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Abstract

Advances in data collection and the proliferation of social media have brought

network data into various fields, including the social sciences, economics, transporta-

tion, and biology. Efficient structural learning on networks (e.g., node groupings

and the frequency of specific patterns, such as triangles, within graphs) is crucial

for understanding complex system dynamics, predicting behavior, and devising in-

terventions to enhance system performance. This thesis presents novel principled

statistical tools for structural learning on networks, emphasizing appealing statisti-

cal properties and computational efficiency.

The first project features a non-overlapping and separable penalty that approxi-

mates the overlapping group lasso penalty. Overlapping group lasso penalty is often

used to introduce structured sparsity in statistical learning given the penalty’s abil-

ity to eliminate predefined groups of parameters. However, when groups overlap,

solving the group lasso problem can be time consuming in high-dimensional settings

due to groups’ non-separability. This issue has constrained the penalty’s relevance

to cutting-edge computational areas, such as gene pathway selection and graphical

model estimation. The proposed approximation greatly improves the computational

efficiency of optimization, especially for large-scale and high-dimensional problems.

This project confirms the proposed penalty as the tightest separable relaxation of

the overlapping group lasso norm within the family of ℓq1/ℓq2 norms. Furthermore,

estimators based on the proposed norm are statistically equivalent to those derived

from overlapping group lasso in terms of estimation error, support recovery, and the

minimax rate under the squared loss.

Scientists have broadly leveraged differential co-expression analysis to clarify dis-

eases’ biological mechanisms. Yet the unknown differential patterns tend to be com-
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plicated. As such, models based on simplified parametric assumptions may not pin-

point all discrepancies. Meanwhile, biological theory further indicates that, rather

than existing in isolation, genes operate in groups to perform biological functions.

Thus, differential co-expression analysis becomes more meaningful when genes’ co-

functioning structure is taken into account. The second project develops a new

means of identifying differentially correlated gene groups. This technique enjoys

computational efficiency and accuracy while integrating group information in anal-

ysis. As a by-product, a parameter-tuning procedure is put forth which considers

the structural assumption and outperforms standard methods. Multiple simulation

examples and a differential analysis of vascular smooth muscle cell gene expression

data substantiate its utility.

Network moments measure the frequency of specific patterns and are instrumen-

tal in network analysis. Subsampling techniques serve as tools for approximating

network moments’ distribution in scenarios where limited networks are available. Al-

though the univariate distribution of network moments can be well approximated,

fairly little is known about the consistency for their joint distribution. The third

and final project in this thesis focus on estimating the joint distribution of network

moments through network node subsampling, thereby aiding in the characterization

of the network’s distribution. Our contribution opens the door for computationally

efficient and interpretable network analysis innovations. For example, a multivari-

ate inference approach is illustrated by analyzing collaboration networks and guppy

gene expression networks.
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Chapter 1

Introduction

A network is, in its basic form, a collection of points paired together via lines.

Within the network field’s nomenclature, a point is called a node or vertex, while

a line is termed an edge. A network is a simplistic representation that reduces a

system to an abstract structure; only the fundamentals of connections or interaction

patterns tend to be captured. Many systems of interest (e.g., in disciplines such as

biology, computer science, sociology, and economics) can be framed as networks.

Extensive research on network analysis over the past two decades has yielded rich

insight into diverse mechanisms, including gene regulation, friendship formation,

and ecosystem evolution (Lovász, 2012).

Figure 1.1: Example of a gene regulatory network inferred using gene expression
dataset in Fischer et al. (2021) (see details in Section 4.5.2). Each node symbolizes

a gene, and each edge represents an interaction between two nodes.

Some networks are directly observable. For instance, Ji and Jin (2016) de-
1



2

scribed a collaboration network; each node represents an author; an (undirected)

edge exists between two authors if and only if they have coauthored two or more

papers. Other networks may be inferred from different analyses. Examples include

the protein-protein interaction network, where each node denotes a protein, with

proteins’ interactions appearing as edges (Perry et al., 2023). Vertices and edges in

a network can also be labeled with supplementary information, such as names or

strengths, to capture additional system details (Yan and Sarkar, 2021).

Structural information such as node groups or the total number of certain pat-

terns can be useful for investigating and modeling the behavior of real-world systems.

Many networks naturally separate themselves into groups or communities: networks

of people divide into groups of friends or coworkers; the World Wide Web comprises

groups of related web pages; and biochemical networks contain functional modules

(Newman, 2018). Integrating network-group information is thereby a fruitful line of

inquiry in network analysis. To illustrate, biological theory indicates that, instead

of working in isolation, genes execute biological functions in groups. Gene network

analysis thus becomes more meaningful when co-functioning groups of genes are

considered (Ma and Kosorok, 2010).

A motif refers to a (usually simple) graph, such as an edge ( ), a 2-star ( ), or

a triangle ( ). The count of motifs within a network offers crucial insights. For

example, real collaboration networks may include more triangles because people in-

troduce pairs of collaborators to each other, and those pairs often go on to cooperate

(Newman, 2018). In another study, Milo et al. (2002) investigated various motifs’

counts in genetic regulatory networks, suggesting that these motifs act as functional

”circuit elements” such as filters or pulse generators. The motifs’ counts might be

an evolutionary outcome of their usefulness for the involved organisms.

Network moment, informed by motif counts, provides valuable details about
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networks’ population distribution (Borgs et al., 2010; Bickel et al., 2011). Network

moments offer several advantages for network analysis as well; these moments are

computationally efficient (Zhang and Xia, 2022) and can flexibly accommodate net-

works of different sizes (Shao et al., 2022). Network moments, therefore, play key

roles in model estimation (Bhattacharyya and Bickel, 2015b) and have emerged as

one of the most powerful tools for network comparison (Maugis et al., 2020).

This thesis presents statistical tools for network structural learning, with em-

phasis on appealing statistical properties and computational efficiency. All results

are reproducible, and the corresponding code can be found at the following link:

https://github.com/MingyuQi1995. Specifically, Chapter II centers on incorpo-

rating group information into analysis by pondering a question: ”How can we ef-

fectively integrate group information if doing so is time-consuming when groups

overlap?” In brief, the chapter suggests a non-overlapping, separable penalty as a

statistically equivalent alternative to the overlapping group lasso penalty introduced

by Jenatton et al. (2011a) for group selection via overlapping groups. The proposed

approximation substantially improves the computational efficiency of optimization,

especially for large-scale and high-dimensional problems. This project has been

accepted for publication by the Journal of Machine Learning Research.

Chapter III features a novel approach to identifying differentially correlated gene

groups. The developed tactic bolsters computational efficiency and accuracy while

incorporating group information into analysis. A by-product, a novel parameter-

tuning procedure, is also detailed; it accounts for the structural assumption and out-

performs standard methods. The proposed method reveals dysregulated metabolic

pathways in human vascular smooth muscle cell phenotypic switching, echoing Perry

et al. (2023)’s effort.

Chapter IV focuses on characterizing network moments’ distribution to gain in-

 https://github.com/MingyuQi1995
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formation about underlying network models. The high-level question to be broached

is ”How can we estimate the sampling distribution of network moments if doing so

is difficult because of inadequate observations?” The joint sampling distribution of

network moments is then approximated based on the moments’ joint distribution in

subsampled networks. This approach opens the door for network analysis methods

that are computationally efficient and interpretable. As an illustration, a multivari-

ate inference is applied to analyze collaboration networks and guppy gene expression

networks.

Notation and Preliminaries. Throughout this thesis, given a positive integer

n, we define [n] = {1, 2, . . . , n}. Given a set S, |S| is the set’s cardinality. When

referring to a matrix A, AS denotes the sub-matrix consisting of columns indexed by

S, and AS,S denotes the sub-matrix induced by both rows and columns indexed by

S. Let Rz×p be the set of all z×p matrices, and let Sp
+ be the set of all p×p positive

definite matrices. For a vector v ∈ Rp, we define ∥v∥a = (|v1|a + |v2|a + . . .+ |vp|a)
1
a .

Given a symmetric matrix A, denote its spectral norm, Frobenius norm, and oper-

ator norm as ∥A∥2, ∥A∥F , and ∥A∥a,b = sup∥u∥a≤1 ∥Au∥b, respectively. The largest

and smallest singular values of A are denoted by γmax(A) and γmin(A).

Given two sequences {an} and {bn}, we denote an ≲ bn or an = O(bn) if an ⩽ Cbn

for a sufficiently large n and a universal constant C > 0. We write an ≪ bn or

an = o(bn) if an/bn → 0. Furthermore, an ≍ bn if both an ≲ bn and an ≳ bn hold.

Let G be an undirected unweighted graph whose node set is V (G) = {v1, . . . , vn}

and whose edge set is E(G) = {(vi, vj), vi, vj ∈ V (G)}. Let A(G) be the n × n

adjacency matrix of G, such that A(G)ij = 1 if and only if (vi, vj) ∈E(G). We will

introduce other notations within the text as needed.



Chapter 2

The Non-Overlapping Statistical Approximation

to Overlapping Group Lasso

2.1 Introduction

Grouping patterns of variables are commonly observed in real-world applications.

For example, in regression modeling, explanatory variables might belong to differ-

ent groups with the expectation that the variables are highly correlated within the

groups. In this context, variable selection or model regularization should also con-

sider the grouping patterns, and one may prefer to either include the whole group of

variables in the selection or completely rule out the group. Group lasso (Yuan and

Lin, 2006) is one popular method designed for this group selection task via adding

ℓ1/ℓ2 regularization, as a broader class for group selection (Bach, 2008; Levina et al.,

2008; Meier et al., 2008; Ravikumar et al., 2009; Zhao et al., 2009b; Danaher et al.,

2014; Loh, 2014; Basu et al., 2015; Xiang et al., 2015; Campbell and Allen, 2017;

Tank et al., 2017; Yan and Bien, 2017; Austin et al., 2020; Yang and Peng, 2020).

While the original group lasso penalty (Yuan and Lin, 2006) focuses on regu-

larizing disjoint parameter groups, overlapping groups appear frequently in many

applications such as tumor metastasis analysis (Jacob et al., 2009; Zhao et al., 2009b;

Yuan et al., 2011; Chen et al., 2012) and structured model selection problems (Mo-

han et al., 2014; Cheng et al., 2017b; Yu and Bien, 2017; Tarzanagh and Michailidis,

2018). For example, in tumor metastasis analysis, scientists usually aim to select

a small number of tumor-related genes. Biological theory indicates that rather

than functioning in isolation, genes act in groups to perform biological functions.

5
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Hence, the gene selection is more meaningful if co-functioning groups of genes are

selected together (Ma and Kosorok, 2010). In particular, gene pathways, in the form

of overlapping groups of genes, render mechanistic insights into the co-functioning

pattern. Applying group lasso with these overlapping groups is then a natural way

to incorporate the prior group information into tumor metastasis analysis. For an-

other example, graphical models have been widely used to represent conditional

dependency structures among variables. Cheng et al. (2017b) developed a mixed

graphical model for high-dimensional data with both continuous and discrete vari-

ables. In their model, the groups are naturally determined by groups of parameters

corresponding to each edge, and these groups overlap because edges share common

nodes. Selecting the graph structures under this class of models requires eliminating

groups of parameters from the model, which is achieved by the overlapping group

lasso penalty.

The optimization involving the group lasso penalty with non-overlapping groups

is efficient (Friedman et al., 2010; Qin et al., 2013; Yang and Zou, 2015). However,

the overlapping group lasso problems present more complex challenges despite their

convex nature. This is because the non-separability between groups intrinsically in-

creases the problem’s dimensionality compared with the non-overlapping situation,

as revealed in the study of Yan and Bien (2017). Proposed methods for such opti-

mization problems include the second-order cone program method SLasso (Jenatton

et al., 2011a), the ADMM-based methods (Boyd et al., 2011; Deng et al., 2013), and

their smoothed improvement, FoGLasso, introduced by Yuan et al. (2011). Never-

theless, these exact solvers of the problem involve expensive gradient calculations

when the overlapping becomes severe, which may limit the applicability of the over-

lapping group lasso penalty in many large-scale applications such as genomewide

association studies (Yang et al., 2010; Lee and Xing, 2012, 2014) or graphical model
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fitting problems (Cheng et al., 2017b). For instance, Cheng et al. (2017b) showed

that overlapping group lasso, though a natural choice for the problem, is infeasi-

ble even for moderate-size graphs, and they used a fast lasso approach (Tibshirani,

1996) to solve the graph estimation problem without theory. As we introduce later,

our proposed solution includes the method of Cheng et al. (2017b) as a special case,

but our method is more general and comes with theoretical guarantees.

In this project, we propose a non-overlapping approximation alternative to the

overlapping group lasso penalty. The approximation is formulated as a weighted

non-overlapping group lasso penalty that respects the original overlapping group

patterns, making optimization significantly easier. The proposed penalty is shown

to be the tightest separable relaxation of the original overlapping group lasso penalty

within a broad family of penalties. Our analysis reveals that the estimator derived

from our method is statistically equivalent to the original overlapping group lasso

estimator in terms of estimator error and support recovery. The practical utility of

our proposed method is exemplified through simulation examples and its application

in a predictive task involving a breast cancer gene dataset. As a high-level summary,

our major contribution to this project is the design of a novel approximation penalty

to the overlapping group lasso penalty, which enjoys substantially better computa-

tional efficiency in optimization while maintaining equivalent statistical properties

as the original penalty.

The remainder of this project is organized as follows: Section 2.2 introduces the

overlapping group lasso problem and the proposed approximation method. We also

establish the optimality of the proposed penalty from the optimization perspective.

Section 2.3 details the statistical properties of the penalized estimator based on the

proposed penalty. Comparisons between our estimator and the original overlapping

group lasso estimator are made to show that they are statistically equivalent with
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respect to estimation errors and variable selection performance. Empirical evalua-

tions using simulated and real breast cancer gene expression data are presented in

Sections 2.5 and 2.6, respectively. Finally, Section 2.7 concludes the project with

additional discussions.

2.2 Methodology

2.2.1 Overlapping Group Lasso

Suppose in a statistical learning problem, the parameters are represented by a

vector β ∈ Rp, where βj denotes the j-th element of β. Let G = {G1, · · · , Gm} be

the m predefined groups for the p parameters, with each group Gg being a subset

of [p], and ∪g∈[m]Gg = [p]. For each group Gg, d
G
g = |Gg| denoted the group size,

and dGmax = max
g∈[m]

dGg . For any set T ⊂ [p], βT denotes the subvector of β indexed by

T . Let w = {w1, · · · , wm} be the user-defined positive weights associated with the

groups. The group lasso penalty (Yuan and Lin, 2006) is defined as

ϕG(β) =
∑
g∈[m]

wg

∥∥βGg

∥∥
2
. (2.1)

We will omit G in all notations when the group structure is clearly given.

In statistical estimation problems involving group selection, the group lasso norm

is combined with a convex empirical loss function Ln, and the estimator is deter-

mined by solving the following M-estimation problem:

minimizeβ∈Rp {Ln(β) + λnϕ(β)} . (2.2)

If the groups are disjoint, then the group lasso penalty will select and elimi-
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nate variables by groups. When the groups overlap, the above estimation enforces

an “all-out” pattern by simultaneously setting all variables in certain groups to be

zero, thus the zero-out variables are form a union of a subset of the groups (Jenat-

ton et al., 2011a). Such a pattern is desirable in many problems, such as graphical

models, multi-task learning and gene analysis (Jacob et al., 2009; Zhao et al., 2009b;

Mohan et al., 2014; Cheng et al., 2017b; Tarzanagh and Michailidis, 2018). Another

generalization of the group lasso for overlapping groups is the latent overlapping

group lasso (Jacob et al., 2009; Mairal and Yu, 2013), following an “all-in” pattern

by keeping the nonzero patterns as a union of groups. As noted in Yan and Bien

(2017), the decision to use an “all-in” or “all-out” strategy depends on the problem

and the corresponding scientific interpretations. The comparison between these two

strategies is not our objective in this paper. However, both methods suffer from

computational difficulties. We focus on introducing an approximation method for

the overlapping group lasso penalty (2.1) and will leave the computational improve-

ment of the latent overlapping group lasso for future work.

Problem (2.2) is a non-smooth convex optimization problem (Jenatton et al.,

2011a; Chen et al., 2012), and the proximal gradient method (Beck and Teboulle,

2009; Nesterov, 2013) is one of the most general yet efficient strategies to solve it.

Intuitively, proximal gradient descent minimizes the objective iteratively by applying

the proximal operator of λnϕ(β) at each step.

The proximal operator associated with group lasso penalty in (2.1) is defined as

proxλn
(µ) = argmin

β∈Rp

1

2
∥µ− β∥2 + λnϕ(β). (2.3)
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whose dual problem is shown to be the following by Jenatton et al. (2011b):

minimize
{ξg∈Rp}g∈[m]

(
1

2
∥µ−

m∑
g=1

ξg∥22

)
, s.t. ∥ξg∥2 ≤ λnwg, and ξgj = 0 if j /∈ Gg. (2.4)

The proximal operator (2.3) and its dual can be computed using a block coordinate

descent (BCD) algorithm, as studied by Jenatton et al. (2011b). We list the pro-

cedure in Algorithm 1 for readers’ information. The convergence of Algorithm 1 is

guaranteed by Proposition 2.7.1 of Bertsekas (1997).

Algorithm 1 BCD for Proximal Operator of Overlapping Group Lasso

Input: Matrix G, weights {wg}mg=1, vector u, penalty λn.

Requirement: Weights {wg}mg=1 > 0, penalty λn > 0.

Initialization: Initialize {ξg}mg=1 to a zero vector in Rp.
Output: Optimized coefficients β∗.

1: while stopping criterion is not met do
2: for all g ∈ {1, . . . ,m} do
3: Compute residual rg = u−

∑
h̸=g ξ

h.
4: if ∥rg∥2 ≤ λnwg then
5: ξgj = 0 for j /∈ Gg.
6: ξgj = rgj for j ∈ Gg.
7: else
8: ξgj = 0 for j /∈ Gg.

9: ξgj =
(

λnwg

∥rg∥2

)
rgj for j ∈ Gg.

10: end if
11: end for
12: end while
13: Calculate β∗ = u−

∑m
g=1 ξ

g.

Although additional techniques employing smoothing techniques have been de-

veloped to improve the optimization (Yuan et al., 2011; Chen et al., 2012), (2.3) and

(2.4) continue to offer crucial insights into the computational bottlenecks caused by

overlapping groups. Notably, the duality between (2.3) and (2.4) reveals that the

overlapping group lasso problem has an intrinsic dimension equal to a
∑

g∈[m] dg-
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dimensional separable problem. When the groups have a nontrivial proportion of

overlapping variables, the computation of the overlapping group lasso becomes sub-

stantially more difficult, eventually prohibitive on large-scale problems. This issue

significantly limits the applicability of the overlapping group lasso penalty. Next,

we introduce our non-overlapping approximation to rectify this challenge.

2.2.2 The Non-overlapping Approximation of the Overlap-

ping Group Lasso

The fundamental challenge in solving overlapping group lasso problems stems

from the non-separability of the penalty. To enhance computational efficiency, our

approach hinges on introducing separable operators. As a starting point, we will

illustrate this concept using a toy example of an interlocking group structure as a

special case. In this structure, the groups are arranged sequentially, with each group

overlapping with its adjacent neighbors (Figure 2.1a). For simplicity, we consider a

uniform weight scenario where wg ≡ 1 for all groups.

(a) Interlocking group structure.

(b) Partitioned group structure.

Figure 2.1: Illustration of proposed group partition in an interlocking group
structure. Red regions are the overlapping variables in the original group structure.

We now partition the original overlapping groups in Figure 2.1b into smaller
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groups as in Figure 2.1b. This partition identifies intersections as individual groups.

We define these new groups as G = {G1, · · · ,Gm}, where, in this specific instance,

m = 2m−1. Taking G1 as an example. We have G1 = G1∪G2 and by the triangular

inequality,

∥βG1∥2 ≤ ∥βG1∥2 + ∥βG2∥2.

Extending this principle to each group, the norm of the overlapping group lasso

based on G can be bounded by a reweighted non-overlapping group norm based on

G: ∑
g∈[m]

∥βGg∥2 ≤
∑
g∈[M]

hg∥βGg
∥2, (2.5)

where hg equals 1 for odd g and 2 for even g. Consequently, controlling the sum

on the right-hand side of (2.5) effectively controls the overlapping group norm on

the left-hand side. The key advantage of this approach is the separability of the

right-hand side norm, which substantially simplifies and enhances the efficiency of

optimization.

While this example is about the interlocking group structures, the whole idea is

applicable to any general overlapping pattern, as introduced in the two steps below.

Step 1: overlapping-induced partition construction. Our method starts

from constructing a new non-overlapping group structure G from G, following Al-

gorithm 2. We represent the initial group structure G by an m × p binary matrix

G, where Ggj = 1 if and only if the j-th variable is a member of the g-th group,

and Ggj = 0 otherwise. To clearly differentiate the original group structure G

and the derived non-overlapping structure G, we employ standard letters, such as

{g, d,m,w,G}, to represent quantities about the original group structure, while cal-

ligraphic letters, like {g,d,m,w,G}, are used for quantities about G. For instance,
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m denotes the number of groups in G, and g ∈ [m] serves as the index for groups

within G.

Algorithm 2 Construction of Overlapping-Induced Partition G

Input: Binary matrix G.
Output: New group structure G.

1: Begin with the set of all column indices C = {1, . . . , p}.
2: Start with k = 1.
3: while C is not depleted do
4: Select the initial column index j from C, and define I as the set of column

indices in G that match column G,j exactly: I = {j′ ∈ C |G,j′ = G,j}.
5: Assign the set I as the group Gk and exclude I from C: C ← C \ I.
6: Increment k by one: k = k + 1.
7: end while
8: Output G = {G1,G2, . . .}, with each Gk indicating a distinct group.

Step 2: overlapping-based group weights calculation. Note that each group

within G is a subset of at least one of the original groups in G. Conversely, each

group in G can be reconstructed as the union of groups in G. We introduce the

following mappings:

F (g) = {g : g ∈ [m],Gg ⊂ Gg} and F−1(g) = {g : g ∈ [m],Gg ⊂ Gg}.

Given positive weights w of G, we set the weights w of G as:

wg =
∑

g∈F (g)

wg, g ∈ [m]. (2.6)

With the new partition G and the new weights w from the previous two steps,

we define the following norm as the proposed alternative to the original overlapping

group lasso norm:

ψG(β) =
m∑

g=1

wg

∥∥βGg

∥∥
2
. (2.7)
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In general, by triangular inequality, the proposed norm is always an upper bound

of the original group lasso norm:

ϕG(β) =
m∑
g=1

wg

∥∥βGg

∥∥
2
⩽

m∑
g=1

wg

∥∥βGg

∥∥
2

= ψG(β). (2.8)

Our proposed penalty is essentially a weighted non-overlapping group lasso on G.

For illustration, Figure 2.2 shows the unit ball of these two norms based on G1 =

{β1, β2} and G2 = {β1, β2, β3} in a three dimensional problem. All singular points

of the ϕG-ball (where exactly zero happens in (2.2)) are also singular points of the

ψG-ball.

Readers may observe that the inequality in (2.8) can also hold for other separable

norms. For instance, consider partitioning all p variables into individual groups and

employing a weighted lasso norm as another upper bound for ϕG, represented by:

p∑
j=1

( ∑
{g|βj∈Gg}

wg

)
|βj|. (2.9)

This approach was taken by Cheng et al. (2017b). So what is special about our

proposed norm in (2.7)?

Intuitively, as illustrated by our construction process for G or Figure 2.2, our

method introduces additional singular points in the norm only when it is necessary

to achieve separability. Unlike the lasso upper bound, this process avoids adding

redundancy. As such, our approximation is expected to maintain a certain level of

tightness. We now formally substantiate this intuition. Given any group structure

G and weights w, following Cai et al. (2022), we define the ℓq1/ℓq2 norm of β for any

0 ⩽ q1, q2 ⩽∞ as

||β{G,w}||q1,q2 =
( ∑

g∈[m]

wg||βGg ||q1q2
) 1

q1 . (2.10)
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Figure 2.2: Illustration of two norms in R3: the outer region depicts the unit ball
of the overlapping group lasso norm defined by {β : ϕG(β) ⩽ 1}; the inner region

represents the unit ball of our proposed separable norm {β : ψG(β) ⩽ 1}.

This general class of norms potentially includes most commonly used penalties,

including the weighted lasso penalty. The subsequent theorem shows that the pro-

posed ψG(β) is the tightest separable relaxation of the original overlapping group

lasso norm among all separable ℓq1/ℓq2 norms.

Theorem 1. Let G represent the set of all possible partitions of [p]. Given the

original groups G and their weights w, there does not exist 0 ⩽ q1, q2 ⩽ ∞, G̃ ∈

G, w̃ ∈ (0,∞)p such that:


ϕG(β) ⩽ ||β{G̃,w̃}||q1,q2 ⩽ ψG(β) for all β ∈ Rp

||β{G̃,w̃}||q1,q2 < ψG(β) for some β ∈ Rp

. (2.11)
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2.3 Statistical Properties

Incorporating the proposed norm ψG into an M-estimation procedure leads to

the following optimization problem:

minimizeβ∈Rp {Ln(β) + λnψG} , (2.12)

which is different but related to (2.2). In this section, by studying the statistical

properties of the regularized estimator based on ψG and the estimator based on

ϕG, we show that ψG could be used as an alternative to ϕG. Following previous

group lasso studies (Huang and Zhang, 2010; Lounici et al., 2011; Chen et al., 2012;

Negahban et al., 2012; Dedieu, 2019), our analysis will focus on high-dimensional

linear models. Specifically, define the linear model as

Y = Xβ∗ + ε, (2.13)

where Y ∈ Rn×1 is the response vector, X ∈ Rn×p is the covariate matrix, and

ε ∈ Rn×1 is a random noise vector. The overlapping group lasso coefficient estimator

under the linear regression model is defined by a solution of (2.2) under the squared

loss:

β̂G ∈ arg min
β∈Rp

1

2n
∥Y −Xβ∥22 + λnϕG(β). (2.14)

Correspondingly, we define the regularized estimator by our approximation norm as

β̂G ∈ arg min
β∈Rp

1

2n
∥Y −Xβ∥22 + λnψG(β). (2.15)

The solution uniqueness of (2.14) and (2.15) has been studied by Jenatton et al.
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(2011a), and we include their results in Appendix A.1 for completeness. However,

our study only requires the estimator to be one solution to the problem, as in

Jenatton et al. (2011a); Negahban et al. (2012); Wainwright (2019). So we will not

specifically worry about the uniqueness in our discussion.

As a remark, our objective is not to present (2.15) as an approximate optimiza-

tion problem of (2.14). Rather, we focus on the statistical equivalence of the two

classes of estimators defined by (2.14) and (2.15) in terms of their statistical proper-

ties under sparse regression models when appropriate values of λn are chosen (which

may differ for each estimator). Our theoretical analysis focuses on three aspects.

In Section 2.3.1, we establish that under reasonable assumptions, the ℓ2 estimation

error bound for (2.15) is no larger than that for (2.14). In Section 2.3.2, we present

the minimax error rate for the overlapping sparse group regression problem, showing

that both (2.14) and (2.15) are minimax optimal under additional requirements of

the group structures. Lastly, in Section 2.3.3, we demonstrate that both estimators

consistently recover the support of the sparse β∗ with high probability under similar

sample size requirements.

2.3.1 Estimation Error Bounds

We start by introducing additional quantities. Define the overlapping degree hGj

as the number of groups in G containing βj, and hGmax = maxhj. Given a group

index set I ⊆ [m], we use GI to denote the union
⋃

g∈I Gg. Given G and I, following

Wainwright (2019), we define two parameter spaces:

M(I) = {β ∈ Rp | βj = 0 for all j ∈ (GI)
c} ,

M⊥(I) = {β ∈ Rp | βj = 0 for all j ∈ GI} ,
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and we further use βM(I) to denote the projection of β onto M(I).

Given any set T ⊆ [p], we define the a set of groups GT = {g ∈ [m] | Gg ∩ T ̸= ∅}.

Notice that (GGT
)c is called the hull of T in Jenatton et al. (2011a). Let supp(β) =

{j ∈ [p] | βj ̸= 0} denotes the support set. We define the group support set SG(β) =

Gsupp(β), and the augmented group support SG(β) = {g ∈ [m] | Gg ∩ GS(β) ̸= ∅}.

Furthermore, define s = |supp(β)|, sg = |S(β)|, and sg = |S(β)|. We omit the

subscript G in notations when G is clearly given in context. Now we introduce

additional assumptions under the regression model (2.13).

Assumption 1 (Sub-Gaussian noise for the response variable). The coordinates

of ε are i.i.d. zero-mean sub-Gaussian with parameter σ. Specifically, there exists

σ > 0 such that E[exp(tε)] ⩽ exp(σ2t2/2) for all t ∈ R.

Our theoretical studies also hold for a fixed design of X, with trivial modifica-

tions. We prefer to introduce the random design here to make the statements more

concise and interpretable, especially for the comparison in Section 2.3.3.

Assumption 2 (Normal random design for covariates). The rows of the data matrix

X are i.i.d. from N(0,Θ), where 1/c1 ⩽ γmin(Θ) ⩽ γmax(Θ) ⩽ c1 for some constant

c1 > 0.

Lastly, we need some mild constraints on the group dimensions.

Assumption 3 (Dimension of the group structure). The predefined group structure

G satisfies dmax ⩽ c2n for some constant c2 > 0. In addition, we assume logm≪ n.

The following theorem establishes the ℓ2 estimation error bounds for the two

estimators.

Theorem 2. Given G and its induced G according to Algorithm 2, define hgmin =

min
j∈Gg

hj, h
g
max = max

j∈Gg

hj. Let δ ∈ (0, 1) be a scalar that might depend on n. Under
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Assumptions 1, 2 and 3, for β̂G and β̂G defined in (2.14) and (2.15), we have the

following results:

1. Suppose that β∗ satisfies the group sparsity condition

sg(β
∗) ≲

n

logm+ dmax

·
min
g∈[m]

(w2
gh

g
min)

max
g∈S

(w2
gh

g
max)

. (2.16)

When λn = c′σ

min
g∈[m]

(w2
gh

g
min)

√
dmax

n
+ logm

n
+ δ for some constant c′ > 0, we have

∥∥∥β̂G − β∗
∥∥∥2
2
≲ σ2 ·

( ∑
g∈S

wg
2
)
· hGS

max

min
g∈[m]

(
w2

gh
g
min

) · (dmax

n
+

logm

n
+ δ

)
. (2.17)

with probability at least 1− e−c3nδ for constant c3 > 0.

2. Suppose β∗ satisfies the group sparsity condition

sg(β∗) ≲
n

logm + dmax

·
min
g∈[m]

(w2
g)

max
g∈S

(w2
g)
. (2.18)

When λn = c′σ
min
g∈[m]

wg

√
dmax

n
+ logm

n
+ δ for some constant c′ > 0, we have

∥∥∥β̂G − β∗
∥∥∥2
2
≲ σ2 ·

∑
g∈{F−1(g)}g∈S

wg
2

min
g∈[m]

(
w2

g

) ·
(
dmax

n
+

logm

n
+ δ

)
. (2.19)

with probability at least 1− e−c4nδ for constant c4 > 0.

The error bound in (2.17) subsumes the non-overlapping group lasso error bound

as a particular instance. When the groups in G are disjoint, the reduced form of
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(2.17) matches the bounds studied in Huang and Zhang (2010); Lounici et al. (2011);

Negahban et al. (2012); Wainwright (2019). The main difference in the context of

overlapping groups is the necessity to account for the overlapping degree and the

extension of sparsity requirements to augmented groups. The conditions specified

in (2.16) and (2.18) relate to the cardinality of the augmented group support set

(the number of non-zero groups in non-overlapping group structure). Although the

conditions in (2.16) and (2.18) may initially appear distinct, they generally converge

to a similar requirement in many typical cases, which can lead to an informative

comparison between the two bounds in (2.17) and (2.19). The following results can

characterize this.

Assumption 4. Assume the predefined group structure G and its induced group

structure G satisfy max{dmax,m} ≍ max{dmax,m}.

Proposition 3. Suppose that max
g∈S
|F−1(g)| is bounded by a constant. Under As-

sumption 4, the following inequality holds:

∑
g∈F−1(S)

wg
2

min
g∈[m]

(
w2

g

) · (dmax

n
+

logm

n
+ δ

)
≲

( ∑
g∈S

wg
2
)
· hGS

max

min
g∈[m]

(
w2

gh
g
min

) · (dmax

n
+

logm

n
+ δ

)
.

This implies that the error bound for the estimator β̂G in (2.17) also serves as an

upper bound for the error associated with the estimator β̂G.

The quantity |F−1(g)| is the number of groups in G that has intersect with Gg.

Proposition 3 requires that every Gg such that Gg ∩ supp(β∗) ̸= ∅ is partitioned

into bounded number of non-overlapping groups. On the other hand, Assumption

4 requires that the maximum of two quantities — the maximum group size and

the number of groups in the given group structure G — should have the same
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order as those in the induced structure G. The above requirement always holds

for interlocking groups with similar groups and overlap sizes (see Figure 2.1). More

importantly, we can always assess the assumption directly on data by calculating the

group sizes and numbers for both G and G. In Section 4.3, we evaluate five group

structures from real-world gene pathways and examine the ratio of the maximum of

two quantities from each G and G. Assumption 4 looks reasonable in all of these

real-world grouping structures. See details in Table 2.1.

2.3.2 Lower Bound of Estimation Error

Proposition 3 compares the two estimators’ upper bounds of estimation errors.

While the comparison gives intuitive ideas, it does not rigorously establish the sta-

tistical equivalence without the tightness of the error bounds. To strengthen our

findings, we now investigate the minimax estimation error rate in linear regression

models characterized by overlapping group sparsity. We will focus on the following

class of group-wise sparse vectors:

Ω(G, sg) =

{
β :

∑
Gg∈G

1{∥βGg∥2 ̸=0} ⩽ sg

}
(2.20)

Following the assumption of Cai et al. (2022), we focus on the special case of equal-

size groups.

Assumption 5 (Equal size groups). The m predefined groups of G come with equal

group size d, m≪ p, d≪ log(p).

Theorem 4. (Lower bound of estimation error)· Under Assumptions 1,2 and 5, we

have

inf
β̂

sup
β∈Ω(G,sg)

E∥β̂ − β∥22 ≳
σ2
(
sg(d+ log(m

sg
))
)

n
. (2.21)
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Combining Theorem 2 and Theorem 4, we can see that both estimators attain

the minimax error rate and are statistically equivalent, as demonstrated by the

following corollary.

Corollary 1. Under Assumptions 1–4, if h
GS
max ≍ 1, both β̂G and β̂G attain the

minimax estimation rate specified in (2.21).

2.3.3 Support Recovery Consistency

We now proceed to analyze the support recovery consistency of β̂G and β̂G. We

begin by introducing more quantities for our analysis. For any β ∈ Rp, we define

the mapping rG(β) : Rp → Rp as:

rG(β)j =


βj

∑
g∈Gsupp(β),Gg∩j ̸=∅

wg

∥βGg∩supp(β)∥2
, if j ∈ supp(β),

0, if j /∈ supp(β).

(2.22)

rG(β) is closely related to subgradients of the penalty and is used for determining

optimality conditions. In the lasso case, rG(β) is the sign vector, which is exactly

the lasso penalty. When focusing on β∗, we write S = supp(β∗), rG = rG(β∗), and

β∗
min = min

{
|β∗

j |; β∗
j ̸= 0

}
.

Our analysis essentially follows the strategy in Jenatton et al. (2011a). The

major difference is that we study the problem with a more tailored setup for the

random design rather than the fixed design as in Jenatton et al. (2011a). Using ran-

dom designs, as discussed before, is helpful to compare the two estimators β̂G and β̂G

directly. We now introduce additional assumptions used to study the pattern con-

sistency, which can be seen as the population-level counterpart of the assumptions

in Jenatton et al. (2011a).
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Assumption 1’ (Gaussian noise for the response variable). Under model (2.13),

the coordinates of ε are i.i.d from N(0, σ2).

Assumption 6 (Irrepresentable condition). For any β ∈ Rp, define

ϕc
S(βSc) =

∑
g∈[m]\GS

wg∥βSc∩Gg∥2,

and its dual norm

(ϕc
S)∗[u] = sup

ϕc
S(βSc )≤1

β⊤
Scu.

Assume that there exists τ ∈ (0, 2
3
], such that

(ϕc
S)∗[ΘScSΘ−1

SSrS] ⩽ 1− 3τ

2
. (2.23)

Assumption 1’ is widely used to study support recovery consistency of linear

regression. For example, in addition to Jenatton et al. (2011a), it is also used in

Zhao and Yu (2006); Wainwright (2009, 2019). Assumption 6 is the population-

level version of the irrepresentable condition as discussed in Zhao and Yu (2006)

and Wainwright (2019).

Theorem 5. Suppose Assumption 1’, Assumption 2 and Assumption 6 hold. Under

model (2.13), assume the support of β∗ is compatible with the overlapping group

lasso penalty, such that the zero positions are given by an exact union of groups in

G. Mathematically, that means

[p] \
{ ⋃

Gg∩S=∅

Gg

}
= S. (2.24)

1. If

log(p− |S|) ⩾ |S|,
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λn|S|
1
2 ≲ min

{β∗
min

AS

,
β∗
minaSc

AS

∑
g∈GS

wg

√
|Gg ∩ S|

}
, (2.25)

n ≳ max
{σ2 log(p− |S|)

a2Scλ2n
,
max
j∈S
{(β∗

j )2} log(p− |S|)

a2Scλ2n

}
, (2.26)

where aS = min
g∈GS

wg

dg
, aSc = min

g∈GSc

wg

dg
, and AS = hmax(GS) max

g∈GS

wg∥u∥1.

Then for the overlapping group lasso estimator β̂G, we have:

P
(
supp(β̂G) ̸= S

)
⩽8 exp

(
− n

2

)
+ exp

(
− na2Sτ

2γmin(ΘSS)

4 ∥rS∥22 γmax

(
ΘScSc|S

))
+ exp

(
− nλ2nτ

2a2Sc

144σ2

)
+ 2|S| exp

(
− nc2(S, G)

2σ2

) (2.27)

with

c(S, G) ≍ min
{β∗

min

AS

,
β∗
minaSc

AS

∑
g∈GS

wg

√
|Gg ∩ S|

}
.

2. Furthermore, if maxg∈GS
F−1(g) ≍ 1, for the proposed estimator β̂G and as-

suming maxg∈GS
F−1(g) ≍ 1, the property holds:

P
(
supp(β̂G) ̸= S

)
⩽8 exp

(
− n

2

)
+ exp

(
− na2Sτ

2γmin(ΘSS)

4
∥∥rGS∥∥22 γmax

(
ΘScSc|S

))
+ exp

(
− nλ2nτ

2a2Sc

144σ2

)
+ 2|S| exp

(
− nc2(S,G)

2σ2

)
,

(2.28)

with

c(S,G) ≍ min
{β∗

min

AS

,
β∗
minaSc

AS

∑
g∈GS

wg

√
|Gg ∩ S|

}
.

The conditions involved in the above theorem can be seen as the population-

level counterparts of those used in Jenatton et al. (2011a) for the overlapping group

lasso estimator under the fixed design. As an illustration of the conditions, in
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the lasso context, (2.25) and (2.26) reduce to the typical scaling of n ≈ log p and

λn ≈ σ(log p/n)1/2. Together with the requirements on the sample size|S| log(p−|S|)

and on β∗
min, they match the requirements in Wainwright (2009) for the support

recovery by the lasso regression. For non-overlapping group lasso estimators, our

assumptions align with the conditions outlined in Corollary 9.27 of Wainwright

(2019) under the random design.

Theorem 5 shows that both estimators consistently identify the support of the

group sparse regression coefficients. Compared to the previous study of the over-

lapping group lasso estimator of Jenatton et al. (2011a), we switch to the random

design of X, because such a setting renders a common basis for the comparison of

the two estimators directly. Specifically, comparing (2.27) and (2.28), as well as the

common conditions, we can see that the two estimators give comparable performance

in support recovery with respect to the sampling complexity.

2.4 Comparison of Computational Complexity

In the previous section, we have shown that the proposed penalty induces a

class of estimators statistically equivalent to the original overlapping group lasso

estimator. In this section, we demonstrate the advantage of our proposed estimator

in computational complexity. Specifically, solving (2.15) admits a lower complexity

compared with solving (2.13).

As previously mentioned, the most common strategy for solving overlapping

group lasso is based on proximal-based algorithms (Jenatton et al., 2011b; Yuan

et al., 2011; Chen et al., 2012). These algorithms involve an outer loop implementing

gradient-based steps and an inner loop executing the proximal operator (2.3), as

studied in detail by Chen et al. (2012); Yan and Bien (2017). According to Chen
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et al. (2012), the per-iteration time complexity for the proximal step is O(
∑

g∈[m] dg),

and the proximal gradient method outer loops render a convergence rate of O(1/ϵ)

in scenarios with overlapping groups, where ϵ denotes the desired accuracy.

In contrast, the proposed penalty converts the optimization of the overlapping

group lasso problem to a non-overlapping group lasso problem. For any available

proximal gradient algorithm, as the groups are disjoint, the proximal operator in

(2.3) can be computed in closed form with the complexity of O(p) for each itera-

tion (Yuan and Lin, 2006), which gives a substantial reduction compared with the

overlapping group lasso, especially when the groups in the original structure heavily

overlap. Moreover, in non-overlapping scenarios, the outer loop enjoys an improved

convergence rate of O(1/
√
ϵ) (Liu et al., 2009a; Mairal et al., 2010). Therefore, solv-

ing (2.15) by proximal gradient methods enjoys better efficiency in both per-iteration

complexity and number of iterations.

Furthermore, there are even more efficient strategies (Friedman et al., 2010; Qin

et al., 2013; Yang and Zou, 2015) to solve the non-overlapping group lasso problem

than the proximal gradient methods. These methods offer further improvements

in the computational complexity. However, to our knowledge, these improvement

options are unavailable for the overlapping group lasso problem. Hence, the proposed

method can enjoy the benefits of these more efficient strategies, further amplifying

its computational advantage.

2.5 Simulation

In this section, we assess the performance of the proposed estimator to demon-

strate our claimed properties. At a high level, we want to use the simulation ex-

periments to show that the proposed estimator based on (2.7) gives similar statis-
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tical performance to the overlapping group lasso estimator while admitting much

better computational efficiency. Our estimator achieves this primarily because of

the tightest separable relaxation property of Theorem 1, which can be attributed

to two designs of the norm (2.7): the induced partition G and the corresponding

overlapping-based weights w. Therefore, in our simulation experiments, we will also

evaluate the effects of these two designs by comparing the proposed estimator with

other benchmark estimators. In Sections 2.5.1–2.5.3, we evaluate the performance

of the proposed estimator and compare it with the weighted lasso estimator with

overlapping-based weights, as discussed in (2.9), under various configurations. This

sequence of experiments will demonstrate the importance of our proposed partition

G. In Section 2.5.4, we compare the proposed estimator with two other group lasso

estimators, using the same G but overlapping-ignorant weights, under the same set

of configurations. The results will demonstrate the importance of using the proposed

overlapping-based weights w.

Two MATLAB-based solvers for the overlapping group lasso problems are em-

ployed. The first solver (Yuan et al., 2011) is from the SLEP package (Liu et al.,

2009b). It can handle general overlapping group structures. The second solver is

from the SPAM package (Mairal et al., 2014), which is designed to solve the over-

lapping group lasso problem when the groups can be represented by tree structures,

formally defined in Section 2.5.2. Therefore, the SPAM solver is used only for the

experiment in Section 2.5.2. The SLEP solver is more general, but using the two

solvers can provide a more thorough evaluation across multiple implementations.

For a fair comparison, the SLEP and SPAM package solvers were also applied to

solve lasso and non-overlapping group lasso estimators in our benchmark set to

ensure that the timing comparison implementation is consistent.

As an important side note, SLEP is widely acknowledged as one of the most effi-
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cient solvers for the overlapping group lasso problem (Yuan et al., 2011; Chen et al.,

2012; Cheng et al., 2017b). Still, for non-overlapping group lasso problems, alter-

native solvers, such as Yang and Zou (2015), may offer much better computational

efficiency. For example, Yang and Zou (2015) reported that their solver is about

10–30 times faster than the SLEP package when solving non-overlapping group lasso

problems. Such solvers are available because of the separability in non-overlapping

groups and are not available for overlapping problems. For a fair comparison to

avoid implementation bias, we use SLEP to solve for our estimator. Therefore, the

computational advantage we demonstrate will be conservative. In practice, with

the better solvers used, our method would enjoy an even more substantial compu-

tational advantage over the original overlapping group lasso than reported in the

experiments.

Evaluation criterion. For each configuration, we generate 50 independent repli-

cates and report the average result. The performance assessment is conducted in

three aspects:

• Regularization path computing time. We begin by performing a line

search to determine two pivotal values: λmax and λmin. The search for λmax

starts at 108 and decreases progressively, multiplying by 0.9 at each iteration,

until reaching the first value at which no variables are selected. In contrast, the

determination of λmin starts from 10−8 and increases incrementally, multiplying

by 1.1 each time, until the first value is found that retains the entire set of

variables. Following this, we select 50 values in log-scale within the range

[λmin, λmax]. Subsequently, We compute the entire regularization path using

these λ values and record the computation time associated with this process

as a performance metric. The computing time evaluation mimics the most
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practical situation where the whole regularization path is solved for tuning

purposes.

• Relative ℓ2 estimation error: From the entire regularization path, we se-

lect the smallest relative estimation error, defined as ∥β̂ − β∗∥2/∥β∗∥2, as the

estimation error for the method. This serves as the measure of the ideally

tuned performance.

• Support discrepancy: From the entire regularization path, we select the

smallest support discrepancy, defined as |{i ∈ [p] : |sign(β̂i)| ̸= |sign(β∗
i )|}|/p.

Such a (normalized) Hamming distance is commonly used as a performance

metric for support recovery (Grave et al., 2011; Jenatton et al., 2011a) to

quantify the accuracy of pattern selection.

2.5.1 Interlocking group structure

In the first set of experiments, we evaluate the performances based on inter-

locking group structure (Figure 2.1a). This group structure exhibits a relatively

low degree of overlap and is frequently used for evaluating overlapping group lasso

methods (Yuan et al., 2011; Chen et al., 2012). Specifically, we set m interlocked

groups with d variables in each group and 0.2d variables in each intersection. For

example, G1 = {1, · · · , 10}, G2 = {8, 9, · · · , 17}, · · · , G10 = {33, 34, · · · , 42} when

m = 5 and d = 10. In the experiment, we will vary m and d to evaluate their

impacts on the performance.

Following the strategy of Yan and Bien (2017), we generate the data matrix X

from a Gaussian distribution N(0,Θ), where Θ is determined to match the corre-

lations within the specified group structure. Initially, we construct a matrix Θ̃ as
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follows:

Θ̃ij =



1, if i = j,

0, if βi and βj belong to different groups in G,

0.6, if βi and βj are in the same group in G,

0.36, if βi and βj are in the same group in G but different groups in G,

and then Θ is derived as the projection of Θ̃ onto the set of symmetric positive

definite matrices with a minimum eigenvalue of 0.1. Such strong within-group cor-

relation patterns have also been used in Zhao et al. (2009a); Yang and Zou (2015).

We generate β∗ by first sampling its p coordinates from the normal distribution

N(10, 16), then randomly flipping signs of the covariates and randomly setting 90%

of the groups to be zero. This setup aligns with the setting in Bach (2008); Friedman

et al. (2010); Huang and Zhang (2010). The response variable Y is generated from

Y = Xβ∗ + ϵ, where ϵ follows a normal distribution with mean 0 and variance

σ2, and we set σ2 = 3 following Yang and Zou (2015). The group weight in the

overlapping group lasso problem is wg =
√
dg, as is usually used in practice. We

used the absolute difference in function values between iterations for all methods as

the stopping criterion, with a tolerance set at 10−5.
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(c) Performance vs. Groups size

method
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Proposed approximation method
type
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Figure 2.3: Regularization path computing time, ℓ2 estimation error, and
support discrepancy under different configurations of interlocking groups. (a)

Varying sample size n when fixing m = 400 and d = 40 (p = 12808); (b) Varying
number of groups m when fixing n = 4000 and d = 40 ; (c) Varying group size d

when fixing n = 4000 and m = 400.

Figure 2.3 presents the average computation times, estimation errors, and sup-

port discrepancy with 95% confidence intervals (CIs). The result highlights the
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significant computational advantage of the proposed method over the original over-

lapping group lasso. Specifically, our method is 5–20 times faster than the original

overlapping group lasso.

Even though the overlap is not severe within the interlocking group structure,

solving the overlapping group lasso problem carries a more substantial computa-

tional burden due to the non-separable structure within its penalty term. The com-

putational time increases with larger sample sizes, a greater number of variables,

and larger group sizes, and the computational disadvantage of the overlapping group

lasso is more substantial as the problem scales up. In contrast, our proposed method

consistently achieves accuracy similar to the overlapping group lasso estimator in

both the estimation error and support discrepancy. This consistency in performance,

observed across a spectrum of configurations, serves as an empirical confirmation of

the validity of our theoretical findings.

On the other hand, the weighted lasso approximation is slightly faster than our

method. This is expected from the optimization perspective. However, the weighted

lasso approximation exhibits much higher errors than the overlapping group lasso

estimator and our estimator across all configurations, revealing that the weighted

also gives a poor approximation to the overlapping group lasso. This is because the

weighted lasso fails to leverage the group information, different from the induced

groups G used in our estimator.

In summary, our proposed estimator achieves comparable statistical performance

to the original overlapping group lasso estimator while significantly enhancing com-

putational efficiency. In contrast, although computationally efficient, the weighted

lasso yields notably poor estimations, rendering it an uncompetitive alternative for

approximating the original problems.



33

2.5.2 Nested tree structure of overlapping groups

In this experiment, we evaluate the performance of the estimators under a con-

figuration of the tree-group structures introduced in Jenatton et al. (2011b), as

below.

Definition 1. (Jenatton et al., 2011b) A set of groups G = {G1, · · · , Gm} is said

to be tree-structured in [p] if ∪g∈[m]Gg = [p] and if for all g, g′ ∈ [m]. Gg ∩ Gg′ ̸= ∅

implies either Gg ⊂ Gg′ or Gg′ ⊂ Gg.

In particular, we consider the special case of the tree groups, the nested group

structure where all groups are nested. This configuration is interesting as it repre-

sents an extreme setting of overlapping groups – the overlapping degree is maximized

in a certain sense and we hope to evaluate the methods in this extreme scenario.

The nested group structure was also used in a few previous studies (Kim and Xing,

2012; Nowakowski et al., 2023). In this experiment, the SPAM solver, designed for

the tree group structures, is also used to provide a more thorough evaluation across

different implementations. We consider the following nested group configuration:

800 groups G = {G1, . . . , G800} are established, where Gg ⊂ Gg+1 and |Gg| = g× 4,

g = 1, · · · , 800 with p = 3200 in total. The sample size varies from 600 to 2400. The

data matrix X is generated from N(0,Θ), where Θ is generated by first constructing

the matrix Θ̃ as

Θ̃ij =


1, if i = j,

0.6, if βi and βj belong to the same group in G,

0.36, if βi and βj are in one group in G but in two groups in G,

.

and then projecting Θ̃ onto the set of symmetric positive definite matrices with min-
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imum eigenvalue 0.1. The generative process for β∗ and y remains nearly identical

as before, where the only difference is that the first 90% of the groups are set to

zero following the hierarchical structure. The group weights are set to wg = 1/dg

as suggested (Nowakowski et al., 2023). For a fair comparison of the two solvers,

in this experiment, we adopt the stopping criterion provided in the SPAM package

(Mairal et al., 2014) with a convergence tolerance 10−5.

0

4e2

8e2

12e2

600 1200 2400
Sample Size

T
im

in
g 

in
 s

ec
.

1.5e−1

3.0e−1

4.5e−1

600 1200 2400
Sample Size

E
st

im
at

io
n 

er
ro

r

0

4e−4

8e−4

600 1200 2400
Sample Size

S
up

po
rt

 d
is

cr
ep

an
cy

method
Overlapping group lasso

Weighted lasso

Proposed approximation method
type

SLEP

SPAM

Figure 2.4: Regularization path computing time, ℓ2 estimation error, and support
discrepancy across various sample sizes under the nested tree group structure.

Figure 2.4 shows the performance of the three methods based on both solvers.

SLEP is generally faster than SPAM, but the two solvers give consistent conclusions

about the estimators. As studied by Jenatton et al. (2011b), solving the overlapping

group lasso problem becomes highly efficient under such a nested group structure

because, under a tree structure, a single iteration over all groups is adequate to

obtain the exact solution of the proximal operator. Our timing results support

this statement. Compared with the previous setting, the timing advantage of our

method is reduced. However, our method is still at least twice as fast as the overlap-

ping group lasso. When considering estimation error and support discrepancy, our

proposed estimator consistently delivers similar results compared to the overlapping

group lasso estimator. The comparison with the weighted lasso remains similar to
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the previous experiment; while the lasso estimator is also fast to compute, it delivers

very poor approximation.

In summary, solving overlapping group lasso problems exhibits efficiency when

applied to tree structures. However, even in such cases, our proposed estimator

maintains reasonable computational advantage and similar statistical estimation

performance compared to the original overlapping group lasso estimator.

2.5.3 Group structures based on real-world gene pathways

Table 2.1: Summary information for the gene pathways: the mean and standard
deviation of both group size (d̄/sd(d)) and the overlapping degree (h̄/sd(h)), the

number of genes (p), and the ratio required in Assumption 4.

Pathways d̄/sd(d) h̄/sd(h) p
max{m,dmax}/
max{m, dmax}

BioCarta (Kong et al., 2006) 15.4/ 8.71 3.25/ 5.56 1129 2.35

PID (Schaefer et al., 2008) 38.51/ 19.59 3.28/ 5.09 2297 5.95

KEGG (Kanehisa et al., 2015) 58.48/ 47.36 2.58/ 3.39 4207 3.61

WIKI (Slenter et al., 2017) 38.17/ 44.10 4.35/ 7.70 6242 4.94

Reactome (Gillespie et al., 2021) 45.31/ 54.10 8.78/ 13.26 8331 2.35

The previous two sets of experiments are based on human-designed group struc-

tures. To reflect more realistic situations, in this set of experiments, we use five

gene pathway sets from the Molecular Signatures Database (Subramanian et al.,

2005) as group structures, summarized in Table 2.1. Each gene pathway represents

a collection of genes united by common biological characteristics. These pathways

have been widely adopted in studies of cancer and biological mechanisms (Menashe

et al., 2010; Yuan et al., 2011; Livshits et al., 2015; Chen et al., 2020).

In particular, this data set can be used to assess the empirical applicability of

Assumption 4 in our theory. The last column of Table 2.1 shows the ratio be-

tween max{m,dmax} and max{m, dmax}. All values are within the range of [2,6],
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indicating that the two terms can be treated as terms in the same order.

We use the gene expression data from Van De Vijver et al. (2002) as the co-

variate matrix X, which can be accessed through the R package breastCancerNKI

(Schroeder et al., 2021). This design matrix has 295 observations and 24,481 genes.

We perform gene filtering for each gene pathway set to exclude genes not defined

within any pathways, a data processing step commonly used in similar studies (Jacob

et al., 2009; Lee and Xing, 2014; Chen et al., 2012). The data-generating procedure

for β∗ and y remains almost the same as before, except that we use a much sparser

model because of the smaller sample size of the data. Specifically, we randomly

sample 0.05m active groups and set the coefficients in other groups to zero. The

weights in overlapping group lasso are set to be
√
dg.

Table 2.2: Comparison of the average computing time (in seconds) and the
corresponding 95% confidence intervals for each pathway group structure.

Group

Structure
Overlapping group lasso Weighted lasso The proposed approximation

BioCarts 67.18 [ 62.28, 72.08] 6.22 [ 5.99, 6.45] 16.03 [ 15.17, 16.89]

KEGG 287.27 [ 267.18, 307.36] 28.77 [ 26.42, 31.12] 48.32 [ 45.12, 51.52]

PID 445.99 [ 420.56, 471.42] 10.27 [ 9.74, 10.80] 31.25 [ 29.43, 33.07]

WIKI 1279.22 [1214.34, 1344.10] 63.56 [ 57.36, 69.76] 132.79 [121.82, 143.76]

Reactome 3739.97 [3569.27, 3910.67] 116.34 [106.32, 126.36] 194.61 [181.31, 207.91]

Table 2.2 displays the computing time, and Table 2.3 displays the estimation

error results for the five pathway group structures. The high-level message remains

consistent. Both our proposed group lasso approximation and the lasso approx-

imation could substantially reduce the computing time. Across all settings, the

proposed method reduces the computation time by 4 - 20 times and is more than
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Table 2.3: Comparison of the relative ℓ2 estimation errors and the corresponding
95% confidence intervals for each group structure.

Group Structure Overlapping group lasso Lasso Proposed approximation

BioCarts 0.22 [0.20, 0.24] 0.28 [0.24, 0.32] 0.25 [0.22, 0.28]
KEGG 0.52 [0.47, 0.57] 0.80 [0.76, 0.84] 0.54 [0.51, 0.57]

PID 0.23 [0.21, 0.25] 0.50 [0.44, 0.56] 0.25 [0.23, 0.28]
WIKI 0.55 [0.49, 0.61] 0.65 [0.58, 0.72] 0.55 [0.49, 0.61]

Reactome 0.66 [0.63, 0.69] 0.85 [0.83, 0.87] 0.65 [0.62, 0.68]

Table 2.4: Comparison of the support discrepancy and the corresponding 95%
confidence intervals for each group structure.

Group Structure Overlapping group lasso Lasso Proposed approximation

BioCarts 0.041 [0.039, 0.043] 0.043 [0.040, 0.046] 0.041 [0.039, 0.043]
KEGG 0.023 [0.021, 0.025] 0.026 [0.024, 0.028] 0.023 [0.021, 0.025]

PID 0.033 [0.031, 0.035] 0.033 [0.031, 0.035] 0.033 [0.031, 0.035]
WIKI 0.013 [0.012, 0.014] 0.013 [0.011, 0.015] 0.013 [0.012, 0.014]

Reactome 0.012 [0.011, 0.013] 0.020 [0.019, 0.021] 0.012 [0.010, 0.014]

10 times faster in all settings with higher dimensions. Meanwhile, the proposed

estimator delivers statistical performance similar to that of the original overlapping

group lasso estimator. In contrast, the lasso approximation fails to leverage the

group information effectively and yields inferior estimation results.

2.5.4 Comparison of different weighting choices

In addition to the partitioned groups, the overlapping-based weight defined in

(2.6) for each partitioned group g is another crucial component to ensure the tight-

ness of (2.7). We will demonstrate this aspect by experiments here to compare the

proposed weights (2.6) with two other commonly used choices of weights that do

not consider the original overlapping pattern: the uniform weights and group size-

dependent weights (Yuan and Lin, 2006), on the same induced groups G. Specifi-

cally, uniform weighting is the setting when all groups share the same weight while

the size-dependent weighting uses the weight
√

dg if wg =
√
dg (interlocking and
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gene pathway groups) and is 1/dg if wg = 1/dg (nested groups). The compara-

tive analysis is performed under all group structures in the previous simulations,

maintaining consistent simulation settings.
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(b) Performance vs. Sample size under nested tree structure
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Figure 2.5: Regularization ℓ2 estimation error and support discrepancy of the
proposed method using different choices of weights under interlocking group

structure and nested tree structure. Figure 2.5a is an extension to Figure 2.3, and
Figure 2.5b is an extension to Figure 2.4.

Figure 2.5a and Figure 2.5b illustrate the weigh effects comparison in the settings
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of Figure 2.3 and Figure 2.4, respectively. Under the interlocking group structure

(Figure 2.5a), three weighting themes deliver similar performance in terms of estima-

tion errors. Still, the size-dependent weighting leads to a larger support discrepancy.

This interlocking group structure is not very distinctive for the three weights themes

because the overlapping degree is nearly uniform. The nested group structures (Fig-

ure 2.5b) more effectively highlight the importance of the proposed weights. Our

method significantly outperforms the other two weighting themes and aligns well

with the original overlapping group lasso estimator. The weight design comparison

on the gene pathway group structure is shown in Tables 2.5–2.6. The proposed

estimator gives a close approximation to the original overlapping group lasso, but

the other two weighing designs lead to significantly different performances in several

settings.

Table 2.5: Comparative analysis of average estimation errors and the
corresponding 95% confidence intervals for three weighting designs. The ∗

indicates that the error is statistically different from that of overlapping group
lasso by a paired t-test.

Group
Structure

Proposed weight Uniform weight
Group size-

dependent weight

BioCarts 0.25 [0.22, 0.28] 0.28 [0.26, 0.30]* 0.35 [0.30, 0.40]*
KEGG 0.54 [0.51, 0.57] 0.80 [0.77, 0.83]* 0.58 [0.51, 0.65]*

PID 0.25 [0.23, 0.27] 0.24 [0.21, 0.27] 0.39 [0.36, 0.42]*
WIKI 0.55 [0.49, 0.61] 0.83 [0.80, 0.86]* 0.74 [0.67, 0.81]*

Reactome 0.65 [0.62, 0.68] 0.58 [0.55, 0.61]* 0.69 [0.63, 0.75]

In summary, the experiments demonstrate that the weights designed in our

penalty also serve as an indispensable part of a successful approximation to the

overlapping group lasso estimation, which is another aspect of the tightest separa-

ble relaxation property in Theorem 1.
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Table 2.6: Comparative analysis of average support discrepancy and the
corresponding 95% confidence intervals for three weighting designs. The ∗

indicates that the value is statistically different from that of overlapping group
lasso by a paired t-test.

Group
Structure

Proposed weight Uniform weight
Group size-

dependent weight

BioCarts 0.041 [0.039, 0.043] 0.045 [0.042, 0.048]* 0.042 [0.039, 0.045]
KEGG 0.023 [0.021, 0.025] 0.059 [0.055, 0.063]* 0.024 [0.022, 0.026]

PID 0.033 [0.031, 0.035] 0.037 [0.035, 0.039]* 0.030 [0.027, 0.033]*
WIKI 0.013 [0.012, 0.014] 0.025 [0.023, 0.027]* 0.013 [0.012, 0.014]

Reactome 0.012 [0.010, 0.014] 0.010 [0.008, 0.012]* 0.022 [0.021, 0.023]*

2.6 Application Example: Pathway Analysis of Breast Can-

cer Data

In this section, we demonstrate the proposed method by predictive tasks on the

breast cancer tumor data, as previously used in Section 2.5.3. This time, unlike the

previous simulation studies, we use the complete data set with tumor labels for each

observation. Specifically, each observation is labeled according to the status of the

breast cancer tumors, with 79 classified as metastatic and 216 as non-metastatic.

These labels serve as the response variable for our analysis.

Gene pathways have been widely used to key gene groups in cancer studies. In

particular, Yuan et al. (2011); Chen et al. (2012); Lee and Xing (2014) used the over-

lapping group lasso techniques to exclude less significant biological pathways in can-

cer prediction. As a detailed example, Chen et al. (2012) leveraged the overlapping

group lasso penalty to pinpoint biologically meaningful gene groups. Their analysis

revealed multiple groups of genes associated with essential biological functions, such

as protease activity, protease inhibitors, nicotine, and nicotinamide metabolism,

which turned out to be important breast cancer markers (Ma and Kosorok, 2010).

This evidence highlights the potential of using the overlapping group lasso penalty
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in cancer analysis. On the other hand, another way to incorporate gene pathway

information in such analysis is to retain genes by entire pathways. Jacob et al.

(2009) used the latent overlapping group lasso penalty to achieve this while Mairal

and Yu (2013) introduced an ℓ∞ variant further. The success of all these previous

studies reveals the potential of the gene pathway information in cancer prediction.

They also show that the proper way to use the pathways (e.g., either eliminating-by-

group, as in overlapping group lasso, or including-by-group, as in latent overlapping

group lasso) highly depends on the data set and genes.

In our analysis, we use regularized logistic regression to build a classifier with

the overlapping group lasso penalty (OGL), our proposed group lasso approximation

penalty (Proposed approximation), the standard lasso penalty, the latent overlap-

ping group lasso penalty (LOG) (Jacob et al., 2009), and the ℓ∞ latent overlapping

group lasso penalty of (Mairal and Yu, 2013). As mentioned in previous sections,

our focus is not on justifying the overlapping group lasso should be used. Instead,

our primary objective is to demonstrate that when an overlapping group

lasso penalty is used, our method provides a good approximation to the

overlapping group lasso (with a much faster computation) across various

pathway sets (Table 2.1), whether or not the overlapping group lasso penalty is

the best option for the problem.

Two additional aspects can also be evaluated as by-products of our analysis.

First, as the lasso penalty does not consider the pathway information, comparing the

performance of the group-based penalty and the lasso penalty in this problem would

verify whether a specific gene pathway set contains predictive grouping information

for breast cancer tumor type. Second, by assessing the predictive performances

among the overlapping group lasso classifier and the latent overlapping group lasso

classifiers, we can verify whether a specific gene pathway set is more suitable for
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eliminating-by-group or including-by-group strategies for prediction.

Table 2.7: Computing time (in seconds) under different pathway databases.

Database

Method
OGL Lasso Proposed approximation

BioCarts 732 26 75

KEGG 2468 102 225

PID 1231 41 107

WIKI 5172 170 395

Reactome 11356 321 1186

We adopt the evaluation procedure of Lee and Xing (2014), where we randomly

split the data set into 200 training observations and 95 test observations. All meth-

ods are tuned by 5-fold cross-validation on the training data. We calculate the area

under the receiver operating characteristic (AUC) curve, a commonly used metric

for classifying accuracy (Hanley and McNeil, 1982), on the test data. The total

time for the entire cross-validation process is recorded as computation time. The

experiment is repeated 100 times independently. Table 2.7 and Table 2.8 show the

average computing time and AUC, respectively.

The following can be summarized from the results:

• First and foremost, the proposed estimator acts as an effective and compu-

tationally efficient approximation for the overlapping group lasso estimator.

The results evidently support this claim. The proposed estimator delivers

predictive performance that is (the most) similar to the overlapping group

lasso estimator across various pathway datasets while significantly reducing

the computing time by roughly ten times.
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• Second, the lasso classifier performs best only on the WIKI pathway set, sug-

gesting that the pathways in the WIKI database might not be sufficiently

informative for cancer prediction.

• Third, the superiority between the overlapping group lasso regularizations and

the latent overlapping group lasso regularizations depends on the specific group

information. Among the four pathway sets with useful group information,

the overlapping group lasso delivers superior predictive performance for the

Biocarts and PID databases, while the latent overlapping group lasso classifiers

provide better predictions on the KEGG and Reactome databases.

Table 2.8: Predictive AUC results of the three methods under different pathway
databases.

Database

Method
OGL Lasso

Proposed

approximation
LOG LOG ∞

BioCarts 0.7103 0.6989 0.7242 0.6888 0.6995

KEGG 0.7021 0.6862 0.7081 0.7390 0.7333

PID 0.7475 0.7004 0.7301 0.6881 0.6891

WIKI 0.6862 0.7282 0.6893 0.7149 0.7207

Reactome 0.6921 0.7301 0.7053 0.7463 0.7438

As a remark, while our evaluation is based on prediction accuracy, it is not the

only criterion to determine if a method is proper for the dataset. For example,

Mairal and Yu (2013) found that neither the overlapping group lasso model nor the

latent overlapping group lasso model outperformed simple ridge regularization in

prediction. The value of structured penalties also lies in their ability to identify

potentially more interpretable genes, depending on the biological interpretations.
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2.7 Discussion

We have introduced a separable penalty as an approximation to the group lasso

penalty when groups overlap. The penalty is designed by partitioning the original

overlapping groups into disjoint subgroups and reweighing the new groups according

to the original overlapping pattern. The penalty is the tightest separable relaxation

of the overlapping group lasso among all ℓq1/ℓq2 norms. We have also shown that

for linear problems, the proposed estimator is statistically equivalent to the original

overlapping group lasso estimator but enjoys significantly faster computation for

large-scale problems.

Several interesting directions could be considered for future research. The over-

lapping group lasso penalty presents a variable selection by eliminating variables

by entire groups. A counterpart selection procedure can include variables by en-

tire groups, which is achieved by the latent overlapping group lasso (Jacob et al.,

2009). This penalty also suffers from a non-separability computational bottleneck.

It would be valuable to investigate whether a similar approximation strategy could

be designed to boost the computational performance in this scenario. More gener-

ally, the introduced concept of “tightest separable relaxation” might be a promising

direction for optimizing non-separable functions. Studying the more general form

and corresponding properties of this concept may generate fundamental insights

about optimization.



Chapter 3

Compressed spectral screening with overlapping

groups for large-scale differential correlation

analysis

3.1 Introduction

High-throughput RNA sequencing (RNA-seq) has emerged as a powerful tool in

molecular biology studies (Stark et al., 2019) given its ability to provide quantitative

insights into gene expression levels within biological samples (Conesa et al., 2016).

Moreover, RNA-seq enables researchers to explore transcriptomic landscapes with

unprecedented depth and resolution. Scholars are then better able to elucidate

complex gene regulatory networks and biological processes (Deshpande et al., 2023).

RNA-seq is often applied for differential expression, which identifies genes ex-

pressed at different levels across two or more biological conditions (Soneson and

Delorenzi, 2013; Stark et al., 2019). Multiple methods have been proposed for such

analysis; examples include edgeR (Robinson et al., 2010), DEseq2 (Love et al.,

2014), and limma (Ritchie et al., 2015). These approaches use a negative binomial

distribution or a weighted linear model to address the overdispersed count data

commonly seen in RNA-seq experiments. The techniques also offer robust tools for

identifying genes that are differentially expressed between experimental conditions,

thus shedding light on the biological processes and pathways underlying apparent

changes.

It is similarly important to examine changes in correlation patterns across diverse

conditions. This task, often called differential correlation analysis, serves several
45
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purposes: it reveals details about genome architecture (Zhou et al., 2021), uncov-

ers regulatory biomarkers (McKenzie et al., 2016), and helps predict gene functions

(Barter et al., 2014; Ghazanfar et al., 2019; Miller and Bishop, 2021). Various ap-

proaches have been developed for this type of analysis and can be broadly classified

into two categories, namely testing conditional correlations via graphical models

and testing marginal correlations (Li et al., 2023). Conditional correlation–based

methods aim to infer a differential network from observed data (Shojaie, 2021). For

instance, Yuan et al. (2017) suggested using the d-trace loss to model a precision

matrix. However, methods grounded in graphical models come with challenges,

especially regarding their direct biological interpretability (Li et al., 2023). Tech-

niques that center on marginal correlations (Schott, 2007; Li and Chen, 2012; Cai

and Zhang, 2016) seek to identify differential correlation patterns by conducting

statistical tests within certain structural frameworks (Chang et al., 2017; Zhu et al.,

2017). For example, the spectral screening process which Li et al. (2023) devised

leverages spectral structures and random sampling. This approach enables precise

discernment of features exhibiting complex differential patterns. It is also scalable

and capable of handling datasets encompassing thousands of genes.

The aforementioned methods primarily concentrate on identifying genes on an

individual level instead of a group level. Yet biological theory indicates that, rather

than behaving in isolation, genes operate in groups to perform biological functions.

Gene selection is hence more meaningful if co-functioning groups are chosen together

(Ma and Kosorok, 2010). Therefore, in this study, our goal is to incorporate group

information into differential gene selection in order to pinpoint gene groups with

differential correlation patterns.

Group lasso (Yuan and Lin, 2006) is a popular method designed to integrate

group information tasks by adding ℓ1/ℓ2 regularization (Bach, 2008; Ravikumar
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et al., 2009; Zhao et al., 2009b; Tank et al., 2017; Yan and Bien, 2017; Austin et al.,

2020; Yang and Peng, 2020). However, the original group lasso is limited to non-

overlapping groups. Overlapping groups frequently appear in cases such as tumor

metastasis analysis (Jacob et al., 2009; Zhao et al., 2009b; Chen et al., 2012) and

structured model selection problems (Mohan et al., 2014; Cheng et al., 2017b; Yu and

Bien, 2017; Tarzanagh and Michailidis, 2018). Latent overlapping group lasso is an

extension of group lasso that handles these groups (Jacob et al., 2009). By applying

ℓ1/ℓ2 regularization to a set of latent variables, each supported by one of the groups,

latent overlapping group lasso can recover the underlying groups of variables under

mild conditions Jacob et al. (2009). This method has proven valuable in pathway

analysis and has enjoyed widespread adoption in diverse fields Deng et al. (2021);

Zeng and Breheny (2016); Perry et al. (2023).

In this paper, we introduce a novel approach based on spectral screening method

(Li et al., 2023) and the overlapping group lasso penalty (Jacob et al., 2009) to

identify differentially correlated gene groups. Our technique capitalizes on spectral

screening’s computational efficiency and accuracy while using the overlapping group

lasso penalty to incorporate group information into the analysis. As a by-product,

we propose a novel parameter-tuning procedure that accounts for the structural

assumption and outperforms standard methods such as the Akaike information cri-

terion (AIC) and cross-validation.

The remainder of this paper is organized as follows. We introduce our differential

correlation analysis method and tuning approach in Section 3.2. In Section 3.3, we

conduct experiments to demonstrate the efficiency of overlapping group lasso–based

spectral screening (OGSS) and the advantages of our tuning method. Section 3.4

presents an analysis of real gene expression data. Finally, Section 3.5 concludes with

a discussion.
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3.2 Methodology

We will describe our algorithms by taking the covariance matrix as the statistic

of interest. Assume we have a size–n1 random sample xi, i = 1, . . . , n1 from a

distribution with mean µ1 and covariance Σ1. We also have a size–n2 sample yi, i =

1, . . . , n2 from a distribution with mean µ2 and covariance Σ2. Here, µ1, µ2 ∈ Rp

and Σ1,Σ2 ∈ Sp
+. We assume that only a small set of coordinates S ⊆ [p] leads to

different correlations, with |S| = s≪ p. That is,

Σ1,ij ̸= Σ2,ij only if i, j ∈ S.

Let G = {G1, · · · , Gm} be the m predefined groups for the p parameters, with

each group Gg being a subset of [p], and ∪g∈[m]Gg = [p]. For each group Gg, d
G
g =

|Gg| denotes the group size. We further assume that S is formed by a combination

of groups:

S =
⋃
g∈G

Gg,

where G ⊂ [m]. Our main objective is to identify S. Let Σ̂1 and Σ̂2 be the sample

covariance matrices of X1 and X2, respectively. We further define D = Σ1−Σ2 and

D̂ = Σ̂1 − Σ̂2. Our method is introduced in Section 3.2.1; our tuning procedure is

described in Section 3.2.2.

3.2.1 Overlapping group lasso–based spectral screening

We denote the rank of D as K, and we have K ≤ s in the current context. Let

D = UΛUT be the eigen-decomposition of D, where Λ is a square diagonal matrix of

all the nonzero eigenvalues of D (with non-increasing magnitude). U = (u1, . . . , uK)
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consists of the corresponding eigenvectors. Without loss of generality, throughout

this paper, we assume S is the set of the first s variables; that is, S = [s]. In this

case, let U1 be the matrix of the first s rows in U and U2 be the matrix of the last

p− s rows. We then have

D =

 DS,S 0|S|×(p−|S|)

0(p−|S|)×|S| 0(p−|S|)×(p−|S|)

 =

 U1

U2

ΛUT =

 U1ΛU
T

U2ΛU
T

 .

Following Li et al. (2023), such a pattern indicates that

0(p−s)×p = U2ΛU
T

and further leads to

U2 = 0(p−s)×mUΛ−1 = 0(p−s)×K .

This relation suggests a simple strategy to identify S based on the rows in U , as

these rows fully capture the sparsity pattern of the differential correlation structure

(Li et al., 2023). Based on this idea, we propose estimating S with the following

optimization problem:

arg min
U∈Rp×K̂

1

2
||U0 − U ||2F + λΩG(U), (3.1)

where

ΩG(U) = min
m∑
g=1

wg ∥Ug∥2 , s.t
m∑
g=1

Ug = U.

If the groups are disjointed, then the group lasso penalty will select and eliminate

variables by groups. The penalty ΩG(U) enforces an “all-in” pattern when the
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groups overlap by keeping the nonzero patterns as a combination of groups. This

type of pattern is desirable for many problems, especially in gene analysis (Park

et al., 2015; Zeng and Breheny, 2016). Another generalization of group lasso for

overlapping groups is the mixed ℓ1/ℓ2 regularization proposed by Jenatton et al.

(2011a): it simultaneously sets all variables in certain groups to zero, such that the

zeroed-out variables represent a combined subset of groups. As noted in Yan and

Bien (2017), the decision to use an “all-in” or “all-out” strategy depends on the

problem and corresponding scientific interpretations. Comparing these two tactics

is beyond the scope of this paper.

Algorithm 3 Estimate K with Compressed Spectral Screening

1: Input: Observation matrices X1, X2, sampling proportion p, validation propor-
tion τ , and Kl < Ku.

2: Output: Zero sparse matrices D̂,Ω, Ω̂ ∈ Rp×p.
3: Initialize D̂,Ω, Ω̂ as zero matrices.
4: for each (i, j) ∈ [p]× [p] with i < j do
5: Sample ξ̂ij ∼ Bernoulli((1 + τ)p) and ϕ̂ij ∼ Bernoulli

(
1

1+τ

)
.

6: Set ξ̂ij = ξ̂ij · ϕ̂ij.

7: if ξ̂ij = 1 then

8: Calculate D̂ij = Cov(X1,i, X1,j)− Cov(X2,i, X2,j).

9: Set D̂ij = D̂ij/p.
10: end if
11: end for
12: Compute the partial eigendecomposition of D̂ up to rank Ku.
13: for Kl ≤ K ≤ Ku do
14: Approximate entries for (i, j) where ξ̂ij = 1.
15: Calculate the loss LK .
16: end for
17: Select K̂ that minimizes LK .
18: return D̂ and K̂.

Two inputs, U0 and K̂, are required for the optimization problem (3.1). In line

with Li et al. (2023), we perform the singular value decomposition U0U
⊤
0 = D̂ to

obtain U0. We next use Algorithm 3 proposed in Li et al. (2023), which is built on
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cross-validation with basic random sampling validation to get K̂:

The optimization problem (3.1) has a closed-form solution, which can be solved

by Algorithm 4:

Algorithm 4 Differential Correlation Analysis with Group Regularization

1: Input: Estimated U0, group structure G, regularization parameter λ, penalty
factors w

2: Output: Û
3: for each group g in G do
4: Compute adaptive λg = λ× wg

5: Extract subset Ug = (U0)g
6: Calculate Frobenius norm ∥Ug∥F
7: if ∥Ug∥F = 0 then
8: θg = 0
9: else

10: θg = 1− λg

∥Ug∥F
11: end if
12: Update Ug to θg × Ug

13: end for
14: Aggregate Û =

∑
g∈G

Ug

15: return Û

3.2.2 Parameter tuning and average spectral norm (ASN)

criterion

The implementation of OGSS requires an input parameter λ, which is closely

related to the number of chosen groups and needs to be selected through a tuning

procedure. Existing tuning approaches, including the AIC-based method (Akaike,

1998; Ding et al., 2018) and the cross-validation-based method (Cao et al., 2019),

often fail due to the selection of overly sparse models. To address this issue, we

introduce a novel tuning strategy named the average spectral norm (ASN) method.

Our approach returns more favorable results by considering the structure of D.
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3.2.3 ASN

The ASN method draws inspiration from the elbow method (Murphy, 2022),

which focuses on identifying a sharp drop in estimated risk. Let λseq = {λ1, · · · , λT}

be a sequence of candidate parameters. Each λt ∈ λseq corresponds to an estimated

support Ŝt. Intuitively, we want the estimated Ŝ to yield a large γ(D̂Ŝ,Ŝ)max and a

small γ(D̂Ŝc,Ŝc)max because the underlying differential covariance submatrix DSc,Sc

contains all zeros. In addition, the following proposition causes us to consider the

ASN: θ(Ŝ) = γ(D̂Ŝ,Ŝ)max/|Ŝ| and θ(Ŝc) = γ(D̂Ŝc,Ŝc)max/|Ŝc|.

Proposition 6. Let n = min{n1, n2}/2. If γmax(Σ1) ≤ c1 and γmax(Σ2) ≤ c2. Let

n = min{n1, n2}/2, then or any A ⊂ [m] and δ > 0,

Pr

{
θ(A) ≤ 1

n
+

(c1 + c2)(1 + δ)

|A|

}
≥ 1− 2 exp(−nδ2/2).

Proposition 6 indicates that the upper bound of γmax(D̂A,A) is of the order

O(|A|/n) with high probability. Thus, the upper bound of γmax(D̂A,A) can become

quite large, even if γmax(D) is a constant. This possibility warrants the contempla-

tion of θ(A) in our analysis. Furthermore, the upper bound of θ(A) is related to |A|.

As λt increases, a series of estimated supports emerges: Ŝ1 ⊃ Ŝ2 ⊃ . . . ⊃ S . . ., with

the corresponding upper bound of θ(Ŝ) not decreasing for a fixed δ before meeting

the true support S. Relatedly, the complementary sets Ŝc
1 ⊂ Ŝc

2 ⊂ . . . ⊂ Sc . . . show

that the upper bound of θ(Ŝc) will be non-increasing until it meets the Sc.

As per the elbow method (Murphy, 2022), we determine λ = λmin{t̂1,t̂2}, where

t̂1 = {t : θ(Ŝt) − θ(Ŝt+1) > α1} and t̂2 = {t : θ(Ŝc
t+1) − θ(Ŝc

t ) > α2}. This

choice follows the logic that a substantial gap between θ(Ŝt) and θ(Ŝt+1) signals a

notable drop in γ(D̂Ŝt+1,Ŝt+1
)max due to some differential variables not being selected.
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Similarly, a sizable gap between θ(Ŝc
t+1) and θ(Ŝc

t ) implies the inclusion of non-

differential variables.
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Figure 3.1: Estimated scores across different tuning parameters.

We illustrate this idea in Figure 3.1, where the underlying 6 groups are differ-

entially correlated (for details about dataset generation, please see 3.3). The left

panel displays the estimated θ(Ŝ) change across 50 candidate tuning parameters

and is similar to the right panel of the estimated θ(Ŝc). This figure shows that, as λ

increases, Ŝ varies from all of the 200 groups to empty. The θ(Ŝ) increases initially

but later decreases when a true group is excluded from Ŝ, which corresponds to λt1 .

A similar observation applies to θ(Ŝc), and we can obtain λt2 . The ASN criterion

ultimately selects λt̂; t̂ = min{t1, t2} produces 6 groups, correctly recovering the

true underlying differentially correlated groups.

In practice, we recommend α1 = 1/|Ŝt| and α2 = 1/|Ŝc
t+1|, as suggested by

Proposition 7. Proposition 7 indicates that, when θ(Ŝt)−θ(Ŝt+1) > O(1/|Ŝt|), there

is a difference between γmax(D̂Ŝt,Ŝt
) and γmax(D̂Ŝt+1,Ŝt+1

). In turn, Ŝt ⊃ S ⊃ Ŝt+1

because the difference between γmax(D̂Ŝt,Ŝt
) and γmax(D̂Ŝt+1,Ŝt+1

) is closely related to

that between γmax(DSt,St) and γmax(DSt+1,St+1) (Wainwright, 2019). Using the same

principle, we get α2 = O(1/|Ŝc
t+1|). Although there is no theoretical guarantee, this
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choice of α1 and α2 works well in practice. It nonetheless stands to be analyzed

more robustly in future work.

Proposition 7. Suppose that Ŝt+1 = Ŝt \∆t. Then

θ(Ŝt)− θ(Ŝt+1) =
γmax(D̂Ŝt,Ŝt

)− γmax(D̂Ŝt+1,Ŝt+1
)

|Ŝt|
+
γmax(D̂Ŝt+1,Ŝt+1

)|∆t|
|Ŝt|2

+ o(|∆t|).

3.3 Simulation

In this section, we assess the performance of OGSS using simulated data and

while considering tuning methods and scenarios with the difference matrix D be-

ing both low-rank and high-rank. We also demonstrate OGSS’s effectiveness by

comparing it with popular methods. Throughout our experiments, we focus on the

following interlocking group structure with m = 200 groups, d = 20 variables per

group, and 0.1d variables in each red intersection.

Figure 3.2: Interlocking group structure.

Among these m groups, we set the differential groups G = G1 ∪G2, where each

G1, G2 contains three elements randomly selected from [m] with replacement. The

data generation procedures are detailed in each configuration. To determine the

lambda sequence for the tuning procedure, we start by performing a line search

to identify two pivotal values: λmax and λmin. The search for λmax begins at 108

and progressively decreases, multiplying by 0.9 at each iteration, until reaching the

first value at which no variables are selected. By contrast, the determination of

λmin starts at 10−8 and increases incrementally, multiplying by 1.1 each time, until
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locating the first value that retains the entire set of variables. We subsequently

choose 50 values in log-scale within the range [λmin, λmax].

Evaluation criterion. For each configuration, we generate 50 independent repli-

cates and report the average result. Our performance appraisal pertains to three

aspects:

• To measure support recovery, we adopt the Jaccard index defined as follows:

SR =
|Ŝ ∩ S|
|Ŝ ∪ S|

. (3.2)

• To measure group support recovery, we consider the group-level Jaccard index

defined as follows:

GR =
|Ĝ ∩G|
|Ĝ ∪G|

. (3.3)

• Following Cheng et al. (2017a); Fang et al. (2017); Li et al. (2023), we adopt

the area under the ROC curve (AUC) (Hanley and McNeil, 1982) to measure

the selection accuracy of the true differential variables. For OGSS, we generate

the full ROC curve with respect to sensitivity and specificity by varying the

tuning parameters, which control the number of variables chosen. For SS and

DGCA, we obtain the full ROC curve by directly changing the number of

selected variables as done by Li et al. (2023).

3.3.1 Evaluation of tuning methods under low-rank D

In the first simulation, we analyze OGSS based on multiple tuning methods.

We next consider the problem scale n1 = n2 = 40 and p = 3602 and develop two

samples xi and yi from multivariate normal distributions with zero means and the
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following spiked covariance matrices:

Σ1 = I + v1v
T
1 , Σ2 = I + v2v

T
2 , (3.4)

where v1 is a p-dimensional vector with nonzero entries in {Gg}g∈G1 from N(0.4, 0.2)

and zero entries elsewhere; v2 contains nonzero entries in {Gg}g∈G2 from N(0.4, 0.2)

and zero entries elsewhere. This data generation process aligns with that in Li et al.

(2023).

Tuning method GR (mean/sd) SR (mean/sd)

ASN 0.796/0.034 0.798/0.034
CV 0.371/0.047 0.373/0.047
AIC 0.169/0.001 0.170/0.001
BIC 0.169/0.001 0.170/0.001

Table 3.1: Performance across various tuning methods.

As depicted in Table 3.1, our tuning approach outperforms the other three meth-

ods. This enhanced performance is due to ASN accounting for the structure of D.

Additionally, both AIC and the Bayesian information criterion impose excessive

penalties on the number of chosen variables, leading to overly sparse results.

3.3.2 Evaluation of tuning methods under high-rank D

The rank of matrix D was consistently equal to 2 under the previous setting. In

this series of experiments, we increase the rank of D to further demonstrate OGSS’s

flexibility. In doing so, we substitute v1 and v2 with the matrices V1 and V2. Matrix

V1 contains nonzero entries in rows corresponding to the elements in G1. In the same

vein, V2 includes nonzero entries in rows aligned with G2. These entries are sampled

from a multivariate normal distribution, with the mean and covariance adjusted

to ensure that the Frobenius norm |D|F and the ratio |D|F/|Σ1|F are comparable
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to those in the low-rank case. All other data generation steps are as described in

Section 3.3.1.

Tuning method GR (mean/sd) SR (mean/sd)

ASN 0.848/0.031 0.851/0.031
CV 0.477/0.050 0.481/0.050
AIC 0.169/0.001 0.170/0.001
BIC 0.169/0.001 0.170/0.001

Table 3.2: Performance under full-rank condition across various tuning methods.

As shown in Table 3.2, despite this task being slightly simpler due to the stronger

signals in D, the core message remains consistent: our tuning method outperforms

others thanks to considering the pattern in D.

3.3.3 Misspecified group structures

In real-world applications, researchers may not always have access to accurate

group information for analysis. Discrepancies between the underlying true group

structure and the group structure used in an analysis may substantially influence

outcomes. In pondering this prospect, we employ the setup in Section 3.3.1 to

generate data and then consider the following group structures, which we enter into

Algorithm 4:

• The true group structure G used in Section 3.3.1 to generate data: We repre-

sent G with an m× p binary matrix G where Ggj = 1 if and only if the j-th

variable belongs to the g-th group; Ggj = 0 otherwise.

• Fully misspecified Gf : Randomly reassign all columns in G.

• Partially misspecified Gpt : Randomly reassign all columns in G,G.

• Partially misspecified Gpf : Randomly reassign all columns in G,Gc .
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As summarized in Table 3.3, OGSS performs relatively similarly across G, Gpt,

and Gpf . This observation indicates that even when the group information is inaccu-

rate, if incorrect patterns either exist only among differential variables or exclusively

within non-differential variables, then the results remain largely unaffected (i.e., the

findings closely mirror those acquired from the accurate group structure). However,

the performance of OGSS under Gf is far inferior: inaccuracies in the group struc-

ture that span differential and non-differential variable patterns (i.e., when the true

non-differential group contains differential variables or the true differential group

contains non-differential variables) produce marked deviations from the outcomes

expected with accurate group information.

Tuning method AUC (mean/sd) SR (mean/sd)

G f 0.659/0.008 0.054/0.001

G pt 0.953/0.014 0.803/0.035

G pf 0.947/0.014 0.758/0.031

G 0.952/0.014 0.797/0.034

Table 3.3: Comprehensive performance comparison across various tuning
methods.

3.3.4 Comparative analysis with other methods

In the last set of experiments, we compare OGSS with two widely used methods:

compressed spectral screening (SS) (Li et al., 2023) and differential gene correlation

analysis (DGCA)(McKenzie et al., 2016). The data generation process remains

consistent with that in Section 3.3.1.
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Method AUC (mean/sd) SR (mean/sd)

DGCA 0.655/0.004 0.029/0.001

SS 0.848/0.013 0.243/0.013

Our 0.952/0.013 0.798/0.034

Table 3.4: Performance of different methods.
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Figure 3.3: Estimated scores from Li et al. (2023)’s method and OGSS. Blue for
true non-zero scores.

As shown in Table 3.4, our method delivers superior performance than the other

two methods in terms of both AUC and support recovery. Further looking at each

method, we noticed that DGCA turns out to have lots of false discoveries. This

is due to the DGCA test whether the correlation between each pair of genes is

significantly different, then using a BH procedure to control the false discovery rate

(McKenzie et al., 2016). However, such a strategy inherently needs each test to be

independent (Benjamini and Yekutieli, 2001). However, in our settings, the entries

have correlations, and thus DGCA does not give good performance.

Our method also has a notable advantage over SS. Both approaches leverage

the idea of spectral screening, which involves the nonzero rows U . We compare the
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estimated scores. As pictured in Figure 3.3, SS turns out to be noisy on the non-

differential variables and suffers from false discovery in the selection process. By

contrast, our method reduces the scores of non-differential variables to zero, thus

enabling more precise group-level selection.

3.4 Differential correlation analysis of vascular smooth mus-

cle cell gene expression data

Coronary artery disease (CAD) is the leading cause of mortality in the United

States. Vascular smooth muscle cells (VSMCs), a type of cell that constitutes the

medial layer of the vessel wall, are known to influence each phase of atherosclerosis–

the underlying cause of CAD (Perry et al., 2023).

Quiescent

lipid
lipid

Proliferative

necrosis cell

Figure 3.4: Illustration of the migration of VSMCs.

VSMCs show remarkable plasticity in response to vascular injury. As shown in

Figure3.4, quiescent VSMCs can shift to a highly proliferative and migratory phe-

notype that encourages VSMCs to migrate into the intimal layer of the vessel wall.

VSMCs in this layer produce extracellular matrix components and promote fibrous

cap stability, thereby protecting against plaque rupture. As VSMCs undergo pheno-
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typic switching, they can lose the expression of traditional VSMC marker genes and

dedifferentiate into atheroprotective (fibroblast-like) and atherogenic (macrophage-

like) cell types.2,3 Macrophage-like VSMCs become proinflammatory and release

cytokines, facilitate phagocytic cells’ migration, and accelerate cell necrosis and

plaque growth. Despite extensive research, the mechanisms driving VSMCs’ struc-

tural and functional phenotypic transformations are not fully understood. Unveiling

how gene expression in VSMCs is being reprogrammed could prompt the discovery

of novel treatments.

In this section, we analyze gene expression data processed by Perry et al. (2023).

These RNA-sequencing data contain gene expression information from aortic SMCs

isolated from 151 heart transplant donors of distinct genetic ancestries cultured

under quiescent and proliferative conditions. Moreover, Perry et al. (2023) identified

two gene group structures: one corresponding to the quiescent condition (quiescent

group structure), comprising 41 gene pathways for 10,764 genes; and another for

the proliferative condition (proliferative group structure), encompassing 45 gene

pathways for 8,422 genes.

For quiescent group structure, we identified two modules: “orange” and “steel-

blue”. These two modules are representative of quiescent gene expression profiles

that are co-expressed only in the quiescent condition representing rewired biological

pathways between that of the proliferative condition. These two modules are en-

riched for biological pathways of cell cycle and cellular metabolism processes (FDR

< 0.05) and are representative of major biological features expected to be operating

in phenotypic specific natures given the differences in experimental design between

cells cultured to be in a resting, quiescent state and cells to be in an active prolif-

erative state.

On the other hand, we identified two modules: “red” and “turquoise” for the
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proliferative group structure that are enriched for biological processes more rep-

resentative of disease biology relevant to the role SMCs play in contributing to

atherosclerosis. Here, these two modules are enriched for cholesterol biosynthe-

sis and lipid metabolism (FDR < 0.05). It’s been shown by several groups that

exposure to cholesterol or oxidized phospholipids triggers phenotypic switching of

vascular smooth muscle cells to a proliferative, more macrophage/fibroblast-like cell

state. In this model, however, we did not expose SMCs to such stimulus, yet we see

that the metabolic pathways associated with this phenomenon are being rewired in

a heightened proliferative state and that potentially the presence of lipids may not

be sufficient in driving phenotypic changes, but maybe that increased proliferation

of VSMCs results in metabolic processes for lipids/cholesterol that interact with

lipids in an atherogenic manner.

3.5 Discussion

In this paper, we have devised a novel method named OGSS to identify differen-

tially correlated groups of genes. OGSS manages to handle the large-scale problem

as in SS and to integrate prior group information; doing so improves results’ inter-

pretability. We also propose a new criterion, ASN, and demonstrate its properties

when choosing tuning parameters. A simulation study confirmed OGSS’s superi-

ority in selecting informative groups of genes with differential correlation patterns.

Applying our method to vascular smooth muscle cell gene expression data further

identified reasonable gene modules.

Several avenues could be considered for future research. The latent overlapping

group lasso penalty allows for variable selection by choosing entire groups of vari-

ables. A complementary selection procedure could eliminate variables in the same
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fashion (i.e., by group), namely via overlapping group lasso (Jenatton et al., 2011a).

It would be interesting to investigate whether OGSS would be useful in this scenario.

Another intriguing direction concerns our proposed method’s theoretical properties.

Several pertinent matters merit attention, including OGSS’s consistency and the

ASN tuning procedure. Our approach could also be extended to more complex

group structures, such as hierarchical structures in Li et al. (2022). Multi-omics

cases would be worthwhile to examine as well; pathways could be chosen to gain a

holistic sense of underlying biological processes.

Last but not least, building on the promising results presented in this project,

it would be insightful to delve deeper into the characterization of individual genes

within the identified modules and to extend the scope of future studies to explore

the potential relationships among these groups. Such discussions could illuminate

how specific gene interactions contribute to the physiological processes in vascular

smooth muscle cells and their implications in disease contexts like atherosclero-

sis. Additionally, considering the individual gene roles could help refine the OGSS

methodology further, enhancing its applicability and accuracy in uncovering critical

gene pathways across diverse biological systems. This focused approach on individ-

ual genes and their interconnections within groups could potentially uncover novel

biomarkers and therapeutic targets, offering new avenues for treating vascular and

other complex diseases.



Chapter 4

Multivariate Inference of Network Moments by

Subsamping

4.1 Introduction

Networks, spanning diverse fields such as social sciences, biology, and computer

science, are widely used as data structures facilitating the exploration of complex

systems. Statistical network analysis serves as a powerful toolset for uncovering

patterns, structures, and dynamics within these networks, enabling insights into

phenomena ranging from social interactions to biological processes (Barabási, 2013;

Newman, 2018). In this paper, we are interested in characterizing a population of

networks based on a single observed network, which allows us to understand the

underlying structure and dynamics inherent in complex systems in a broader scope.

In particular, network motif counts, such as the number of triangles or stars,

play a crucial role in providing insights into the local structure and connectivity

patterns within networks. By quantifying the prevalence of these motifs across a

population of networks, we can discern common structural motifs and infer under-

lying mechanisms governing network formation and functions (Borgs et al., 2010;

Bickel et al., 2011). For instance, a high number of triangles in a social network

might indicate the presence of tightly-knit communities or cliques, while an abun-

dance of stars could suggest influential nodes or hubs connecting disparate parts of

the network (Wasserman and Faust, 1994). Furthermore, characterizing networks

using motifs provides statistical advantages. Local motif counts reveal global prop-

erties and facilitate inference across networks of varying sizes but within the same

64
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population. Consequently, motif counts are crucial in goodness of fit testing and

model selection (Gao and Lafferty, 2017; Klusowski and Wu, 2020; Yuan et al.,

2022), and network comparison tasks like two-sample tests and correlation analysis

(Ghoshdastidar et al., 2017; Mao et al., 2021; Maugis et al., 2020; Shao et al., 2022).

At a high level, the statistical task of the paper can be stated as follows. Given

a network G from an underlying generating model which will be assumed to be a

graphon model Bickel and Chen (2009), and a set of motifs R1, · · · , Rm of interest,

we seek to characterize the distribution of the properly rescaled counts (i.e., network

moments) of the motifs for the random networks (potentially with different size from

G) under the true model.

One seemingly possible approach for this task is to estimate the true graphon

model and then derive or sample the required distribution directly. However, iden-

tifying the graphon function is challenging without making restrictive assumptions

(Yang et al., 2014; Chan and Airoldi, 2014) or resorting to computationally infea-

sible methods (Olhede and Wolfe, 2014; Choi and Wolfe, 2014; Gao et al., 2015).

While there are computationally feasible and accurate methods for estimating the

connection probabilities of the given network G (Chatterjee, 2015; Zhang et al.,

2017; Li and Le, 2023), they cannot handle the population distributional studies

at the graphon level. Additionally, all these estimation approaches still rely on cer-

tain smoothness assumptions. Hence, we alternatively turn to resampling strategies,

generally regarded as flexible and versatile approaches for characterizing distribu-

tions. There have been many studies of resampling inference methods in network

problems such as cross-validation (Chen and Lei, 2018; Li et al., 2020), bootstrap

Green and Shalizi (2022); Levin and Levina (2019), subsampling (Bhattacharyya

and Bickel, 2015b; Zhang and Xia, 2022; Lunde and Sarkar, 2023) and conformal

inference (Lunde et al., 2023).
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Among those, the most relevant ones to our current study are the subsampling

method of Zhang and Xia (2022); Lunde and Sarkar (2023) and the bootstrap

method of Green and Shalizi (2022); Levin and Levina (2019), which also focus

on the distribution of motif counts from the population model. However, all of the

above studies focus on the resampling approximation of the marginal distribution

for a single motif, which offers a limited view of network structure by isolating

individual aspects without considering interactions between motifs. Such marginal

distributions fall short of capturing the full complexity of network interdependencies,

potentially leading to less robust inferences about the network. Consider comparing

two co-expression networks, G1 and G2, from different gene sets. Suppose we ex-

amine the counts (properly normalized for network size) of two motifs, V-shape ( )

and 3-star ( ), separately. We might find G1 has a statistically higher proportion

of both motifs compared to G2. However, because a V-shape is a subgraph of a

3-star, these counts are highly dependent. A greater number of V-shapes generally

means more 3-stars, which might not provide additional insights into the networks’

differences beyond what’s indicated by the V-shapes. Consequently, ignoring this

dependence can lead to numerous false positives and redundant comparisons, and

thus, basing analysis and inference solely on separate marginal distributions can

produce misleading scientific conclusions. This issue is exemplified in our examples

later (Section 4.5). This example, along with similar cases, underlines the need

to explore the joint distribution of motif counts as a crucial tool to understand

multivariate objectives like dependence structures and conditional distributions.

In this paper, we introduce the use of node subsampling to characterize the joint

distribution of multiple network moments. We show that subsampling provides

an asymptotically accurate approximation of these joint distributions, extending

the known effectiveness of subsampling from marginal to joint distributions. Our
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findings enable more flexible approaches to network inference tasks. Specifically,

we highlight its utility in two real-world network comparison studies: one examines

collaboration patterns within the statistics community, including temporal changes

and comparisons to high-energy physics, and the other compares gene networks

across different gene sets. Both examples showcase the salient insights gained from

multivariate network moment inference, which are not evident when only marginal

distributions are considered. Further details are provided in Section 4.5.

4.2 Notations, motif counts and network moments

Throughout this paper, we denote the set {1, · · · , n} for any positive integer

n by [n]. We use | · | to denote the cardinality of a set. Let G be an undirected

unweighted graph whose node set is V (G) = {v1, . . . , vn} and edge set is E(G) =

{(vi, vj), vi, vj ∈ V (G)}.

A graph S is a subgraph of G, written as S ⊂ G, if V (S) ⊂ V (G) and E(S) ⊂

E(G). In particular, a subgraph S ⊂ G is called an induced subgraph of G, denoted

by S ⊂⊂ G, if for any vi, vj ∈ V (S), (vi, vj) ∈ E(S) whenever (vi, vj) ∈ E(G).

Lastly, two graphs S and G are isomorphic, denoted by S ∼= G, if there exists

a bijective function ϕ: V (S) → V (G) such that (vi, vj) ∈ E(S) if and only if

[ϕ(vi), ϕ(vj)] ∈E(G).

A motif refers to a (usually simple) graph, such as an edge ( ), a V-shape ( ), a

triangle ( ) or a 3-start , which constitutes the building blocks of larger graphs.

In this study, we denote a motif by R, where |V (R)| = r represents the number of

vertices and |E(R)| = r is the number of edges. Our analysis exclusively considers

connected motifs, aligning with previous research (Bickel et al., 2011; Bhattacharyya

and Bickel, 2015b; Lunde and Sarkar, 2023). For a network G and motif R, we define
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the motif count of R in G as the number subgraphs of G that are isomorphic to R:

XR(G) =
∣∣{S : S ⊂ G,S ∼= R}

∣∣.
This functional has received considerable attention in network analysis literature

(Cook, 1971; Milo et al., 2002; Maugis et al., 2020; Bhattacharya et al., 2022) and

is known as the non-induced motif count, indicating that the subgraph S need not

be an induced subgraph of G. In contrast, the induced motif count is defined as

X̃R(G) =
∣∣{S : S ⊂⊂ G,S ∼= R}

∣∣
which requires that the subgraph S in the calculation must be an induced subgraph.

Despite their mathematical equivalence via a linear mapping Bickel et al. (2011),

non-induced counts offer a more streamlined theoretical framework (Zhang and Xia,

2022). Thus, following Bickel et al. (2011), Bhattacharyya and Bickel (2015b) and

Zhang and Xia (2022), we focus on the non-induced motif count in our theoretical

studies, while our data examples employ induced counts for enhanced interpretabil-

ity.

The scale of motif counts is influenced by network size and motif size, making

direct comparisons across networks of different sizes less informative. To address

this, it is common to analyze a rescaled version of the motif count. Specifically,

for a given motif R, the (sample) network moment of R in a graph G is defined as

follows:

UR(G) =

(
n

r

)−1

XR(G).

Several efficient computation strategies for network moments are outlined in

Ribeiro and Silva (2010), Gonen et al. (2011), and Maugis et al. (2020). Additional
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properties regarding network models are detailed in Section C.1.

4.3 Node subsampling and its properties

Our main goal for network inference is to characterize the properties of the

population of networks, given one observation, which is the network G. Therefore,

we shall first introduce the probabilistic framework we use to define the population.

In this paper, we will use the following graphon framework (Hoover, 1979; Aldous,

1981; Bickel and Chen, 2009) for our study.

Definition 8. [Sparse graphon model] Let the graphon function w : [0, 1]2 → [0, 1]

be a nonnegative Lebesgue measurable function, such that w(u, v) = w(v, u) for any

u, v ∈ [0, 1], such that
∫ 1

0

∫ 1

0
w(u, v) du dv = 1. Furthermore, define a sequence of

scalars ρn ∈ [0, 1]. A random network is written to be Gn ∼ ρnw(u, v) if it is

generated as follows.

1. Generate {ξi}ni=1 independently as

ξi ∼i.i.d Uniform(0, 1) (4.1)

2. For each node pair (i, j), i < j, connect the two nodes independently with

probability ρnw(u, v)⊮{ρnw(u,v)≤1}.

The parameter ρn, facilitating network sparsity, typically tends towards 0 at a

specified rate. Therefore, similar to Bickel et al. (2011), we always assume that

ρnw(u, v) ≤ 1 in our analysis and ignore the constraint ρnw(u, v) ≤ 1.

We assume that the observed network, denoted as G, follows the sparse graphon

model Gn. From G, our aim is to infer the distributional properties of network
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moments derived from the graphon model. Specifically, given a set of motifs Rj, j ∈

[m], and a sample size b where b < n1, we seek to characterize the distribution

of network moments URj
(Gb), for Gb drawn from ρbw. Our primary emphasis, as

discussed earlier, lies in the joint distribution of URj
(Gb), j ∈ [m], rather than their

individual distributions.

Consider an ideal situation where we have knowledge of the true graphon model

ρnw. We can then approximate the distribution of URj
(Gb), j ∈ [m] directly using

the Monte Carlo method: by sampling numerous Gb from the model and computing

their corresponding network moments to construct empirical CDFs or employing

more advanced techniques for approximation. However, in our context, the graphon

model is unknown thus the above procedure is not applicable. Nevertheless, if n is

sufficiently large, we may consider the graph G as a discretized approximation of

the true graphon, making a suitable sampling procedure based on G still feasible to

mimic the Monte Carlo strategy. This insight motivates the subsequent subsampling

algorithm.

Algorithm 5 Uniform Node Subsampling for Multivariate Network Moments

1: Input: Network G of size n; motifs R1, . . . , Rm; replication number Nsub; sub-
sampling size b.

2: Calculate the edge density ρ̂G = |E(G)|/[n(n− 1)].
3: for i = 1 to Nsub do
4: Randomly sample b nodes (without replacement) from [n] to form the sub-

sampled set S.
5: Define G

∗(i)
b as the induced subgraph of G by S.

6: Compute network moments URj
[G

∗(i)
b ] for each j ∈ [m].

7: Construct the m-dimensional vector Y
(i)
b = (UR1 [G

∗(i)
b ], . . . , URm [G

∗(i)
b ]).

8: end for
9: Output: Edge density ρ̂G; Set of vectors {Y (i)

b }
Nsub
i=1 for downstream inference

tasks.

1In practical scenarios, n tends to be large in observations, making computation of network
moments on b ≥ n infeasible, even without advanced inference processes. Hence, we focus on
b < n.
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A crucial aspect of the subsampling approach is its emphasis on computing

network moments within networks of size b rather than n during the generation of

Y
(i)
b . Considering that motif counting complexity typically increases superlinearly

with network size (Ribeiro and Silva, 2010), this subsampling method emerges as

a pivotal technique for addressing scalability in network inference tasks to handle

a large network G with the inference of a much smaller b. Additionally, it’s worth

noting that we keep the specific inference method for downstream tasks open in the

algorithm subsequent to obtaining the sample {Y (i)
b }

Nsub
i=1 . Consequently, the process

remains flexible for any inference method the user may be interested in, ranging

from intuitive visualization to more sophisticated testing procedures.

The aforementioned subsampling procedure for network moments has been ex-

plored in Zhang and Xia (2022); Lunde and Sarkar (2023). However, as mentioned

in Section 4.1, these studies primarily focused on inferring a single network moment

at a time, specifically concerning the marginal distribution of individual motifs Rj.

Yet, relying solely on marginal network moment distributions often falls short of

providing insightful inference results for practical problems. Therefore, we proceed

to introduce our study of the subsampling correctness of the joint distribution, lay-

ing the groundwork for flexible multivariate inference regarding joint or conditional

distributions. Such a generalization involves precisely characterizing the dependence

between network moments, which is nontrivial from the marginal cases.

To initiate our discussion, Algorithm 5 operates based on the observed network

G, and {Y (i)
b }Nsub

i=1 constitutes a random sample from the subsampling distribution

conditioning on Gn = G, where Gn ∼ ρnw. Our objective is to illustrate that

the subsampling distribution, as a random probability distribution (with respect

to the randomness of Gn), effectively approximates the multivariate network mo-

ments distribution for Gb from the graphon model. We denote G(∗G)
b as a randomly
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induced subgraph of G from the node subsampling procedure. When discussing

distributional quantities such as the expectation or variance of G(∗G)
b , conditioning

on Gn = G, we use (∗G) in our notation. For instance, var(∗G) represents the

variance of G(∗G)
b conditioning on Gn = G. We write (∗G) as ∗ when the context

clearly identifies G. When we study the asymptotic properties, we are considering

a sequence of random networks {Gn}, with n→∞.

Fix a set of motifs {R1, · · · , Rm}, with rj = |V (Rj)| and rj = |E(Rj)| for j ∈ [m],

define the following cumulative distribution functions (CDFs):

J
{R1,··· ,Rm}
∗,n,b (t1, · · · , tm) = pr∗

{√
b
[
ρ̂−r1
G UR1(G∗

b)− ρ̂
−r1
G UR1(G)

]
≤ t1,

· · · ,
√
b
[
ρ̂−rm
G URm(G∗

b)− ρ̂−rm
G URm(G)

]
≤ tm

}
, (4.2)

J
{R1,··· ,Rm}
b,c (t1, · · · , tm) = pr

{√
bc
{
ρ̂−r1
Gb
UR1(Gb)− E[ρ−r1

b UR1(Gb)]
}
≤ t1,

· · · ,
√
bc
{
ρ̂−rm
Gb

URm(Gb)− E[ρ−rm
b URm(Gb)]

}
≤ tm

}
.

(4.3)

We call J
{R1,··· ,Rm}
∗,n,b the subsampling distribution (conditioning onG) and J

{R1,··· ,Rm}
b,c

the graphon sampling distribution. The term c will be used to correct the sampling

sizes between b and n, the format of which will be clear soon. Our theoretical

analysis is established under the following assumptions.

Assumption 1 (Subsampling size). limn→∞ b/n = c2 for a constant c2 ∈ [0, 1).

Assumption 2 (Sparsity level). Define r = max{r1, · · · , rm} and r = max{r1, · · · , rm}.

There exists a constant c1 > 1 such that nρ4rn ⩾ c1 log(n) for sufficiently large n.

Furthermore, bρ
r/2
n →∞, and bρ2rn →∞ as n→∞.
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Similar assumptions have been made in Green and Shalizi (2022), Zhang and Xia

(2022) and Lunde and Sarkar (2023) when they studied univariate marginal network

moment distributions. Zhang and Xia (2022) allows a sparser regime, but their

results also require an additional Cramer-type condition to ensure the regularity for

network moments. Lunde and Sarkar (2023) has a slightly stronger requirement of

b = o(n), and their sparsity assumption is implicit. Under the above assumptions,

we have the following property for the multivariate subsampling distribution.

Theorem 9. Under Assumptions 1 and 2, with probability one (with respect to the

random sequence {Gn}),

sup
(t1,··· ,tm)∈Rm

∣∣∣J{R1,··· ,Rm}
∗,n,b (t1, · · · , tm)− J{R1,··· ,Rm}

b,(1− b
n
)

(t1, · · · , tm)
∣∣∣→ 0, (4.4)

Theorem 9 is the first result that shows the first-order consistency of the subsam-

pling joint distribution of network moments. For subsampling marginal distributions

of network moments, Zhang and Xia (2022) have established the second-order ac-

curacy through their Edgeworth expansion. However, whether such higher-order

accuracy is attainable for multivariate joint distributions remains unclear. We defer

the exploration of this direction to future endeavors.

4.4 Simulation

We now employ simulated data to assess the accuracy of approximating sub-

sampling distributions by evaluating the finite sample approximation error given by

the righthand side of (4.4). Specifically, using networks generated from graphon

models, we calculate the empirical Kolmogorov-Smirnov distance between ĴR1,··· ,Rm

∗,n,b

and ĴR1,··· ,Rm

b,(1−b/n) , which are the empirical CDFs corresponding to (4.2) and (4.3), re-
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spectively. We focus on the performance for m = 1 (marginal distribution) and 2

(bi-variate joint distribution), considering three basic motifs: (2-star), (trian-

gle), and (3-star). The experimental setups are detailed below:

• The true network models: two graphons from previous studies (Zhang and

Xia, 2022; Green and Shalizi, 2022; Lunde and Sarkar, 2023) are used.

1. Graphon 1 (smooth): w(u, v) ∝ exp{−25(u− v)2/2}.

2. Graphon 2 (nonsmooth): w(u, v) ∝ 0.5 cos[0.1{(u− 0.5)2 + (v − 0.5)2}+

0.01] ·max(u, v)2/3 + 0.4.

• The network and subsampling sizes: n varies from 2000 to 16000 and b =

⌈n2/3⌉.

• Sparsity levels: Two sparsity levels are considered ρn = 0.25n−0.1 and ρn =

0.25n−0.25.

For each configuration, the true CDF is approximated by the empirical CDF

from network moments of size-b networks sampled from the actual model. To assess

the approximation error (Kolmogorov-Smirnov distance) for each configuration, we

generate a size-n network from the true model and use the empirical CDF of the sub-

sampled {Y (i)
b }

Nsub
i=1 from Algorithm 5 with Nsub = 2000. This method is replicated

50 times, and we report the average approximation error from these replications as

the performance metric.

Figure 4.1 displays the log-scale approximation errors for both the marginal

and pairwise joint distributions under two graphon models at a sparsity level of

ρn = 0.25n−0.1. Across all evaluated CDFs, there is a clear decreasing trend in

errors. With both axis ticks labeled in the log scale, the decreasing trend is close to

linear. The error-decreasing rate of the marginal distributions roughly aligns with
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the findings of Zhang and Xia (2022). The joint distributions seem to have a slightly

slower decrease, but the pattern remains the same. Both graphons (smooth vs. non-

smooth) demonstrate consistent decreasing patterns, highlighting the subsampling

method’s potential robustness to graphon smoothness.
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Figure 4.1: Empirical approximation errors of the CDFs under the sparsity level
ρn = 0.25n−0.1.

Figure 4.2 displays the evaluation under a sparser setting with ρn = 0.25n−0.25.

The pattern remains consistent with previous results, although the errors are slightly

higher due to the increased sparsity. The variation in numerical values across dif-

ferent motifs is more pronounced, yet follows the same trend. It’s important to

note that excessive sparsity can weaken the signal-to-noise ratio to a point where

the approximation fails, as known for network resampling methods (Zhang and Xia,

2022; Green and Shalizi, 2022; Lunde and Sarkar, 2023). We explore such an overly

sparse scenario in Section C.9.

Additional results for experiments with a subsampling size of b = ⌈2n1/2⌉ are

also available in Section C.9 of the supplementary material.
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Figure 4.2: Empirical approximation errors of the CDFs under the sparsity level
ρn = 0.25n−0.25.

4.5 Statistical application: unmatchable network comparison

4.5.1 Network comparisons based on subsampling distribu-

tions

To illustrate subsampling inference, we focus on a key application: network com-

parison. This involves determining if two network data sets originate from the same

underlying population, a question that has gained significant attention recently. For

instance, studies like Ghoshdastidar and Von Luxburg (2018); Maugis et al. (2020);

Yuan and Wen (2023) have examined how to compare multiple networks within

each set, especially when these sets are large. Conversely, research such as Tang

et al. (2017a); Li and Li (2018); Liu et al. (2021); Chatterjee et al. (2023); Du and

Tang (2023) has explored comparisons between just two networks that share the

same nodes, known as ”matchable networks.” A more complex case arises with ”un-

matchable” networks, which differ in size and node matchability. Our focus will be

on these unmatchable network comparisons. Various methods (Tang et al., 2017b;

Agterberg et al., 2020; Alyakin et al., 2024) have been developed for these situations

under the random dot product graph model (Young and Scheinerman, 2007). Under

the more general graphon model, Ghoshdastidar et al. (2017) and Shao et al. (2022)
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have introduced hypothesis testing procedures based on network moments, which

can be embedded into resampling methods. However, these methods compare only

the marginal distribution of network moments. We now explore the significance of

applying multivariate inference to network moments.

Consider this scenario: two unmatchable networks, G and G′, of sizes n and n′,

are observed instantiations of G and G′. We model G ∼ ρnw and G′ ∼ ρn′w′. We

aim to determine if w = w′ using network moments as multivariate statistics. The

strength of subsampling inference is its adaptability to various comparison scenarios.

We will illustrate this flexibility with two specific comparison cases. Again, assume

we already have a preset of motifs R1, · · · , Rm of interest.

Case 1: comparison with highly imbalanced sizes. Suppose n ≫ n′,

and n′ is sufficiently large. In this scenario, set b = n′. By Theorem 9, we can

subsample from G using Algorithm 5 to approximate the true distribution of network

moments (4.3) from the graphon w. We then compare whether the observed network

moments in G′ match this distribution. The comparison step can be done by more

rigorous methods such as outlier detection or simple visualization, depending on

users’ preferences, on either the joint distribution or proper conditional distributions.

Case 2: comparison with comparable sizes. Suppose n and n′ are compa-

rable, and both are sufficiently large. In this case, directly subsampling one network

based on the size of the other is not effective. We might choose a smaller subsam-

pling size b, less than both n and n′. Using this approach, Algorithm 5 can be

applied separately on G and G′ to generate two sets of multivariate data: {Y (i)
b }

Nsub
i=1

from G and {Y
′(i)
b }

Nsub
i=1 from G′. According to Theorem 9, these data sets represent

random samples from the joint moment distributions of w and w′, respectively. This

allows for directly comparing the distributions using rigorous hypothesis testing or

simple visualization methods.
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In the upcoming examples, we will explore both cases mentioned above. Addi-

tionally, we’ll highlight the value of using multivariate inference of network moments

over univariate inference through two examples. In the first example, while the

marginal distributions of the network moments show statistically significant differ-

ences between two networks, the conditional distribution reveals no differences. In

the second example, the marginal distributions of the network moments provide no

significant indicators, but the conditional distribution uncovers notable differences

between the two networks under comparison.

4.5.2 Guppies gene network comparison for colonization be-

haviors
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Figure 4.3: Comparison of network moments between two genetic networks: the
blue points and bars illustrate the subsampling distributions from the reference

gene network while the red point and dotted line denote the observed values in the
target gene network.

The study by Fischer et al. (2021) presents a gene expression dataset from gup-

pies in Trinidad and Tobago’s Aripo River. The dataset includes a subset of genes,

termed target genes, which are believed to be linked with colonization behaviors in
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new environments. Our scientific inquiry focuses on how the co-expression patterns

of these target genes differ from those of other (reference) genes in the dataset.

The method of Cai and Liu (2016) is used to construct co-expression networks

with the FDR control at level 0.05. This results in a large network G between

16,485 reference genes and a smaller G′ between 618 target genes. Given their

imbalanced sizes, we use the case 1 strategy introduced in the previous section to

compare two networks. In particular, Nsub is taken to be 2000 for subsampling from

the reference gene network, and we use the 2-star ( ) and 3-star ( ) as the motifs,

which intuitively depicting the 3rd-order centralized interactions and the 4th-order

centralized interactions. To demonstrate how easy it is to use the subsampling for

comparison, we directly use visualization for comparison without resorting to more

sophisticated testing procedures.

Figure 4.3a displays 2000 subsampled network moments from the reference gene

network, illustrated with fitted contours. The red dot represents the network mo-

ment vector of the target gene network. At first glance, it’s clear that the target

gene network exhibits significantly fewer counts in both 2-stars and 3-stars by their

marginal distributions. However, since the 2-star is an induced subgraph of a 3-star,

these counts are highly correlated, and the observed differences might simply reflect

redundant information. Given that a 3-star represents a higher-order interaction

pattern, it is pertinent to examine its conditional distribution based on the 2-star

value, particularly when matches the value in the current target network (marked

by the vertical line at the red point in Figure 4.3a).

This analysis is further detailed in Figure 4.3b. When comparing the conditional

distribution of 3-stars to the observed level in the target gene network, we find that

the 3-star count in the target network aligns with what is expected from the reference

gene network. This suggests that the lower level of 3-stars in the target network can



80

be fully explained by its reduced 2-star count. After accounting for this, there is no

evidence of differences in the higher-order centralized interaction patterns between

the networks. This type of analysis provides deeper insights than a mere marginal

analysis.

4.5.3 Analysis of collaboration patterns in statistical research

Ji et al. (2022) collected a data set of publications, citations, and collaborations

in statistical research based on more than 80,000 papers spanning over 40 years.

This data set provides a valuable test base for statistical analysis of text data and

network data. In this example, we use the collaboration relations from this data set

to analyze the collaboration pattern between statisticians by comparing them with

the collaborations in high energy physics Newman (2001) and also dig its temporal

variations.

Collaboration comparison between statistics and high energy physics. We

focus on the period of 1995–1999 to align with the high energy physics study of New-

man (2001). The dataset from Ji et al. (2022) spans a wide range of publications,

including various interdisciplinary journals. To concentrate on statistical research,

we adopt Ji and Jin (2016)’s approach, limiting our scope to four prominent statis-

tical journals: Annals of Statistics, Biometrika, Journal of the American Statistical

Association, and the Journal of the Royal Statistical Society. In the collaboration

network, two authors are connected if they have coauthored at least one paper in

the data set. The high energy physics collaboration network is already processed

by Newman (2001). From both, we extract the largest connected components as is

common practice in the literature (Karrer and Newman, 2011; Amini et al., 2013;

Miao and Li, 2023), resulting in networks with 750 and 5835 nodes for statistics
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and high energy physics, respectively. We aim to compare collaboration patterns

in these fields using network moments. This can be done by the strategy outlined

in Case 1 of Section 4.5.1, following the method demonstrated in the guppy gene

network example.

Figure 4.4 presents the comparison between the statistics and high energy physics

networks. The network moments and for the statistics network fall within

the expected range when compared to the high energy physics network’s marginal

distributions. However, a closer look at the joint distribution in Figure 4.4a and the

conditional distribution in Figure 4.4b indicates a higher-than-expected number of

3 stars in the statistics network. This suggests a tendency toward more centralized

collaboration within the statistics research community as opposed to high energy

physics. Such an insightful understanding emerges only from comparing the network

moments jointly but not individually.

−50 0 50 100

 0.0

 0.5

 1.0

 1.5

2−star

3−
st

ar

(a) Joint distribution of and
(×103).

0

0.2

0.4

0.6

−200 −100 0 100

3−star | 2−star

Percentile: 0.991

(b) Conditional distribution of | .

Figure 4.4: Comparison of network moments between statistics network and high
energy physics network: the blue points and bars illustrate the subsampling

distributions from the high energy physics network, while the red point and dotted
line denote the observed values in the statistics network.

Temporal comparison of statistics collaborations over time. We next

compare the collaboration patterns in statistics over three periods: 1990–1994, 1995–
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1999, and 2000–2004. After processing the data, the networks contain 601, 750, and

750 nodes, respectively. There are 186 common nodes between the first two periods

and 215 between the last two, with only 68 nodes present throughout all three

periods. Due to the small overlap, we consider the three networks unmatchable.

With their sizes being similar, we employ the comparison method from Case 2 in

Section 4.5.1. For each network, Algorithm 5 is used to generate 2000 subsampled

network moments. We then visually compare the three multivariate distributions,

focusing on the motifs and .

Figure 4.5 displays the three bivariate distributions, showing similar contour

shapes and a nonlinear positive relationship between and . The distribution

for 1990-1994 is noticeably more concentrated, indicating less variability in network

moments than in the subsequent periods. The latter two periods show a marked

increase in variability yet appear quite similar to each other. Thus, Figure 4.5

implies consistent overall dependence between and across the three periods.

From 1990 to 1999, there was an observable growth in the diversity of collaboration

patterns, as evidenced by the larger variance. Between 1995 and 2004, however, the

pattern of collaboration seems stable regarding these motifs.

4.6 Discussion

We have demonstrated that network node subsampling provides asymptotically

valid inference for the joint distributions of multiple network moments. Through

multiple examples, we have shown that the joint distribution derived from sub-

sampling offers more utility and deeper insights than the marginal distributions

previously studied. Several avenues could extend this work. Notably, examining if

a certain type of higher-order accuracy of the joint distribution exists for the node
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Figure 4.5: Joint distribution of network moments for (×103) and from
different statistical collaboration networks.

subsampling is the natural next step. Furthermore, calculating network moments

can be computationally intensive, restricting their practical use. Developing effi-

cient methods to calculate network moments in large networks, possibly with some

approximations, is a crucial next step. Additionally, how these approximations af-

fect the inferences drawn is another critical problem to study. Advancements here

could significantly enhance the scalability of the subsampling inference in network

analysis tasks.
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A Appendix for Chapter II

A.1 Uniqueness of the Overlapping Group Lasso Problem

The group lasso penalization problems (2.14) and (2.15) are generally convex,

but may not be strictly convex. The uniqueness of these problems has been studied

by Jenatton et al. (2011a). Here we introduce their results for completeness. Note

that our theoretical properties in Section 2.3 do not rely on such uniqueness.

Lemma 10. (see Jenatton et al., 2011a, Proposition 1) If the gram matrix Q =

X⊤X/n is invertible, or if there exists g ∈ [m] such that Gg = [p], then the opti-

mization problem specified in (2.14), with λn > 0, is guaranteed to have a unique

solution. The same property holds for problem (2.15) with G replaced by G.

A.2 Additional Theoretical Results

To begin with, we introduce our proposed upper bound for the dual norm of the

overlapping group lasso.

Proposition 1. The sharp upper bound for ϕ∗ (the dual norm of overlapping group

lasso penalty in (2.1)) is

max
g∈[m]

1

wg

∥∥(Hβ)Gg

∥∥
2
,

where H is a diagonal matrix with diagonals ( 1
h1
, · · · , 1

hp
).

Assumption 7. Under model (2.13), we assume

1. (Sub-Gaussian noises) The coordinates of ε are i.i.d zero mean sub-Gaussian

random variable denote with parameter σ, which means that there exist σ > 0
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such that

E[etε)] ⩽
eσ

2t2

2
, for all t ∈ R.

2. (Group normalization condition)
√
γmax(X⊤

Gg
XGg/n) ⩽ c for some constant c.

3. (Restricted strong convexity condition) For some κ > 0,

∥∥X (β̄ − β∗)∥∥2
2

n
⩾ κ

∥∥β̄ − β∗∥∥2
2
, for all β̄ ∈

{
β | ϕ

(
(β − β∗)M⊥(S)

)
⩽ 3ϕ

(
(β − β∗)M(S)

)}
.

Remark: The assumption requires an upper bound for the quadratic form as-

sociated with each group. This type of assumption is commonly used for developing

the upper estimation error bound for non-overlapping group lasso (Lounici et al.,

2011; Huang and Zhang, 2010; Dedieu, 2019; Negahban et al., 2012; Wainwright,

2019). Additionally, the restricted curvature conditions have been well discussed

by Wainwright (2019). The curvature κ in Assumption 7 is a parameter measuring

the convexity. Generally speaking, the restricted curvature conditions state the loss

function is locally strongly convex in a neighborhood of ground truth and thus guar-

antees that a small distance between the estimate and the true parameter implies

the closeness in the loss function. However, such a strong convexity condition cannot

hold in the high-dimensional setting. So, we focus on a restrictive set of estimates.

Restricted curvature conditions are milder than the group-based RIP conditions

used in (Huang and Zhang, 2010; Dedieu, 2019), which require that all submatrices

up to a certain size are close to isometries (Wainwright, 2019). Based on Assump-

tion 7, Theorem 11 gives ℓ2 norm estimation upper error bound for overlapping

group lasso.

Theorem 11. Define hgmin = min
j∈Gg

hj, dmax = max
g∈[m]

dg, and dmax = max
g∈[m]

dg. Suppose

Assumption 7 holds, for any δ ∈ [0, 1],
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1. with λn = 8cσ

min
g∈[m]

(w2
gh

g
min)

√
dmax log 5

n
+ logm

n
+ δ, the following bound hold for β̂G

in (2.14)

∥∥∥β̂G − β∗
∥∥∥2
2
≲
σ2

κ2
·

(∑
g∈S

wg
2

)
· hGS

max

min
g∈[m]

(
w2

gh
g
min

) ·
(
dmaxlog 5

n
+

logm

n
+ δ

)
. (A.5)

with probability at least 1− e−2nδ.

2. with λn = 8cσ
min
g∈[m]

wg

√
dmax log 5

n
+ logm

n
+ δ, the following bound hold for β̂G in

(2.15)

∥∥∥β̂G − β∗
∥∥∥2
2
≲
σ2

κ2
·

∑
g∈F−1(S)

wg
2

min
g∈[m]

(
w2

g

) · (dmaxlog 5

n
+

logm

n
+ δ

)
. (A.6)

Following the framework in (Negahban et al., 2012; Wainwright, 2019), we further

study the applicability of the restricted curvature conditions in terms of a random

design matrix. Given a group structure G, Theorem 11 is developed based on

the assumption that the fixed design matrix X satisfies the restricted curvature

condition. In practice, verifying that a given design matrix X satisfies this condition

is difficult. Indeed, developing methods to “certify” design matrices this way is one

line of ongoing research (Wainwright, 2019). However, it is possible to give high-

probability results based on the following assumptions.

Theorem 12. Under Assumptions 1,2, and 3, we have

1. With probability at least 1 − e−c′n, maxg∈[m]

√
γmax(

XT
Gg

XGg

n
) ⩽ c for some

constants c, c′ > 0, as long as logm = o(n).
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2. The restricted strong convexity condition, which is

∥∥X (β̄ − β∗)∥∥2
2

n
⩾ κ

∥∥β̄ − β∗∥∥2
2
,

for all

β̄ ∈
{
β | ϕ

(
(β − β∗)M⊥(S)

)
⩽ 3ϕ

(
(β − β∗)M(S)

)}
.

hold with probability at least 1− e−
n
32

1−e−
n
64

for some constant κ > 0.
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A.3 Proofs

A.3.1 Proof of Theorem 1

Lemma 13. For any norm || ·{G̃,w̃} ||q1,q2 satisfying the conditions in (2.11), the

following two statements hold:

1. For any g ∈ [m], there exists a g̃ ∈ [|G̃|] such that Gg ⊆ G̃g̃.

2. For any g̃ ∈ [|G̃|], there exists a g ∈ [m] such that G̃g̃ = Gg.

Proof. Based on lemma 13, if a norm ||β{G̃,w̃}||q1,q2 satisfies (2.11), then it must be

that G̃ = G. Consequently, any disparity between ||β{G̃,w̃}||q1,q2 and our proposed

norm could only be due to differences in weights or the values of q1 or q2. Conse-

quently, for any β with non-zero elements solely in the gth group Gg, we have:

∑
g∈[m]

wg||βGg ||2 =
∑
g∈[m]

( ∑
g∈F (g)

wg

)
||Gg||2 ⩽ ||β{G,w̃}||q1,q2 ⩽

∑
g∈[m]

wg||βGg
||2. (A.7)

This implies that (w̃g||βGg
||q1q2)

1
q1 = wg||βGg

||2. By setting one element in Gg to

1, and other elements to 0, it follows that w̃g = wg. Since this holds for any group

in G, we have w̃ = w.

From (A.7), it is evident that (wg||βGg
||q1q2)

1
q1 = wg||βGg

||2 for any β with non-

zero elements only in Gg. This suggests that q1 = 1 and q2 = 2. Therefore, the

existing norm ||β{G̃,w̃}||q1,q2 does not satisfy the second condition in (2.11).

Proof of Lemma 13

Proof. We begin by proving the first item. Recall that G represents the space of

all possible partitions of [p]. Given that G̃ ∈ G, for an arbitrary g ∈ [m], suppose
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Gg ⊈ G̃g̃ for any g̃. Then, we can identify the smallest set T such that:

Gg ⊆
⋃
g̃∈T

G̃g̃.

Let T = {t1, t2, · · · , t|T |}. Select one element βj ∈ Gg ∩ G̃t1 and another βk ∈

Gg∩ G̃t2 . Since both βj and βk belong to Gg, if an original group includes βj, it also

contains βk. Let β be a vector where only βj and βk are non-zero, then we have:

∑
g∈[m]

wg||βGg ||2 =
( ∑
{g|βj∈Gg}

wg

)√
β2
j + β2

k ⩽ ||β{G̃,w̃}||q1,q2

⩽
∑
g∈[m]

wg||βGg
||2 =

( ∑
{g|βj∈Gg}

wg

)√
β2
j + β2

k ,

which further leads to

||β{G̃,w̃}||q1,q2 =
(

(w̃t1|βj|)q1+(w̃t2 |βk|)q1
) 1

q1 = w̃
1
q1
t1 |βj|+w̃

1
q1
t2 |βk| =

( ∑
{g|βj∈Gg}

wg

)√
β2
j + β2

k ,

for any 0 ⩽ q1, q2 ⩽∞. However, by setting


βj = βk = 1, β{[p]\{j,k}} = 0 if w

1
q1
t1 + w

1
q1
t2 ̸=

√
2
(∑

{g|βj∈Gg}wg

)
βj = 2, βk = 1, β{[p]\{j,k}} = 0 if w

1
q1
t1 + w

1
q1
t2 =

√
2
(∑

{g|βj∈Gg}wg

) ,

we arrive at a contradiction. Thus, we demonstrate that if a norm || ·{G̃,w} ||q1,q2

exists, then each group in G̃ is a union of groups in G.

Now, we continue to prove the second item. Given that the first part establishes

each group in G̃ is a union of groups in G, consider a specific group g̃ ∈ [|G̃|].

Assume there is an index set V ⊆ [m] such that G̃g̃ =
⋃

g∈V Gg with |V | > 1.

Denote V = {v1, · · · , v|V |}. We analyze two scenarios:
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• Case I: ∄a ∈ [m] s.t. (Gv1
∪Gv2

) ⊆ Ga.

• Case II: ∃a ∈ [m] s.t. (Gv1
∪Gv2

) ⊆ Ga.

Under case I, if only Gv1
and Gv2

have non-zero values in β, we obtain:

∑
g∈[m]

wg||βGg ||2 =
( ∑

g∈F (v1)

wg

)√
β2
Gv1

+
( ∑

g∈F (v2)

wg

)√
β2
Gv2

⩽ ||β{G̃,w̃}||q1,q2 ⩽
∑
g∈[m]

wg||βGg
||2

= wv1

√
β2
Gv1

+ wv2

√
β2
Gv2

=
( ∑

g∈F (v1)

wg

)√
β2
Gv1

+
( ∑

g∈F (v2)

wg

)√
β2
Gv2
,

which leads to

wv1

√
β2
Gv1

+ wv2

√
β2
Gv2

= w̃g̃

(∑
j∈G̃g̃

|βj|q2
) 1

q2 = w̃g̃

( ∑
j∈{Gv1∪Gv2}

|βj|q2
) 1

q2 .

This equation does not hold by picking j ∈ Gv1
, k ∈ Gv2

, and setting


βj = βk = 1, β{[p]\{j,k}} = 0 if wv1

+ wv2
̸= w̃g̃ · 2

1
q2

βj = 2, βk = 1, β{[p]\{j,k}} = 0 if wv1
+ wv2

= w̃g̃ · 2
1
q2

.

Therefore, |V | > 1 cannot happen.

Under case II, let βj ∈ Gv1
and βk ∈ Gv2

. Define βj as the vector with 1 at the

j-th element and 0 elsewhere, and βk as the vector with 1 at the k-th element and

0 elsewhere, with j ̸= k.
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When β = βj, we have:

∑
g∈[m]

wg||βGg ||2 =
( ∑

g∈F (v1)

wg

)
⩽ w̃g̃ ⩽

∑
g∈[m]

wg||βGg
||2 = wv1

,

indicating that w̃g̃ = wv1
for all q1, q2. Similarly, for β = βk, we have:

∑
g∈[m]

wg||βGg ||2 =
( ∑

g∈F (v2)

wg

)
⩽ w̃g̃ ⩽

∑
g∈[m]

wg||βGg
||2 = wv2

,

indicating that w̃g̃ = wv2
for all q1, q2.

If wv1
̸= wv2

, then such a weight assignment is not feasible. Assuming wv1
=

wv2
= wg̃ = k, then for any β with non-zero values only in Gv1

, we have wg̃||βGv1
||2 =

(wg̃||βGv1
||q1q2)

1
q1 , implying that if a norm satisfies (2.11), it must be an ℓ1/ℓ2 norm.

Since Gv1
and Gv2

are different groups, there is at least one original group that

contains variables in Gv1
but not in Gv2

, and vice versa. Taking β with non-zero

values in both Gv1
and Gv2

, we have:

∑
g∈[m]

k||βGg ||2 > k||βGv1
∪ βGv2

||2 = ||β{G̃,w̃}||1,2,

which is a contradiction. Hence, in both cases, |V | > 1 is not possible, implying

that there exists a g ∈ [m] such that G̃g̃ = Gg.

A.3.2 Proof of Theorem 2

Proof. We begin by examining the bound for the estimator β̂G. Considering a fixed

design matrix X and a group structure G that comply with Assumption 7, and

selecting an appropriate λn, Theorem 11 asserts that both inequalities (2.17) and

(2.19) hold with a probability of at least 1− e−2nδ.
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Under Assumptions 1,2, and 3, Theorem 12 establishes that Assumption 7 is valid

with a probability of at least 1− e−c2nδ2 − e−
n
32

1−e
n
64

, where c2 is a positive constant.

Considering these two theorems together, we conclude that under Assump-

tions 1,2, and 3, both (2.17) and (2.19) are satisfied with a probability of at least

1 − e−c2nδ2 − e−2nδ − e−
n
32

1−e
n
64

. This probability can be further bounded below by

1− e−c′nδ for some suitable constant c′.

The bound for β̂G can be directly derived, noting that it represents a group lasso

estimator with group G and weights w.

A.3.3 Proof of Corollary 3

Proof. Assuming that max{dmax,m} ≍ max{dmax,m}, then we have

(dmaxlog 5

n
+

logm

n
+ δ
)
≍
(dmaxlog 5

n
+

logm

n
+ δ
)
.

Let wg =
∑

g∈F (g)wg, by the Cauchy–Schwarz inequality, we have

w2
g =

( ∑
g∈F (g)

wg

)2
⩽ hg

( ∑
g∈F (g)

w2
g

)
.

Therefore,

∑
g∈F−1(S)

w2
g ⩽

∑
g∈F−1(S)

hg(
∑

g∈F (g)

w2
g) ⩽ h

GS
max

( ∑
g∈F−1(S)

∑
g∈F (g)

w2
g

)
.

Let’s introduce kg as the number of non-overlapping groups from G into which

the gth group is partitioned in the new structure G. We also define K as the

maximum number of such partitions, i.e., K = maxg kg and K ⩽∞. Now we want
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to show that ∑
g∈F−1(S)

∑
g∈F (g)

w2
g ⩽

∑
g∈S

kgw
2
g .

Recall the definition of F−1(S) as:

F−1(S) = {g | g ∈ F−1(g), g ∈ S}.

For each g ∈ F−1(g) that also belongs to F−1(S), we add w2
g to the summa-

tion. Therefore, the maximum contribution from each original group g to the sum∑
g∈F−1(S)

∑
g∈F (g)

w2
g is kgw

2
g .

Given that

{g|g ∈ F (g) and g ∈ F−1(S)} = S,

we have

h
GS
max

( ∑
g∈F−1(S)

∑
g∈F (g)

w2
g

)
⩽ h

GS
max

∑
g∈S

kgw
2
g ⩽ h

GS
maxK

∑
g∈S

w2
g .

On the other hand, we have

min
g∈[m]

(
w2

g

)
= min

g∈[m]

( ∑
g∈F (g)

wg

)2
⩾ min

g∈[m]

( ∑
g∈F (g)

min
g∈[m]
{wg}

)2

⩾ min
g∈[m]

(
hgmin min

g∈[m]
{wg}

)2

=

(
hgmin min

g∈[m]
{wg}

)2

⩾ min
g∈[m]

(
w2

gh
g
min

)
.

Therefore,

∑
g∈F−1(S)

wg
2

min
g∈[m]

(
w2

g

) ⩽

K
( ∑

g∈S
w2

g

)
· hGS

max

min
g∈[m]

(
w2

gh
g
min

) .
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Consequently, if K is upper bounded by a constant, then

σ2

κ2
·

∑
g∈F−1(S)

wg
2

min
g∈[m]

(
w2

g

) ·(dmaxlog 5

n
+

logm

n
+ δ

)
≲
σ2

κ2
·

( ∑
g∈S

w2
g

)
· hGS

max

min
g∈[m]

(
w2

gh
g
min

) ·(dmaxlog 5

n
+

logm

n
+ δ

)
.

A.3.4 Proof of Proposition 1

Proof. Let HGg be the sub-matrix of H consisting of the columns indexed by Gg.

Let uGg , vGg be the sub-vectors of u, v indexed by Gg respectively. Given two vectors

u, v ∈ Rp, we have

ϕ∗(v) = sup
ϕ(u)⩽1

{
uTv

}
= sup

ϕ(u)⩽1

{u1v1 + u2v2 + · · ·+ upvp}

= sup
ϕ(u)⩽1

{
v1
h1
· h1 · u1 + · · ·+ vp

hp
· hp · up

}
= sup

ϕ(u)⩽1

{
m∑
g=1

(
HGgvGg

)T
uGg

}
= sup

ϕ(u)⩽1

{
m∑
g=1

(
(Hv)Gg

)
wg

· wg · uGg

}

⩽ sup
ϕ(u)⩽1

{
m∑
g=1

∥∥(Hv)Gg

∥∥
2

wg

·
∥∥wguGg

∥∥
2

}
⩽

(
max
g∈[m]

1

wg

·
∥∥(Hv)Gg

∥∥
2

)
· ϕ(u)

⩽ max
g∈[m]

1

wg

·
∥∥(Hv)Gg

∥∥
2
,

where the first inequality is achieved by using Cauchy’s inequality.

Let g0 = arg max
g∈[m]

1
wg

∥∥∥(Hv)Gg

∥∥∥
2

and hg0max = 1. Define u ∈ Rp as

uj =


0 for j /∈ Gg0

1
wg0
· vj
hj

2 · 1∥∥∥(Hv)Gg0

∥∥∥
2

for j ∈ Gg0 ,
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then we have

ϕ (u) =
m∑
g=1

wg

∥∥uGg

∥∥
2

= wg0 ·
1

wg0

· 1∥∥∥(Hv)Gg0

∥∥∥
2

·

√√√√∑
j∈Gg0

vj2

hj
4

=
1∥∥∥(Hv)Gg0

∥∥∥
2

√√√√∑
j∈Gg0

vj2

hj
2 = 1,

where the last equality holds due to the fact that hj = 1 for any j ∈ Gg0 , and we

also have

uTv =
1

wg0

1∥∥∥(Hv)Gg0

∥∥∥
2

·
∑
j∈Gg0

vj
2

hj
2 =

1

wg0

1∥∥∥(Hv)Gg0

∥∥∥
2

·
∥∥∥(Hv)Gg0

∥∥∥2
2

=
1

wg0

∥∥∥(Hv)Gg0

∥∥∥
2

= max
g∈[m]

1

wg0

∥∥∥(Hv)Gg

∥∥∥
2

= ϕ∗ (v) .

Therefore, this is a sharp bound.
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A.3.5 Proof of Theorem 11

Proof. This section mostly follow the proof in Wainwright (2019, Chap. 14). For

simplicity, we write S = S(β∗) and S = S(β∗). From the optimality of β̂G, we have

0 ⩾
1

n

∥∥Y −Xβ̂∥∥2
2
− 1

n

∥∥Y −Xβ∗∥∥2
2

+ λn

(
ϕ(β̂)− ϕ(β∗)

)
=

1

n

(
Y TY − 2Y TXβ̂ + β̂TXTXβ̂ − Y TY + 2Y TXβ∗ − β∗TXTXβ∗

)
+ λn

(
ϕ(β̂)− ϕ (β∗)

)
=

1

n

(
(2XTXβ∗ − 2XTY )T (β̂ − β∗) + (β̂ − β∗)TXTX(β̂ − β∗)

)
+ λn

(
ϕ(β̂)− ϕ(β∗)

)
=
〈
▽
∥∥Y −Xβ∗

∥∥2
2

n
,
(
β̂ − β∗)〉+

∥∥X(β̂ − β∗)∥∥
2

n
+ λn

(
ϕ(β̂)− ϕ(β∗)

)
⩾
〈
▽
∥∥Y −Xβ∗

∥∥2
2

n
,
(
β̂ − β∗)〉+ κ

∥∥(β̂ − β∗)∥∥2
2

+ λn

(
ϕ(β̂)− ϕ(β∗)

)
⩾ −

∣∣∣〈▽ ∥∥Y −Xβ∗
∥∥2
2

n
,
(
β̂ − β∗)〉∣∣∣+ κ

∥∥(β̂ − β∗)∥∥2
2

+ λn

(
ϕ(β̂)− ϕ(β∗)

)
,

where the penultimate step is valid due to the assumption of restrictive strong

convexity.

By applying Holder’s inequality with the regularizer ϕ and its dual norm ϕ∗, we

have

∣∣∣∣〈▽ ∥Y −Xβ∗∥22
n

,
(
β̂ − β∗)〉∣∣∣∣ ⩽ ϕ∗

(
▽ ∥Y −Xβ

∗∥22
n

)
ϕ
(
β̂ − β∗). (A.8)

Next, we have

ϕ(β̂) = ϕ
(
β∗ + (β̂ − β∗)

)
= ϕ

(
β∗
M(S) + β∗

M⊥(S) + (β̂ − β∗)M(S) + (β̂ − β∗)M⊥(S)

)
⩾ ϕ

(
β∗
M(S) + (β̂ − β∗)M⊥(S)

)
− ϕ(β∗

M⊥(S))− ϕ
(

(β̂ − β∗)M(S)

)
= ϕ(β∗

M(S)) + ϕ
(

(β̂ − β∗)M⊥(S)

)
− ϕ(β∗

M⊥(S))− ϕ
(

(β̂ − β∗)M(S)

)
.

The inequality holds by applying the triangle inequality on ϕ(β̂), and the last
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step holds by applying lemma 15. Consequently, we have

ϕ(β̂)− ϕ (β∗) ⩾ ϕ
(

(β̂ − β∗)M⊥(S)

)
− ϕ

(
(β̂ − β∗)M(S)

)
− 2ϕ(β∗

M⊥(S))

= ϕ
(

(β̂ − β∗)M⊥(S)

)
− ϕ

(
(β̂ − β∗)M(S)

)
,

(A.9)

where ϕ
(
β∗
M⊥(S)

)
= 0 as β∗

M⊥(S)
is a zero vector.

Based on (A.8) and (A.9), we have

1

n

∥∥∥Y −Xβ̂∥∥∥2
2
− 1

n
∥Y −Xβ∗∥22 + λn

(
ϕ(β̂)− ϕ(β∗)

)
⩾ −

∣∣∣∣〈▽ ∥Y −Xβ∗∥22
n

,
(
β̂ − β∗

)〉∣∣∣∣+ κ
∥∥∥(β̂ − β∗

)∥∥∥2
2

+ λn

(
ϕ(β̂)− ϕ(β∗)

)
⩾ κ

∥∥∥(β̂ − β∗
)∥∥∥2

2
+ λn

(
ϕ
(

(β̂ − β∗)M⊥(S)

)
− ϕ

(
(β̂ − β∗)M(S)

))
−
∣∣∣∣〈▽ ∥Y −Xβ∗∥22

n
,
(
β̂ − β∗

)〉∣∣∣∣
⩾ κ

∥∥∥(β̂ − β∗
)∥∥∥2

2
+ λn

(
ϕ
(

(β̂ − β∗)M⊥(S)

)
− ϕ

(
(β̂ − β∗)M(S)

))
− ϕ∗

(
▽ ∥Y −Xβ

∗∥22
n

)
ϕ
(
β̂ − β∗

)
⩾ κ

∥∥∥(β̂ − β∗
)∥∥∥2

2
+ λn

(
ϕ
(

(β̂ − β∗)M⊥(S)

)
− ϕ

(
(β̂ − β∗)M(S)

))
− λn

2
ϕ
(
β̂ − β∗

)
,

where the last step is valid because lemma 14 implies that we can guarantee

λn ⩾ 2ϕ∗
(
▽∥Y−Xβ∗∥22

n

)
with high probability by taking appropriate λn. Moreover,

lemma 16 implies that

β̂ ∈
{
β ∈ Rp | ϕ

(
(β − β∗)M⊥(S)

)
⩽ 3ϕ

(
(β − β∗)M(S)

)}
.

By the triangle inequality, we have

ϕ(β̂−β∗) = ϕ
(

(β̂ − β∗)M(S) + (β̂ − β∗)M⊥(S)

)
⩽ ϕ

(
(β̂ − β∗)M(S)

)
+ϕ
(

(β̂ − β∗)M⊥(S)

)
,
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and hence we have

1

n

∥∥∥Y −Xβ̂∥∥∥2
2
− 1

n
∥Y −Xβ∗∥22 + λn

(
ϕ(β̂)− ϕ(β∗)

)
⩾ κ

∥∥∥(β̂ − β∗
)∥∥∥2

2
+ λn

(
ϕ
(

(β̂ − β∗)M⊥(S)

)
− ϕ

(
(β̂ − β∗)M(S)

))
− λn

2
ϕ
(
β̂ − β∗

)
⩾ κ

∥∥∥(β̂ − β∗
)∥∥∥2

2
+ λn

(
ϕ
(

(β̂ − β∗)M⊥(S)

)
− ϕ

(
(β̂ − β∗)M(S)

))
− λn

2

(
ϕ
(

(β̂ − β∗)M(S)

)
+ ϕ

(
(β̂ − β∗)M⊥(S)

))
⩾ κ

∥∥∥β̂ − β∗
∥∥∥2
2

+
λn
2

(
ϕ(β̂ − β∗)M⊥(S) − 3ϕ(β̂ − β∗)M(S)

)
⩾ κ

∥∥∥β̂ − β∗
∥∥∥2
2
− 3λn

2
ϕ
(

(β̂ − β∗)M(S)

)
.

By definition, we have ϕ
(

(β̂ − β∗)M(S)

)
=
∑
g∈S

wg

∥∥∥(β̂ − β∗
)
Gg

∥∥∥
2
, and by Cauchy-

Schwarz inequality, we have

∑
g∈S

wg

∥∥∥∥(β̂ − β∗
)
Gg

∥∥∥∥
2

⩽
√∑

g∈S

w2
g ·

√
h
GS
max ·max

g∈S

∥∥∥∥(β̂ − β∗
)
Gg

∥∥∥∥2
2

⩽
√∑

g∈S

w2
g ·
√
h
GS
max ·

∥∥∥(β̂ − β∗
)∥∥∥2

2

=

√∑
g∈S

w2
g ·
√
h
GS
max

∥∥∥(β̂ − β∗
)∥∥∥

2
.

On the other hand, since κ
∥∥∥β̂ − β∗

∥∥∥2
2
− 3λn

2

√∑
g∈S

w2
g ·
√
h
GS
max

∥∥∥(β̂ − β∗
)∥∥∥

2
⩽ 0,
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we have

∥∥∥β̂ − β∗
∥∥∥2
2
⩽

9λ2n
4κ2

∑
g∈S

w2
g · h

GS
max

⩽
9

4κ2
·

64c2σ2
∑
g∈S

w2
g · hmax(S)

min
g∈[m]

(
w2

gh
g
min

) ·
(
dmaxlog 5

n
+

logm

n
+ δ

)

⩽
144c2σ2

κ2
·

∑
g∈S

w2
g · h

GS
max

min
g∈[m]

(
w2

gh
g
min

) · (dmaxlog 5

n
+

logm

n
+ δ

)

A.3.6 Lemmas for the proof of Theorem 11

In these lemmas, we abbreviate β̂G by β̂.

Lemma 14. Under the Assumption 7 and (2.2), taking

λn = 8cσ√
min
g∈[m]

(w2
gh

g
min)

√
dmax log 5

n
+ logm

n
+ δ for some δ ∈ [0, 1],

then P
(
λn ⩾ 2ϕ∗(X

⊤ε
n

)
)
⩾ 1− e−2nδ.

Proof of Lemma 14. Let Vi·g = −εi
(

Xig1

hg1wg
,

Xig2

hg2wg
, . . . ,

Xigdg

hgdg
wg

)
∈ Rdg . According to

the variational form of ℓ2 norm, we have 1
n
∥
∑n

i=1 Vi·g∥2 = sup
u∈Sdg−1

〈
u, 1

n

∑n
i=1 Vi·g

〉
,

where Sdg−1 is the Euclidean sphere inRdg . Also, for any vector u ∈ Sdg−1 and

t ∈ R, we have

1

n
logE

(
e
t

〈
u,

n∑
i=1

Vi·g

〉)
=

1

n
logE

(
e
t

dg∑
j=1

uj

n∑
i=1

Vi·gj
)

=
1

n
logE

(
e
t

n∑
i=1

(
dg∑
j=1

ujVi·gj

))

=
1

n
logE

(
e
−t

n∑
i=1

(
dg∑
g=1

ujXigj
εi

hgj wg

))
=

1

n
logE

(
e
−t

n∑
i=1

εi

(
dg∑
j=1

ujXigj
hgj wg

))
.
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Since {ϵi}ni=1 are i.i.d zero mean sub-Gaussian random variables with parameter σ,

let u = (u1, · · · , udg)T ∈ Rdg×1, Xi,g = (Xig1 , · · ·Xigdg
)T ∈ Rdg×1, then we have

1

n
logE

(
e
−t

n∑
i=1

εi

(
dg∑
j=1

ujxigj
hgj wg

))
=

1

n
logE

(
e
−tε1

(
dg∑
j=1

ujX1gj
hgj wg

))
+ · · ·+ 1

n
logE

(
e
−tεn

(
dg∑
j=1

ujXngj
hgj wg

))
⩽
t2σ2

2n

( n∑
i=1

( dg∑
j=1

ujXigj

wghgj

)2)
⩽
t2σ2

2n

1

w2
g (hgmin)2

( n∑
i=1

( dg∑
j=1

ujXigj

)2)

=
t2σ2

2n

1

w2
g (hgmin)2

( n∑
i=1

⟨u, Xi,g⟩2
)

=
t2σ2

2n

1

w2
g (hgmin)2

( n∑
i=1

(uTXi,gX
T
i,gu)

)
=
t2σ2

2

1

w2
g (hgmin)2

(
uT
( 1

n

n∑
i=1

Xi,gX
T
i,g

)
u

)
=
t2σ2

2

1

w2
g (hgmin)2

(
uT
XT

Gg
XGg

n
u

)
⩽
t2σ2

2

1

w2
g (hgmin)2

(
γmax(

XT
Gg
XGg

n
)

)

By Assumption 7, we have γmax(
XT

Gg
XGg

n
) ⩽ c2. Combining this with the previous

proof, we have 1
n

logE
(
e
t

〈
u,

n∑
i=1

Vi·g

〉)
⩽ c2t2σ2

2w2
g(hg

min)
. Therefore, the random variable〈

u,
n∑

i=1

Vi·g

〉
is the sub-Gaussian with the parameter at most

√
c2σ2

w2
g(hg

min)
, and by

properties of sub-Gaussian variables, we have

logP
(〈
u,

n∑
i=1

Vi·g

〉
⩾
λn
4

)
⩽ −

λ2nw
2
gh

g
min

32C2σ2
.

We can find a 1
2

covering of Sdg−1 in Euclidean norm:{u1, u2, . . . , uN} with N ≤

5dg , recall that 1
n
∥
∑n

i=1 Vi·g∥2 = 1
n

sup
u∈Sdg−1

〈
u,

n∑
i=1

Vi·g

〉
, so that for any u ∈ Sdg−1 ,
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we can find a uq(u) ∈
{
u1, . . . , uN

}
, such that

∥∥uq(u) − u∥∥
2
⩽ 1

2
, and

1

n
sup

u∈Sdg−1

〈
u,

n∑
i=1

Vi·g

〉
=

1

n
sup

u∈Sdg−1

(〈
u− uq(u),

n∑
i=1

Vi·g

〉
+
〈
uq(u),

n∑
i=1

Vi·g

〉)
⩽

1

n
sup

u∈Sdg−1

〈
u− uq(u),

n∑
i=1

Vi·g

〉
+

1

n
max
q∈[N ]

〈
uq, Vi·g

〉

By applying the Cauchy-Schwarz inequality, we have

1

n
sup

u∈Sdg−1

〈
u− uq(u),

n∑
i=1

Vi·g

〉
⩽

∥∥u− uq(u)∥∥
2

n

∥∥∥ n∑
i=1

Vi·g

∥∥∥
2
⩽

1

2n

∥∥∥ n∑
i=1

Vi·g

∥∥∥
2
.

Hence, we obtain 1
n

∥∥∥ n∑
i=1

Vi·g

∥∥∥
2
⩽ 1

2n

∥∥∥ n∑
i=1

Vi·g

∥∥∥
2
+ 1

n
max
q∈[N ]

〈
uq,

n∑
i=1

Vi·g

〉
, which indicates

that

1

n

∥∥∥ n∑
i=1

Vi·g

∥∥∥
2
⩽ 2 max

q∈[N ]

〈
uq,

1

n

n∑
i=1

Vi·g

〉
.

Consequently, we can express the probability as

P
( 1

n

∥∥∥ n∑
i=1

Vi·g

∥∥∥
2
⩾
λn
2

)
⩽ P

(
max
q∈[N ]

〈
uq,

1

n

n∑
i=1

Vi·g

〉
⩾
λn
4

)
⩽

N∑
q=1

P
(〈
uq,

1

n

n∑
i=1

Vi·g

〉
⩾
λn
4

)
⩽ N exp

(
−
nλ2nw

2
gh

g
min

32C2σ2

)
⩽ exp

(
−
nλ2nw

2
gh

g
min

32C2σ2
+ dg log 5

)
,
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and by setting λn = 8Cσ√
min
g∈[m]

(w2
gh

g
min)

√
dmax log 5

n
+ logm

n
+ δ, we get

P
(

max
g∈[m]

1

n

∥∥∥ n∑
i=1

Vi·g

∥∥∥
2
⩾
λn
2

)
⩽

m∑
g=1

P
( 1

n

∥∥∥ n∑
i=1

Vi·g

∥∥∥
2
⩾
λn
2

)
⩽ exp

(
− nλ2n

32C2σ2
min
g∈[m]

(w2
gh

g
min) + dmax log 5 + logm

)
⩽ exp{−2nδ}.

From Proposition 1, we have

ϕ∗
(X⊤ε

n

)
⩽ max

g∈[m]

1

wg

∥∥∥(HX⊤ε

n

)
Gg

∥∥∥
2

= max
g∈[m]

1

wg

∥∥∥ 1

n

n∑
i=1

−εi
(Xig1

hg1
, · · · ,

Xigdg

hgdg

)∥∥∥
2

= max
g∈[m]

∥∥∥ 1

n

n∑
i=1

Vi·g

∥∥∥
2
.

Therefore, P
(
λn ⩾ 2ϕ∗(X

⊤ε
n

)
)
⩾ 1− e−2nδ.

Lemma 15. The group lasso regularizer (2.1) is decomposable with respect to the

pair
{
M (S) ,M⊥(S)

}
. That is, ϕ(a+b) = ϕ(a)+ϕ(b), for all a ∈M (S) and for all b ∈

M⊥(S).

Proof of Lemma 15.

ϕ (a+ b) =
m∑
g=1

wg

∥∥∥(a+ b)Gg

∥∥∥
2

=
∑

g∈M(S)

wg

∥∥∥(a+ b)Gg

∥∥∥
2

+
∑

g/∈M(S)

wg

∥∥∥(a+ b)Gg

∥∥∥
2

=
∑

g∈M(S)

wg

∥∥aGg

∥∥
2

+
∑

g∈M⊥(S)

wg

∥∥bGg

∥∥
2

=
∑

g∈M(S)

wg

∥∥aGg

∥∥
2

+
∑

g∈M⊥(S)

wg

∥∥bGg

∥∥
2

= ϕ (a) + ϕ (b)

Lemma 16. If λn ⩾ 2ϕ∗
(

XT ε
n

)
, then ϕ

(
(β̂ − β∗)M⊥(S)

)
⩽ 3ϕ

(
(β̂ − β∗)M(S)

)
.
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Proof of Lemma 16 (also see proposition 9.13 in Wainwright (2019). From equation

(A.9), we have

ϕ(β̂)− ϕ (β∗) ⩾ ϕ
(

(β̂ − β∗)M⊥(S)

)
− ϕ

(
(β̂ − β∗)M(S)

)
,

On the other hand, by the convexity of the cost function, we have

1

n

∥∥Y −Xβ̂∥∥2
2
− 1

n

∥∥Y −Xβ∗∥∥2
2
⩾

〈
▽
∥∥Y −Xβ∗

∥∥2
2

n
,
(
β̂ − β∗

)〉
⩾ −

〈
▽
∥∥Y −Xβ∗

∥∥2
2

n
,
(
β̂ − β∗

)〉
.

By applying Holder’s inequality with the regularizer ϕ and its dual norm ϕ∗, we

have

∣∣∣∣〈▽ ∥Y −Xβ∗∥22
n

,
(
β̂ − β∗

)〉∣∣∣∣ ⩽ ϕ∗
(
▽ ∥Y −Xβ

∗∥22
n

)
ϕ
(
β̂ − β∗

)
.

Therefore,

1

n

∥∥Y −Xβ̂∥∥2
2
− 1

n

∥∥Y −Xβ∗∥∥2
2
⩾ −

〈
▽ ∥Y −Xβ

∗∥22
n

,
(
β̂ − β∗

)〉
⩾ −ϕ∗

(
▽ ∥Y −Xβ

∗∥22
n

)
ϕ
(
β̂ − β∗

)
⩾ −λn

2
ϕ
(
β̂ − β∗

)
⩾ −λn

2

(
ϕ(β̂ − β∗)M(S) + ϕ(β̂ − β∗)M⊥(S)

)
,

and

0 =
1

n

∥∥Y −Xβ̂∥∥2
2
− 1

n

∥∥Y −Xβ∗∥∥2
2

+ λn

(
ϕ(β̂)− ϕ(β∗)

)
≥ λn

(
ϕ
(

(β̂ − β∗)M⊥(S)

)
− ϕ

(
(β̂ − β∗)M(S)

)
− 2ϕ(β∗

M⊥(S))
)
− λn

2

(
ϕ(β̂ − β∗)M(S) + ϕ(β̂ − β∗)M⊥(S)

)
=
λn
2

(
ϕ
(

(β̂ − β∗)M⊥(S)

)
− 3ϕ

(
β̂ − β∗)M(S)

))
,

from which the claim follows.
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A.3.7 Proof of Theorem 12

Two lemmas are used in this proof:

Lemma 17 (Theorem 6.5 in (Wainwright, 2019)). Let |||.|||2 be the spectral norm

of a matrix. There are universal constants c2, c3, c4, c5 such that, for any matrix

A ∈ Rn×p, if all rows are drawn i.i.d from N(0,Θ), then the sample covariance

matrix Θ̂ satisfies the bound

E
(
et|||Θ̂−Θ|||2

)
⩽ ec3

t2θ2

n
+4p for all |t| < n

64e2|||Θ|||2
,

and hence for all δ ∈ [0, 1]

P
( |||Θ̂−Θ|||2
|||Θ|||2

⩽ c5(

√
p

n
+
p

n
) + δ

)
> 1− c4e−c2nδ2 (A.10)

Lemma 18. Under Assumptions 1,2, and 3, and use ρ(Θ) to denote the maximum

diagonal of a covariance matrix Θ. For any vector β ∈ Rp and a given group

structure with m groups, we have

∥Xβ∥2√
n
≥ 1

4

∥∥∥Θ
1
2β
∥∥∥
2
− 8ρ(Θ)

(
max
g∈[m]

1

wg

√
hgmin

)√
2(logm+ dmax log 5)

n
ϕ(β),

(A.11)

with probability at least 1− e−
n
32

1−e−
n
64
.

Proof. We first prove the first part of Theorem 12. By Lemma 17, we have

P
( |||XT

Gg
XGg

n
−ΘGg ,Gg |||2

|||ΘGg ,Gg |||2
⩽ c5(

√
dg
n

+
dg
n

) + δ
)
> 1− c4e−c2nδ2
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By the triangle inequality, since XT
Gg
XGg is a positive semi-definite, we have

γmax(
XT

Gg
XGg

n
) = |||

XT
Gg
XGg

n
|||2 = |||

XT
Gg
XGg

n
−ΘGg ,Gg |||2 + |||ΘGg ,Gg |||2

⩽ (1 + c5(

√
dg
n

+
dg
n

) + δ)|||ΘGg ,Gg |||2,

with probability at least 1− c4e−c2nδ2 . Because |||ΘGg ,Gg |||2 ≤ |||Θ|||2 ⩽ c1 for some

constant c1 and dg ⩽ n, we have γmax(
XT

Gg
XGg

n
) ⩽ c + δ for some constant c, with

probability at least 1 − e−c2nδ2 . Taking the union probability for all m groups, we

have

max
g∈[m]

γmax(
XT

Gg
XGg

n
) ≤ c+ δ

with probability at least 1− exp(−c′2nδ2) for some constant c′ > 0 as long as

logm≪ nδ2.

For simplicity, we take δ as a constant.

Now we proceed to prove the second part. First note that we must have ρ(Θ) ≤

γmax(Θ) ≤ c1 by Assumptions 1,2, and 3. By applying Minkowski inequality, we

have

ϕ(β) =
m∑
g=1

wg

∥∥βGg

∥∥
2
⩽
√
m

√√√√ m∑
g=1

w2
g

∥∥βGg

∥∥2
2
⩽
√
m
√

max
g∈[m]

w2
gh

g
max ∥β∥22

Let β = β∗− β̄, we now want to prove that ϕ
(
βM⊥(S̄)

)
⩽ 3ϕ

(
βM(S̄)

)
implies

∥Xβ∥22
n

⩾

γmin

64
∥β∥22 .
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Since ϕ
(
βM⊥(S̄)

)
⩽ 3ϕ

(
βM(S̄)

)
, combining with triangle inequality, we have

ϕ(β) = ϕ
(
βM(S̄)

)
+ ϕ

(
βM⊥(S̄)

)
⩽ 4ϕ

(
βM(S̄)

)
⩽ 4
√
sg

√
max
g∈S̄

w2
gh

g
max

∥∥βM(S̄)

∥∥
2

⩽ 4
√
sg

√
max
g∈S̄

w2
gh

g
max ∥β∥2

From Lemma 18, we have

∥Xβ∥2√
n

⩾
1

4

∥∥∥Θ
1
2β
∥∥∥
2
− 8ρ(Θ) max

g∈[m]

1

wg

√
hgmin

√
2(logm+ dmax log 5)

n
ϕ(β)

⩾
1

4
√
c1
∥β∥2 − 32ρ(Θ) max

g∈[m]

1

wg

√
hgmin

√
2(logm+ dmax log 5)

n

√
sg

√
max
g∈S̄

w2
gh

g
max ∥β∥2

⩾
1

64
√
c1
∥β∥2 ,

where the last step is valid due to Assumption 2 and 3.

Lemmas for the Proof of Theorem 12

Proof. of Lemma 18 To begin with, for a vector β ∈ Rp with a fixed group struc-

ture, we define the set:

Sp−1(Θ) =
{
β ∈ Rp

∣∣∣∥∥∥Θ
1
2β
∥∥∥
2

= 1
}
,

the function:

g(t) = 4ρ(Θ) max
g∈[m]

1

wg

√
hgmin

√
2(logm+ dmax log 5)

n
· t

and the event:

E
(
Sp−1(Θ)

)
=

{
X ∈ Rn×p

∣∣∣∣ inf
β∈Sp−1(Θ)

∥Xβ∥2√
n

+ 2g(ϕ(β)) ⩽
1

4

}
,
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where ϕ(.) is the overlapping group lasso regularizer. In addition, given 0 ⩽ rℓ ⩽ ru,

we define the set

K (rℓ, ru) =
{
β ∈ Sp−1(Θ)

∣∣g (ϕ(β)) ∈ [rℓ, ru]
}
,

and the event:

A (rℓ, ru) =

{
X ∈ Rn×p

∣∣∣∣ inf
β∈K(rℓ,ru)

∥Xβ∥2√
n

⩽
1

2
− ru

}
.

Now we introduce two additional lemmas:

Lemma 19. For υ = 1
4
, we have E ⊆ A(0, υ) ∪

(⋃∞
ℓ=1A

(
2ℓ−1υ, 2ℓυ

))
.

Lemma 20. For any pair (rℓ, ru), where 0 ⩽ rℓ ⩽ ru, we have P (A (rℓ, ru)) ⩽

e−
n
32 e−

n
8
r2u.

Based on Lemma 19 and Lemma 20, we have

P (X ∈E) ⩽ P (A(0, υ)) +
∞∑
ℓ=1

P
(
A(2ℓ−1υ, 2ℓυ)

)
⩽ e−

n
32

{
∞∑
t=0

e−
n
8
22ℓυ2

}
.

Since υ = 1
4

and 22ℓ ⩾ 2ℓ, we have

P (X ∈E) ⩽ e−
n
32

∞∑
ℓ=0

e−
n
8
22ℓυ2

⩽ e−
n
32

∞∑
ℓ=0

e−n ℓ
4
υ2

⩽
e−

n
32

1− e− n
64

.

We now get the upper bound of P (X ∈E). We next show that the bound

in (A.11) always hold on the complementary set Ec. If X /∈ E, based on the

definition of E, we have inf
β∈Sp−1(Θ)

|Xβ∥2√
n

⩾ 1
4
− 2g (ϕ(β)) . That is ∀β ∈ Sp−1(Θ).
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∥Xβ∥2√
n

⩾ 1
4
−2g (ϕ(β)). Therefore, for any β′ ∈ {β′ ∈ R| β′∥∥∥Θ 1

2 β′
∥∥∥
2

∈ Sp−1(Θ)}, we have

∥∥∥X β′∥∥Θ 1
2 β′
∥∥

2

∥∥∥
2

√
n

⩾
1

4
− 2g

(
ϕ

(
β′∥∥Θ
1
2β′
∥∥
2

))
∥∥∥Xβ′

∥∥∥
2√

n
⩾

1

4

∥∥Θ
1
2β′∥∥

2
− 2g

(
ϕ(β′)

)
,

where we finish the proof by substituting the definition of g(ϕ(β)).

Proof. of Lemma 19 By definition, K(0, υ) ∪
(⋃∞

ℓ=1 K
(
2ℓ−1υ, 2ℓυ

))
is a cover of

Sp−1(Θ). Therefore, for any β, it either belongs to K(0, υ) or K
(
2ℓ−1υ, 2ℓυ

)
, which

leads to the following two cases:

Case 1 If β ∈ K(0, υ), by definition, we have g (ϕ(β)) ∈ [0, υ] and

∥Xβ∥2√
n

⩽
1

4
− 2g (ϕ(β)) ⩽

1

4
=

1

2
− υ.

Therefore, the event A(0, υ) must happen in this case.

Case 2: If β /∈ K(0, υ), we must have β ∈ K
(
2ℓ−1υ, 2ℓυ

)
for some ℓ = 1, 2, · · · ,

and moreover

∥Xβ∥2√
n

⩽
1

4
− 2g (ϕ(β)) ⩽

1

4
− 2 ·

(
2ℓ−1υ

)
⩽

1

2
−
(
2 · 2ℓ−1

)
υ ⩽

1

2
− 2ℓυ.

So that the event A
(
2ℓ−1υ, 2ℓυ

)
must happen. Therefore,E ⊆ A(0, υ)∪

(
∞⋃
ℓ=1

A
(
2ℓ−1υ, 2ℓυ

))
.

Proof. of Lemma 20 To prove Lemma 20, we first introduce the following lemmas:

Lemma 21 (Gordon’s Inequality). Let {Zu,v}u∈U,v∈V and {Yu,v}u∈U,v∈V be zero-

mean Gaussian process indexed by a non-empty index set I = U × V . If
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1. E
(
(Zu,v − Zu′v′)

2) ≤ E
(
(Yu,v − Yu′,v′)

2) for all pairs (u, v) and (u′ v′) ∈ I.

2. E
(
(Zu,v − Zu′v)

2) = E
(
(Yu,v − Yu′,v)

2) ,
then we have E(max

v∈V
min
u∈U

Zu,v) ≤ E(max
v∈V

min
u∈U

Yu,v).

Lemma 22. Suppose that α = (α1, ..., αd), where each αi, i ∈ [d] is a zero-mean

sub-Gaussian random variable with parameter at most σ2, then for any t ∈ R, we

have E (exp (t ∥α∥2)) ⩽ 5d exp (2t2σ2).

Lemma 23. Suppose that α = (α1, ..., αd), where each αi, i ∈ [d] is a zero-mean

sub-Gaussian random variable with parameter at most σ2, and for a given group

structure G, let
∥∥αGg

∥∥ be the corresponding group norm, m be the number of groups

and dmax be the maximum group size, then

E
(

max
g

∥∥αGg

∥∥) ⩽ 2
√

2σ2 (logm+ dmax log 5).

Lemma 24 (Theorem 2.26 in (Wainwright, 2019)). Let x = (x1, · · · , xn) be a vector

of i.i.d standard Gaussian variable, and f : Rn → R be a L-Lipschitz, with respect

to the Euclidean norm, then f(x)− Ef(x) is sub-Gaussian with parameter at most

L, and hence P ((f(x)− E [f(x))) ⩾ t] ⩽ e−
t2

2L2 , ∀t ⩾ 0.

We now start to prove. First, we define and bound the random variable T (rℓ, ru) =

− inf
β∈K(rℓ,ru)

∥Xβ∥2√
n

. Let Sn−1 be a unit ball on Rn, by the variational representation

of the ℓ2-norm, we have

T (rℓ, ru) =− inf
β∈K(rℓ,ru)

∥Xβ∥2√
n

= − inf
β∈K(rℓ,ru)

sup
u∈Sn−1

⟨u,Xβ⟩√
n

= sup
β∈K(rℓ,ru)

inf
u∈Sn−1

⟨u,Xβ⟩√
n

.

Let X = WΘ
1
2 , where W ∈ Rn×p is a standard Gaussian matrix, and define the
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transformed vector v = Θ
1
2β, then

T (rℓ, ru) = sup
β∈K(rℓ,ru)

inf
u∈Sn−1

⟨u,Xβ⟩√
n

= sup
v∈K̄(rℓ,ru)

inf
u∈Sn−1

⟨u,Wv⟩√
n

,

where K̄ (rℓ, ru) =
{
v ∈ Rp

∣∣∣∥v∥2 = 1, g
(
ϕ(Θ− 1

2v)
)
∈ [rℓ, ru]

}
.

Define Zu,v = ⟨u,Wv⟩√
n

, since (u, v) range over a subset of Sn−1×Sp−1, each variable

Zu,v is zero-mean Gaussian with variance n−1. We compare the Gaussian process

Zu,v to the zero-mean Gaussian process Yu,v which defined as:

Yu,v =
⟨ζ, u⟩√
n

+
⟨ξ, v⟩√
n

where ζ ∈ Rn, ξ ∈ Rp, have i.i.d N(0, 1) entries.

Next, we show that the Yu,v and Zu,v defined above satisfy conditions in Gordon’s

inequality. By definition, we have

E (Zu,v − Zu′,v′)
2 = E

(
⟨u,Wv⟩√

n
− ⟨u

′,Wv′⟩√
n

)2

=
1

n

n∑
i=1

p∑
j=1

(
uivj − u′iv′j

)2
=

1

n

n∑
i=1

p∑
j=1

(
uivj − u′ivj + u′ivj − u′iv′j

)2
=

1

n

(
∥v∥22 ∥u− u

′∥22 + ∥u′∥22 ∥v − v
′∥22 + 2

(
∥v∥22 − ⟨v, v

′⟩
) (
⟨u, u′⟩ − ∥u∥22

))
,

(A.12)

Since ∥v∥22 ⩽ 1, ∥u′∥22 ⩽ 1, we have E (Zu,v − Zu′,v′)
2 ⩽ 1

n

(
∥u− u′∥22 + ∥v − v′∥22

)
.

On the other hand, we have

E (Yu,v − Yu′,v′)
2 = E

(
⟨ζ, u− u′⟩√

n
+
⟨ξ, v − v′⟩√

n

)2

=
1

n

( n∑
i=1

p∑
j=1

(u− u′)2 +
n∑

i=1

p∑
j=1

(v − v′)2
)

=
1

n

(
∥u− u′∥22 + ∥v − v′∥22

)
.

(A.13)
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Taking equation (A.12) and (A.13) together, we have

E (Zu,v − Zu′,v′)
2 ⩽

1

n

(
∥u− u′∥22 + ∥v − v′∥22

)
= E (Yu,v − Yu′,v′)

2 .

If V = V ′, then nE
(
(Zu,v − Zu′,v′)

2) = ∥u− u′∥2 = nE
(
(Yu,v − Yu′,v′)

2). By

applying Lemma 21, we have

E
(

sup
v∈K̃(rℓ,ru)

inf
u∈Sn−1

Zu,v

)
⩽ E

(
sup

v∈K̃(rℓ,ru)

inf
u∈Sn−1

Yu,v

)
.

Therefore,

E
(
T (rℓ, ru)

)
= E

(
sup

v∈K̃(rℓ,ru)

inf
u∈Sn−1

⟨u,Wv⟩√
n

)
⩽ E

(
sup

v∈K̃(rℓ,ru)

inf
u∈Sn−1

(
⟨ξ, v⟩√
n

+
⟨ζ, u⟩√
n

))

= E
(

sup
β∈K(rℓ,ru)

〈
Σ

1
2 ξ, β

〉
√
n

)
− E

(
∥ζ∥2√
n

)

Next, we bound these two terms. For the second term, we have E
(

∥ζ∥2√
n

)
=

E
(√

ξ21+...+ξ2n
n

)
⩾ E

(
|ξ1|+...+|ξn|

n

)
=
√

2
π
. For the first term, we have E

(
sup

β∈K(rℓ,ru)

〈
Θ

1
2 ξ,β

〉
√
n

)
⩽

E
(

sup
β∈K(rℓ,ru)

ϕ(β)ϕ∗(Θ
1
2 ξ)√

n

)
, where ϕ∗(Θ

1
2 ξ) is the the dual norm defined before. Since

β ∈ K (rℓ, ru), g (ϕ(β)) ⩽ ru, by the definition of g(t), we have

ϕ(β) ⩽
ru(

4ρ(Θ) max
g∈[m]

1

wg

√
hg
min

√
2(logm+dmax log 5)

n

) . (A.14)

Let ηGg = (Θ
1
2 ξ)Gg , to bound E

(
max

g

∥∥∥(Θ
1
2 ξ)Gg

∥∥∥
2

)
= E

(
max

g

∥∥ηGg

∥∥
2

)
. Since

Θ
1
2 ξ ∼ N(0,Θ), by the properties of normal distribution, its corresponding marginal

distribution of jth variable (Θ
1
2 ξ)j also follows zero mean normal distribution with

covariance matrix Θjj, which is the jth diagonal elements of Θ. Therefore, any
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subset of Θ
1
2 ξ is a zero-mean sub-Gaussian random sequence with parameters at

most ρ(Θ). By (A.14) and Lemma 23, we have

E
(

sup
β∈K(rℓ,ru)

ϕ(β)ϕ∗Θ
1
2 ξ√

n

)
⩽ E

(
sup

β∈K(rℓ,ru)

ru(
4ρ(Θ)

(
max
g∈[m]

1
wgh

g
min

)√2(logm+dmax log 5)
n

) ϕ∗(Θ 1
2 ξ
)

√
n

)

=
ru(

4ρ(Θ)
(

max
g∈[m]

1
wgh

g
min

)√2(logm+dmax log 5)
n

)E(ϕ∗
(

Θ
1
2 ξ
)

√
n

)

⩽
ru(

4ρ(Θ)
(

max
g∈[m]

1
wgh

g
min

)√2(logm+dmax log 5)
n

)E(max
g∈[m]

1√
nwg

∥∥∥∥H (Θ
1
2 ξ
)
Gg

∥∥∥∥
2

)

⩽
ru(

4ρ(Θ)
(

max
g∈[m]

1
wgh

g
min

)√2(logm+dmax log 5)
n

)E(max
g∈[m]

1√
nwgh

g
min

∥∥∥∥(Θ
1
2 ξ
)
Gg

∥∥∥∥
2

)

⩽
ru(

4ρ(Θ)
√

2(logm+dmax log 5)
n

)E(∥∥∥∥max
g∈[m]

(
Θ

1
2 ξ
)
Gg

∥∥∥∥
2

)

⩽
ru(

4ρ(Θ)
√

2(logm+dmax log 5)
n

) (2ρ(Θ)
√

(logm+ dmax log 5) 2σ2
)
⩽
ru
2

Therefore, E [T (rℓ, ru)] ⩽ −
√

2
π
+ ru

2
. Next we want to bound P

(
T (rℓ, ru) ⩾ −1

2
+ ru

)
based on the bound of this expectation. To apply Lemma 24, we first show that,

the f = T (rl, ru), a function of the random variable W is a 1√
n
-Lipschitz function

and without making confusion, we denote the corresponding function as T (W ). For
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any standard Gaussian matrix W1 and W2, we have

∣∣∣T (W1)− T (W2)
∣∣∣ =

∣∣∣ sup
v∈K̃(rℓ,ru)

inf
u∈Sn−1

〈
u,W1v

〉
√
n

− sup
v∈K̃(rℓ,ru)

inf
u∈Sn−1

〈
u,W2v

〉
√
n

∣∣∣
=
∣∣∣ sup
v∈K̃(rℓ,ru)

(
−
∥∥W1v

∥∥
2√

n

)
− sup

v∈K̃(rℓ,ru)

(
−
∥∥W2v

∥∥
2√

n

)∣∣∣
=
∣∣∣(− inf

v∈K̃(rℓ,ru)

∥∥W1v
∥∥
2√

n

)
−
(
− inf

v∈K̃(rℓ,ru)

∥∥W2v
∥∥
2√

n

)∣∣∣
=
∣∣∣ inf
v∈K̃(rℓ,ru)

∥∥W2v
∥∥
2√

n
− inf

v∈K̃(rℓ,ru)

∥∥W1v
∥∥
2√

n

∣∣∣.
Suppose that

∥W1v1∥2√
n

= inf
v∈K̃(rℓ,ru)

∥W1v∥2√
n

and
∥W2v2∥2√

n
= inf

v∈K̃(rℓ,ru)

∥W2v∥2√
n

.

Case 1 If ∥W1v1∥2 > ∥W2v2∥2, then we have

|T (W1)− T (W2)| =
∣∣∣∣ inf
v∈K̃(rℓ,ru)

∥W2v∥2√
n
− inf

v∈K̃(rℓ,ru)

∥W1v∥2√
n

∣∣∣∣
=
∥W1v1∥2 − ∥W2v2∥2√

n
⩽
∥W1v2∥2 − ∥W2v2∥2√

n

⩽
∥(W1 −W2)v2∥2√

n
⩽
∥W1 −W2∥F√

n

.

Case 2 If ∥W1v1∥2 ⩽ ∥W2v2∥2, then we have

|T (W1)− T (W2)| =
∣∣∣∣ inf
v∈K̃(rℓ,ru)

∥W2v∥2√
n
− inf

v∈K̃(rℓ,ru)

∥W1v∥2√
n

∣∣∣∣
=
∥W2v2∥2 − ∥W1v1∥2√

n
⩽
∥W2v1∥2 − ∥W1v1∥2√

n

⩽
∥(W1 −W2)v1∥2√

n
⩽
∥W1 −W2∥F√

n

.



115

where ∥.∥F represent the Frobenious norm of a matrix. Thus under the Euclidean

norm, T (W ) is a 1√
n
-Lipschitz function. Therefore, by Lemma 23, we have

P(T (rl, ru)− E(T (rl, ru)) ⩾ t) ⩽ e−nt2/2,∀t ⩾ 0

Set t =
√

2
π
− 1

2
+ ru

2
⩾ 1

4
+ ru

2
, we have, E(T (rl, ru)) + t ⩽ −1

2
+ ru and

P
[
T (rℓ, ru) ⩾ −1

2
+ ru

]
⩽ e−

n
32 e−

n
8
r2u , which is actually the Lemma 20.

Proof. of Lemma 22 We can find a 1
2

- cover of Sd−1, and for any u ∈ Sd−1 in

the Euclidean norm with cardinally at most N ⩽ 5d. Suppose that there exists

uq(u) ∈
{
u1, . . . , uN

}
, such that

∥∥uq(u) − u∥∥
2
⩽ 1

2
. By the variational representation

of the ℓ2 norm, we have

∥α∥2 = max
u∈Sd−1

⟨u, α⟩ ⩽ max
q(u)∈[N ]

〈
uq(u), α

〉
+

1

2
∥α∥2 .

Therefore, ∥α∥2 ⩽ 2 max
q(u)∈[N ]

〈
uq(u), α

〉
. Consequently,

E (exp (t ∥α∥2)) ⩽ E
(

exp

(
2tmax

q∈[N ]
⟨uq, α⟩

))
= E

(
max
q∈[N ]

exp (2t ⟨uq, α⟩)
)

⩽
N∑
q=1

E (exp (2t ⟨uq, α⟩)) ⩽ 5d exp

(
4t2σ2

2

)
⩽ 5d exp

(
2t2σ2

)
.

Proof. of Lemma 23 For any t > 0, by Jensen’s inequality, we have

exp

(
tE
(

max
g

∥∥αGg

∥∥)) ⩽ E
(

exp

(
tmax

g

∥∥αGg

∥∥
2

))
= E

(
max

j
exp

(
t
∥∥αGg

∥∥
2

))
⩽

m∑
j=1

E
(
exp

(
t
∥∥αGg

∥∥
2

))
⩽

m∑
j=1

5dg exp
(
2t2σ2

)
⩽ m · 5dmax · exp(2t2σ2).
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By taking log at both sides, we have tE
(

max
g

∥∥αGg

∥∥) ⩽ logm + dmax log 5 +

2t2σ2. Consequently, let t =
√

logm+dmax log 5
2σ2 , we have E

(
max

g

∥∥αGg

∥∥) ⩽ 2
√

(logm+ dmax log 5) 2σ2.

A.3.8 Proof of Theorem 4

The two lemmas below are integral to the proof:

Lemma 25 (Packing Number for Binary Sets). Consider a set A defined for real

numbers m, sg as

A =

{
a ∈ {0, 1}m |

m∑
j=1

aj ≤ sg

}
.

Then the
√

sg
2
-packing number of set A ⩾

(m
sg

)−2

( m

⌊ sg2 ⌋)·2
sg
2
, and

log

( (
m
sg

)
− 2(

m

⌊ sg2 ⌋
)
· 2

sg
2

)
≍ sg log(

m

sg
).

Lemma 26 (Packing Number for Sparse Group Vectors). For the set Ω(G, sg), the√
2dsg
5
-packing number ≳

(m
sg

)−2

( m

⌊ sg2 ⌋)·2
sg
2
· (
√

2)dsg , and

log

( (
m
sg

)
− 2(

m

⌊ sg2 ⌋
)
· 2

sg
2

· (
√

2)dsg
)
≍ sg(d+ log(

m

sg
)).

Proof. of Theorem 4 First, select N points ω(1), . . . , ω(N) from Ω(G, sg) such that∥∥ω(i) − ω(j)
∥∥ > √2dsg

5
for all distinct i, j. Clearly,

∥∥ω(i) − ω(j)
∥∥ ⩽

√
4sgd. Define

β(i) = rω(i) for each i. This results in

2ksgr
2

5
≤
∥∥β(i) − β(j)

∥∥2
2
⩽ 4sgdr

2.
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Next, let y(i) = Xβ(i) + ε for 1 ⩽ i ⩽ N . Consider the Kullback-Leibler diver-

gence between different distribution pairs:

DKL

(
(y(i), X), (y(j), X)

)
= E(y(j),X)

[
log

(
p
(
y(i), X

)
p (y(j), X)

)]
.

where p
(
y(i), X

)
is the probability density of

(
y(i), X

)
. Conditioning on X, we have

E(y(j),X)

[
log

(
p
(
y(i), X

)
p (y(j), X)

)
| X
]

=
∥X(β(i) − β(j))∥22

2σ2
.

Thus, for 1 ≤ i ̸= j ≤ N,

DKL

((
y(i), X

)
,
(
y(j), X

))
= EX

∥∥X (β(i) − β(j)
)∥∥2

2

2σ2
=
n(β(i) − β(j))⊤Σ(β(i) − β(j))

2σ2

≤
3c1
∥∥β(i) − β(j)

∥∥2
2

2σ2
≤ 2c1ndr

2sg
σ2

.

From Lemma 26, logN ≍ sg

(
d+ log m

sg

)
. Setting

ndr2sg

σ2 +log 2

logN
= 1

2
, we obtain

r ≳

√√√√(d+ log m
sg

)
σ2

3nd
.

By generalized Fano’s Lemma, inf
β̂

sup
β

E∥β̂ − β∥2 ⩾
√

2r2ksg
5

(
1 −

ndr2sg

σ2 +log 2

logN

)
.

Consequently,

inf supE∥β̂ − β∥22 ≥
(

inf supE∥β̂ − β∥2
)2

≳
σ2
(
sg(d+ log(m

sg
))
)

n
.
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Proof. of Lemma 25 Notice that the cardinality of A is
(
m
sg

)
. Denote the hamming

distance between any two points x, y ∈ A by

h(a, b) = | {j : aj ̸= bj} |.

Then, for a fixed point a ∈ A,

∣∣∣ {b ∈ A, h(a, b) ≤ sg
2

}
=

(
m⌊ sg
2

⌋) · 2⌊ sg
2
⌋
∣∣∣.

In fact, all elements b ∈ A with h(a, b) ≤ sg
2

can be obtained as follows. First,

take any subset J ⊂ [m] of cardinality
⌊ sg

2

⌋
, then set aj = bj for j /∈ J and choose

bj ∈ {0, 1} for j ∈ J .

Now let As be any subset of A with cardinality at most T =
(m
sg

)−2

( m

⌊ sg2 ⌋)·2
sg
2
, then we

have

| {b ∈ A | there exist a ∈ As with h(a, b) ≤ sg
2

}
≤ (|As|) ·

(
m⌊ sg
2

⌋) · 2 sg
2 | < |A|.

It implies that one can find an element b ∈ A with h(a, b) > sg
2

for all a ∈ As.

Therefore one can construct a subset As with |As| ≥ T and the property h(a, b) > sg
2

for any two distinct elements a, b ∈ As.

On the other hand, h(a, b) > sg
2

implies ∥a − b∥ >
√

sg
2

. Therefore, there exist

at least T points in A such that the distance between any two points is greater than√
sg
2

.

Moreover, since
(m
sg

)
( m

⌊ sg2 ⌋)
=
⌊ sg2 ⌋!(m−⌊ sg

2
⌋)!

sg !(m−sg)!
=

(m−sg+1)···m−⌊ sg2 ⌋
(⌊ sg2 ⌋+1)···sg

=
∏⌈ sg

2
⌉

j=1
m−sg+j

⌊ sg2 ⌋+j
, we

have (
m− ⌊ sg

2

⌋
2sg

)⌊ sg2 ⌋
⩽

(
m
sg

)(
m

⌊ sg2 ⌋
)
2

sg
2

⩽

(
m− sg + 1

⌈sg⌉

)⌈ sg
2
⌉

,
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and therefore we can find C1, C2, such that C1sg log(m
sg

) ⩽ log T ⩽ C2sg log(m
sg

), so

that

log

( (
m
sg

)
− 2(

m

⌊ sg2 ⌋
)
· 2

sg
2

)
≍ sg log(

m

sg
).

Proof. of Lemma 26 Given a group support a ∈ A, define ka =

∣∣∣∣{i | i ∈( ⋃
{g|ag=0}

Gg

)c}∣∣∣∣, and the set

Ω(a) =

{
ω ∈ Rp | ωi = 0 if i ∈

⋃
{g|ag=0}

Gg, ωi ∈ {−1, 1} if i ∈
( ⋃

{g|ag=0}

Gg

)c}
.

Notice that Ω(a) ⊆ Ω(G, sg), and |Ω(a)| = 2ka . Also denote the hamming distance

between x, y ∈ Ω(a) by

h(x, y) = | {j : xj ̸= yj} |.

Then for any fixed x ∈ Ω
(a)
G , we have

∣∣∣∣{y ∈ Ω(a), h(x, y) ≤ ka
10
}
∣∣∣∣ =

⌊ ka
10

⌋∑
j=0

 ka

j


Let Ω

(a)
s be any subset of Ω(a) with cardinality at most N (a) = 2ka−2

⌊ ka
10 ⌋∑
j=0


ka

j


. Then,

∣∣∣∣{y ∈ Ω(a) | ∃x ∈ Ω(a)
s with h(x, y) ≤ ka

10
}
∣∣∣∣ < |Ω(a)|.

On the other hand, h(x, y) > ka
10

implies ∥x−y∥ ≥
√

2ka
5

. Thus, there are at least

N (a) points in Ω(a) with pairwise distances greater than
√

2ka
5

. From the results in
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Graham et al. (1994, Chap. 9),

∑
j≤⌊ ka

10
⌋

(
ka
j

)
<

9

8

(
ka
⌊ka
10
⌋

)
≤ 9

8
(10e)

ka
10 ≤ 9

8
2

ka
2 .

Consequently, we have N (a) > 8
9
2

ka
2 ≳ (

√
2)ka .

The value of ka depends on the predefined groups and group support a and spans

a range from 0 to sgd. Lemma 26 seeks a lower bound for all conceivable overlapping

patterns, necessitating an analysis of the maximum value of ka.

Furthermore, according to Lemma 25, we can identify at least T points in A

where the distance between any two points exceeds
√

sg
2

. For {a1, · · · , aT} group

supports, if there is a group structure such that we could find at least 8
9
(
√

2)sgd on

each group support, and the distance between every pair of these points is greater

than
√

2sgd

5
, then Lemma 26 is proved.

Considering m non-overlapping groups, ka = sgd for each group support a. In

addition, given any two group support a, b with ∥a− b∥ >
√

sg
2
, ∥x− y∥ >

√
dsg
2
>√

2dsg
5

for any x ∈ Ω(a) and y ∈ Ω(b). Thus, considering all possible overlapping

patterns, we can find at least
(m
sg

)−2

( m

⌊ sg2 ⌋)·2
sg
2
· 8
9
(
√

2)dsg point in Ω(G, sg), such that the

distance between every pair of points is greater than
√

2dsg
5

.

A.3.9 Proof of Theorem 5

This proof consists of parts: Parts I-IV dedicated to Theorem 5.1, and Part V

is for Theorem 5.2. To be more specific, Part I provides some additional concepts,

Part II introduces the reduced problem, Part III shows the successful selection of

the correct pattern under favorable conditions, and Part IV establishes that certain
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conditions are satisfied with high probability.

Part I

Recall that S = supp(β∗). With S, we define the norm ϕS for any β ∈ Rp as

ϕS(βS) =
∑
g∈GS

wg∥βS∩Gg∥2,

along with its dual norm (ϕS)∗[u] = supϕS(βS)≤1 β
⊤
S u. Similarly, for Sc = [p] \ S, we

define the norm ϕc
S for any β ∈ Rp as

ϕc
S(βSc) =

∑
g∈[m]\GS

wg∥βSc∩Gg∥2,

accompanied by its corresponding dual norm (ϕc
S)∗[u] = supϕc

S(βSc )≤1 β
⊤
Scu.

We also introduce equivalence parameters aS, AS, aSc , ASc as follows:

∀β ∈ Rp, aS∥βS∥1 ⩽ ϕS(βS) ⩽ AS∥βS∥1, (A.15)

∀β ∈ Rp, aSc∥βSc∥1 ⩽ ϕc
S(βSc) ⩽ ASc∥βSc∥1. (A.16)

We now study the equivalence parameters from two aspects. First, since

sup
aS∥βS∥1⩽1

β⊤
S u ⩾ sup

ϕS(βS)⩽1

β⊤
S u ⩾ sup

AS∥βS∥1⩽1

β⊤
S u,

by the definition of dual norm, we have

∀u ∈ R|S|, A−1
S ∥u∥∞ ⩽ (ϕS)∗[u] ⩽ a−1

S ∥u∥∞. (A.17)
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Similarly, by order-reversing,

∀u ∈ R|Sc|, A−1
Sc ∥u∥∞ ⩽ (ϕc

S)∗[u] ⩽ a−1
Sc ∥u∥∞. (A.18)

Second, by the Cauchy-Schwarz inequality, for any β ∈ Rp and g ∈ GS,

wg√
dg
∥βS∩Gg∥1 ⩽ wg∥βS∩Gg∥2 ⩽ max

g∈GS

wg∥βS∩Gg∥1.

Consequently, we have

min
g∈GS

wg√
dg
∥βS∥1 ⩽ ϕS(βS) ⩽ hmax(GS) max

g∈GS

wg∥βS∥1,

Therefore, we can set aS = min
g∈GS

wg√
dg

and AS = hmax(GS) max
g∈GS

wg. With an trivial

extension, we can set aSc = min
g∈GSc

wg/
√
dg.

Part II

From the full problem to the reduced problem

Recall that the group lasso estimator in (2.14) is defined as

β̂G = arg min
β∈Rp

1

2n
∥Y −Xβ∥22 + λnϕ

G(β). (A.19)

Now we write ϕG(β) = ϕ(β) and L(β) = 1
2n
∥Y −Xβ∥22 for ease of notation.

Following Jenatton et al. (2011a); Wainwright (2009), we consider the following

restricted problem
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β̂R = arg min
β∈Rp,βSc=0

L(β) + λnϕ(β) = arg min
β∈Rp,βSc=0

L(β) + λn
∑
g∈GS

wg

∥∥βS∩Gg

∥∥
2

:= arg min
β∈Rp,βSc=0

L(β) + λnϕS(βS).

(A.20)

Let LS(βS) = 1
2n
∥Y −XSβS∥22. Due to the restriction of β̂R, we can obtain β̂R

by first solving the following reduced problem

β̂S = arg min
βS∈R|S|

1

2n
∥Y −XSβS∥22 + λn

∑
g∈GS

wg

∥∥βS∩Gg

∥∥
2

= arg min
βS∈R|S|

LS(βS) + λnϕS(βS)

(A.21)

and then padding β̂S with zeros on Sc. In addition,

LS(β̂S) =
1

2n
∥Y −XSβ̂S∥22

=
1

2n

(
Y ⊤Y − 2Y ⊤XSβ̂S + (XSβ̂S)⊤XSβ̂S

)
=

1

2n

(
Y ⊤Y − 2(Xβ∗ + ϵ)⊤XSβ̂S + (XSβ̂S)⊤XSβ̂S

)
=

1

2n

(
Y ⊤Y − 2(XSβ

∗
S)⊤XSβ̂S − 2ϵ⊤XSβ̂S + (XSβ̂S)⊤XSβ̂S

)
,

and consequently,

∇LS(β̂S) =
1

n
X⊤

SXSβ̂S −
1

n
X⊤

SXSβ
∗
S −

1

n
ϵ⊤XS

:= QSS(β̂S − β∗
S)− qS,

(A.22)

where Q = 1
n
X⊤X, q = 1

n

n∑
i=1

ϵixi.
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Part III

Part III mostly follows the proof in Theorem 7 of Jenatton et al. (2011a). Here

we aim to show that supp(β̂G) = S under certain conditions.

To begin with, Given β ∈ Rp, we define JG(β) as:

JG(β) = [p] \
{ ⋃

Gg∩supp(β)=∅

Gg

}
.

JG(β) is called the adapted hull of the support of β in Jenatton et al. (2011a). For

simplicity, we write JG(β) = J(β). Notice that by assumption we have

J(β∗) = [p] \
{ ⋃

Gg∩supp(β∗)=∅

Gg

}
= S.

Now we consider the reduced problem (A.21), and we want to show that for all

g ∈ GS,
∥∥∥β̂S∩Gg

∥∥∥
∞
> 0. That is, no active group is missing.

Lemma 27. (Lemma 14 of Jenatton et al. (2011a))

For the loss L(β) and norm ϕ in (A.19), β̂ ∈ Rp is a solution of

min
β∈Rp

L(β) + λnϕ(β) (A.23)

if and only if  ∇L(β̂)J(β̂) + λnr(β̂)J(β̂) = 0

(ϕc
J(β̂)

)∗
[
∇L(β̂)J(β̂)c

]
⩽ λn.

(A.24)

In addition, the solution β̂ satisfies

ϕ∗[∇L(β̂)] ⩽ λn. (A.25)
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As β̂S is the solution of (A.21), Equation (A.25) in Lemma 27 implies that

(ϕS)∗
[
∇LS(β̂S)

]
(A.22)

= (ϕS)∗
[
QSS

(
β̂S − βS

)
− qS

]
⩽ λn. (A.26)

By the property of the equivalent parameters, we have

A−1
S

∥∥∥QSS

(
β̂S − βS

)
− qS

∥∥∥
∞

(A.17)

⩽ (ϕS)∗
[
QSS

(
β̂S − βS

)
− qS

] (A.26)

⩽ λn. (A.27)

If

λn ⩽
γmin (QSS) β∗

min

3|S| 12AS

, (A.28)

and

∥qS∥∞ ⩽
γmin (QSS) β∗

min

3|S| 12
, (A.29)

then we have

∥∥∥β̂S − β∗
S

∥∥∥
∞

=
∥∥∥Q−1

SSQSS

(
β̂S − β∗

S

)∥∥∥
∞

⩽
∥∥Q−1

SS

∥∥
∞,∞

∥∥∥QSS

(
β̂S − β∗

S

)∥∥∥
∞

⩽ |S|
1
2γmax

(
Q−1

SS

) ∥∥∥QSS

(
β̂S − β∗

S

)∥∥∥
∞

⩽ |S|
1
2γ−1

min (QSS)
(∥∥∥QSS

(
β̂S − βS

)
− qS

∥∥∥
∞

+ ∥qS∥∞
)

(A.27)

⩽ |S|
1
2γ−1

min (QSS) (λnAS + ∥qS∥∞)

⩽ |S|
1
2γ−1

min (QSS)λnAS + |S|
1
2γ−1

min (QSS) ∥qS∥∞

⩽
2

3
β∗
min.

(A.30)

If there exist a group g ∈ GS such that
∥∥∥β̂S∩Gg

∥∥∥
∞
<

β∗
min

3
, then

∥∥∥β̂S − β∗
S

∥∥∥
∞
> β∗

min −
β∗
min

3
=

2β∗
min

3
.
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Thus, Equation (A.30) implies that for all g ∈ GS,

∥∥∥β̂S∩Gg

∥∥∥
∞
>
β∗
min

3
> 0. (A.31)

Secondly, we want to show that β̂R solves problem (A.19). As β̂R is obtained by

padding β̂S with zeros on Sc,

J(β̂R) = [p] \
{ ⋃

Gg∩supp(β̂R)=∅

Gg

}
= [p] \

{ ⋃
Gg∩supp(β̂S)=∅

Gg

}
(A.30)

= [p] \
{ ⋃

Gg∩S=∅

Gg

}
= S.

From Lemma 27 we know that β̂R is the optimal for problem (A.19) if and only if

∇L(β̂R)S + λnr(β̂
R)S = 0, (A.32)

and

(ϕc
S)∗
[
∇L(β̂R)Sc

]
⩽ λn. (A.33)

We now verify the condition in Equation (A.32). Since

L(β̂R) =
1

2n
∥Y −Xβ̂R∥22

=
1

2n

(
Y ⊤Y − 2(Xβ∗)⊤Xβ̂R − 2ϵ⊤Xβ̂R + (Xβ̂R)⊤Xβ̂R

)
,

we have
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∇L(β̂R)S =
[ 1

n
X⊤X

(
β̂R − β∗

)
− 1

n
ϵ⊤X

]
S

=
[
Q
(
β̂R − β∗

)]
S
− qS = QSS

(
β̂R − β∗

)
S
− qS

= QSS

(
β̂R
S − β∗

S

)
− qS = QSS

(
β̂S − β∗

S

)
− qS

= ∇LS(β̂S).

(A.34)

On the other hand, as β̂R is obtained by padding β̂S with zeros on Sc, we have

λnr(β̂
R)S = λnrS(β̂S).

Because β̂S is the optimal for problem (A.21), Equation (A.24) in Lemma 27

implies that

∇LS(β̂S) + λnrS(β̂S)
(A.22)

= QSS(β̂S − β∗
S)− qS + λnrS(β̂S) = 0. (A.35)

Thus, Equation (A.32) holds as

∇L(β̂R)S + λnrS(β̂R) = ∇LS(β̂S) + λnrS(β̂S)
(A.35)

= 0. (A.36)

Now we continue to show Equation (A.33). Notice that

(
β̂R − β∗

)
S

(A.34)
=

(
β̂S − β∗

S

)
(A.35)

= Q−1
SS(qS − λnrS(β̂S)). (A.37)

Let qSc|S = qSc −QScSQ
−1
SSqS, we have



128

∇L(β̂R)Sc
(A.34)

=
(
Q(β̂R − β∗)

)
Sc
− qSc = QScS(β̂R − β∗)S − qSc

(A.37)
= QScSQ

−1
SS

(
qS − λnrS(β̂S)

)
− qSc

= −QScSQ
−1
SSλnrS(β̂S) +QScSQ

−1
SSqS − qSc

= −λnQScSQ
−1
SS

(
rS(β̂S)− rS(β∗

S)
)
− λnQScSQ

−1
SSrS(β∗

S)− qSc|S.

. (A.38)

The previous expression leads us to study the difference of rS(β̂S)− rS(β∗
S). We

now introduce the following lemma.

Lemma 28. (Lemma 12 of Jenatton et al. (2011a))

For any J ⊂ [p], let uJ and vJ be two nonzero vectors in R|J |, and define the

mapping rJ : R|J | 7→ R|J | such that

rJ (βJ)j = βj Σ
g∈GJ ,Gg∩j ̸=ϕ

ωg∥∥βJ∩Gg

∥∥
2

.

Then there exists ξJ = t0uJ + (1− t0)vJ for some t0 ∈ (0, 1), such that

∥rJ (uJ)− rJ(vJ)∥1 ⩽ ∥uJ − vJ∥∞

(∑
j∈J

∑
g∈GJ

wg1{j∈Gg}∥∥ξJ∩Gg

∥∥
2

+
∑
j∈J

(∑
k∈J

∑
g∈GJ

|ξj||ξk|w4
g1{j,k∈Gg}∥∥ξJ∩Gg

∥∥3
2

))
.

Lemma 28 implies that

∥∥∥rS(β̂S)− rS(β∗
S)
∥∥∥
1
⩽
∥∥∥β̂S − β∗

S

∥∥∥
∞

∑
j∈S

∑
g∈GS

wg1{j∈Gg}∥∥∥β̃S∩Gg

∥∥∥
2

+
∑
j∈S

∑
k∈S

∑
g∈GS

(wg)
4
1{j,k∈Gg}|β̃j||β̃k|

w3
g

∥∥∥β̃S∩Gg

∥∥∥3
2

 ,

(A.39)

where β̃ = t0β̂S + (1− t0) β∗
S.

To find an upper bound of the right-hand side. Recall that Equation (A.30)

implies that
∥∥∥β̂S − β∗

S

∥∥∥
∞

⩽ 2
3
β∗
min, so we have
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∥∥∥β̃S∩Gg

∥∥∥
2
⩾
√
|S ∩Gg|min{|β̃|j | β̃j ̸= 0}

⩾
√
|S ∩Gg|(β∗

min − t0
∥∥∥β̂S − β∗

S

∥∥∥
∞

)

⩾
√
|S ∩Gg|(β∗

min −
∥∥∥β̂S − β∗

S

∥∥∥
∞

)

⩾
√
|S ∩Gg|

β∗
min

3
.

Consequently, the first term could be upper bounded by

∑
j∈S

∑
g∈GS

wg1{j∈Gg}∥∥∥β̃S∩Gg

∥∥∥
2

=
∑
g∈GS

wg|S ∩Gg|∥∥∥β̃S∩Gg

∥∥∥
2

⩽
3

β∗
min

∑
g∈GS

wg

√
|S ∩Gg|

On the other hand, the Cauchy-Schwarz inequality gives

∥∥∥β̃S∩Gg

∥∥∥2
1
⩽ |S ∩Gg|

∥∥∥β̃S∩Gg

∥∥∥2
2
.

Thus, the second term could also be upper bounded by

∑
j∈S

∑
k∈S

∑
g∈GS

(wg)
4
1{j,k∈Gg}|β̃j||β̃k|

w3
g

∥∥∥β̃S∩Gg

∥∥∥3
2

=
∑
g∈GS

w4
g

∥∥∥β̃S∩Gg

∥∥∥2
1

w3
g

∥∥∥β̃S∩Gg

∥∥∥3
2

⩽
∑
g∈GS

wg|S ∩Gg|∥∥∥β̃S∩Gg

∥∥∥
2

⩽
3

β∗
min

∑
g∈GS

wg

√
|S ∩Gg|.

Let c2 = 6
β∗
min

∑
g∈GS

wg

√
|S ∩Gg|, then Equation (A.39) implies

∥∥∥rS(β̂S)− rS(β∗
S)
∥∥∥
1
⩽ c2

∥∥∥β̂S − β∗
S

∥∥∥
∞
.
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If

∥QScSQ
− 1

2
SS ∥2,∞ ⩽ 3, (A.40)

then we have

∥∥∥QScSQ
−1
SS

(
rS(β̂S)− rS(β∗

S)
)∥∥∥

∞
=
∥∥∥QScSQ

− 1
2

SSQ
− 1

2
SS

(
rS(β̂S)− rS(β∗

S)
)∥∥∥

∞

⩽
∥∥∥QScSQ

− 1
2

SS

∥∥∥
∞,2

∥∥∥Q− 1
2

SS

∥∥∥
2

∥∥∥rS(β̂S)− rS(β∗
S)
∥∥∥
2

⩽ 3γmax(Q
− 1

2
SS )

∥∥∥rS(β̂S)− rS(β∗
S)
∥∥∥
∞

⩽ 3γ
− 1

2
min(QSS)c2

∥∥∥β̂S − β∗
S

∥∥∥
∞

(A.30)

⩽ 3c2γ
− 1

2
min (QSS) |S|

1
2γ−1

min (QSS) (λnAS + ∥qS∥∞)

= 3
6

β∗
min

∑
g∈GS

wg

√
|S ∩Gg|γ

− 3
2

min (QSS) |S|
1
2 (λnAS + ∥qS∥∞) .

If the following conditions are satisfied:

a−1
Sc

6

β∗
min

∑
g∈GS

wg

√
|S ∩Gg|γ

− 3
2

min (QSS) |S|
1
2λnAS ⩽

τ

12
, (A.41)

a−1
Sc

6

β∗
min

∑
g∈GS

wg

√
|S ∩Gg|γ

− 3
2

min (QSS) |S|
1
2 ∥qS∥∞ ⩽

τ

12
, (A.42)

(ϕc
S)∗[QScSQ

−1
SSrS] ⩽ 1− τ, (A.43)

(ϕc
S)∗[qSc|S] ⩽

λnτ

2
, (A.44)

then we have
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(ϕc
S)∗
[
∇L(β̂R)Sc

]
(A.38)

= (ϕc
S)∗
[
λnQScSQ

−1
SS

(
rS(β̂S)− rS(β∗

S)
)

+ λnQScSQ
−1
SSrS(β∗

S)− qSc|S

]
⩽ (ϕc

S)∗
[
λnQScSQ

−1
SS

(
rS(β̂S)− rS(β∗

S)
)]

+ (ϕc
S)∗
[
λnQScSQ

−1
SSrS(β∗

S)
]

+ (ϕc
S)∗
[
−qSc|S

]
⩽ λn (ϕc

S)∗
[
QScSQ

−1
SS

(
rS(β̂S)− rS(β∗

S)
)]

+ λn(1− τ) +
λnτ

2
(A.18)

⩽ λna (Sc)−1
∥∥∥QScSQ

−1
SS

(
rS(β̂S)− rS(β∗

S)
)∥∥∥

∞
+ λn −

λnτ

2

⩽
λnτ

4
+
λnτ

4
+ λn −

λnτ

2
⩽ λn,

which is Equation (A.33).

Because Equation (A.32) and Equation (A.33) are satisfied, Lemma 27 implies

that β̂R is the optimal. Thus,

supp(β̂G) = supp(β̂R) = S.

Part IV

The results in Part III depend on conditions (A.28), (A.29), (A.40), (A.41),

(A.42), (A.43), and (A.44), which are summarized as follows:

∥QScSQ
− 1

2
SS ∥2,∞ ⩽ 3, (A.45)

λn|S|
1
2 ⩽ min

γmin (QSS) β∗
min

3AS

,
τγ

3
2
min(QSS)aScβ∗

min

72AS

∑
g∈GS

wg

√
|Gg ∩ S|

 , (A.46)

(ϕc
S)∗[QScSQSSrS] ⩽ 1− τ, (A.47)
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(ϕc
S)∗[qSc|S] ⩽

λnτ

2
, (A.48)

∥qS∥∞ ⩽ min

γmin (QSS) β∗
min

3AS

,
τγ

3
2
min(QSS)aScβ∗

min

72AS

∑
g∈GS

wg

√
|Gg ∩ S|

 . (A.49)

In Part IV, we want to make sure that these conditions hold with high probability.

Condition (A.45)

To begin with, for any matrix A ∈ Rm×n, the Cauchy-Schwarz inequality implies

that

∥A∥2,∞ = sup
∥u∥2⩽1

∥Au∥∞ = sup
∥u∥2⩽1

max
i∈[m]

(√∑
j∈[n]

Aijuj

)
⩽ sup

∥u∥2⩽1

max
i∈[m]

(√∑
j∈[n]

A2
ij

√∑
j∈[n]

u2j

)
⩽ max

i∈[m]

(√∑
j∈[n]

A2
ij

)
⩽ max

i∈[m]

{√
diag(AA⊤)

}
.

Recall that Q = 1
n
X⊤X. Let A = QScSQ

− 1
2

SS , we have

∥QScSQ
− 1

2
SS ∥2,∞ ⩽ max{

√
diag(QScSQ

−1
SSQSSc)}.

Using the Schur complement of Q on the block matrices QSS and QScSc , the

positiveness of Q implies the positiveness of QScSc −QScSQ
−1
SSQSSc . Thus,

max diag(QScSQ
−1
SSQSSc) ⩽ max diag(QScSc) ⩽ max

j∈Sc
Qjj.

Lemma 29. (Lemma 1 of Laurent and Massart (2000))

Suppose that the random variable U follows χ2 distribution with d degrees of
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freedom, then for any positive x,

P(U − d ≥ 2
√
dx+ 2x) ⩽ exp(−x),

P(d− U ≥ 2
√
dx) ⩽ exp(−x).

As X follows multivariate normal, Q̃jj =
nQjj

Θ2
jj
∼ χ2

n. Then by Lemma 29, we

have

P(max
j∈Sc

√
Qjj > 3) ⩽ P(max

j∈Sc
Qjj > 5) ⩽ P(

⋃
j∈Sc

Qjj > 5) ⩽
∑
j∈Sc

P(Qjj > 5)

⩽
∑
j∈Sc

P(Qjj > 5Θ2
jj) =

∑
j∈Sc

P(n
Qjj

Θ2
jj

> 5n)

⩽
∑
j∈Sc

P(Q̃jj > n+ 2n+ 2n) ⩽ (p− |S|) exp(−n)

= exp(−n+ log(p− |S|))

⩽ exp(−n
2

),

(A.50)

where the last inequality holds as n > 2 log(p− |S|). Thus,

P(∥QScSQ
− 1

2
SS ∥2,∞ > 3) ⩽ P(max

j∈Sc

√
Qjj > 3) ⩽ exp(−n

2
).

Similarly, let QScSc|S = QScSc −QScSQ
−1
SSQSSc . The diagonal terms of QScSc|S is

less than the diagonal terms of QScSc , which implies

P(∥Q1/2
ScSc|S∥2,∞ > 3) ⩽ P(max

j∈Sc

√
Qjj > 3) ⩽ exp(−n

2
).
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Condition (A.46)

Lemma 30. (Lemma 9 of Wainwright (2009))

Suppose that d ⩽ n and X ∈ Rn×d have i.i.d rows Xi ∼ N(0,Θ), then

P
(
γmax

(
1

n
X⊤X

)
⩾ 9γmax(Θ)

)
⩽ 2 exp(−n

2
),

P
(
γmax

(
(
1

n
X⊤X)−1

)
⩾

9

γmin(Θ)

)
⩽ 2 exp(−n

2
).

As we assume that |S| ⩽ n and XSS ∼ N (0,ΘSS), then Lemma 30 implies

P (γmax(QSS) ⩾ 9γmax(ΘSS)) ⩽ 2 exp(−n
2

),

and also

P (γmin(ΘSS) ⩾ 9γmin(QSS)) ⩽ 2 exp(−n
2

).

Thus, by assuming that

λn|S|
1
2 ⩽ min

{
3γmin(Θ)β∗

min

AS

,
τγ

3
2
min(Θ)aScβ∗

min

8AS

∑
g∈GS

wg

√
|Gg ∩ S|

}
,

we have

λn|S|
1
2 ⩽ min

{
γmin (QSS) β∗

min

3AS

,
τγ

3
2
min(QSS)aScβ∗

min

72AS

∑
g∈GS

wg

√
|Gg ∩ S|

}

holds with high probability.

Condition (A.47)
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For any j ∈ Sc, Xj ∈ Rn is zero-mean Gaussian. Following the decomposition

in Wainwright (2009), we have

X⊤
j = ΘjSΘ−1

SSX
⊤
S + E⊤

j , (A.51)

where Ej are i.i.d from N
(

0,
[
ΘScSc|S

]
jj

)
with ΘScSc|S = ΘScSc−ΘScS (ΘSS)−1 ΘSSc .

Let ESc be an |Sc|×n matrix, with each row representing Ej for an element j ∈ Sc,

then we have

QScSQ
−1
SSrS = X⊤

ScXS(X⊤
SXS)−1rS

(A.51)
=

(
ΘScSΘ−1

SSX
⊤
S + E⊤

Sc

)
XS(X⊤

SXS)−1rS

= ΘScSΘ−1
SSrS + E⊤

ScXS(X⊤
SXS)−1rS

:= ΘScSΘ−1
SSrS + η.

(A.52)

The preceding expression prompts us to establish an upper bound for the dual

norm of η. To achieve this, we begin by examining the scenario in which XS is fixed.

Our objective now is to derive the covariance matrix of η. For any j ∈ Sc, we have

E[ηj] = E
[
E⊤

j XS(X⊤
SXS)−1rS

]
= 0.

For any pair of j, k ∈ Sc, we have

E[ηjηk] = E
[
E⊤

j XS(X⊤
SXS)−1rSE

⊤
k XS(X⊤

SXS)−1rS
]

= E
[
r⊤S (X⊤

SXS)−1X⊤
S EjE

⊤
k XS(X⊤

SXS)−1rS
]

= r⊤S (X⊤
SXS)−1X⊤

S E
[
EjE

⊤
k

]
XS(X⊤

SXS)−1rS,
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where

E
[
EjE

⊤
k

] (A.51)
= E

[(
Xj −XSΘ−1

SSΘ⊤
jS

) (
X⊤

k −ΘkSΘ−1
SSX

⊤
S

)]
= E

[
XjX

⊤
k

]
− E

[
XSΘ−1

SSΘjSX
⊤
k

]
− E

[
XjΘkSΘ−1

SSX
⊤
S | XS

]
+ E

[
XSΘ−1

SSΘ⊤
jSΘkSΘ−1

SSX
⊤
S

]
= E

[
XjX

⊤
k

]
−XSΘ−1

SSΘjSE
[
X⊤

k

]
− E [Xj] ΘkSΘ−1

SSX
⊤
S +XSΘ−1

SSΘjSΘkSΘ−1
SSX

⊤
S

= E
[
XjX

⊤
k

]
− E [Xj]E

[
X⊤

k

]
= Cov

[
Xj, X

⊤
k

]
=
(
ΘScSc|S

)
jk
In×n.

Consequently,

E[ηjηk] = r⊤S (X⊤
SXS)−1X⊤

S E
[
EjE

⊤
k

]
XS(X⊤

SXS)−1rS

= r⊤S (X⊤
SXS)−1X⊤

S

(
ΘScSc|S

)
jk
In×nXS(X⊤

SXS)−1rS

= r⊤S (X⊤
SXS)−1rS ·

(
ΘScSc|S

)
jk

=
r⊤S (QSS)−1rS

n
·
(
ΘScSc|S

)
jk
.

And we have Cov(η) =
r⊤S (QSS)

−1rS
n

·
(
ΘScSc|S

)
:= Ξ.

Lemma 31. (Theorem 2.26 in Wainwright (2019))

Let (X1, . . . , Xn) be a vector of i.i.d. standard Gaussian variables, and let f :

Rn 7→ R be a Lipschitz function with respect to the Euclidean norm and Lipschitz

constant L. Then the variable f(X) − E[f(X)] is sub-Gaussian with parameter at

most L, and hence

P[|f(X)− E[f(X)]| ⩾ t] ⩽ 2 exp(− t2

2L2
) for all t ⩾ 0.

To apply the concentration bound in Lemma 31, we define function Ψ(u) =

(ϕ∗
Sc)
[
Ξ

1
2u
]
. As η = Ξ

1
2W where W ∼ N(0, I|Sc|×|Sc|), (ϕc

S)∗(η) has the same

distribution as Ψ(W ) . We continue to show that Ψ is a Lipschitz function given

fixed XS.
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|Ψ(u)−Ψ(v)| ⩽ Ψ(u− v) = (ϕc
S)∗
[
Ξ

1
2 (u− v)

]
⩽ a−1

S

∥∥∥Ξ
1
2 (u− v)

∥∥∥
∞

= a−1
S

∥∥∥∥ [r⊤S (QSS)−1rS
n

·
(
ΘScSc|S

)] 1
2

(u− v)

∥∥∥∥
∞

⩽ a−1
S ∥rS∥2 n

− 1
2γ

1
2
max

(
Q−1

SS

)
γ

1
2
max

(
ΘScSc|S

)
∥u− v∥2 .

Thus, the corresponding Lipstichiz constant is

Lη = a−1
S ∥rS∥2 n

− 1
2γ

1
2
max

(
Q−1

SS

)
γ

1
2
max

(
ΘScSc|S

)
.

On the other hand, suppose that E [(ϕc
S)∗(η)] ⩽ τ

4
, since Ψ is a Lipschitiz func-

tion, by applying t = τ
4

in concentration Lemma 31 on Lipschitz functions of mul-

tivariate standard random variables, we have

P
(

(ϕc
S)∗ [η] >

τ

2

)
= P

(
Ψ(W ) >

τ

2

)
= P

(
Ψ(W )− τ

4
>
τ

4

)
⩽ P

(
Ψ(W )− E [(ϕc

S)∗ (η)] >
τ

4

)
= P

(
Ψ(W )− E [Ψ(W )] >

τ

4

)
⩽ exp

(
− τ 2

4L2
η

)
.

Now we further assume that {γmax(Q
−1
SS) ⩽ 9

γmin(ΘSS)
}. Under this condition, we

have

Lη = a−1
S ∥rS∥2 n

− 1
2γ

1
2
max

(
Q−1

SS

)
γ

1
2
max

(
ΘScSc|S

)
⩽

3a−1
S ∥rS∥2 γ

1
2
max

(
ΘScSc|S

)
(nγmin(ΘSS))

1
2

. (A.53)

Lemma 32. (Sudakov inequality, Theorem 5.27 in Wainwright (2019))

If X and Y are a.s. bounded, centered Gaussian processes on T such that

E (Xt −Xs)
2 ≤ E (Yt − Ys)2
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then

E sup
T
Xt ≤ E sup

T
Yt.

Lemma 33. (Exercise 2.12 in Wainwright (2019)) Let X1, . . . , Xn be independent

σ2-subgaussian random variables. Then

E[ max
1≤i≤n

|Xi|] ≤ 2
√
σ2 log n.

On the other hand, for any ut, us, we have

E(u⊤t η − u⊤s η)2 = E(u⊤t Ξ
1
2W − u⊤s Ξ

1
2W )2 = (ut − us)⊤Ξ(ut − us)

⩽||ut − us||22γmax (Ξ) = E(γ
1
2
max (Ξ)u⊤t W − γ

1
2
max (Ξ)u⊤s W )2

By using Sudakov-Fernique inequality in Lemma 32, we have

E
[

sup
ϕc
S(u)⩽1

u⊤Ξ
1
2W
]
⩽ E

[
sup

ϕc
S(u)⩽1

γ
1
2
max (Ξ)u⊤W

]

Consequently,

E
[
(ϕc

S)∗(η)
]

= E
[

sup
ϕc
S(u)⩽1

u⊤η
]

= E
[

sup
ϕc
S(u)⩽1

u⊤Ξ
1
2W
]

⩽ γ
1
2
max (Ξ)E

[
sup

ϕc
S(u)⩽1

u⊤W
]

= γmax (Ξ)
1
2 E
[
(ϕc

S)∗(W )
]
.

(A.54)
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Notice that

∥rS∥22 ⩽ |S|max
j∈S

r2j = |S|
(

max
j∈S
{β∗

j ·
∑

g∈GG
S ,Gg∩j ̸=∅

wg

∥β∗
Gg∩S∥2

}
)2

⩽ |S|
(

max
j∈S
{|β∗

j |} ·max{
∑

g∈GG
S ,Gg∩j ̸=∅

wg

∥β∗
Gg∩S∥2

}
)2

⩽ |S|
(max

j∈S
{|β∗

j |}

β∗
min

·max{
∑

g∈GG
S ,Gg∩j ̸=∅

wg√
|Gg ∩ S

}
)2

⩽ |S|
(max

j∈S
{|β∗

j |}

β∗
min

·max{
∑

g∈GG
S ,Gg∩j ̸=∅

wg}
)2

⩽ |S|
(max

j∈S
{|β∗

j |}

β∗
min

· hmax(GS) max
g∈GG

S

wg}
)2

⩽
(max

j∈S
{|β∗

j |}

β∗
min

)2
|S|A2

S = max
j∈S
{(β∗

j )2}|S|
( AS

β∗
min

)2
≲

max
j∈S
{(β∗

j )2}

λ2n

(A.55)

Thus, if XS satisfies γmax(Q
−1
SS) ⩽ 9

γmin(ΘSS)
, we have

E [(ϕc
S)∗(η)]

(A.54)

⩽ γmax (Ξ)
1
2 E [(ϕc

S)∗(W )]

⩽
∥rS∥2 γ

− 1
2

min (QSS) γ
1
2
max

(
ΘScSc|S

)
n

1
2

E [(ϕc
S)∗(W )]

⩽
∥rS∥2 3γ

1
2
max

(
ΘScSc|S

)
(nγmin(ΘSS))

1
2

E [(ϕc
S)∗(W )]

(A.18)

⩽
∥rS∥2 3γ

1
2
max

(
ΘScSc|S

)
(nγmin(ΘSS))

1
2

E
[
a−1
Sc ∥W∥∞

]
⩽
∥rS∥2 3γ

1
2
max

(
ΘScSc|S

)
aSc(nγmin(ΘSS))

1
2

E [∥W∥∞]

Lemma 33

⩽
6 ∥rS∥2 γ

1
2
max

(
ΘScSc|S

)
aSc(nγmin(ΘSS))

1
2

√
log(p− |S|) ⩽ τ

4
,

(A.56)
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where the last inequality holds as Assumption 6 implies that

n ≳
max
j∈S
{(β∗

j )2} log(p− |S|)

a2Scλ2n

(A.55)

≳
∥rS∥22 log(p− |S|)

a2Sc

⩾
576 ∥rS∥22 log(p− |S|)γmax

(
ΘScSc|S

)
a2Scγmin(ΘSS)τ 2

.

Consequently, Equation (A.53) and (A.56) together implies

P
(

(ϕc
S)∗ [η] >

τ

2
| XS, γmax(Q

−1
SS) ⩽

9

γmin(ΘSS)

)
⩽ exp

(
− τ 2

4L2
η

)
⩽ exp

(
− τ 2na2Sγmin(ΘSS)

12 ∥rS∥22 γmax

(
ΘScSc|S

)). (A.57)

Thus, let A be the event {XS | γmax(Q
−1
SS) ⩽ 9

γmin(ΘSS)
}. We have

P
(

(ϕc
S)∗ [η] >

τ

2
| XS

)
= P

(
(ϕc

S)∗ [η] >
τ

2
| XS, γmax(Q

−1
SS) ⩽

9

γmin(ΘSS)

)
+P
(

(ϕc
S)∗ [η] >

τ

2
| XS, γmax(Q

−1
SS) >

9

γmin(ΘSS)

)
⩽ exp

(
− τ 2na2Sγmin(ΘSS)

4 ∥rS∥22 γmax

(
ΘScSc|S

))+ P (Ac)

⩽ exp

(
− τ 2na2Sγmin(ΘSS)

4 ∥rS∥22 γmax

(
ΘScSc|S

))+ 2 exp(−n
2

).
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Condition (A.48)

Now we are going to study condition (A.48). Recall that qSc|S = qSc−QScSQ
−1
SSqS

and QScSc|S = QScSc−QScSQ
−1
SSQSSc . Given X, qSc|S is a centered Gaussian random

vector with covariance matrix

E
[
qSc|Sq

⊤
Sc|S
]

= E
[
qScq⊤Sc − qScq⊤SQ

−1
SSQSSc −QScSQ

−1
SSqSq

⊤
Sc +QScSQ

−1
SSqSq

⊤
SQ

−1
SSQSSc

]
= E

[
qScq⊤Sc −QScSQ

−1
SSqSq

⊤
SQ

−1
SSQSSc

]
= E

[
qScq⊤Sc

]
− E

[
QScSQ

−1
SSqSq

⊤
SQ

−1
SSQSSc

]
=
σ2

n
QScSc − σ2

n
QScSQ

−1
SSQSSc :=

σ2

n
QScSc|S.

Next, we define ψ(u) = (ϕc
S)∗
(
σn−1/2Q

1/2
ScSc|Su

)
so that (ϕc

Sc)
∗ [qSc|S

]
has the

same distribution as ψ(W ). Now we want to show that ψ is a Lipschitz function

|ψ(u)− ψ(v)| ⩽ ψ(u− v) = (ϕc
S)∗
(
σn−1/2Q

1/2
ScSc|S(u− v)

)
⩽ σn−1/2a−1

Sc

∥∥∥Q 1
2

ScSc|S(u− v)
∥∥∥
∞

⩽ σn−1/2a−1
Sc

∥∥∥Q 1
2

ScSc|S

∥∥∥
2,∞
∥(u− v)∥∞

⩽ σn−1/2a−1
Sc

∥∥∥Q 1
2

ScSc|S

∥∥∥
2,∞
∥(u− v)∥2

Suppose that
∥∥∥Q1/2

ScSc|S

∥∥∥
2,∞

⩽ 3, then ψ is a Lipschitz function with Lipschitz

constant 3σn−1/2a−1
Sc . In addition, if E[(ϕc

S)∗(qSc|S)] ⩽ λnτ
4

, then by Lemma 31 , we

have for t = λnτ
4

,
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P
(

(ϕc
S)∗
[
qSc|S

]
⩾
λnτ

2

)
= P

(
ψ(W ) >

λnτ

2

)
= P

(
ψ(W )− λnτ

4
>
λnτ

4

)
⩽ P

(
ψ(W )− E[(ϕc

S)∗(qSc|S)] >
λnτ

4

)
= P

(
ψ(W )− E [ψ(W )] >

λnτ

4

)
⩽ exp

(
−τ

2λ2nna
2
Sc

144σ2

)
.

Now, we consider random X. For any ut, us, we have

E
[
(ut − us)⊤qSc|S

]2
=
σ2

n
(ut − us)⊤QScSc|S(ut − us) ⩽

σ2

n

∥∥Q 1
2

ScSc|S

∥∥2
2

∥∥(ut − us)
∥∥2
2

= E
[
σn− 1

2∥QScSc|S∥
1
2
2 (ut − us)⊤W

]2
By using Sudakov-Fernique inequality, if ∥QScSc|S∥2 ⩽ 9, we get

E[(ϕc
S)∗(qSc|S)] = E sup

ϕc
S(u)≤1

u⊤qSc|S

⩽ σn−1/2∥QScSc|S∥
1
2
2E sup

ϕc
S(u)≤1

u⊤W

⩽ σn− 1
2∥QScSc|S∥

1
2
2E [(ϕc

S)∗ (W )]

⩽ 3σn− 1
2E [(ϕc

S)∗ (W )]

⩽
λnτ

4
.

(A.58)

On the other hand, Assumption 1’ and 6 imply that

9σ2E2 [(ϕc
S)∗ (W )]

n
⩽

9σ2 log(p− |S|)
a2Scn

⩽
λ2nτ

2

16
.

Therefore, we have

P
(

(ϕc
S)∗
[
qSc|S

]
⩾
λnτ

2
| X,

∥∥∥Q1/2
ScSc|S

∥∥∥
2,∞

⩽ 3

)
⩽ exp

(
−τ

2nλ2na
2
Sc

144σ2

)
.
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Let B be the event {X |
∥∥∥Q1/2

ScSc|S

∥∥∥
2,∞

⩽ 3}. We have

P
(

(ϕc
S)∗
[
qSc|S

]
⩾
λnτ

2
| X
)

= P
(

(ϕc
S)∗
[
qSc|S

]
⩾
λnτ

2
| X,

∥∥∥Q1/2
ScSc|S

∥∥∥
2,∞

⩽ 3

)
+P
(

(ϕc
S)∗
[
qSc|S

]
⩾
λnτ

2
| X,

∥∥∥Q1/2
ScSc|S

∥∥∥
2,∞

> 3

)
⩽ exp

(
−τ

2nλ2na
2
Sc

144σ2

)
+ P (Bc)

(A.45)

⩽ exp

(
−τ

2nλ2na
2
Sc

144σ2

)
+ exp(−n

2
).

Condition (A.49)

The last condition (A.49) lead us to control the term P (∥qS∥∞ ⩾ c′(S, G)), with

c′(S, G) = min

γmin (QSS) β∗
min

3AS

,
τγ

3
2
min(QSS)aScβ∗

min

72AS

∑
g∈GS

wg

√
|Gg ∩ S|

 .

For any given X, Jenatton et al. (2011a) showed that for any δ > 0,

P (∥qS∥∞ ⩾ δ) ⩽ 2|S| exp

(
−nδ

2

2σ2

)
.

Recall under the event A, we have

γmin(ΘSS)

9
⩽ γmin(QSS).
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Which implies that

c′(S, G) ⩾ min

γmin (ΘSS) β∗
min

27AS

,
τγmin(ΘSS)

3
2aScβ∗

min

648AS

∑
g∈GS

wg

√
|Gg ∩ S|


⩾ min


β∗
min

27c1AS

,
τaScβ∗

min

648c
3
2
1AS

∑
g∈GS

wg

√
|Gg ∩ S|

 := c(S, G).

Thus, consider random X, we have

P (∥qS∥∞ ⩾ c′(S, G) | A) ⩽ P (∥qS∥∞ ⩾ c(S, G) | A) ⩽ 2|S| exp

(
−nc

2(S, G)

2σ2

)

Thus,

P (∥qS∥∞ ⩾ c′(S, G)) = P (∥qS∥∞ ⩾ c′(S, G) ∩A) + P (∥qS∥∞ ⩾ c′(S, G) ∩Ac)

⩽ P (∥qS∥∞ ⩾ c′(S, G) ∩A) + P (Ac)

= P (∥qS∥∞ ⩾ c′(S, G) | A)P (A) + P (Ac)

⩽ P (∥qS∥∞ ⩾ c′(S, G) | A) + P (Ac)

⩽ 2|S| exp

(
−nc

2(S, G)

2σ2

)
+ 2 exp(−n/2).

In summary, the probability of one of the conditions being violated is upper

bound by

8 exp(−n
2

)+exp

(
− na2Sτ

2γmax(ΘSS)

4 ∥rS∥22 γmax

(
ΘScSc|S

))+exp

(
−nλ

2
nτ

2a2Sc

32σ2c42

)
+2|S| exp

(
−nc

2(S, G)

2σ2

)
.
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Part V

First, given the original group structure G and its induced counterpart G, along

with their respective weights w and w, we consider the scenario where J = S. For

all β ∈ Rp, we have

ϕG
S (βS) =

∑
g∈GG

S

wg∥βS∩Gg∥2 ⩽
∑
g∈GS

wg

( ∑
g:g∈F−1(g),Gg⊂S

∥βS∩Gg
∥2
)

=
∑

g:Gg⊂S

( ∑
g:g∈F (g),g∈GS

wg

)
∥βS∩Gg

∥2

=
∑

g:Gg⊂S

( ∑
g:g∈F (g)

wg

)
∥βS∩Gg

∥2

=
∑
g∈GG

S

wg∥βS∩Gg
∥2 = ϕGS(β).

(A.59)

Since ϕG
S (β) ⩽ ϕGS(β), we can set aGS = aGS = min

g∈GG
S

wg√
dg

. Since

max
g∈GG

S

wg = max
g:Gg∩S̸=∅

∑
g∈F (g)

wg ⩽ hmax(GS) max
g∈GG

S

wg,

we can set AG
S = AG

S . On the other hand, for all β ∈ Rp, we have

(ϕG
S )c(βc

S) =
∑

g∈[m]\GG
S

wg∥βSc∩Gg∥2 ⩽
∑

g∈[m]\GS

wg

( ∑
g:g∈F−1(g),Gg⊂Sc

∥βSc∩Gg
∥2
)

=
∑

g:Gg⊂Sc

( ∑
g:g∈F (g),g∈[m]\GG

S

wg

)
∥βSc∩Gg

∥2

=
∑

g:Gg⊂Sc

( ∑
g:g∈F (g)

wg

)
∥βSc∩Gg

∥2

=
∑

g∈[m]\GG
S

wg∥βSc∩Gg
∥2 = (ϕGS)c(β).

(A.60)
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Consequently, with an trivial extension, we can set aGSc = aGSc ⩽ min
g∈GG

Sc

wg/
√
dg.

Based on the result of Theorem 5.1, Equation (2.28) holds if

λn|S|
1
2 ≲ min

{β∗
min

AS

,
β∗
minaSc

AS

∑
g∈GS

wg

√
|Gg ∩ S|

}
.

By the Cauchy–Schwarz inequality, we have

∑
g∈GS

wg

√
|Gg ∩ S| ⩽

∑
g∈GS

wg

∑
g∈F−1(g)

√
|Gg ∩ S|

=
∑

g∈F−1(g),g∈GS

√
|Gg ∩ S|

( ∑
g∈F (g)

wg

)
=
∑
g∈GS

wg

√
|Gg ∩ S|

If F−1(g) = O(1) for every g ∈ GS, we have

|Gg ∩ S| =
∑

g∈F−1(g)

|Gg ∩ S| ≍
( ∑
g∈F−1(g)

√
|Gg ∩ S|

)2
.

Consequent, we have
√
|Gg ∩ S| ≍

∑
g∈F−1(g)

√
|Gg ∩ S|,

∑
g∈GS

wg

√
|Gg ∩ S| ≍

∑
g∈GS

wg

√
|Gg ∩ S|,

and

min

{
β∗
min

AG
S

,
β∗
mina

G
Sc

AG
S

∑
g∈GS

wg

√
|Gg ∩ S|

}
≍ min

{
β∗
min

AG
S

,
β∗
mina

G
Sc

AG
S

∑
g∈GS

wg

√
|Gg ∩ S|

}
.
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C Appendix for Chapter III

B.1 Closed-form solution for (3.1)

First, we have

ΩG(U) = min
m∑
g=1

wg ∥Ug∥2 , s.t
m∑
g=1

Ug = U .

Consequently, we have

argmin
U∈Rp×k̂

1

2
∥U0 − U∥2F + λΩG(U)

= argmin
1

2

∥∥∥∥∥U0 −
m∑
g=1

Ug

∥∥∥∥∥
2

F

+ λΩG(U).

Now we consider optimizing with one grup g0 . While fix other m− 1 group.

argmin
Ug0∈R

dg0×k̂

1

2

∥∥∥∥∥U0 −
m∑
g=1

Ug

∥∥∥∥∥
2

F

+ λΩG(U)

= argmin
1

2

∥∥∥∥∥U0 −
∑
g ̸=g0

Ug − Ug0

∥∥∥∥∥
2

F

+ λωg0 ∥Ug0∥2

= argminF (Ug0)

By taking derivation with respect to Ug0 , we have

∇F (Ug0) = Ug0 −
(
U0 −

∑
g ̸=g0

Ug

)
+ λWg0Sg0 .

where 
Sg0 =

Ug0

∥Ug0∥2
if ∥Ug0∥2 ̸= 0

∥Sg0∥2 ≤ 1 if ∥Ug0∥2 = 0
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If ∥Ug0∥2 ̸= 0, by K.K.T condition:

Ug0 − U0 +
∑
g ̸=g0

Ug + λwg0

Ug0

∥Ug0∥2
= 0

=⇒
(

1 +
λwg0

∥Ug0∥2

)
Ug0 = U0 −

∑
g ̸=g0

Ug

=⇒ Ug0 =

(
∥Ug0∥2 + λWg0

∥Ug0∥2

)−1
(
U0 −

∑
g ̸=g0

Ug

)

=⇒ ∥Ug0∥2 = ∥Ug0∥2
∥U0 −

∑
g ̸=g0

Ug}∥2

∥Ug0∥2 + λwg0

=⇒ ||(Ug0)|2 + λWg0 = − ||U0 −
∑
g ̸=g0

Ug||2

||Ug0||2 = ||U0 −
∑
g ̸=g0

Ug||2 − λwg0 .

Thus

Ug0 = −
(

1 +
λWg0
||Ug0||2

)−1
(
U0 −

∑
g ̸=g0

Ug

)

=

(
1 +

λWg0

||U0 +
∑
g ̸=g0

Ug||2 − λWg0

)−1(
U0 −

∑
g ̸=g0

Ug

)

=

(
1− λWg0

||U0 −
∑
g ̸=g0

Ug||2

)(
U0 −

∑
g ̸=g0

Ug

)
.
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B.2 Proofs

Lemma 34 (Theorem 6.1 in Wainwright (2019)). Let X ∈ Rn×d be drawn according

to the Σ-Gaussian ensemble. Then for all δ > 0, the maximum singular value

σmax(X) satisfies the upper deviation inequality

P

[
σmax(X)√

n
≥ γmax(

√
Σ)(1 + δ) +

√
tr(Σ)

n

]
≤ e−nδ2/2.

Moreover, for n ≥ d, the minimum singular value σmin(X) satisfies the analogous

lower deviation inequality

P

[
σmin(X)√

n
≤ γmin(

√
Σ)(1− δ)−

√
tr(Σ)

n

]
≤ e−nδ2/2.

Proof of Proposition 6. To begin with, we have

D̂ = Σ̂1 − Σ̂2 =
XT

1 X1

n1

− XT
2 X2

n2

.

Consequently,

γmax(D̂) ≤ γmax

(
XT

1 X1

n1

)
+ γmax

(
XT

2 X2

n2

)
=
γ2max(X1)

n1

+
γ2max(X2)

n2

− γmax(Σ1)− γmax(Σ2)

+ γmax(Σ1) + γmax(Σ2).
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Let A ⊂ [p] be any set, we have

γmax(D̂A,A) ≤ γ2max(X1,A,A)

n1

− γmax(Σ1,A,A)

+
γ2max(X2,A,A)

n2

− γmax(Σ2,A,A)

+ γmax(Σ1,A,A) + γmax(Σ2,A,A).

Suppose that γmax(Σ1) ≤ c1 and γmax(Σ2) ≤ c2. Then we have

γmax(D̂A,A) ≤ γ2max(X1,A,A)

n1

− γmax(Σ1,A,A) +
γ2max(X2,A,A)

n2

− γmax(Σ2,A,A) + c1 + c2.

By lemma 34, for all δ > 0:

Pr

{
γ2max(X1,A,A)

n1

− γmax(Σ1,A,A) ≤ tr(Σ1,A,A)

n1

+ γmax(Σ1,A,A)δ

}
≥ 1− exp(−nδ2/2).

P r

{
γ2max(X2,A,A)

n2

− γmax(Σ2,A,A) ≤ tr(Σ2,A,A)

n2

+ γmax(Σ2,A,A)δ

}
≥ 1− exp(−nδ2/2).

Thus, let n = min{n1, n2}/2,

Pr

{
γmax(D̂A,A) ≤ |A|

n
+ (c1 + c2)(1 + δ)

}
≥ Pr

{
γ2max(X1,A,A)

n1

− γmax(Σ1,A,A) +
γ2max(X2,A,A)

n2

− γmax(Σ2,A,A) ≤ |A|
n

+ (c1 + c2)δ

}
≥ Pr

{
γ2max(X1,A,A)

n1

− γmax(Σ1,A,A) ≤ |A|
2n

+ c1δ

}
× Pr

{
γ2max(X2,A,A)

n2

− γmax(Σ2,A,A) ≤ |A|
2n

+ c2δ

}
≥ Pr

{
γ2max(X1,A,A)

n1

− γmax(Σ1,A,A) ≤ tr(Σ1,A,A)

n1

+ c1δ

}
· Pr

{
γ2max(X2,A,A)

n2

− γmax(Σ2,A,A) ≤ tr(Σ2,A,A)

n2

+ c2δ

}
=
(
1− exp

(
−nδ2/2

))2
= 1− 2 exp

(
−nδ2/2

)
+ exp

(
−nδ2

)
≥ 1− 2 exp

(
−nδ2/2

)
.
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Proof of Proposition 7. Recall that

θ(Ŝt)− θ(Ŝt+1) =
γmax(D̂Ŝt,Ŝt

)

|Ŝt|
−
γmax(D̂Ŝt+1,Ŝt+1

)

|Ŝt+1|

=
γmax(D̂Ŝt,Ŝt

)

|Ŝt|
−
γmax(D̂Ŝt+1,Ŝt+1

)

|Ŝt|
|Ŝt|
|Ŝt+1|

Suppose that Ŝt+1 = Ŝt \∆t. By Taylor’s expansion we have

|Ŝt|
|Ŝt+1|

=
|Ŝt|

|Ŝt \∆t|
=

1

1− |∆t|
|Ŝt|

≈ 1 +
|∆t|
|Ŝt|

.

Thus,

θ(Ŝt)− θ(Ŝt+1) =
γmax(D̂Ŝt,Ŝt

)

|Ŝt|
−
γmax(D̂Ŝt+1,Ŝt+1

)

|Ŝt|

(
1 +
|∆t|
|Ŝt|

)

=
γmax(D̂Ŝt,Ŝt

)− γmax(D̂Ŝt+1,Ŝt+1
)

|Ŝt|
+
γmax(D̂Ŝt+1,Ŝt+1

) · |∆t|
|Ŝt|2

+ o(|∆t|).

B Appendix for Chapter IV



Abstract

The supplementary material is organized as follows: Section C.1 presents ad-

ditional theoretical results. Section C.2 presents two examples to assist readers in

understanding Definition C.63. Section C.2 provides the proofs for the results out-

lined in Section C.1. Section C.2 contains the proofs for the results discussed in

Section C.1. Section C.2 offers the proofs for the results presented in Section C.1.

Section C.2 elucidates the proofs for the results shown in Section C.1. The con-

sistency results is shown in Section C.2 and Section C.2. Finally, the additional

simulation results are shown in Section C.9.

We first introduce a few notations we used in the supplement material. Denote

the set {1, · · · , n} for any positive integer n by [n]. Given a set S, |S| is the

cardinality of the set. Given a matrix A, AS,S denotes the submatrix formed by

selecting the rows and columns indexed by S. Let G be an undirected unweighted

graph whose node set is V (G) = {v1, . . . , vn} and edge set isE(G) = {(vi, vj), vi, vj ∈

V (G)}. Let A(G) be the n× n adjacency matrix of G, such that A(G)ij = 1 if and

only if (vi, vj) ∈ E(G). When it is clear in context, we may suppress G and write

the adjacency matrix as A.

A graph S is a subgraph of G, written as S ⊂ G, if V (S) ⊂ V (G) and E(S) ⊂

E(G). In particular, a subgraph S ⊂ G is called an induced subgraph of G, denoted

by S ⊂⊂ G, if for any vi, vj ∈ V (S), (vi, vj) ∈ E(S) whenever (vi, vj) ∈ E(G).

Lastly, two graphs S and G are isomorphic, denoted by S ∼= G, if there exists

a bijective function ϕ: V (S) → V (G) such that (vi, vj) ∈ E(S) if and only if

[ϕ(vi), ϕ(vj)] ∈E(G).

For subsampling framework, we use G(∗G)
b to represent the random induced sub-

graph of G from node subsampling (conditioning on Gn = G). When discussing
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distributional quantities of G(∗G)
b , like the expectation and variance, we employ (∗G)

in our notation. For example, var(∗G) is the variance of G(∗G)
b given Gn = G. We

write (∗G) as ∗ when the context clearly identifies G. When we study the asymptotic

properties, we are considering a sequence of random networks {Gn}, with n→∞.

C.1 Supporting propositions, lemmas, and additional theo-

retical results

For notational simplicity, we define

hn(u, v) = ρnw(u, v)⊮{ρnw(u,v)≤1}. (C.61)

If a network Gn ∼ hn, we also denote it by Ghn
n for abbreviation.

The network moment UR(G∗
b) is essentially a function of G∗

b , and G∗
b can be

conceptualized treated as a conditional random variable. Since any network G is

mathematically equivalent to its adjacent matrix A(G), G∗
b can be represented as

G∗
b = A(G∗

b) = A | G,

where A represents a random matrix. However, discussing the marginal distribution

of A without reference to G is conceptually challenging, as a graph is necessary for

the discussion of its subgraphs. Therefore, we turn to focus on

G(∗Gn)
b = A[G(∗Gn)

b ] = A | Gn.

Under model (C.61), A(Gn)ij are identical and independent distributed. On the

other hand, the Algorithm 5 implies that A[G(∗Gn)
b ] is essentially a subset of A(Gn).
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Thus, A[G(∗Gn)
b ]ij are also identical and independent distributed, with A[G(∗Gn)

b ] ∼

A(Gb).

Based on this point of view, we studied the statistical properties of UR(G∗
b) in

Lemma 42, which is left in Section C.1. Our results resembles the law of iterated

expectations and the law of total variance, and generalized the results in Bhat-

tacharyya and Bickel (2015b).

One can also formulated UR(G∗
b) as a finite population U-statistic (Zhang and

Xia, 2022). In this way, the network G is conceptually treated as a finite population:

G = {v1, · · · , vn}, where each unit vi represent the adjacency information between

the ith vertex and other vertices. The finite population U-statistic has been studied

in Zhao and Chen (1990); Bloznelis and Götze (2001, 2002), which is defined as

follows.

Definition 35 (Finite population U-statistic). Let V = (v1, · · · , vn) be a finite

population consisting of n units. Let T = t(V1, · · · ,Vb) denote a statistic based on

simple random sample V1, · · · ,Vb drawn without replacement from V. If the kernel

function t is invariate under permutations of its arguments, then T is called a finite

population U-statistic.

C.1.1 Properties of motif counts

In this section, we introduce two useful features of motif counts. The first feature

is the relationship between motif counts and graph injective homomorphisms:

Lemma 36 (Proposition 1 of Amini et al. (2012)). For any motif R and graph G,

XR(G) = inj(R,G)/|Aut(R)|,

where inj(R,G) denotes the number of injective graph homomorphisms (Lovász
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and Szegedy, 2006), and Aut(R) denotes the set of all automorphisms of R. To be

specific, A mapping ϕ: V (R) → V (G) is a graph homomorphism if (vi, vj) ∈ E(R)

implies [ϕ(vi), ϕ(vj)] ∈ E(G). Furthermore, ϕ is a injective graph homomorphism

if ϕ(vi) = ϕ(vj) implies vi = vj. On the other hand, Aut(R) is the set of all

permutations ψ of the vertex set V (R) such that (x, y) ∈ E(R) if and only if

[ψ(x), ψ(y)] ∈ E(R). More explanations and details of Aut(R) are provided in

Rodriguez (2014). We now introduce the second feature, which is termed as the

linearity of motif count:

Lemma 37 (Lemma 1 in Maugis et al. (2020)). For any two motifs R and R′.

XR(G)XR′(G) =
∑

S∈SR,R′

cSXS(G) =

min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cSXS(G), (C.62)

where S
(q)
R,R′ is special collection of patterns defined as

Definition 38 (Definition 5 in Maugis et al. (2020)).

Let SR,R′ denote the set of all unlabeled graphs that can be formed from R and

R′. SR,R′ is defined as

SR,R′ =
{
S ⊂ Kr+r′ : V (S) = V (R1)∪V (R2),E(S) = E(R1)∪E(R2), R1

∼= R,R2
∼= R′

}
,

(C.63)

where Kn denotes the complete graph of size n. Furthermore, the set SR,R′ can be

partitioned into disjoint sets S
(q)
R,R′ based on the number of merged vertices q, where

S
(q)
R,R′ is defined as

S
(q)
R,R′ =

{
S : S ⊂ SR,R′ , |V (S)| = r + r′ − q

}
.



156

Lastly, for each S ⊂ SR,R′, we define a constant cS as

cS =
∣∣∣ {(R1, R2) ⊂ S : V (S) = V (R1) ∪ V (R2),E(S) = E(R1) ∪E(R2), R1

∼= R,R2
∼= R′}

∣∣∣.
(C.64)

Section C.2 provides two examples to aid readers in understanding Definition C.63.

The linearity property in Lemma C.62 is crucial to the proofs in Bhattacharyya and

Bickel (2015b); Maugis et al. (2020).

C.1.2 Statistical properties of network moments of graphs

from graphon model

Similar to Bickel et al. (2011), we define the following quantities:

Phn(R) =

∫
[0,1]r

∏
(vi,vj)∈E(R)

hn (ξi, ξj)
∏

vi∈V (R)

dξi,

Pw(R) =

∫
[0,1]r

∏
(vi,vj)∈E(R)

w (ξi, ξj)
∏

vi∈V (R)

dξi.

(C.65)

Lemma 39 below documents some fundamental properties of network moment UR(Gn).

Lemma 39. For any motif R,

E
[
UR(Gn)

]
=

r!

|Aut(R)|
Phn(R). (C.66)
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Moreover, consider motifs R and R′,

cov
[
UR(Gn), UR′(Gn)

]
=

(
n

r

)−1(
n

r′

)−1 min{r,r′}∑
q=1

∑
S∈S(q)

R,R′

cSE
[
XS(Gn)

]

−
[ (n

r′

)(
n−r
r′

) − 1
](n
r

)−1(
n

r′

)−1 ∑
S∈S(0)

R,R′

cSE
[
XS(Gn)

]
.

(C.67)

Following Bickel et al. (2011), we focus on the statistical properties of ρ−r
n UR(Gn)

rather than UR(Gn) because both the expectation and variance of UR(Gn) shrink to

zero when ρn converges to zero. We now state the following results:

Proposition 40. For any motif R,

E
[
ρ−r
n UR(Gn)

]
=

r!

|Aut(R)|
Pw(R). (C.68)

Furthermore, consider motifs R and R′ with sizes r ⩽ r′. Assume that nρ
r/2
n →∞,

then

lim
n→∞

cov
[√
nρ−r

n UR(Gn),
√
nρ−r′

n UR′(Gn)
]

=
∑

S∈S(1)

R,R′

cSr!r
′!

|Aut(S)|
Pw(S)−

∑
S∈S(0)

R,R′

cSr!r
′!rr′

|Aut(S)|
Pw(S).

(C.69)

The right-hand side in (C.69) describes the limit of covariance. When the limit

of variance is non-zero, ρ−r
n UR(Gn) is called non-degenerate.

C.1.3 Statistical properties of network moments of subsam-

pled graphs: Part I

We introduce some additional notations before presenting Lemma 41. Let S(G∗
b)

denote the collection of all possible G∗
b . For a fixed vertex v ∈ V (G), we use Gv∗

b
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to denote a random induced subgraph of G based on the vertex v and other b − 1

random vertices drawn without replacement from V (G)\v. Similarly, we use S(Gv∗
b )

to denote the sample space of Gv∗
b . Let Gv∗

b ∈ S(Gv∗
b ) be a realization. We use Gv∗∗

b,r

to denote a random induced subgraph of Gv∗
b based on the vertex v and other

r− 1 random vertices drawn without replacement from V (G∗
b) \ v, and use S(Gv∗∗

b,r )

to denote the set contains all possible Gv∗∗
b,r . The following lemma provides useful

identities.

Lemma 41. ∑
G∈S(G∗

b )

XR(G) =

(
n− r
b− r

)
XR(G). (C.70)

∣∣∣{S : S ⊂ Gv∗
b , v ∈ V (S), S ∼= R}

∣∣∣ =
∑

G∈S(Gv∗∗
b,r )

XR(G). (C.71)

∣∣∣{S : S ⊂ G, v ∈ V (S), S ∼= R}
∣∣∣ =

∑
G∈S(Gv∗

r )

XR(G). (C.72)

∑
G∗

b∈S(Gv∗
b )

( ∑
G∈S(Gv∗∗

b,r )

XR(G)
)

=

(
n− r
b− r

)∣∣∣{S : S ⊂ G, v ∈ V (S), S ∼= R}
∣∣∣. (C.73)

n∑
i=1

∑
G∈S(Gvi∗

r )

XR(G) =
n∑

i=1

∣∣∣{S : S ⊂ G, vi ∈ V (S), S ∼= R}
∣∣∣ = rXR(G). (C.74)

Based on Lemma 41, we derived the following lemma which generlize the results

in Bhattacharyya and Bickel (2015b).
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Lemma 42. Given the network G, for any motif R,

E∗ [UR(G∗
b)] = UR(G). (C.75)

And for any two motifs R and R′ with r + r′ < b,

cov∗ [UR(G∗
b), UR′(G∗

b)] =

(
b

r

)−1(
b

r′

)−1 min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

CS

(
b

s

)(
n

s

)−1

XS(G)

− UR(G)UR′(G),

(C.76)

where s = |V (S)| = r + r′ − q. Moreover, suppose that G ∼ Gn. Then

E[UR(Ghn
b )] = E

{
E∗
[
UR(G(∗Gn=G)

b )
]}

= E
{
E∗
[
UR(G∗

b)
]}
, (C.77)

cov[UR(Ghn
b ), UR′(Ghn

b )] = cov
{
E∗
[
UR(G∗

b)
]
, E∗
[
UR′(G∗

b)
]}

+ E
{

cov∗
[
UR(G∗

b), UR′(G∗
b)
]}
.

(C.78)

C.1.4 Statistical properties of network moments of subsam-

pled graphs: Part II

The following proposition extends the results about finite population statistic in

Bloznelis and Götze (2001, 2002) into network subsampling context.

Proposition 43.

(a) The Hoeffding’s decomposition of UR(G∗
b) is

UR(G∗
b) = E∗[UR(G∗

b)] +
∑
1⩽i⩽b

g1,R (Vi) +
∑

1⩽i<j⩽b

g2,R (Vi,Vj) + · · · , (C.79)



160

where

g1,R(V1) =
r!(n− r − 1)!

b(n− 2)!

∑
G∈S(GV1∗

r )

XR(G)− r(n− 1)

b(n− r)
UR(G)

=
(n− 1)

b
[UR(G)− UR(G \ V1)],

(C.80)

with

covV1∗[g1,R(V1), g1,R′(V1)]

=
r!(n− r − 1)!

b(n− 2)!

r′!(n− r′ − 1)!

b(n− 2)!

min{r,r′}∑
k=0

∑
S∈S(q)

R,R′

cS
nq − rr′

n2
XS(G).

(C.81)

Furthermore, we have

cov∗[
∑
1⩽i⩽b

g1,R(Vi),
∑
1⩽i⩽b

g1,R′(Vi)] =
b(n− b)
(n− 1)

cov∗[g1,R(V1), g1,R′(V1)], (C.82)

and as n, b→∞

lim
b,n→∞

var∗[
∑
1⩽i⩽b

g1,R (V1)] = 0. (C.83)

(b) For two motifs R and R′, UR(G∗
b) + UR′(G∗

b) is also a symmetric finite popu-

lation statistic with the following Hoeffding’s decomposition

UR(G∗
b) + UR′(G∗

b) =E∗[UR(G∗
b) + UR′(G∗

b)] +
∑
1⩽i⩽b

g1,R,R′ (Vi)

+
∑

1⩽i<j⩽b

g2,R,R′ (Vi,Vj) + · · · ,

where

g1,R,R′(V1) = g1,R(V1) + g1,R′(V1). (C.84)
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Moreover, the variance of linear parts satisfies:

var∗
∑
1⩽i⩽b

g1,R,R′ (Vi) =
b(n− b)
(n− 1)

var∗ [g1,R,R′ (V1)] , (C.85)

lim
b,n→∞

var∗[
∑
1⩽i⩽b

g1,R,R′ (Vi)] = 0. (C.86)

C.1.5 Asymptotic distribution of network moments of sub-

sampled graphs

Assumption 3 (Non-degenerate moment). For motif R and graphon hn,

σ2
R = lim

n→∞
var[
√
nρ−r

n UR(Gn)] > 0.

Based on the result in Bloznelis and Götze (2001), we derived the following

asymptotic results for the subsampling distribution.

Theorem 44. Suppose that {G(n)} is a sequence of networks, where each G(n) ∼

Gn.

(a) The Hoeffding’s decomposition of
√
bnρ

−r
n UR(G∗

bn
) is

√
bnρ

−r
n UR(G∗

bn) =
√
bnρ

−r
n UR[G(n)] +

∑
1⩽i⩽bn

√
bnρ

−r
n g1,R (Vi) + ∆[

√
bnρ

−r
n UR(G∗

bn)].

(C.87)

For any network sequence, the following conditions hold with probability one.

(i) Under Assumptions 3, 2 and 1, we have

lim
n→∞

E∗∆
2[
√
bnρ

−r
n UR(G∗

bn)] = 0, (C.88)
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0 < c3 ⩽ var∗
[√

bnρ
−r
n UR(G∗

bn)
]
⩽ c4 <∞ for some c3, c4 > 0. (C.89)

(ii) Under Assumptions 2, for every ϵ > 0,

lim
n→∞

bnE∗
[
bnρ

−2r
n g21,R(V1)⊮{bnρ−2r

n g21,R(V1)>ϵ}
]

= 0, (C.90)

Consequently, if Assumptions 3, 2, 1 are satisfied, then with probability one:

√
b
[
ρ−r
n UR(G∗

b)− ρ−r
n UR(G)

]
→N(0, σ2

∗R) in distribution, (C.91)

(b) Let {R1, · · · , Rm} bem motifs with max{r1, · · · , rm} ≤ r and max{r1, · · · , rm} ≤

r. Suppose that Assumption 3 holds for every Ri with i ∈ [m], and Assumption

2, 1 are satisfied. Then with probability one:

√
b
{[
ρ−r1
n UR1(G∗

b), · · · , ρ−rm
n URm(G∗

b)
]
−
[
ρ−r1
n UR1(G), · · · , ρ−rm

n URm(G)
]}

→N
[
0,Σ(∗R)

]
in distribution,

(C.92)

Lemma 45. Let R and R′ be two motifs with max{r, r′} ≤ r1 and max{r, r′} ≤ r1.

Suppose that Assumption 2 holds after replacing r by r1 and r by r1, and Assumption

1 holds. Then

pr
{

lim
b→∞

ρ−(r+r′)
n cov∗

[√
bUR(G∗

b),
√
bUR′(G∗

b)
]

=
(
1− c2

)
lim
b→∞

ρ
−(r+r′)
b cov

[√
bUR(Gb),

√
bUR′(Gb)

]}
= 1.

C.1.6 Consistency of empirical distribution

Similar to Lunde and Sarkar (2023), we also considered the following empirical
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CDF:

Ĵ
{R1,··· ,Rm}
∗,n,b (t1, · · · , tm) =

1

N

N∑
i=1

⊮
{√

b
[
ρ̂−r1
G UR1(G

∗(i)
b )− ρ̂−r1

G UR1(G)
]
≤ t1,

· · · ,
√
b
[
ρ̂−rm
G URm(G

∗(i)
b )− ρ̂−rm

G URm(G)
]
≤ tm

}
.

(C.93)

The following consistency result is developed based on Theorem 1 of Lunde and

Sarkar (2023):

Theorem 46. For {R1, · · · , Rm} with max{r1, · · · , rm} ≤ r and max{r1, · · · , rm} ≤

r. Under Assumptions 3, 2, 1, with probability one:

sup
[tm]∈Rm

∣∣∣Ĵ{R1,··· ,Rm}
∗,n,b (t1, · · · , tm)− J{R1,··· ,Rm}

∗,n,b (t1, · · · , tm)
∣∣∣→ 0.

C.2 Two examples for Definition C.63

Following Maugis et al. (2020), we use two examples to explain this definition.

In the first example, let R be a and R′ also be a . Then the set SR,R′ can be

constructed as { , , , }. Each element in SR,R′ can be obtained by building

blocks based on R and R′. Let R1 be a copy of R, and R2 be a copy to R′. The

pattern can be built by either put R1 in the left side or in the right side.

Thus, c = 2. Similarly, c = 2, c = 2 and c = 1. Generally speaking,

cS denotes the number of ways S can be built from copies of R and R′. Based

on the number of merged vertices, we have S
(0)
R,R′ = { },S(1)

R,R′ = { }, S(2)
R,R′ =

{ }, and S
(3)
R,R′ = { }. For the second example, let R be a and R′ be a .

Then SR,R′ = {S(0)
R,R′ , S

(1)
R,R′ , S

(2)
R,R′ , S

(3)
R,R′ , S

(4)
R,R′}, with S

(0)
R,R′ = { }, S(1)

R,R′ = { },

S
(2)
R,R′ = { , , }, S(3)

R,R′ = { , , }, S(4)
R,R′ = { }. Correspondingly, c =

2, c = 2, c = 6, c = 2, c = 2, c = 2, c = 6, c = 6 and c = 1.
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As noted in Maugis et al. (2020), XR(G)XR′(G) involves counting pairs of motifs,

and could be recovered by counting the number of the all motifs that are formed

by using one copy of R and one copy of R′ as building blocks. This is the intuition

of Lemma 37. Moreover, the equation in (C.62) provides flexibility as it does not

depend on the generation mechanism of G.

C.3 Proofs for Section C.1

C.3.1 Proof of Lemma 39

Proof. Lemma 39 mostly follow the results in Bhattacharyya and Bickel (2015a);

Maugis et al. (2020); Bhattacharya et al. (2022). We provide the proof here for

reader’s convenience. We begin by present some useful lemmas.

Lemma 47 (Useful identities).

E
[
UR(Gn)

]
=

(
n

r

)−1

E
[
XR(Gn)

]
=

(
n

r

)−1

XR(Kn)Phn(R), (C.94)

where Kn denotes a complete graph of size n, and Phn(R) is defined in (C.65) .

XR(Kn) =

(
n

r

)
XR(Kr), (C.95)

XR(Kr) = r!/|Aut(R)|. (C.96)

The (C.94) is proved in Maugis et al. (2020) (See their equation (1)), (C.95) is

used in Bollobás and Riordan (2007), and (C.96) is proved in Bhattacharya et al.

(2022) (see their equation (2.7)).

We now prove the results one by one.
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i) First, by (C.94), E[UR(Gn)] =
(
n
r

)−1
XR(Kn)Phn(R), so that

XR(Kn)
(C.95)

=

(
n

r

)
XR(Kr)

(C.96)
=

(
n

r

)
r!

|Aut(R)|
(C.97)

and

E[UR(Gn)] =

(
n

r

)−1

XR(Kn)Phn(R) =
r!

|Aut(R)|
Phn(R),

which gives (C.66).

ii) To show (C.67), we start with

cov
[
UR(Gn), UR′(Gn)

]
= E

[
UR(Gn)UR′(Gn)

]
− E

[
UR(Gn)

]
E
[
UR′(Gn)

]
(C.94)

=

(
n

r

)−1(
n

r′

)−1

E
[
XR(Gn)XR′(Gn)

]
−
{
E
[
UR(Gn)

]
E
[
UR′(Gn)

]}
(C.62)

=

(
n

r

)−1(
n

r′

)−1

E
[min{r,r′}∑

q=0

∑
S∈S(q)

R,R′

cSXS(Gn)
]
− E

[
UR(Gn)

]
E
[
UR′(Gn)

]
.

(C.98)

The result in Bhattacharyya and Bickel (2015b) (see σ(R1, R2; ρ) in Part B1)

implies that

cov
[
UR(Gn), UR′(Gn)

]
=

(
n

r

)−1(
n

r′

)−1 min{r,r′}∑
q=1

∑
S∈S(q)

R,R′

cSE
[
XS(Gn)

]

−
(
1−

(
n−r
r′

)(
n
r′

) )E[UR(Gn)
]
E
[
UR′(Gn)

]
.

Combining with (C.98), we obtain

E
[
UR(Gn)

]
E
[
UR′(Gn)

]
=

(
n
r′

)(
n−r
r′

)(n
r

)−1(
n

r′

)−1 ∑
S∈S(0)

R,R′

cSE
[
XS(Gn)

]
. (C.99)



166

Finally, we arrive at

cov
[
UR(Gn), UR′(Gn)

] (C.98)
=

(
n

r

)−1(
n

r′

)−1 min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cSE
[
XS(Gn)

]
− E

[
UR(Gn)

]
E
[
UR′(Gn)

]
(C.99)

=

(
n

r

)−1(
n

r′

)−1 min{r,r′}∑
q=1

∑
S∈S(q)

R,R′

cSE
[
XS(Gn)

]

+

(
n

r

)−1(
n

r′

)−1 ∑
S∈S(0)

R,R′

cSE
[
XS(Gn)

]

−
(
n
r′

)(
n−r
r′

)(n
r

)−1(
n

r′

)−1 ∑
S∈S(0)

R,R′

cSE
[
XS(Gn)

]

=

(
n

r

)−1(
n

r′

)−1 min{r,r′}∑
q=1

∑
S∈S(q)

R,R′

cSE
[
XS(Gn)

]

−
( (n

r′

)(
n−r
r′

) − 1
)(n

r

)−1(
n

r′

)−1 ∑
S∈S(0)

R,R′

cSE
[
XS(Gn)

]
,

which gives (C.67).

C.3.2 Proof of Proposition 40

Proof. we prove the results one by one.
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i) The equation in (C.68) is derived as follows.

E
[
ρ−r
n UR(Gn)

]
= ρ−r

n E
[
UR(Gn)

] (C.66)
=

ρ−r
n r!

|Aut(R)|
Phn(R)

(C.65)
=

ρ−r
n r!

|Aut(R)|

∫
[0,1]r

∏
(vi,vj)∈E(R)

hn (ξi, ξj)
∏

vi∈V (R)

dξi

=
r!ρ−r

n ρ
r
n

|Aut(R)|

∫
[0,1]r

∏
(vi,vj)∈E(R)

w (ξi, ξj)⊮{ρnw(ξi,ξj)⩽1}
∏

vi∈V (R)

dξi

=
r!

|Aut(R)|

∫
[0,1]r

∏
(vi,vj)∈E(R)

w (ξi, ξj)
∏

vi∈V (R)

dξi
(C.65)

=
r!

|Aut(R)|
Pw(R).

ii) To show (C.69), we partition the covariance into

cov
[√

nρ−r
n UR(Gn),

√
nρ−r′

n UR′(Gn)
]

= nρ−(r+r′)
n cov

[
UR(Gn), UR′(Gn)

]
(C.67)

= nρ−(r+r′)
n

(
n

r

)−1(
n

r′

)−1 min{r,r′}∑
q=1

∑
S∈S(q)

R,R′

cSE
[
XS(Gn)

]

− nρ−(r+r′)
n

[ (n
r′

)(
n−r
r′

) − 1
](n
r

)−1(
n

r′

)−1 ∑
S∈S(0)

R,R′

cSE
[
XS(Gn)

]
:= I− II.
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Let |V (S)| = s and |E(S)| = s, then part I could be expressed as

I = nρ−(r+r′)
n

(
n

r

)−1(
n

r′

)−1 min{r,r′}∑
q=1

∑
S∈S(q)

R,R′

cSE
[
XS(Gn)

]

=

min{r,r′}∑
q=1

∑
S∈S(q)

R,R′

cSρ
−(r+r′)
n

nr!(n− r)!
n!

r′!(n− r′)!
n!

(
n

s

)
E
[
US(Gn)

]
(C.68)

=

min{r,r′}∑
q=1

∑
S∈S(q)

R,R′

cSρ
s−(r+r′)
n

nr!(n− r)!
n!

r′!(n− r′)!
n!

n!

s!(n− s)!
s!

|Aut(S)|
Pw(S)

=

min{r,r′}∑
q=1

∑
S∈S(q)

R,R′

ρs−(r+r′)
n

(n− r′)!
(n− 1) · · · (n− r + 1)(n− s)!

cSr!r
′!

|Aut(S)|
Pw(S).

The quantities r, r′, cS, |Aut(S)|, and Pw(S) are invariant of n. The quantities

ρ
s−(r+r′)
n and (n− r′)!/[(n− 1) · · · (n− r + 1)(n− s)!] change with n. Now, we

consider these two quantities based on the number of merged vertices q.

• When q = 1, we have s = r+ r′ and s = r+r′−1. The following quantity

(n− r′)!
(n− 1) · · · (n− r + 1)(n− s)!

=
(n− r′)(n− r′ − 1) · · · (n− r − r′ + 2)

(n− 1) · · · (n− r + 1)

has r − 1 items including n in both numerator and denominator. Thus,

ρs−(r+r′)
n

(n− r′)!
(n− 1) · · · (n− r + 1)(n− s)!

= 1 + o(1).

• When q = 2, we have s = r + r′ − 1 because one edge is merged. The

following quantity

(n− r′)!
(n− 1) · · · (n− r + 1)(n− s)!

=
(n− r′)(n− r′ − 1) · · · (n− r − r′ + 3)

(n− 1) · · · (n− r + 1)
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has r−2 items with n in numerator, and r−1 items with n in denominator.

As nρn →∞,

ρs−(r+r′)
n

(n− r′)!
(n− 1) · · · (n− r + 1)(n− s)!

= O(
1

nρn
) = o(1).

• When 2 < q < min{r, r′}, at most q(q − 1)/2 edges are merged. The

following quantity

(n− r′)!
(n− 1) · · · (n− r + 1)(n− s)!

=
(n− r′)(n− r′ − 1) · · · (n− r − r′ + (q + 1))

(n− 1) · · · (n− r + 1)

has r−q items with n in numerator and r−1 items with n in denominator.

Since n(q−1)ρ
(q(q−1)/2)
n = (nρ

q/2
n )(q−1) →∞

ρs−(r+r′)
n

(n− r′)!
(n− 1) · · · (n− r + 1)(n− s)!

= O(
1

(nρ
q/2
n )(q−1)

) = o(1).

Therefore,

lim
n→∞

I =
∑

S∈S(1)

R,R′

cSr!r
′!

|Aut(S)|
Pw(S).

Now we turn to focus on part II. Since s = r + r′ and s = r + r′ when q = 0,

we have

[ n(n
r′

)(
n−r
r′

) − n](n
r

)−1(
n

r′

)−1(
n

s

)
=

r!r′!

(r + r′)!

{
b
[
1− (n− r)!(n− r′)!

n!(n− r − r′)!

]}
=

r!r′!

(r + r′)!

[n(n− 1) · · · (n− r + 1)− (n− r′) · · · (n− r − r′ + 1)

(n− 1) · · · (n− r + 1)

]
.
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Consequently,

n(n− 1) · · · (n− r + 1) = nr − (r − 1)r

2
nr−1 + o(nr−1),

(n− r′) · · · (n− r − r′ + 1) = nr − (2r′ + r − 1)r

2
nr−1 + o(nr−1),

(n− 1) · · · (n− r + 1) = nr−1 + o(nr−1).

By L’Hospital’s rule,

lim
n→∞

( n(n
r′

)(
n−r
r′

) − n)(n
r

)−1(
n

r′

)−1(
n

s

)
= lim

n→∞

r!r′!

(r + r′)!

[n(n− 1) · · · (n− r + 1)− (n− r′) · · · (n− r − r′ + 1)

(n− 1) · · · (n− r + 1)

]
= lim

n→∞

r!r′!

(r + r′)!

rr′nr−1 + o(nr−1)

nr−1 + o(nr−1)
=

r!r′!

(r + r′)!
rr′.

(C.100)

Consequently,

lim
n→∞

II = lim
n→∞

nρ−(r+r′)
n

( (n
r′

)(
n−r
r′

) − 1
)(n

r

)−1(
n

r′

)−1 ∑
S∈S(0)

R,R′

cSE
[
XS(Gn)

]

= lim
n→∞

nρs−(r+r′)
n

( (n
r′

)(
n−r
r′

) − 1
)(n

r

)−1(
n

r′

)−1(
n

s

) ∑
S∈S(0)

R,R′

cSE
[
ρ−s
n US(Gn)

]

= lim
n→∞

n
( (n

r′

)(
n−r
r′

) − 1
)(n

r

)−1(
n

r′

)−1(
n

s

) ∑
S∈S(0)

R,R′

cSE
[
ρ−s
n US(Gn)

]
(C.68)

= lim
n→∞

n
( (n

r′

)(
n−r
r′

) − 1
)(n

r

)−1(
n

r′

)−1(
n

s

) ∑
S∈S(0)

R,R′

cS
s!

|Aut(S)|
Pw(S)

(C.100)
=

∑
S∈S(0)

R,R′

cSr!r
′!rr′

|Aut(S)|
Pw(S).
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Finally, we arrive at

lim
n→∞

cov
[√

nρ−r
n UR(Gn),

√
nρ−r′

n UR′(Gn)
]

= lim
n→∞

I− lim
n→∞

II

=
∑

S∈S(1)

R,R′

cSr!r
′!

|Aut(S)|
Pw(S)−

∑
S∈S(0)

R,R′

cSr!r
′!rr′

|Aut(S)|
Pw(S),

which gives (C.69).
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C.4 Proofs for Section C.1

C.4.1 Proof of Lemma 41

Recall that G∗
b denotes a random subsampled graph, and S(G∗

b) denotes the

collection of all possible G∗
b . For a fixed vertex v ∈ V (G), Gv∗

b denotes a random

subsampled graph including v, and S(Gv∗
b ) denotes the sample space of Gv∗

b . Let

Gv∗
b ∈ S(Gv∗

b ) be a realization. We use Gv∗∗
b,r to denote a random induced subgraph of

Gv∗
b based on the vertex v and other r−1 random vertices drawn without replacement

from V (G∗
b) \ v, and use S(Gv∗∗

b,r ) to denote the set contains all possible Gv∗∗
b,r .

Proof. The following equation from Maugis et al. (2020) is used in this proof.

(
n

r

)
UR(G) = XR(G) =

∑
Rc∈{S:S⊂G,S∼=R}

1 =
∣∣{S : S ⊂ G,S ∼= R}

∣∣. (C.101)

We now prove these identities one by one.

i) For any Rc ∈ {S : S ⊂ G,S ∼= R}, recall that Rc ⊂ G∗
b if both V (Rc) ⊂ V (G∗

b)

and E(Rc) ⊂ E(G∗
b). Furthermore, since Rc ⊂ G and G∗

b ⊂⊂ G, V (Rc) ⊂

V (G∗
b) implies E(Rc) ⊂E(G∗

b). Thus,

⊮{Rc⊂G∗
b} = 1 if and only if V (Rc) ⊂ V (G∗

b). (C.102)

Now let us consider draw b vertices from V (G) by first selecting all vertices

in V (Rc), and then randomly draw b − r vertices without replacement from

V (G)\V (Rc). There are
(
n−r
b−r

)
ways to draw these b vertices. Thus,

∑
G∈S(G∗

b )

⊮{Rc⊂G} =

(
n− r
b− r

)
. (C.103)
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Consequently,

∑
G∈S(G∗

b )

XR(G)
(C.101)

=
∑

G∈S(G∗
b )

∑
Rc∈{S:S⊂G,S∼=R}

1

=
∑

G∈S(G∗
b )

∑
Rc∈{S:S⊂G,S∼=R}

⊮{Rc⊂G}

=
∑

Rc∈{S:S⊂G,S∼=R}

∑
G∈S(G∗

b )

⊮{Rc⊂G}

(C.103)
=

∑
Rc∈{S:S⊂G,S∼=R}

(
n− r
b− r

)
(C.101)

=

(
n− r
b− r

)
XR(G),

which gives (C.70).

ii) For any Gv∗∗
b,r ∈ S(Gv∗∗

b,r ), if S ⊂ Gv∗∗
b,r and |V (S)| = |V (Gv∗∗

b,r )|, then V (S) =

V (Gv∗∗
b,r ). In addition, as v ∈ V (Gv∗∗

b,r ), we have

{S : S ⊂ Gv∗∗
b,r , S

∼= R} = {S : S ⊂ Gv∗∗
b,r , v ∈ V (S), S ∼= R}. (C.104)

Let Rc ∈ {S : S ⊂ G,S ∼= R}. Suppose that Rc ⊂ Gv∗
b and v ∈ V (Rc). Then

because every Gv∗∗
b,r is a induced subgraph, we have

∑
G∈S(Gv∗∗

b,r )

⊮{Rc⊂G} =
∑

G∈S(Gv∗∗
b,r )

⊮{V (Rc)=V (G)} = 1. (C.105)
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Consequently,

∣∣∣{S : S ⊂ Gv∗
b , v ∈ V (S), S ∼= R}

∣∣∣
=

∑
Rc∈{S:S⊂Gv∗

b ,v∈V (S),S∼=R}

1
(C.105)

=
∑

Rc∈{S:S⊂Gv∗
b ,v∈V (S),S∼=R}

( ∑
G∈S(Gv∗∗

b,r )

⊮{Rc⊂G}

)
=

∑
G∈S(Gv∗∗

b,r )

( ∑
Rc∈{S:S⊂Gv∗

b ,v∈V (S),S∼=R}

⊮{Rc⊂G}

)
=

∑
G∈S(Gv∗∗

b,r )

( ∑
Rc∈{S:S⊂G,v∈V (S),S∼=R}

1
)

(C.101)
=

∑
G∈S(Gv∗∗

b,r )

∣∣∣{S : S ⊂ G, v ∈ V (S), S ∼= R}
∣∣∣

(C.104)
=

∑
G∈S(Gv∗∗

b,r )

∣∣∣{S : S ⊂ G, S ∼= R}
∣∣∣ (C.101)

=
∑

G∈S(Gv∗∗
b,r )

XR(G),

which gives (C.71).

iii) If |V (S)| = r and S ⊂ Gv∗
r , then V (S) = V (Gv∗

r ). Thus,

{S : S ⊂ Gv∗
r , S

∼= R} = {S : S ⊂ Gv∗
r , v ∈ V (S), S ∼= R}.

Let Rc ∈ {S : S ⊂ G,S ∼= R}. Because Gv∗
r ⊂⊂ G, there exist only one

Gv∗
r ∈ S(Gv∗

r ) such that V (Rc) = V (Gv∗
r ). Also, V (Rc) = V (Gv∗

r ) implies

E(Rc) ⊂ E(Gv∗
r ). Thus,

∑
G∈S(Gv∗

r )

⊮{Rc⊂G} =
∑

G∈S(Gv∗
r )

⊮{V (Rc)⊂V (G)} = 1.
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Consequently,

∣∣∣{S : S ⊂ G, v ∈ V (S), S ∼= R}
∣∣∣ =

∑
Rc∈{S:S⊂G,v∈V (S),S∼=R}

1

=
∑

Rc∈{S:S⊂G,v∈V (S),S∼=R}

( ∑
G∈S(Gv∗

r )

⊮{Rc⊂G}

)
=

∑
G∈S(Gv∗

r )

( ∑
Rc∈{S:S⊂G,v∈V (S),S∼=R}

⊮{Rc⊂G}

)
=

∑
G∈S(Gv∗

r )

∣∣∣{S : S ⊂ G, v ∈ V (S), S ∼= R}
∣∣∣

=
∑

G∈S(Gv∗
r )

∣∣∣{S : S ⊂ G, S ∼= R}
∣∣∣ =

∑
G∈S(Gv∗

r )

XR(G),

which gives (C.72)

iv) Let Rc ∈ {S : S ⊂ G, v ∈ V (S), S ∼= R}, we have

∑
G∈S(G∗

b )

⊮{Rc⊂G} =
∑

G∈S(G∗
b ),v∈V (G)

⊮{Rc⊂G} +
∑

G∈S(G∗
b ),v /∈V (G)

⊮{Rc⊂G}

=
∑

G∈S(G∗
b ),v∈V (G)

⊮{Rc⊂G} + 0

=
∑

G∈S(Gv∗
b )

⊮{Rc⊂G}.

(C.106)
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Consequently,

∑
G∗

b∈S(Gv∗
b )

( ∑
G∈S(Gv∗∗

b,r )

XR(G)
)

(C.71)
=

∑
G∈S(Gv∗

b )

∣∣∣{S : S ⊂ G, v ∈ V (S), S ∼= R}
∣∣∣

=
∑

G∈S(Gv∗
b )

∑
Rc∈{S:S⊂G,v∈V (S),S∼=R}

⊮{Rc⊂G}

=
∑

Rc∈{S:S⊂G,v∈V (S),S∼=R}

∑
G∈S(Gv∗

b )

⊮{Rc⊂G}

(C.106)
=

∑
Rc∈{S:S⊂G,v∈V (S),S∼=R}

∑
G∈S(G∗

b )

⊮{Rc⊂G}

(C.103)
=

∑
Rc∈{S:S⊂G,v∈V (S),S∼=R}

(
n− r
b− r

)

=

(
n− r
b− r

)∣∣∣{S : S ⊂ G, v ∈ V (S), S ∼= R}
∣∣∣,

(C.107)

which gives (C.73).

v) For the last identity, we have

n∑
i=1

∣∣∣{S : S ⊂ G, vi ∈ V (S), S ∼= R}
∣∣∣ (C.101)

=
n∑

i=1

∑
Rc∈{S:S⊂G,vi∈V (S),S∼=R}

1

=
n∑

i=1

∑
Rc∈{S:S⊂G,S∼=R}

⊮{vi∈V (Rc)}

=
∑

Rc∈{S:S⊂G,S∼=R}

n∑
i=1

⊮{vi∈V (Rc)}

=
∑

Rc∈{S:S⊂G,S∼=R}

r

= r
∣∣∣{S : S ⊂ G,S ∼= R}

∣∣∣ = rXR(G),

which gives (C.74).
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C.4.2 Proof of Lemma 42

Proof. We will prove the results one by one.

i) Following the results in Maugis et al. (2020), we have

E∗

[
UR(G∗

b)
]

(C.101)
= E∗

[(b
r

)−1

XR(G∗
b)
]

=

(
b

r

)−1

E∗

[
XR(G∗

b)
]

=

(
b

r

)−1(
n

b

)−1 ∑
G∈S(G∗

b )

XR(G)
(C.70)

=

(
b

r

)−1(
n

b

)−1(
n− r
b− r

)
XR(G)

=

(
n

r

)−1

XR(G)
(C.101)

= UR(G),

which gives (C.75)

ii) We start by showing that

E
[
UR(Gn)

]
(C.66)

=
r!

|Aut(R)|
Phn(R)

(C.97)
=

(
b

r

)−1

XR(Kb)Phn(R)

(C.94)
= E[UR(Ghn

b )].

(C.108)

Hence, E{E∗[UR(G∗
b)]} = E{E∗[UR(G(∗Gn=G)

b )]} = E[UR(Gn)] = E[UR(Ghn
b )],

where the second and third equality’s follow (C.75) and (C.108), respectively.

This gives (C.77).

iii) Following Bhattacharyya and Bickel (2015b); Maugis et al. (2020), we have

cov∗

[
UR(G∗

b), UR′(G∗
b)
]

(C.101)
= cov∗

[(b
r

)−1

XR(G∗
b),

(
b

r′

)−1

XR′(G∗
b)
]

=

{(
b

r

)−1(
b

r′

)−1

E∗

[
XR(G∗

b)XR′(G∗
b)
]}
− E∗

[
UR(G∗

b)
]
E∗

[
UR′(G∗

b)
]
.



178

For the first part, we have

E∗

[
XR(G∗

b)XR′(G∗
b)
]

(C.62)
= E∗

[min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cSXS(G∗
b)
]

=

min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cSE∗[XS(G∗
b)] =

min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cS

(
b

s

)
E∗

[
US(G∗

b)
]

(C.75)
=

min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cS

(
b

s

)
US(G).

For the second part, we have

E∗
[
UR(G∗

b)
]
E∗
[
UR′(G∗

b)
] (C.75)

= UR(G)UR′(G).

Thus,

cov∗

[
UR(G∗

b), UR′(G∗
b)
]

=

(
b

r

)−1(
b

r′

)−1 min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cS

(
b

s

)
US(G)

− UR(G)UR′(G),
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which gives (C.76). As a special case,

var∗

[
UR(G∗

b)
]

=
{(b

r

)−2 r∑
q=0

∑
S∈S(q

R,R

cS

(
b

2r − q

)
US(G)

}
− [UR(G)]2

=

(
b

r

)−2 r∑
q=0

∑
S∈S(q

R,R

cS

(
b

2r−q

)(
n

2r−q

)XS(G)− [UR(G)]2

=

(
b

r

)−2 r∑
q=0

∑
S∈S(q

R,R

cS

(
n−2r+q
b−2r+q

)(
n
b

) XS(G)− [UR(G)]2

=

(
b

r

)−2[ ∑
S∈S(0)

R,R

cS

(
n−2r
b−2r

)(
n
b

) XS(G) +
r∑

q=1

∑
S∈S(q

R,R

cS

(
n−2r+q
b−2r+q

)(
n
b

) XS(G)
]
− [UR(G)]2,

which aligns with the results in Bhattacharyya and Bickel (2015a).

iv) It remains to examine the total covariance in terms of network vertex subsam-

pling. First, it holds that cov{E∗[UR(G∗
b)], E∗[UR′(G∗

b)]} = cov[UR(Gn), UR′(Gn)] =

E[UR(Gn)UR′(Gn)] − E[UR(Gn)]E[UR′(Gn)], where the first equality follows

(C.75).

Second, we have

E
{

cov∗
[
UR(G∗

b), UR′(G∗
b)
]}

(C.76)
= E

{(
b

r

)−1(
b

r′

)−1 min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cS

(
b

s

)
US(Gn)− UR(Gn)UR′(Gn)

}

=

(
b

r

)−1(
b

r′

)−1 min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cS

(
b

s

)
E[US(Gn)]− E

[
UR(Gn)UR′(Gn)

]
.
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Thus,

cov
{
E∗
[
UR(G∗

b)
]
, E∗
[
UR′(G∗

b)
]}

+ E
{

cov∗
[
UR(G∗

b), UR′(G∗
b)
]}

=

(
b

r

)−1(
b

r′

)−1 min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cS

(
b

s

)
E[US(Gn)]− E

[
UR(Gn)

]
E
[
UR′(Gn)

]

(C.108)
=

(
b

r

)−1(
b

r′

)−1 min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cS

(
b

s

)
E[US(Ghn

b )]− E
[
UR(Ghn

b )
]
E
[
UR′(Ghn

b )
]

(C.101)
=

(
b

r

)−1(
b

r′

)−1 min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cSE[XS(Ghn
b )]− E

[
UR(Ghn

b )
]
E
[
UR′(Ghn

b )
]

=E
[(b
r

)−1(
b

r′

)−1 min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cSXS(Ghn
b )
]
− E

[
UR(Ghn

b )
]
E
[
UR′(Ghn

b )
]

(C.62)
= E

[(b
r

)−1(
b

r′

)−1

XR(Ghn
b )XR′(Ghn

b )
]
− E

[
UR(Ghn

b )
]
E
[
UR′(Ghn

b )
]

=cov
[
UR(Ghn

b ), UR′(Ghn
b )
]
,

which gives (C.78).

C.5 Proofs for Section C.1

C.5.1 Proof of Proposition 43

Let T denote a general finite population U-statistic. The following Hoeffding’s

decomposition represents T as the sum of mutually uncorrelated U-statistics of

increasing order:

T = E∗(T ) +
∑
1⩽i⩽b

g1 (Vi) +
∑

1⩽i<j⩽b

g2 (Vi,Vj) + · · · . (C.109)
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Bloznelis and Götze (2001, 2002) showed that such decomposition is unique and

orthogonal, which implies that {gi}bi=1 are centered and satisfy

E∗[gi(V1, · · · ,Vi) | V1, · · · ,Vi−1] = 0. (C.110)

In addition, Equation (2.3) in Bloznelis and Götze (2001) also showed that

g1 (V1) =
n− 1

n− b
h1 (V1) , (C.111)

where h1 (V1) = E∗[T − E∗(T ) | V1].

We first discuss why UR(G∗
b) is a finite population U-statistic. Since the network

G can be treated as a population G = {v1, · · · , vn}, the subsampled network G∗
b is

uniquely determined by a random sample {V1, · · · ,Vb}. Consequently, UR(G∗
b) is a

statistic based on G∗
b , and is invariant of its permutation. Thus, UR(G∗

b) is a finite

population U-statistic by definition 35.

We next present the following technical auxiliary lemma, whose proof is in Sec-

tion C.2.

Lemma 48. For any motifs R and R′,

covV1∗

[ ∑
G∈S(GV1∗

r )

XR(G),
∑

G∈S(GV1∗
r′ )

XR′(G)
]

=

min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cS
nq − rr′

n2
XS(G)

(C.112)

Now we start to prove Proposition 43.

of Proposition 43. We start by proving the results in part (a).

(a).i We first show (C.80). As discussed before, UR(G∗
b) is a finite population U-
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statistic. Thus, from (C.111) we have

h1,R (V1) = E∗
[
UR(G∗

b)− E∗[UR(G∗
b)] | V1

]
= E∗

[
UR(G∗

b) | V1

]
− E∗

[
UR(G∗

b)
]
,

g1,R (V1) =
n− 1

n− b
h1,R (V1) .

(C.113)

We now study h1,R (V1). Recall that Gv∗
b denotes a random induced graph of

G with vertex v and other b− 1 random vertices drawn without replacement

from V (G) \ v. Thus,

UR(G∗
b) | (V1 = v1) =UR(Gv1∗

b ) =

(
b

r

)−1

XR(Gv1∗
b )

(C.101)
=

(
b

r

)−1∣∣∣{S : S ⊂ Gv1∗
b , S ∼= R}

∣∣∣. (C.114)

Next, we break the {S : S ⊂ Gv1∗
b , S ∼= R} into two disjoint sets as

{S : S ⊂ Gv1∗
b , S ∼= R}

={S : S ⊂ Gv1∗
b , v1 /∈ V (S), S ∼= R} ∪ {S : S ⊂ Gv1∗

b , v1 ∈ V (S), S ∼= R}.

since

{S : S ⊂ Gv1∗
b , v1 /∈ V (S), S ∼= R} ∩ {S : S ⊂ Gv1∗

b , v1 ∈ V (S), S ∼= R} = ϕ,
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we can partition UR(G∗
b) | (V1 = v1) into two parts as follows

UR(G∗
b) | v1 =

(
b

r

)−1∣∣∣{S : S ⊂ Gv1∗
b , S ∼= R}

∣∣∣
=

(
b

r

)−1 {∣∣∣{S : S ⊂ Gv1∗
b , v1 /∈ V (S), , S ∼= R}

∣∣∣+
∣∣∣{S : S ⊂ Gv1∗

b , v1 ∈ V (S), S ∼= R}
∣∣∣}

=

(
b

r

)−1 {∣∣∣{S : S ⊂ Gv1∗
b \ v1, S ∼= R}

∣∣∣+
∣∣∣{S : S ⊂ Gv1∗

b , v1 ∈ V (S), S ∼= R}
∣∣∣}

(C.101)
=

(
b

r

)−1

XR(Gv1∗
b \ v1) +

(
b

r

)−1∣∣∣{S : S ⊂ Gv1∗
b , v1 ∈ V (S), S ∼= R}

∣∣∣
(C.71)

=

(
b

r

)−1

XR(Gv1∗
b \ v1) +

(
b

r

)−1 ∑
G∈S(Gv1∗∗

b,r )

XR(G)

:= I + II,

(C.115)

where Gv1∗
b \ v1 is a a random induced subsampled graph based on b − 1

vertices that are randomly drawn without replacement from V (G) \ v1. Let

G′ = G\v1 be the network after removing node v1 and all edges that connected

with v1 from G. Then Gv1∗
b \ v1 is essentially a random induced graph G′∗

b−1.

In addition, we use E∗\v1 to indicate probability calculations with respect to

other b− 1 random vertices without v1.
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For part I, we have

E∗\v1
[
I
]

=E∗\v1

[(b
r

)−1

XR(Gv1∗
b \ v1)

]
=
b− r
b

E∗\v1

[(b− 1

r

)−1

XR(G′∗
b−1)

]
=
b− r
b

E∗\v1

[
UR(G′∗

b−1)
]

(C.75)
=

b− r
b

UR(G′)

=
b− r
b

UR(G \ v1)
(C.101)

=
b− r
b

(
n− 1

r

)−1

XR(G \ v1)

(C.101)
=

b− r
b

(
n− 1

r

)−1(∣∣∣{S : S ⊂ G,S ∼= R}
∣∣∣− ∣∣∣{S : S ⊂ G, v1 ∈ V (S), S ∼= R}

∣∣∣)
=
b− r
b

(
n− 1

r

)−1(
XR(G)−

∣∣∣{S : S ⊂ G, v1 ∈ V (S), S ∼= R}
∣∣∣)

(C.72)
=

b− r
b

(
n− 1

r

)−1(
XR(G)−

∑
G∈S(Gv1∗

r )

XR(G)
)
.

For part II, we have

E∗\v1
(
II
)

=E∗\v1

[(b
r

)−1 ∑
G∈S(Gv1∗∗

b,r )

XR(G)
]

=

(
b

r

)−1(
n− 1

b− 1

)−1 ∑
G∗

b∈S(Gv1∗
b )

( ∑
G∈S(Gv1∗∗

b,r )

XR(G)
)

(C.73)
=

(
b

r

)−1(
n− 1

b− 1

)−1(
n− r
b− r

)∣∣∣{S : S ⊂ G, v1 ∈ V (S), S ∼= R}
∣∣∣

(C.72)
=

r!(n− r)!
b(n− 1)!

∑
G∈S(Gv1∗

r )

XR(G).
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Taking these two parts together, we have

E∗
[
UR(G∗

b) | v1
]

= E∗\v1
[
UR(G∗

b) | v1
]

= E∗\v1
[
I + II

]
=
b− r
b

(
n− 1

r

)−1[
XR(G)−

∑
G∈S(Gv1∗

r )

XR(G)
]

+
r!(n− r!)
b(n− 1)!

∑
G∈S(Gv1∗

r )

XR(G)

=
(b− r)n
b(n− r)

(
n

r

)−1

XR(G)− (b− r)r!(n− r − 1)

b(n− 1)!

∑
G∈S(Gv1∗

r )

XR(G)

+
(n− r)r!(n− r − 1)!

b(n− 1)!

∑
G∈S(Gv1∗

r )

XR(G)

=
(b− r)n
b(n− r)

UR(G) +
r!(n− r − 1)!(n− b)

b(n− 1)!

∑
G∈S(Gv1∗

r )

XR(G).

On the other hand, Equation (C.75) implies that E∗
[
UR(G∗

b)
]

= UR(G). Con-

sequently,

h1,R (V1)
(C.113)

= E∗
[
UR(G∗

b)− E∗[UR(G∗
b)] | V1

]
= E∗

[
UR(G∗

b) | V1

]
− E∗

[
UR(G∗

b)
]

=
(b− r)n
b(n− r)

UR(G) +
r!(n− r − 1)!(n− b)

b(n− 1)!

∑
G∈S(GV1∗

r )

XR(G)− UR(G)

=
r!(n− r − 1)!(n− b)

b(n− 1)!

∑
G∈S(GV1∗

r )

XR(G)− (n− b)r
b(n− r)

UR(G),

and

g1,R (V1)
(C.113)

=
n− 1

n− b
h1,R (V1) =

r!(n− r − 1)!

b(n− 2)!

∑
G∈S(GV1∗

r )

XR(G)−(n− 1)r

b(n− r)
UR(G).
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We now further study g1,R (V1). For the first part, we have

r!(n− r − 1)!

b(n− 2)!

∑
G∈S(GV1∗

r )

XR(G)

(C.72)
=

r!(n− r − 1)!

b(n− 2)!

[∣∣{S : S ⊂ G,V1 ∈ V (S), S ∼= R}
∣∣]

=
r!(n− r − 1)!

b(n− 2)!

[∣∣{S : S ⊂ G,S ∼= R}
∣∣− ∣∣{S : S ⊂ G,V1 /∈ V (S), S ∼= R}

∣∣]
=
r!(n− r − 1)!

b(n− 2)!

[
XR(G)−XR(G \ V1)

]
=
r!(n− r − 1)!

b(n− 2)!
XR(G)− r!(n− r − 1)!

b(n− 2)!
XR(G \ V1).

Consequently,

g1,R(V1) =
r!(n− r − 1)!

b(n− 2)!

∑
G∈S(GV1∗

r )

XR(G)− (n− 1)r

b(n− r)
UR(G)

=
r!(n− r − 1)!

b(n− 2)!
XR(G)− r!(n− r − 1)!

b(n− 2)!
XR(G \ V1)−

(n− 1)r

b(n− r)
UR(G)

=
n(n− 1)

b(n− r)
UR(G)− (n− 1)r

b(n− r)
UR(G)− (n− 1)r!(n− r − 1)!

b(n− 1)!
XR(G \ V1)

=
(n− 1)

b
[UR(G)− UR(G \ V1)],

(C.116)

which gives (C.80). For completeness, we show that the expectation of g1,R (V1)

is zero. Notice that V1 could be any element in {v1, · · · , vn}, and we use EV1∗
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to indicate probability calculations with respect to random V1.

E∗
[
g1,R (V1)

]
=EV1∗

[
g1,R (V1)

]
=EV1∗

[r!(n− r − 1)!

b(n− 2)!

∑
G∈S(GV1∗

r )

XR(G)− (n− 1)r

b(n− r)
UR(G)

]
=
r!(n− r − 1)!

b(n− 2)!
EV1∗

[ ∑
G∈S(GV1∗

r )

XR(G)
]
− (n− 1)r

b(n− r)
UR(G)

=
r!(n− r − 1)!

nb(n− 2)!

n∑
i=1

[ ∑
G∈S(Gvi∗

r )

XR(G)
]
− (n− 1)r

b(n− r)
UR(G)

(C.74)
=

r!(n− r − 1)!

nb(n− 2)!
rXR(G)− (n− 1)r

b(n− r)
UR(G)

=
r!(n− r − 1)!

nb(n− 2)!

rn!

r!(n− r)!
UR(G)− (n− 1)r

b(n− r)
UR(G)

=
(n− 1)r

b(n− r)
UR(G)− (n− 1)r

b(n− r)
UR(G) = 0.

(C.117)

(a).ii Now we want to show (C.81). We use varV1∗ and covV1∗ to indicate prob-

ability calculations with respect to random V1. Because the randomness in

cov∗ [g1,R (V1)] is from the random vertex V1, we have

cov∗ [g1,R (V1)] = covV1∗ [g1,R (V1)] . (C.118)
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Then based on lemma 48, we have

covV1∗

[
g1,R(V1), g1,R′(V1)

]
(C.80)

= covV1∗

[r!(n− r − 1)!

b(n− 2)!

∑
G∈S(GV1∗

r )

XR(G),
r′!(n− r′ − 1)!

b(n− 2)!

∑
G∈S(GV1∗

r′ )

XR′(G)
]

=
r!(n− r − 1)!

b(n− 2)!

r′!(n− r′ − 1)!

b(n− 2)!
covV1∗

[ ∑
G∈S(GV1∗

r )

XR(G),
∑

G∈S(GV1∗
r′ )

XR′(G)
]

(C.112)
=

r!(n− r − 1)!

b(n− 2)!

r′!(n− r′ − 1)!

b(n− 2)!

min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cS
nq − rr′

n2
XS(G).

(C.119)

Thus, (C.81) holds as a special case,

varV1∗ [g1,R (V1)] =

(
r!(n− r − 1)!

b(n− 2)!

)2 [ r∑
q=0

∑
S∈S(k)

R,R

cS
nk − r2

n2
XS(G)

]
.

(a).iii Now we continue to show (C.82). Recall that the subscript Vi∗ indicates that

the randomness is from the random vertex Vi, and the subscripte Vi∗,Vj∗

indicates that the randomness comes from two random vertices Vi and Vj.

Notice that (n − 1)rUR(G)/b(n − r) and (n − 1)r′UR′(G)/b(n − r′) are two
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constants when G is given. We first break the covariance into

cov∗

[ ∑
1⩽i⩽b

g1,R(Vi),
∑
1⩽i⩽b

g1,R′(Vi)
]

=
b∑

i=1

b∑
j=1

covVi,Vj∗

[
g1,R(Vi), g1,R′(Vj)

]
(C.80)

=
r!(n− r − 1)!

b(n− 2)!

r′!(n− r′ − 1)!

b(n− 2)!

b∑
i=1

b∑
j=1

covVi,Vj∗

[ ∑
G∈S(GVi∗

r )

XR(G),
∑

G∈S(G
Vj∗
r′ )

XR′(G)
]

=
r!(n− r − 1)!

b(n− 2)!

r′!(n− r′ − 1)!

b(n− 2)!

b∑
i=1

{
covVi∗

[ ∑
G∈S(GVi∗

r )

XR(G),
∑

G∈S(GVi∗
r′ )

XR′(G)
]

+
b∑

j=1,j ̸=i

covVi,Vj∗

[ ∑
G∈S(GVi∗

r )

XR(G),
∑

G∈S(G
Vj∗
r′ )

XR′(G)
]}

:=
r!(n− r − 1)!

b(n− 2)!

r′!(n− r′ − 1)!

b(n− 2)!

b∑
i=1

(
I + II

)
.

(C.120)

Part I can be further derived as

I = covVi∗

[ ∑
G∈S(GVi∗

r )

XR(G),
∑

G∈S(GVi∗
r′ )

XR′(G)
]

= EVi∗

[ ∑
G∈S(GVi∗

r )

XR(G)
∑

G∈S(GVi∗
r′ )

XR′(G)
]
− EVi∗

[ ∑
G∈S(GVi∗

r )

XR(G)
]
EVi∗

[ ∑
G∈S(GVi∗

r′ )

XR′(G)
]

=
1

n

n∑
k=1

[ ∑
G∈S(Gvk∗

r )

XR(G)
∑

G∈S(Gvk∗
r′ )

XR′(G)
]
−
[ 1

n

n∑
k=1

∑
G∈S(Gvk∗

r )

XR(G)
][ 1

n

n∑
k=1

∑
G∈S(Gvk∗

r′ )

XR′(G)
]

(C.74)
=

1

n

n∑
k=1

[ ∑
G∈S(Gvk∗

r )

XR(G)
∑

G∈S(Gvk∗
r′ )

XR′(G)
]
− rXR(G)

n

r′XR′(G)

n
.

(C.121)

For part II, first we have,
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covVi,Vj∗

[ ∑
G∈S(GVi∗

r )

XR(G),
∑

G∈S(G
Vj∗
r′ )

XR′(G)
]

=EVi,Vj∗

[ ∑
G∈S(GVi∗

r )

XR(G)
∑

G∈S(G
Vj∗
r′ )

XR′(G)
]
− EVi∗

[ ∑
G∈S(GVi∗

r )

XR(G)
]
EVj∗

[ ∑
G∈S(G

Vj∗
r′ )

XR′(G)
]

=EVi,Vj∗

[ ∑
G∈S(GVi∗

r )

XR(G)
∑

G∈S(G
Vj∗
r′ )

XR′(G)
]
−
[ 1

n

n∑
k=1

∑
G∈S(Gvk∗

r )

XR(G)
][ 1

n

n∑
k=1

∑
G∈S(Gvk∗

r′ )

XR′(G)
]

(C.74)
=

1

n(n− 1)

n∑
i=1

n∑
j=1,j ̸=i

[ ∑
G∈S(Gvi∗

r )

XR(G)
∑

G∈S(G
vj∗
r′ )

XR′(G)
]
− rXR(G)r′XR′(G)

n2

=
1

n(n− 1)

n∑
i=1

∑
G∈S(Gvi∗

r )

XR(G)
[ n∑
j=1,j ̸=i

∑
G∈S(G

vj∗
r′ )

XR′(G)
]
− rXR(G)r′XR′(G)

n2

=
1

n(n− 1)

n∑
i=1

∑
G∈S(Gvi∗

r )

XR(G)
[ n∑

j=1

∑
G∈S(G

vj∗
r′ )

XR′(G)−
∑

G∈S(Gvi∗
r′ )

XR′(G)
]
− rXR(G)r′XR′(G)

n2

=
1

n(n− 1)

n∑
i=1

∑
G∈S(Gvi∗

r )

XR(G)
[
rX(R′, G)−

∑
G∈S(Gvi∗

r′ )

XR′(G)
]
− rXR(G)r′XR′(G)

n2

=
rXR′(G)

n(n− 1)

n∑
i=1

∑
G∈S(Gvi∗

r )

XR(G)− 1

n(n− 1)

n∑
i=1

∑
G∈S(Gvi∗

r )

XR(G)
∑

G∈S(Gvi∗
r′ )

XR′(G)− rXR(G)r′XR′(G)

n2

(C.74)
=

rXR(G)r′XR′(G)

n2(n− 1)
− 1

n(n− 1)

n∑
i=1

∑
G∈S(Gvi∗

r )

XR(G)
∑

G∈S(Gvi∗
r′ )

XR′(G).

(C.122)
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Consequently, we have

II =
b∑

j=1,j ̸=i

covVi,Vj∗

[ ∑
G∈S(GVi∗

r )

XR(G),
∑

G∈S(G
Vj∗
r′ )

XR′(G)
]

(C.122)
=

b∑
j=1,j ̸=i

{rXR(G)r′X(R′, G)

n2(n− 1)
− 1

n(n− 1)

n∑
i=1

∑
G∈S(Gvi∗

r )

XR(G)
∑

G∈S(Gvi∗
r′ )

XR′(G)
}

= (b− 1)
{rXR(G)r′X(R′, G)

n2(n− 1)
− 1

n(n− 1)

n∑
i=1

∑
G∈S(Gvi∗

r )

XR(G)
∑

G∈S(Gvi∗
r′ )

XR′(G)
}
.

By adding I and II following previous results, we have

I + II =
n− b
n− 1

{ 1

n

n∑
i=1

∑
G∈S(Gvi∗

r )

XR(G)
∑

G∈S(Gvi∗
r′ )

XR′(G)− rXR(G)r′XR′(G)

n2

}
(C.121)

=
n− b
n− 1

cov
[ ∑
G∈S(GVi∗

r )

XR(G),
∑

G∈S(GVi∗
r′ )

XR′(G)
]
.

Thus,

cov∗

[ ∑
1⩽i⩽b

g1,R(Vi),
∑
1⩽i⩽b

g1,R′(Vi)
]

(C.120)
=

r!(n− r − 1)!

b(n− 2)!

r′!(n− r′ − 1)!

b(n− 2)!

b∑
i=1

(
I + II

)
=
n− b
n− 1

r!(n− r − 1)!

b(n− 2)!

r′!(n− r′ − 1)!

b(n− 2)!

b∑
i=1

cov
[ ∑
G∈S(GVi∗

r )

XR(G),
∑

G∈S(GVi∗
r′ )

XR′(G)
]

=
b(n− b)
n− 1

r!(n− r − 1)!

b(n− 2)!

r′!(n− r′ − 1)!

b(n− 2)!
cov
[ ∑
G∈S(GV1∗

r )

XR(G),
∑

G∈S(GV1∗
r′ )

XR′(G)
]

(C.80)
=

b(n− b)
n− 1

cov∗

[
g1,R(V1), g1,R′(V1)

]
,

(C.123)

which gives (C.82).
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(a).iv To show (C.83), we start by breaking break the variance into

var∗
∑
1⩽i⩽b

g1,R (Vi)
(C.82)

=
b(n− b)
(n− 1)

var∗

[
g1,R (V1)

]
(C.81)

=
b(n− b)
(n− 1)

(
r!(n− r − 1)!

b(n− 2)!

)2 [ r∑
q=0

∑
S∈S(q)

R,R

cS
nq − r2

n2
XS(G)

]

=
(n− b)
b(n− 1)

(
r!(n− r − 1)!

(n− 2)!

)2 {[ r∑
q=0

∑
S∈S(q)

R,R

cS
q

n
XS(G)

]
−
[ r∑

q=0

∑
S∈S(q)

R,R

cS
r2

n2
XS(G)

]}

=
(n− b)
b(n− 1)

(
r!(n− r − 1)!

(n− 2)!

)2 [ r∑
q=0

∑
S∈S(q)

R,R

cS
q

n
XS(G)

]

− (n− b)
b(n− 1)

(
r!(n− r − 1)!

(n− 2)!

)2 [ r∑
q=0

∑
S∈S(q)

R,R

cS
r2

n2
XS(G)

]

= I− II.

For part I, we have

(n− b)
b(n− 1)

(
r!(n− r − 1)!

(n− 2)!

)2 [ r∑
q=0

∑
S∈S(q)

R,R

cS
q

n
XS(G)

]

=
(n− b)
b(n− 1)

(
r(n− 1)

(n− r)

(
n− 1

r − 1

)−1
)2 [ r∑

q=0

∑
S∈S(q)

R,R

cSq

n

(
n

2r − q

)
US(G)

]

=
(n− b)
b(n− 1)

(
r(n− 1)

(n− r)

)2 [ r∑
q=0

∑
S∈S(q)

R,R

cSq

n

(
n− 1

r − 1

)−2(
n

2r − q

)
US(G)

]

=
(n− b)
b(n− 1)

(
r(n− 1)

(n− r)

)2 [ r∑
q=1

∑
S∈S(q)

R,R

cSq

n

(
(r − 1)!(n− r)!

(n− 1)!

)2
n!

(2r − q)!(n− 2r + q)
US(G)

]

=
(n− b)
b(n− 1)

(
r(n− 1)

(n− r)

)2 [ r∑
q=1

∑
S∈S(q)

R,R

q[(r − 1)!]2cS
(2r − q)!

(n− r)(n− r − 1) · · · (n− 2r + q + 1)

(n− 1)(n− 2) · · · (n− r + 1)
US(G)

]
.

Notice that (n− r)(n− r− 1) · · · (n− 2r+ q+ 1)/(n− 1)(n− 2) · · · (n− r+ 1)
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has r − q items in the numerator and r − 1 items in the denominator, and

US(G) < 1 for all S. Thus,

lim
b,n→∞

(n− b)
b(n− 1)

[r!(n− r − 1)!

(n− 2)!

]2[ r∑
q=0

∑
S∈S(q)

R,R

cS
q

n
XS(G)

]

= lim
b,n→∞

(n− b)
b(n− 1)

[r(n− 1)

(n− r)

]2 r∑
q=1

∑
S∈S(q)

R,R

q[(r − 1)!]2cS
(2r − q)!

(n− r)(n− r − 1) · · · (n− 2r + q + 1)

(n− 1)(n− 2) · · · (n− r + 1)
US(G)

= lim
b,n→∞

1

b

∑
S∈S(1)

R,R

cS(r!)2

(2r − 1)!
= 0.

For par II,

(n− b)
b(n− 1)

(
r!(n− r − 1)!

(n− 2)!

)2 [ r∑
q=0

∑
S∈S(q)

R,R

cS
r2

n2
XS(G)

]

=
(n− b)
b(n− 1)

(
r!(n− r − 1)!

(n− 2)!

r

n

)2 [ r∑
q=0

∑
S∈S(q)

R,R

cSXS(G)
]

(C.62)
=

(
r!(n− r − 1)!

b(n− 2)!

r

n

)2

XR(G)XR(G)

=
(n− b)
b(n− 1)

(
r(n− 1)

(n− r)

)2(
n

r

)−2

XR(G)XR(G) =
(n− b)
b(n− 1)

(
r(n− 1)

(n− r)
UR(G)

)2
n, b−→ 0.

Therefore, lim
b,n→∞

var∗
[∑

1⩽i⩽b g1,R (V1)
]

= lim
b,n→∞

I−II = 0, which gives (C.83).

Next we continue to prove part (b) based on the results in part (a).

(b).i We now show (C.84), which is an trivial extension of (C.80). Because UR(G∗
b)+

UR′(G∗
b) is a symmetric finite population statistic, lemma (C.111) implies that

h1,R,R′ (V1) = E∗

[
UR(G∗

b) + UR′(G∗
b)− E∗

[
UR(G∗

b) + UR′(G∗
b)
]
| V1

]
,

g1,R,R′ (V1) =
n− 1

n− b
h1,R,R′ (V1) .
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By the linearity of conditional expectation, we have

g1,R,R′(V1)
(C.113)

=
n− 1

n− b
h1,R,R′ (V1)

=
n− 1

n− b

(
E∗

{
UR(G∗

b) + UR′(G∗
b)− E∗

[
UR(G∗

b) + UR′(G∗
b)
]
| V1

})
=
n− 1

n− b

(
E∗

{
UR(G∗

b)− E∗
[
UR(G∗

b)
]
| V1

}
+ E∗

{
UR′(G∗

b)− E∗
[
UR′(G∗

b)
]
| V1

})
(C.113)

=
n− 1

n− b
h1,R(V1) +

n− 1

n− b
h1,R′(V1)

(C.113)
= g1,R(V1) + g1,R′(V1).

(b).ii We now derive (C.85) based on (C.82) as follows.

var∗

[ ∑
1⩽i⩽b

g1,R,R′(Vi)
]

= var∗

[ ∑
1⩽i⩽b

g1,R(Vi) +
∑
1⩽i⩽b

g1,R′(Vi)
]

=var∗

[ ∑
1⩽i⩽b

g1,R(Vi)
]

+ var∗

[ ∑
1⩽i⩽b

g1,R′(Vi)
]

+ 2cov∗

[ ∑
1⩽i⩽b

g1,R(Vi),
∑
1⩽i⩽b

g1,R′(Vi)
]

(C.82)
=

b(n− b)
n− 1

{
var∗

[
g1,R(V1)

]
+ var∗

[
g1,R′(V1)

]}
+ 2cov∗

[ ∑
1⩽i⩽b

g1,R(Vi),
∑
1⩽i⩽b

g1,R′(Vi)
]

(C.123)
=

b(n− b)
n− 1

{
var∗

[
g1,R(V1)

]
+ var∗

[
g1,R′(V1)

]
+ 2cov∗

[
g1,R(V1), g1,R′(V1)

]}
=
b(n− b)
(n− 1)

var∗

[
g1,R,R′ (V1)

]
.

Our result is consistent with Lemma 1 of Bloznelis and Götze (2001) which

focusing on the variance of general finite population U-statistic.
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(b).iii Now we turn to prove (C.86). First, we have

var∗
∑
1⩽i⩽b

g1,R,R′ (Vi)
(C.82)
=

b(n− b)
(n− 1)

var∗

[
g1,R,R′ (V1)

]
=
b(n− b)
(n− 1)

var∗

[
g1,R(V1)

]
+
b(n− b)
(n− 1)

var∗

[
g1,R′(V1)

]
+

2b(n− b)
(n− 1)

cov∗

[
g1,R(V1), g1,R′(V1)

]
(C.82)

= var∗
∑
1⩽i⩽b

g1,R (Vi) + var∗
∑
1⩽i⩽b

g1,R′ (Vi)

+
2b(n− b)
(n− 1)

cov∗

[
g1,R(V1), g1,R′(V1)

]
=I + II + III.

Because I and II are studied before when dealing with (C.83), we only need

to focus on part III.

III =cov∗

[
g1,R(V1), g1,R′(V1)

]
= covV1∗

[
g1,R(V1), g1,R′(V1)

]
=
r!(n− r − 1)!

b(n− 2)!

r′!(n− r′ − 1)!

b(n− 2)!
cov
[ ∑
G∈S(GV1∗

r )

XR(G),
∑

G∈S(GV1∗
r′ )

XR′(G)
]

(C.119)
=

r!(n− r − 1)!

b(n− 2)!

r′!(n− r′ − 1)!

b(n− 2)!

min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cS
nq − rr′

n2
XS(G)

=
r!(n− r − 1)!

b(n− 2)!

r′!(n− r′ − 1)!

b(n− 2)!

{[min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cS
q

n
XS(G)

]
− rr′

n2
XR(G)XR′(G)

}

=

min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cS
r!(n− r − 1)!

b(n− 2)!

r′!(n− r′ − 1)!

b(n− 2)!

q

n
XS(G)

− rr′(n− 1)(n− 1)

b2(n− r)(n− r′)
UR(G)UR′(G)
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As UR(G)UR′(G) < 1, we have

lim
b,n→∞

rr′(n− 1)(n− 1)

b2(n− r)(n− r′)
UR(G)UR′(G) = 0.

On the other hand,

min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cS
r!(n− r − 1)!

b(n− 2)!

r′!(n− r′ − 1)!

b(n− 2)!

q

n
XS(G)

=

min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cS
r!(n− r − 1)!

b(n− 2)!

r′!(n− r′ − 1)!

b(n− 2)!

q

n

(
n

r + r′ − q

)
US(G)

=

min{r,r′}∑
q=1

∑
S∈S(q)

R,R′

cS
r!(n− r − 1)!

b(n− 2)!

r′!(n− r′ − 1)!

b(n− 2)!

q

n

n!

(r + r′ − q)!(n− r − r′ + q)!
US(G)

=

min{r,r′}∑
q=1

∑
S∈S(q)

R,R′

cS
qr!r′!

b2(r + r′ − q)!
(n− 1)(n− r′ − 1) · · · (n− r′ − r + q + 1)

(n− 2)(n− 3) · · · (n− r)
US(G)

Notice that (n− 1)(n− r′− 1) · · · (n− r′− r+ q+ 1)/(n− 2)(n− 3) · · · (n− r)

has r − q items in the numerator and r − 1 items in the denominator, and

US(G) ⩽ 1, we have

min{r,r′}∑
q=0

∑
S∈S(q)

RR′

cS
r!(n− r − 1)!

b(n− 2)!

r′!(n− r′ − 1)!

b(n− 2)!

q

n
XS(G)

n → ∞→
∑

S∈S(1)

RR′

cS
r!r′!

b2(r + r′ − 1)!
US(G)

b → ∞→ 0.
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Consequently, we have lim
b,n→∞

III = 0. Therefore,

lim
b,n→∞

var∗

[ ∑
1⩽i⩽b

g1,R,R′ (Vi)
]

= lim
b,n→∞

I + II + III
(C.83)

= lim
b,n→∞

III = 0,

which gives (C.86).

C.5.2 Proof of Lemma 48

Proof. To begin with, we have

covV1∗

[ ∑
G∈S(GV1∗

r )

XR(G),
∑

G∈S(GV1∗
r′ )

XR′(G)
]

(C.72)
= covV1∗

[∣∣{S : S ⊂ G,V1 ∈ V (S), S ∼= R}
∣∣, ∣∣{S : S ⊂ G,V1 ∈ V (S), S ∼= R′}

∣∣]
(C.115)

= covV1∗

[
XR (G)−XR (G \ V1) , XR′ (G)−XR′ (G \ V1)

]
=covV1∗

[
XR (G \ V1) , XR′ (G \ V1)

]
=EV1∗

[
XR (G \ V1)XR′ (G \ V1)

]
− EV1∗

[
XR (G \ V1)

]
E
[
XR′ (G \ V1)

]
=I− II.
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For part I, we have

EV1∗

[
XR (G \ V1)XR′ (G \ V1)

]
=

1

n

n∑
i=1

[
XR (G \ vi)XR′ (G \ vi)

]
(C.62)

=
1

n

n∑
i=1

[ ∑
S∈SR,R′

cSXS (G \ vi)
]

=
1

n

∑
S∈SR,R′

cS

n∑
i=1

XS (G \ vi)

=
1

n

∑
S∈SR,R′

cS

n∑
i=1

[
XS(G)−

∣∣{H : H ⊂ G, vi ∈ V (H), H ∼= S}
∣∣]

=
1

n

∑
S∈SR,R′

cS

n∑
i=1

XS(G)− 1

n

∑
S∈HR,R′

cS

n∑
i=1

∣∣{H : H ⊂ G, vi ∈ V (H), H ∼= S}
∣∣

(C.74)
=

∑
S∈SR,R′

cSXS(G)−
∑

S∈SR,R′

cS
s

n
XS(G).

For part II, we have

EV1∗

[
XR (G \ V1)

]
EV1∗

[
XR′ (G \ V1)

]
=

1

n

n∑
i=1

XR (G \ vi)
1

n

n∑
i=1

XR′ (G \ vi)

(C.115)
=

1

n

[ n∑
i=1

(
XR (G)−

∣∣∣{S : S ⊂ G, vi ∈ V (S), S ∼= R}
∣∣∣) ]·

1

n

[ n∑
i=1

(
XR′ (G)−

∣∣∣{S : S ⊂ G, vi ∈ V (S), S ∼= R′}
∣∣∣) ]

(C.74)
=

1

n

[
nXR (G)− rXR (G)

] 1

n

[
nXR′ (G)− r′XR′ (G)

]
=

(n− r)
n

(n− r′)
n

XR (G)XR′ (G) =

(
1− r + r′

n
+
rr′

n2

)
XR (G)XR′ (G)

(C.62)
=

(
1− r + r′

n
+
rr′

n2

) ∑
S∈SR,R′

cSXS(G).
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Thus,

covV1∗

[ ∑
G∈S(GV1∗

r )

XR(G),
∑

G∈S(GV1∗
r′ )

XR′(G)
]

= EV1∗

[
XR (G \ V1)XR′ (G \ V1)

]
− EV1∗

[
XR (G \ V1)

]
EV1∗

[
XR′ (G \ V1)

]
(C.62)

=
∑

S∈SR,R′

cSXS(G)−
∑

S∈SR,R′

cS
s

n
XS(G)−

(
1− r + r′

n
+
rr′

n2

) ∑
S∈SR,R′

cSXS(G)

=
∑

S∈SR,R′

(
r + r′ − s

n
− rr′

n2

)
cSXS(G) =

min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cS
nq − rr′

n2
XS(G).
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C.6 Proofs for Results in Section C.1

C.6.1 Proof of Theorem 44

We start by introducing the setup of finite population asymptotic described in

Bloznelis and Götze (2001): Suppose that there exist a sequence of finite populations

{V(k)}, where V(k) = {v1 · · · vnk
} with nk → ∞ as k → ∞. Consequently, {Tk}

is a sequence of finite population U-statistics, where Tk = tk(V1, · · · ,Vbk) is based

on samples {V1, · · · ,Vbk} drawn without replacement from V(k), with bk → ∞ as

k →∞.

We next present some critical auxiliary lemmas for the proof. Lemma 49, 50 and

51 are the existed results. The details of Lemma 52 and 53 are deferred to Sections

C.2 and C.2, respectively.

Lemma 49. (Proposition 3 in Bloznelis and Götze (2001)) The Hoeffding’s decom-

position of Tk is

Tk = E∗[Tk] +
∑

1⩽i⩽bk

T1,k(Vi) + ∆(Tk),

where
∑

1⩽i⩽bk

T1,k(Vi) is the linear term, and ∆(Tk) is the remainder. Suppose that

1) E∗∆
2(Tk) = o(1).

2) There exist constants c1, c2 > 0 such that 0 < c1 ⩽ var∗(Tk) ⩽ c2 <∞,

3) For every ϵ > 0, lim
k→∞

bkE∗[T
2
1,k (V1)⊮{T 2

1,k(V1)>ϵ}] = 0.

Then (Tk −E∗Tk)/(var∗(Tk)) is asymptotically standard normal. Note that the sub-

script ∗ is not used in Bloznelis and Götze (2001), and we add it here to distinguish

the sourse of randomness.
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Lemma 50. For a general finite population U-statistic T , the Hoeffding’s decompo-

sition represents T as

T =E∗T +
∑
1⩽i⩽b

g1 (Vi) +
∑

1⩽i<j⩽b

g2 (Vi,Vj) + · · ·

=E∗T + S1 + S2 + S3 + · · · .

(C.109)

Bloznelis and Götze (2002) demonstrated that the Hoeffding’s decomposition of a

finite population U-statistic is orthogonal in ℓ2, leading to the following property:

E∗[SaSb] = 0, if a ̸= b. (C.124)

Lemma 51 (Theorem 1 of Bickel et al. (2011)). Let
∫∫

w2(u, v)dudv <∞.

a) If (n− 1)ρn →∞,

ρ̂Gn

ρn
→ 1 in probability,

√
n
( ρ̂Gn

ρn
− 1
)
→N(0, σ2) in distribution,

(C.125)

for some σ2 > 0.

b) For any motif R, assume that
∫∫

w2r(u, v)dudv < ∞, also ρn = ω(n−1) if R

is acyclic and ρn = ω(n−2/r) otherwise. Then

ρ̂−r
Gn
UR(Gn)→ ρ−r

n E[UR(Gn)] in probability

√
n
[
ρ̂−r
Gn
UR(Gn)− ρ−r

n E[UR(Gn)]
]
→N

(
0, σ2

R

)
in distribution,

(C.126)

where σ2
R is defined in Assumption 3. In addition, Proposition 2 in Green and
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Shalizi (2022) implies that

√
n
[
ρ−r
n UR(Gn)− ρ−r

n E[UR(Gn)]
]
→N

(
0, σ2

R

)
in distribution. (C.127)

c) More generally, for m motifs R1, · · · , Rm with sizes max{r1, · · · , rm} ⩽ r,

√
n
{[
ρ̂−r1
Gn
UR1(Gn), · · · , ρ̂−rm

Gn
URm(Gn)

]
−
[
ρ−r1
n E[UR1(Gn)], · · · , ρ−rm

n E[URm(Gn)]
]}

→ N
(
0,Σ(R)

)
in distribution,

(C.128)

where Σ(R) depends on R1, · · · , Rm and (n− 1)ρn.

Lemma 52. Let R and R′ be two motifs with max{r, r′} ≤ r1 and max{r, r′} ≤ r1.

Suppose that Assumption 2 holds after replacing r by r1 and r by r1, and Assumption

1 holds. Then

pr
{

lim
b→∞

ρ−(r+r′)
n cov∗

[√
bUR(G∗

b),
√
bUR′(G∗

b)
]

=
(
1− c2

)
lim
b→∞

ρ
−(r+r′)
b cov

[√
bUR(Gb),

√
bUR′(Gb)

]}
= 1.

Lemma 53. For any motif R, under Assumptions 2,

pr

{
lim
n→∞

ρ−r
n UR(Gn) =

r!

|Aut(R)|
Pw(R)

}
= 1. (C.129)

Now we are in the position to show Theorem 44. For simplicity, let k = nk = n

and bk = bn.

of Theorem 44. We start with part (a), and will prove the results one by one. For

simplicity, we write G = G(n), b = bn.

(a).i Since UR(G∗
b) is a finite population U-statistic,

√
bρ−r

n UR(G∗
b) is also a finite
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population U-statistic. Thus, (C.87) can be obtained as

√
bρ−r

n UR(G∗
b)

(C.79)
=
√
bρ−r

n

{
E∗[UR(G∗

b)] +
∑
1⩽i⩽b

g1,R (Vi) +
∑

1⩽i<j⩽b

g2,R (Vi,Vj) + · · ·
}

=
√
bρ−r

n

{
E∗[UR(G∗

b)] +
∑
1⩽i⩽b

g1,R (Vi)
}

+ ∆[
√
bρ−r

n UR(G∗
b)]

=E∗[
√
bρ−r

n UR(G∗
b)] +

∑
1⩽i⩽b

√
bρ−r

n g1,R (Vi) + ∆[
√
bρ−r

n UR(G∗
b)]

(C.75)
=
√
bρ−r

n UR(G) +
∑
1⩽i⩽b

√
bρ−r

n g1,R (Vi) + ∆[
√
bρ−r

n UR(G∗
b)].

(C.130)

(a).ii We now prove (C.88), which bound the accuracy of approximation of the linear

part. To begin with, we have

E∗

({
∆[
√
bρ−r

n UR(G∗
b)]
}{ ∑

1⩽i⩽b

√
bρ−r

n g1,R (Vi)
})

(C.124)
= 0. (C.131)
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Consequently,

E∗

[
∆2[
√
bρ−r

n UR(G∗
b)]
]

(C.87)
= E∗

[√
bρ−r

n UR(G∗
b)− E∗[

√
bρ−r

n UR(G∗
b)]−

∑
1⩽i⩽b

√
bρ−r

n g1,R (Vi)
]2

=E∗

[√
bρ−r

n UR(G∗
b)− E∗[

√
bρ−r

n UR(G∗
b)]
]2

+ E∗

[ ∑
1⩽i⩽b

√
bρ−r

n g1,R (Vi)
]2

− 2E∗

[(√
bρ−r

n UR(G∗
b)− E∗[

√
bρ−r

n UR(G∗
b)]
)( ∑

1⩽i⩽b

√
bρ−r

n g1,R (Vi)
)]

(C.87)
= var∗

[√
bρ−r

n UR(G∗
b)
]

+ E∗

[ ∑
1⩽i⩽b

√
bρ−r

n g1,R (Vi)
]2

− 2E∗

[(
∆[
√
bρ−r

n UR(G∗
b)] +

∑
1⩽i⩽b

√
bρ−r

n g1,R (Vi)
)( ∑

1⩽i⩽b

√
bρ−r

n g1,R (Vi)
)]

(C.131)
= var∗

[√
bρ−r

n UR(G∗
b)
]
− E∗

[ ∑
1⩽i⩽b

√
bρ−r

n g1,R (Vi)
]2

(C.117)
= var∗

[√
bρ−r

n UR(G∗
b)
]
− var∗

[ ∑
1⩽i⩽b

√
bρ−r

n g1,R (Vi)
]

= I− II.

(C.132)

Part I is the variance of the network moment. We study the covariance here
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as it is helpful for the analysis later.

cov∗

[√
bρ−r

n UR(G∗
b),
√
bρ−r′

n UR′(G∗
b)
]

= bρ−(r+r′)
n cov∗

[
UR(G∗

b), UR′(G∗
b)
]

(C.76)
= bρ−(r+r′)

n

{(b
r

)−1(
b

r′

)−1 min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cS

(
b

s

)
US(G)− UR(G)UR′(G)

}

=bρ−(r+r′)
n

{(b
r

)−1(
b

r′

)−1 min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cS

(
b

s

)
US(G)−

(
n

r

)−1(
n

r′

)−1

XR(G)XR′(G)
}

(C.62)
= bρ−(r+r′)

n

{(b
r

)−1(
b

r′

)−1 min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cS

(
b

s

)
US(G)

−
(
n

r

)−1(
n

r′

)−1 min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cS

(
n

s

)
US(G)

}

=

min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cSr!r
′!

s!ρr+r′
n

((b− r)!(b− r′)!
(b− 1)!(b− s)!

− b(n− r)!(n− r′)!
n!(n− s)!

)
US(G)

=

min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cSr!r
′!

s!ρr+r′
n

((b− r)!(b− r′)!n!(n− s)!− b!(b− s)!(n− r)!(n− r′)!]
(b− 1)!(b− s)!n!(n− s)!

)
US(G).

(C.133)

As a special case, we have

I =var∗

[√
bρ−r

n UR(G∗
b)
]

=
r∑

q=0

∑
S∈S(q)

R,R

cSr!r!

s!ρ2rn

((b− r)!(b− r)!n!(n− s)!− b!(b− s)!(n− r)!(n− r)!]
(b− 1)!(b− s)!n!(n− s)!

)
US(G).

(C.134)

For part II, based on Proposition 43, we have

var∗

[√
bρ−r

n

∑
g1,R (Vi)

]
= bρ−2r

n var∗

[∑
g1,R (Vi)

]
(C.82)

= ρ−2r
n b

b(n− b)
(n− 1)

var∗

[
g1,R (V1)

]
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(C.81)
= ρ−2r

n

b2(n− b)
(n− 1)

[r!(n− r − 1)!

b(n− 2)!

]2 r∑
q=0

∑
S∈S(q)

R,R

cS
nq − r2

n2
XS(G)

=ρ−2r
n

r∑
q=0

∑
S∈S(q)

R,R

cS
b2(n− b)
(n− 1)

r!(n− r − 1)!r!(n− r − 1)!

b2(n− 2)!(n− 2)!

(nq − r2)
n2

n!

(2r − q)!(n− 2r + q)!
US(G)

=ρ−2r
n

r∑
q=0

∑
S∈S(q)

R,R

cSr!r!

(2r − q)!

[n− b
n− 1

n(n− 1)

n2

(n− r − 1) · · · (n− 2r + q + 1)

(n− 2) · · · (n− r)
(nq − r2)

]
US(G)

=ρ−2r
n

r∑
q=0

∑
S∈S(q)

R,R

cSr!r!

(2r − q)!

[(n− b)(n− r − 1) · · · (n− 2r + q + 1)(nq − r2)
n(n− 2) · · · (n− r)

]
US(G)

=ρ−2r
n

r∑
q=0

∑
S∈S(q)

R,R

cSr!r!

s!

[(n− b)(n− r − 1) · · · (n− s+ 1)(nq − r2)
n(n− 2) · · · (n− r)

]
US(G).

Therefore, by combining part I and part II, we have

E∗
{

∆2[
√
bρ−r

n UR(G∗
b)]
} (C.132)

= I− II =
r∑

q=0

∑
S∈S(q)

R,R

aSyn,Szn,S, (C.135)

where

aS =
cSr!r!

s
,

yn,S =
[(b− r)!(b− r)!n!(n− s)!− b!(b− s)!(n− r)!(n− r)!]

(b− 1)!(b− s)!n!(n− s)!

− (n− b)(n− r − 1) · · · (n− s+ 1)(nq − r2)
n(n− 2) · · · (n− r)

]
,

zn,S = ρ−2r
n US(G).

(C.136)

As S is given, as is a fixed quantity. Now we focus on the limiting behavior of

yn,Szn,S under different number of merged vertices q.

• When q = 0, we have s = 2r and s = 2r. We start with the first part of
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yn,S.

(b− r)!(b− r)!n!(n− s)!− b!(b− s)!(n− r)!(n− r)!
(b− 1)!(b− s)!n!(n− s)!

=
[n · · · (n− r + 1)(b− r) · · · (b− 2r + 1)]− [b · · · (b− r + 1)(n− r) · · · (n− 2r + 1)]

(b− 1) · · · (b− r + 1)n · · · (n− r + 1)

=
IV − V

VI
.

Now we study each component as follows:

IV =brnr − (r + r + 1 + · · · r + r − 1)br−1nr − [1 + 2 + · · ·+ (r − 1)]brnr−1

+O(br−2nr) +O(brnr−2) +O(br−1nr−1) + o(br−1nr−1)

=brnr − (r + 2r − 1)r

2
br−1nr − (r − 1)r

2
brnr−1

+O(br−2nr) +O(brnr−2) +O(br−1nr−1) + o(br−1nr−1).

V =brnr − (r + r + 1 + · · · r + r − 1)nr−1br − [1 + 2 + · · ·+ (r − 1)]nrbr−1

+O(br−2nr) +O(brnr−2) +O(br−1nr−1) + o(br−1nr−1)

=brnr − (r + 2r − 1)r

2
nr−1br − (r − 1)r

2
nrbr−1

+O(br−2nr) +O(brnr−2) +O(br−1nr−1) + o(br−1nr−1).
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Consequently,

IV − V =brnr − (r + 2r − 1)r

2
br−1nr − (r − 1)r

2
brnr−1

+O(br−2nr) +O(brnr−2) +O(br−1nr−1)

−
[
brnr − (r + 2r − 1)r

2
nr−1br − (r − 1)r

2
nrbr−1

+O(br−2nr) +O(brnr−2) +O(br−1nr−1)
]

=
−(r + 2r − 1)r

2
nr−1br−1(n− b) +

(r − 1)r

2
nr−1br−1(n− b)

+O(br−2nr) +O(nr−2br) +O(br−1nr−1)

=(−r2)nr−1br−1(n− b) +O(br−2nr) +O(nr−2br) +O(br−1nr−1).

Thus,

VI =br−1nr + o(br−1nr).

IV − V

VI
=(−r2)n− b

n
+ o(1).

(C.137)

For the second part of yn,S, we have

[(n− b)(n− r − 1) · · · (n− s+ 1)(nq − r2)
n(n− 2) · · · (n− r)

]
=
[(n− b)(n− r − 1)(n− r − 2) · · · (n− 2r + 1)(0− r2)

n(n− 2)(n− 3) · · · (n− r)

]
=
[
(1− b

n
)(1− r + 1

n− 2
)(1− r + 1

n− 3
) · · · (1− r + 1

n− r
)(−r2)

]
=− r2

[n− b
n

+ o(1)
]
.

Therefore, we have

yn,S = (−r2)n− b
n

+ o(1)− (−r2)n− b
n

+ o(1) = o(1).

The difficulty in studying zn,S is that we have no information for {G(n)}.
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To tackle this, we assume that G ∼ G⋉. Lemma 53 implies that under

Assumption 2,

pr
{

lim
n→∞

ρ−s
n US(Gn) =

s!

|Aut(S)|
Pw(S)

}
= 1.

Thus, we assert that yn,Szn,S → 0 with probability one because yn,S =

o(1) and zn,S is a realization of ρ−s
n US(Gn).

• When q = 1, we have s = 2r and s = 2r − 1. As before, we study the

first part of yn,S.

[(b− r)!(b− r)!n!(n− s)!− b!(b− s)!(n− r)!(n− r)!]
(b− 1)!(b− s)!n!(n− s)!

=
[(b− r)!(b− r)!n!(n− 2r + 1)!− b!(b− 2r + 1)!(n− r)!(n− r)!]

(b− 1)!(b− 2r + 1)!n!(n− 2r + 1)!
= 1− b

n
+ o(1).

For the second part of yn,S, we have

[(n− b)(n− r − 1) · · · (n− s+ 1)(nq − r2)
n(n− 2) · · · (n− r)

]
=
[(n− b)(n− r − 1)(n− r − 2) · · · (n− 2r + 2)(n− r2)

n(n− 2)(n− 3) · · · (n− r)

]
=1− b

n
+ o(1).

Therefore, when q = 1, we have yn,S = o(1). Thus, we also have

yn,Szn,S → 0 with probability one.

• When q > 1, the first part of yn,S is

[(b− r)!(b− r)!n!(n− s)!− b!(b− s)!(n− r)!(n− r)!]
(b− 1)!(b− s)!n!(n− s)!

= O
[ 1

b(q−1)

]
.
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The second part of yn,S is

(n− b)(n− r − 1) · · · (n− s+ 1)(nq − r2)
n(n− 2) · · · (n− r)

=
(n− b)(n− r − 1)(n− r − 2) · · · (n− 2r + q + 1)(nq − r2)

n(n− 2)(n− 3) · · · (n− r)

=O
[(n− b)

nq

]
.

Therefore, yn,s = o(1). We have yn,Szn,S → 0 for every q ≥ 2, .

Finally, because r is a constant and SR,R is a fixed set given R. For any

random network sequence {G(n)}, with probability one,

lim
n→∞

E∗
{

∆2[
√
bρ−r

n UR(G∗
b)]
}

= lim
n→∞

r∑
q=0

∑
S∈S(q)

R,R

aSyn,szn,s = 0.

(a).iii Now we want to show (C.89), which is related to non-degeneration, and is

termed as the non-lattice assumption in Zhang and Xia (2022). From lemma

52, under Assumptions 2 and 1,

pr
{

lim
b→∞

ρ−2r
n var∗

[√
bUR(G∗

b)
]

=
(
1− c2

)
lim
b→∞

ρ−2r
b var

[√
bUR(Gb)

]}
= 1.

Since c2 < 1 is a constant, (C.89) holds by Assumption 3.

(a).iv Next, we want to show (C.90), which is a Lindeberg-Feller typed condition

(Bloznelis and Götze, 2001). To verify this, We want to show that

bρ−2r
n g21,R(V1) = o(1).
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Let’s begin by considering the following expression:

bρ−2r
n g21,R(V1)

(C.80)
=

ρ−2r
n

b

{
r(n− 1)

(n− r)

(
n− 1

r − 1

)−1 ∑
G∈S(GV1∗

r )

XR(G)− (n− 1)r

(n− r)
UR(G)

}2

.

(C.138)

Recall that Kr denotes the complete graph of r vertices. Clearly, for any

G ∈ S(GV1∗
r ),

XR(G) ⩽ XR(Kr).

Equation (2.7) in Bhattacharya et al. (2022) shows thatXR(Kr) = r!/|Aut(R)|.

Therefore,

r!(n− r − 1)!

(n− 2)!

∑
G∈S(GV1∗

r )

XR(G) =
r(n− r)
(n− 1)

(
n− 1

r − 1

)−1 ∑
G∈S(GV1∗

r )

XR(G)

⩽
r(n− r)
(n− 1)

(
n− 1

r − 1

)−1 ∑
G∈S(GV1∗

r )

(
r!

|Aut(R)|

)
⊮{R⊂G}

=
r(n− r)
(n− 1)

(
r!

|Aut(R)|

)(
n− 1

r − 1

)−1 ∑
G∈S(GV1∗

r )

⊮{R⊂G} ⩽
r(n− r)
(n− 1)

(
r!

|Aut(R)|

)
.

(C.139)

By (C.138),

bρ−2r
n g21,R(V1)

(C.138)

⩽
ρ−2r
n

b

{[r(n− 1)

(n− r)

(
n− 1

r − 1

)−1 ∑
G∈S(GV1∗

r )

XR(G)
]2

+

[
(n− 1)r

(n− r)
UR(G)

]2}
(C.139)

⩽
ρ−2r
n

b

{[r(n− r)
(n− 1)

(
r!

|Aut(R)|

)]2
+

[
(n− 1)r

(n− r)
UR(G)

]2}
.

Given that both r and|Aut(R)| are constants, and considering UR(G) ⩽ 1, it

follows that if ρ−2r
n /b→ 0 , then for any given ϵ > 0, there exists a K > 0 such

that when k > K,

⊮{bρ−2r
n g21,R(V1)>ϵ} = 0. (C.140)
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Consequently, under these conditions, it can be deduced that

lim
n→∞

bE∗
[
bρ−2r

n g21,R(V1)⊮{bρ−2r
n g21,R(V1)>ϵ}

]
= 0.

(a).v Finally, we arrive at (C.91). To prove this, we first recall (42), which im-

plies E∗[UR(G∗
b)] = UR(G). In addition, since (C.88), (C.89), and (C.90) are

satisfied, lemma 49 implies that

√
bn
[
ρ−r
n UR(G∗

bn
)− ρ−r

n UR(G(n))
]

var∗(
√
bnρ−r

n UR(G∗
bn

))
,

is asymptotically standard normal.

Now we continue to prove part (b). Let R1, · · · , Rm be m motifs. Consider the

following linear combination

Θ
(a1,··· ,am)
R1,...,Rm

= a1
√
bρ−r1

n UR1(G∗
b) + · · ·+ am

√
bρ−rm

n URm(G∗
b),

where a1, · · · , am are constants. For simplicity, we write Θ = Θ
(a1,··· ,am)
R1,...,Rm

. The

statistic Θ is a symmetric finite population statistic with the following Hoeffding’s

decomposition

Θ = E∗(Θ) +
∑
1⩽i⩽b

g1,Θ (Vi) + ∆(Θ).

Now we want to show that every linear combination Θ is asymptotically normal.

Following 49, we need to verify the following conditions.

lim
b→∞

E∗∆
2(Θ) = 0, where ∆(Θ) = Θ− E∗(Θ)−

∑
1⩽i⩽b

g1,Θ (Vi). (C.141)

0 < c1 ⩽ lim
b→∞

var∗(Θ) ⩽ c2 <∞, for some c1, c2 > 0. (C.142)
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For every ϵ > 0 lim
b→∞

bE∗
[
g21,Θ (V1)⊮{g21,Θ(V1)>ϵ}] = 0. (C.143)

(b).i To show (C.141), we first consider a pair of motifs R and R′ associate with

two constants α and β. In this case,

Θ = Θ
(α,β)
R,R′ = α

√
bρ−r

n UR(G∗
b) + β

√
bρ−r′

n UR′(G∗
b). (C.144)

The Hoeffding’s decomposition of Θ
(α,β)
R,R′ can be expressed as follows

Θ
(α,β)
R,R′ = E∗

(
Θ

(α,β)
R,R′

)
+
∑
1⩽i⩽b

g
1,Θ

(α,β)

R,R′
(Vi) +

∑
1⩽i<j⩽b

g
2,Θ

(α,β)

R,R′
(Vi,Vj) + · · · .

(C.145)

The Proposition 43 implies

E∗(Θ
(α,β)
R,R′ ) = α

√
bρ−r

n E∗
[
UR(G∗

b)
]

+ β
√
bρ−r′

n E∗
[
UR′(G∗

b)
]
, (C.146)

and

∑
1⩽i⩽b

g
1,Θ

(α,β)

R,R′
(Vi)

(C.84)
= α

√
bρ−r

n

∑
1⩽i⩽b

g1,R (Vi) + β
√
bρ−r′

n

∑
1⩽i⩽b

g1,R′ (Vi) ,

(C.147)
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where g1,R (Vi) and g1,R′ (Vi) are defined in (C.80). Consequently, we have

∆[Θ
(α,β)
R,R′ ] = Θ

(α,β)
R,R′ − E∗

[
Θ

(α,β)
R,R′

]
−
∑
1⩽i⩽b

g
1,Θ

(α,β)

R,R′
(Vi)

(C.144)
= α

√
bρ−r

n UR(G∗
b) + β

√
bρ−r′

n UR′(G∗
b)− E∗

[
Θ

(α,β)
R,R′

]
−
∑
1⩽i⩽b

g
1,Θ

(α,β)

R,R′
(Vi)

(C.146)
= α

√
bρ−r

n UR(G∗
b) + β

√
bρ−r′

n UR′(G∗
b)

− α
√
bρ−r

n E∗
[
UR(G∗

b)
]
− β
√
bρ−r′

n E∗
[
UR′(G∗

b)
]
−
∑
1⩽i⩽b

g
1,Θ

(α,β)

R,R′
(Vi)

(C.147)
= α

√
bρ−r

n UR(G∗
b) + β

√
bρ−r′

n UR′(G∗
b)

− α
√
bρ−r

n E∗
[
UR(G∗

b)
]
− β
√
bρ−r′

n E∗
[
UR′(G∗

b)
]

− α
√
bρ−r

n

∑
1⩽i⩽b

g1,R (Vi)− β
√
bρ−r′

n

∑
1⩽i⩽b

g1,R′ (Vi)

= α
√
bρ−r

n UR(G∗
b)− α

√
bρ−r

n E∗
[
UR(G∗

b)
]
− α
√
bρ−r

n

∑
1⩽i⩽b

g1,R (Vi)

+ β
√
bρ−r′

n UR′(G∗
b)− β

√
bρ−r′

n E∗
[
UR′(G∗

b)
]
− β
√
bρ−r′

n

∑
1⩽i⩽b

g1,R′ (Vi)

(C.130)
= α∆(

√
bρ−r

n UR(G∗
b)) + β∆(

√
bρ−r′

n UR′(G∗
b)).

(C.148)

Consequently,

E∗

[
∆2(Θ

(α,β)
R,R′ )

] (C.148)

≤ 2E∗

[
α∆(
√
bρ−r

n UR(G∗
b))
]2

+ 2E∗

[
∆(
√
bρ−r′

n UR′(G∗
b))
]2
.

From (C.88), under Assumptions 3 2 and 1, we have

lim
b→∞

E∗

[
∆2(Θ

(α,β)
R,R′ )

]
⩽ lim

b→∞
2E∗

[
α∆(
√
bρ−r

n UR(G∗
b))
]2

+ lim
b→∞

2E∗

[
β∆(
√
bρ−r′

n UR′(G∗
b))
]2

= 0.
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For m motifs, due to the linearity of expectation, we have

E∗
[
Θ
]

= a1E∗
[√
bρ−r1

n UR1(G∗
b)
]

+ · · ·+ amE∗
[√
bρ−rm

n URm(G∗
b)
]
. (C.149)

On the other hand, we have

∑
1⩽i⩽b

g1,Θ (Vi)
(C.147)

= a1
√
bρ−r1

n

∑
1⩽i⩽b

g1,R1 (Vi) + · · ·+ am
√
bρ−rm

n

∑
1⩽i⩽b

g1,Rm (Vi) .

(C.150)

Similar to the derivation of (C.148), we have:

∆(Θ) = a1∆[
√
bρ−r1

n UR1(G∗
b)] + · · · am∆[

√
bρ−rm

n URm(G∗
b)].

Thus, the accuracy of approximation of the linear part could be bounded as:

lim
b→∞

E∗∆
2(Θ) ⩽m

{
a21 lim

b→∞
E∗∆

2[
√
bρ−r1

n UR1(G∗
b)]+

· · ·+ a2m lim
b→∞

E∗∆
2[
√
bρ−rm

n URm(G∗
b)]
}

(C.88)
= 0.

(C.151)

(b).ii Now we prove (C.142). We also first consider a pair of motifs R,R′ as follows.

var∗
[
Θ

(α,β)
R,R′

]
=var∗

[
α
√
bρ−r

n UR(G∗
b) + β

√
bρ−r′

n UR′(G∗
b)
]

=α2var∗
[√
bρ−r

n UR(G∗
b)
]

+ β2var∗
[√
bρ−r′

n UR′(G∗
b)
]

+ 2αβ Cov∗
[√
bρ−r

n UR(G∗
b),
√
bρ−r′

n UR′(G∗
b)
]
.

(C.152)

By lemma 52, under Assumptions 2 and 1,

pr

{
lim
b→∞

var∗
[
Θ

(α,β)
R,R′

]
= (1−c2) lim

b→∞
var
[
α
√
bρ−r

b UR(Gb)+β
√
bρ−r′

b UR′(Gb)
]}

= 1.

(C.153)
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Therefore, for any sequence of networks, condition in (C.142) holds with prob-

ability one if

0 < c1 ⩽ lim
b→∞

var
[
α
√
bρ−r

b UR(Gb) + β
√
bρ−r′

b UR′(Gb)
]
⩽ c2 <∞. (C.154)

Now we define:

σ̃2
R = lim

b→∞
var
[√

bρ−r
b UR(Gb)

]
,

σ̃2
R′ = lim

b→∞
var
[√

bρ−r′

b UR′(Gb)
]
,

σ̃R,R′ = lim
b→∞

cov
[√

bρ−r
b UR(Gb),

√
bρ−r′

b UR′(Gb)
]
,

where σ̃2
R, σ̃2

R′ , and σ̃2
R,R′ are all constants as derived in Proposition 40. Con-

sequently,

lim
b→∞

var
[
α
√
bρ−r

b UR(Gb) + β
√
bρ−r′

b UR′(Gb)
]

= σ̃2
Rα

2 + 2σ̃2
R,R′αβ + σ̃2

R′β2

= β2

[
σ̃2
R

α2

β2
+ 2σ̃R,R′

α

β
+ σ̃2

R′

]
.

Lemma 51 implies that (
√
bρ−r

b (UR(Gb),
√
bρ−r′

b UR′(Gb)) converges in distribu-

tion to a bivariate Gaussian distribution. The properties of the probability

density function of the bivariate Gaussian distribution implies that:

σ̃R,R′

σ̃Rσ̃R′
< 1.

Consequently, β2
[
σ̃2
R

α2

β2 + 2σ̃R,R′
α
β

+ σ̃2
R′

]
has no real root due to σ̃R,R′−σ̃Rσ̃R′ <
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0. This implies that

lim
b→∞

var
[
α
√
bρ−r

b UR(Gb) + β
√
bρ−r′

b UR′(Gb)
]
> 0.

Let

c1 =
1

2
lim
b→∞

var
[
α
√
bρ−r

b UR(Gb) + β
√
bρ−r′

b UR′(Gb)
]
,

then

lim
b→∞

var
[
α
√
bρ−r

b UR(Gb) + β
√
bρ−r′

b UR′(Gb)
]
> c1 > 0.

On the other hand, we set the upper bound c2 = max{4α2σ̃2
R, 4β

2σ̃2
R′} based

on

lim
b→∞

var
[
α
√
bρ−r

b UR(Gb) + β
√
bρ−r′

b UR′(Gb)
]

⩽4 max
{

lim
b→∞

α2var
[√

bρ−r
b UR(Gb)

]
, lim
b→∞

β2var
[√

bρ−r′

b UR′(Gb)
]}

.

Thus, the condition in (C.142) holds.

For m motifs, we first apply Proposition 52 to have

pr

{
lim
b→∞

var∗
[
Θ
]

= lim
b→∞

var
[
a1
√
bρ−r1

b UR1(Gb)+· · ·+am
√
bρ−rm

b URm(Gb)
]}

= 1.

(C.155)

From Lemma 51, we have

(
a1
√
bρ−r1

b UR1(Gb), · · · , am
√
bρ−rm

b URm(Gb)
)

d−→N
(

0,Σ(R)
)
.

Since the covariance matrix Σ(R) of multivariate Gaussian has to be a positive
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definite matrix, let q be a 1×m vector with all elements equal to one, we have:

lim
b→∞

var
[
a1
√
bρ−r1

b UR1(Gb) + · · ·+ am
√
bρ−rm

b URm(Gb)
]

= qΣ(R)q⊤ > 0.

Consequently, the non-lattice condition in Equation (C.142) holds by setting

c1 =
1

2
lim
b→∞

var
[
a1
√
bρ−r1

b UR1(Gb) + · · ·+ am
√
bρ−rm

b URm(Gb)
]
,

c2 = max{ma21σ̃2
R1
, · · · ,ma2mσ̃2

Rm
}.

(b).iii To show (C.143), first considering two motifs R and R′,

g
1,Θ

(α,β)

R,R′
(V1)

(C.150)
= α

√
bρ−r

n g1,R (V1) + β
√
bρ−r′

n g1,R′ (V1) .

Consequently,

lim
b→∞

g2
1,Θ

(α,β)

R,R′
(V1) ⩽ lim

b→∞
α2bρ−2r

n g21,R (V1) + lim
b→∞

β2bρ−2r′

n g21,R′ (V1)

(C.140)
= 0.

(C.156)

Therefore, for any ϵ > 0, there exists a sufficiently large N and a sufficiently

large B, such that when n > N and b > B,

⊮{
g2
1,Θ

(α,β)

R,R′
>ϵ
} = 0.

Consequently,

lim
b→∞

bE∗
[
g2
1,Θ

(α,β)

R,R′
(V1)]⊮{

g2
1,Θ

(α,β)

R,R′
(V1)>ϵ

} = 0. (C.157)
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For m motifs, condition in Equation (C.143) also holds as

lim
b→∞

g21,Θ (V1)
(C.150)

⩽ lim
b→∞

a21bρ
−2r
n g21,R (V1) + · · ·+ lim

b→∞
a2mbρ

−2r′

n g21,R′ (V1)

(C.140)
= 0.

(C.158)

Therefore, Lemma 49 implies that every linear combination:

a1
√
bρ−r1

n UR1(G∗
b) + · · ·+ am

√
bρ−rm

n URm(G∗
b), (C.159)

is asymptotically normal, which implies

√
b
{[
ρ−r1
n UR1(G∗

b), · · · , ρ−rm
n URm(G∗

b)
]
−
[
ρ−r1
n UR1(G), · · · , ρ−rm

n URm(G)
]}

→N
[
0,Σ(∗R)

]
in distribution.

C.6.2 Proof of Lemma 52

Proof. The following result was developed in (C.133).

cov∗
[√
bρ−r

n UR(G∗
b),
√
bρ−r′

n UR′(G∗
b)
]

(C.133)
=

min{r,r′}∑
q=0

∑
S∈S(q)

R,R′

cSr!r
′!

s!ρr+r′
n

[(b− r)!(b− r′)!n!(n− s)!− b!(b− s)!(n− r)!(n− r′)!
(b− 1)!(b− s)!n!(n− s)!

]
US(G).

Notice cS, r!, r′! are fixed quantities. We are now going to study the limiting

behaviors for other quantities under different number of merged vertices q.
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• When q = 0, we have s = r + r′ and s = r + r′. Thus,

(b− r)!(b− r′)!n!(n− s)!− b!(b− s)!(n− r)!(n− r′)!
(b− 1)!(b− s)!n!(n− s)!

=
(b− r)!(b− r′)!n!(n− r − r′)!− b!(b− r − r′)!(n− r)!(n− r′)!

(b− 1)!(b− r − r′)!n!(n− r − r′)!

=
n · · · (n− r + 1)(b− r′) · · · (b− r − r′ + 1)− b(b− 1) · · · (b− r + 1)(n− r′) · · · (n− r − r′ + 1)

(b− 1) · · · (b− r + 1)n(n− 1) · · · (n− r + 1)

=
IV − V

VI
.

Similar to (C.137), Now we study each component as follows:

IV =brnr − (r′ + r′ + 1 + · · · r′ + r − 1)br−1nr − [1 + 2 + · · ·+ (r − 1)]brnr−1

+O(br−2nr) +O(brnr−2) +O(br−1nr−1)

=brnr − (r + 2r′ − 1)r

2
br−1nr − (r − 1)r

2
brnr−1

+O(br−2nr) +O(brnr−2) +O(br−1nr−1).

V =brnr − (r + r + 1 + · · · r + r − 1)nr−1br − [1 + 2 + · · ·+ (r − 1)]nrbr−1

+O(br−2nr) +O(brnr−2) +O(br−1nr−1)

=brnr − (r + 2r′ − 1)r

2
nr−1br − (r − 1)r

2
nrbr−1

+O(br−2nr) +O(brnr−2) +O(br−1nr−1).
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Consequently,

IV − V =brnr − (r + 2r − 1)r

2
br−1nr − (r − 1)r

2
brnr−1

+O(br−2nr) +O(brnr−2) +O(br−1nr−1)

−
[
brnr − (r + 2r′ − 1)r

2
nr−1br − (r − 1)r

2
nrbr−1

+O(br−2nr) +O(brnr−2) +O(br−1nr−1)
]

=
−(r + 2r′ − 1)r

2
nr−1br−1(n− b) +

(r − 1)r

2
nr−1br−1(n− b)

+O(br−2nr) +O(nr−2br) +O(br−1nr−1)

=(−rr′)nr−1br−1(n− b) +O(br−2nr) +O(nr−2br) +O(br−1nr−1).

Thus, we have

IV − V

VI
=(−rr′)n− b

n
+ o(1),

and by Assumption 1,

lim
b→∞

IV − V

VI
=(−rr′)(1− c2). (C.160)

On the other hand, since ρr+r′
n = ρsn ⩽ ρ2r1n , by lemma 53.

lim
b→∞

∑
S∈S(0)

R,R′

cSr!r
′!

s!ρr+r′
n

(IV − V

VI

)
US(G)

(C.137)
= (1− c2) lim

b→∞

∑
S∈S(0)

R,R′

−cSr!r′!rr′

s!
ρ−s
n US(G)

(C.129)
= (1− c2)

∑
S∈S(0)

R,R′

−cSr!r′!rr′

|Aut(S)|
Pw(S).
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• when q = 1, we have s = r + r′ and s = r + r′ − 1. Thus,

(b− r)!(b− r′)!n!(n− s)!− b!(b− s)!(n− r)!(n− r′)!
(b− 1)!(b− s)!n!(n− s)!

=
(b− r)!(b− r′)!n!(n− r − r′ + 1)!− b!(b− r − r′ + 1)!(n− r)!(n− r′)!

(b− 1)!(b− r − r′ + 1)!n!(n− r − r′ + 1)!

=1− b

n
+ o(1).

(C.161)

Since ρr+r′
n = ρsn ⩽ ρ2r1n , by Assumption 1,

lim
b→∞

∑
S∈S(1)

R,R′

cSr!r
′!

s!ρsn

[(b− r)!(b− r′)!n!(n− s)!− b!(b− s)!(n− r)!(n− r′)!
(b− 1)!(b− s)!n!(n− s)!

]
US(G)

(C.161)
= (1− c2) lim

b→∞

∑
S∈S(1)

R,R′

cSr!r
′!

s!ρsn
US(G)

(C.129)
= (1− c2)

∑
S∈S(1)

R,R′

cS
r!r′!

|Aut(S)|
Pw(S).

• when q > 1, we have

[(b− r)!(b− r)!n!(n− s)!− b!(b− s)!(n− r)!(n− r)!]
(b− 1)!(b− s)!n!(n− s)!

= O(
1

b(q−1)
).

In addition, since ρ
(s−r−r′)
n is at most O(ρ

−(q−1)q/2
n ) and ρ

q/2
n b→∞, we have

lim
b→∞

∑
S∈S(q)

R,R′

cSr!r
′!

s!ρr+r′
n

[(b− r)!(b− r′)!n!(n− s)!− b!(b− s)!(n− r)!(n− r′)!
(b− 1)!(b− s)!n!(n− s)!

]
US(G)

= lim
b→∞

∑
S∈S(q)

R,R′

cSr!r
′!

s!ρr+r′−s
n

O(
1

b(q−1)
)ρ−s

n US(G) = lim
b→∞

∑
S∈S(q)

R,R′

cSr!r
′!

s!
O(

1

bρ
q/2
n

)(q−1)ρ−s
n US(G)

(C.129)
= 0.
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Therefore,

pr
{

lim
b→∞

ρ−(r+r′)
n cov∗

[√
bUR(G∗

b),
√
bUR′(G∗

b)
]

=
(
1− c2

)[ ∑
S∈S(1)

R,R′

cS
r!r′!

|Aut(S)|
Pw(S)−

∑
S∈S(0)

R,R′

cSr!r
′!rr′

|Aut(S)|
Pw(S)

]

=
(
1− c2

)
lim
b→∞

ρ
−(r+r′)
b cov

[√
bUR(Gb),

√
bUR′(Gb)

]}
= 1.

In particular,

pr
{

lim
b→∞

var∗
[√
bρ−r

n UR(G∗
b)
]

=
(
1− c2

)
lim
b→∞

var
[√
bρ−r

b UR(Gb)
]}

= 1. (C.162)

C.6.3 Proof of Lemma 53

Proof. Proposition 53 adopts the technique used in Theorem 2.5 of Lovász and

Szegedy (2006) and Theorem 4.4.5 in Zhao (2023). We start by generating a se-

quence of graphs {G(i)}ni=1. The first graph G(1) is only a vertex v1 with latent

position ξ1 ∼ Unif[0, 1], the second graph G(2) contains two vertex v1, v2 with la-

tent positions ξ1 and ξ2 ∼ Unif[0, 1]. The probability of an edge between v1, v2 is

hn(ξ1, ξ2). In this way, {G(i)}ni=1 is generated by incrementally adding one vertex

and the corresponding edges at a time, and previously selected vertices and edges

are not revisited. Furthermore, we have G(i) ∼ Ghn
i .

Let ϕ: V (R)→ V (G) be an injective mapping, and let Aϕ denote the event that
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ϕ is a homomorphism from R to graph G(n). We define the sequence {Ai}ni=1 as

Ai = (n)−1
r

∑
ϕ

pr(Aϕ | G(i)). (C.163)

Based on the definition of Al, we have

An = (n)−1
r

∑
ϕ

pr(Aϕ | G(n)) = t(R,G(n)), (C.164)

A0 = (n)−1
r

∑
ϕ

pr(Aϕ) =

∫
[0,1]r

∏
(vi,vj)∈E(R)

hn (ξi, ξj)
∏

vi∈V (R)

dξi
(C.65)

= Phn(R).

(C.165)

Lovász and Szegedy (2006) showed that {An} is a martingale and |Ai−Ai−1| ⩽

r/n in their Theorem 2.5. Then by invoking Azuma’s inequality, they showed that,

for every δ > 0,

pr
(∣∣t(R,Gn)− Phn(R)

∣∣ > δ
)
⩽ 2 exp

(
−δ2n/2r2

)
.

On the other hand, the Proposition 1 of Amini et al. (2012) implies that

XR(G) = inj(R,G)/|Aut(R)|.

Therefore, we have

ρ−r
n UR(G) = ρ−r

n

(
n

r

)−1

XR(G) = ρ−r
n

(
n

r

)−1
inj(R,G)

|Aut(R)|
= ρ−r

n

r!t(R,G)

|Aut(R)|
. (C.166)
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Consequently, we have

pr
(∣∣ρ−r

n UR(Gn)− ρ−r
n r!

|Aut(R)|
Phn(R)

∣∣ > r!ρ−r
n δ

|Aut(R)|

)
⩽ 2 exp

(
−δ

2n

2r2

)
.

For every 0 < ϵ < 1, let δ = ρrnϵ|Aut(R)|/r!, then by (C.68) we have

pr
(∣∣ρ−r

n UR(Gn)− E[ρ−r
n UR(Gn)]

∣∣ > ϵ
)
⩽ 2 exp

(
−ϵ

2|Aut(R)|2ρ2rn n
2(rr!)2

)
.

When ρnw(u, v) ≤ 1 for all u, v, the quantity ρ−r
n Phn(R) = Pw(R), which is a

constant that does not depend on n. Thus, if there exist some c1 > 1, such that

nρ2rn > c1 log n, then the summation of the following series converge:

∑
n

2 exp

(
−ϵ

2|Aut(R)|2ρ2rn n
2(rr!)2

)
.

By Borel-Cantelli lemma, we have

ρ−r
n UR(Gn)

a.s−→ ρ−r
n r!

|Aut(R)|
Phn(R) =

r!

|Aut(R)
Pw(R).

As a special case, when motif R is an edge, ρ̂G = UR(G). Thus, Lemma 53

implies that with probability one:

lim
n→∞

ρ−r
n ρ̂G =

r!

|Aut(R)|
Pw(R).

Since r = 1, r = 2, |Aut(R)| = 2 (Rodriguez, 2014) and Pw(R) = 1 (Bickel et al.,

2011), with probability one, we have

lim
n→∞

ρ−1
n ρ̂G = 1. (C.167)
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C.7 Proof of of Theorem 9

The following lemma is used for the proof.

Lemma 54 (Durrett (2019)). Let {Xn} be a sequence of random variables with CDF

{FXn}, and let X be another random variable. If Xn
d→ X, and F is a continuous

function, then the following convergence property holds:

sup
t
|FXn(t)− F (t)| → 0.

Lemma 55. Let {Xn} be a sequence of random variables with {FXn} and limn→∞E[X2
n] =

0. That is, {Xn} converge to zero in L2. Let

FY (t) =


0 if t < 0,

1 if t ≥ 0.

Then

sup
t
|FXn(t)− FY (t)| → 0.

of Lemma 55. Since limn→∞E[X2
n] = 0 by Chebyshev’s inequality, for any ϵ > 0,

P (|Xn| ≥ ϵ) ≤ E[X2
n]

ϵ2
→ 0 as n→∞. (C.168)

Consequently,

• For any t ≥ 0, (C.168) directly implies that

lim
n→∞

P (|Xn| ≤ t) = 1
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.

• For any t < 0, let ϵ = −t > 0, then with probability one:

lim
n→∞

P (|Xn| ≥ −t) = 0,

which leads to

lim
n→∞

P (|Xn| ≤ t) = 0.

Consequently,

lim
n→∞

sup
t<0
|FXn(t)| = 0,

lim
n→∞

sup
t≥0
|FXn(t)− 1| = 0,

which implies

lim
n→∞

sup
t
|FXn(t)− FY (t)| = 0.

of Theorem 9.

We first focus on a single motif R, and consider two scenarios: non-degeneration

and degeneration. We want to show that, with probability one:

sup
t∈R

∣∣JR
∗,n,b(t)− JR

b,(1− b
n
)
(t)
∣∣→ 0. (C.169)
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i First, (C.169) can be upper bounded as

sup
t∈R

∣∣JR
∗,n,b(t)− JR

b,(1− b
n
)
(t)
∣∣ = sup

t∈R

∣∣JR
b,(1− b

n
)
(t)− JR

∗,n,b(t)
∣∣

⩽ sup
t∈R

∣∣JR
b,(1− b

n
)
(t)− JR

b,c(t)
∣∣+ sup

t∈R

∣∣JR
b,c(t)− Φ

( t

σc,R

)∣∣
+ sup

t∈R

∣∣Φ( t

σc,R

)
− Φ

( t

σ∗R

)∣∣+ sup
t∈R

∣∣JR
∗,n,b(t)− Φ

( t

σ∗R

)∣∣,
(C.170)

where c = 1− c2, σ2
c,R = cσ2

R with σ2
R = lim

b→∞
var
[√
bρ−r

b UR(Gb)
]
, and

σ2
∗R = lim

b→∞
var∗

[√
bρ−r

n UR(G∗
b)
]
.

Now we are in the position to show that all four components on the right-hand

side of (C.170) go to zero. By Slutsky’s theorem, we have

sup
t∈R

∣∣JR
b,(1− b

n
)
(t)− JR

b,c(t)
∣∣→ 0.

Then Lemma 51 implies that:

√
b
{
ρ̂−r
Gb
UR(Gb)− E

[
ρ−r
b UR(Gb)

]} d−→N(0, σ2
R),

which gives:

√
bc
{
ρ̂−r
Gb
UR(Gb)− E

[
ρ−r
b UR(Gb)

]} d−→N(0, cσ2
R).

Consequently, since σR is fixed and Φ is continuous, Lemma 54 implies that

sup
t∈R

∣∣JR
b,c(t)− Φ

( t

σc,R

)∣∣→ 0.
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For the third term, recall that G ∼ Gn. Lemma 52 implies that σ2
∗R equals to

cσ2
R almost surely. Thus, by using Lemma 54 again, we have

sup
t∈R

∣∣Φ( t

σ∗R

)
− Φ

( t

σc,R

)∣∣→ 0.

Next, since Assumptions 3, 2, 1 are satisfied, then by (C.91), with probability

one:
√
b
[
ρ−r
n UR(G∗

b)− ρ−r
n UR(G)

]
→N(0, σ2

∗R) in distribution.

In addition, (C.167) implies that lim
n→∞

ρ−1
n ρ̂G = 1 with probability one: . Con-

sequently, by Slutsky’s theorem, with probability one:

√
b
[
ρ̂−r
G UR(G∗

b)− ρ̂−r
G UR(G)

]
→N

(
0, σ2

∗R
)

in distribution,

which further implies with probability one:

sup
t∈R

∣∣JR
∗,n,b(t)− Φ

( t

σ∗R

)∣∣→ 0.

Therefore, with probability one:

sup
t∈R

∣∣JR
∗,n,b(t)− JR

b,c(t)
∣∣→ 0.

ii Suppose that σ2
R = 0. Then by definition

√
bc
{
ρ̂−r
Gb
UR(Gb)− E[ρ−r

b UR(Gb)]
}
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converge to zero in L2. Thus, by Lemma 55, we have

sup
t∈R

∣∣JR
b,c(t)− FY (t)

∣∣→ 0.

On the other hand, Lemma 52 implies that σ2
∗R = 0 almost surely. In addition,

(C.75) implies that

E∗ [UR(G∗
b)] = UR(G), (C.171)

Thus, we have
√
bc
{
ρ̂−r
Gb
UR(Gb)− E[ρ−r

b UR(Gb)]
}

converge to zero in L2. Since (C.167) implies that lim
b→∞

ρ−1
b ρ̂Gb

= 1 with prob-

ability one, we have
√
b
[
ρ̂−r
G UR(G∗

b)− ρ̂−r
G UR(G)

]
converge to zero in L2 with probability one. Again by Lemma 55, with prob-

ability one:

sup
t∈R

∣∣JR
∗,n,b(t)− FY (t)

∣∣→ 0.

Therefore, with probability one:

sup
t∈R

∣∣JR
∗,n,b(t)− JR

b,c(t)
∣∣→ 0.

Now we turn to consider m motifs {R1, · · · , Rm}. For simplicity, let [tm] =

{t1, · · · , tm} and [Rm] = {R1, · · · , Rm}. We still consider non-degeneration and

degeneration separately as follows.

i Under Assumption 3, similar as before, we break the Kolmogorov-Smirnov
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distance into three parts:

sup
[tm]∈Rm

∣∣J [Rm]
∗,n,b ([tm])− J [Rm]

b,c ([tm])
∣∣ ⩽ sup

[tm]∈Rm

∣∣J [Rm]
b,c ([tm])− ΦΣc(R)

( t1
σc,R1

, · · · , tm
σc,Rm

)∣∣
+ sup

[tm]∈Rm

∣∣ΦΣc(R)

( t1
σc,R1

, · · · , tm
σc,Rm

)
− ΦΣ(∗R)

( t1
σ∗R1

, · · · , tm
σ∗Rm

)∣∣
+ sup

[tm]∈Rm

∣∣J [Rm]
∗,n,b ([tm])− ΦΣ(∗R)

( t1
σ∗R1

, · · · , tm
σ∗Rm

)∣∣,
where for each i ∈ [m], σ2

c,Ri
= cσ2

Ri
with σ2

Ri
= lim

n→∞
var
[√
nρ−r

n URi
(Gn)

]
, and

σ2
∗Ri

= lim
b→∞

var∗
[√
bρ−r

n URi
(G∗

b)
]
.

As before, we now want to to show that all three components go to zero. By

Lemma 51:

√
b
{[
ρ̂−r1
Gb
UR1(Gb), · · · , ρ̂−rm

Gb
URm(Gb)

]
−
[
ρ−r1
b E[UR1(Gb)], · · · , ρ−rm

b E[URm(Gb)]
]}

→ N[0,Σ(R)] in distribution.

Since c > 0 is a constant, by Slutsky’s theorem:

√
bc
{[
ρ̂−r1
Gb
UR1(Gb), · · · , ρ̂−rm

Gb
URm(Gb)

]
−
[
ρ−r1
b E[UR1(Gb)], · · · , ρ−rm

b E[URm(Gb)]
]}

→ N[0,Σc(R)] in distribution.

Thus, by Lemma 54:

sup
[tm]∈Rm

∣∣J [Rm]
b,c ([tm])− ΦΣc(R)

( t1
σc,R1

, · · · , tm
σc,Rm

)∣∣→ 0. (C.172)

The second term goes to zero because Lemma 52 implies that Σ(∗R) converge

to Σc(R) almost surely.
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Under Assumptions 3, 2, 1, by Theorem 44, for any sequence {G(n)}, with

probability one:

√
b
{[
ρ−r1
n UR1(G∗

b), · · · , ρ−rm
n URm(G∗

b)
]
−
[
ρ−r1
n UR1(G), · · · , ρ−rm

n URm(G)
]}

→N
[
0,Σ(∗R)

]
in distribution,

Since lim
n→∞

ρ−r
n ρ̂G = 1 with probability one,

√
b
{[
ρ̂−r1
G UR1(G∗

b), · · · , ρ̂−rm
G URm(G∗

b)
]
−
[
ρ̂−r1
G UR1(G), · · · , ρ̂−rm

G URm(G)
]}

→N
[
0,Σ(∗R)

]
in distribution with probability one,

which further implies that with probability one:

sup
[tm]∈Rm

∣∣J [Rm]
∗,n,b ([tm])− ΦΣ(∗R)

( t1
σ∗R1

, · · · , tm
σ∗Rm

)∣∣→ 0. (C.173)

Therefore, with probability one:

sup
[tm]∈Rm

∣∣J [Rm]
∗,n,b ([tm])− J [Rm]

b,c ([tm])
∣∣→ 0,

which implies

sup
[tm]∈Rm

∣∣J [Rm]
∗,n,b ([tm])− J [Rm]

b,(1− b
n
)
([tm])

∣∣→ 0,

as c = 1− c2.

ii The proof of degenerate case is an natural extension of the previous result,

replacing the random variables by random vectors, let Y be a zero vector with
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CDF FY and then one can show both

sup
[tm]∈Rm

∣∣J [Rm]
∗,n,b ([tm])− FY ([tm])

∣∣→ 0,

sup
[tm]∈Rm

∣∣J [Rm]
b,c ([tm])− FY ([tm])

∣∣→ 0,

and then the convergence follows directly as before.

C.8 Proof of the empirical consistency

As before, let c = 1 − c2, [tm] = {t1, · · · , tm} and [Rm] = {R1, · · · , Rm}. The

following lemma is used for the proof.

Lemma 56 (Theorem 1 in Lunde and Sarkar (2023)). Suppose that that there exists

a CDF J([tm]), such that for all continuity points of J(·),

|J [Rm]
b,c ([tm])− J([tm])| → 0,

|J [Rm]
∗,n,b ([tm])− J([tm])| → 0.

Then

Ĵ
[Rm]
∗,n,b ([tm])→ J([tm]) in probability.

of Theorem 46. To begin with, let

J([tm]) = ΦΣc(R)

( t1
σc,R1

, · · · , tm
σc,Rm

)
J∗([tm]) = ΦΣ(∗R)

( t1
σ∗R1

, · · · , tm
σ∗Rm

)
.
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Under Assumptions 3, 2, 1, we have

|J [Rm]
b,c ([tm])− J([tm])| (C.172)→ 0,

|J [Rm]
∗,n,b ([tm])− J∗([tm])| (C.173)→ 0.

Moreover, Lemma 52 implies that Σ(∗R) converge to Σc(R) almost surely. Thus,

J∗([tm]) converge to J([tm]) almost surely. Therefore, by Lemma 56, with probability

one (measure on the random network sequence):

Ĵ
[Rm]
∗,n,b ([tm])→ J([tm]) in probability.

Consequently, by Lemma 54:

sup
[tm]∈Rm

∣∣Ĵ [Rm]
∗,n,b ([tm])− J([tm])

∣∣→ 0.

Finally, based on (C.172) and (C.173), we arrived at

sup
[tm]∈Rm

∣∣Ĵ [Rm]
∗,n,b ([tm])− J [Rm]

∗,n,b ([tm])
∣∣ ⩽ sup

[tm]∈Rm

∣∣Ĵ [Rm]
∗,n,b ([tm])− ΦΣc(R)

( t1
σc,R1

, · · · , tm
σc,Rm

)∣∣
+ sup

[tm]∈Rm

∣∣ΦΣc(R)

( t1
σc,R1

, · · · , tm
σc,Rm

)
− ΦΣ(∗R)

( t1
σ∗R1

, · · · , tm
σ∗Rm

)∣∣
+ sup

[tm]∈Rm

∣∣∣J [Rm]
∗,n,b ([tm])− ΦΣ(∗R)

( t1
σ∗R1

, · · · , tm
σ∗Rm

)∣∣→ 0.

C.9 Additional simulation results

C.9.1 Additional simulation results for Section 4.4
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Figure C.6: Empirical approximation errors of the CDFs under b = ⌈2n1/2⌉ and
ρn = 0.25n−0.1.
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Figure C.7: Empirical approximation errors of the CDFs under b = ⌈2n1/2⌉ and
ρn = 0.25n−0.25.
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Figure C.8: Empirical approximation errors of the CDFs under b = ⌈n2/3⌉ and
ρn = 0.25n−0.5.
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