provides a graphical overview of the framework. Table 7-1 provides an overview of data used 

for the mathematical framework. 
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Figure 7-3. The steps of the mathematical framework. The framework is one of the tools used 

in the CPSRM, assisting the blue team with selecting resilience measures based on how priorities 

change under disruption. The framework can also be utilized by T2 to identify the most disruptive 

scenarios. Adapted from (Loose et al. 2022(c), 2023(a)). 
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Table 7-1. Data for framework. Descriptions and notations of the data used in the framework 

(adapted from Loose et al. 2023(a)). 

Data Notation Description 

Success Criteria C = {c1, ..., cm}; 1 ≤ j ≤ m The set of success criteria  

Initiatives  X = {x1, ..., xn}; 1 ≤ i ≤ n The set of initiatives  

Emergent Conditions E = {e1, ..., eq}; 1 ≤ l ≤ q The set of emergent conditions  

Scenarios S = {s0, ..., sp}; 0 ≤ k ≤ p 
The set of disruptive scenarios, where s0 

is the baseline scenario 

Weight Matrix Wp🞫m 
The set of importance scores for each 

success criterion cj across scenarios sk 

Importance Matrix Vp🞫n 
The set of value functions for each 

initiative xi with each criterion cj 

Rank Matrix Rp🞫n 
The set of ordered priorities for each 

initiative xi across each scenario sk 

Disruptiveness Vector D = {d0, …, dp}; 0 ≤ k ≤ p 
The set of disruptiveness scores across 

each scenario sk 

 

In the first step the blue team develops success criteria and sets of initiatives for analysis. 

Also called figures of merit, success criteria are used to identify the metrics, values, and missions 

of the organization, in this case the CPDC. Table 7-2 shows the success criteria used in this 

analysis. The success criteria C = {c1, ..., cm} are derived from several sources, including third-

party program analysis, literature reviews, established standards, internal expertise, and other 

sources.  
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Table 7-2. Success Criteria. Set of success criteria used across all demonstrations of the 

mathematical framework (adapted from Loose et al. 2023(a)) 

Index Criterion Description 

c1 Quality of Life Ability of citizens to comfortably participate in life events 

c2 Innovation Development of new ideas, products, or policies 

c3 Economic Development A measure of regional prosperity such as regional GNP 

c4 Economic Resilience The ability to withstand disruptive scenarios 

c5 Carbon Footprint Total greenhouse gas emissions due to activities 

c6 Sustainability Ability to maintain ecological balance across operations 

c7 Safety Protection from or reduction in risk of injury or other harm 

 

Success criteria are used to rank and order the sets of initiatives. The following provides 

greater detail regarding the success criteria used throughout this analysis. While multiple sets of 

initiatives are used in this chapter, the performance criteria used by the blue team remains constant. 

Success criteria are defined during stage 1 of the CPSRM, in which T2 creates a system description 

based on information provided in design documents and through system analysis. c1 – Quality of 

life is a measure of the degree to which an initiative impacts the standard of living of the citizens. 

Changes to c1 – quality of life include increased wages, the creation of new jobs, introducing new 

technologies to the population, providing critical or luxury services, or the incorporation of new 

amenities. c2 – Innovation is the degree to which an initiative generates new ideas, technologies, 

methods, or products that are beneficial to the system or can be used to enhance other criteria. c3 

– Economic development is the ability of an initiative to improve economic metrics such as job 

growth, employment rates, infrastructure investment, or the development of partnerships which 

attract new organizations, employers, or investors to the region. c4 – Economic resilience refers to 

the degree to which an initiative protects the region from fluctuations in broader economic 
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conditions. c5 – Carbon footprint is a measure of the change in carbon emissions of the region due 

to the implementation of an initiative. c6 – Sustainability is the ability of an initiative to address 

current conditions and requirements while reducing the negative impacts to future generations, 

especially regarding the environment, climate change, and equity. c7 – Safety is the degree that an 

initiative improves or maintains the safety of the population, primarily addressing physical harm 

or trauma. 

 The blue team determines the importance of each criterion under normal conditions (the 

baseline), rated high, medium, or low importance, with a weight associated with each. Later 

sections of this chapter will discuss the influence of these weights on results, but the initial set of 

weights is four for high, two for medium and one for low. The framework utilizes discrete weights 

rather than continuous as it has been shown that ordinal ranking is faster and more efficient than 

cardinal methods, while maintaining a similar level of accuracy (Ali and Ronaldson 2012). The 

weights are stored in the weight matrix W.  

Table 7-3. Success Criteria Weights. The set of weights used in the initial assessments  

Criterion Weight  Numerical Weight 

High 4 

Medium 2 

Low 1 
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Table 7-4. Criterion ratings for CPDC analysis. The rankings high, medium, and low used 

throughout the case studies. Note that the analysts in the CPDC did not rank any criteria as low. 

the criterion c.xx has - relevance among the other criteria 

c.01 - Quality of Life has high relevance 

c.02 - Innovation has medium relevance 

c.03 - Economic Development has high relevance 

c.04 - Economic Resilience has high relevance 

c.05 - Carbon Footprint has high relevance 

c.06- Sustainability has medium relevance 

c.07 - Safety has medium relevance 

 

Initiatives are technologies, policies, projects, assets, and other system components or 

investments that are implemented to impact the success criteria. The set X = {x1, ..., xn} of 

initiatives are derived from stakeholder input, system experts, and the revised system description 

from T2 and red team from stage five of the CPSRM. The new resilience techniques and 

technologies developed in steps one through five are inputs to the mathematical framework in step 

six. Analysts on the blue team are asked to respond to the statement “initiative xi is relevant to the 

criterion cj”, responding as strongly agree, agree, somewhat agree, or neutral, corresponding with 

initial weights of 1, 2/3, 1/3, and 0 respectively. Within the framework itself, these values are 

represented by a filled circle (●), a half-filled circle (◐), an empty circle (○), and a hyphen (    ). 

Table 7-5 describes this relationship. This process is called the criteria-initiative (C-I) assessment. 

As an example, consider the success criterion quality of life, and an initiative such as waste 

management. As waste management has high relevance to quality of life, the blue team would 

choose strongly agree. 
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Table 7-5. Criteria-Initiative Weights. The values and representation symbols for the baseline 

analysis of criteria and initiative 

Representation Weight Criteria-Initiative Assessment 

● 1 strongly agree 

◐ 0.667 agree 

○ 0.333 somewhat agree 

➖ 0 neutral 

 

 In step two of the framework, the blue team inputs emergent conditions and generates 

scenarios. These are taken from step two of the CPSRM, in which the blue team performs a risk 

assessment to identify sources of risk to the system such as natural and human-caused hazards. 

Emergent conditions are future events, trends, or other uncertain factors that impact the 

effectiveness of initiatives with respect to their impact on success criteria. The set E = {e1, ..., ei} 

of emergent conditions is derived from literature, analysis of the system, stakeholder experience, 

and forecasts of future conditions. Emergent conditions are combined to form scenarios. That is, 

scenarios consist of one or more emergent conditions. The set S = {s0, ..., sj} of scenarios is a series 

of potential events that may disrupt priority orders. The scenario s0 is the baseline scenario in 

which no emergent conditions arise – also called the status quo or as-planned circumstances.  It 

should be noted that scenarios are not predictions of future conditions and carry no notion of 

probability of occurrence. Scenarios are projections used to explore the effects of the potential 

future states. Further, emergent conditions and scenarios do not attempt to enumerate all possible 

future states or disruptions, but focus on the concerns of the system owners and analysis such as 

the CPDC, the Port of Virginia, or the Virginia Department of Emergency Management.   

The influence of scenarios to priorities is seen through how scenarios influence the relative 

importance of success criteria. That is, the priorities of system owners change when the system is 
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exposed to disruption. In step three of the framework, the blue team adjusts the importance of the 

criteria across each scenario. An analyst is asked to determine if “the relative importance of 

criterion cj” increases, increases somewhat, does not change, decreases somewhat, or decreases 

“for scenario sk when compared to the baseline s0”. Each answer has a corresponding weight, in 

this case 8, 6, 1, 1/6, and 1/8 respectively. The responses are stored in the matrix W across each of 

the k scenarios. 

These weights can be changed in subsequent analyses based on user preferences. This 

assessment is based on expertise, institutional knowledge, and through iteration with other experts. 

Consider the example above – the waste management initiative and quality of life criterion. Under 

a natural disaster scenario, the relative importance of the quality of life criterion rises. As the waste 

management initiative had a high impact on quality of life, it may rise in priority as the weightings 

of criteria change. This process is explored in more detail across the three demonstration cases, 

and the impacts of weights are explored in the sensitivity analysis.  

Table 7-6. Weights for analyst responses to Criteria-Scenario analysis 

Criteria - Scenario Importance Change Weight 

Increases 8 

Increases Somewhat 6 

- 1 

Decreases Somewhat 0.1667 

Decreases 0.125 
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This information is used to give each initiative a score across each scenario. Equation 7.1 

describes the linear additive value function used to generate these scores.  

 

𝑉𝑘(𝑥𝑖) = ∑ 𝑤𝑗𝑘𝑣𝑗(𝑥𝑖)

𝑚

𝑗=1

                                                                     (7.1) 

vj(x) is the partial value function for initiative xi for criterion cj as defined in the criteria-

initiative assessment. V is a matrix that contains the relative importance scores for each initiative 

across each scenario. Given these scores, the initiatives are ordered for each scenario including the 

baseline s0 and added to the matrix R, the rank matrix. In R, rik represents the priority of an initiative 

xi for scenario sk. Each initiative score is ranked for each scenario, providing a ranking from 1 to 

n. Equation 7.2 describes this process, where ≻ indicates that an initiative has a higher ordinal 

ranking. That is, if the score of an initiative xi is higher than an initiative xa, than it has a higher 

ordinal ranking – for example, they may be ranked 1 and 2 respectively.  

IF V (xi )k > V (xa)k THEN xi ≻ xa                                (7.2) 

In step four of the framework, the blue team develops disruptiveness scores for each 

scenario. Disruptiveness is a measure of the degree to which priority orders change under a given 

scenario. The sum of squares differences between an initiative in the baseline and disrupted 

scenario is sued to find the disruptiveness of each scenario. Equation 7.3 describes the 

disruptiveness measure Dk. 

𝐷𝑘 =
 ∑ (𝑟𝑖0 − 𝑟𝑖𝑘)2 𝑛

𝑖=1

∑ 𝐷𝑘𝑘
                                                                     (7.3) 
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The disruptiveness Dk of scenario sk is equal to the sum of squares difference in priority for 

each initiative when compared to the baseline scenario. These scores are normalized so they can 

be compared to one another easily.  

7.4  Demonstrations of the mathematical framework 

The inputs to the mathematical framework are derived from the previous five steps of the 

CPSRM. Initiatives are taken from the system design documents and stakeholders, emergent 

conditions from the hazard analysis. This section outlines three sets of analyses created for the 

CPDC, with inputs from the Port of Virginia and federal and state governments – case one is an 

assessment of projects that the CPDC controls; case two is a list of the largest employers of the 

region, which the CPDC coordinates with to improve economic outcomes; case three is an analysis 

of the major logistics assets of the region, including roads, railroads, warehouses, utility services, 

and other industrial assets. Analysis is separated for two reasons – first, it is difficult to compare 

the importance of disparate assets (such as comparing an existing roadway to the importance of a 

new business), and second breaking up the analysis enables the blue team to isolate how different 

disruptive scenarios impact different segments of the system in isolation. Determining which 

initiatives are susceptible to disruption and which scenarios are the most disruptive will help the 

CPDC and the port to understand their system, understanding how the system may react to 

disruption in the future. These analyses represent the types of outputs systems analysts can expect 

from performing the CPSRM. 
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Each of the three analyses utilize the same sets of criteria, emergent conditions, and scenarios. 

Table 7-7 describes the set of emergent conditions used across each case. Figures 7-8 and 7-9 

describe the formation of scenarios and an overview of the scenarios used in the analysis. Figure 

7-10 outlines the criteria-scenario analysis, showing how criterion priorities change under each 

scenario.  
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Table 7-7. Emergent Conditions. Emergent conditions are potential future states that impact the 

priorities of the system. The set of emergent conditions here used across all three cases. 

Index Emergent Condition 

e1 Social Distancing Requirements 

e2 Fiscal Stress 

e3 Lack of Infrastructure 

e4 Lack of Well-Trained Workforce 

e5 Reduced Regional Cooperation 

e6 Poor Health Indicators 

e7 Funding Decrease 

e8 Flooding 

e9 Changes to Economic Systems 

e10 Category 5 Hurricane 

e11 Decreased Social Cohesion 

e12 Multiple Super Storms in Same Season 

e13 Increased Operational Costs 

e14 Increased Emphasis on Emissions 

e15 Decrease in Labor Productivity 

e16 Drought 

e17 Population Increase 

e18 Population Decrease 

e19 Social Unrest 

e20 Network Damage due to Cyber Attack 

e21 Ransomware Attack 

e22 Data Leak 

e23 Decreased Security of Vital Infrastructure 

e24 Destruction of Infrastructure 

el Others 
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Scenario

01 Funding Decrease x x x x x x x x

02 Natural Disaster x x x x x x x x x x x

03 Pandemic x x x x x x x x x

04 Increased Environmental Regulation x x x x

05 Climate Shift x x x x x x x x x x

06 Green Technology Movement x x x

07 Cyber Security Attack x x x x

08 Others

Table 7-8. Scenario formation. Scenarios are made up of one or more emergent conditions. This figure shows which emergent conditions make 

up each of the scenarios in the CPDC jurisdiction.  
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Table 7-9. Scenarios. The set of scenarios that disrupt priorities, formed from emergent 

conditions. These scenarios are used across each of the three cases. 

Index Disruptive Scenario 

s0 Baseline (No Disruption) 

s1 Funding Decrease 

s2 Natural Disaster 

s3 Pandemic 

s4 New Environmental Regulation 

s5 Climate Shift 

s6 Green Technology Movement 

s7 Cyber Security Attack 

sk Others 
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c.01 - Quality of Life - - Increases - - - -

c.02 - Innovation Increases - - Increases Somewhat Increases Increases -

c.03 - Economic Development Decreases Somewhat Decreases Somewhat Decreases - - Increases Somewhat -

c.04 - Economic Resilience Increases - Decreases Somewhat - Increases Somewhat - Increases Somewhat

c.05 - Carbon Footprint - Increases Decreases - Increases Somewhat Increases Decreases

c.06 - Affordability Increases Increases Somewhat Increases Somewhat - Decreases Somewhat Decreases Somewhat -

c.07 - Sustainability - - Increases - Increases Increases Somewhat -

c.08 - Feasibility Increases Somewhat Increases - - Decreases Somewhat - Decreases

c.09 - Safety - - Increases - Increases Increases Somewhat Increases

Table 7-10.  Relative importance score changes. When scenarios disrupt systems, the relative importance of success criteria may change based on which 

system components are impacted. The relative importance changes for each criterion and each scenario are outlined here. 
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7.4.1  Case One: CPDC Projects 
 

The first case utilizes a list of 21 projects that the CPDC controls, sourced from the CPDC 

economic development strategy (Crater PDC 2021). Many of these projects directly influence 

major infrastructure such as improvements to highways, and are of immediate interest to the Port 

of Virginia and its 500-mile region of influence. The projects receive funding from state, federal, 

and private entities. Table 7-11 describes the set of initiatives. Table 7-12 gives an overview of the 

criteria-initiative assessment completed for case one. 
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Table 7-11. The set of initiatives used in case one: CPDC projects. Derived from the Crater 

Economic Development Strategy (Crater PDC 2021) 

Index Initiative 

x1 MAMaC 1,600 Acre Mega Site 

x2 Sussex County Route 626 1,500 Acre Mega Site 

x3 Global Logistics Park 

x4 I-95 / I-85 Interchange Improvements 

x5 Appomattox River Dredging Project 

x6 Redevelopment of Exit 52 on I-95 

x7 Crater Small Business Development Center 

x8 Crater Procurement Technical Assistance Center 

x9 Improvements to Existing U.S. Route 460 

x10 New Raw Water Intake and Waterline 

x11 Grey's Creek Marina Project 

x12 Route 602 (Cabin Point Road) Industrial Park 

x13 Water Line Extension - Mega Site 

x14 Dendron Area Water System Replacement 

x15 Route 36 Regional Corridor Revitalization Project 

x16 Halifax Industrial Park Site Improvements 

x17 Business Incubator 

x18 Claremont Water System Improvements 

x19 Stony Creek Wastewater Treatment Plant Upgrade 

x20 Tri-Cities Area Business Incubator 

x21 New Industrial Property - 38 Acres 

xi Others 
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Table 7-12. Case one criteria-initiative assessment. The unique criteria-initiative assessment for case one: CPDC projects. Ratings 

are represented by a filled circle (●, strongly agree), a half-filled circle (◐, agree), an empty circle (○, somewhat agree), and a hyphen 

(➖, neutral) 

 c1 c2 c3 c4 c5 c6 c7 

x.01 - MAMaC 1,600 Acre Mega Site ● ◐ ● ● ● ➖ ➖ 

x.02 - Sussex County Route 626 1,500 Acre Mega Site ● ➖ ● ● ➖ ➖ ➖ 

x.03 - Global Logistics Park ○ ● ● ◐ ➖ ◐ ● 

x.04 - I-95 / I-85 Interchange Improvements ● ➖ ◐ ➖ ◐ ○ ◐ 

x.05 - Appomattox River Dredging Project ◐ ○ ➖ ○ ● ● ○ 

x.06 - Redevelopment of Exit 52 on I-95 (City of Petersburg Gateway) ● ➖ ◐ ◐ ➖ ○ ○ 

x.07 - Crater Small Business Development Center ● ◐ ● ● ➖ ○ ◐ 

x.08 - Crater Procurement Technical Assistance Center ○ ◐ ● ◐ ○ ◐ ○ 

x.09 - Improvements to Existing U.S. Route 460 ● ➖ ◐ ○ ○ ○ ● 

x.10 - Raw water intake and waterline to Roxbury Area of Charles City County ◐ ◐ ➖ ➖ ○ ● ○ 

x.11 - Grey's Creek Marina Project, public access to James River ○ ◐ ● ● ○ ○ ◐ 

x.12 - Route 602 (Cabin Point Road) Industrial Park - 134 Acres ○ ◐ ● ● ➖ ➖ ○ 

x.13 - Water Line Extension - Mega Site ◐ ○ ○ ○ ● ◐ ➖ 

x.14 - Dendron Area Water System Replacement ◐ ● ○ ◐ ● ● ◐ 

x.15 - Route 36 Regional Corridor Revitalization Project ● ◐ ● ● ➖ ◐ ○ 

x.16 - Halifax Industrial Park Site Improvements (one site) ○ ● ◐ ◐ ○ ○ ◐ 

x.17 - Business Incubator Collocated w/ Southside Virginia Educational Center ● ● ● ● ○ ○ ◐ 

x.18 - Claremont Water System Improvements ◐ ○ ○ ○ ● ○ ◐ 

x.19 - Stony Creek Wastewater Treatment Plant Upgrade ● ○ ○ ◐ ● ● ○ 

x.20 - Tri-Cities Area Business Incubator ● ○ ○ ◐ ● ◐ ◐ 

x.21 - New Industrial Property - 38 Acres ○ ● ● ◐ ○ ○ ◐ 
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 Given these inputs, the framework generates two primary artifacts – an analysis of the 

initiatives, describing how they change in priority under disruption, and an analysis of the 

disruptiveness of each scenario. Figure 7-4 describes the first artifact, the analysis of the priority 

of initiatives. Table 7-13 shows the underlying data used to create the first artifact. 

 

 

Figure 7-4. Results of mathematical framework for case one. The results of the framework are 

presented here, utilizing 21 projects outlined by the CPDC. The mark between the blue and red 

lines represents the priority of an initiative in the baseline scenario. The red bar shows how the 

priority may drop in priority due to disruption. The blue bar shows how an initiative rises in priority 

due to disruption. 
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Table 7-13 Initiative ranking chart. This table describes the ranking of each initiative under each scenario for the CPDC Projects 

analysis, the rank matrix Rp x n. The green filled cells indicate a higher ranking. The red and orange filled cells indicate a lower ranking. 

This information is used to create the first artifact of the mathematical framework.  

 s0 s1 s2 s3 s4 s5  s6 s7 

x.01 - MAMaC 1,600 Acre Mega Site 2 11 7 10 3 1 1 3 

x.02 - Sussex County Route 626 1,500 Acre Mega Site 18 15 21 14 20 17 19 5 

x.03 - Global Logistics Park 10 3 15 17 4 16 12 8 

x.04 - I-95 / I-85 Interchange Improvements 19 21 8 4 19 18 13 20 

x.05 - Appomattox River Dredging Project 14 14 4 8 15 8 14 18 

x.06 - Redevelopment of Exit 52 on I-95 (City of Petersburg Gateway) 20 17 19 5 21 19 20 12 

x.07 - Crater Small Business Development Center 4 5 17 6 7 10 15 4 

x.08 - Crater Procurement Technical Assistance Center 9 12 16 16 10 9 4 9 

x.09 - Improvements to Existing U.S. Route 460 16 19 9 7 18 20 18 16 

x.10 - Raw water intake and waterline to Roxbury Area of Charles City County 21 18 13 11 17 21 21 21 

x.11 - Grey's Creek Marina Project, public access to James River 7 6 11 19 9 6 6 6 

x.12 - Route 602 (Cabin Point Road) Industrial Park - 134 Acres 17 13 20 20 13 14 17 7 

x.13 - Water Line Extension - Mega Site 13 20 6 13 16 12 7 17 

x.14 - Dendron Area Water System Replacement 3 1 1 12 2 3 3 10 

x.15 - Route 36 Regional Corridor Revitalization Project 5 3 18 1 7 10 16 2 

x.16 - Halifax Industrial Park Site Improvements (one site) 15 8 12 18 6 7 11 15 

x.17 - Business Incubator Collocated w/ Southside Virginia Educational Center 1 2 10 3 1 2 2 1 

x.18 - Claremont Water System Improvements 12 16 5 15 14 15 10 19 

x.19 - Stony Creek Wastewater Treatment Plant Upgrade 6 7 3 2 11 5 9 11 

x.20 - Tri-Cities Area Business Incubator 8 10 2 9 11 4 8 14 

x.21 - New Industrial Property - 38 Acres 11 9 14 21 5 13 5 13 
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Consider the results in Figure 7-4. If the baseline ranking of a scenario is centered on a 

wide bar, the initiative is sensitive to disruptions and does not rank consistently under disruptive 

scenarios. If the baseline falls on the left side of the bar with a long red segment, the initiative falls 

in priority due to one or more disruptions. If the initiative falls on the right side with a large blue 

segment, the opposite is true and the initiative is likely to rise in importance due to disruptions. 

Decision makers on the blue team can use this information when determining which initiatives to 

select for the final system description, altering their choices based on their beliefs about potential 

future conditions.  

It is useful to observe how the priorities change under various scenarios as an aspect of 

enterprise risk analysis.  The highest rated initiative in the baseline scenario, x.17 – business 

incubator in southside Virginia educational center, may fall as low as tenth in the natural disaster 

scenario, but remains highly ranked across the other scenarios. This initiative is relatively resistant 

to disruption. Initiatives such as x.07 – Crater small business development center rank highly in 

the baseline but can fall sharply under multiple scenarios – in this case both the natural disaster 

and green technology movement scenarios. 

Initiatives of interest to the port include x.06 – redevelopment of exit 52 on I-95 and x.04 – 

I-95 /I-85 interchange improvements. These projects directly impact two of the major roadways 

that service the port. x.06 has a baseline ranking on the right edge of the bar, ranking 20th in the 

baseline scenario. In the pandemic scenario, the importance of x.06 rises to fifth. Throughout the 

COVID-19 pandemic, logistics systems slowed and stalled, preventing many goods from being 

distributed. Long delays even led to container ships anchoring away from port for days at a time. 

The importance of functional, efficient roadways rose for the CPDC under a pandemic scenario to 

ensure goods were able to be distributed. A similar effect is seen in x.04, ranked 19th in the baseline 



201 

 

but rising to 4th in the pandemic scenario and 8th in the natural disaster scenario. The reasoning is 

similar – during disruptive scenarios the importance of road availability for the movement of goods 

is increased. This information is used by the blue team to inform their recommendations for 

implementation of resilience priorities.  

Figure 7-5 describes the normalized disruptiveness scores for case one: CPDC projects. A 

high disruptiveness score indicates that a scenario has a high influence on the disruption of 

priorities. The two most disruptive scenarios are s.02 – natural disaster and s.03 – pandemic, with 

pandemic being slightly more disruptive. Events such as the COVID-19 pandemic tend to raise or 

depress the relative importance of scenarios. As an example, x.06 – redevelopment of exit 52 on I-

95 rises in priority under the pandemic scenario. Some initiatives fall, such as x.21 - New Industrial 

Property - 38 Acres, which falls from priority 11 to priority 21 under the pandemic scenario. The 

pandemic scenario may delay infrastructure improvement projects as it prevents people from 

gathering due to social distancing requirements or keeping workers at home due to illness. Natural 

disaster scenarios may prevent the movement of people or goods along infrastructure pathways 

such as highways, make roads and buildings unsafe, or force segments of the population to 

temporarily or permanently move away from the region. Projects such as x.15 - Route 36 Regional 

Corridor Revitalization Project are particularly affected by the natural disaster scenario, falling 

from 5th to 18th in priority rankings. This is an expected result as pandemics and natural disasters 

occur without warning and can cause widespread (rather than siloed) disruption, while the other 

scenarios such as climate shift and green technology movement have longer time horizons and may 

be predictable. The exception to this is s.07 – cyber security attack. An attack such as the 

ransomware attack on the Colonial Pipeline may disrupt multiple projects at once (Turton and 

Mehotra 2021). This is also an abrupt and unpredictable event. However, such an attack is most 
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likely to be isolated to one or a few initiatives and would not have the widespread impact of a 

natural disaster or pandemic scenario. Further, the damage caused by a cyber-attack is unlikely to 

be permanent whereas a natural disaster can permanently alter landscapes, assets, and other 

structures beyond repair. Table 7-14 describes an overview of the results of the analysis for case 

one. 

 

Figure 7-5. Disruptiveness scores of scenarios for CPDC projects. The figure presents the 

normalized disruptiveness scores across each scenario for the 21 CPDC projects. Pandemics and 

natural disasters are the most disruptive. 
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Table 7-14. Summary of results for case one: CPDC projects 

Result - CPDC Projects Description 

Most resilient initiative  

The initiative x17 - Business Incubator is one of the 

most resilient initiatives for the project analysis. It is 

ranked highly in the baseline and does not fall below 

rank ten. 

Resilient initiatives 

x2, x4, and x6 are resilient initiatives. Though they rank 

low in the baseline, they have the potential to rise into 

the top five. 

Most disruptive scenarios 

s2 - Natural Disaster and s3 - Pandemic are the most 

disruptive scenarios, with s3 - Pandemic slightly more 

disruptive. These are followed by s7 - Cyber Security 

Attack. 

Least disruptive scenarios 
s4 - Increased Environmental Regulation and s5 - 

Climate Shift are tied as the least disruptive scenarios. 

 

7.4.2  Case Two: CPDC Employers 

 Table 7-15 describes the 30 largest employers of the CPDC by total employees. The 

CPDC and Port of Virginia are interested in this set of initiatives as employers 1) provide jobs that 

improve economic outcomes for the regions and 2) deliver goods, services, and amenities to 

residents of the region. The CPDC benefits from understanding how various employers are 

impacted by disruption. The public sector is the largest employer of the region with employees in 

the US Department of Defense, schools, cities, counties, and other government organizations. 

Other large employers include healthcare organizations such as hospitals, clinics, and elder care 

facilities. Other major employers are private retailers and distribution organizations. 

Manufacturing employs many citizens of the region. Table 7-16 describes the criteria-initiative 

assessment completed for case two. 
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Table 7-15. List of the 30 largest employers of the CPDC region 

Index Initiative 

x1 US Department of Defense 

x2 Wal-Mart 

x3 County of Prince George 

x4 Dominion Energy 

x5 Central State Hospital 

x6 Boar's Head Provisions Co. 

x7 Integrity Staffing Solutions 

x8 Greensville Correctional Center 

x9 AdvanSix, Inc. 

x10 City of Petersburg 

x11 City of Petersburg School Board 

x12 Hopewell City School Board 

x13 Dinwiddie County School Board 

x14 HCA Virginia Health System 

x15 Food Lion 

x16 Good Neighbor Holdings LLC 

x17 Colonial Heights School Board 

x18 Cantu Services Inc 

x19 Delhaize America Distribution Center 

x20 US Department of Justice 

x21 Virginia Department of Transportation 

x22 Amazon Fulfillment Service Inc. 

x23 City of Hopewell 

x24 Perdue Products 

x25 Bon Secours Southside Regional Medical Center 

x26 Gerdau 

x27 Greensville County School Board 

x28 DuPont Specialty Products 

x29 Amstead Rail Company 

x30 Sussex I Correctional Center 

xi Others 
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Table 7-16. Case two: criteria-initiative assessment. The criteria-initiative assessment for case 

two: CPDC employers. Ratings are represented by a filled circle (●, strongly agree), a half-filled 

circle (◐, agree), an empty circle (○, somewhat agree), and a hyphen (➖, neutral) 

 

c1 c2 c3 c4 c5 c6 c7 

x.01 - US Department of Defense ● ◐ ● ● ◐ ◐ ◐ 

x.02 - Wal-Mart ◐ ○ ● ● ➖ ○ ○ 

x.03 - County of Prince George ● ○ ◐ ● ➖ ◐ ● 

x.04 - Dominion Energy ◐ ● ○ ● ◐ ● ◐ 

x.05 - Central State Hospital ○ ○ ➖ ◐ ● ◐ ● 

x.06 - Boar's Head Provisions Co. ○ ➖ ● ○ ➖ ◐ ○ 

x.07 - Integrity Staffing Solutions ● ◐ ● ● ◐ 
 

○ 

x.08 - Greensville Correctional Center ○ ➖ ◐ ○ ◐ ○ ● 

x.09 - AdvanSix, Inc. ◐ ● ● ◐ ○ ◐ ◐ 

x.10 - City of Petersburg ● ◐ ● ● ➖ ◐ ● 

x.11 - City of Petersburg School Board ● ○ ➖ ○ ➖ ● ● 

x.12 - Hopewell City School Board ● ○ ➖ ○ ➖ ● ● 

x.13 - Dinwiddie County School Board ● ○ ➖ ○ ➖ ● ● 

x.14 - HCA Virginia Health System ● ● ➖ ○ ➖ ● ● 

x.15 - Food Lion ● ○ ● ◐ ➖ ● ○ 

x.16 - Good Neighbor Holdings LLC ➖ ○ ● ◐ ○ ◐ ○ 

x.17 - Colonial Heights School Board ● ○ ➖ ○ ➖ ● ● 

x.18 - Cantu Services Inc ◐ ○ ● ◐ ○ ○ ○ 

x.19 - Delhaize America Distribution Center ● ○ ● ● ➖ ● ○ 

x.20 - US Department of Justice ◐ ◐ ● ● ➖ ○ ● 

x.21 - Virginia Department of Transportation ● ● ○ ● ○ ○ ● 

x.22 - Amazon Fulfillment Service Inc. ● ○ ● ○ ➖ ➖ ◐ 

x.23 - City of Hopewell ● ◐ ● ● ➖ ◐ ● 

x.24 - Perdue Products ○ ○ ◐ ● ➖ ○ ○ 

x.25 - Bon Secours Southside Medical Center ● ● ➖ ● ○ ◐ ● 

x.26 - Gerdau ● ◐ ● ◐ ● ● ◐ 

x.27 - Greensville County School Board ● ○ ➖ ○ ➖ ● ● 

x.28 - DuPont Specialty Products ○ ◐ ● ● ○ ● ◐ 

x.29 - Amstead Rail Company ◐ ● ● ● ○ ● ◐ 

x.30 - Sussex I Correctional Center ○ ➖ ◐ ○ ◐ ○ ● 
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Figure 7-6 Sample of results for case two: CPDC Employers. The results of the analysis of the 30 largest employers of the CPDC.

0 5 10 15 20 25 30

x.06 - Boar's Head Provisions Co.

x.11 - City of Petersburg School Board

x.12 - Hopewell City School Board

x.13 - Dinwiddie County School Board

x.17 - Colonial Heights School Board

x.27 - Greensville County School Board

x.08 - Greensville Correctional Center

x.30 - Sussex I Correctional Center

x.05 - Central State Hospital

x.16 - Good Neighbor Holdings LLC

x.24 - Perdue Products

x.14 - HCA Virginia Health System

x.22 - Amazon Fulfillment Service Inc.

x.18 - Cantu Services Inc

x.02 - Wal-Mart

x.15 - Food Lion

x.25 - Bon Secoursal Medical Center

x.28 - DuPont Specialty Products

x.04 - Dominion Energy

x.03 - County of Prince George

x.09 - AdvanSix, Inc.

x.19 - Delhaize America

x.20 - US Department of Justice

x.21 - Virginia DoT

x.07 - Integrity Staffing Solutions

x.29 - Amstead Rail Company

x.10 - City of Petersburg

x.23 - City of Hopewell

x.26 - Gerdau

x.01 - US Department of Defense
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Table 7-17 Case two initiative ranking chart. This table describes the ranking of each initiative 

under each scenario for the CPDC employer analysis, the rank matrix Rp x n. The green filled cells 

indicate a higher ranking. The red and orange filled cells indicate a lower ranking.  

 
s0 s1 s2 s3 s4 s5 s6 s7 

x.01 - US Department of Defense 1 8 3 12 4 2 2 3 

x.02 - Wal-Mart 16 17 27 22 16 15 15 12 

x.03 - County of Prince George 11 9 14 6 15 14 18 9 

x.04 - Dominion Energy 12 5 4 21 5 1 10 13 

x.05 - Central State Hospital 21 16 2 24 21 16 24 20 

x.06 - Boar's Head Provisions Co. 30 30 30 29 30 30 23 30 

x.07 - Integrity Staffing Solutions 6 11 9 15 7 4 3 4 

x.08 - Greensville Correctional Center 23 28 7 25 28 23 18 28 

x.09 - AdvanSix, Inc. 10 12 13 20 3 11 5 16 

x.10 - City of Petersburg 3 3 11 3 9 9 7 1 

x.11 - City of Petersburg School Board 25 21 18 7 23 25 26 23 

x.12 - Hopewell City School Board 25 21 18 7 23 25 26 23 

x.13 - Dinwiddie County School Board 25 21 18 7 23 25 26 23 

x.14 - HCA Virginia Health System 19 15 17 5 13 21 25 22 

x.15 - Food Lion 15 19 27 17 16 20 16 17 

x.16 - Good Neighbor Holdings LLC 21 26 25 30 22 19 13 19 

x.17 - Colonial Heights School Board 25 21 18 7 23 25 26 23 

x.18 - Cantu Services Inc 17 20 23 23 18 18 11 18 

x.19 - Delhaize America 9 14 26 16 14 13 14 8 

x.20 - US Department of Justice 8 7 16 18 11 12 9 6 

x.21 - VDOT 7 1 4 1 2 5 12 7 

x.22 - Amazon Fulfillment Service Inc. 18 27 24 14 19 22 17 21 

x.23 - City of Hopewell 3 3 11 3 9 9 7 1 

x.24 - Perdue Products 20 18 29 28 20 17 22 14 

x.25 - Bon Secours Medical Center 14 2 6 2 6 6 21 11 

x.26 - Gerdau 2 13 1 13 8 7 1 15 

x.27 - Greensville County School Board 25 21 18 7 23 25 26 23 

x.28 - DuPont Specialty Products 13 10 15 27 12 8 6 10 

x.29 - Amstead Rail Company 5 6 10 19 1 3 4 5 

x.30 - Sussex I Correctional Center 23 28 7 25 28 23 18 28 
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The highest priority employer in the baseline scenario is x1 – Department of Defense. This 

is primarily due to Fort Lee, which employs a large proportion of the population and is responsible 

for roughly 10% of the economic activity of the region. Further, Fort Lee provides services that 

are critical to national security, increasing the relative importance of the initiative. x1 – Department 

of Defense remains ranked highly among all scenarios except pandemic, in which it falls to 12th in 

rank. This is not to say the initiative is less important, but rather the importance of other initiatives 

supersede x1 during a pandemic. For example, schools and medical clinics all rise in priority in a 

pandemic scenario. x5 – Central State Hospital, x14 - HCA Virginia Health System, and x25 –Bon 

Secours Southside Medical Center rise in relative importance due to the pandemic as these 

facilities must remain open and fully functional to meet the increased demand caused by a 

pandemic.  

The second ranked initiative in the baseline scenario, x26 – Gerdau, is a major manufacturer 

of the region. This initiative not only produces goods for the region and the nation as a whole but 

also serves as a recycling center for other manufacturers of the region. The CPDC considered x26 

– Gerdau important in the baseline, but it tends to fall in priority across multiple scenarios, 

including pandemic and cyber security attack. x19 - Delhaize America is a medium sized 

distribution center for grocery retailers. This is a critical function in the baseline scenario, ranking 

9th, however the initiative falls to 26th in the natural disaster scenario and tends to fall in priority 

across other scenarios. This represents one of the largest changes across all employers, and 

warrants further assessment in subsequent analyses.   

Initiatives x11, x12, x13, x17, and x27 are all public schools in the CPDC region. In the baseline 

scenario, all school systems tie as the 25th priority employer. Under the pandemic scenario, the 

schools all rise to 7th in priority. It should be noted that this analysis does not indicate that schools 
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are not important. Rather, the mission of the CPDC to bolster economic development and 

coordinate projects and policies is not the same mission as governments or the public at large. 

However, in the pandemic scenario when the school systems closed and students began to take 

classes from home, the importance of the schools rose for the CPDC. Parents staying home with 

children rather than working during a pandemic scenario disrupts the missions of the CPDC as the 

available workforce decreases. That is, the success criteria chosen by the CPDC are mildly 

impacted by schools in the baseline (primarily as large employers), but are greatly impacted in the 

pandemic scenario (mostly due to a loss of childcare services). This indicates that the CPDC should 

dedicate resources to ensuring schools can remain open safely, including promoting vaccinations 

for students and teachers, maintaining mask use during spikes in infection rates, provide screening 

for COVID-19 in schools, and recommending social distancing when required (NCIRD 2021). 

Figure 7-7 describes the most and least disruptive scenarios to CPDC employers. The most 

disruptive scenarios for case two, as with case one, are pandemic and natural disaster. This result 

is expected – pandemic and natural disaster both occur abruptly without advanced warning and 

are destructive. The relative gap in disruptiveness score between pandemic and natural disaster 

has widened from 7 to 13 when comparing case one with case two. The CPDC believes this is 

because of the dual impacts of a pandemic scenario. First, pandemics cause widespread job loss, 

wage reduction, and other impacts to employment levels. Second, pandemics impact the capacity 

of governments and industry to deliver goods, services, and amenities to the region. Additionally, 

uncertainty regarding the length of pandemics and a lack of coordination between the CPDC and 

its neighboring regions further impact employers. Funding decrease is the third most disruptive 

scenario, though by a wide margin. Funding decrease primarily impacts government employers 

such as x1 – Department of Defense, and x21 – Virginia Department of Transportation. 
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Figure 7-7. Disruptiveness scores of scenarios for CPDC employers. The figure presents the 

normalized disruptiveness scores across each scenario for the largest employers of the CPDC 

region. Pandemics and natural disasters are the most disruptive. The relative disruptiveness of the 

pandemic scenario has risen when compared to case one: CPDC projects. 
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Table 7-18. Summary of results for case two: CPDC employers 

Category  Description 

Most disruptive scenarios 
s2 - Natural Disaster and s3 - Pandemic are the most disruptive 

scenarios, with s3 - Pandemic more disruptive.  

Least disruptive scenarios 
The five remaining scenarios have low disruptiveness scores. 

However, s7 - Cyber Security Attack is the least disruptive. 

Most resilient initiative  

The x1, x10, and x23 initiatives are the most resilient. x1 is ranked 

the highest the baseline and can fall no farther than rank 12.  x10 

and x23 are rank three in the baseline, but can achieve rank one 

and are never ranked lower than rank 11. 

Resilient initiatives 

Initiatives x8, x11, x12, x13, x17, x27, and x30 are all resilient 

initiatives. Though they have low rankings in the baseline, under 

disruptive conditions they can all rise to rank seven. 
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7.4.3  Case Three: CPDC Logistics Assets 
 

This section describes the third case for the CPDC regarding logistics assets of the region. 

Logistics assets such as highways, roads, ports, rail, waterways, utility services, warehouses, 

distribution centers, and delivery services are all critical elements of the supply chain of the region. 

Table 7-19 describes the set of initiatives used in case three: CPDC logistics assets. There are 43 

assets in total. Assets include 24 commercial and government distribution centers or warehouses, 

eight critical roads and highways, five sets of utilities, two railroads, and two port assets.  The 

remaining two assets are part of military installations in the region, critical for national distribution 

of military equipment. Figure 7-20 describes the criteria-initiative assessment for case three. 
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Table 7-19. The set of initiatives used in case three: CPDC logistics assets. Derived from the 

Plan RVA report (PlanRVA 2021) 

Index Initiative 
 

Index Initiative 

x1 Amazon Fulfillment Centers 
 

x23 Moss Motors 

x2 Walmart Distribution Centers 
 

x24 Port Hopewell 

x3 UPS 
 

x25 Norfolk Southern RR 

x4 Aldi 
 

x26 CSX RR 

x5 Perdue Farms 
 

x27 M-64 Marine Highway 

x6 Food Lion Distribution Center 
 

x28 Fort Lee 

x7 Boar's Head 
 

x29 Fort Pickett 

x8 GlaxoSmithKline 
 

x30 Ukrop's Threads 

x9 Defense Supply Center Richmond 
 

x31 I-295 

x10 Sabra Dipping LLC 
 

x32 I-95 

x11 Reynolds Packaging Group 
 

x33 I-64 

x12 PepsiCo 
 

x34 I-85 

x13 Maruchan Virginia 
 

x35 Route 58 

x14 Medline 
 

x36 Route 10 

x15 Campfrio Food Group America 
 

x37 Route 288 

x16 Mazda 
 

x38 Route 460 

x17 Goya Foods 
 

x39 Internet Services 

x18 Ashland Chemical 
 

x40 Waste Management 

x19 Church & Dwight 
 

x41 Power Grid 

x20 Hill Phoenix 
 

x42 Water Management 

x21 Gerdau Ameristeel 
 

x43 Telecommunication 

x22 Emerson Ecologics 
 

xi Others 
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Figure 7-8. Map of the logistics assets of the CPDC Region. This figure shows a map of the CPDC region, marking the locations of critical 

logistics assets. For case three, some assets that fall just outside of the CPDC region but are nonetheless critical to supply chains of the region 

are included in the analysis. 
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Table 7-20. Case three criteria-initiative assessment. The unique criteria-initiative assessment 

for case three: CPDC logistics assets. Ratings are represented by a filled circle (●, strongly agree), 

a half-filled circle (◐, agree), an empty circle (○, somewhat agree), and a hyphen (➖, neutral) 

 
c1 c2 c3 c4 c5 c6 c7 

x.01 - Amazon Fulfillment Centers ◐ ○ ◐ ◐ ○ ○ ○ 

x.02 - Walmart Distribution Centers ● ○ ◐ ● ○ ○ ○ 

x.03 - UPS ● ◐ ○ ◐ ◐ ○ ○ 

x.04 - Aldi ● ○ ○ ○ ➖ ◐ ➖ 

x.05 - Perdue Farms ◐ ➖ ○ ◐ ➖ ○ ➖ 

x.06 - Food Lion Distribution Center ● ➖ ○ ◐ ➖ ○ ○ 

x.07 - Boar's Head ◐ ○ ◐ ● ○ ➖ ➖ 

x.08 - GlaxoSmithKline ○ ➖ ➖ ○ ○ ○ ◐ 

x.09 - USDC Richmond ● ◐ ◐ ● ○ ◐ ➖ 

x.10 - Sabra Dipping LLC ○ ➖ ◐ ○ ● ◐ ➖ 

x.11 - Reynolds Packaging Group ○ ➖ ◐ ➖ ○ ○ ○ 

x.12 - PepsiCo ○ ➖ ○ ○ ➖ ○ ➖ 

x.13 - Maruchan Virginia ◐ ○ ○ ◐ ◐ ○ ➖ 

x.14 - Medline ◐ ○ ○ ➖ ○ ○ ◐ 

x.15 - Campfrio Food Group America ◐ ○ ○ ◐ ➖ ○ ➖ 

x.16 - Mazda ○ ➖ ○ ◐ ● ○ ➖ 

x.17 - Goya Foods ○ ➖ ○ ○ ➖ ➖ ○ 

x.18 - Ashland Chemical ◐ ○ ○ ➖ ○ ○ ◐ 

x.19 - Church & Dwight ◐ ◐ ○ ◐ ○ ➖ ➖ 

x.20 - Hill Phoenix ◐ ◐ ○ ○ ◐ ◐ ➖ 

x.21 - Gerdau Ameristeel ● ◐ ◐ ○ ● ● ➖ 

x.22 - Emerson Ecologics ○ ○ ➖ ○ ◐ ➖ ○ 

x.23 - Moss Motors ○ ➖ ○ ◐ ● ○ ➖ 

x.24 - Port Hopewell ○ ◐ ◐ ● ○ ○ ➖ 

x.25 - Norfolk Southern RR ○ ○ ◐ ● ○ ◐ ◐ 

x.26 - CSX RR ○ ○ ○ ◐ ○ ○ ◐ 

x.27 - M-64 Marine Highway ○ ○ ◐ ● ○ ○ ○ 

x.28 - Fort Lee ◐ ○ ● ● ➖ ➖ ○ 

x.29 - Fort Pickett ○ ○ ○ ◐ ➖ ➖ ○ 

x.30 - Ukrop's Threads ○ ➖ ○ ● ○ ○ ➖ 

x.31 - I-296 ◐ ➖ ◐ ○ ○ ◐ ◐ 
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x.32 - I-95 ◐ ➖ ● ● ○ ◐ ◐ 

x.33 - I-64 ○ ➖ ○ ○ ➖ ○ ○ 

x.34 - I-85 ◐ ➖ ◐ ○ ◐ ◐ ○ 

x.35 - Route 58 ○ ➖ ○ ○ ◐ ○ ➖ 

x.36 - Route 10 ○ ➖ ○ ◐ ○ ○ ➖ 

x.37 - Route 288 ◐ ➖ ◐ ◐ ○ ○ ➖ 

x.38 - Route 460 ◐ ➖ ○ ◐ ◐ ○ ➖ 

x.39 - Internet Services ● ◐ ● ◐ ○ ○ ➖ 

x.40 - Waste Management ● ○ ○ ◐ ○ ◐ ● 

x.41 - Power Grid ● ○ ◐ ◐ ➖ ○ ➖ 

x.42 - Water Management ● ○ ○ ○ ◐ ● ◐ 

x.43 - Telecommunication ● ◐ ○ ◐ ➖ ○ ➖ 
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Figure 7-9. Sample of results for case three: CPDC logistics assets. The results of the analysis 

of 43 critical logistics assets such as roads, rail, distribution centers, and utilities. 
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Table 7-21. Case three initiative ranking chart. This table describes the ranking of each 

initiative under each scenario for the CPDC logistic assets analysis, the rank matrix Rp x n. The 

green filled cells indicate a higher ranking. The red and orange filled cells indicate a lower ranking.  

 
s0 s1 s2 s3 s4 s5  s6 s7 

x.01 - Amazon Fulfillment Centers 13 14 21 16 15 16 13 14 

x.02 - Walmart Distribution Centers 4 2 12 5 7 5 9 1 

x.03 - UPS 9 10 5 4 4 4 7 13 

x.04 - Aldi 26 35 40 11 22 34 34 32 

x.05 - Perdue Farms 34 30 42 26 36 33 39 24 

x.06 - Food Lion Distribution Center 20 21 34 6 29 32 38 16 

x.07 - Boar's Head 12 11 27 21 14 6 11 6 

x.08 - GlaxoSmithKline 41 33 22 29 42 37 43 39 

x.09 - DSCR 1 3 24 7 2 1 4 2 

x.10 - Sabra Dipping LLC 26 40 11 40 32 28 10 34 

x.11 - Reynolds Packaging Group 38 43 31 33 39 43 28 43 

x.12 - PepsiCo 43 42 43 43 43 42 42 40 

x.13 - Maruchan Virginia 19 20 18 22 19 14 18 19 

x.14 - Medline 32 36 16 13 24 38 29 41 

x.15 - Campfrio Food Group America 28 22 40 23 21 25 33 21 

x.16 - Mazda 30 28 7 38 32 19 20 25 

x.17 - Goya Foods 42 38 38 34 40 40 40 35 

x.18 - Ashland Chemical 32 36 16 13 24 38 29 41 

x.19 - Church & Dwight 23 16 29 19 9 13 18 17 

x.20 - Hill Phoenix 22 24 19 20 12 18 11 33 

x.21 - Gerdau Ameristeel 6 23 4 9 5 10 1 28 

x.22 - Emerson Ecologics 39 31 14 32 26 29 32 37 

x.23 - Moss Motors 30 28 7 38 32 19 20 25 

x.24 - Port Hopewell 15 8 28 36 6 2 5 8 

x.25 - Norfolk Southern RR 10 1 9 27 13 8 14 5 

x.26 - CSX RR 24 12 13 28 20 22 27 20 

x.27 - M-64 Marine Highway 14 7 23 30 16 9 15 7 

x.28 - Fort Lee 8 6 30 17 9 11 8 4 

x.29 - Fort Pickett 35 18 36 31 23 27 36 23 

x.30 - Ukrop's Threads 28 17 33 37 32 19 34 9 

x.31 - I-295 18 26 15 15 27 36 24 30 

x.32 - I-95 1 5 6 12 18 12 6 2 

x.33 - I-64 40 38 38 34 40 40 40 35 

x.34 - I-85 17 34 10 18 27 31 16 31 
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x.35 - Route 58 37 41 26 42 38 35 31 37 

x.36 - Route 10 36 32 35 41 37 30 37 27 

x.37 - Route 288 20 27 32 24 29 26 22 18 

x.38 - Route 460 25 25 20 25 31 23 26 22 

x.39 - Internet Services 5 13 25 8 2 6 2 10 

x.40 - Waste Management 7 4 1 1 11 17 23 12 

x.41 - Power Grid 3 9 3 3 1 3 3 11 

x.42 - Water Management 11 19 1 2 16 24 17 29 

x.43 - Telecommunication 16 15 37 10 8 15 25 15 

 

 

Figure 7-9 describes the results of case three. Initiative x32 - I-95 is the highest priority in 

the baseline, tied with initiative x09 – US Defense Supply Center Richmond. x32 - I-95 is a critical 

interstate highway that connects the CPDC region to neighbors with the nation as a whole. It is 

critical to the continued operation of the supply chain of the region and is of particular importance 

to the Port of Virginia. x09 – US Defense Supply Center Richmond is a hub location for defense 

supplies to other military installations across the country and internationally. It is important to the 

region both as an employer, a driver of commerce, and as an important location to the federal 

government.  

There are nine initiatives can each attain ranks one or two. Four utility services (x41 – power 

grid, x39 – internet services, x40 – waste management, and x42 – water management) fall into this 

category, indicating that utility services are highly relevant to the success criteria outlined by the 

CPDC. These initiatives have the capability to rise in importance under disruption. x41 – power 

grid is especially relevant as it does not fall below rank 11 (cyber security attack) and remains in 

the top three across six disruptive scenarios. The other initiatives that can attain ranks one and two 

are roads, railroads, and the largest distributor and warehouse in the region. However, utilities x39 
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– internet services, x40 – waste management, and x42 – water management are volatile and can fall 

in relative importance due to disruption. 

Initiatives x2, x4, and x6 are distribution centers for large grocers in the region. The priority 

of these initiatives varies in the baseline scenario due to the different sizes and focuses of the 

distributors, ranking 4th, 26th, and 20th in the baseline respectively. These initiatives all rise in 

importance under the pandemic scenario as access to groceries becomes less certain and more 

important to the region. Food security is a critical factor in maintaining social cohesion during any 

disruptive scenario, but especially with rare events such as the COVID-19 pandemic. Contrast the 

results in the baseline scenario – where the CPDC may prefer to address major roads or railroads 

– to the pandemic scenario where the importance of food security rises. In the natural disaster 

scenario, the relative importance of x4 and x6 falls. This is not to say food security is not important 

during and after a natural disaster, but rather that most natural disasters are relatively brief and 

initiatives that prioritize swift recovery become more relevant. x2 – Walmart distribution centers 

does not fall due to this effect as the distributor provides many goods beyond groceries that can 

hasten recovery efforts.  

One initiative of particular interest is x38 - Route 460. This is a major east-west highway 

that helps the CPDC and the Port of Virginia deliver and receive goods from the maritime port. 

This roadway runs through the center of the CPDC area and services many of the major assets of 

the region. Further, x38 - Route 460 intersects with x32 - I-95, one of the highest ranked initiatives. 

Stakeholders at the Port of Virginia and within the CPDC noted that x38 - Route 460 appeared to 

be ranked lower in the baseline than their intuition dictated, and did not respond to disruptive 

scenarios as they would expect. As such, future analysis may rework performance criteria and 

criteria-initiative assessments to ensure results align with intuition. 
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Figure 7-10. Disruptiveness scores of scenarios for CPDC logistics assets. The figure presents 

the normalized disruptiveness scores across each scenario for the most critical logistics assets of 

the CPDC region. Natural disasters are the most disruptive. The relative disruptiveness of the 

pandemic fallen when compared to the previous two analyses. 

Figure 7-10 describes the disruptiveness scores for the logistics assets of the CPDC region. 

Natural disaster is the most disruptive scenario. This matches intuition, as abrupt events such as 

floods and hurricanes can damage and destroy infrastructure such as roads, warehouses, and rail. 

The destruction of transportation vectors has a dual impact on the region as the asset itself requires 

repair and citizens are unable to use these assets in the meantime. Further, natural disasters may 

impact utilities such as the power grid, internet services, and water resources.  

When compared to the first two cases, the disruptiveness of pandemics has fallen, though 

it is still the second most disruptive scenario. In pandemic scenarios, the primary means of 

influence is fluctuations in supply and demand due to shortages in goods and in workforce. Staffing 
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shortages may reduce institutional efficacy as there are fewer workers, many workers are 

undertrained, and external stressors disrupt normal operations. 

The third most disruptive scenario is cyber security attack. Such attacks are disruptive to 

individual assets, for example the Colonial Pipeline ransomware attack (Turton and Mehotra 

2021). However, the overall disruptiveness of this scenario to the CPDC is limited as the effects 

are unlikely to cascade throughout the system. That is, if a single organization is attacked the 

impact is likely siloed only to that organization. Contrast this with natural disasters and 

pandemics, which impact multiple organizations at once. 

 

Table 7-22. Summary of results for case three: CPDC logistics assets 

Result Description 

Most resilient 

initiatives 

x41 - Power Grid and x2 - Walmart Distribution Center are two of the most 

resilient initiatives, both ranking highly in the baseline and remining in the 

top half of initiatives due to disruption. 

Other important 

initiatives 

x32 – highway I-95 and utilities such as x39 – internet services and x40 – water 

management are ranked highly in the baseline, but drop greatly in rank due to 

disruption. 

Most disruptive 

scenarios 

Scenario s2 – natural disaster is the most disruptive scenario, followed by s3 

– pandemics and s7 – cyber security attack 

Least disruptive 

scenarios 

Scenarios s1 – funding decrease, s4 – increased environmental regulation, s5 – 

climate shift, s6 – green technology movement are all the least disruptive 

scenarios 

 

7.4.4  Sensitivity analysis of the mathematical framework 

This section provides a sensitivity analysis of the mathematical framework. Specifically, 

this section investigates how priorities change under different analyst “profiles” by changing the 

relative importance of success criteria. In decision analysis, much research has focused on the 

development of stakeholder preference profiles as a way to classify various types of decision 



223 

 

makers (Marttunen and Mustajoki 2018). This allows for greater understanding of the varying 

levels of rationality of decision makers, considering their biases and personalities when analyzing 

their systems (Kuzmanovic 2019). Developing these profiles allow for new metanalyses to 

understand how the mathematical framework responds to different types of users (Sadiq et al. 

2022). In this case the sensitivity analysis takes the form of altering the relative weights of the 

importance criteria. This sensitivity analysis will focus on an aggressive and a cautious decision 

maker. Table 7-23 describes the change in weights for an aggressive decision maker. Table 7-24 

describes the change in weights for a cautious decision maker. 

Table 7-23. Aggressive criterion weights for sensitivity analysis. The updated criterion weights 

representing an aggressive decision maker. An aggressive decision-maker will give more 

importance to highly rated criteria compared to a neutral decision-maker. High and medium 

importance criteria change from 4 to 10 and 2 to 3 respectively.  

Criterion Weight  Numerical Weight 

High 10 

Medium 3 

Low 1 

 

An aggressive decision maker is likely to give more weight to the higher priority success 

criteria (Marttunen and Mustajoki 2018). Initiatives that impact the high rated success criteria will 

be more likely to rise in priority compared to initiatives that impact medium or low weighted 

criteria. Figure 7-11 show the change in prioritization from the baseline scenario for an aggressive 

decision maker.  
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Figure 7-11. Change in priority of CPDC projects for an aggressive analyst. In the 

circumstance that an aggressive decision-maker is utilizing the framework, many of the mid and 

low-ranked initiatives in the baseline change in rank. x.18 – Claremont Water System 

Improvements falls in importance while x.05 - Appomattox River Dredging Project rises. 

In the sensitivity analysis for an aggressive decision maker, there is little change in the top 

10 highest rated priorities. The third ranked initiative (x14 - Dendron Area Water System 

Replacement) falls to sixth as priorities four through six all rise one position each. Most of the 

changes occur outside of the top 10 initiatives. For example, x.18 – Claremont Water System 

Improvements falls from 12th to 17th rank, while x13 - Water Line Extension - Mega Site falls from 

13th to 19th. Still others rise in rank for an aggressive decision maker; x.05 - Appomattox River 

Dredging Project rises from 14th to 9th in priority. Broadly, CPDC projects that focused on local 

economic developments such as site development or improvements to local roads rose in priority, 
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while projects that impacted regional utilities fell in priority. Using the same calculation as 

Equation 7-3, an analyst can calculate that the disruptiveness of aggressive decision maker when 

compared to the standard. The aggressive decision weights have a disruptiveness score of roughly 

six. 

A cautious decision maker is likely to give less weight to the high and medium priority 

success criterion. Compared to an aggressive decision maker, the initiatives with influence on high 

importance success criterion will be more likely to change in priority. Figure 7-12 shows the 

change in prioritization in the baseline scenario for a cautious decision maker. 

Table 7-24. Cautious criterion weights for sensitivity analysis. The updated criterion weights 

representing a cautious decision-maker. A cautious decision-maker gives more importance to less 

rated criteria compared to a neutral decision-maker. High and medium importance criteria change 

from 4 to 2 and 2 to 1.5 respectively.  

Criterion Weight  Numerical Weight 

High 2 

Medium 1.5 

Low 1 
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Figure 7-12. Change in priority of CPDC projects for a cautious analyst.  In the circumstance 

that a cautious decision-maker is utilizing the framework, ranks change slightly throughout, but 

most noticeably in the middle and low rankings.  

Compared to an aggressive decision maker, there is greater movement in the top 10 

initiatives. In the aggressive case, five of the top 10 initiatives move at least one position. In the 

cautious case, seven of the top 10 move at least one position, including the top two initiatives. x17 

- Business Incubator Collocated w/ Southside Virginia Educational Center, the top-rated initiative 

in the baseline switches positions with x01 - MAMaC 1,600 Acre Mega Site. In both the aggressive 

and cautious case, x.18 - Claremont Water System Improvements and x13 - Water Line Extension - 

Mega Site both fall in priority, the same result as the aggressive case. In fact, the results outside of 

the top 10 initiatives are fairly similar across both analyses. The disruptiveness score of an 
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aggressive decision maker is roughly five. Figure 7-13 shows the relative disruptiveness scores of 

the user profiles on CPDC priorities. 

 

Figure 7-13. The disruptiveness scores for case one: CPDC projects, including the influence 

of stakeholder disposition on priorities. 

 

7.5  Conclusions from mathematical framework 

This section outlines how the results of the framework were used by the CPDC. As this is 

the final step of the CPSRM, the blue team uses the results of the framework to determine which 

mitigating actions are feasible to add to the system description, improving overall system 

resilience. The CPDC outlined a set of 11 major findings based on the results of this analysis, and 

developed 10 activities that could be performed to reduce the impacts of disruption. Table 7-25 

describes the 11 findings. Table 7-26 describes the actions the CPDC could take to mitigate the 
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impacts of disruption. Figure 7-14 describes which actions address which findings. The two most 

disruptive scenarios were natural disaster and pandemic across each of the three cases, so the 

findings and actions are broken down by these two scenarios, however many of the actions outlined 

here address may of the remaining scenarios. 

Table 7-25. Finding and conclusions from the mathematical framework. Based on the 

outcomes of the case studies, the CPDC identified 11 major findings. These findings include 

identifying specific impacts of the COVID-19 pandemic, the increased importance of roads, and 

the need for enhanced business development and job training. 

Index Findings 

f.01 Adaptations to Social Distancing 

f.02 Disruption to Physical Infrastructure 

f.03 Resilient Roadway Improvements 

f.04 High Business Development Ranks 

f.05 Dual Impact of Pandemics 

f.06 Supply Chain Employer Resilience 

f.07 Public School Resilience 

f.08 High Ranking Utilities 

f.09 Critical Roadways 

f.10 Avoidance of Downtime 

f.11 Disruptions to Military 

f.i Others 
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Table 7-26. Resilience and mitigating actions. Based on the results of the analysis, the CPDC 

outlined ten actions that would improve system resilience. These include new projects, 

employment opportunities, policies, and asset development 

Index Resilience/Mitigating Actions 

r.01 Update Development Plans 

r.02 Enhance Routes 460 and 58 

r.03 Expand Rail Access 

r.04 Rural Public Transportation  

r.05 Site Development 

r.06 Information Sharing 

r.07 Employee Training Grants 

r.08 On-the-Job Training Grants 

r.09 Trucker Training 

r.10 Service Industry Investment 

r.i Others 
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Figure 7-14. Findings-actions matrix. The matrix used to match which mitigating actions address 

each finding. These combined results were used to outline the specific plans the CPDC intends to 

integrate to their system. 

The first resilience or mitigating action, r1 – update development plans, is one method for 

reducing the impact of natural disasters. The activity includes an exploration of the existing urban, 

natural resource, and land planning policies of the region. Updates to these policies might include 

an assessment of flood-prone areas, limiting the development and urbanization of repetitive loss 

areas (Bonato et al. 2021). This would reduce the impacts of some natural disasters that include 

flooding, enabling faster recovery. 

r2 – enhance routes 460 and 58 is a mitigating action as it directly impacts the Port of 

Virginia and the major employment sectors of the CPDC. Enhancements would ensure that these 
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roadways are more easily accessible, more reliable with respect to travel times, and reduce stress 

on supply chains. This would impact the local distribution centers and port assets directly. Changes 

may include the expansion of the roads, enhancements to roadway geometry, and an increase in 

access to the roads. Ensuring a high level of service, especially under disruptive scenarios in which 

roads may be unsafe or failing, can reduce the costs of recovery and improve system resilience 

(Pennetti et al. 2020).  

Access to diverse transportation vectors can also reduce the influence of disruptive 

scenarios. r3 – expand rail access is another activity that improves regional resilience. The 

development of a rail hub would reduce dependence on roads for the delivery of goods while 

improving the efficiency of the Port of Virginia operations (Hendrickson 2021). First, if a natural 

disaster were to damage or otherwise render some roads unusable for an extended period, rail may 

be a viable alternative for the delivery of goods and for the hastening of recovery efforts. Further, 

rail can be quickly and easily repaired in the event of a natural disaster, as rapid response repair 

teams can be deployed to quickly address any damage to rail. The CPDC would partner with the 

Virginia Department of Rail and Public Transportation as a way to further develop rail to reduce 

dependence on trucks.  

r4 – rural public transportation is another activity that can reduce the impacts of natural 

disasters and pandemics. The program would provide transit for citizens from rural areas to major 

urban areas and back. This includes inter-city travel. This service allows citizens to travel 

conveniently and improve freedom of mobility for residents in the CPDC area. In the event of a 

natural disaster, reliable public transportation improved recovery times and reduces the harm to 

affected communities (FCRTA 2021). This service could take many forms – as fleets of electric 
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vehicles, enhanced bussing services, or on demand and point-to-point services for residents 

without access to private vehicles.  

r5 – site development is another method for increasing resilience to natural disasters for the 

CPDC. Site development is the process of readying land for new building development. Land is 

graded in five tiers. A tier one site has very little or no development, while a tier five site is 

considered “shovel ready”, and construction could begin immediately (VEDP 2021). Preparing 

sites – that is, creating more land that is of high-tier – is a method for attracting businesses. This 

would drive economic development of the region, and when accomplished with careful planning 

with respect to natural disasters, enables the CPDC to more quickly recover from natural disasters 

while reducing the initial impact.  

  r6 – information sharing, is an activity specific to pandemics. One of the major 

contributing factors to prolonging the COVID-19 pandemic in the CPDC region was a lack of 

coordination among neighboring localities. Differing rules and regulations led to confusion, 

slowing the reopening of many businesses (NCIRD 2021). Developing an information sharing plan 

is one way the CPDC could ensure all of their constituent members coordinate their response to 

pandemics. This would include shared dashboards, data, and policies between localities. 

r7 – employee training grants and r8 – on-the-job training grants are investments to 

increase the skill of the workforce. Employee training grants are given to individuals to fund their 

training an enhance their skills. This would include funds for getting new certifications and general 

skill improvements such as forklift certifications or computer programming.  On-the-job training 

grants allow an employer to hire underqualified candidate to a position with the knowledge that 
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they will be compensated for training the individual. The grants are also used to advertise the job 

openings, fund job fairs, and increase outreach. 

r9 – trucker training is of particular interest to the Port of Virginia and of high relevance to 

the demonstration of the CPSRM presented in this dissertation. Highly skilled truckers can reduce 

bottlenecks in port processes, particularly the container stacking problem. Further, a high volume 

of available truckers reduces stress on the port during disruptive scenarios. This would be 

especially effective in pandemic and natural disaster scenarios. 

r10 – service industry investment is direct assistance for businesses that are most vulnerable 

to pandemics. Hospitality and food service industries were the most severely impacted by COVID-

19 and were the slowest to recover in the CPDC region (Chmura 2021). This would take the form 

of grants or other funding to reduce stress on the service industry. 

With the framework completed, the blue team will determine which resilience capabilities 

should be funded and applied to the system. The previous chapters feed into this assessment. 

Though the Port of Virginia performed the previous stages of the CPSRM for the demonstration 

in this dissertation, data constraints led to a shift for the final stage in this chapter focusing on a 

major sociotechnical system within the region of influence of the Port, the CPDC. However, the 

models and resilient solutions developed in the previous chapters would be included here, in the 

set of final feasible recommendations based on findings. That is, the one of the findings is f10 – 

avoidance of downtime. This finding can be resolved by a new resilience/mitigating action for the 

port, the implementation of a reinforcement learning algorithm for controlling container stacking 

processes. All stages of the CPSRM have now been completed. The CPSRM can be executed 

several times as system requirements and objectives change. 
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Chapter 8: Summary and conclusion 

8.1 Overview 

Section 8.2 reviews the content of the dissertation. Section 8.3 describes future work and 

research directions based on the dissertation. 

8.2 Summary 

This dissertation includes six contributions to the theory, methodology, and execution of 

the systems engineering discipline. These contributions are dissimilated across 10 papers or 

published reports and four presentations. Figure 8-1 shows the relationship between the 

methodology presented in this dissertation and chapters. Table 8-1 describes the relationship 

between chapters, publications, and contributions. 
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Chapter 3 presented the CPSRM, a methodology for the design and analysis of cyber-

physical systems. The CPSRM aligns with best practices for CPS design, analysis, and 

requirements elicitation. The CPSRM advances on previous work inf CPS analysis and design by 

1) incorporating elements from other disciplines including cybersecurity and risk analysis, and 2) 

incorporating multidisciplinary teams across all design phases. The CPSRM was applied to the 

Port of Virginia and the surrounding region. The outcome of the analysis is a set of new design 

requirements for increasing resilience to disruption. 

Chapter 4 presented a system specification, hazard analysis, and gap analysis and 

represents stages one and two of the CPSRM. The system specification utilizes work from 

computer science to elicit design requirements for CPS, determining the missions, goals, needs, 

and requirements of the system to be used in a system simulation. The chapter outlines the 

container management process of the Port of Virginia, explaining the requirements for developing 

a simulation. The hazard analysis provides additional design considerations, outlining the impacts 

of disruptive events on operations. The gap analysis provides a set of techniques and methods that 

can be applied to the system to improve resilience to disruption. 

Chapter 5 presented a simulation of the container handling process in the Port of Virginia, 

and represents stages three, four, and five of the CPSRM. The simulation outlines the environment, 

rules, and dynamics of a container stacking block – a storage location for containers awaiting 

pickup at the port. The simulation is highly customizable, allowing users to alter the size and shape 

of the container stacking block, the number and rate of incoming containers, the dwell time of 

containers, and many other factors. The simulation is the test bed for the MuZero reinforcement 

learning algorithm used to manage the container stacking environment and serve as a resilience 

technique for resisting the impacts of disruption. 
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Chapter 6 presented the implementation of the MuZero reinforcement learning algorithm 

as a controller for the container stacking block, and represents stages three, four, and five. The 

algorithm does not require data to train, instead learning system dynamics using the simulator. 

MuZero is able to determine which container moves are best given the current state of the container 

stacking block environment. The algorithm achieved results similar to the Port of Virginia in the 

baseline case on an example environment. The algorithm was also used to show how different 

stacking block configurations change performance. MuZero was used to explore how disruptive 

scenarios impact operations, and was able to reduce the impacts of these disruptions. 

Chapter 7 presented a mathematical framework for analyzing the impacts of disruptions to 

system priorities and represents stage six of the CPSRM. This work advances the mathematical 

framework by introducing analyst profiles, exploring how different levels of risk tolerance 

influence the disruption of priorities.  Using a region near the Port of Virginia, the framework is 

used to explore how disruptions influence system priorities across projects, employers, and 

logistics assets of the region. This information is used to develop the final system description in 

the CPSRM with new resilience requirements. 
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Figure 8-1. Overview of CPSRM and the relationship of each stage to chapters 
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Table 8-1. Summary of relationship between chapters, presentations or publications, and 

research contributions 

Chapter Presentation or Publication Contribution 

Ch.3, Ch.5 SERC, Beling, Loose et al. 2020 I, II, III, IV 

Ch.3, Ch.5 SERC, Beling, Loose et al. 2021 I, II, III, IV 

Ch.7 CESUN, Loose et al. 2021 VI 

Ch.7 CPDC, Lambert, Loose et al. 2022 VI 

Ch.7 CPDC, Loose et al. 2022(a) VI 

Ch.7 IEEE SYSCON, Loose et al. 2022(b) VI 

Ch.3, Ch.7 IEEE SYSCON, Eddy, Loose et al. 2022 I, VI 

Ch.7 IEEE SYSCON, Loose et al. 2022(c) VI 

Ch.5, Ch.6 IEEE SIEDS, Hamdy, Loose et al. 2022 IV, V, VI 

Ch.7 Wiley journal Risk Analysis, Andrews, Loose et al. 2022 VI 

Ch.7 Submitted Wiley journal Risk Analysis, Loose et al. 2023(a) VI 

Ch.5 Wiley journal Systems Engineering, Eddy, Loose et al. 2023 II, VI 

Ch.4 VDEM HIRA, VDEM, Loose et al. 2023 II, III 

Ch.5, Ch.6 IEEE SIEDS, Costello, Loose et al. 2023 III 

Ch.4, Ch.7 Working Paper, Hill, Loose et al. 2023 III 

Ch.5, Ch.6 Submitted IEEE CoDIT, Loose et al. 2023(b) IV, V 

 

8.3 Future work 

Each contribution developed in this dissertation is critical to the continuous improvement 

of systems engineering and resilient design. Each method can be expanded and refined to apply to 

a broader group of users or stakeholders. The CPSRM itself can be expanded to apply to other 
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application domains outsaid of maritime logistics. For example, transportation planning has 

several relevant research areas such as ramp metering. These types of systems are excellent future 

use cases as they have cyber-physical components, a need for robust resilience measures, and high-

fidelity simulation models. 

The system specification process can be expanded to incorporate “fuzzy requirements”. 

Traditional requirements have a defined, input, output, and function – fuzzy requirements allow 

stakeholders to outline less specific criteria. For example, a fuzzy requirement may be “the cost 

shall be low” without a specific constraint on budget. This type of requirement allows T2 greater 

freedom when developing a system description and specification. 

The hazard analysis process may also evolve to focus on the outcomes of disruptive events 

rather than the inciting incident. Many hazards have similar impacts on systems, and can be 

protected by the same resilience technique. For example, a snowstorm and flood have similar 

impacts on transportation systems – roads may close and utilities may be disrupted. Creating 

diverse and accessible transportation vectors utilizing a variety of fuel sources can reduce the 

impact of these disruptions. Understanding the impact of disruptions will help allocate resources 

in the final systems design 

The simulation model of the port operations can be expanded and refined to include more 

realistic parameters. For example, the current model focuses on container moves only. However, 

the port also prioritizes minimizing truck turn time – the amount of time a truck is on the terminal. 

Additionally, touches per container are used as a proxy for energy use – however, energy may be 

recovered as containers descend, increasing the reward for stacking containers to high tiers.  The 

port also has lower energy costs at night – moving containers when the terminal is not in operation 
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is another cost saving measure. Future explorations of this simulation will explore these additional 

measures to improve simulation fidelity. 

The reinforcement learning algorithm used as the process controller can also be expanded 

and generalized. The MuZero algorithm can be expanded to include stochastic processes, which is 

necessary to integrate feedback such as variable energy prices. It would benefit the machine 

learning community to establish a standard test bed for the container handling process so new 

stacking techniques can be tested against one another. This future effort should establish consistent 

performance metrics and environment sizes. Further, future work will adjust the current model 

parameters to apply to environments of any size. The current model is limited to action parameters 

that it is trained on – however, a general-purpose reinforcement learning algorithm that can make 

decisions in any environment of any size, making the model much more flexible and useful to 

stakeholders. 
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Appendices  

A.1 Overview 

There are two sections in the Appendices. Section A.2 provides the complete list of gaps 

identified during the hazard and gap analysis of Chapter 4. Section A.3 provides the full code used 

to develop the system simulation of Chapter 5. 
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A.2 Gaps 

Drought 

Pennsylvania Drought Resiliency Program 

Hazards Addressed: Drought 

Description: 

A drought resiliency program focused on maintaining national and 

federal partnerships for drought management. The program 

centralizes several resources for residents and businesses, including 

links to the National Drought Resilience Partnership, EPA reports on 

water use and droughts, and funds for drought resilient water 

infrastructure projects. 

 

Drought status is tracked via a number of metrics including 

groundwater levels and precipitation. Resilience is measured using 

ability to persist during drought and recover after an event. Mitigations 

include conservation and improving access.  

 

Origin: Pennsylvania 

Hazard(s) Addressed: Drought 

Lead Agency: Department of Environmental Protection 

Funding:  

Status: Ongoing 

Comments: 
Data sources for drought status, precipitation, stream flow, ground 

water, burn bans, and soil moisture are provided.  

Further Details: 

 

https://www.dep.pa.gov/Business/Water/PlanningConservation/Drought/Pages/Drought-

Resiliency.aspx#:~:text=Drought%20resiliency%20focuses%20on%20preparing,help%20communities

%20become%20more%20resilient. 

 

https://www.dep.pa.gov/Business/Water/PlanningConservation/Drought/Pages/Drought-Resiliency.aspx#:~:text=Drought%20resiliency%20focuses%20on%20preparing,help%20communities%20become%20more%20resilient.
https://www.dep.pa.gov/Business/Water/PlanningConservation/Drought/Pages/Drought-Resiliency.aspx#:~:text=Drought%20resiliency%20focuses%20on%20preparing,help%20communities%20become%20more%20resilient.
https://www.dep.pa.gov/Business/Water/PlanningConservation/Drought/Pages/Drought-Resiliency.aspx#:~:text=Drought%20resiliency%20focuses%20on%20preparing,help%20communities%20become%20more%20resilient.
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North Carolina Water Supply Planning 

Description: 

A supply planning and demand management resource to coordinate local 

decisions at a state level. Local governments must prepare water supply 

plans and submit water usage data through an online portal. 

 

Current drought status for each region is provided along with 

recommended actions for each severity. Providing locality specific 

recommendations is expected to improve response compared to 

statewide recommendations. The threshold for increasing drought 

severity is a quarter of the land area in the region. 

Origin: North Carolina 

Hazard(s) Addressed: Drought 

Lead Agency: Department of Environmental Protection 

Funding:  

Status: Ongoing 

Comments: 
537 municipalities, counties, and other regional entities publish plans for 

water supply and shortage response.  

Further Details: 

 

https://deq.nc.gov/about/divisions/water-resources/water-planning/water-supply-planning/water-use-

reporting 

 

  

https://deq.nc.gov/about/divisions/water-resources/water-planning/water-supply-planning/water-use-reporting
https://deq.nc.gov/about/divisions/water-resources/water-planning/water-supply-planning/water-use-reporting
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California Department of Water Resources Drought Funding 

Description: 

The California Department of Water Resources provides funding for 

projects that combat the impacts of drought conditions. Eligible 

applicants include counties named in drought emergencies or in areas 

needing immediate action, public agencies and utilities, special districts, 

colleges and universities, Native American tribes and others.  Of the 

authorized funds, 40% is authorized for small communities. 

 

Factors considered include human health and safety, fish and wildlife, 

and loss of supply. Funds for the 2022 cycle must be allocated by 2024 

and projects completed by 2026. 

Origin: California 

Hazard(s) Addressed: Drought 

Lead Agency: California Department of Water Resources 

Funding:  

Status: Ongoing 

Comments: 

The department of water resources is also developed a methodology to 

assess local vulnerability and risk scoring along with recommendations 

for contingency planning in at risk areas. 

Further Details: 

 

https://water.ca.gov/Water-Basics/Drought/Drought-Funding 

 

 

  

https://water.ca.gov/Water-Basics/Drought/Drought-Funding
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Earthquake 

Alaska Seismic Hazards Safety Commission 

Description: 

 

Recommends goals and priorities for seismic risk mitigation. The 

commission partners with federal organizations to identify schools that 

are at-risk of damage in the event of an earthquake. The commission 

outlines plans to perform seismic retrofits on at-risk buildings. 

 

Alaska also receives FEMA funding for earthquake resilience projects, 

including retrofitting the Port of Alaska, the construction of earthquake-

resistant water transmission lines, grid and gas updates, and gas shut off 

valves. Remaining funds are allocated to schools and other critical 

facilities as part of the retrofit program 

 

Origin: Alaska 

Hazard(s) Addressed: Earthquake 

Lead Agency: Office of the Governor: Alaska Seismic Hazards Safety Commission 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://seismic.alaska.gov/ 

 

https://dggs.alaska.gov/webpubs/dggs/ic/text/ic088.pdf 

 

 

  

https://seismic.alaska.gov/
https://dggs.alaska.gov/webpubs/dggs/ic/text/ic088.pdf
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Earthquake Warning California 

Description: 

 

California participates in ShakeAlert, an earthquake early warning 

system for the West coast.  

Origin: California 

Hazard(s) Addressed: Earthquake 

Lead Agency: USGS 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.shakealert.org/   
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Brace & Bolt Program 

Description: 

 

The California Office of Emergency Services provides up to $3,000 to 

cover retrofitting costs for homeowners through the Brace and Bolt 

program.  

 

The California Residential Mitigation Program also provides grants and 

financial assistance to low income and vulnerable populations to retrofit 

and harden homes as mitigation for earthquakes. 

 

Origin: California 

Hazard(s) Addressed: Earthquake 

Lead Agency: California Residential Mitigation Program (CRMP) 

Funding:  

Status: Ongoing 

Comments: 

The California Earthquake Authority, a not-for-profit partnered with the 

Cal OES, provides earthquake insurance policies for homeowners and 

renters. 

Further Details: 

 

https://www.earthquakebracebolt.com/  

 

  

https://www.earthquakebracebolt.com/
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Debris Removal Services 

Description: 

Local governments are eligible for assistance with debris removal 

through the California Consolidated Debris Removal Program. Teams 

will inspect property and remove hazardous materials that pose a threat 

to human health and the environment.  

Origin: California 

Hazard(s) Addressed: Earthquake 

Lead Agency: California Office of Emergency Services 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.placer.ca.gov/DocumentCenter/View/55030/Debris-Removal-Program-Enrollment-and-

Process-FAQ-2021?bidId=  

  

https://www.placer.ca.gov/DocumentCenter/View/55030/Debris-Removal-Program-Enrollment-and-Process-FAQ-2021?bidId=
https://www.placer.ca.gov/DocumentCenter/View/55030/Debris-Removal-Program-Enrollment-and-Process-FAQ-2021?bidId=
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Erosion 

Maryland Stormwater, Dam Safety, and Flood Management Program 

(SDSFM) 

Description: 

“The Program Review division of SDSFM manages the 

stormwater and sediment and erosion control programs… The 

Plan Review Division reviews construction plans on State and 

federal projects for consistency with Stormwater Management 

regulations (SWM) and Erosion and Sediment Control (ESC) 

regulations, then issues approval.” 

 

The SDSFM issues permits and directs local governments to 

reduce pollution and erosion from runoff due to construction 

activities. The SDSFM delegates oversight to some local 

governments and manages other regions directly. 

 

Origin: Maryland 

Hazard(s) Addressed: Erosion 

Lead Agency: Maryland Department of the Environment;  

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://mde.maryland.gov/programs/Water/SSDS/Pages/index.aspx#:~:text=The%20SDSFM%20progr

am%20consists%20of,and%20Compliance%2C%20and%20Flood%20Management.&text=The%20Pr

ogram%20Review%20division%20of,sediment%20and%20erosion%20control%20programs. 

 

  

https://mde.maryland.gov/programs/Water/SSDS/Pages/index.aspx#:~:text=The%20SDSFM%20program%20consists%20of,and%20Compliance%2C%20and%20Flood%20Management.&text=The%20Program%20Review%20division%20of,sediment%20and%20erosion%20control%20programs
https://mde.maryland.gov/programs/Water/SSDS/Pages/index.aspx#:~:text=The%20SDSFM%20program%20consists%20of,and%20Compliance%2C%20and%20Flood%20Management.&text=The%20Program%20Review%20division%20of,sediment%20and%20erosion%20control%20programs
https://mde.maryland.gov/programs/Water/SSDS/Pages/index.aspx#:~:text=The%20SDSFM%20program%20consists%20of,and%20Compliance%2C%20and%20Flood%20Management.&text=The%20Program%20Review%20division%20of,sediment%20and%20erosion%20control%20programs
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Massachusetts StormSmart Coasts Program 

Description: 

 

The StormSmart Coasts Program “provides information, 

strategies, and tools to help communities and people working 

and living on the coast to address the challenges of erosion, 

flooding, storms, sea level rise, and other climate change 

impacts.” 

 

The program provides tools for homeowners and local officials 

regarding strategies for reducing coastal erosion and storm 

damage while reducing impacts to shorelines. The program 

maintains the Barrier Beach Inventory Project, which 

maintains data on barrier beaches including recent changes, 

developments, damage, and other information critical for 

barrier beach management. The program includes the Coastal 

Resilience Grant program, which addresses challenges caused 

by sea level rise, storms, flooding, and erosion. 

 

Origin: Massachusetts 

Hazard(s) Addressed: Erosion 

Lead Agency: 
Massachusetts Office of Energy and Environmental Affairs, 

through the Office of Coastal Zone Management 

Funding:  

Status: Ongoing 

Comments: 

Other projects include planning, redesigns and retrofits, and 

shoreline restoration. 

 

Further Details: 

 

https://www.mass.gov/stormsmart-coasts-

program#:~:text=The%20Massachusetts%20Office%20of%20Coastal,and%20other%20climate%20ch

ange%20impacts. 

 

  

https://www.mass.gov/stormsmart-coasts-program#:~:text=The%20Massachusetts%20Office%20of%20Coastal,and%20other%20climate%20change%20impacts
https://www.mass.gov/stormsmart-coasts-program#:~:text=The%20Massachusetts%20Office%20of%20Coastal,and%20other%20climate%20change%20impacts
https://www.mass.gov/stormsmart-coasts-program#:~:text=The%20Massachusetts%20Office%20of%20Coastal,and%20other%20climate%20change%20impacts
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California Erosion Control Toolbox 

Description: 

California provides an erosion control toolbox through Caltrans 

(California DOT), which provides “Landscape Architects with a single 

location that contains the information necessary to design successful, 

cost-effective and sustainable erosion control treatments” 

Origin: California 

Hazard(s) Addressed: Erosion 

Lead Agency: Caltrans (California DOT) 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://dot.ca.gov/programs/design/lap-erosion-control-design/tool-1-lap-erosion-control-

toolbox#:~:text=The%20purpose%20of%20the%20Caltrans,Erosion%20Control%20Treatments 

 

https://dbw.parks.ca.gov/?page_id=28766 

 

 

  

https://dot.ca.gov/programs/design/lap-erosion-control-design/tool-1-lap-erosion-control-toolbox#:~:text=The%20purpose%20of%20the%20Caltrans,Erosion%20Control%20Treatments
https://dot.ca.gov/programs/design/lap-erosion-control-design/tool-1-lap-erosion-control-toolbox#:~:text=The%20purpose%20of%20the%20Caltrans,Erosion%20Control%20Treatments
https://dbw.parks.ca.gov/?page_id=28766
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Public Beach Restoration and Shoreline Erosion Program 

Description: 

The California Division of Boating and Waterways controls the Public 

Beach Restoration and Shoreline Erosion Program, which issues grants 

for the repair, redevelopment, and hardening of beaches at risk of major 

erosion. The Public Beach Restoration and Shoreline Erosion Program 

also provides workshops for potential applicants. The program will 

provide experts to survey shorelines regarding suitability for new 

projects. 

Origin: California 

Hazard(s) Addressed: Erosion 

Lead Agency: California Division of Boating and Waterways 

Funding:  

Status: Ongoing 

Comments: 

The program and its projects are beholden to standards outlined in the 

California Harbors and Navigation Code – Department of Boating and 

Waterways Code (ARTICLE 2.5. Beach Erosion Control [65 - 67.4]) 

Further Details: 

 

https://www.grants.ca.gov/grants/division-of-boating-and-waterways-public-beach-restoration-

program/ 

 

https://dbw.parks.ca.gov/?page_id=28766 

 

 

  

https://leginfo.legislature.ca.gov/faces/codes_displayText.xhtml?lawCode=HNC&division=1.&title=&part=&chapter=2.&article=2.5
https://www.grants.ca.gov/grants/division-of-boating-and-waterways-public-beach-restoration-program/
https://www.grants.ca.gov/grants/division-of-boating-and-waterways-public-beach-restoration-program/
https://dbw.parks.ca.gov/?page_id=28766


279 

 

Extreme Cold 

Pennsylvania Warming Centers 

Description: 

Pennsylvania Department of Human Services provides information on a 

network of extreme cold warming centers through partnerships between 

the state, counties, and non-profit organizations.  

 

The service includes an interactive map and searchable database that 

provides information on warming center locations, hours, eligibility, 

intake procedures, capacity limits, alerts, and contact information.  

Origin: Pennsylvania 

Hazard(s) Addressed: Extreme Cold 

Lead Agency: Pennsylvania Department of Human Services 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.pa211.org/get-help/housing-shelter/extreme-cold-warming-centers/ 

 

  

https://www.pa211.org/get-help/housing-shelter/extreme-cold-warming-centers/
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Baltimore Code Blue 

Description: 

Baltimore manages the Code Blue Extreme Cold program. When a 

Code Blue is declared, several responses are triggered to protect 

individuals experiencing homelessness.  

 

City-funded shelters will shelter-in-place to ensure any individual 

experiencing homelessness and wanting shelter will be 

accommodated.  Private homeless shelters will be encouraged to 

extend their hours and keep individuals indoors. 

Origin: Maryland 

Hazard(s) Addressed: Extreme Cold 

Lead Agency: Baltimore City Health Department 

Funding:  

Status: Ongoing 

Comments: 

 

Homeless Services Outreach Workers provide cold weather 

education, encourage individuals experiencing homelessness to take 

shelter, and connect them to services as needed. On nights when 

Code Blue Extreme Cold has been declared, the Salvation Army 

FEEDMORE canteen provides hot drinks and other items to 

individuals experiencing homelessness. 

 

Further Details: 

 

https://health.baltimorecity.gov/emergency-preparedness-response/code-

blue#:~:text=A%20Code%20Blue%20Extreme%20Cold%20declaration%20triggers%20several%20re

sponses%20aimed,wanting%20shelter%20will%20be%20accommodated. 

 

 

  

https://health.baltimorecity.gov/emergency-preparedness-response/code-blue#:~:text=A%20Code%20Blue%20Extreme%20Cold%20declaration%20triggers%20several%20responses%20aimed,wanting%20shelter%20will%20be%20accommodated
https://health.baltimorecity.gov/emergency-preparedness-response/code-blue#:~:text=A%20Code%20Blue%20Extreme%20Cold%20declaration%20triggers%20several%20responses%20aimed,wanting%20shelter%20will%20be%20accommodated
https://health.baltimorecity.gov/emergency-preparedness-response/code-blue#:~:text=A%20Code%20Blue%20Extreme%20Cold%20declaration%20triggers%20several%20responses%20aimed,wanting%20shelter%20will%20be%20accommodated


281 

 

Extreme Heat 

Virginia Regional Efforts 

Description: 

Richmond, Southside Hampton Roads, and Northern Virginia have 

participated in urban heat island mapping exercises, outlining 

neighborhoods that are vulnerable to extreme heat conditions.  

 

These projects were undertaken by the cities themselves and are 

included in the U.S. Climate resilience toolkit  

Origin: Virginia 

Hazard(s) Addressed: Extreme Heat 

Lead Agency: Multiple 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://toolkit.climate.gov/case-studies/where-do-we-need-shade-mapping-urban-heat-islands-

richmond-virginia 

 

https://www.adaptationclearinghouse.org/resources/citizen-science-mapping-urban-heat-islands-in-

richmond-

virginia.html#:~:text=The%20urban%20heat%20island%20mapping,design%20community%2Dscale

%20adaptation%20plans. 

 

 

https://toolkit.climate.gov/case-studies/where-do-we-need-shade-mapping-urban-heat-islands-richmond-virginia
https://toolkit.climate.gov/case-studies/where-do-we-need-shade-mapping-urban-heat-islands-richmond-virginia
https://www.adaptationclearinghouse.org/resources/citizen-science-mapping-urban-heat-islands-in-richmond-virginia.html#:~:text=The%20urban%20heat%20island%20mapping,design%20community%2Dscale%20adaptation%20plans
https://www.adaptationclearinghouse.org/resources/citizen-science-mapping-urban-heat-islands-in-richmond-virginia.html#:~:text=The%20urban%20heat%20island%20mapping,design%20community%2Dscale%20adaptation%20plans
https://www.adaptationclearinghouse.org/resources/citizen-science-mapping-urban-heat-islands-in-richmond-virginia.html#:~:text=The%20urban%20heat%20island%20mapping,design%20community%2Dscale%20adaptation%20plans
https://www.adaptationclearinghouse.org/resources/citizen-science-mapping-urban-heat-islands-in-richmond-virginia.html#:~:text=The%20urban%20heat%20island%20mapping,design%20community%2Dscale%20adaptation%20plans
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Philadelphia Beat the Heat 

Description: 

Many cities in Pennsylvania, including Philadelphia, provide toolkits 

and research to communities with recommendations on how to take 

community-level actions to combat the effects of extreme heat.  

 

The toolkits help communities in Philadelphia research their part of the 

city, establish heat teams, interview stakeholders, conduct surveys, 

organize the community, designate “Beat the Heat” ambassadors, create 

mobile stations, host workshops, promote tree planting, and build a heat 

relief network. 

Origin: Pennsylvania 

Hazard(s) Addressed: Extreme Heat 

Lead Agency: City of Philadelphia Office of Sustainability 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.phila.gov/departments/office-of-sustainability/beat-the-heat-toolkit/ 

 

 

  

https://www.phila.gov/departments/office-of-sustainability/beat-the-heat-toolkit/
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Maryland Extreme Heat Emergency Plan 

Description: 

 

Maryland utilizes an Extreme Heat Emergency Plan, which outlines 

sets of triggering events, organizations responsible for surveillance, 

and organizations responsible for actions. The primary organizations 

are the Maryland Department of Health and local health departments. 

 

Summers are divided into six phases: Pre-Summer, Pre-Event, 

Extreme Heat Event – Heat Advisory, Extreme Heat Event – 

Excessive Heat Warning, Complex Heat Emergency, and Post-

Summer. During each phase, various organizations have different 

responsibilities. Responsibilities include timings for press releases, 

reports on heat and water use, responses to events such as power 

outages or water shortages, and actions to take post-event. 

 

Origin: Maryland 

Hazard(s) Addressed: Extreme Heat 

Lead Agency: Maryland Department of Health 

Funding:  

Status: Ongoing 

Comments: 

 

As extreme heat conditions worsen, state organizations mobilize 

various efforts to reduce harm to citizens. For example, local health 

departments will notify state agencies of hotspots in order to 

distribute resources during a heat advisory. During a Complex Heat 

Emergency (a heat event compounded by other factors such as power 

outages), the Maryland Department of Health will take an advisory 

role on outage plans and coordinate local emergency services.  

 

Further Details: 

 

https://health.maryland.gov/preparedness/Documents/MDH%20Extreme%20Heat%20Emergency%20

Plan%202022.pdf 

  

https://health.maryland.gov/preparedness/Documents/MDH%20Extreme%20Heat%20Emergency%20Plan%202022.pdf
https://health.maryland.gov/preparedness/Documents/MDH%20Extreme%20Heat%20Emergency%20Plan%202022.pdf
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Massachusetts Extreme Heat Resources 

Description: 

Many localities within Massachusetts have strategies for managing 

extreme heat. These may include the distribution of cooling care kits, 

fans, AC units, and wearable cooling devices. This is orchestrated at the 

community level with sponsorship from the state and regional planning 

councils. 

 

Strategies have been updated to accommodate Covid safety. Analysis of 

neighborhood vulnerability to extreme heat was assessed and results are 

available to support planning. 

Origin: Massachusetts 

Hazard(s) Addressed: Extreme Heat 

Lead Agency: Metropolitan Area Planning Council 

Funding:  

Status: Ongoing 

Comments: 

Hotels and motels are converted into safe areas for residents without in-

home cooling. These organizations are compensated for temporarily 

housing affected individuals and families. 

 

Further Details: 

 

https://www.mapc.org/resource-library/extreme-heat-resources/ 

 

 

  

https://www.mapc.org/resource-library/extreme-heat-resources/
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North Carolina Climate and Health Program 

Description: 

The US CDC has issued a grant to North Carolina through the Climate-

Ready States and Cities Initiative to operate the North Carolina Climate 

and Health program. 

 

The program "aims to serve elementary school students, farmworkers, 

local public health preparedness and emergency management staff, low-

income earners, older adults requiring nutritional support, and young 

adults attending county parks”. 

Origin: North Carolina 

Hazard(s) Addressed: Extreme Heat 

Lead Agency: 
North Carolina Department of Health and Human 

Services 

Funding:  

Status: Ongoing 

Comments: 

The program has implemented heat-related illness syndromic 

surveillance and heat health alert systems in several counties across the 

state. 

 

Further Details: 

 

https://www.cdc.gov/climateandhealth/climate_ready.htm 

 

 

  

https://www.cdc.gov/climateandhealth/climate_ready.htm
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New York City Heat Island Mapping 

Description: 

New York City has participated in heat island mapping exercises. 

Factors included air pollution, human health, and nighttime cooling. 

There is greater risk to those at risk for severe Covid symptoms. 

  

After the heat island mapping exercise, NYC launched the NYC 

CoolRoofs program, an effort to train workers and install energy-saving 

reflective rooftops. The program also funds street tree planting in 

vulnerable neighborhoods. 

Origin: New York 

Hazard(s) Addressed: Extreme Heat 

Lead Agency: New York City Council 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://council.nyc.gov/data/heat/ 

 

 

  

https://council.nyc.gov/data/heat/
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California Extreme Heat Worker Protections 

Description: 

California utilizes legislation to protect workers from extreme heat and 

heat related illness while on the job. The law includes provisions for 

workers that mandate easy access to water, access to shade, new 

procedures for high heat days, emergency procedures, acclimatization, 

and training.  

 

Partial exemptions are provided for a number of industries including 

agriculture, construction, landscaping, and oil and gas extraction. 

Employers create an effective heat illness prevention plan. High-heat 

procedures are required above 95 degrees. 

Origin: California 

Hazard(s) Addressed: Extreme Heat 

Lead Agency: California Division of Occupational Safety and Health 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.dir.ca.gov/title8/3395.html 

 

  

https://www.dir.ca.gov/title8/3395.html
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Flooding 

Pennsylvania Flood Planning 

Description: 

 

The Pennsylvania Department of Environmental Protection: Bureau of 

Waterways Engineering and Wetlands provides financial and technical 

assistance to various municipal sponsors to reduce the impact of floods 

or prevent floods entirely. The program includes funding for 

investigation of areas at risk for flooding and evaluating long-term 

solutions to flooding. This includes assessments of the magnitude and 

frequency of flooding, performing hydraulic analysis, evaluating flood 

control alternatives, estimating costs, assessing environmental impacts, 

performing a cost/benefit analysis, defining sponsors, and beginning to 

preparing designs. Protections may include concrete channels, concrete 

floodwalls, compacted earthen levees, channel improvements, or other 

alternatives 

 

Pennsylvania law encourages every community to participate in NFIP. 

Communities that choose not to participate in NFIP are ineligible for 

hazard mitigation non-disaster funds or other disaster funding streams. 

 

Origin: Pennsylvania 

Hazard(s) Addressed: Flooding 

Lead Agency: Pennsylvania Department of Environmental Protection 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.dep.pa.gov/Business/Water/Waterways/Flood-Protection/Pages/default.aspx 

 

https://www.dep.pa.gov/Business/Water/Waterways/Flood-Protection/Pages/default.aspx
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Florida Flood Protection Level of Service Program 

Description: 

Parts of Florida utilize the Flood Protection Level of Service 

Program. This is an in-depth, regimented program dedicated to 

prioritizing flood mitigation projects in South Florida.  

 

The program utilizes Adaptive Resilience Planning to determine 

which mitigation actions are appropriate for flood-prone areas 

considering uncertain future conditions.  

Origin: Florida 

Hazard(s) Addressed: Flooding 

Lead Agency: South Florida Water Management District 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.sfwmd.gov/our-work/flood-protection-level-

service#:~:text=The%20FPLOS%20program%20ensures%20a,additional%20%242%20million%20a%

20year.   
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Florida QuickGuide for Floodplain Management 

Description: 
Florida has a QuickGuide available to communities for their use in 

explaining floodplain management concepts at the permit counter.  

Origin: Florida 

Hazard(s) Addressed: Flooding 

Lead Agency: Florida Division of Emergency Management 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.floridadisaster.org/contentassets/5a671dfdfadf45ab9a2c61635e2a4fed/quick-guide-for-

floodplain-management.pdf  

 

  

https://www.floridadisaster.org/contentassets/5a671dfdfadf45ab9a2c61635e2a4fed/quick-guide-for-floodplain-management.pdf
https://www.floridadisaster.org/contentassets/5a671dfdfadf45ab9a2c61635e2a4fed/quick-guide-for-floodplain-management.pdf
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Florida State Assistance Information Hotline 

Description: 

The Florida State Assistance Information Line is a toll-free hotline 

available for residents in the event of a flood, hurricane, or other disaster. 

Contacting the line will provide information on: 

 

“How to prepare before/during/after a hurricane, road closures and 

alternate routes, available/open shelters in host or impacted counties, 

shelters designed for special needs patients, hotels and motels that accept 

pets, boaters instructions for moving watercraft to safer ground, and re-

entry information once it is safe to return to the affected area.” 

Origin: Florida 

Hazard(s) Addressed: Flooding 

Lead Agency: Florida Division of Emergency Management 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.floridadisaster.org/planprepare/information-line/  

 

  

https://www.floridadisaster.org/planprepare/information-line/
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Florida Building Code 

Description: 

The Florida Building Code is more strict than NFIP requirements and 

applicable statewide, regardless of the participation status of a 

community in the NFIP. 

Origin: Florida 

Hazard(s) Addressed: Flooding 

Lead Agency: Florida Department of Business and Professional Regulation  

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://floridabuilding.org/c/default.aspx  

 

  

https://floridabuilding.org/c/default.aspx
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Floodplain Administration Documents 

Description: 

Many customized assistance documents for local floodplain 

administrators (guidance, ordinance amendment language and sample 

forms) available online from FDEM. 

Origin: Florida 

Hazard(s) Addressed: Flooding 

Lead Agency: Florida Division of Emergency Management  

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.floridadisaster.org/dem/mitigation/floodplain/community-resources/  

  

https://www.floridadisaster.org/dem/mitigation/floodplain/community-resources/
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Hurricanes 

Maryland Block Grant Program 

Description: 

The Maryland Department of Housing and Community Development 

provides funds for vulnerable communities in the event of a hurricane 

through the Community Development Block Grant Disaster Recovery 

Assistance program. 

 

Grants were issued by Congress in response to Hurricane Sandy. 

Maryland used all funds for recovery activities in the worst hit counties. 

Origin: Maryland 

Hazard(s) Addressed: Hurricanes 

Lead Agency: Maryland Department of Housing and Community Development 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://dhcd.maryland.gov/Communities/Pages/cdbg/CDBGSandyDisasterRecovery.aspx 

 

 

  

https://dhcd.maryland.gov/Communities/Pages/cdbg/CDBGSandyDisasterRecovery.aspx
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North Carolina Hurricane Preparedness 

Description: 

 

The North Carolina Department of Public Safety partners with the 

National Weather Service to host an annual Hurricane Preparedness 

Week, a series of meetings and associated resources outlining how to 

prepare for hurricanes.  One focus area of the awareness week is on 

people with disabilities, how these individuals should prepare for 

hurricanes, and how to accommodate people with disabilities in the 

event of evacuations.  

Origin: North Carolina 

Hazard(s) Addressed: Hurricanes 

Lead Agency: North Carolina Department of Public Safety 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.weather.gov/ilm/hurricaneprepnc 

 

 

  

https://www.weather.gov/ilm/hurricaneprepnc
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NC State Centric Hazard Mitigation Pilot Program 

Description: 

 

North Carolina also utilizes a State Centric Hazard Mitigation Pilot 

Program the first of its kind for FEMA HMGP, that allows the state to 

manage and pay for contract work to complete all grants awarded, and 

assists the counties by removing the financial and management burden 

of completing all the work awarded under each grant. What’s more, the 

local government does not lose the management costs paid to the local 

government under the grant agreement. It only speeds the process for 

homeowners in need by centralizing the project management. 

 

Origin: North Carolina, Flooding, Others 

Hazard(s) Addressed: Hurricanes 

Lead Agency: North Carolina Department of Public Safety 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.ncdps.gov/our-organization/emergency-management/disaster-recovery/hazard-

mitigation/state-centric-hazard 

 

 

  

https://www.ncdps.gov/our-organization/emergency-management/disaster-recovery/hazard-mitigation/state-centric-hazard
https://www.ncdps.gov/our-organization/emergency-management/disaster-recovery/hazard-mitigation/state-centric-hazard
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Florida Hurricane Program 

Description: 

 

The Florida Division of Emergency Management created the Hurricane 

Loss Mitigation Program that funds mitigation projects. 

 

Projects include retrofits to residential, commercial, and mobile home 

properties, increased public education programs, and hurricane research 

activities. 

Origin: Florida 

Hazard(s) Addressed: Hurricanes 

Lead Agency: Florida Division of Emergency Management 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.floridadisaster.org/dem/mitigation/hurricane-loss-mitigation-program/ 

 

  

https://www.floridadisaster.org/dem/mitigation/hurricane-loss-mitigation-program/
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Florida Hurricane Program 

Description: 

Florida funds the Florida International University International 

Hurricane Research Center (IHRC). The IHRC focuses on research that 

reduces hurricane damage and loss of life through more effective 

mitigation. 

Origin: Florida 

Hazard(s) Addressed: Hurricanes 

Lead Agency: Florida International University 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.ihrc.fiu.edu/ 

 

  

https://www.ihrc.fiu.edu/
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Impoundment Failure 

Private Dam Financial Assurance Program 

Description: 

 

The Pennsylvania Department of Community and Economic 

Development administers the Private Dam Financial Assurance Program 

to ensure private dams meet and maintain safety standards. The loan 

amount cannot exceed 50% of the eligible project costs or $500,000, 

whichever is less. 

 

Eligible dam owners are anyone who owns, controls, operates, 

maintains, or manages a regulated private dam and is enrolled in the 

Private Dam Financial Assurance Program. This assistance largely takes 

the form of low interest loans for eligible dams.  

 

 

Origin: Pennsylvania 

Hazard(s) Addressed: Impoundment Failure 

Lead Agency: Pennsylvania Department of Community and Economic Development 

Funding:  

Status: Ongoing 

Comments: 

Virginia operates a similar program through the Department of 

Conservation and recreation, but with more strict eligibility 

requirements than the Pennsylvania program. 

Further Details: 

 

https://dced.pa.gov/programs/private-dam-financial-assurance-program-pdfap/ 

 

https://www.dep.pa.gov/Business/Water/Waterways/DamSafety/Pages/default.aspx 

 

https://www.dcr.virginia.gov/dam-safety-and-floodplains/dsfpm-grants 

https://dced.pa.gov/programs/private-dam-financial-assurance-program-pdfap/
https://www.dep.pa.gov/Business/Water/Waterways/DamSafety/Pages/default.aspx
https://www.dcr.virginia.gov/dam-safety-and-floodplains/dsfpm-grants
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Pennsylvania Dam Safety Program 

Description: 

Pennsylvania DEP includes several mitigation strategies in the Dam 

Safety Program, including several regulations (The Dam Safety & 

Encroachments Act; The Pennsylvania Dam Safety and Waterway 

Management Code; The Run-of-the-River Dam Act, and Hazards on the 

Water Fact Sheet), dam inspection guidelines and cadence, and permit 

management. 

Origin: Pennsylvania 

Hazard(s) Addressed: Impoundment Failure 

Lead Agency: Pennsylvania Department of Environmental Protection 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.dep.pa.gov/Business/Water/Waterways/DamSafety/Pages/default.aspx 

 

 

  

https://www.dep.pa.gov/Business/Water/Waterways/DamSafety/Pages/default.aspx
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Maryland Dam Breach Analysis 

Description: 

The Maryland Department of the Environment provides several Dam 

Breach Analysis resources, including providing modeling software and 

other programs to outline dam performance and stress testing for dam 

safety. 

 

These include analysis methods for small ponds and dams, earthen dams, 

flooding, spillway, riser, and other hydrology approaches. 

Origin: Maryland 

Hazard(s) Addressed: Impoundment Failure 

Lead Agency: Maryland Department of the Environment 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://mde.maryland.gov/programs/water/damsafety/pages/dambreakguidelines.aspx 

 

 

  

https://mde.maryland.gov/programs/water/damsafety/pages/dambreakguidelines.aspx
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Massachusetts Dam Removal 

Description: 

 

The Massachusetts Division of Ecological Restoration provides resources 

to help dam owners remove old, damaged, or outdated dams. The office 

manages the requirements for dam safety and maintains documentation of 

dam design documents. Dam owners must submit reports to the Office of 

Dam Safety. The Massachusetts Division of Ecological Restoration 

provides resources to help dam owners remove old, damaged, or outdated 

dams. The MA DER outlines the circumstances in which an individual 

would want to remove a dam, such as when maintenance costs are too 

high, legal liability changes, or the cost of repair is greater than the value 

of the dam. Further considerations are ecological – the DER can assess if 

a small dam is impacting local water quality as part of its process for 

determining which projects are funded. 

 

Massachusetts offers several programs that can assist with dam removal, 

including the “Dam and Seawall Repair or Removal Program, the 

Massachusetts Environmental Trust (MET) Grant Program, the Municipal 

Vulnerability Preparedness (MVP) Program, and DER's Priority Projects 

Program.” The Priority Projects program is the only grant program 

administered by the MA DER, but the DER will work with applicants to 

secure other funding resources as necessary 

 

Origin: Massachusetts 

Hazard(s) Addressed: Impoundment Failure 

Lead Agency: Massachusetts Office of Dam Safety 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

https://www.mass.gov/river-restoration-dam-

removal#:~:text=The%20Division%20of%20Ecological%20Restoration,Become%20a%20DER%20Pr

iority%20Project%E2%80%9D. 

https://www.mass.gov/river-restoration-dam-removal#:~:text=The%20Division%20of%20Ecological%20Restoration,Become%20a%20DER%20Priority%20Project%E2%80%9D
https://www.mass.gov/river-restoration-dam-removal#:~:text=The%20Division%20of%20Ecological%20Restoration,Become%20a%20DER%20Priority%20Project%E2%80%9D
https://www.mass.gov/river-restoration-dam-removal#:~:text=The%20Division%20of%20Ecological%20Restoration,Become%20a%20DER%20Priority%20Project%E2%80%9D
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Texas Dam Safety 

Description: 

The Texas Commission on Environmental Quality manages a Dam 

Safety Program, specifically Dam Safety Workshops for Owners and 

Operators. 

 

These workshops assist owners and operators with understanding 

dam safety laws and regulations and enforcement, emergency action 

plans and maintenance issues for all areas on a dam, 

recommendations for correction, and results of the probable 

maximum precipitation study. 

Origin: Texas 

Hazard(s) Addressed: Impoundment Failure 

Lead Agency: Texas Commission on Environmental Quality 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.tceq.texas.gov/compliance/investigation/damsafetyprog.html#:~:text=The%20Dam%20Sa

fety%20Program%20monitors,help%20them%20maintain%20safe%20facilities. 

 

 

  

https://www.tceq.texas.gov/compliance/investigation/damsafetyprog.html#:~:text=The%20Dam%20Safety%20Program%20monitors,help%20them%20maintain%20safe%20facilities
https://www.tceq.texas.gov/compliance/investigation/damsafetyprog.html#:~:text=The%20Dam%20Safety%20Program%20monitors,help%20them%20maintain%20safe%20facilities
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Karst (Sinkholes) 

Pennsylvania Sinkhole Data 

Description: 

The Pennsylvania Department of Conservation and Natural Resources 

provides resources for individuals who may have seen or been affected 

by a sinkhole. These include educational resources on: geological and 

human activities contributing to sinkholes, safety, repair, and 

prevention. 

Origin: Pennsylvania 

Hazard(s) Addressed: Karst (Sinkholes) 

Lead Agency: Pennsylvania Department of Conservation and Natural Resources 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.gis.dcnr.state.pa.us/pageode/ 

 

https://www.dcnr.pa.gov/Geology/GeologicHazards/Sinkholes/Pages/default.aspx 

 

 

  

https://www.gis.dcnr.state.pa.us/pageode/
https://www.dcnr.pa.gov/Geology/GeologicHazards/Sinkholes/Pages/default.aspx
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Maryland Geological Survey 

Description: 

The Maryland Geological Survey produces a step-by-step guide for 

individuals outlining what to do if one suspects they have encountered a 

sinkhole.  

 

The guide is available online, distributed through the Maryland 

Geological Survey newsletter, and in a series of videos posted to the 

MGS website. The article provides links for reporting sinkholes and 

contact information for the appropriate state and local agencies. 

Origin: Maryland 

Hazard(s) Addressed: Karst (Sinkholes) 

Lead Agency: Maryland Geological Survey 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

http://www.mgs.md.gov/geology/geohazards/sinkhole_resources.html 

 

 

  

http://www.mgs.md.gov/geology/geohazards/sinkhole_resources.html
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Landslides 

  

Introduction to Landslides in North Carolina 

Description: 

The North Carolina Department of Environmental Quality publishes 

worksheets and press releases on how to identify and respond to 

landslide conditions. 

 

NCDEQ hosts this information on a webpage that includes links to 

historical data, information on rock slope stability, and the increased 

risk of landslides during hurricanes or other severe weather events. 

Origin: North Carolina 

Hazard(s) Addressed: Landslides 

Lead Agency: North Carolina Department of Environmental Quality 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://deq.nc.gov/about/divisions/energy-mineral-and-land-resources/north-carolina-geological-

survey/geologic-hazards/landslides 
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California Landslide Mapping 

Description: 

The California Department of Conservation performs routine 

landslide mapping activities through the Seismic Hazards 

Program. New buildings, mines, and other construction activities 

are required to submit geotechnical reports on the land to the 

State Geologist. This data is added to the state geotechnical 

database and hazard maps. 

Origin: California  

Hazard(s) Addressed: Landslides 

Lead Agency: California Department of Conservation 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.conservation.ca.gov/cgs/sh/program#:~:text=The%20Seismic%20Hazards%20Program%

20delineates,fault%20rupture%2C%20and%20tsunami%20inundation. 
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National Landslide Hazard Mitigation Strategy 

Description: 

The United States Geological Survey maintains the “National 

Landslide Hazards Mitigation Strategy.” Recommendations 

include: 

• Research - Developing a predictive understanding of landslide 

processes and triggering mechanisms 

• Hazard mapping and assessments - Delineating susceptible 

areas and different types of landslide hazards at a scale useful 

for planning and decision making 

• Real-time monitoring - Monitoring active landslides that pose 

substantial risk 

• Loss assessment - Compiling and evaluating information on the 

economic impacts of landslide hazards 

• Data Collection - Information collection, interpretation, and 

dissemination 

• Guidelines and training - Developing guidelines and training for 

scientists, engineers, and decisionmakers 

• Public awareness and education - Developing information and 

education for the user community 

• Implementation of loss reduction measures - Encouraging 

mitigation action 

• Emergency preparedness, response, and recovery - Building 

resilient communities 

 

Origin: Federal  

Hazard(s) Addressed: Landslides 

Lead Agency: United State Geological Survey 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

https://www.conservation.ca.gov/cgs/sh/program#:~:text=The%20Seismic%20Hazards%20Program%

20delineates,faul%20rupture%2C%20and%20tsunami%20inundation. 
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Land Subsidence 

 

 

 

Pennsylvania Mine Subsidence Insurance 

Description: 

Pennsylvania offers Mine Subsidence Insurance. Residential 

Coverage of $150,000 costs $41.25 a year. Depending on subsidence 

risk levels, coverage of up to $1,000,000 is available.  The 

Pennsylvania Department of Environmental Protection administers 

the MSI program, providing an online portal to connect consumers 

with insurance providers.  Private insurers apply to the PA DEP to 

become registered sellers of mine subsidence insurance. The MSI 

program publishes sales kits of the individual insurance providers 

and provides tips & tools to the insurance providers to maximize the 

return of sales efforts.  

 

The program provides information to homeowners, indicating which 

properties are located on top of abandoned mines 

Origin: Pennsylvania 

Hazard(s) Addressed: Land Subsidence 

Lead Agency: The Pennsylvania Department of Environmental Protection 

Funding: Agency Funds, Cost Sharing 

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.dep.pa.gov/Citizens/MSI/Pages/default.aspx 

 

 

https://www.dep.pa.gov/Citizens/MSI/Pages/default.aspx
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Maryland Land Subsidence Monitoring Network 

Description: 

The Maryland Geological Survey maintains the Land Subsidence 

Monitoring Network, a service that monitors land subsidence in at-

risk areas of Maryland, especially near the Chesapeake Bay. 

 

The focus of the program is on isolating vertical land motion 

attributed to human activities (such as groundwater withdrawal). 

Data is gathered and analyzed annually.  

Origin: Maryland 

Hazard(s) Addressed: Land Subsidence 

Lead Agency: The Maryland Geological Survey, USGS 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

http://www.mgs.md.gov/groundwater/current/land_subsidence.html  
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California Aqueduct Subsidence Program 

Description: 

The California Department of Water Resources manages the 

California Aqueduct Subsidence Program. The program studies 

areas at risk of subsidence due to aqueduct levels as part of the State 

Water Project. This projected yielded reports on areas at risk of 

damage due to aqueduct subsidence. 

Origin: California 

Hazard(s) Addressed: Land Subsidence 

Lead Agency: The California Department of Water Resources 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://water.ca.gov/Programs/Engineering-And-Construction/Subsidence 
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Non-Tornadic Wind 

 

  

Nebraska Severe Weather Preparedness Guide 

Description: 

The Nebraska Emergency Management Agency releases a Spring 

and Summer Severe Weather Preparedness Guide. While this largely 

focuses on thunderstorms and tornados, it also presents tips for other 

high-wind events such as how to identify and take action before a 

thunderstorm.  

Origin: Nebraska 

Hazard(s) Addressed: Non-Tornadic Wind 

Lead Agency: The Nebraska Emergency Management Agency 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://nema.nebraska.gov/operations/spring-and-summer-severe-weather-preparedness  
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Farming in Challenging Times Roundtable 

Description: 

The Farming in Challenging Times roundtable recommends 

maintaining up-to-date insurance policies, paying particular focus to 

the age and structural integrity of properties. Further considerations 

include proximity to trees, fences, and electrical wiring. 

Origin: Private Sector 

Hazard(s) Addressed: Non-Tornadic Wind 

Lead Agency: Nationwide Insurance 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.agweb.com/news/business/farmland/derecho-response-wind-and-storm-mitigation-your-

farm  

 

https://www.agweb.com/news/business/farmland/derecho-response-wind-and-storm-mitigation-your-farm
https://www.agweb.com/news/business/farmland/derecho-response-wind-and-storm-mitigation-your-farm
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NOAA Guidelines 

Description: 

NOAA recommends that individuals set aside emergency supplies 

such as food, water, batteries, and flashlights when high-wind 

conditions are expected. Further, power outages and infrastructure 

damage may make it difficult to reach gasoline for transportation and 

to power generators. 

Origin: Federal 

Hazard(s) Addressed: Non-Tornadic Wind 

Lead Agency: National Oceanic and Atmospheric Administration 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.spc.noaa.gov/misc/AbtDerechos/derechofaq.htm 
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Center for Disaster Philanthropy 

Description: 

The Center for Disaster Philanthropy provides information on how 

to recover from high-wind and derecho conditions. Low-cost short 

and long-term housing is needed to support those with no familial 

support in affected areas. Mental health services are necessary to 

support the long-term resilience of affected regions. 

Origin: Private Organization 

Hazard(s) Addressed: Non-Tornadic Wind 

Lead Agency: The Center for Disaster Philanthropy 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://disasterphilanthropy.org/disasters/midwest-derecho/ 

 

https://disasterphilanthropy.org/disasters/midwest-derecho/
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Iowa State University Lessons Learned 

Description: 

Iowa State University provides a set of lessons-learned from derecho 

tree breaks and has outlined recommendations for preventing and 

reducing damage due to treefalls. When planting trees on a new site, 

select species that are native to the area. Engage in proper tree-

pruning practices to increase tree strength and health. Utilize proper 

planting techniques, including site prep, correct depth of planting, 

appropriate planting times, and post-planting maintenance activities. 

Constantly assess the health and quality of trees, inspecting for 

damage, disease, or other abnormalities. 

Origin: Iowa 

Hazard(s) Addressed: Non-Tornadic Wind 

Lead Agency: Iowa State University 

Funding:  

Status: Ongoing 

Comments: 
Virginia may consider utilizing these recommendations as 

instructions for residents and other organizations. 

Further Details: 

 

https://www.spc.noaa.gov/misc/AbtDerechos/derechofaq.htm 
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Pandemic 

 

  

Maryland Communicable Disease Program 

Description: 

The Maryland Department of Health Infectious Disease Bureau 

utilizes the Communicable Disease Program, which provides free 

immunizations, screenings, and treatments to eligible populations. 

These services are managed at the state level but administered by 

local health departments. 

 

The program also conducts disease surveillance and provides 

educational resources. 

Origin: Maryland 

Hazard(s) Addressed: Pandemics 

Lead Agency: Maryland Department of Health, Infectious Disease Bureau 

Funding:  

Status: Ongoing 

Comments: 

The Virginia Department of Health provides several similar services, 

including immunization for tuberculosis and some STIs. Some major 

gaps include HIV treatment and care, Adult Viral Hepatitis 

prevention, and a center for Zoonotic and Vector-borne Diseases. 

Further Details: 

 

https://health.maryland.gov/phpa/pages/infectious-disease.aspx  
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Massachusetts Disease Control & Prevention Resources 

Description: 

The Massachusetts Health & Social Services Disease Control and 

Prevention program maintains a set of resources available to 

residents, distributed online and through pamphlets given to 

healthcare providers. 

 

Resources include information and fact sheets on infectious diseases, 

data on flu seasons, Asthma risks, tick-borne diseases, risk factor 

surveillance, and information on cancer & cancer screenings. 

Origin: Massachusetts 

Hazard(s) Addressed: Pandemics 

Lead Agency: Massachusetts Department of Health & Social Services 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.mass.gov/topics/disease-control-prevention 



319 

 

 

 

  

North Carolina Safety Net Dental Clinics 

Description: 

The North Carolina Department of Health and Human services 

maintains a list of Safety Net Dental Clinics for low-income 

individuals. Eligibility varies across clinics. Covered services 

include fluoride mouth rinse and dental sealant projects; dental 

assessments, screenings, and referrals; education services; and 

consultation services. Further, the program includes a focus on 

perinatal oral health to improve the overall standard of care during 

pregnancy. Additionally, the N.C. Oral Health Section helped local 

agencies to expand and maintain their Safety Net Dental Clinics. 

Origin: North Carolina 

Hazard(s) Addressed: Pandemics 

Lead Agency: 
North Carolina Department of Health and Human Services, Division 

of Public Health 

Funding:  

Status: Ongoing 

Comments: 

While not a direct pandemic mitigation, increasing access to care and 

reducing disparities in health is a way to mitigate the impacts of a 

pandemic scenario. 

 

Virginia has Safety Net clinics, including dental clinics, but lacks the 

targeted publicity campaign of North Carolina. 

Further Details: 

 

https://www.dph.ncdhhs.gov/oralhealth/services/safety-net.htm 

 

https://www.vhcf.org/who-and-how-we-help/medical/health-safety-net-providers/ 

 

 

https://www.dph.ncdhhs.gov/oralhealth/services/safety-net.htm
https://www.vhcf.org/who-and-how-we-help/medical/health-safety-net-providers/
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Tornado 

 

 

 

 

Pennsylvania StormReady Participation 

Description: 

The National Weather Service administers the StormReady service, 

which outlines a set of activities that a county must perform to attain 

StormReady Status, helping communities establish plans of action to 

prevent damage and recover from severe weather, including 

tornadoes. 

 

Pennsylvania has pushed for all counties in the state to reach the 

“StormReady” status, and is one of six states to have all counties 

participating. PEMA actively encourages cities and counties to 

participate in the program. 

Origin: Pennsylvania 

Hazard(s) Addressed: Tornado, Hurricanes, Flooding, Non-Tornadic Wind 

Lead Agency: 
National Weather Service, Pennsylvania Emergency Management 

Agency 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.weather.gov/StormReady 

 

https://www.ready.pa.gov/pages/stormready.aspx 

 

https://www.weather.gov/StormReady
https://www.ready.pa.gov/pages/stormready.aspx
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Oklahoma SoonerSafe Safe Room Rebate 

Description: 

The Oklahoma Office of Emergency Management operates the 

SoonerSafe Safe Room Rebate program that provides reimbursement 

for homeowners that install tornado shelters. The safe rooms may be 

installed in new or existing homes, in interior rooms or under the first 

floor of the home, or a detached above-ground safe room within 100 

feet of the home. 

 

The program is funded through HMGP funds, with a maximum 

rebate of $2,000 and not exceeding 75% of the actual cost of the safe 

room.  Oklahoma law allows for 100 sq. ft. of new safe room to be 

exempt from property taxation.  Only residential single-family 

homes are eligible; mobile home owners are eligible for single safe 

room only. 

Origin: Pennsylvania 

Hazard(s) Addressed: Tornado 

Lead Agency: 
Oklahoma Department of Emergency Management and Homeland 

Security 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://oklahoma.gov/oem/programs-and-services/soonersafe-safe-room-rebate-program.html 

 

https://oklahoma.gov/oem/programs-and-services/soonersafe-safe-room-rebate-program.html
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Wildfires 

 

  

Community Wildfire Prevention Grants Program 

Description: 

The Wildfire Prevention Grants Program seeks to reduce the risk 

factors associated with wildfires. The grants can be used to clear 

debris and brush, reduce the presence of other hazardous fuels, 

develop community plans for wildfire mitigation, and provide 

educational materials. 

 

Organizations or communities may apply for grants for hazardous 

fuels reduction, wildfire prevention planning, wildfire education, and 

forest health revitalization projects.  

Origin: California 

Hazard(s) Addressed: Wildfires 

Lead Agency: The Department of Forestry and Fire Protection 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.fire.ca.gov/grants/wildfire-prevention-grants/ 
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Colorado Strategic Wildfire Action Program (COSWAP) 

Description: 

COSWAP funds workforce development for combating wildfires, the creation 

of State Wildland Inmate Fire Teams (SWIFT), investment into landscape 

resilience, projects, and establishing state, local, and commercial partnerships to 

fund future mitigation projects. The COSWAP program funds workforce 

development grants for training teams to prevent and combat wildfires. 

COSWAP also assesses the state for Strategic Focus Areas – regions of 

Colorado that are at particularly high risk of wildfire damage. 

 

Colorado Correctional Industries (CCi) contributes wildland fire teams. The 

SWIFT crews are housed at various correctional facilities in Colorado. 

Currently, the base locations are at the Four Mile Correctional Center in Canon 

City, the Rifle Correctional Center in Rifle and the Buena Vista Correctional 

Center in Buena Vista, Colorado.  CCi makes SWIFT crews available to 

Colorado State Forest Service (CSFS) and other agencies to assist in fighting 

fires within Colorado by dispatch through normal dispatch centers. CSFS has 

routinely provided a crew liaison when crews have been dispatched to wildland 

fires. The crews are self-sufficient and come with supervisors, basic tools and 

equipment, and transportation. To ensure that the crews function well, the 

personnel train together and are maintained as crews throughout the year. They 

are available year-round for assistance with non-fire, woods-related programs 

and projects. 

Origin: Colorado 

Hazard(s) Addressed: Wildfires 

Lead Agency: Colorado Department of Natural Resources, Colorado Correctional Industries 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://dnr.colorado.gov/divisions/forestry/co-strategic-wildfire-action-program 
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Winter Weather 

 

  

New York Winter Preparedness Guide 

Description: 

The New York Winter Preparedness Guide is an online resource 

that provides information on energy pricing, consumer 

protections, tips for managing heating costs, tips for energy 

conservation, and data about winter safety such as how to 

properly use heaters. 

 

The tool also provides links to other services such as efficient 

energy programs, home energy assessments, federal and local bill 

assistance programs, community workshops, and legal 

assistance. 

Origin: New York 

Hazard(s) Addressed: Winter Weather, Extreme Cold 

Lead Agency: New York Department of Public Service 

Funding:  

Status: Ongoing 

Comments: 

The guide focuses on the legal rights of residents to regarding 

utility shutoffs, limits to fuel price changes, and payment 

programs. 

Further Details: 

 

https://www3.dps.ny.gov/W/AskPSC.nsf/All/2A2468643DFEC059852581CB005C16A8?OpenDocum

ent  

https://www3.dps.ny.gov/W/AskPSC.nsf/All/2A2468643DFEC059852581CB005C16A8?OpenDocument
https://www3.dps.ny.gov/W/AskPSC.nsf/All/2A2468643DFEC059852581CB005C16A8?OpenDocument
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Wisconsin Electronic Disease Surveillance System 

Description: 

The Wisconsin Department of Health Services administers the 

Wisconsin Electronic Disease Surveillance System (WEDSS), a 

web-based syndromic surveillance system that collects and processes 

data from several clinical systems. 

 

This system assists public health officials to better assess the impacts 

of, for example, cold snaps and infectious disease. This improves 

resource deployment during disaster events. The program also funds 

interactive courses for public health staff, clinical laboratories, 

clinics, and other disease reporters. 

Origin: Wisconsin 

Hazard(s) Addressed: Pandemics, Winter Weather, Extreme Cold 

Lead Agency: Wisconsin Department of Health Services 

Funding:  

Status: Ongoing 

Comments: 
Health care providers are legally compelled to report any patient they 

treat who is suspected of having a communicable disease. 

Further Details: 

 

https://www.dhs.wisconsin.gov/wiphin/wedss.htm  

https://www.dhs.wisconsin.gov/wiphin/wedss.htm
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California Wildfire Mitigation Program (CWMP) 

Description: 

The California Office of Emergency Services administers the 

California Wildfire Mitigation Program.  Homes at risk of wildfire 

damage are eligible for grants to be hardened and retrofitted to resist 

wildfires. This includes building with flame resistant materials, 

redeveloping land to resist fire, and development of defensible space.  

 

Homeowners apply for the grant online. Socially vulnerable 

populations such as residents over 65, in poverty, living with 

disabilities, with limited English, or without vehicles are prioritized. 

Homes in high-risk areas are also given precedence over lower-risk 

homes. 

Origin: California 

Hazard(s) Addressed: Wildfires 

Lead Agency: 
California Office of Emergency Services, California Department of 

Forestry and Fire Protection 

Funding:  

Status: Ongoing 

Comments:  

Further Details: 

 

https://www.caloes.ca.gov/cal-oes-divisions/recovery/disaster-mitigation-technical-support/california-

wildfire-mitigation-program  

https://www.caloes.ca.gov/cal-oes-divisions/recovery/disaster-mitigation-technical-support/california-wildfire-mitigation-program
https://www.caloes.ca.gov/cal-oes-divisions/recovery/disaster-mitigation-technical-support/california-wildfire-mitigation-program
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A.3 Simulation Code 

There are several simulation models of the stacking environment. The model presented 

here aligns with the primary simulation model presented in Chapter 6. 

import gym 

import numpy as np 

import random 

import time 

import pathlib 

import datetime 

import torch 

from scipy.stats import truncnorm 

from .abstract_game import AbstractGame 

 
class Container: 

 

  

 def __init__(self, ID, peak = 600, mu=100, sigma=25, maxruntime=1200, 

baseStack=False): 

   

  # The ID of the container 

  self.id = ID 

   

  # mean dwell time 

  self.mu = mu 

  self.sigma = sigma 

   

  # The fixed expected dwell time, values based on existing research 

  self.departInterval = mu 

   

  # Containers arrive uniformly, or according to another distribution 

  # Containers that begin in the stacks have variable arrivals 

  if baseStack == True: 

   self.arrive = np.random.randint(-120, maxruntime/8) 

   #self.arrive = np.random.randint(2,10) 

  else: 

   self.arrive = np.random.randint(2, .8*maxruntime) 

   #self.arrive = round(np.random.triangular(0, peak, maxruntime)) 

   

  # Containers have an expexted dwell time 

  self.expectedDeparture = self.arrive + self.departInterval 

   

  # The actual departure time of a container 

  noise = round(np.random.normal(mu, sigma)) 

   

  # Cannot depart before it arrives 

  while noise < 2: 

   noise = round(np.random.normal(mu, sigma)) 

  self.departure = self.arrive + noise 

   

  # Cannot depart before simulation begins 

  while self.departure <= 0: 

   #self.departure = np.random.randint(2, 20) 
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   self.departure = np.random.randint(-10, 20) + round(np.random.normal(mu, 

sigma)) 

    

  # The position of the container 

  self.position = [0,0] 

   

  # Flag for arrive 

  self.place = False 

   

  # Flag for depart 

  self.remove = False 

  

 def setPosition(self, column, height): 

  self.position = [column, height] 

   

 def setArrive(self, arrival): 

  self.arrive = arrival 

  

 def setDepart(self, depart): 

  self.departure = depart 

   

 def getDeparture(self, depart): 

  return self.departure 

 

class ContainerStack: 

 

 def __init__(self, length=12, height=5, incoming=25, seed=111793, maxruntime=1200): 

  np.random.seed(seed) 

   

  self.length = length 

  self.height = height 

  self.stack = [] 

  self.maxruntime = maxruntime 

   

  ID = 0 

   

  #Generate the initial container stack at ~50% full 

  for i in range(length): 

   self.stack.append([]) 

   k=0 

   for j in range(height): 

    if i == 0 or i == (length-1): 

     pass 

    else: 

     if np.random.random() >= 0.5 and not (i == length-3 and j == height-1): 

      container = Container(ID, baseStack=True) 

      container.setPosition(i, k) 

      self.stack[i].append(container) 

      ID = ID+1 

      k = k + 1 

     else: 

      pass 

   

  #Generate the incoming containers 

  for i in range(incoming): 

   container = Container(ID) 

   container.setPosition(0, i) 

   self.stack[0].append(container) 

   ID = ID+1 

   

  # Used to reset the stack 

  self.stackTuple = tuple(tuple(i) for i in self.stack) 
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  #Ascribe departure times to each container, add logic to departures  

  np.random.seed() 

  for i in self.stack: 

   for j in i: 

    noise = round(np.random.normal(j.mu, j.sigma)) 

    while noise < 2: 

     noise = round(np.random.normal(mu, sigma)) 

     

    if (j.arrive + noise) <= 0: 

     while (j.departure) <= 0: 

      j.setDepart(np.random.randint(-10, 20) + round(np.random.normal(j.mu, 

j.sigma))) 

    else: 

     j.setDepart(j.arrive + noise) 

   

 def resetStack(self):  

  self.stack = list(list(i) for i in self.stackTuple) 

  np.random.seed() 

  for i in self.stack: 

   for j in i: 

    noise = round(np.random.normal(j.mu, j.sigma)) 

    while noise < 2: 

     noise = round(np.random.normal(j.mu, j.sigma)) 

    if (j.arrive + noise) <= 0: 

     while (j.departure) <= 0: 

      j.setDepart(np.random.randint(-10, 20) + round(np.random.normal(j.mu, 

j.sigma))) 

    else: 

     j.setDepart(j.arrive + noise) 

   

 def moveContainer(self, position, destination):  

 

  if position[0] == 0: 

   # pop the postion of the container with coordinates in position 

   # currentposition = place in list of position in argument 

   for i in self.stack[0]: 

    if i.position == position: 

     currentposition = self.stack[0].index(i) 

     break 

    

   tempContainer = self.stack[0].pop(currentposition) 

   tempContainer.setPosition(destination, len(self.stack[destination])) 

   self.stack[destination].append(tempContainer) 

   

  elif len(self.stack[position[0]]) != 0: 

   tempContainer = self.stack[position[0]].pop() 

   tempContainer.setPosition(destination, len(self.stack[destination])) 

   self.stack[destination].append(tempContainer) 

   

  else: 

   pass 

  

 def setArrived(self, simTime): 

  for i in self.stack[0]: 

   if i.arrive <= simTime: 

    i.place = True 

     

 def getArrived(self): 

  arrived = [] 

  for cont in self.stack[0]: 

   if cont.place == True: 

    arrived.append(cont) 

  return arrived  
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 def setDepart(self, simTime): 

  for i in self.stack: 

   for j in i: 

    if j.departure <= simTime: 

     j.remove = True 

      

 def getDepart(self): 

  departed = [] 

  for i in self.stack[:-1]: 

   for j in reversed(i): 

    if j.remove == True: 

     departed.append(j) 

  return departed 

      

 def showStack(self, factor): 

  view = [[getattr(j, factor) for j in i] for i in self.stack] 

  print(*view, sep = "\n") 

  print("\n") 

   

 def Moves(self): 

  action_set = {} 

  num = 0 

 

  for i in range(self.length): 

   for j in range(self.length): 

    if j == 0 or (i == 0 and j == self.length) or (i == self.length-1) or i == 

j: 

     pass 

    else: 

     action_set[num] = [i,j] 

     num += 1 

   

  action_set[num] = "pass" 

   

  return action_set 

  

 def validStacks(self): 

  # Returns which of the stacks have a spot open 

  tempStack = self.stack[1:-1] 

  val = [] 

  stacknum = 1 

  for i in tempStack: 

   if len(i) < self.height: 

    val.append(stacknum) 

   stacknum = stacknum + 1 

  return val 

 

class Game(AbstractGame): 

 

 def __init__(self, seed=None): 

  self.env = Stacks() 

 

 def step(self, action): 

 

  observation, reward, done = self.env.step(action) 

  return observation, reward*10, done 

 

 def legal_actions(self): 

 

  return self.env.legal_actions() 

 

 def reset(self): 
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  return self.env.reset() 

 

 def render(self): 

 

  self.env.render() 

  input("Press enter to take a step ") 

 

class Stacks: 

  

 def __init__(self, length=12): 

   

  #System Time 

  self.t = 0 

   

  #Observation Space 

  self.stack = ContainerStack(length) 

   

  #action space 

  self.action_space = self.stack.Moves() 

   

  # Useful variable 

  self.length = self.stack.length 

   

  #coutner for moves 

  self.moves = 0 

   

  #Keep a list of containers that need to move, do it in order 

  self.needmove = [] 

 

 def step(self, action): 

   

 

  #move if contianer is arriving 

  if len(self.stack.getArrived()) != 0: 

   

   #get position of moving container 

   #need to pop from this list 

   cont = self.stack.getArrived().pop(0) 

   self.stack.moveContainer(cont.position, self.action_space[action][1]) 

   reward = -1 

   self.moves = self.moves + 1 

    

  #if anything but no move, step normally 

  elif action != list(self.action_space.keys())[-1]: 

   self.stack.moveContainer(self.action_space[action], 

self.action_space[action][1]) 

   reward = -1 

   self.moves = self.moves + 1 

    

  #if last, do nothing 

  else: 

   reward = 0 

   

   

  self.t = self.t + 1 

   

  if self.t >= self.stack.maxruntime: 

   done = True 

    

  elif len(self.legal_actions()) == 0: 

   return self.get_observation(100), -500000, True 
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  else: 

   done = False 

 

  return self.get_observation(100), reward, done 

  

  

  

 def legal_actions(self): 

  self.stack.setArrived(self.t) 

  self.stack.setDepart(self.t) 

 

  #set of keys for the moves dictionary 

  valid = [] 

   

  if any(self.stack.getArrived()) == True and self.stack.getArrived()[0] not in 

self.needmove: 

   self.needmove.append(self.stack.getArrived()[0]) 

  elif any(self.stack.getDepart()) == True and self.stack.getDepart()[0] not in 

self.needmove: 

   templist = self.stack.getDepart() 

   templist.sort(key=lambda x: x.departure) 

   self.needmove.append(templist[0]) 

   self.needmove.sort(key=lambda x: x.departure) 

  else: 

   pass 

 

  if len(self.needmove) > 0: 

    

   self.needmove.sort(key=lambda x: x.departure) 

    

   if self.needmove[0].position[0] == 0: 

    for i in range(self.stack.length-1): 

     if len(self.stack.stack[i+1]) != self.stack.height: 

      valid.append(i) 

    if self.needmove[0].remove == False: 

     valid.pop() 

    self.needmove.pop(0) 

      

   elif self.needmove[0].departure <= self.t and self.needmove[0].position[1] == 

len(self.stack.stack[self.needmove[0].position[0]])-1: 

    start = self.needmove[0].position[0] 

    exit = self.length-1 

     

    valid.append(list(self.action_space.values()).index([start,exit])) 

    self.needmove.pop(0) 

 

   else: 

     

    origin = [] 

    validDestination = self.stack.validStacks()    

    c = self.needmove[0] 

      

    if c.position[0] not in origin and c.position[0] != self.length-1: 

     origin.append(c.position[0]) 

     

     #second - legal destinations - checks if the selected cont is ready to 

leave   

     #remove stacknum to desination unless i is top of the stack (last 

element)  

    for k in origin: 

     for j in validDestination: 

      if k != self.length-1 and j != k: 

       valid.append(list(self.action_space.values()).index([k,j])) 



333 

 

        

    self.needmove.pop(0) 

 

   

    valid = list(set(valid)) 

     

   

  else: 

   # everything not at 0 or with 0 containers can move or no action 

   for i in range(len(self.action_space)-1): 

    if self.action_space[i][0] != 0 and self.action_space[i][1] != 

self.stack.length-1: 

     if len(self.stack.stack[self.action_space[i][0]]) != 0 and 

len(self.stack.stack[self.action_space[i][1]]) != self.stack.height: 

      valid.append(i) 

   valid.append(i+1) 

   

  return valid 

  

 def render(self): 

  print("Simualtion time: ", self.t) 

  print("Total Container Moves: ", self.moves) 

  self.stack.showStack('id') 

    

 def reset(self): 

  self.stack.resetStack() 

  self.t = 0 

  self.moves = 0 

  return self.get_observation(100) 

   

 def get_observation(self, maxheight): 

  temp = [[float(1) for j in i] for i in self.stack.stack] 

  square = [np.pad(column, (0, maxheight - len(column)), mode='constant', 

constant_values=float(0)) for column in temp] 

  return np.array([square]) 

 


