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Abstract 

Flapping propulsion is widely adopted by many natural flyers/swimmers, including 

insects, birds, fishes, and marine mammals. It offers an attractive alternative to 

conventional propulsion methods for future bio-inspired aerial/underwater systems. 

However, due to lack of effective technology of studying the highly complex propulsor 

morphing kinematics and its associated aero/hydrodynamics, achieving biological levels 

of aero/hydro-performance in bio-inspired flapping propulsor design has proven elusive. 

Here, an integrated experimental and computational methodology has been developed to 

systematically study the flapping propulsion system in nature. The goal is to advance the 

fundamental knowledge of biological fluid dynamics in animal flight/swimming, and 

provide guidance for future optimal designs of bio-inspired flapping propulsors. 

The current dissertation consists of two parts, tools development and analysis of 

propulsion systems. In the first part, the integrated methodology is introduced, and the 

corresponding major contributions of the work are: (1) a highly versatile and accurate joint-

based surface reconstruction method is developed to quantify the propulsor flexion and 

body kinematics of animals in free flight/swimming; (2) a spherical-coordinates-based 

singular value decomposition (SSVD) method is developed to perform low dimensional 

morphology analysis of flapping propulsors in nature; (3) an immersed boundary method 

for deformable attaching bodies (IBM-DAB) is developed to  handle direct numerical 

simulations (DNS) in some extreme situations which are commonly exist in nature, 

including solid body with sharp edge and with deformable attaching membrane bodies; (4) 
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a highly efficient gradient-based parallel curve searching optimizer is developed to explore 

design space of flapping propulsors. 

In the second part, the aforementioned integrated approach is applied to study several 

problems. We first investigate the optimal configurations of several morphological 

parameters, which control the dynamic camber and twisting of the propulsors, on 

aerodynamic performance using simplified canonical models. Optimizations of dynamic 

camber formation of 2D pitching-plunging plates and dynamic twisting of 3D pitching-

rolling plates are performed. It is found that the morphological parameters play important 

roles in the plate aerodynamic performance and wake structures. Comparing to completely 

rigid plate, the thrust production and propulsive efficiency of optimized plates can be 

improved up to 29.1% and 43.1%, respectively. The associated flow mechanisms are found 

to be the improved strength and attachment of leading-edge vortex (LEV). 

Next, the integrated approach is used to study the complex morphing propulsor 

kinematics and the associated aero/hydrodynamics of natural flyers/swimmers in relatively 

simple motions, such as hovering and fast swimming. The SSVD analysis of the forewing 

motion of a hovering dragonfly reveals that the complicated wing motion can be 

represented by a low dimensional model contains two dominant SSVD modes, a flapping 

mode and a morphing mode. The low dimensional model contains 92% of the original 

motion, and can recover up to 96% of the aerodynamic performance. Similar analysis is 

performed on the morphing fluke kinematics of a fast swimming orca. The results show 

that two dominant modes, a spanwise morphing mode and a chordwise morphing mode 

can be identified. The low dimensional model consists of these two modes contains 74.3% 

of the original motions, and can fully recover the hydrodynamic performance. In addition, 
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a unique tri-ring vortex structure, which is closely related to the biology of cetaceans, is 

found in the wake of the swimming orca. Parametric studies on the aero/hydrodynamic role 

of those dominant modes reveal that the morphing modes (including the morphing mode 

of the dragonfly wing and the spanwise and chordwise morphing modes of the orca fluke) 

amplitudes and phases are critical control parameters to achieve optimal 

aero/hydrodynamic performance. We further investigate optimal configurations of 

dominant modes on aerodynamic performance for the dragonfly wing. The corresponding 

optimized low dimensional wing models, which can beyond biological levels of 

aerodynamic performance, are obtained. The associated flow mechanisms are found to be 

the improved LEV attachment and the reduced TV strength. 

In the last part of the dissertation, the integrated approach is extended to study the most 

complex propulsion system in nature. The 3D wake structures and aerodynamic 

performance of a freely maneuvering hummingbird is studied in detail. Our simulation 

results show asymmetric wake structure between inner and outer wings of the 

hummingbird. A unique duel-ring vortex structure, which is the source of the wake 

asymmetry, is found in the wake of one of the two wings of the hummingbird. The duel-

ring vortex structure corresponds to larger wing twisting and lower drag production, which 

creates unbalanced aerodynamic forces to help with the maneuver.  

In the future, the extension of this work will be on the SSVD analysis and 

computational optimization of highly complex flapping propulsion systems, such as 

maneuvering birds/insects, burst-and-coast fishes, etc. The methodology and findings of 

this work have the potential to bring new insights into the future design of high-

performance bio-inspired systems. 
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1. Introduction 

1.1. Background and Motivation 

In nature, flying and swimming are unique mechanisms for generating control and 

maneuvering forces, and these forces are primarily generated by flapping wings or fins. 

Flapping propulsion offers an attractive alternative to conventional propulsion methods for 

future bio-inspired aerial/underwater systems. Weis-Fogh and Jensen (1056) [1, 2]  

described flapping propulsion as a complex physical and biological problem, which is so 

complex that it is impossible to understand a single part of the process. One of the reasons 

for this is the essential complexity in unsteady motion of propulsors and the related flow 

mechanisms in a Reynolds number of 10  to 510  [3]. Within this flow regime, lift/thrust 

producing mechanisms are intrinsically unsteady and vortex-dominated. Throughout the 

years, progress in understanding flapping propulsion has been accomplished and a general 

understanding of the unsteady mechanisms has been identified [4-33] such as clap-and-

fling [12, 16, 34-36], leading-edge vortex [7, 37-39], rotational lift [7, 40], and wake 

capture [7, 41], etc. By taking the rigid propulsor assumption, these mechanisms have 

helped explain the fluid phenomena near the propulsor, which are clearly expressed as the 

motion of vortices, as well as the instantaneously local and resultant forces. 

However, most of nature’s creatures that can fly or swim are equipped with flexible or 

deformable propulsors. Among them, birds can twist and bend their wings to change flight 

course or adjust to wind gusts. For example, hummingbirds can actively camber and twist 

their wings during hovering and maneuvering flights [42, 43] (Figure 1-1a). Bats can also 

camber and morph their wings through their independently controlled wing joints, highly 
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deformable bones, and compliant wing membrane [44] (Figure 1-1b). Four-winged flyers, 

dragonflies, also flex their wings during the flights [45] (Figure 1-1c). Bluegill sunfishes 

demonstrate significant dynamic morphing of their pectoral fins during the swimming [46] 

(Figure 1-1d). The morphing is largely caused by fin flexural stiffness, kinematics, and 

fluid-structure interactions. Marine mammals, orcas, show great span and chordwise 

morphing of their flukes during steady swimming [47] (Figure 1-1e and f). These flapping 

propulsors demonstrate not only large three-dimensional deformations, but also elaborate 

three degree-of-freedom (3-DOF) wing kinematics in space [48]. Therefore, understanding 

the aero/hydrodynamic role of propulsor morphing kinematics is critical for the future bio-

inspired propulsor design. 

 

Figure 1-1. Nature’s morphing propulsors/bodies. (a) Hummingbird in maneuvering 

motion; (b) bat cambering its wings in flight; (c) a dragonfly twisting its wings during flight; 

(d) a highly deformed bluegill sunfish pectoral fin; (e) spanwise morphing of an orca’s 

fluke; (f) chordwise morphing of an orca’s fluke. 

(a) (b) (c) 

(d) (e) (f) 
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1.2. Data Acquisition 

More recently, advanced photogrammetry technology has been used to study flapping 

wing flight, which is capable of measuring detailed wing kinematics, as well as 

deformation even in the wings of tiny flyers like insects. Liu and Sun used three 

orthogonally aligned high-speed cameras to study the wing kinematics and aerodynamics 

of hovering droneflies [49]. Walker and colleagues used a four-camera photogrammetric 

system and a combination of manual and semi-automatic tracking of natural features and 

marker points to reconstruct the wing kinematics and surface topographies of free-flying 

hoverflies and tethered locusts [50]. Koehler and colleagues presented a unified 

methodology for the reconstruction and analysis of the deformations and surface 

morphology exhibited by insect wings during free flight [51]. They successfully eliminated 

all rigid wing assumptions during the reconstruction and deformation analysis while 

minimizing the number of tracked points in the output of the photogrammetry system. 

However, the reconstruction based on marker points on the wing is still time-consuming, 

which compromises efficiency, and it has several hard constraints regarding some details 

of the experiments, such as the camera location/orientation, the lens angle of view, marker 

points on the objects, etc. For example, it is usually difficult for us to configure three 

orthogonal cameras outside of the lab, and much of the bio-propulsor locomotion data 

generated by biologists was not taken in the lab. For some large animals, such as dolphin 

and orca, it is not possible for us to use a lens with a small angle of view due to the animal’s 

size and movement. Perspective error can become a big issue in those cases. Moreover, 

placing marker points on the propulsor could prove difficult due to the propulsor’s size or 
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property. A more robust reconstruction method is needed to deal with diverse flapping 

propulsors in nature. 

 

1.3. Effect of Propulsor Morphing Kinematics 

It is widely thought that propulsor morphing would potentially provide new 

aero/hydrodynamic mechanisms of force productions over completely rigid propulsors in 

flight/swimming [52-57]. Several studies have demonstrated that the unsteady 

aerodynamic phenomena of the flapping mechanism are not only sensitive to variations in 

the wing kinematics but also to the wing’s morphing [58, 59]. Results also revealed that a 

dynamically adjustable wing surface may potentially provide new aerodynamic 

mechanisms [60, 61] of force production over fully rigid wings [7, 62] in flapping flight. 

Further research [63, 64] has illustrated that the performance of a rigid flapping wing can 

be improved significantly by adding some level of flexibility to the wing surface. For 

achieving such performance enhancement, both passive and active flow control 

mechanisms have been studied, and some examples are reviewed here.  

In order to understand the effects of chordwise flexibility on the aerodynamics of 

flapping motion, a model with a hinge connecting two rigid components is commonly used 

because of its simplicity and preservation of the flexibility characteristics in the chordwise 

direction [65]. Through this passive deformable model, Eldredge et al. [66] revealed that 

wings with moderate flexibility have better power efficiency compared to the rigid wing in 

hovering flight, nevertheless very flexible wings will degrade the overall aerodynamic 

performance. Using a similar model, Vanella et al. [67] showed that if parameters are 
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chosen appropriately, the chord-wise flexibility can result in an enhancement of up to 28% 

in the lift-to-drag ratio and a 39% increase in the lift-to-power ratio over a rigid plate. Wan 

et al. [68] studied the effect of chord-wise flexibility over a range of hovering kinematic 

parameters using a hinged-plate model. Their results indicated that the maximum lift-to-

drag ratio can be achieved by placing the hinge at the three-quarter chord position from the 

leading edge.   

In addition to passive mechanisms explorations mentioned above, active flow control 

via wing surface morphing has been widely adopted in both fixed-wing and rotary-wing 

aircraft design. These include  articulated flaps and/or slats [69], surface flow control 

devices [70] and continuously deforming surfaces [71]. Among them, the flow control via 

trailing-edge flap (TEF) is presumed to be more applicable to novel flapping-wing MAVs 

designs, in terms of simplicity of moving surface control, weight of MAVs and so on. Liu 

et al. [72] experimentally studied the effect of actively controlled trailing-edge flaps on the 

flow control of translational plates. Their results have shown that force and flow 

characteristics strongly depend on the timing of trailing-edge flap deflection rather than 

translational speed. Li et al. [73] and Xu et al. [74] further studied the effect of the trailing-

edge flap on the aerodynamic performance of a 2-D flapping wing via a computational 

approach. It is found that the aerodynamic forces can be significantly affected by 

controlling the timing of the flap deflection in a flapping cycle.  

With the help of advanced photogrammetry and reconstruction technology, the 

aero/hydrodynamic effects of flapping propulsor morphing kinematics are studied in recent 

years. Young and colleagues computationally studied the wing camber and twist effects of 

a tethered desert locust [75]. They came up with ‘uncambered’ models from the full-fidelity 
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model (originally reconstructed wing model) by replacing the cambered chord with a 

straight line connecting the leading and trailing edge (hindwing) or a straight line at the 

same mean incidence (forewing). An ‘untwisted’ model of forewing was also constructed 

by removing torsional deformation along the span, replacing the forewing with a flat plate 

of the same instantaneous projected area and same instantaneous angle of attack at the mid-

wing position. The hindwing ‘untwisted’ model was constructed by replacing the full-

fidelity model with two flat plates of the same total instantaneous projected area, joined 

along a line running from the axilla to a point midway between the fourth and fifth anal 

veins at the trailing-edge. The aerodynamic features of the uncambered and untwisted 

model were then compared with the full-fidelity model. They concluded that the full-

fidelity model achieved greater power economy than the uncambered mode, which 

performed better than the untwisted model. However, the simplified wing models 

(uncambered and untwisted models) were constructed based on empirical measurements. 

Different ways of subtracting wing morphing may lead to different conclusions. A more 

solid and robust approach for the analysis of propulsor morphing kinematics is needed. 

 

1.4. Singular Value Decomposition (SVD) 

To better analyze the complex propulsor morphing kinematics, singular value 

decomposition (SVD) was used previously to decompose the motions of a highly deformed 

fish pectoral fin used by a bluegill sunfish during steady forward swimming [76]. SVD is 

a powerful method for data analysis, aimed at obtaining low-dimensional, approximate 

descriptions of a high-dimensional process or dataset [77, 78]. The SVD or similar methods, 
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such as proper orthogonal decomposition (POD) and principle-component analysis (PCA), 

have been used in many areas including image processing, data compression, process 

identification and oceanography [77]. POD has also been used to obtain approximate, low-

dimensional descriptions of turbulent flows [79], structural vibrations, and dynamical 

systems. PCA has been used before for understanding the gait of biological entities [80]. 

Bozkurttas and colleagues have successfully applied SVD in their work and found out that 

the complex fin motion is dominated by a relatively small number of SVD modes (five 

modes) [76]. The first three dominant modes, which contain 67% of the total motion, can 

recover 92% of the thrust of the pectoral fin. Moreover, the mode 3, which is a wave-like 

motion in the span-wise direction, is primarily a result of flow-induced deformation. The 

SVD analysis suggests one natural approach to the development of the robotic propulsors. 

Since a small number of modes capture a significant portion of the motion, it stands to 

reason that a systematic procedure to developing a robotic propulsor would to be to design 

actuation mechanisms that reproduce a small number of these modes.  

 

1.5. Optimum Design of Flapping Propulsors 

The development of flapping propulsion systems in recent years has been inspired 

primarily by flying/swimming animals. Design of such systems usually follows a ‘bio-

inspired’ approach where key features of the biological system are identified, their function 

understood and the feature then modified and/or simplified for adoption into the engineered 

system. This approach is based on the recognition that an engineered system usually has 

design objectives that differ from those of the biological flyers/swimmers. Biological 
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organisms are a result of evolution through natural selection, which does not necessarily 

produce designs that are ‘optimal’ in terms of performance metrics relevant to a designer. 

The ultimate objective of any biological organism is to successfully reproduce and pass 

along its genetic information to subsequent generations. This may be accomplished in a 

multitude of ways, some of which are detrimental to improved flight performance. For 

example, once adequate flight performance is achieved, animals may evolve to direct 

resources toward reproduction rather than further improvements in flight ability. In contrast, 

an engineered flapping propulsion system might have more specific design objectives in 

terms of range, payload, etc. In addition, evolution by natural selection is a dynamic 

process which is constantly affected by an ever-changing environment, and biological 

designs often include vestigial or redundant features that increase complexity without 

enhancing performance. This implies the possibility of learning from biological systems 

and then subsequently simplifying their design and/or improving on their performance. 

The bio-inspired design approach requires tools that can evaluate candidate designs and 

search for optimal (or at least higher-performing) solutions. Evaluation and optimization 

through experiments is a possibility, but can be prohibitively expensive given the 

dimensionality and size of the parameter space that often needs to be explored. 

Computational optimization seems to be well suited for this purpose, but here too, one has 

to compromise between model fidelity and computational effort, especially for 3D cases. 

Several optimization attempts based on simplified 2D flapping propulsors can be found in 

the literatures [81, 82]. For 3D bio-inspired propulsor optimum design, Zheng et al. used 

low fidelity BEM model to evaluate the propulsor aerodynamic performance when 

searching within the design space.  
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Design optimization based on low dimensional models of biological propulsion 

systems suggests one natural approach to the development of the robotic propulsors. The 

increased complexity of the biological systems due to vestigial or redundant features is 

reduced in the low dimensional models. The design variables are limited to just a few 

dominant SVD modes. A gradient-based parallel curve searching optimizer is developed 

in the current work to best fit with the low dimensional models of biological propulsors. A 

computational optimization frame, which consists of the low dimensional models, the high-

fidelity flow solver, and the optimizer, is then built. The computational cost of finding the 

searching direction and the step size greatly reduced with the help of this frame. 

 

1.6. Current Objectives 

In summary, the objectives of the current work include two parts: tools development 

and analysis of flapping propulsion systems. For the tools development part, we have the 

following four objectives: 

 

Objective 1: Develop a high-accurate kinematics measurement tool to quantify the 

propulsor flexion and body kinematics of animals in free flight/swimming. 

The conventional reconstruction method [51] has several hard constraints regarding 

some details of the experiments, such as the camera location/orientation, the lens angle of 

view, marker points on the objects. A joint-based surface reconstruction method is 

developed to overcome the above issues. The robustness and efficiency of the modified 
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method is improved by adding virtual joints to the propulsor, which can control the 

propulsor motion in a more efficient way. The accuracy of the method is reserved while 

the efficiency of the reconstruction is doubled. 

 

Objective 2: Develop a spherical-coordinates-based singular value decomposition 

(SSVD) tool for understanding complex morphing propulsor kinematics. 

The conventional SVD method [76] has several drawbacks regarding the 

distinctiveness and physics of the modes. For example, large propulsor morphing can be 

found in several modes and some modes show great surface area change even though the 

surface area change in original motion is limited. The new method (SSVD) is developed to 

overcome the above issues. It is proved to be more compatible with flapping propulsion 

systems, in which the propulsors are rotating about the propulsor base. The spherical 

coordinate system can best fit the characteristics of the propulsor motion. 

 

Objective 3: Develop an immersed boundary method for deformable attaching bodies 

(IBM-DAB) to deal with the moving boundaries in direct numerical simulations. 

The new method is developed to handle direct numerical simulations in some extreme 

situations that are commonly exist in nature, including solid bodies with sharp edges and 

those with deformable, attaching membrane bodies. 
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Objective 4: Develop a parallel curve searching optimizer for performing 

computational optimization on flapping propulsors. 

A gradient-based parallel curve searching optimizer is developed in the current work 

to best fit with the computational optimization of low dimensional models of biological 

propulsors. A computational optimization frame, which consists of the low dimensional 

models, the high-fidelity flow solver, and the optimizer, are built. The computational cost 

of finding the searching direction and the step size is greatly reduced with the help of this 

frame. 

 

Figure 1-2. Flow chart of the integrated methodology to systematically study biological 

propulsor morphing kinematics effect. 
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The integrated methodology consists of the above tools. Figure 1-2 shows a flow chart 

of the methodology. High-speed photogrammetry is used to obtain raw data of various 

natural flyers/swimmers such as dragonfly, hummingbird, trout, and orca. A variety of 

motions including hover, maneuver, and steady swimming are recorded. After that, the 

joint-based surface reconstruction technique is used to obtain the detailed kinematical and 

morphological data. Next, the spherical-coordinates-based SVD (SSVD) method used to 

decompose the complex wing motions to SSVD modes. We further investigate optimal 

configurations of dominant modes on aero/hydrodynamic performance for the biological 

propulsors using the computational optimization frame. The corresponding optimized low 

dimensional models, which surpass biological levels of aero/hydrodynamic performance, 

are obtained.  

For the part of flapping propulsion systems analysis, we have the following three 

objectives: 

 

Objective 5: Investigate the optimal dynamic camber formation and dynamic twisting 

of flapping propulsors via simple canonical model problems. 

In order to test the computational optimization frame and obtain basic sense of the 

aerodynamic effect of propulsor morphing kinematics, we first investigate the optimal 

configurations of several morphological parameters that control the dynamic camber and 

twisting of the propulsors on aerodynamic performance using simplified canonical models. 

Optimizations of dynamic camber formation of 2D pitching-plunging plates and dynamic 

twisting of 3D pitching-rolling plates are performed.  
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Objective 6: Study the complex morphing propulsor kinematics and the associated 

aero/hydrodynamics of natural flyers/swimmers in relatively simple motions. 

The integrated methodology is used to study the complex morphing propulsor 

kinematics and the associated aero/hydrodynamics of a hovering dragonfly and a fast 

swimming orca. The SSVD analysis is performed on both cases. The model dimensionality 

and dominant modes effect are studied. For the case of hovering dragonfly, computational 

optimization cases are performed to find optimal low dimensional models for maximizing 

the lift production and lift efficiency. Comparative studies on aerodynamic performance 

and vortex structures are then performed on the optimal cases. For the case of fast 

swimming orca, the effect of spanwise and chordwise morphing of the fluke are examined. 

Three low dimensional models (spanwise morphing only, chordwise morphing only, and 

both spanwise and chordwise morphing) are constructed based on dominant SSVD modes 

(spanwise morphing mode and chordwise morphing mode) and their hydrodynamic 

performance and wake structures are compared in detail.  

 

Objective 7: Explore the aerodynamic functions of natural flyers in complex 

maneuvering flight. 

The integrated methodology is extended to study the most complex propulsion system 

in nature. Hummingbirds perform turning maneuvers as often as they hover or cruise, 

especially when they need to forage from one location to another. However, to this date, 

turning flight had received little attention and most previous studies are primary focused 

on hovering, forward flight and backward flight, using a variety of techniques. There is no 
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data with enough detailed forces, moments and three-dimensional flow structure to achieve 

a quantitative analysis of a hummingbird in a turning maneuver. To fill this gap, the 

integrated methodology is used to study the three-dimensional wake structures and 

aerodynamic forces of a maneuvering hummingbird. To the best of our knowledge, this is 

the first study on the unsteady aerodynamics of a hummingbird maneuvering in flight.  

 

1.7. Outline of Thesis 

Chapter 2 describes details of the integrated experimental and computational 

methodology to systematically study the flapping propulsion system in nature, including 

the joint-based surface reconstruction method, the spherical-coordinates-based singular 

value decomposition method (SSVD), the immersed boundary method for deformable 

attaching bodies (IBM-DAB), the gradient-based parallel curve searching optimization 

method. The methodologies of Chapter 2 form the basis of the following publication: 

 Yan Ren, Haibo Dong, “An Immersed Boundary Method for Deformable Attaching 

Bodies,” Computers & Fluids, under preparation.   

Chapter 3 discusses the computational optimization of dynamic camber formation of 

2D pitching-plunging plates. The results of Chapter 3 form the basis of the following 

publications: 

 Yan Ren, Haibo Dong, “Computationa Optimizaiton of Flexible Wing Aerodynamic 

Performance in Hover,” 30th AIAA Applied Aerodynamics Conference, 2012. 
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 Yan Ren, Haibo Dong, “Computationa Optimizaiton of Flexible Piching-Plunging 

Plate ,” International Journal of Micro Air Vehicles, submitted. 

Chapter 4 presents the computational optimization of dynamic twisting of 3D 

pitching-rolling plates. The results of Chapter 4 form the basis of the following publication: 

 Yan Ren, Haibo Dong, “Effect of Surface Morphing on the Wake Structure and 

Performance of Pitching-rolling Plates,” 53rd AIAA Aerospace Science meeting, 2015. 

Chapter 5 discusses the low dimensional analysis and aerodynamics of a hovering 

dragonfly. The results of Chapter 5 form the basis of the following publication: 

 Yan Ren, Haibo Dong, “Low-dimensional Modeling and Aerodynamics of Flexible 

Wings in Flapping Flight,” 34th AIAA Applied Aerodynamics Conference, 2016. 

Chapter 6 discusses the low dimensional analysis and hydrodynamic effect of 

spanwise and chordwise morphing of a fast swimming orca fluke. The results of Chapter 6 

form the basis of the following publication: 

 Yan Ren, Haibo Dong, Frank Fish, “The Effect of Chordwise and Spanwise Flexibility 

on Hydrodynamic Performance of Cetacean Propulsors,” Bioinspiration & 

Biomimetic, under preparation. 

Chapter 7 presents the results of the three-dimensional wake structures and 

aerodynamic forces of a maneuvering hummingbird. The results of Chapter 7 form the 

basis of the following publication: 
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 Yan Ren, Haibo Dong, Bret Tolbalske, “Asymmetric Three-dimensional Wake and 

Aerodynamic Forces of a Maneuvering Hummingbird,” Physiccal Review Fluids, 

under preparation. 

Chapter 8 summarizes the conclusions of the dissertation and points toward future 

work. 
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2. Methodology 

2.1. Joint-based Surface Reconstruction 

Recently, advanced photogrammetry technology has been used to study flapping 

propulsors in nature. Along with the highly accurate surface reconstruction method [51], 

researchers are capable of digitizing detailed propulsor kinematics, as well as deformation 

from high-speed images. However, the conventional reconstruction method has several 

hard constraints regarding some details of the experiments, such as the camera 

location/orientation, the lens angle of view, marker points on the objects, etc. For example, 

it is usually hard for us to configure three orthogonal cameras outside the lab, and most 

bio-propulsor locomotion data generated by biologists are not taken in the lab. For some 

large animals, such as dolphin and orca, it is not possible for us to use lenses with a small 

angle of view due to their size and movement. Perspective error becomes a big issue in 

those cases. Moreover, placing marker points on the propulsor could be hard due to the 

propulsor’s size or properties. A more robust reconstruction method is needed to deal with 

diverse flapping propulsors in nature. 

A joint-based surface reconstruction method is developed in Autodesk Maya to solve 

the above problems in this work. Here we use a case of a fast swimming dolphin to 

demonstrate the new method.  
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2.1.1. Static Model and Virtual Joints 

In order to perform the reconstruction, a realistic static model of the dolphin with some 

carefully configured motion controllers, which are so called “virtual joints”, is needed at 

first.  

 

Figure 2-1. (a) Static model of dolphin with virtual joints; (b) joints configuration at the 

dolphin fluke; (c) virtual joints configuration based on real dolphin skeletal anatomy. 

 

Figure 2-1(a) shows the static model of the dolphin with virtual joints, which is 

manually created with Autodesk Maya. The dimensions of the model strictly match with 

the real dolphin we are going to study, and the corresponding values are listed in Table 2-1 

in terms of the fluke chord length. The virtual joints have six degrees of freedoms (three 

translations and three rotations) to control the motion of adjacent vertices of the model. 

(a) (b) 

(c) 



19 
 

Figure 2-1(b) shows the virtual joints configuration at the dolphin fluke, which presents 

large deformation during the swimming. This kind of configuration can model both the 

span and chordwise deformation of the fluke. As shown in Figure 2-1(c), the virtual joints 

are built based on a real dolphin’s skeletal anatomy. However, some parts of the dolphin’s 

body, which present large motion during swimming, do not really have bone structures, 

such as the fluke and the dorsal fin. We also add virtual joints to control the motion for 

those parts. 

 

Table 2-1. Dimensions of the fast swimming dolphin 

Body length 12.3 c 

Body width 3.0 c 

Body height 2.9 c 

Fluke span 2.2 c 

 

2.1.2. Virtual Cameras and Reconstruction 

In the experiments, we have several cameras placed around the object to capture its 

motion. During the reconstruction phase, virtual cameras are created around the static 

model with Autodesk Maya based on the configurations of the real cameras, including the 

camera locations/orientations, focal length, angle of view, even the motion of the cameras 

if they are not static in the experiments. The detailed parameters of the two cameras used 

to shoot the fast swimming dolphin are listed in Table 2-2. The camera translation is 

measured based on the location of the static model dolphin. The purpose of creating such 

virtual cameras is to obtain several 2D scenes that have the same perspective effects as 
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those images taken from real cameras. The perspective error is eliminated by reconstructing 

the object’s motion based on those 2D scenes.  

 

Table 2-2. Camera parameters in the case of fast swimming dolphin 

Cameras xT  yT  
zT  xR  yR  

zR  AOV FL 

Side 24.3 c -1.9 c 19.7 c -1.8° 79.2° 0° 61.9° 30.0 c 

Offset 22.3 c 3.1 c 40.6 c -11.1° 45.2° 0° 61.9° 30.0 c 

 

 

Figure 2-2. Schematic plot showing virtual cameras configuration of the dolphin in fast 

swimming. 
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Figure 2-2 shows a schematic plot of the virtual cameras configuration for the case of 

the fast swimming dolphin. In this case, we have two virtual cameras, a side camera and 

an offset camera, which correspond to the side view and offset view of the real cameras, 

respectively. Two 2D scenes (Figure 2-3) can be obtained by looking though the virtual 

cameras. Within each 2D scene, we perform the reconstruction by adjusting the motion of 

the dolphin model via virtual joints to match with the outline of the dolphin in the 

corresponding views of the real cameras frame by frame until the whole motion of the 

dolphin is successfully reconstructed.  

 

Figure 2-3. Virtual camera scenes and corresponding images of real cameras for the (a) 

side camera and the (b) offset camera. The time instance is at t/T=0.6. 

 

2.1.3. Validation: Deformable Wing Kinematics of a Hovering Dragonfly 

In this section, the forewing motion of a hovering dragonfly is reconstructed using both 

the conventional reconstruction method [51] and the joint-based reconstruction method. 

(a) (b) 
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The photogrammetry setup in this case consists of three synchronized Photron FASTCAM 

SA3 60K high-speed cameras (Motion Engineering Company, Indianapolis, IN, USA) with 

1024 1024   pixel resolution (Figure 2-4a). They are aligned orthogonally to each other 

on an optical table and operated at 1000Hz with at least a 1/20,000s shutter speed to 

capture the flapping flight videos. The dragonfly is illuminated by two halogen photo-optic 

lamps (OSRAM, 54428). The cameras are positioned 1.5m away from the flying animal, 

giving a depth of field of 3 to 4 body lengths in all directions depending on the size of the 

specimen. Given that the dragonfly flaps at approximately 42Hz, this provides good 

temporal and spatial resolution. 

As shown in Figure 2-4(b), a model dragonfly is built based on three orthogonal 

projected high-speed images, using the joint-based reconstruction technique. A raw high-

speed image of a hovering dragonfly is shown in Figure 2-4(c). Based on the image, we 

create virtual joints (circled) according to the wing structures. As mentioned before, the 

virtual joints are used to control the model wing motion until the outline matches with the 

raw image. Since we have marker points on the wing surface in this case, the surface 

vertices (purple dots) are then adjusted to match with the marker point. The steps are then 

performed on other frames until the entire motions of the wings are reconstructed.  

Compared to the conventional reconstruction method introduced by Koehler and 

colleagues [51], the modified method is more efficient, and the accuracy is reserved. As 

we can see in Figure 2-4(d), the motion handles, which control the wing motions, in the 

current method are virtual joints and surface vertices, while in conventional method are 

both edge vertices and surface vertices. In the case shown here, for the left forewing of a 

hovering dragonfly, the total number of the motion handles in the current method is 10 
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while that in the conventional method is 24. It suggests that the efficiency of the current 

method is more than twice as much as the conventional one. 

 

Figure 2-4. (a) Experimental setup; (b) reconstructed model based on three orthogonal 

projected high-speed images; (c) raw image of a hovering dragonfly; (d) schematic plots 

showing virtual joints configuration of the dragonfly wings. 

 

The accuracy of the current method is also examined by comparing the kinematics and 

deformation measured based on both methods for the same case. Figure 2-5(a) shows the 

schematic plot of wing kinematics definitions, where  ,   and   stand for wing stroke 

(a) (b) 

(c) (d) 
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angle, deviation angle and pitch angle, respectively. The corresponding time histories of 

those angles for right forewing of the hovering dragonfly are plotted in Figure 2-5(b). We 

can see that the results from both methods are similar, and the differences are less than 2%. 

For wing deformation, we measure the wing camber to chord ratio ( ) and twist angle ( ) 

of right forewing of the hovering dragonfly and presented in Figure 2-5(c). The two 

deformation parameters are defined the same way that presented in Koehler’s work [51]. 

We can see from Figure 2-5(c) that the results from joint-based reconstruction method are 

the same as the conventional method. The differences are less than 2%. 

 

Figure 2-5. (a) Schematic plot of wing kinematics parameters definition; (b) time course 

of forewing kinematics measurements from the joint-based and the conventional method; 

(c) time course of forewing deformation measurements from the joint-based and the 

conventional method. The deformation parameters are measured at mid chord of the wing. 

(a) 

(b) (c) 
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2.2. Spherical-coordinates-based Singular Value Decomposition (SSVD) 

SVD (also known as POD or PCA in some fields of application) is a powerful method 

for data analysis aimed at obtaining low-dimensional approximate descriptions of a high-

dimensional process or dataset [77], which is ddifferent from the low dimensional analysis 

of mode shapes in structural engineering. The most remarkable feature of the SVD is its 

optimality: it provides the most efficient way of capturing the dominant components of any 

dataset with only a finite and often surprisingly few numbers of modes. In gait analysis, 

PCA has yielded insights into human walking strategies and the interrelationships in terms 

of temporal, kinematic and kinetic variables. Urtasun and colleagues [80] have used PCA 

to identify invariant or common features within the whole body kinematics of a 

contemporary dance movement pattern. For animals in nature, Bozkurttas and colleagues 

[76] have used SVD to study the pectoral fin kinematics and its associated aerodynamics 

of bluegill sunfish. Representing the motions as a linear sum of principal components has 

become a widely accepted animation technique [83, 84]. SVD and other similar methods 

are closely related, and the close connections and equivalence of these various methods 

can be found elsewhere [77].  

Similar to the conventional SVD method [76], we have developed spherical-

coordinates-based SVD (SSVD) in this work. The spherical coordinate system is applied 

to describe the flapping wing motions in the current work, instead of using the conventional 

Cartesian coordinate system. The nature of flapping flight is that the wings are rotating 

about the wing roots, and also, each wing chord is rotating about the span axis. The 

spherical coordinate system can best fit the characteristics of flapping wing motions. In 

this section, we will introduce the detailed procedure of SSVD method.  
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2.2.1. Coordinate Transformation 

In this work, we focus on the decomposition of wing motions. A coordinate 

transformation is performed at first to remove the body translations, as well as the rotations, 

especially for flight with complex body motions like maneuvers. Body translations and 

Euler angles ( B , B  and B , which are body yaw, pitch and roll angle, respectively) are 

measured first. The following rotation matrix is then applied to remove the body motion 

for each snapshot: 

 

cos sin 0 cos 0 sin 1 0 0

sin cos 0 0 1 0 0 cos sin

0 0 1 sin 0 cos 0 sin cos

b b b b O

b b b b O

b b b b O

X X X

Y Y Y

Z Z Z

   

   

   

           
         

   
         
                    

 (1 )  

where  , ,O O OX Y Z   represents the body center location.  , ,X Y Z   and  , ,X Y Z      

represent the motion in global and body local coordinate systems, respectively.  

Figure 2-6 shows reconstructed flight motions of a takeoff maneuver dragonfly in 

global and body local coordinate systems. Wing tip trajectories are shown to emphasize 

the motions of wings in both cases. We can see that the wing motion in Figure 2-6(a) is 

greatly influenced by the body translations and rotations, and it may affect the 

decomposition results. After the body motion is removed, as we can see in Figure 2-6(b), 

the wing motions are reserved, and the wings are rotating about the wing joints. The 

spherical coordinate system can best fit the characteristics of the flapping wing motions in 

body local coordinate system. 
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Figure 2-6. Reconstructed model of a takeoff maneuver dragonfly in global (a) and local 

(b) coordinate system. Colored curves are wing tip trajectories. 

 

2.2.2. Reference Snapshot Determination 

In order to perform a valid decomposition that can effectively extract wing deformation, 

a reference snapshot should be determined before the decomposition takes place. In this 

work, the snapshot with least wing deformation is chosen. The least square plane of wing 

shape, which can be mathematically described as a normalized plane equation

0Ax By Cz D    , is determined at each time step. The coefficients ( , , ,A B C D   ) are 

calculated via minimizing the standard deviation Q  from the following equation: 

 
2

1

m

i

i

Q R


   (2) 

Where iR  is the distance from the thi  vertex on the wing surface to the least square plane, 

and it is defined as: 
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 i i i iR Ax By Cz D      (3) 

The reference snapshot is then chosen as the one with smallest standard deviation Q  

among all time steps.  

 

2.2.3. Displacement Matrix and Singular Value Decomposition 

SVD can be considered as an extension of the traditional eigenvalue decomposition for 

the non-square matrix, which contains a dataset that represents the wing motion in both 

time and space. Displacements of all m  nodes on the wing surface at n  distinct instants in 

time are stored in this matrix, named displacement matrix. The displacement matrix 

(denoted by A ) is as follows: 
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A   (4) 

The displacements stored in above matrix are calculated as follows: 

 

t t ref

i i i

t t ref

i i i

t t ref

i i i

r r r

  

  

  

  

  

  (5) 
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where  , ,t t t

s s sr     denote the coordinates of the node s  at time instant t . Note that the 

spherical coordinate system is used here.  , ,ref ref ref

i i ir     denote the coordinates of the 

node i  at a specific reference time instant. An SVD of the displacement matrix A  can then 

be factorized as 

 3 3 3 3

T

m n m m m n n n   A U S V   (6) 

where 3 3m mU  and T

n nV  are two orthogonal unitary matrices; 3m nS  is a diagonal matrix in 

which the diagonal values are called the singular values of A , which are unique. The 

diagonal elements iiS  consist of  min ,r m n   non-negative numbers i  , which are 

arranged in descending order, i.e. 1 2 0n      . Within the SSVD procedure, the 

i  values are the square roots of the eigenvalues of T
AA , whereas the eigenvectors of T

AA  

make up the columns of U  and T
V  respectively. In the above expression, V  represents 

the change in each mode with time, and U  contains the eigenvectors corresponding to the 

spatial distribution of the modes. The singular values i  can be interpreted as the weight 

contributions of each mode in the SSVD. Thus, the ‘shape’ of any particular mode (say the 

kth mode) can be extracted by zeroing out all the singular values except for the kth value, 

and reconstructing from the SSVD as in Eqn(7). Similarly, lower dimensional (say rank 

K n ) approximations to the dataset can be obtained by using an approximation to S  

denoted by KS  wherein 1 2 0K K n        and reconstructing from the SSVD as 

follows: 

 
T

K KA US V   (7) 
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The displacement matrix A  is now subjected to SSVD. In the following part, the 

forewing motion of a hovering dragonfly will be used to demonstrate the decomposition 

results. 30 snapshots of the wing motion for one complete flapping cycle are used in the 

decomposition. As expected, the SSVD leads to 30 distinct singular values, and the 

spectrum for the first ten singular values of the wing motion is shown in Figure 2-7 along 

with a cumulative plot for the same data. The normalized singular value for kth mode 
*

k  is 

defined as: 

 
*

1

/
n

k k i

i

  


    (8) 

The singular values are normalized by the sum of all singular values. Therefore, the 

cumulative values sum to unity. A number of interesting observations can be made from 

this plot. First, the singular value spectrum shows three distinct ranges: the first between 

mode 1 - 2, in which we see a rapid decrease in the amplitude, the second from mode 2 - 4 

in which there is a much slower reduction in amplitude and, finally, the range from mode 

4 - 30 that has negligible (less than 2%) total contribution. The rapid initial decrease in the 

spectrum is significant which suggests that a small number of modes contain most of the 

essential features of the wing gait. In fact, the cumulative values show that the first two 

and three modes capture about 93.1% and 96.0% respectively of the total motion. In fact, 

only the first mode captures close to 84.7% of the motion of the wing, which is a clear 

demonstration of the ability of SSVD to represent the dataset with the least possible number 

of modes. 
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Figure 2-7. The SSVD spectrum of the first ten modes for the dragonfly’s right forewing 

kinematics. The left ordinate shows /
i i
  , and the right ordinate shows the cumulative 

value of the left ordinate. 

 

The gait corresponding to individual modes can be extracted as described above, and 

the surface conformations for each of these extracted modes are then constructed using the 

original wing mesh with triangular elements. The first two modes are highly distinct and 

relatively easy to interpret, and we briefly describe the key qualitative features of these 

modes. Figure 2-8(b, c) shows mode 1 and mode 2 at five different times during one 

flapping cycle. Also shown on the left for direct comparison are the wing motion from the 

experiment (also called the ‘mode-all’ case, since it contains all the SSVD modes). In 

these figures, the colors reflect wing deformation by plotting contours of distances between 

vertices on the wing surface to the corresponding least square plane of the wing. Mode 1 

involves very large rotating motion about the wing root, which is called the ‘flapping’ 
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motion. The wing flaps back and forth with certain offset angle. And also, the mode one 

shows minimum deformation during the stroke. This mode is actively produced by the 

dragonfly through flight mussels at the wing root.  

 

Figure 2-8. Wing motions of (a) experimental kinematics (also called the mode-all case), 

(b) SSVD mode 1, (c) mode 2 and (d) low-dimensional model mode 1+2. The wings are 

colored with distances between wing surfaces and corresponding least square planes. The 

distances are normalized by wing mid chord length. 
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Mode 2 is a twisted motion primarily in the span-wise direction, which occurs along 

the span axis of the wing. It presents as chord-wise rotations of the wing during the reversal 

phase. In contrast to mode 1, this mode is primarily a result of flow-induced deformation. 

It can be deduced from the fact that there are no muscles in the wing surface that could 

produce deformation in the wing. Furthermore, the deformation is primarily in the direction 

of the flow relative to the wing motion, which supports the assertion that this mode is flow-

induced. The rest of the modes in the spectrum are associated with relatively small motions 

that are not very distinct. We, therefore, do not describe these individually, although we 

will consider the effect of mode 3 on the aerodynamics in the following sections. 

 

2.2.4. Low-dimensional Models 

SSVD has decomposed the wing motion into its orthogonal components and helped us 

understand the key features of the nature flyers’ wing motion. The SSVD results can also 

be used to reconstruct low-dimensional approximations of the mode-all case using a subset 

of the orthogonal modes. Lower dimensional models of the wing gait are synthesized by 

successively adding modes to Mode 1. The forewing motion of a hovering dragonfly is 

used to demonstrate the method. Figure 2-8(a, b, d) shows the surface snapshots at four 

different time instances during one flapping cycle for mode 1 and mode 1+2 in comparison 

to the complete (mode-all) motion. The similarity between the wing shapes for Mode 1+2 

and the Mode-All/experiment cases is evident in this figure. Removal of higher SSVD 

modes from the motion is analogous to filtering the experimental data in space and time. 

 



34 
 

2.2.5. Convergence Studies and Motion Percentage 

As mentioned before, we are using 30 snapshots in one flapping cycle to perform the 

decomposition and construct low-dimensional models in the case discussed above. Here 

lies a question of whether or not the snapshot size will affect the decomposition results. In 

order to answer the question, convergence studies of the SSVD method are conducted. We 

have used various snapshot sizes (10 - 60 snapshots) to perform the decomposition and 

build low-dimensional models (mode 1+2) to evaluate the results. To best demonstrate the 

results, we define motion percentages   directly from the motions of low-dimensional 

models. Motion percentage   at a certain time step for each snapshot size is calculated 

based on the following equation: 

 

     

     

2 2 2

1

2 2 2

1

i i i i i i
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i
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i
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X X Y Y Z Z

 



    



    




  (9) 

Where  , ,X Y Z  stands for the coordinates of the vertex on the wing surface; the 

superscript ‘low’, ‘ref’ and ‘all’ represent vertices of low-dimensional model, reference 

frame, and mode-all model, respectively; the subscript ‘ i ’ denotes the thi  vertex. Time 

histories of   for each snapshot size are plotted in Figure 2-9. We can see that for low-

dimensional models with larger snapshot size (30, 45 and 60), the motion percentage   is 

larger and converge to a certain value. For smaller sizes (10, 15 and 25), the curves are 

very different. Table 2-3 lists averaged motion percentages   and normalized singular 

values *  of mode 1+2 for various snapshot sizes. We can see that   values converge 

while the snapshot sizes are larger than 30. Differently, the normalized singular values * , 
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which are used to quantify the weight of low-dimensional models in previous sections, stay 

the same (around 93%) for all snapshot sizes. This is because *  are calculated based on 

the mode-all motion of each snapshot size, while the references of averaged motion 

percentages  are all from the largest snapshot size. The averaged motion percentage   is 

more proper to describe the weight of low-dimensional modes, especially for small 

snapshot sizes (below 30 snapshots in one complete flapping cycle). However, for larger 

snapshot sizes greater than 30, both methods are fine. From the convergence studies above, 

we choose the snapshot size as 30 in the following discussions.  

 

Figure 2-9. Motion percentage histories of low-dimensional models (mode 1+2) for 

different snapshot sizes. 
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Table 2-3. Averaged motion percentages   and normalized singular values *  of low-

dimensional models (mode 1+2) for different snapshot sizes. 

Snapshots Sizes   *  

10 68.5% 93.3% 

20 77.0% 93.2% 

25 85.4% 93.2% 

30 90.4% 93.1% 

45 92.3% 93.1% 

60 94.1% 93.1% 

 

2.2.6. SSVD Analysis of Various Flapping Propulsors 

In the current study, we have conducted SSVD analysis on the flapping motion of 

various propulsors in nature. It includes the wing motions of dragonfly, damselfly, cicada 

and hummingbird. And also in different flight modes, including hovering, cruising, and 

maneuvering. The decomposition results show that all cases share similar SSVD modes 

that we discussed previously (mode 1: flapping mode, mode 2: deformation mode). As 

shown in Table 2-4, both   and *  values are listed, and they show similar trends among 

all cases. Here we just use *  to describe the results. The *  values of mode 1+2 range 

from 86.3% to 93.7%. Most of the motions are captured by low-dimensional models SSVD 

mode 1+2. The *  values of mode 1 range from 78.1% to 86% while that of mode 2 range 

from 7.7% to 15.2%. Those values suggest different characteristics of those flapping 

motion.  

For smaller aspect ratio wings, such as the wings of hummingbird and cicada (we 

consider the forewing and hindwing of cicada as one single wing since they are hooked 
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with each other during the flapping motion), the *  values for mode 2 are larger. It 

suggests that they present more deformation during the flight. On the other hand, smaller 

*  values correlate to large aspect ratio wings, like the wings of damselfly. The wing 

deformation is relatively small in such wings. For simpler motions, such as hovering and 

cruising, the *  values of mode 1+2 are higher than that of complex motions, like 

maneuvering. This indicates that higher SSVD modes (mode 3, 4, etc…) contribute more 

to complex motions. Moreover, the mode 2 has a larger contribution to the maneuvering 

flights and smaller contribution in cruising flights, which suggests that the wing 

deformation plays a more significant role in maneuvering flights when compared to 

cruising flights. 

 

Table 2-4. SSVD analysis of several flapping propulsors in nature. 

Species Motion Wings AR 
  (%) *  (%) 

M1 M2 M12 M1 M2 M12 

dragonfly 

hover 
fore 5.0 82.3 8.1 90.4 84.7 8.4 93.1 

hind 4.3 81.0 9.2 90.2 83.3 9.6 92.9 

cruise 
fore 5.0 84.1 7.5 91.6 86.0 7.7 93.7 

hind 4.2 83.2 8.8 92.0 85.1 9.0 94.1 

maneuver 

inner fore 
5.1 

78.8 9.9 88.7 81.1 10.2 91.3 

outer fore 78.5 9.7 88.2 80.6 9.8 90.4 

inner hind 
4.2 

77.8 10.8 88.6 80.4 11.3 91.7 

outer hind 77.6 10.5 88.1 80.6 10.8 91.4 

cicada cruise right 2.5 76.5 14.2 90.7 78.1 15.2 93.3 

damselfly 

cruise 
fore 6.6 83.2 6.6 89.8 84.9 8.2 93.1 

hind 6.2 82.5 6.8 89.3 84.2 8.4 92.6 

maneuver 

inner fore 
6.6 

79.2 7.0 86.2 80.9 8.5 89.4 

outer fore 78.6 7.5 86.1 80.3 9.0 89.3 

inner hind 
6.2 

79.1 7.3 86.4 80.9 8.5 89.4 

outer hind 78.3 7.9 86.2 80.0 9.2 89.2 

hummingbird 

hover right 4.0 76.6 8.7 85.3 77.8 10.2 88.0 

maneuver 
inner 

4.0 
73.9 8.8 82.7 75.8 10.5 86.3 

outer 74.5 8.6 83.1 76.6 10.4 87.0 
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The SSVD analysis suggests one natural approach to the development of the robotic 

propulsors. Since a small number of modes capture a significant portion of the motion, it 

stands to reason that a systematic procedure for developing a robotic propulsor would 

involve designing actuation mechanisms that reproduce a small number of these modes. 

The question that remains to be answered is what kind of performance can we expect from 

these lower dimensional wing models, and how does the performance scale as we include 

additional modes? This will allow us to make a rational compromise between the 

complexity of propulsor design and propulsor performance. It should be noted here that the 

performance is a consequence of the flow associated with these low-dimensional models. 

Thus, even though the modes are kinematically linear (and therefore additive), the 

performances are not expected to scale linearly with the modes since the flow is governed 

by the Navier-Stokes equations which are nonlinear. Thus, the answer to the above question 

requires that we explicitly determine the performances for these low-dimensional models.  

 

2.3. Immersed Boundary Method for Deformable Attaching Bodies (IBM-DAB) 

All natural propulsors are attached to animal bodies. Those propulsors are usually thin 

and present large deformation during the flapping motion. Zero thickness deformable 

membranes are usually used to model those propulsors in computational studies [46, 85, 

86]. The animal body is not included or treated as separate part from the propulsors 

(propulsors are not firmly attached to the body) in those computational studies due to the 

focus of the works or the computational difficulties regarding the attachment of the 

propulsors to the animal body. However, recent studies show that the body of an animal is 
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an important part of the flapping propulsion system, and the distance between the body and 

propulsor is a key control parameter of the entire performance of the propulsion system 

[87, 88]. In the current work, an immersed boundary method for deformable attaching 

bodies (IBM-DAB) is developed to handle the simulations of solid bodies with deformable 

attaching membrane bodies. 

 

2.3.1. Governing Equations and Discretization Scheme 

The governing equations considered are the 3D unsteady Navier-Stokes equations for 

a viscous incompressible flow with constant properties given by: 
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  (10) 

Where , 1, 2, 3i j    , iu  are the velocity components, p  is the pressure, and   and   are 

the fluid and kinematic viscosity.  

The Navier-Stokes equation(10) are discretized using a cell-centered, collocated (non-

staggered) arrangement of the primitive variables iu  and p . In addition to the cell-center 

velocities iu , the face-center velocities iU , are computed (see Figure 2-10). The equations 

are integrated in time using the fractional step method, which consists of three sub-steps. 

In the first sub-step of this method, a modified momentum equation is solved and an 

intermediate velocity *u  is obtained. A second-order, Adams-Bashforth scheme is 

employed for the convective terms while the diffusion terms are discretized using an 
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implicit Crank-Nicolson scheme, which eliminates the viscous stability constraint. In this 

sub-step, the following modified momentum equation is solved at the cell-nodes: 
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 (11) 

Where 
x




 corresponds to a second-order central difference. This equation is solved using 

a line-SOR scheme [89]. 

 

Figure 2-10. Schematic describing the naming convention and location of velocity 

components employed in the spatial discretization of the governing equations. 

 

The second sub-step requires the solution of the pressure correction equation: 
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which is solved with the constraint that the final velocity 1n

iu   be divergence-free. This 

gives the following Poisson equation for the pressure correction: 
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  (13) 

and a Neumann boundary condition imposed on the pressure correction at all boundaries. 

This Poisson equation is solved with a highly efficient geometric multigrid method [90], 

which employs a modified strongly implicit procedure (MSIP) [91] smoother. The ability 

to employ such methods is another key advantage of the current Cartesian grid approach 

over body-conformal unstructured grid approaches. Geometrical multigrid methods are 

relatively simple to implement and have very limited memory overhead. Furthermore, 

when coupled with powerful smoothers like line-Gauss-Siedel or MSIP, they can lead to a 

numerical solution of the pressure Poisson equation which scales almost linearly with the 

number of grid points. In contrast, for unstructured body-conformal methods, one has to 

either resort to algebraic multigrid methods [92, 93] or other more complex methods such 

as agglomeration multigrid [94]. Another choice for solving the pressure Poisson equation 

would be Krylov subspace based methods (such as conjugate gradient or GMRES) but 

these require effective preconditioners to provide good performance. Our past experience 

with both stationary and non-stationary iterative methods [95-97] indicates that geometric 

multigrid methods are very well suited for sharp interface immersed boundary methods, 

and we have therefore used this method in the current solver. 
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Once the pressure correction is obtained, the pressure and velocity are updated as: 
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  (14) 

 

2.3.2. Immersed Boundary and Cell Identification  

The motions of natural animals are reconstructed using the method introduced in 

Section 2.1, and the surface of a reconstructed model is represented as unstructured mesh 

with triangular elements. Figure 2-11(a) shows the surface mesh over a baby trout which 

is being used to examine the fluid dynamics of fishes’ steady swimming. The trunk body 

of the fish is modeled as “solid body”, and the fish fins are modeled as “membrane body”, 

which presents zero thickness in the simulation. 

The unstructured surface mesh is “immersed” into the Cartesian grid and Figure 

2-11(b) shows this for the particular case of the baby trout. The next step is to develop all 

the computational machinery that is needed to implement the ghost-cell methodology for 

such immersed boundaries. We take the “solid body” as an example to demonstrate the 

method. We first identify cells whose nodes are inside the solid boundary (termed “solid 

cell”) and cells that are outside the body (termed “fluid cell”). A conventional method [97] 

for this in a normal situation is shown in Figure 2-12(a). We deal with two cells ( 1P  and 

2P ) here. Two elements ( 1e  and 2e ), which are closest to the corresponding cells, are found 

first. Vectors 1v  and 2v  are then formed by connecting the centers of the elements and the 

centers of the cells. The surface normal vectors of the two elements are marked as 1n  and 
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2n . The angle between 1v  and 1n  is 1a , and the angle between 2v  and 2n  is 2a . It is clear 

that the cell iP   is a solid cell if the angle ia  greater than 90 , otherwise, the cell is a fluid 

cell. 

 

Figure 2-11. (a) Example of a baby trout model with unstructured surface mesh of 

triangular elements; (b) representative example showing the baby trout immersed in a non-

uniform Cartesian grid. 

 

(a) 

(b) 

Membrane Body 

Solid Body 
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Figure 2-12. (a) Cell identification in a normal situation using the conventional method; 

(b) cell identification in a sharp edge situation using the conventional method; (c) cell 

identification in a sharp edge situation using the current method. 

 

The conventional method works well in most of the situations. However, it makes 

mistakes when dealing with “sharp edges”. As shown in Figure 2-12(b), cell P , which is 

(a) (b) 

(c) 

Immersed boundary 

Boundary vertex 

Boundary element center 

Fluid cell 

Solid cell 
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a fluid cell, is subjected to the cell identification. Due to the different size of each element, 

the closest element to cell P  is found as 2e . Apparently, the angle 2a  is greater than 90 , 

and the cell is wrongly identified as a solid cell. A direct consequence of this is that all 

cells next to the cell P  are identified as solid cells due to a fast cell identification algorithm. 

Non-physical simulation results are obtained due to the mistakes correspond to cell 

identification.  

A modified method is developed to solve the above problems. As shown in Figure 

2-12(c), the new method is demonstrated in the same situation as in Figure 2-12(b). Instead 

of finding the closest element to the target cell, the closest vertex is found. In this case, the 

closed vertex is at the sharp tip of the immersed boundary. Vector v  is then formed by 

connecting the vertex and the center of the cell P . Next, the elements which share the 

vertex are found ( 1e  and 2e ), and the corresponding surface normal vectors are 1n  and 2n . 

The angle between 1v  and 1n  is 1a , and the angle between 2v  and 2n  is 2a . Now, if the 

value  1 2min ,a a  is greater than 90 , the cell is identified as a solid cell, otherwise, it is a 

fluid cell. The cell P  in Figure 2-12(c) is successfully identified as a fluid cell with this 

new method. The method is proved to be valid in many extreme situations in both 2D and 

3D cases. 

It is worth noting that, for stationary boundaries, this identification process needs to be 

done just once at the beginning of the simulation and therefore represents only a small 

fraction of the total turnaround time. For moving boundaries, this identification process 

needs to be done at every time-step. However given that the immersed boundary can only 

travel a distance of the order of the nominal grid spacing in one time-step, the cell 
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information from the previous time-step can be used to minimize the number of grid nodes 

for which the above process has to be carried out. Thus, even in the moving boundary case, 

the process only takes a very small fraction of the total CPU time. Consequently, very fine 

surface meshes can be used to provide highly accurate representations of the immersed 

geometry without any significant implications for the overall computational processing 

time. 

 

2.3.3. Face Velocity Calculation 

After all cells are successfully identified as solid or fluid cells, the stair boundaries can 

be determined. We only consider the solid bodies here. For solid bodies, the stair 

boundaries are the demarcations between solid and fluid cells. The boundary conditions, 

which are the face velocities normal to the cell faces, on those stair boundaries need to be 

imposed.  In order to do that, ghost cells are identified first. The ghost cell are solid cells 

which close to the stair boundaries. As shown in Figure 2-13, for a 2D case, if at least one 

of the four faces of a solid cell is a stair boundary, the solid cell is a ghost cell. The approach 

now is to determine an appropriate equation for these ghost cells which leads to the implicit 

satisfaction of the boundary condition on the immersed boundary in the vicinity of each 

ghost cell. We do this by extending a line segment from the node of these cells into the 

fluid to an “image point” (denoted by IP) such that it intersects normal to the immersed 

boundary and the boundary intercept (denoted by BI) is midway between the ghost node 

and the image point.  
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Figure 2-13. 2D schematic describing the stair boundary and ghost-cell methodology used 

in the current solver. 

 

Once the BI and the corresponding IP have been identified, a trilinear interpolation in 

the following form is applied to calculate the velocity at the IP, and we take the velocity in 

x direction, IPu , as an example: 

 
 

 
1 2 3 1 1 2 3 2 1 2 3 2 3

2

4 1 3 5 1 6 2 7 3 8

, ,IPu x x x C x x x C x x C x x

C x x C x C x C x C O

  

      
  (15) 

The eight unknown interpolation coefficients can be determined in terms of the velocities 

of the eight surrounding nodes in 3D cases: 

      
1

1 2 8 1 2 8, ,..., , ,...,
T T

C C C V u u u


   (16) 
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where iu  are velocities of surrounding nodes and  V  is the Vandermonde matrix [98] 

corresponding to the trilinear interpolation scheme shown in Equation(15) and has the form: 

  

             

             

             

1 2 3 1 2 1 3 2 3 1 2 31 1 1 1 1 1 1

1 2 3 1 2 1 3 2 3 1 2 32 2 2 2 2 2 2

1 2 3 1 2 1 3 2 3 1 2 38 8 8 8 8 8 8

1

1

1

x x x x x x x x x x x x

x x x x x x x x x x x x
V

x x x x x x x x x x x x

 
 
 
 
 
  

  (17) 

where the subscripts outside the parentheses are identifiers of the eight surrounding nodes 

in 3D cases. It is worth noting that the interpolation scheme is proven to be 2nd order 

accurate.  

After the velocity at the IP is obtained, the velocity at the GC can be calculated as 

follows:  

 2GC BI IPu u u    (18) 

And the face velocity at the stair boundary can be calculated as:  

  1

1

2
FC GCU u u    (19) 

 

2.3.4. Conflicting Face Velocity Correction and Gap Filling between Solid and 

Membrane Bodies 

We have successfully imposed boundary conditions for solid bodies. However, there 

exists situations as “a solid body with attaching membrane bodies” in many biological 

flapping systems. Just as shown in Figure 2-11(a), the baby trout fins are firmly attached 
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to the trunk body. In this section, a new approach is introduced to overcome the 

computational difficulties regarding such situations. 

 

Figure 2-14. 2D schematic describing the methodology which handles deformable 

attaching bodies. 

 

Figure 2-14 shows a 2D schematic plot of the approach. The dashed lines are immersed 

boundaries and the solid lines are the corresponding stair boundaries. For the membrane 

body, the stair boundaries are chosen as the closest fluid cell faces to the elements on the 

immersed boundary. As shown in the figure, several conflicting faces can be identified. 

The conflicting faces are stair boundaries which directly connect to the intersection of the 

solid and the membrane stair boundaries. The boundary conditions on the conflicting faces 

need special treatments. The velocity of one conflicting face may be calculated according 

to a reference velocity of the solid immersed boundary at one time step. For the next time 

Fluid Cell Face Center 

Conflicting Face Center 

Solid Body 

Boundary Intercept 

Membrane Body 

Boundary Intercept 
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step, the reference velocity may be altered to the velocity of the membrane immersed 

boundary due the motion of the moving boundaries. This will cause a discontinuity of the 

velocity boundary condition on the conflicting face for those two time steps, which will 

cause numerical instability and eventually lead to the divergence of the flow solver. 

In order to solve the above problem, the velocities of the conflicting faces are corrected 

accordingly. Here we describe the method using the upper conflicting face (Figure 2-14) 

as an example. From the center of the conflicting face, we first drop two lines perpendicular 

to the solid and membrane immersed boundaries. There we get two boundary intercept, 

sBI  and mBI . Another two fluid cell faces which are close to the conflicting face can be 

found, and the corresponding face centers are 1F  and 2F . An interpolation stencil (shaded 

area) is formed according to the four points. In 3D cases, the stencil consists of eight points 

(two boundary intercept and six fluid cell face centers). The conflicting face velocity can 

then be calculated as follows: 

 
 

 
1 2 3 1 1 2 3 2 1 2 3 2 3

2

4 1 3 5 1 6 2 7 3 8

, ,CFU x x x C x x x C x x C x x

C x x C x C x C x C O

  

      
  (20) 

The eight unknown interpolation coefficients can be determined in terms of the face 

velocities of the eight points of the interpolation stencil: 

      
1

1 2 8 1 2 8, ,..., , U ,..., U
T T

C C C V U


   (21) 

where iU  are the face velocities at the interpolation stencil points and  V  is the 

Vandermonde matrix shown in Equation(17). This process continues until the velocities of 

all conflicting faces are corrected. 
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Figure 2-15. 2D schematic describing the methodology which handles very close solid 

body and membrane body.  

 

Another extreme situation is shown in Figure 2-15, where the two types of the 

immersed boundaries are too close to each other. The solver diverges in this situation due 

to the instability of the boundary conditions at the narrow passage between the two 

boundaries. In order to solve the problem, we measure the minimum distances of the 

narrow passage, and fill the gaps if the distance is less than one cell width. Three filled 

cells can be identified in Figure 2-15 according to this rule, and the stair boundaries are 

modified based on those filled cells. The conflicting faces still need to be identified and the 

corresponding velocities need to be corrected based on the modified stair boundaries.  
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2.3.5. Validation: Steady Swimming of a Baby Trout 

Full body direct numerical simulation of a steady swimming baby trout is conducted. 

This case serves as validation for both the IBM-DAB method and the joint-based surface 

reconstruction method introduced in section 2.1. Figure 2-16 shows the comparison of the 

baby trout motion in high-speed images to the corresponding reconstructed model in three 

different views. We can see from the figure that the reconstruction is highly accurate. Three 

fins, the dorsal fin, anal fin, and caudal fin, along with the trunk body of the fish are 

included in the simulation. Those fins are firmly attached to the fish body, which need 

special treatment for imposing boundary conditions in the full body simulation. IBM-DAB 

is developed in the current work to serve the purpose.  

 

Table 2-5. Baby trout steady swimming parameters. 

Body length, L  (cm) 7.00 

Body height, H  (cm) 1.58 

Forward speed, U  (cm/s) 9.32 

Flapping amplitude, A  (cm) 1.32 

Flapping frequency, f  3.70 

Reynolds number, Re   6521.9 

Strouhal number, St   0.52 

 

Table 2-5 lists the parameters of the steady swimming baby trout. The flow conditions 

are strictly match with those parameters. Figure 2-11(b) shows the reconstructed realistic 

full-body model immersed in the three-dimensional non-uniform Cartesian grid. Y is the 

vertical direction with +Y pointing upward. The simulation domain size normalized by the 
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fish body length L  is 10 6 6   and this large domain ensures that the boundaries do not 

have any significant effect on the computed results. The computational grid adopted here 

has 384 193 193   points. The largest grid size in the dense region is 36.875 10  body 

length, corresponds to 145 grids across the body length. 

 

Figure 2-16. Comparison of the baby trout motion shown in high-speed images to the 

corresponding reconstructed model. (a) Lateral view; (b) ventral view; (c) back view. 

(a) 

(b) 

(c) 
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Figure 2-17 shows the time course of hydrodynamic performance of this case. The 

thrust and power generated by the dorsal and anal fins are much smaller comparing to that 

generated by the body and caudal fin of the trout. The caudal fin generates large thrust 

force for most of the time during the stroke, while the trout body show large drag 

production. Table 2-6 lists the cycle averaged hydrodynamic performance of this case. We 

can see that the caudal fin produce large amount of thrust while the other three parts (the 

body, dorsal fin, and anal fin) produce drag. The resultant thrust is very small and is about 

3% of the thrust produced by the caudal fin, which validates the IBM-DAB method and 

the joint-based surface reconstruction method. 

 

Figure 2-17. Time course of hydrodynamic (a) thrust and (b) power coefficient of the 

steady swimming baby trout. 

 

Figure 2-18 shows the 3D wake structures in three different views of this validation 

case. We can see from the figure that the wake structures are pretty complicated and the 

computational grid is dense enough to resolve the flow field of this case.  

(a) (b) 
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Table 2-6. Cycle averaged hydrodynamic performance 

  310TC      310PWC   

Body -43.37 58.32 

Dorsal Fin -6.48 4.63 

Anal Fin -5.77 5.57 

Caudal Fin 57.50 141.85 

Resultant 1.88 210.37 

 

 

Figure 2-18. Three-dimensional wake structures of the steady swimming baby trout. (a) 

Lateral view; (b) ventral view; (c) perspective view. 

 

(a) (b) 

(c) 
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2.4. Gradient-based Computational Optimization 

Conventional high-fidelity computational optimization methods [81, 86] are costly, 

especially for 3D cases. In order to keep durability, one has to compromise between model 

fidelity and computational effort. Here, a gradient-based parallel curve searching optimizer 

is developed in the current work.  A computational optimization frame (Figure 2-19), 

which consist of a kinematics generator, a high-fidelity flow solver, and the parallel curve 

searching optimizer, is built. The computational cost of finding the searching direction and 

the step size are greatly reduced with the help of this frame. 

The first two parts of the optimization frame contain computational models of flapping 

propulsors (mathematical propulsor models or low dimensional models from SSVD 

analysis) and evaluations of aero/hydrodynamic performance via direct numerical 

simulations (DNS), while the third part calculates searching direction and step size. The 

procedure starts with perturbing design variables (simplified morphological parameters or 

SSVD modes amplitudes/phases) to calculate searching direction. This step is time 

consuming due to our high-fidelity aero/hydrodynamic performance evaluation method 

(DNS). Hence a parallel computing algorithm is applied to greatly reduce the 

computational cost. The parallel computing algorithm is the best fit to our problems since 

the number of design variables is limited by either building simplified mathematical 

propulsor models or constructing low dimensional models based on dominant SSVD 

modes. Optimization step size is then determined by a newly developed inexact curve 

searching (ICS) method, which also greatly reduce the computational cost comparing to 

the conventional line search method. Those design variables are then updated and sent to 
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DNS solver for the next iteration. This process is continued until an optimal design is 

obtained. 

 

Figure 2-19. A schematic of the computational optimization frame. 

 

2.4.1. Sequential Quadratic Programming (SQP) 

Sequential quadratic programming method is used to obtain the searching direction of 

the optimization process. We start by defining the decent functions as combinations of 
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aerodynamic performance from DNS solver (
FC  or /F PWC C ) and penalties from 

constraints of design variables: 

    
 

1

/ 2
F

i

F PW

C RV i

C C RV i

   
  

   

x
x

x
  (22) 

where i  denotes the case number ( 1i   for aero/hydrodynamic force optimization and 

2i   for propulsive efficiency optimization), x  is the design vector, 
FC  and PWC  denote 

average aero/hydrodynamic force coefficient and power coefficient over several flapping 

cycles, R  is a strictly positive number called the penalty parameter (initially specified by 

the user) and may change during the iterative process,  V x  is either the maximum 

constraint violation defined as: 

  1 2 1 2max 0; h , h , ..., h ; , , ...,p mV g g g           (23) 

where h  and g  are equality and inequality constraint functions, the subscripts denote the 

index of those constraint functions. In subsequent iterations, the penalty parameter R  is 

updated flowing the rules: 
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 


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 
  (24) 

where r  is the sum of all of the Lagrange multipliers ( iu  and iv ). 

The searching direction is then determined by quadratic programing (QP) sub-problem, 

which itself is an analytical minimization problem: 
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where f  represents the cost function of this sub-problem, d  is the searching direction to 

be solved, c  denotes gradient vector, N  and A  are gradient matrices of equality and 

inequality constraint functions respectively, e  and b  are negative values of equality and 

inequality constraint functions, H  denotes hessian matrix. Equation(25) can be solved 

along with Lagrange Multiplier u  using KKT optimality condition. 

The gradient vector c  of the objective function is given by:  

 
1 2 3

, , ......i i i
i

x x x

   
     

   
c   (26) 

where kx  are the components of design vector x  (design variables). The components of 

the gradient vector are then evaluated numerically by computing the objective function for 

a perturbation of all of the design variables one at a time. Note that the evaluation of these 

vector components requires an unsteady flow solution over a few periods of the flapping 

motion until a periodic flow behavior is reached. The Hessian matrix H , which contains 

2nd order derivative information of the objective function defined in equation(22), is 

approximated and updated by Quasi-Newton Hessian Approximation (QNHA) method [99] 

for each optimization iteration.  

Once the desirable searching direction d  is obtained by solving the minimization 

problem defined in equation(25), a small step in this direction is taken to update the design 

variables. The step size is determined by step size sub-problem, in which a newly 
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developed inexact curve searching method (ICS) is applied. The whole process is continued 

in an iterative manner until a local minimum is reached.  

 

2.4.2. Inexact Curve Searching (ICS) 

The conventional line search method for determining the step size can be quite time-

consuming, especially when using a high-fidelity performance evaluation tool (DNS 

solver). Therefore, an inexact curve searching (ICS) method is developed in the current 

work. The basic concept of the method is that the step size should not be too large or too 

small, and there should be a sufficient decrease in the cost function value along the 

searching direction.  

After the searching direction is obtained, an initial step size is determined as:  

  
2

0

1

/
n

i i

u l

i

b b 


  d   (27) 

where 0  is the initial step size, 
i

ub  denotes the upper bound of the thi  design variable, 
i

lb  

denotes the lower bound of the thi  design variable, n  stands the total number of design 

variables, d  is the searching direction vector,   is the initial step size ratio, which is 

chosen as 0.1 for the cases in the current work. The initial step size is then substitute to the 

following equation to evaluate its validity: 

    0 0     x d x d   (28) 
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where   is the decent function defined in equation(22),   is a specified constant between 

0 and 1, which is chosen as 0.5 in the current work. If equation(28) is true, 0  is the desired 

step size. Otherwise, a new searching direction *
d  is recalculated using the updated design 

vector 
*

0 x x d . Also, a new step size is updated as 
*

0 0 / 2  . The *
x , *

d , and 
*

0  

are then substituted to equation(28) to check the validity of 
*

0 . The process is iterated until 

equation(28) is evaluated to be true, and the desired step size is found then. 

 

2.4.3. Validation: Optimization of a 2D Hovering Plate with Dynamic Trailing-Edge 

Flap on Lift Production 

In this section, computational optimization of a 2D hovering plate with dynamic 

trailing-edge flap is performed. The problem definition regarding the plate modeling and 

the corresponding computational setup can be found in previous work done by Li, et al. 

[100]. The objective function of the validation case is chosen to be the cycle averaged lift 

coefficient LC , and the design variables are the trailing-edge flap deflection amplitude   

and the corresponding phase difference with respect to the leading-edge pitching motion. 

The optimization frame is validated by comparing the optimal configuration of the design 

variables with the results of separately performed parametric studies. 

Figure 2-20 shows the parametric results along with the optimization convergence 

histories for comparison. Two optimization cases (Start 1 and Start 2) with different initial 

guesses of the design variables are performed. We can see from the figure that both cases 

converges to the same optimum location, which is exactly where the maximum LC  can be 
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found in the parametric studies contour. The paths of the convergence histories show 

curved shapes, and the number of iterations and performance evaluations are similar 

(around 12 for both cases). Those are due to the nature of the ICS method applied in the 

current optimizer. For the conventional line search algorithms, the number of performance 

evaluations are around 50 for this case. The computational cost is greatly reduced with the 

help of the current optimization frame. 

 

Figure 2-20. Parametric study results showing the effect of trail-edge flap deflection 

amplitude   and the corresponding phase difference   on the aerodynamic lift 

production. The optimization convergence histories are also shown for comparison. 
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3. Computational Optimization of Flexible Wing 

Aerodynamic Performance in Flapping Motion 

 The recent surge of interest in the development of micro aerial vehicles has led to 

several efforts to develop prototype micro-flapping robotic devices inspired by insects or 

birds. However, design of high-performance wings is still under investigation. For example, 

cambered wings have been observed in many animal flights, it refers to the asymmetry 

between the top and bottom curves of a wing in cross-section. Among flying animals, birds 

and bats can actively camber their wings for aerodynamic force modulation [101, 102]. 

Insect wings also demonstrate a variety passive cambering patterns as a result of wing 

flexural stiffness, kinematics, and fluid-structure interactions [103, 104]. However, studies 

on the optimal dynamic change of wing camber and its unsteady aerodynamic effect are 

very limited and lack systematic approaches. In this work, a direct numerical simulation 

(DNS) based computational optimization frame is developed to investigate the optimal 

setting of wing camber parameters during a leading-edge driven flapping flight. In details, 

a finite-difference based immersed boundary solver for incompressible flows is used to 

calculate the aerodynamic performance of the 2D flapping wing and its unsteady flows. A 

gradient-based optimization frame is used to determine the optimal morphological 

parameters of flapping wings to achieve the desired wing performance. Results aim to 

provide insights into the effect of camber and its optimal formation for a wing in flapping 

motion. 
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3.1. Problem Definition 

A gradient based non-linear optimizer has been developed to get the optimal 

configurations of wing morphological parameters (design variables) which can have 

maximum thrust production or propulsive efficiency. A second-order finite-difference 

based immersed-boundary solver [97] is used to get those aerodynamic forces. Sequential 

quadratic programming method is used to get the searching direction and inexact curve 

searching method is used to get the searching step size. As shown in Figure 2-19, the 

optimization chain includes three major parts: a DNS solver (to evaluate the cost function), 

a kinematics generator, and an optimizer. The procedure is based on the maximization of 

mean thrust production or propulsive efficiency. This is achieved by the modification of 

design variables such as pivot position, trailing edge deflection amplitude, or phase of the 

trailing edge deflection. The optimizer provides the testing value of design variables to the 

kinematics generator to get the inputs of the DNS solver. Aerodynamic performance is then 

evaluated and used as the value of cost function. This process is continued until an optimal 

design is obtained.  

Figure 3-1 shows a schematic plot of the flexible wing modeling. The flapping wing 

kinematics is defined as:  
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  (29) 

where f  is the flapping frequency, y  is the leading-edge (LE) translation,   is the LE 

pitching angle, yA  is the LE flapping amplitude, m  is the LE pitching amplitude. The 

dynamic wing morphing is modeled by adding a pivot point, about which the trailing-edge 
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(TE) portion of the wing is rotate. The location of the pivot point and the corresponding 

dynamic wing morphing are defined as: 
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  (30) 

where RP  is the pivot ratio,   is the TE deflection angle, m  is the TE deflection 

amplitude,   is the TE deflection phase difference with respect to the LE pitching motion. 

Three design variables describing the morphing wing kinematics are chosen as RP  , m , 

and   for the current work. It is worth noting that the curved wing shape, which is obtained 

via polynomial fitting of the LE, Pivot point, and the TE, is applied in the simulations. 

 

Figure 3-1. Schematic plot showing the modeling of the flexible wing. 
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The Reynolds number and Strouhal number applied in the current work are 200 and 

0.6, respectively. The definition of the two non-dimensional numbers are: 

 
/

2 /y

Re U c

St A f U









  (31) 

where c  is the wing chord length,   is the kinematic viscosity of the fluids. The 

aerodynamic performance of the wings is evaluated through thrust coefficient and power 

coefficient, which are defined as follows: 
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where 
TF  is the thrust force, P  is the aerodynamic power,   is the fluid density. As 

mentioned before, the thrust production and propulsive efficiency of the wings are 

optimized in the current work, which are the cycle averaged thrust coefficient ( TC ) and 

propulsive efficiency ( /L PWC C  ). 

 

3.2. Optimization of Thrust Production and Propulsive Efficiency 

Optimizations of thrust production and propulsive efficiency are performed in this 

section. Figure 3-2 and Figure 3-3 show the convergence histories of the design variables 

of these two optimization cases, which are denote as Opt TC  and Opt  , respectively. Two 

initial guesses are applied in the current work for both cases, and they lead to the same 

optimum design variables for both cases. The numbers of iterations are around 10, and the 

numbers of performance evaluations are around 12 for all cases discussed here.  
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Figure 3-2. Convergence histories of design variables (a) RP , (b) m , and (c)   of case 

Opt TC . 

 

 

Figure 3-3. Convergence histories of design variables (a) RP , (b) m , and (c)   of case 

Opt  . 

 

Figure 3-4 shows the time histories of aerodynamic performance of the two 

optimization cases along with a completely rigid wing case for comparison. We can see 

that the case Opt TC  shows largest amplitude of the thrust production among the three 

(a) (b) (c) 

(a) (b) (c) 
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cases, while the case Opt   presents lowest of that. However, the case Opt   shows lowest 

power consumption. It is worth noting that the aerodynamic performance are exactly the 

same during the downstroke and upstroke of the flapping motion for both optimum cases, 

while that show slightly difference for the Rigid case. 

 

Figure 3-4. Time courses (a) thrust coefficients and (b) power coefficients for the cases 

Opt TC , Opt  , and Rigid. 

 

Table 3-1 lists the cycle averaged aerodynamic performance for the two optimum cases 

and the case Rigid. Comparing to the case Rigid, the thrust production of the Opt TC  case 

is increased by 29.1%, and the propulsive efficiency of the Opt   case is increased by 

(a) 

(b) 



69 
 

36.2%. Dynamic camber formation can greatly improve the aerodynamic performance of 

the flapping wing.  

 

Table 3-1. Cycle averaged aerodynamic performance. 

Cases RP  m  (°)   (°) 
TC  PWC    

Opt TC  0.687 -23.5 -10.6 2.62 10.3 0.254 

Opt   0.315 25.2 -75.1 0.968 2.45 0.395 

Rigid N/A 0 N/A 2.03 6.99 0.290 

 

3.3. Wake Structures of the Optimized Wing Models 

The unsteady wake structures of the optimum cases and the case Rigid are discussed in 

this section. Figure 3-5 shows the corresponding results. We can see from Figure 3-5(a) 

that the case Opt TC  shows a typical 2S wake structure. Two counter rotating vortices are 

generated in a complete wing stroke. The two vortices induce a local flow jet points to the 

downstream direction, thus produce thrust force. Differently, for the case Opt   (Figure 

3-5b), a typical 2P wake structure can be identified. Two pairs of counter rotating vortices, 

which induce two local flow jets pointing to the downstream direction, are generated in a 

complete wing stroke. The lower and upper vortex streets of the two optimization cases 

present symmetry property, which can be related to the symmetry aerodynamic 

performance of the two cases shown in Figure 3-4. For the case Rigid, a 2S wake structure 

with asymmetric property can be observed. In each stroke, the two counter rotating vortices 
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induce a flow jet more pointing to the vertical direction, which degrade the propulsive 

performance.   

 

Figure 3-5. Wake structures of the cases (a) Opt TC , (b) Opt  , and (c) Rigid. The 

contours show the normalized vorticity. 

(a) 

(b) 

(c) 
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Figure 3-6. Mean flows of the cases (a) Opt TC , (b) Opt  , and (c) Rigid. The incoming 

flow velocity is subtracted from the mean flows.  

 

(a) 

(b) 

(c) 
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We further study the mean flows of these three cases, and the corresponding results are 

shown in Figure 3-6. Due to the different wake structures discussed above, the mean flows 

of the three cases show different characteristics. For the case Opt TC , very strong mean 

flow, which corresponds to the largest thrust production of this case, can be observed. 

However, the mean flow width expands a small amount in the far wake region, which 

suggests lower propulsive efficiency. For the case Opt  , a weak mean flow with no wake 

expansion can be identified. This wake structure suggests a low thrust production but high 

propulsive efficiency of the wing. No wake deflections can be observed in the two optimum 

cases. For the case of Rigid, a moderate mean flow with obvious wake deflection can be 

observed, which suggests low propulsive performance. In summary, the flow modulation 

due to the dynamic camber formation could greatly improve the aerodynamic performance 

of the wing.  

 

3.4. Chapter Summaries 

A gradient-based optimization frame has been conducted to accomplish the optimal 

dynamic camber control of 2D flexible wing for maximizing the thrust production and 

propulsive efficiency. Direct Numerical Simulation (DNS) is used to gain unsteady flow 

around the flapping wing and its aerodynamic performance. Wing morphological 

parameters ( RP , m ,  ) are defined and two optimum sets (case Opt TC  and case Opt  ) 

of those parameters are found. Results show that the thrust production of the case Opt TC  

is increased by 29.1%, and the propulsive efficiency of the case Opt   is increased by 36.2% 

comparing to a case of a completely rigid flapping wing (case Rigid). The wake structures 
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of these cases show different characteristics. Typical 2S and 2P wake structures are 

identified in the case Opt TC  and case Opt  , respectively. For the case Rigid, a 2S wake 

structure with asymmetric property can be observed, which corresponds to obvious 

deflection of the mean flow. The flow modulation due to the dynamic camber formation 

could greatly improve the aerodynamic performance of the wing. 
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4. Computational Optimization of Dynamic Twisting of 

Pitching-rolling Plates on Aerodynamic Performance 

Natural swimmers/flyers are all equipped with deformable fins/wings, which can 

actively or passively produce deformations in both spanwise and chordwise [105-108]. It 

is reported that such deformations can provide extra hydrodynamic/aerodynamic benefits, 

including the increment in force production and the decrement in energy consumption 

[109-111]. The flexible propulsors are of great interest to both scientific study [112-114] 

and the engineering design [115-117].  

Flapping motion is widely adopted in the biological propulsion system, such as fish 

pectoral fins and insect/bird wings. A lot of previous studies on the flapping motion are 

based on a simplified kinematic model of pitching-plunging [118-120], which assumes 

uniform motions in spanwise direction. However, a real fin/wing in nature presents 

pitching-rolling motion, in which the plunging motion is replaced by a rolling of the 

fin/wing about its root. The presence of rolling motion will enlarge the three-

dimensionality of the problem, which may be important to the flow features or the 

performance of the propulsors. Several experimental works are performed previously to 

study the performance of pitching-rolling plates with different shapes [121, 122]. They 

found that twisting plays an important role in the performance of the pitching-rolling plate. 

In this work, our purpose is to explore the effects of both spanwise and chordwise 

morphing in a flapping propulsor. A deformable plate model in pitching-rolling motion, 

which is to mimic the propulsor flapping around its root, is built. The performance and 

wake structure related to the deformable motion are discussed in detail. The paper will be 
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organized as follows. The methodology applied by this work will be introduced first. Next, 

we will present results of rigid pitching-rolling plates with different pitching amplitudes. 

After that, the plate surface morphing effects will be discussed. At last, the conclusion of 

this work will be presented. 

 

4.1. Problem Definition 

The rigid plate kinematics, which are the base kinematics of this work, are governed 

by the following equations: 
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where   is the rotating angle and   is the plate pitching angle. m  and m  are the 

corresponding amplitudes of these two angles. In this work, m  is chosen to be 90  and 

m  varies between 15  and 60 . Figure 1 shows the schematic of this rigid plate 

kinematics. The plate’s aspect ratio applied in this work is 2AR .  

Plate deformation patterns, which are twisting and bending, are modeled in both time 

and space. For twisting, as shown in the following equations, Fourier series with 2N   

are used in the temporal modeling: 
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where   is twisting index. T  is the flapping period. ia  and ib  are the corresponding 

Fourier coefficients, which are determined via solving the following system of equations: 

          1 2 1 20 0; ; ; 0; 0D U

m mt t t t                        (35) 

where 1t  and 2t  denote the timings of maximum twisting in downstroke and upstroke 

respectively. D

m  and U

m  denote twisting index amplitudes in downstroke and upstroke 

respectively, which are control parameters of twisting. 

 

Figure 4-1. Schematic plot showing the definitions of plate kinematics. 

 

For the spatial modeling of plate twisting, local twisting angles follow a linear 

distribution. It is based on observations of real insect wings/fish fins deformations through 
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high-speed cameras [108]. Figure 2(a) shows the schematic plot of twisting modeling. The 

following equations show the spatial modeling of wing twisting: 

 
100

s

s
    (36) 

where s  denotes the plate span location ( 0 100s   ). 

 

Figure 4-2. Schematic plot showing the modeling of plate twisting. 

 

For all cases discussed in the results section, the twisting index and inflexion angle 

amplitudes in downstroke and upstroke are set equal with each other, in order to reduce the 

parameters involved in the parametric study. In summary, we have two parameters ( m  

and  ) to control the deformations of the pitching-rotating plates. We will discuss 4 cases 

in the following sections, which are rigid plate cases with different pitching amplitudes. 

Based on the results of those 4 cases, we choose one of them to be the baseline case and 

find optimal configurations of plate surface morphological parameters on the aerodynamic 

performance based on this case. 
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4.2. Computational Setup 

Figure 3 shows the stretching grids configuration of this work. The computational 

domain has the dimension of 20 20 20  , and the dense region has the dimension of 

8.0 6.0 2.2  . The number of grids used in the dense region are 296 224 72  . Along the 

plate chord, there are no less than 35 grids are used to resolve the moving boundary. The 

non-dimensional incoming velocity U  is fixed as 1, and zero gradient boundary condition 

is applied to the downstream boundary. No-slip boundary condition is applied at the plate 

surface. As defined in the following equations, the Reynolds number and Strouhal number 

of all cases discussed below is fixed as 200 and 0.6, respectively.  

 Re ,
U c fA

St
U





     (37) 

Where c  is mid-chord length,   denotes kinematic viscosity, f  is flapping frequency and 

A  stands for peak-to-peak amplitude measured at the mid chord. 

 

Table 4-1. Pitching-rolling plate cases without surface morphing. 

Cases m  m  

1 90° 15° 

2 90° 30° 

3 90° 45° 

4 90° 60° 
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Figure 4-3. Stretching grids configuration used in the current work. 

 

4.3. Pitching-rolling Plate without Surface Morphing  

In this section, we first present the results of rigid pitching-rolling plates with different 

pitching amplitudes. And then, the effects of chordwise twisting and spanwise bending, 

which are added to a baseline rigid pitching-rolling plate with pitching amplitude equals to 

30°, will be examined. Finally, the mechanism for the efficiency improvement of twisting 

will be discussed. We use thrust coefficient ( TC ) and power coefficient ( PWC ) to quantify 

the performance of the pitching-rolling plate, which are defined as, 
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Where xF  is the thrust force; outP  is the power output;   is the density of the fluid and S  

is the area of the plate. The time averaged TC  and PWC  over one flap cycle during the 
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steady state are denoted by TC  and PWC  respectively. The propulsive efficiency is 

quantified by /T PWC C  in this paper. 

Figure 4-4 shows the time variation of the thrust and power coefficients for various 

pitching amplitudes with 0.6St  and Re 200 . The plots show the fifth cycle in the 

simulations, by which time the flow has reached a stationary state. For all cases except for 

the case with 60m   , the thrust peaks twice in each cycle at the time instant in the cycle 

when the foil is near the center of its trajectory, and so as the power coefficients peaks. In 

the 60m    case, double peaks of thrust and power coefficients appears in each half stoke, 

which may be the results of wake capture in higher pitching amplitude cases, while lower 

pitching amplitude cases cannot interact with the wake of previously shed vortices due to 

limited motions. 

 

Figure 4-4. Thrust (a) and power (b) coefficient of the pitching-rolling plate with different 

pitching amplitudes (from 15  to 60 ). 

 

(a) (b) 
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Table 4-2. Time averaged value of TC , PWC , and /T PWC C  of rigid pitching-rolling plate 

during the fifth flapping cycle. 

m  15  30  45  60  

TC   1.98 2.84 2.34 0.86 

PWC  21.37 14.10 7.86 5.45 

/T PWC C  0.093 0.202 0.298 0.158 

 

Table 4-2 listed cycle averaged values of thrust and power coefficients, and also the 

propulsive efficiencies, which defined as thrust over power ratio. It is found that the case 

with 30m    has the highest thrust production while the propulsive efficiency is 

relatively high among the 4 cases. Previous study [121] on a pitching-rolling plate at high 

Reynolds number also found that the pitching amplitude variation can change the 

propulsive performance in terms of both the thrust and the propulsive efficiency. 

Figure 4-5 shows the flow features of the case with 30m   . A thrust producing wake 

can be identified in Figure 4-5(a). Vortex pairs with different directions, or say, vortex 

rings, can be observed, which will induce local jets (red arrow) to the direction opposite to 

the thrust direction. Figure 4-5(b) shows vortex structures in three-dimensional space. The 

shed trailing edge vortex (TEV), along with the tip vortex (TV), connect with the newly 

developing leading edge vortex (LEV) and root vortex (RV) to form a vortex ring, which 

will shed right after the stroke reversal. Those vortex rings will induce flow jets as shown 

in Figure 4-5(a). The flow structures of a typical pitching-rolling plate is similar to that of 

a pitching-plunging plate [118]. 
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Figure 4-5. Flow structure of a rigid pitching-rolling plate (pitching amplitude is 30 ) at 

mid-downstroke. (a) contour of z  on the vertical cut slice at 2/3 span away from the root; 

(b) perspective view of the 3D flow. The vortical structures are identified by the iso-surface 

of Q-criteria (Q=1.0). 

 

4.4. Pitching-rolling Plates with Optimal Surface Morphing 

In the previous sub-section, we compared the performance of rigid pitching-rolling 

plates with different pitching amplitude ( m ) and found that the case with 30m    has 

the highest thrust. In this sub-section, we use this case as the baseline case, and investigate 

optimal configurations of dynamic twisting of the plates on aerodynamic performance. The 

corresponding objective functions are chosen as the cycle averaged thrust coefficient (case 

Opt TC ) and the propulsive efficiency (case Opt  ).  

(a) (b) 
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Figure 4-6. Thrust (a) and power (b) coefficient histories of the pitching-rolling plates with 

optimized dynamic twisting. Results of a completely rigid plate (case Rigid) are also shown 

for comparison. 

 

Figure 4-6 and Table 4-3 shows the performance comparison of the two optimization 

cases and case Rigid. First, we compare the results of the case Opt TC  to the case Rigid. 

According to Table 4-3, it is found that the thrust increment is 6% and the efficiency 

increment is 8.9%. This result demonstrates that the effect of dynamic twisting on the thrust 

production is relatively small since the choice of the plate pitching amplitude ( 30 ) is 

already in an optimal region according to the parametric studies discussed in previous 

section. 

The effect of dynamic twisting on propulsive efficiency is more sensitive. The results 

of case Opt   show that the propulsive efficiency improved by 43.1% comparing to that 

of the case Rigid, while the corresponding thrust production only drops by 14.8%. This 

(a) (b) 
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results demonstrate that dynamic twisting is critical for the propulsive efficiency of the 

pitching-rolling plates. 

 

Table 4-3. Time averaged value of TC , PWC , and /T PWC C  of rigid pitching-rolling plate 

with optimized dynamic twisting. Results of a completely rigid plate (case Rigid) are also 

shown for comparison. 

 Opt TC   Opt    Rigid 

TC   3.02 2.42 2.84 

PWC  13.7 8.38 14.10 

/T PWC C  0.220 0.289 0.202 

 

The performance of the plate is directly related to the induced flow structures. Here, 

we compare the flow features of the two optimization cases (Opt TC  and Opt  ). As shown 

in Figure 4-7, it is found that the surface morphing of the plate do not change the main 

flow features of pitching-rolling plates. Two sets of inclined vortex ring loops can be 

observed in both cases. The mean flows of both cases show the same feature, i.e., two horn-

like backward jets is induced by the vortex rings in the downstream wake. However, the 

difference is also obvious. The inclination angles (   in Figure 4-7b) of the wake in these 

two cases are quite different. The value of   in case Opt   is only 12.5  which is only 

35% of that in case Opt TC . This leads to more concentrated backward jets in the case Opt 
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  than that in the case Opt TC , which is mainly responsible for the propulsive efficiency 

improvement. 

 

Figure 4-7. Side view of the flow structures of (a) case Opt TC  and (b) Opt  . Mean flow 

(incoming flow subtracted) contour of (c) case Opt TC  and (d) Opt  . 

 

4.5. Chapter Summaries 

In this work, computational optimization of dynamic twisting of pitching-rolling plates 

on aerodynamic performance is performed. First of all, we build a morphing plate model, 

which includes dynamic chordwise twisting in pitching-rolling motion inspired from 

(a) (b) 

(c) (d) 


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biological propulsors. Thrust production, power consumption and flow structures of the 

model plates are obtained through an in-house immersed boundary method based CFD 

solver. Rigid pitching-rolling plates with different pitching amplitudes, varied from 15˚ to 

60˚, are studied. The results show that the case with pitching amplitude of 30˚ generates 

the highest thrust. Using this case as the baseline, optimal configurations of dynamic 

twisting for maximizing the thrust production and propulsive efficiency are found. The 

results show that the thrust production and propulsive efficiency of optimized plates can 

be improved by 6% and 43.1%, respectively. Observations on the unsteady flow field of 

optimized cases show that the performance enhancements correspond to improved strength 

and attachment of leading-edge vortex. 
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5. Aerodynamics of Low Dimensional Models and 

Computational Optimization of a Hovering Dragonfly 

Wing 

In previous chapters, we have used two different approaches to study the 

aero/hydrodynamics of flapping propulsors. We first perform computational optimization 

on canonical model problems, including a 2D pitching-plunging morphing plate and a 3D 

pitching-rolling morphing plate. After that, a physics-based methodology is used to study 

the wing aerodynamics of a real maneuvering hummingbird. In this chapter, the two 

approaches are combined together to study the wing aerodynamics of a hovering dragonfly.  

 

5.1. Data Acquisition and Computational Setup 

As introduced in section 2.1.3, the motion of a hovering dragonfly is reconstructed 

using the high-speed photogrammetry and the joint-based reconstruction technique. We 

focus on the forewing motion and its associated aerodynamics in this section. The 

spherical-coordinates-based singular value decomposition (SSVD) method is used to 

decompose the complex forewing motion. As shown in Figure 2-7, the first three SSVD 

modes contain 96.0% of the original motion. Actually, only the first two dominant modes 

contain 93.1% of the original motion and their motions are shown in Figure 2-8(b) and (c). 

Low dimensional models are then reconstructed based on the first three SSVD modes, and 

numerical simulations regarding those models are conducted to study their associated 

aerodynamic performance and wake structures in the following sections.  
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Figure 5-1 shows the constructed realistic full-body model immersed in the three-

dimensional non-uniform Cartesian grid. Y is the vertical direction with +Y pointing 

upward. The wings in this study are modeled as deforming membranes, and the body is 

also deformable and both of them are controlled by virtual joints. 

 

Figure 5-1. The constructed realistic wing-body model immersed in the three-dimensional 

non-uniform Cartesian grid. 

 

The boundary conditions applied in this study is described as follows. On all of the 

boundaries, gradients of all velocity components are set to zero. The final domain size 

normalized by the mean chord length c  is 20 20 20   and this large domain ensures that 

the boundaries do not have any significant effect on the computed results. As shown in 

Figure 5-1, the grid is designed to provide high resolution in the region around the body 

as well as the wake that is expected to develop below the body and wings. This grid was 
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developed in an iterative fashion starting from a sequence of coarser grids. Computed 

results on these earlier meshes were examined, and the resolution in selected regions 

increased until the key features such as forces and vortex structures became essentially 

independent of the grid. The final grid adopted here has 288 196 176   points. The grid 

size in all three directions are around 0.045 chord length, corresponds to 71 grids across 

the span and 22 across the chord-wise direction on the wing surface. 

Three additional simulations on different grids were carried out to assess the 

convergence of the computed flow. Simulation 1 was carried out on a grid that had 25% 

more grid points than the baseline grid and simulation 2 was carried out on a grid with 25% 

fewer grid points than the baseline grid. Both of these simulations produced a maximum 

of 1% difference from the baseline in the mean lift and root-mean-square (R.M.S.) values 

of lift and drag. Finally, simulation 3 was carried out on a grid where the number of grid 

points in each direction around the wing were twice those in simulation 2. This simulation 

also produces mean lift and R.M.S. lift and drag that are within 1% of simulation 2 and 

taken together with the other simulations, provide clear proof of the grid convergence of 

the current results. 

 

5.2. Model Dimensionality Effects 

The aerodynamics of low dimensional models for the forewing of a hovering dragonfly 

is investigated in this section. Simulations have been carried out using the precise wing 

kinematics extracted from the experiments (this case is termed here as mode-all). The 

nominal conditions for the current simulation correspond to a wing Reynolds number of 
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about 1840 and a wing reduced frequency of 0.25, and it matches the real conditions of the 

hovering flight. Although the main focus of the current work is the analysis of the 

aerodynamic and performance of low-dimensional models based on SSVD modes, some 

key results for the mode-all case are also included here, since comparison with the mode-

all case is key to understanding the scaling of the aerodynamic performance as the 

dimensionality of the models is increased. All the results presented here have been obtained 

by simulating the flow over four wing strokes. In computing mean quantities, we have 

discarded the first stroke, and all plots of instantaneous quantities correspond to the third 

cycle in the stroke by which time the flow has reached a well-established stationary state. 

In the current study, we focus on the following low-dimensional models: mode 1, mode 

1+2, and mode 1+2+3.  All these gaits are studied at a Reynolds number of 1840 and a 

reduced frequency of 0.25. Thus, the dynamical similarity between the mode-all case and 

the low-dimensional models is maintained, and this allows us to isolate the effect of model 

dimensionality on the wing performance. 

 

5.2.1. Effect of Model Dimensionality on Aerodynamic Performances 

In this section, we describe the effects of increasing the dimensionality of the forewing 

motion of the hovering dragonfly on the aerodynamic performances. The effects of model 

dimensionality on the quantitative characteristics of the wing are investigated, including 

force production and lift economy. 

The time variations of lift, drag and power coefficients are presented for all the low-

dimensional gaits and compared to the mode-all case in Figure 5-2(a - c), respectively. 
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The force and power coefficient for a generic force F  and aerodynamic power P  are 

defined as: 
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where A  is the wing area;   is the air density; and refU  is the reference velocity, which 

is chosen as the average velocity of the wing mid chord. 

Several observations on how each SSVD mode contributes to the performances of the 

wing can be made from these results. It should be noted that only mode 1 can be simulated 

by itself. However, given the underlying nonlinearity of the flow, the contribution of mode 

2 and mode 3 are investigated by considering the differences in the performances from the 

lower-level gait. Thus, the effect of mode 2 on performance is obtained by analyzing the 

differences between the performances of the mode 1 and mode 1+2 cases. Similarly, the 

effect of mode 3 on wing performances can be assessed by comparing the performances of 

the mode 1+2+3 case with that of the mode 1+2 case. 

As we can see in Figure 5-2 that, the aerodynamic performances are very similar for 

all cases except for the mode 1 only case. For the lift production, Figure 5-2(a) shows that 

all cases produce positive lift except for mode 1 case, which negative lift can be observed 

during the upstroke. Also, the lift production for mode 1 case during downstroke is much 

smaller (about 2.5 times smaller) than other cases. For the drag production, Figure 5-2(b) 

shows that the drag is much higher for mode 1 only case during the downstroke. For 

upstroke, the drag productions are very similar for all cases. These are because the lack of 

wing rotation about the span axis, which is included in the deformation mode (mode 2). 
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During the downstroke, the wing angle of attack for mode 1 case is much greater than other 

cases, and it leads to less lift and more drag production (Figure 5-2b). During the upstroke, 

the wing angle of attack for mode 1 case is greater than 90 degrees due to lack of wing 

rotation about the span axis, and negative lift produces at this phase. The involvement of 

the deformation mode (mode 2) can greatly improve the lift production and reduce the drag 

produced by the wing. 

 

Figure 5-2. Comparison of the time course of aerodynamic performances between the 

Mode-all and low-dimensional gaits. (a) lift; (b) drag; (c) power. 

(a) (b) 

(c) 
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Table 5-1. Cycle averaged aerodynamic performance of the mode-all and low-

dimensional gaits. 

 * (%) 
LC  DC  PWC    Lift production 

(%) 

Mode-all 100 0.752 1.021 0.776 0.969 100 

Mode 1 84.7 0.149 1.464 1.087 0.137 19.8 

Mode 1+2 93.1 0.749 1.100 0.818 0.916 99.6 

Mode 1+2+3 96.0 0.750 1.082 0.813 0.923 99.7 

 

For the aerodynamic power histories (Figure 5-2c), we can see that all cases present 

two peaks during the cycle, and the amplitude of power consumption for mode 1 case is 

much greater than other cases at both down and upstrokes. This suggests that including the 

deformation mode (mode 2) can also reduce the power consumption of the dragonfly.  

Cycle averaged aerodynamic performances are listed in Table 5-1 for mode-all and 

low dimensional wing gaits, including the lift economy    that is defined as /L PWC C  . 

We can see from the table that mode 1+2 is a good approximation of the original wing 

motions (Mode-all). It contains only two dominant SSVD modes, and the motion is 

recovered over 90%. The associate aerodynamic performances of mode 1+2 case are very 

similar to the mode-all case as. The lift production is recovered 99.6% of the original 

motion.  
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5.3.2. Effect of Model Dimensionality on Vortex Structure 

In this section, we describe the effect of increasing the dimensionality of the wing 

motion on the three-dimensional vortex structures. We first focus on the qualitative features 

of the flow for these low-dimensional gaits and subsequently address the effect of model 

dimensionality on the quantitative aerodynamic characteristics of the wing, including 

leading edge vortex circulation distribution and time history. 

 

Figure 5-3. Wake structures for the (a) mode-all, (b) mode 1, (c) mode 1+2 and (d) mode 

1+2+3 cases. The associate time instance is t/T=0.25. 

 

(a) (b) 

(c) (d) 
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Figure 5-3 shows the vortex structures at the mid downstroke (t/T=0.25) for the mode-

all, mode 1, mode 1+2 and mode 1+2+3 cases. The vortex structures are identified by 

plotting contours of the ‘swirl strength’ which is the magnitude of the imaginary part of 

the complex eigenvalue of the velocity deformation tensor [123, 124]. In these figures, the 

dragonfly body is shown for visualization purposes only and is not included in the 

simulations. Figure 5-3(a) shows the vortex structures of the mode-all case. One of the 

most visible vortex structure at this time instance is the developing vortex ring that forms 

by connecting leading edge vortex, newly formed tip vortex, trailing edge vortex and root 

vortex. Also visible are the previously shed tip vortex and vortex ring just below the newly 

formed vortex ring. The previous shed vortex ring associated with the previous wing stroke 

has convected further downstream by this time. Far wake structures, which can be observed 

approximately one body length below the wing, are consist of many small vertices with 

slender shape due to the dissipation effect.  

Figure 5-3(b) shows the vortex structures of the mode 1 only case. The most significant 

difference from the mode-all case is that the expected newly formed vortex ring cannot be 

identified. Instead, a very large previous shed tip vortex can be observed. Also, the 

previously shed vortex ring is not well connected. Far wake structures disappear due to 

relatively small downwash. For the wake structures of mode 1+2 and mode 1+2+3 cases 

(Figure 5-3c and d), all flow features that observed in mode-all cases can be identified. 

Differences are located in the far wake structures. The far wake structures of mode 1+2 

case are smaller than the mode-all and mode 1+2+3 cases, and the latter two cases present 

similar flow structures in the far wake. 
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Figure 5-4 shows the vortex structures at the end of the downstroke (t/T=0.5) for the 

mode-all, mode 1, mode 1+2 and mode 1+2+3 cases. Figure 5-4(a) shows the vortex 

structures of the mode-all case. Different from the time instance of t/T=0.25, a strong tip 

vortex that extends from the tip of the wing all the way into the wake over a distance that 

roughly equals to the wing length. The newly formed vortex ring that is identified in Figure 

5-3(a) is well developed and ready to shed. The previously formed vortex ring merges to a 

vortex tube with one end connect to the newly formed vortex ring. The far wake presents 

similar slender structures as that of the time instance t/T=0.25.  

 

Figure 5-4. Wake structures for the (a) mode-all, (b) mode 1, (c) mode 1+2 and (d) mode 

1+2+3 cases. The associate time instance is t/T=0.5. 

(a) (b) 

(c) (d) 
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Figure 5-5. Wake structures for the (a) mode-all, (b) mode 1, (c) mode 1+2 and (d) mode 

1+2+3 cases. The associate time instance is t/T=1.0. 

 

Figure 5-4(b) shows the vortex structures of the mode 1 only case. Different from the 

mode-all case, the tip vortex structures are much more complex and stronger. No vortex 

rings can be clearly identified, including both the newly formed and previously shed ones. 

Also, the far wake structures have disappeared. For the wake structures of mode 1+2 and 

mode 1+2+3 cases (Figure 5-4c and d), similar conclusions can be drawn, including 

(a) (b) 

(c) (d) 
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similar newly formed vortex rings, and vortex tubes connect to vortex rings. However, the 

primary far wake structures of mode 1+2 and mode 1+2+3 cases are smaller to that of the 

mode-all case. 

Figure 5-5 shows the vortex structures at the end of upstroke (t/T=1.0) for the mode-

all, mode 1, mode 1+2 and mode 1+2+3 cases. Figure 5-5(a) shows the vortex structures 

of the mode-all case. Similar to the time instance of t/T=0.5, a strong tip vortex still can be 

observed. The previously shed vortex ring exists below the newly formed one, but not well 

connected. Far wake structures are similar to that of time instance t/T=0.25 and t/T=0.5. 

Figure 5-5(b) shows the vortex structures of the mode 1 only case. The most visible vortex 

structures in this case are the two strong vortex conglomerations, which are connected by 

complex newly formed tip vortex. Other than that, vortex rings cannot be observed. Instead, 

some small slender vortex structures can be observed aside from the lower vortex 

conglomeration. Similar to the other two time instances discussed above, no far wake 

structures can be identified. For the wake structures of mode 1+2 and mode 1+2+3 cases 

(Figure 5-5c and d), similar conclusions can be drawn.  

In summary, by plotting three-dimensional vortex structures of the four cases (mode-

all, mode 1, mode 1+2 and mode 1+2+3) at three different time instances (t/T=0.25, 0.5 

and 1.0), we qualitatively study the effects of model dimensionality on vortex structures. 

We conclude that mode 1 case shows completely different vortex structures than other 

cases. Very strong tip vortex and vortex conglomerations can be observed in the wake 

while the vortex rings and far wake structures are not showing. For the other three cases, 

primary vortex structures are very similar. Small differences can be observed in the far 

wake. 
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Figure 5-6. 2D slices of the leading edge vortex along the wingspan (10%~90%) at two 

time instances for (a, b) mode-all, (c, d) mode 1, (e, f) mode 1+2 and (g, h) mode 1+2+3 

cases. The corresponding vortex center are marked with green dots at each slice. The 

contours represent normalized span-wise vorticities. 

 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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To further study the effects of dimensionality on the flow field, especially in the near 

wake, we cut slices along the wingspan to see the leading edge vortex structures and 

measure the associated circulations evaluated at each slice. Figure 5-6 shows the 

corresponding results. We can see from the figure that for all cases, the LEV shapes 

gradually grow bigger from the wing root to wing tip. More importantly, the corresponding 

vortex structures are very different in mode 1 only case comparing to other cases. The LEV 

shapes are much bigger, and the associated attachment is bad in mode 1 case. For other 

cases, the LEV shapes are similar. Small differences can be observed near the wing tip 

region. At mid downstroke (t/T=0.25), the LEV attachment is pretty good for all cases 

except for the mode 1 only case. However, at mid upstroke (t/T=0.75), the LEV attachment 

is not as good as that at mid downstroke.  

Quantitative measurements related to the LEV attachments of all cases discussed above 

are conducted. We first determine the LEV centers based on vortex shapes shown in Figure 

5-6. After that, we measure the distances, which are named as lift-off distances, between 

LEV centers (green dots) and the wing surface to evaluate the LEV attachments. Figure 

5-7 shows the results at mid downstroke (t/T=0.25) and mid upstroke (t/T=0.75). For the 

mode 1 only case, the lift-off distances are much higher than other cases in both time 

instances, which indicates bad LEV attachment. In addition, the ranges of the lift-off 

distance are much wider in mode 1 only case for both time instances. It ranges from 0.15 

chords to 0.55 chords at mid downstroke, and from 0.20 chords to 1.09 chords at mid 

upstroke. Moreover, at mid downstroke, a small peak of lift-off distance shows up at 60% 

span and then drops at 70% span, which corresponds to the shed of LEV at 70% span in 

Figure 5-6(c).  
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Figure 5-7. Distances of LEV center to the wing surface (lift-off distances) at (a) t/T=0.25 

and (b) t/T=0.75 for mode-all, mode 1, mode 1+2 and mode 1+2+3 cases. 

 

For the mode-all, mode 1+2 and mode 1+2+3 cases, the lift-off distances are quite 

similar. The differences are less than 8% and 10% for each span location at mid downstroke 

and mid upstroke, respectively. More importantly, at both time instances, two distinct 

ranges of the lift-off distances can be observed. The first range is from 10% to 60% span, 

where the lift-off distance increases slowly. It suggests that the LEV attached pretty well 

with this range. The second range is from 60% to 90% span, where a rapid increase in lift-

off distance can be observed. The LEV is lifted by the tip vortex and starts to merges with 

the tip vortex at this point.  

The lift-off distances at mid downstroke are almost twice as much as that at mid 

upstroke for all cases and span locations, which indicates that the LEV attachment at 

downstroke is much better than upstroke. 

(a) (b) 
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Figure 5-8. LEV circulations at (a) t/T=0.25 and (b) t/T=0.75 for mode-all, mode 1, mode 

1+2 and mode 1+2+3 cases. 

 

Quantitative measurements of LEV circulation distributions along the wingspan are 

also performed for all cases discussed above based on the 2D flow slices shown in Figure 

5-6. Figure 5-8 shows the corresponding results at mid downstroke (t/T=0.25) and mid 

upstroke (t/T=0.75). The circulation is calculated and normalized as follows: 

 
*

S
ref

c
d

U
    S   (40) 

Where S  stands the surface of LEV shapes shown in Figure 5-6;   is vorticity on S ; 

refU  is reference velocity, which is chosen as the average velocity of wing mid chord; c  

denotes the mid chord length. We can see from Figure 5-8 that the LEV circulations of 

mode-all, mode 1+2 and mode 1+2+3 cases are very close. The difference is less than 7% 

at mid downstroke and 3% at mid upstroke. For all cases, the LEV circulations gradually 

(a) (b) 
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increase from the wing root to wing tip and drops a little bit near the wing tip region. 

Maximum circulation can be observed at around 80% span, and the corresponding value 

for mode 1 only case is about 1.5 and l.3 times larger than that of other three cases at mid 

downstroke and mid upstroke, respectively.  

In summary, we have studied three-dimensional flows around the forewing of a 

hovering dragonfly in this section, focusing on the effects of model dimensionality. Both 

qualitative observations and quantitative measurements are performed. The results show 

that for cases of mode-all, mode 1+2 and mode 1+2+3, the wake structures in both far and 

near field are similar, while significant differences can be found in mode 1 only case. 

Quantitative measurements of the flow field at two time instances (t/T=0.25 and 0.75) are 

performed in all cases, including the LEV lift-off distances and circulations. The results 

show the similarity in all cases except for the mode 1 only case, which has much greater 

LEV lift-off distances and circulations.  

 

5.4. Dominant Modes Effect 

In previous sections, we have both qualitatively and quantitatively studied the effects 

of dimensionality on the aerodynamics of the forewing motion of a hovering dragonfly. 

The results show that the low-dimensional model (mode 1+2), which consists of two 

dominant SSVD modes, flapping mode (mode 1) and morphing mode (mode 2), is a good 

approximation of the original motion (mode all). In this section, the aerodynamic effects 

of those two modes are investigated based on the mode 1+2 case. Modified low-

dimensional models, which show different amplitudes or phase difference of the dominant 
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modes, are constructed. The modes amplitude is modified by adding weight coefficients to 

the singular values associated with the dominant modes. Modified low-dimensional models 

are constructed as follows: 

 

1 2

1, 1,

1 2

1, 1,

1 2

1, 1, 1 1
1 1 1

2 2
2 21 2 12 2 2

m, m,

1 2

m, m,

1 2

m, m, 3 2

0

0

r r

n

M

n n
r r

m

U U

U U

U U
W V V

W V V
U U

U U

U U

 

 

 

 




 



 
 
 
 

    
     

    
 
 
 
 

A   (41) 

where MA  is the displacement matrix of the modified low dimensional model; U , V  and 

  are from the SSVD results correspond to mode 1 and mode 2; W  is a weight coefficient 

that applies to the singular value of the deformation mode ( 2 ) to control the amplitude of 

deformation. The effects of dominant modes are investigated through simulating unsteady 

flows of modified low-dimensional wing gaits, which contain the different weight of the 

deformation modes.  

Similar to previous studies on effects of wing dimensionalities, all cases here are 

studied at a Reynolds number of 1840 and reduced frequency of 0.25. Results present here 

have been obtained by simulating the flows over four wing strokes. In computing mean 

quantities, we have discarded the first stroke, and all plots of instantaneous quantities 

correspond to the third cycle in the stroke by which time the flow has reached a well-

established stationary state. 
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5.4.1. Effect of SSVD Mode 1 and Mode 2 Amplitudes 

In this section, we describe the Mode 1 and Mode 2 amplitudes effect of the forewing 

in hovering dragonfly on the aerodynamic performances. The effects of dominant modes 

amplitude on the quantitative characteristics of the wing are investigated, including lift 

production and lift economy. 

Several observations on how the mode amplitudes contributes to the performances of 

the wing can be made from these results. As we can see in Figure 5-9 and Figure 5-10, all 

the aerodynamic performance curves show two peaks (one peak in each half-stroke). For 

the Mode 1 amplitudes effect, we can see from Figure 5-9(a) and (b) that the differences 

between the five cases are small. Relatively large differences can be observed during the 

first half of the upstroke for the lift production. For the Mode 2 amplitudes effect on lift 

production (Figure 5-10a), the 100%, 125% and 150% mode 2 cases are similar. Other 

cases (50% and 75% mode 2) are not as good as these three. In downstroke, the peak values 

of lift coefficients for 50% and 75% mode 2 cases are about 1.13 and 1.07 times smaller 

than other cases, respectively, while in upstroke, they are about 3.32 and 1.36 times smaller. 

Also, the timing of the peak delays a little bit when more deformation is involved.  

For the Mode 2 effects on the power consumption (Figure 5-10b), the amplitudes of 

the curves decrease when more weight of Mode 2 is involved. In downstroke, the peak 

values of power coefficients for 50% mode 2 case are about 1.64 and 2.27 times greater 

than the 150% mode 2 case, respectively.  
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Figure 5-9. Comparison of the time course of aerodynamic performance for the wing gaits 

with different values of 1W , while 2 1.0W  . (a) Lift; (b) power. 

 

 

Figure 5-10. Comparison of the time course of aerodynamic performance for the wing 

gaits with different values of 2W , while 1 1.0W  . (a) Lift; (b) power. 

 

(a) (b) 

(a) (b) 
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Figure 5-11. Cycle averaged aerodynamic performance of wing gaits with different weight 

of SSVD Mode 1 and Mode 2. One weight coefficient ranges from 0.5 to 1.5 while another 

equals to 1.0. (a) Lift; (b) power; (c) lift efficiency.  

 

Cycle averaged aerodynamic performance are shown in Figure 5-11 for all cases 

discussed above. We can see from the plot that the lift production for the 100%, 125% and 

150% mode 2 cases are almost the same, and the 50% and 75% mode 2 cases only have 

63% and 86% lift production. More interestingly, the cases with more weight of Mode 2 

have a better lift economy. The best case, which contains largest weight of Mode 2 (150% 

(a) (b) 

(c) 
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mode 2), has the best lift economy. It can produce 98% of the lift with minimum energy 

consumption (  is 1.35 times greater than 100% mode 2 case). 

 

5.4.2. Effect of Phase Difference between SSVD Mode 1 and Mode 2 

The effect of phase difference between SSVD Mode 1 and Mode 2 is discussed in this 

section. Figure 5-12 shows the comparison of the time histories of aerodynamic 

performance for the low dimensional model Mode 1+2 with different phase difference. We 

can see that the phase difference shows great influence on the aerodynamic performance, 

especially for the lift production.  

 

Figure 5-12. Comparison of the time course of aerodynamic performance for the wing 

gaits with different phase difference between SSVD Mode 1 and 2. (a) Lift; (b) power. 

 

Figure 5-13 shows the cycle averaged aerodynamic performance of those cases. 

Interestingly, for all the aerodynamic performance, the optimal phase angle is around 20 , 

(a) (b) 
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which suggests that the phase angle of Mode 2 in the low dimensional model Mode 1+2 is 

already in an optimal region.  

 

Figure 5-13. Cycle averaged aerodynamic performance of wing gaits with different phase 

difference between SSVD Mode 1 and 2. (a) Lift; (b) power; (c) lift efficiency. 

  

5.5. Optimal Low Dimensional Models 

In this section, we investigate the optimal configurations of dominant modes on 

aerodynamic performance for the dragonfly wing. Figure 5-14 shows the convergence 

(a) (b) 

(c) 
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histories of the three design variables, 1W , 2W , and  . The objective functions are chosen 

as the cycle averaged lift coefficient and the lift efficiency. The initial guesses of the design 

variables correspond to the low dimensional model Mode 1+2 ( 1 1W  , 2 1W  , and 0  ). 

We can see from the figure that the two optimization case converge within 6 iterations. 

 

Figure 5-14. Convergence history for design variables (a) 1W , (b) 2W , and (c)   of the 

two optimization cases. 

Figure 5-15 shows the time histories of aerodynamic performance of the two 

optimization cases along with the case of low dimensional model Mode 1+2 for comparison. 

(a) (b) 

(c) 
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We can see that the case Opt LC  shows largest amplitude of the lift production during the 

downstroke among the three cases, while the case Opt   presents lowest of that. During 

the upstroke, the case Opt   shows largest amplitude of the lift production among the three 

cases, while the case Mode 1+2 presents lowest of that. For the power consumption, the 

case Opt   shows the lowest power consumption.  

 

Figure 5-15. Comparison of the time course of aerodynamic performance of Mode 1+2 

and optimized wing gaits. (a) Lift; (b) power. 

 

Table 5-2 lists the cycle averaged aerodynamic performance for the two optimum cases 

and the case Mode 1+2. Comparing to the case Mode 1+2, the thrust production of the Opt 

LC  case is increased by 7.7%, and the propulsive efficiency of the Opt   case is increased 

by 51.6%. The SSVD modes can greatly improve the aerodynamic performance of the 

flapping wing, especially for the lift efficiency.  

 

(a) (b) 
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Table 5-2. Cycle averaged hydrodynamic performance of Mode 1+2 and optimized wing 

gaits. 

Cases 
LC  PWC    

Mode 1+2 0.750 0.818 0.917 

Opt LC  0.808 0.730 1.107 

Opt   0.738 0.531 1.390 

 

Figure 5-16 shows the time averaged lift and power coefficients projected on the wing 

surface for the three cases. We can see from the figure that most of the lift production and 

power consumption are produced near the wing tip region for all cases. For the lift 

production distribution on the wing surface, case Mode 1+2 show a large concentrating 

zone, while the case Opt LC  show a smaller of that but the values are greater. It suggests 

that the optimized wing redistribute the surface pressure to let the wing tip generate more 

aerodynamic force. For the power consumption distribution on the wing surface, the case 

Mode 1+2 produces the most power, and the case Opt   produces the least. Largest 

difference of the power consumption locates at the wing tip. It implies that the optimized 

wing enhances the lift efficiency by reduce the power consumption near the wing tip region. 

Figure 5-17 shows the wake structure at the t/T=0.27 (near the mid downstroke) and 

t/T=0.73 (near the mid upstroke) of the three cases. We can see that the general wake 

structures are similar for all the cases. However, the case Mode 1+2 shows the largest wing 

tip vortex and the case Opt   shows the least of that. 
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Figure 5-16. Time averaged lift and power coefficients projected on the wing surface for 

the cases (a, b) Mode 1+2, (c, d) Opt LC , and (e, f) Opt  .  

 

We further cut flow slices along the wing spans for the three cases to study the leading-

edge vortex (LEV) structures. Figure 5-18 shows the corresponding results. We can see 

that the LEV structures are similar for the case Mode 1+2 and the case Opt LC . However, 

the LEV attachment for the case Opt LC  is better near the wing tip region. The case Opt   

shows smallest shapes of LEV structures among the three cases.  

(a) (b) 

(c) 

(e) 

(d) 

(f) 
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Figure 5-17. Wake structures for the (a) Mode 1+2, (c) Opt LC , (e) Opt   at t/T=0.27; 

wake structures for the (b) Mode 1+2, (d) Opt LC , (f) Opt   at t/T=0.73. 

 

(a) (b) 

(c) 

(e) 

(d) 

(f) 
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Figure 5-18. LEV structures for the (a) Mode 1+2, (c) Opt LC , (e) Opt   at t/T=0.27; LEV 

structures for the (b) Mode 1+2, (d) Opt LC , (f) Opt   at t/T=0.73. 

 

(a) (b) 

(c) 

(e) 

(d) 

(f) 
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Figure 5-19. TV structures for the (a) Mode 1+2, (c) Opt LC , (e) Opt   at t/T=0.27; TV 

structures for the (b) Mode 1+2, (d) Opt LC , (f) Opt   at t/T=0.73. 

(a) (b) 

(c) 

(e) 

(d) 

(f) 
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The tip vortex (TV) structures are also studied by cutting flow slices according to the 

TV tube directions. Figure 5-19 shows the corresponding results. We can see that the case 

Mode 1+2 presents largest TV, while the case Opt   shows the smallest of that. And the 

TV structure of the case Mode 1+2 is much more complicated comparing to the optimal 

cases, especially at the time instance t/T=0.73 (near the mid upstroke). In summary, the lift 

enhancement of the case Opt LC  correspond to the improved attachment of LEV near the 

wing tip region. The lift efficiency improvement of the case Opt   related to the reduced 

wing TV strength. 

 

5.6. Chapter Summaries 

In this work, the integrated methodology is used to study the complex morphing wing 

kinematics and the associated aerodynamics of a hovering dragonfly. SSVD analysis of the 

dragonfly’s forewing motion reveals that the complicated wing motion can be represented 

by a low dimensional model contains two dominant SSVD modes, a flapping mode and a 

morphing mode. The low dimensional model contains 92% of the original motion, and can 

recover up to 96% of the aerodynamic performance. Parametric studies on the aerodynamic 

role of the dominant modes reveal that the morphing mode amplitude and phase are critical 

control parameters to achieve high aerodynamic performance. We further investigate 

optimal configurations of dominant modes on aerodynamic performance for the dragonfly 

wing. The corresponding optimized low dimensional wing models, which can beyond 

biological levels of aerodynamic performance, are obtained. The associated flow 

mechanisms are found to be the improved LEV attachment and the reduced TV strength. 
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6. The Effect of Chordwise and Spanwise Flexibility on the 

Hydrodynamic Performance of Cetacean Propulsors 

6.1. Singular Value Decomposition for morphing kinematics analysis of orca fluke 

Singular value decomposition for morphing kinematics analysis (SMOKA) is applied 

to the fluke motion of a fast swimming orca. In order to focus on the analysis of fluke 

morphing, we first subtract the mean motion of the fluke, which is the rigid fluke 

kinematics (denoted as “ M ”), and then perform the decomposition on the remaining 

morphing fluke kinematics. 49 snapshots of the fluke motion for one complete flapping 

cycle are used in the decomposition. As expected, the SVD leads to 49 distinct singular 

values, and the spectrum for the first ten singular values is shown in Figure 6-1 along with 

a cumulative plot for the same data. The normalized singular value for the kth mode 
*

k  is 

defined as: 
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    (42) 

The singular values are normalized by the sum of all singular values. Therefore, the 

cumulative values sum to unity. A number of interesting observations can be made from 

this plot. First, the singular value spectrum shows three distinct ranges: the first between 

mode 1 - 3, in which we see a rapid decrease in the amplitude, the second from mode 3 - 5 

in which there is a much slower reduction in amplitude and, finally, the range from mode 

5 - 49 that has negligible (less than 1%) total contribution. The rapid initial decrease in the 

spectrum is significant which suggests that a small number of modes contain most of the 

essential features of the fluke gait. In fact, the cumulative values show that the first two 
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modes capture about 74.3% of the total motion. In fact, only the first mode captures close 

to 47.8% of the motion of the fluke, which is a clear demonstration of the ability of SVD 

to represent the dataset with the least possible number of modes. 

 
Figure 6-1. The SVD spectrum of the first ten modes for the orca fluke morphing 

kinematics. The left axis shows the normlized singular values, and the right axis shows the 

corresponding cumulative values. 

 

The gait corresponding to individual modes can be extracted as described above, and 

the surface conformations for each of these extracted modes are then constructed using the 

original fluke mesh with triangular elements. The first two modes are highly distinct and 

relatively easy to interpret, and we briefly describe the key qualitative features of these 

modes. Mode 1 involves very large deformation in spanwise direction, which is called the 

‘spanwise morphing’ mode. Mode 2 presents large deformation in chordwise direction, 

which is called the ‘chordwise morphing’ mode. Those two modes are primarily a result of 

flow-induced deformation. The rest of the modes in the spectrum are associated with 
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relatively small motions that are not very distinct. We, therefore, do not describe these 

individually.   

 

6.2. Effect of Spanwise and Chordwise Morphing on the Hydrodynamic Performance 

In this section, the effect of spanwise and chordwise morphing on the hydrodynamic 

performance of the orca fluke is discussed. We reconstruct five computational models 

based on the SVD modes described above. All models contain the rigid fluke kinematics 

( M ) and different combinations of the SVD modes are added accordingly. The first model 

is the rigid model (denoted as “Rigid”), which only contains the rigid fluke kinematics. 

The second model is the spanwise morphing only model (denoted as “S”), in which the 

spanwise morphing mode (SVD mode 1) is added. The third model is the chordwise 

morphing only model (denoted as “C”), in which the chordwise morphing mode (SVD 

mode 2) is added. The fourth model is the spanwise and chord morphing model (denoted 

as “SC”), in which both the spanwise and chordwise morphing mode are added. The fifth 

model is the original model (denoted as “Original”), in which all SVD modes are added. 

We lower the Reynolds number to 800 (based on the incoming flow velocity and the fluke 

chord length) in the following discussions due to the computational difficulties. However, 

the hydrodynamic performance and flow structures are dominated by the unsteady flapping 

motion of the orca fluke, and it is reasonable for us to perform the analysis in a lower 

Reynolds number.  

Figure 6-2 shows the time course of the thrust and power coefficient for the five 

computational models. For thrust production, we can see that all five cases show one peak 
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in downstroke and two peaks in upstroke. And largest difference happen during the 

upstroke just after the stroke reversal. For the power consumption, all five cases show one 

peak in downstroke and one peak in upstroke. And largest different happen near the middle 

of downstroke.  

 

 

Figure 6-2. Time course of the (a) thrust and (b) power coefficient for the five 

computational models. 

 

Time averaged values of the hydrodynamic performance are listed in Table 6-1. We 

can see that the case Rigid shows small thrust production and propulsive efficiency. The 

thrust production improves about 37.7% when the spanwise morphing is added, and the 

propulsive efficiency improves about 24.2% when the chordwise morphing is added. 

Consider the case SC, which contains both the spanwise and chordwise morphing, the 

thrust production is increased about 36.7% and the propulsive efficiency is increased about 

62.7%. The hydrodynamic performance of the case SC is very similar to the case Original, 
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which implies that other small modes (mode 3, 4, etc…) do not contribute much on the 

hydrodynamic performance. The performance improvements are due to the involvement 

of the fluke surface morphing modes (mode 1 and mode 2). 

 

Table 6-1. Cycle averaged hydrodynamic performance of the five computational models. 

Models *  (%) TC  PWC    (%) 

1: Rigid 0 0.215 1.067 20.15 

2: S 47.8 0.296 1.310 22.60 

3: C 26.5 0.195 0.779 25.03 

4: SC 74.3 0.294 0.897 32.78 

5: Original 100 0.289 0.929 31.11 

 

6.3. Effect of Spanwise and Chordwise Morphing on the Wake Structure 

In this section, the wake structures of three computational modes, model S, C, and SC, 

are discussed. Figure 6-3(a) and (b) show the near wake structures at t/T=0.58 of case C 

and case SC, respectively. At this time instance, the two cases show largest difference in 

thrust production. We can see from the plots that the fluke surface near the mid span and 

close to the leading edge shows much greater thrust production for the case SC. This can 

be explained by the much greater leading edge vortex strength near the mid span for the 

case SC. We further conclude that the leading edge vortex strength is improved due to the 

spanwise morphing, which leads to the improvement of the thrust production. 
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Figure 6-3. Near wake structures of (a) case C and (b) case SC at t/T=58, the fluke surfaces 

are colored by TC ; near wake structures of (c) case S and (d) case SC at t/T=0.25, the fluke 

surfaces are colored by PWC . The wake structures are colored by spanwise vorticity.  

 

Figure 6-3(c) and (d) show the near wake structure at t/T=0.25 of case S and case SC, 

respectively. At this time instance, the two cases show largest difference in power 

consumption. We can see from the plots that the entire fluke surface shows much greater 

power consumption for the case C, where several strong secondary vortices can be 
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observed just beneath the leading edge vortices. Those secondary vortices can lift up the 

leading edge vortices to degrade their attachment to the fluke surface, which leads to much 

greater power consumption. We conclude that the chordwise morphing can prevent the 

formation of large secondary vortices to improve the attachment of leading edge vortices, 

thus, improve the propulsive efficiency. 

 

Figure 6-4. Far wake structures at t/T=1.0 of the (a) case SC, (b) case S, and (c) case C; 

the corresponding 2D flow slices at mid span of the fluke for (d) case SC, (e) case S, and 
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(f) case C. The 2D flow slices are colored by spanwise vorticity and the arrows are vector 

field of the fluid velocity. 

 

Figure 6-4 shows the far wake structures and the corresponding 2D flow slices of the 

three cases. We can see from Figure 6-4(a, b, c) that the far wake structures are very 

complex and some different features among the three cases can be observed. For the case 

SC, two vortex streets can be observed. For the case S, the lower vortex street is much 

stronger. And for the case C, the upper vortex street is very weak and cannot be observed 

in the far wake. For the 2D flow slices of the three cases shown in Figure 6-4(d, e, f), we 

can see that two flow jets, J1 and J2, can be observed in the mid region of the wake. Those 

two flow jets are induced by two pairs of counter rotating vortices. However, J2 in case S 

is much stronger and pointing more to the vertical direction comparing to that in case SC. 

It is not good for the propulsive efficiency since the energy is wasted in the vertical 

direction. Moreover, J1 in case C is very weak comparing to that in case SC, which leading 

to the decrease in thrust production in case C. In the far wake region, the case SC shows 

three flow jets, J3, J4, and J5, which are induced by three pairs of counter rotating vortices. 

For the case S, the J4 is much stronger and pointing more to the vertical direction. For the 

case C, only one flow jet can be observed. The upper two flow jets disappeared due to the 

weak J1 in the mid wake region. In summary, we conclude that there are three flow jet exist 

in the far wake for the case SC and case S. The lower flow jet become stronger and pointing 

more to the vertical direction due to the absence of the chordwise morphing, which will 

essentially decrease the propulsive efficiency. The upper flow jet disappears due to the 

absence of the spanwise morphing, which will essentially decrease the thrust production. 
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Figure 6-5. Iso-surface plot of the pressure field at t/T=1.0 of the (a) case SC, (b) case S, 

and (c) case C; the corresponding schematic plots of wake skeleton for (d) case SC, (e) 

case S, and (f) case C. 

 

In order to qualitative describe the 3D wake structures of the three cases, the iso-surface 

of the pressure field are plotted in Figure 6-5(a, b, c). The corresponding schematic plots 
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of the wake skeletons are shown in Figure 6-5(d, e, f). We can see in the plots that a unique 

tri-ring wake structure can be observed in case SC and case S. The R2 is weaker and R3 is 

much stronger in case S due to the absence of the chordwise morphing. For the case C, 

only one vortex ring can be observed in the far wake due to the absence of the spanwise 

morphing. Those vortex ring structures are closely related to the flow jets shown in Figure 

6-4(d, e, f), and are the main reason for the performance difference of the three cases. 

 

6.4. Chapter Summaries 

The integrated approach is used to study the morphing fluke kinematics and the 

associated hydrodynamics of a fast swimming orca. The SSVD analysis of the orca fluke 

motion shows that two dominant modes, a spanwise morphing mode and a chordwise 

morphing mode can be identified. The low dimensional model consist of these two modes 

(Mode 1+2) contains 94% of the original motions, and can recover up to 97% of the 

hydrodynamic performance. Parametric studies on the hydrodynamic role of the dominant 

modes reveal that the spanwise morphing mode is critical to achieve high thrust production 

while the chordwise morphing mode shows significant influence on propulsive efficiency. 

The associated flow mechanisms are found to be the improved LEV strength due to the 

spanwise morphing mode and the reduced secondary vortex strength due to the chordwise 

morphing mode. Further investigation on the far wake structures of the low dimensional 

mode (Mode 1+2) shows a unique tri-ring wake structure (upper ring: R1; middle ring: R2; 

lower ring: R3). The R2 is weakened and R3 is strengthened by removing the chordwise 

morphing mode, which degrades the propulsive efficiency. The R1 and R3 vanish in the 
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far wake by removing the spanwise morphing, which decreases the thrust production. More 

importantly, this tri-ring vortex structure is closely related to the biology of cetaceans. Flow 

jet induced by R3 indicates additional vertical force production of cetaceans, which help 

them to go above the free surface to breathe, or to perform aerial jump. 
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7. Asymmetric Three-dimensional Wake and Aerodynamic 

Forces of a Maneuvering Hummingbird 

Hummingbirds perform turning maneuvers as often as they hover or cruise, especially 

when they need to forage from one location to another. However, to date, turning flight has 

received little attention and most previous studies are primary focused on hovering, 

forward flight and backward flight, using a variety of techniques. For instance, Warrick 

and his colleagues measured the wake of hovering rufous hummingbirds using digital 

particle image velocimetry (DPIV) in two-dimensional (2-D) vertical planes at Reynolds 

number around 3000 [125, 126]. Their DPIV results revealed evidence of leading-edge 

vortex (LEV) over the wing surface for lift production as widely observed in insect 

hovering. The bound circulation did not shed as a vortex during the whole flapping cycle. 

The strength of LEV circulation at different spanwise locations are calculated from 2-D 

planar flow field images. In general, the mean circulation generated during the downstroke 

is 2.1 times of that during the upstroke. In another experimental attempt, Altshuler et al. 

employed particle image velocimetry to attain detailed horizontal flow measurements of 

hovering hummingbirds (C. anna) at multi-levels [127]. Their flow field images revealed 

distinct vortex loops underneath the wings, and a three-dimensional wake structure model 

presenting the primary flow pattern is proposed. In addition to these experimental studies, 

numerical simulations have been performed for a ruby-throated hummingbird in hovering 

flight at Re=3000 [128-130]. Similar as observed in [126], the lift production during the 

down-stroke is about 2.5 times as much as that in up-stroke. Many aspects contribute to 

this asymmetry vortical force generation, such as angle of attack, drag-based force, wing-



130 
 

wake interaction, etc. Their full-body simulations showed that both effects of wing-wing 

and wing-body interactions are negligible. As an extension work, Song et al. quantified the 

performance of the same hummingbird through using a quasi-steady model [129]. This low 

fidelity model is able to predict overall lift production and consistent with their CFD results 

neglecting fails to capture detailed force oscillations. By exploring wing-pitching 

mechanism of hovering between, they concluded that pitch reversal of the hummingbird is 

driven by the wing inertia and there is no power requirement for substantial elastic energy 

storage at the shoulder joint [130].  

Besides above analysis on hovering, Tobalske et al. studied three-dimensional 

kinematics of forward flight Rufous hummingbirds in a wind tunnel at varies incoming 

velocities [131]. They observed that both body incline angle and the stroke plan changed 

respect to the flow velocity, but not for the wingbeat frequency. Furthermore, altering in 

other kinematics are also significant with velocity, such as chord angle, angle of attack, 

wingbeat amplitude etc. Other flight behavior such as backward flight also had been 

studied by [132] for the species-rich hummingbird. Comparing with hovering and forward 

flight, the backward flight was characterized by the increment on wingbeat frequency, 

stroke plane, wing position angle, and upstroke duration. Laboratory tests have shown that 

hummingbird are also capable to achieve sustained yaw turns by altering wingbeat 

kinematics [133]. Fast change in wingtip speed heading direction is observed within a small 

turning radius. Unfortunately, aerodynamic performances were not computed or measured 

in this work.  

Despite these previous efforts, there is no detailed forces, moments and three-

dimensional flow structure data to achieve a quantitative analysis of hummingbird in a 
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turning maneuver. To fill this gap, a high-speed photogrammetry system and three-

dimensional surface reconstruction technology are used to reveal hummingbird wing 

kinematics and deformations during a free maneuvering flight. The aerodynamic 

performance is then studied using an in-house immersed boundary method (IBM) based 

computational fluid dynamics (CFD) solver. To the best of our knowledge, this is the first 

study on the unsteady aerodynamics of hummingbird in maneuvering flight.  

 

7.1. Data Acquisition 

The calliope hummingbirds (body mass 3.4g, Table 7-1) were captured from the wild 

under permits from the US Fish and Wildlife Service and Oregon Department of Fish and 

Wildlife. All housing and experimental protocols were approved by the University of 

Portland Institutional Animal Care and Use Committee. During captivity, birds were 

housed in 1m×1m×1m flight cages with ad libitum access to food and water in the form of 

Nektar-Plus (NEKTON®; Günter Enderle, Pforzheim, Baden- Württemberg, Germany) or 

a 20% sucrose solution. We measured the morphology of the birds with their wings spread 

as in mid-downstroke using standard techniques [134]. Linear measurements (mm) were 

obtained using digital calipers and metric rulers. Areas (mm2) were measured from digital 

images using a known pixel-to-metric conversion. Average wing chord (mm) was 

calculated as wing area divided by wingspan. Aspect ratio (dimensionless) was calculated 

as wingspan divided by wing chord. Disc loading (N∙m-2) was computed as body weight 

divided by disc area (Sd). For this instance, we assumed Sd=π(b/2)
2, where b stands the 
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wing span. Wing loading (N∙m-2) was computed using body weight (N) divided by 

combined wing area, including the projected surface area of the body between the wings. 

 

Table 7-1. Morphological data for the calliope hummingbird. 

Variable Value 

Body mass (g) 3.4±0.1 

Single wing length (mm) 47±1 

Wing span, b (mm) 109±2 

Average wing chord, c (mm) 12±1 

Aspect ratio 9±1 

Single wing area (mm2) 558±18 

Combined area of both wings and body 

(mm2) 
1346±108 

Wing loading (N∙m-2) 25±3 

Disc loading (N∙m-2) 3.6±0.2 

  

Values are mean ± s.d. (N=5).  

 

We measured wing and body movement using digital video and three-dimensional (3D) 

reconstruction [135, 136]. Digital video recordings, 2~4s in duration, were obtained during 

longer intervals of sustained flight. We used two synchronized Redlake cameras, a PCI-

2000 and PCI-500 (Redlake MASD LLC, San Diego, CA, USA) sampling at 500frames∙s-

1 and with a shutter speed of 1/2500s. Images were stored to computer using PCI-R v.2.18 

software. Flights were illuminated using four 650W halogen lights (Lowel Tota-light, 

Lowel-Light Manufacturing, Inc., Brooklyn, NY, USA) distributed around the outside of 

the flight chamber. 
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Figure 7-1. Raw pictures of real hummingbird and its reconstructed model at (a, d) t=0 ms, 

(b, e) t=47 ms, and (c, f) t=77 ms.  

 

The hummingbird maneuvering flight is reconstructed using a joint-based hierarchical 

subdivision surface method. The details about this method and its accuracy can be found 

in [51]. For completeness, we briefly summarize it here using one wing as an example. 

Before the videotaping, a fully rigged hummingbird template with virtual joints is built 

based on anatomical of the hummingbird wing and body. Also, the hummingbird wing was 

marked with white marker points to facility the three-dimensional surface reconstruction. 

After the videotaping was done, the pose of the model is adjusted to match one frame of 

the three directions of high-speed videos by controlling the virtual joints in six degrees of 

freedom, including three rotations and three translations. Marker points on the wings 
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served as references to further tune the location of vertices on the wing template.  The wing 

template was generated with Catmull-Clark subdivision surfaces [137], which is a specific 

cubic spline surface representation that can generate smooth surfaces from meshes of 

arbitrary topology [138]. Similar procedure is applied to the hummingbird template frame 

by frame. As an example, Figure 1(a) shows a raw picture of a hummingbird at the start of 

downstroke. Figure 1(b) presents a reconstructed model. 

 

7.2. Computational Setup 

A sharp-interface immersed-boundary method [139] described by [97] and [140] has 

been used in these simulations. The governing equations are the three-dimensional 

unsteady, viscous incompressible NS equations: 

 1
0;

i ji i i

i j i j j

u uu u up

x t x x x x
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  (43) 

where ui are the velocity components, p is the pressure, ρ and ν are the fluid density and 

viscosity, respectively. The above equations are discretized using a cell-centered, 

collocated (non-staggered) arrangement of the primitive variables (ui, p). In addition to the 

cell-centered velocities (ui) that satisfy the momentum equations, the face-centered 

velocities, which satisfy mass conservation, are also computed [95]. A fractional-step 

method [141, 142] is used for the time-advancement of the above equation. The effect of 

the immersed boundary on the flow is incorporated by using a multi-dimensional ghost-

cell methodology [139]. The current method has been used to study the aerodynamics of a 

forward flying cicada [87], and a validation of the method can be found in the same paper. 
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More details on the numerical algorithm and immersed-boundary treatment, as well as 

validations, can also be found in previous publications [97].  

 

 

Figure 7-2. Schematic of the computational mesh and boundary conditions employed in 

the current simulation. 

 

Figure 7-2 shows the constructed realistic full-body model immersed in the three-

dimensional non-uniform Cartesian grid. Y is the vertical direction with +Y pointing 

upward. The wings in this study are modelled as deforming membranes and the body is 

also deformable and both of them are controlled by virtual joints. 

The boundary conditions applied in this study is described as follows. On all of the 

boundaries, gradients of all velocity components are set to zero. The final domain size 

normalized by the mean chord length c is 20×20×20 and this large domain ensures that the 
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boundaries do not have any significant effect on the computed results. As shown in Figure 

7-2, the grid is designed to provide high resolution in the region around body as well as the 

wake, which is expected to develop below the body and wings. This grid was developed in 

an iterative fashion starting from a sequence of coarser grids. Computed results on these 

earlier meshes were examined and the resolution in selected regions increased until the key 

features such as forces and vortex structures became essentially independent of the grid. 

The final grid adopted here has 232×225×232 points. The grid size in all three directions 

are around 0.045 chord length, corresponds to 71 grids across the span and 22 across the 

chord-wise direction on the wing surface. 

Three additional simulations on different grids were carried out to assess the 

convergence of the computed flow. Simulation 1 was carried out on a grid which had 25% 

more grid points than the baseline grid and simulation 2 was carried out on a mesh with 

25% less grid points than the baseline grid. Both of these simulations produced a maximum 

1% difference from the baseline in mean lift and root-mean-square (R.M.S.) values of lift 

and drag. Finally, simulation 3 was carried out on a grid where the number of grid points 

in each direction around the wing were twice those in simulation 2. This simulation also 

produces mean lift and R.M.S. lift and drag that are within 1% of simulation 2 and taken 

together with the other simulations, provide clear proof of the grid convergence of the 

current results. 
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7.3. Body and Wing Kinematics 

To better interpret the characteristics of body and wing kinematics, we divided the 

whole maneuvering process into three phases according to the body yaw angle.  

Figure 7-3 shows a schematic plot of hummingbird body yaw motion and the time 

course of body kinematics. We can see from Figure 7-3(b) that there are in total six strokes 

of this flight. The hummingbird is first at an “accelerating phase” (1st stroke), in which the 

bird initiates the yaw turn. The body yaw angle start to increase while the other two Euler 

angles stay unchanged within this phase. After that, the hummingbird enters a “turning 

phase” for the following three strokes (2nd to 4th stroke). The body yaw angle keep 

increasing and shows an oscillating profile, which indicates an active control of the turning 

for the hummingbird. The body roll angle shows a little bit decrease and the body pitch 

angle stays unchanged. The last two strokes of the flight (5th to 6th stroke) are called the 

“recovering phase”, in which the body yaw angle stays at a high value and shows a small 

increase, while the other two Euler angles stay unchanged. The hummingbird is recovering 

from a turning status to a hovering status within this phase. The path position of this flight 

(Figure 7-3b) shows a little bit descending motion in vertical direction for the first two 

strokes, and the motion in horizontal direction is limited. 

We have observed similar phases in other maneuvering high-speed videos we shoot. 

The similarity suggests that the body motion result from similar aerodynamic or dynamic 

mechanisms. 
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Figure 7-3. (a) Schematic plot showing hummingbird body yaw motion; (b) time course 

of body of the maneuvering hummingbird. A top view of the hummingbird at the top of 

the figure indicates the yaw throughout the maneuver. Yaw (red), pitch (black), and roll 

(blue) histories are shown first, followed by path position histories in horizontal (green) 

and vertical (black) direction. 

 

In order to determine how hummingbird change wing motion to perform the turning, 

we also study the wing kinematics of this flight. Figure 7-4(a) shows the three Euler angles 

defining the wing position in the wing-root coordinate system (X'Y'Z'), in which the X'-axis 

is parallel with the body longitudinal direction, the Y'-axis is along the lateral direction and 

the Z'-axis complies with the right-hand rule. The mean stroke plane connected the wing 

root and wingtips at the start and end of the downstroke. The stroke position angle ϕ(t) 

defines the angular position of the wing in the mean stroke plane, with 0° aligning with the 

negative direction of the Y'-axis. The deviation angle θ(t) is the angle between the base-to-

wingtip line and the mean stroke plane. The pitch angle α(t) is defined as the angle of the 

wing chord with respect to the tangent of the wing trajectory. 
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Figure 7-4. (a) Schematic plot showing hummingbird wing Euler angles definition; Time 

course of wing stroke (b), wing deviation (c), and wing pitch angles (d) during the turning 

phase. The wing Euler angle histories over the 3rd stroke are shown in solid curves. Angle 

differences for other strokes in the turning phase with respect to the 3rd stroke are shown 

as error bars. Red and blue correspond to the inner and outer wings, respectively. Shaded 

areas stand the downstrokes and unshaded areas stand the upstrokes.  

 

The time course of wing Euler angles during the turning phase are shown in Figure 

7-4(b, c, d) according to the above definitions. We can see from the figure that asymmetries 

of the wing kinematics between inner and outer wings can be identified in the turning phase, 

especially for the time course of wing deviation angle and pitch angle. As shown in Figure 
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7-4(b), the wing stroke angle history shows one peak for a flapping cycle, which locates at 

the end of the downstroke. The amplitude of the wing stroke angle is around 120° for both 

inner and outer wings. However, the inner wing stroke angle is a little bit smaller (7% 

smaller) during the downstroke in turning phase, while it is almost the same comparing to 

that during the upstroke. For the wing deviation angle history, the plot shows two valleys 

for a flapping cycle, which is located near the mid of downstroke and the mid of upstroke, 

respectively. Much greater differences can be observed for the wing deviation angle history. 

The inner wing deviation angle history shows larger amplitude and smaller value in both 

downstroke and upstroke. This is because of the outer wing stroke plane of the 

hummingbird is tilted up in the turning phase, and also, the figure eight motion of the outer 

wing is smaller comparing to that of the inner wing. For the wing pitching angle histories, 

all plots show one valley and one peak near the mid downstroke and mid upstroke, 

respectively. More importantly, the wing pitching angle histories show great asymmetry 

between the inner and outer wings in the turning phase. The valley value of the inner wing 

pitching angle is much smaller than that of the outer wing, while the peak value is much 

greater. It leads to the average angles of attack during both the downstroke and the upstroke 

being much smaller for the inner wing. As shown in Table 7-2, the average inner wing 

angle of attack is 40% more than the outer wing angle of attack during the downstroke for 

the turning phase, while this value is 15% when considering that during the upstroke. 

Conventional air foil theory tells us that larger angle of attack would results in larger drag 

force. We can conclude from the results that the larger inner wing angle of attack during 

both downstroke and upstroke creates asymmetry in drag production, which is primarily 

the source of the turning torque generation. Similar drag-based turning torque generation 
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mechanism is reported by previous researchers for small insect maneuvering flight [19]. 

However, in this case, the motion is a pure yaw turn, and also, the mechanism is half-cycle-

based.  

 

Table 7-2. Half cycle averaged wing angle of attack for the inner and outer wings of the 

maneuvering hummingbird. 

 
Average wing angle of attack (degs) 

Turning (2nd~4th stroke) Recovering (5th~6th stroke) 

 Inner Outer Inner Outer 

Downstroke 73.1±2.3 52.4±1.8 53.2 53.5 

Upstroke 82.2±2.1 71.6±2.5 70.5 71.1 

 

Comparing the averaged wing angle of attack for the turning and recovering phase 

(Table 7-2), we can see that the hummingbird creates the asymmetry by increase the inner 

wing angle of attack. It suggests that the hummingbird actively control the inner wing 

kinematics to complete the maneuvering motion in this case. 

 

7.4. Aerodynamic Force 

CFD simulation is conducted using the kinematics of the wings and the body from the 

three-dimensional surface reconstruction. The time course of the averaged aerodynamic 

forces produced in the turning phase (average over the 2nd~4th stroke) are shown in Figure 

7-5(a, b). We can see from Figure 7-5(a) that the lift coefficients for both inner wing and 
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outer wing show two peaks in one complete stroke. The peaks locate at around 50% of 

each half stroke, and it is worth noting that the average values of the lift coefficient in 

downstroke are much higher than that in upstroke. This conforms to the previous 

conclusion made on a hovering hummingbird by Song et al. [85]. However, the double 

peaks in upstrokes, which are also reported by this paper, are not observed in this 

maneuvering case. A possible explanation for that is, due to the body motion of the 

maneuvering hummingbird, the effects of wake capture during the stroke reversal is 

weakened.  

 

Figure 7-5. Time course of lift (a) and drag (b) coefficients during the turning phase of 

hummingbird pure yaw turn. The force coefficient histories over the 3rd stroke are shown 

in solid curves. Force coefficient differences for other strokes in the turning phase with 

respect to the 3rd stroke are shown as error bars. Red and blue correspond to the inner and 

outer wings, respectively. Shaded areas stand the downstrokes and unshaded areas stand 

the upstrokes. 

Besides the lift force, horizontal force is also important in maneuvering flight since it 

can generate torque to drive the turn, especially for the pure yaw turn case. Figure 7-5(b) 

1 

2 
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shows the drag coefficient history of this maneuvering flight. We can see from the plot that 

the horizontal force generated by the inner wing is always greater than that generated by 

the outer wing. Such force asymmetry in horizontal direction can accelerate the turn in 

downstroke and damps the turn in upstrokes. This half-cycle-based turning strategy is more 

flexible comparing to some other nature flyers, like the fruit flies, their wings always 

generate resultant torque towards the turning direction when they perform the maneuvering 

flight. It is much easier for the flyer to stop the turn and adopt an alternative flight motion 

based on what it needs, which is often the purpose of pure yaw turn.  

 

7.5. Surface Pressure Distribution 

The aerodynamic pressure, which is perpendicular to the local wing elements, is 

projected in lift and drag directions to indicate the lift and drag force distributions over the 

wing surface (Figure 7-6). The aerodynamic pressure is non-dimensionalized by the wing 

load (the ratio of the cicada weight to the total wing surface area). Figure 7-6(a) and (b) 

show the lift force projection averaged over all downstrokes and upstrokes in the turning 

phase, respectively. It is interesting to note that the maximum lift force is near the wing tip 

region (above 90% wing span) for the inner wing, and is a little bit closer to the mid wing 

region (60%~90%) for the outer wing. Although the lift force concentrating zone is a little 

bit different between the inner and outer wings, the overall lift force generated by the two 

wings are very close (Figure 7-6a).  
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Figure 7-6. Time-averaged surface pressure distribution projected on the lift direction (a, 

b) and drag direction (c, d); (a) and (c) correspond to the average over all downstrokes in 

turning phase and (b) and (d) correspond to the average over all upstrokes in turning phase. 

 

7.6. Vortex Development 

The vortex formation over a stroke cycle (the 3rd stroke) is shown in Figure 7-7, in 

which the vortex structures are identified by the Isosurface of Q-criterion (Q=10). The 

vortex structures are colored by the non-dimensional pressure. The stroke cycle starts from 

the downstroke. Figure 7-7(a) shows the vortex structures at t/T=0.24, which corresponds 

(a) (b) 

(c) (d) 
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to the peak of the vertical force during downstroke (Figure 7-7a). The most significant 

vortex structures at this moment is the formation of leading-edge-vortex (LEV). The LEV 

attaches well to the wing surface. More importantly, the LEV, the tip vortex (TV), the 

trailing-edge vortex (TEV), and the root vortex (RV) are connected end to end, forming a 

vortex loop, within which the air moves downward. A previously shed vortex loop (PVL) 

can also be observed. It was generated during the upstroke prior to this moment, and the 

PVL is connected to the newly formed vortex loop by the TEV. Similar vortex structures 

are found in hovering hummingbirds in previous studies [85, 125, 143]. 

As time advances to t/T=0.33, as shown in Figure 7-7(b), which corresponds to the 

peak of horizontal force in downstroke (Figure 7-7b), the wings are near the end of 

downstroke and rotate rapidly along their own axis. The outer wing LEV is divided into 

two branches, known as dual LEV [138], and two shed LEVs, SLEV1 and SLEV2, can be 

identified. New vortex structures can be found at the outer side of the hummingbird for this 

time instance. The LEV, TV and SLEV1 are connected with each other to form a vortex 

loop near the outer wing tip region. Also, the LEV, SLEV2, TEV and RV are connected to 

form another vortex loop. It is worth noting that the directions of the vortex tube SLEV1 

and SLEV2 are opposite. Similarly, the PVL can be observed and it is connected to the 

later newly formed vortex loop. At the inner side of the hummingbird, the LEV develops 

and the newly formed vortex loop grow larger. However, the major vortex structures stay 

the same as we described at t/T=0.24.  
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Figure 7-7. (a-f) Time course of vortex development of the 3rd stroke of the hummingbird 

pure yaw turn, visualized by the Q-criterion. The vortex structures are colored by non-

dimensional pressure. 
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At the end of the downstroke (t/T=0.48), as shown in Figure 7-7(c), the double vortex 

loop structure at the outer side of the hummingbird still can be observed. The vortices 

convect further downstream and the PVL starts to dissipate. The double vortex loop 

structure begins to merge to a single vortex loop.  

During the upstroke (t/T=0.73), as shown in Figure 7-7(d), which corresponds to the 

peak of vertical force at upstroke (Figure 7-7a). The major vortex structures are similar to 

that at t/T=0.24, except for the more complex and stronger vortices due to larger angle of 

attack of the wings in upstroke (Figure 7-7c). At t/T=0.88, which corresponds to the peak 

of horizontal force at upstroke, the double loop vortex structure can be observed. 

Differently, it is the inner side of the hummingbird that presents the double loop vortex 

structure. At the end of upstroke, as shown in Figure 7-7(f), the double loop vortex 

structure still exists and the two vortex loops start to merge to a single vortex loop. 

For all time instances discussed above, the inner side and outer side of the hummingbird 

show significant asymmetry in vortex wake structures. The unique double loop vortex 

structure exists in the outer side during downstroke and exists in the inner side during 

upstroke. Such double loop vortex structure is responsible for the wake asymmetry. A 

possible reason for the formation of the double loop structure is the involvement of the 

hummingbird body motion. At the downstroke, the outer wing sweeps longer distance due 

to the hummingbird body motion. In another hand, the inner wing sweeps longer distance 

during the upstroke due to the body motion. The kinematic difference of the inner and outer 

wings produced by the body motion may result in the unique double loop vortex structures, 

and further influence the wake structures of the inner and outer side of the hummingbird.  
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7.7. Near Wake Structure and Dual-Ring Wake Structure 

 

Figure 7-8. (a) Schematic plot showing slice locations; velocity vector field plots of (b) 

the inner side slice and (c) the outer side slice. (b) and (c) are colored by vorticity in the 

direction of the normal of the slice planes. 

 

In order to better understand the wake topology of the hummingbird maneuvering flight, 

we cut the flow field with two 2D slices at the locations shown in Figure 7-8(a), and the 
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corresponding time instance is t/T=0.33. As discussed before, at this time instance, the 

outer side of the hummingbird body shows double loop vortex structure, and the inner side 

of the hummingbird body presents normal vortex structures which is reported by previous 

researchers. A comparison of the two vortex structures can be conducted in this time instant. 

We can clearly see the SLEV and STEV from the slice of the outer wing shown in Figure 

7-8(a). The first vortex loop is formed by connecting the LEV and TEV and SLEV near 

the wing tip region (near 70% wing span). The second vortex loop is formed by connecting 

the LEV, STEV and TEV near the mid wing region. The asymmetric wake topology 

between the inner and outer side of the hummingbird body is due to the existence of the 

dual-ring vortex structure in one side of the wing.  

In order to better understand the wake topology and its effect to the aerodynamic 

performance, non-dimensional pressure is plotted to indicate the low pressure regions 

behind the wings of the hummingbird. Plotted in Figure 7-9(a) is one Iso-surface of the 

pressure corresponding to a non-dimensional pressure value of -1.0 at t/T=0.33. Noticeable 

in this figure is a large region of low pressure right behind the wings. However, for the 

outer side at t/T=0.33, the pressure Isosurface show branches near the mid wing region, 

which are due to the dual-ring vortex structure. Figure 7-9(b) shows the schematic of the 

correlation between identifiable vortex structures and regions of low pressure in Figure 

7-9(a). The LEV, SLEV, STEV, TV, TEV and RV can be clearly identified in Figure 

7-9(b) . The topology and formation of the dual-ring vortex structure are clearly revealed. 
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Figure 7-9. (a) Isosurface of pressure corresponding to a non-dimensional value of -1.0 at 

t/T=0.37 of the 3rd stroke of the hummingbird pure yaw turn; (b) wake schematic at 

t/T=0.37 of the 3rd stroke of the hummingbird pure yaw turn. 

 

7.8. Power Estimation 

In Figure 7-10, we plot both aerodynamic and inertial power using the same manner as 

we present the aerodynamic performances. In this plot, we show the power consumption 

of inner and outer wing separately to provide a better comparison of the asymmetry 

phenomenon. First, the instantaneous aerodynamic power is always positive over the entire 

cycle for both inner and outer wing, although its value is quite small near the wing reversal. 

The aerodynamic power plays a dominant role during the wing translation, and obtains the 

maximum near the mid-stroke.  Unlike the aerodynamic power, the inertial power shows 

both positive and negative in the stroke cycle and more significant at wing reversal period. 

Specifically, the inertial power increase sharply owing to the wing acceleration, and then 

decrease until the mid-stroke, after that it starts to reverse the sign.  In addition, the 
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asymmetry between inner wing and outer wing is distinct for both aerodynamic and inertial 

power. For aerodynamic power, the peak value of inner wing is about 1.8 times higher than 

the outer wing. The magnitude of inertial power, on the other hand, only shows significant 

difference during the upstroke with around 2.1 times larger than the outer wing. Unlike the 

power consumption report in insect flight that the aerodynamic power play a dominate role 

over the course of the whole stroke, for hummingbird, both inertial and aerodynamic power 

are important. 

 

Figure 7-10. Average instantaneous specific power of in the turning phase of the 

hummingbird maneuvering flight. Both inner wing (a) and outer wing (b) are shown. 

 

7.9. Chapter Summaries 

A three-dimensional direct numerical simulation was performed for a maneuvering 

hummingbird with a very accurate wing and body motion reconstructed from high-speed 

images. The simulation captures the aerodynamic force and power characteristics in the 

entire maneuvering process and also details of the flow field, including the unsteady wake 
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structures in both near and far field. Our results on the maneuvering hummingbird 

kinematics suggest that hummingbird sustained yaw turns by tiling up the outer wing stroke 

plane and suppressing the outer wing figure eight motion; also by increase the wing 

pitching angle in downstroke and decrease the wing pitching angle in upstroke to create 

wing angle of attack asymmetry between inner and outer wings. At the near wake, the 

hummingbird alters the inner wing pitching angle to control the LEV circulation, and 

therefore create asymmetry in drag forces of the two wings to generate yaw torque. The 

results show that in the turning phase, the LEV circulation of inner wing is about 2.5 times 

greater than that of the outer wing during downstroke and 2.1 times greater during the 

upstroke. Moreover, the lift force is produced near the wing tip region (90% wing span) 

and the drag force is produce near the mid wing region (60% wing span). At the far wake, 

strong asymmetric wake topology is identified. More importantly, a unique dual-ring 

vortex structure, which is the source of the wake asymmetry, is found in the wake of one 

of the two wings of the hummingbird. The dual-ring vortex structure corresponds to larger 

wing twisting and lower drag production, which creates unbalanced aerodynamic forces to 

help with the maneuver. 
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8. Concluding Remarks 

In the current dissertation, an integrated experimental and computational methodology 

has been developed to systematically study the flapping propulsion system in nature. The 

goal is to advance the fundamental knowledge of biological fluid dynamics in animal 

flight/swimming, and provide guidance for future optimal designs of bio-inspired flapping 

propulsors. 

 

8.1. Summary of Contributions 

In Chapter 2, the integrated methodology is introduced in detail. The corresponding 

major contributions of this work are described as follows: 

 (1) A highly versatile and accurate joint-based surface reconstruction method is 

developed to quantify the propulsor flexion and body kinematics of animals in free 

flight/swimming. The development of this method aims to improve the versatility and 

efficiency of the conventional reconstruction method, which is time-consuming and has 

several hard constraints regarding some details of the photogrammetry experiments, such 

as the camera location/orientation, the lens angle of view, marker points on the objects, etc. 

(2) A spherical-coordinates-based singular value decomposition (SSVD) method 

is developed to perform low dimensional morphology analysis of flapping propulsors 

in nature. The conventional SVD method has several drawbacks regarding the 

distinctiveness and physics of the modes, such that large propulsor morphing can be found 

in several modes and some modes show great surface area change even though the surface 
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area change in original motion is limited. The new method (SSVD) is developed to 

overcome the above issues. 

(3) An immersed boundary method for deformable attaching bodies (IBM-DAB) 

is developed to handle direct numerical simulations (DNS) in extreme situations 

which are commonly exist in nature. Such as solid body with sharp edge and with 

deformable attaching membrane bodies. 

(4) A highly efficient gradient-based parallel inexact curve searching optimizer is 

developed to explore design space of flapping propulsors. The computational cost of 

finding the searching direction and the step size is greatly reduced with the help of the new 

method. 

In Chapter 3, the gradient-based optimization frame has been conducted to accomplish 

the optimal dynamic camber control of 2D flexible wing for maximizing the thrust 

production and propulsive efficiency. Direct Numerical Simulation (DNS) is used to gain 

unsteady flow around the flapping wing and its aerodynamic performance. Wing 

morphological parameters ( RP , m ,  ) are defined and two optimum sets (case Opt TC  

and case Opt  ) of those parameters are found. Results show that the thrust production of 

the case Opt TC  is increased by 29.1%, and the propulsive efficiency of the case Opt   is 

increased by 36.2% comparing to a case of a completely rigid flapping wing (case Rigid). 

The wake structures of these cases show different characteristics. Typical 2S and 2P wake 

structures are identified in the case Opt TC  and case Opt  , respectively. For the case Rigid, 

a 2S wake structure with asymmetric property can be observed, which corresponds to 
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obvious deflection of the mean flow. The flow modulation due to the dynamic camber 

formation could greatly improve the aerodynamic performance of the wing. The results of 

this work provide guidance for future optimal designs of dynamic cambered flapping 

propulsors. 

In Chapter 4, computational optimization of dynamic twisting of pitching-rolling plates 

on aerodynamic performance is performed. First of all, we build a morphing plate model, 

which includes dynamic chordwise twisting in pitching-rolling motion inspired from 

biological propulsors. Thrust production, power consumption and flow structures of the 

model plates are obtained through an in-house immersed boundary method based CFD 

solver. Rigid pitching-rolling plates with different pitching amplitudes, varied from 15˚ to 

60˚, are studied. The results show that the case with pitching amplitude of 30˚ generates 

the highest thrust. Using this case as the baseline, optimal configurations of dynamic 

twisting for maximizing the thrust production and propulsive efficiency are found. The 

results show that the thrust production and propulsive efficiency of optimized plates can 

be improved by 6% and 43.1%, respectively. Observations on the unsteady flow field of 

optimized cases show that the performance enhancements correspond to improved strength 

and attachment of leading-edge vortex. The findings of this work have indicated an 

alternative solution to designing future dynamic morphing propulsors applied to 

flying/swimming robots. 

The next three chapters (Chapter 5, 6, and 7) discuss three applications which apply the 

integrated methodology to analyze flapping propulsion systems in nature, including a 

hovering dragonfly, a fast swimming orca, and a maneuvering hummingbird. The main 

purpose of choosing the three cases is to test validity of the integrated methodology in 
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different situations. The three cases cover different flapping types, including pitching-

rolling and pitching plunging; different propulsor properties, including membrane and 

solid body; and different motion complexities, including simple hovering/fast swimming 

and complex maneuvering. Another reason of choosing the three cases is that the current 

work is funded by different agencies, which have different focus areas.   

In Chapter 5, the integrated methodology is used to study the complex morphing wing 

kinematics and the associated aerodynamics of a hovering dragonfly. SSVD analysis of the 

dragonfly’s forewing motion reveals that the complicated wing motion can be represented 

by a low dimensional model contains two dominant SSVD modes, a flapping mode and a 

morphing mode. The low dimensional model contains 92% of the original motion, and can 

recover up to 96% of the aerodynamic performance. Parametric studies on the aerodynamic 

role of the dominant modes reveal that the morphing mode amplitude and phase are critical 

control parameters to achieve high aerodynamic performance. We further investigate 

optimal configurations of dominant modes on aerodynamic performance for the dragonfly 

wing. The corresponding optimized low dimensional wing models, which can beyond 

biological levels of aerodynamic performance, are obtained. The associated flow 

mechanisms are found to be the improved LEV attachment and the reduced TV strength. 

This is the first investigation of low dimensional wing morphological analysis as well 

as computational optimization on wing aerodynamic performance for a flying animal. 

In Chapter 6, the integrated approach is used to study the morphing fluke kinematics 

and the associated hydrodynamics of a fast swimming orca. The SSVD analysis of the orca 

fluke motion shows that two dominant modes, a spanwise morphing mode and a chordwise 

morphing mode can be identified. The low dimensional model consist of these two modes 
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(Mode 1+2) contains 74.3% of the original motions, and can fully recover the 

hydrodynamic performance. Parametric studies on the hydrodynamic role of the dominant 

modes reveal that the spanwise morphing mode is critical to achieve high thrust production 

while the chordwise morphing mode shows significant influence on propulsive efficiency. 

The associated flow mechanisms are found to be the improved LEV strength due to the 

spanwise morphing mode and the reduced secondary vortex strength due to the chordwise 

morphing mode. Further investigation on the far wake structures of the low dimensional 

mode (Mode 1+2) shows a unique tri-ring wake structure (upper ring: R1; middle ring: R2; 

lower ring: R3). The R2 is weakened and R3 is strengthened by removing the chordwise 

morphing mode, which degrades the propulsive efficiency. The R1 and R3 vanish in the 

far wake by removing the spanwise morphing, which decreases the thrust production. More 

importantly, this tri-ring vortex structure is closely related to the biology of cetaceans. Flow 

jet induced by R3 indicates additional vertical force production of cetaceans, which help 

them to go above the free surface to breathe, or to perform aerial jump. This is the first 

computational study on cetacean swimming. Also, this is the first report of the unique 

tri-ring wake structure generated by the orca fluke. 

In Chapter 7, the integrated methodology is applied to conduct direct numerical 

simulation for a hummingbird in a highly complex maneuvering flight. The simulation 

captures the aerodynamic force and power characteristics in the entire maneuvering process 

and also details of the flow field, including the unsteady wake structures in both near and 

far field. Our results on the maneuvering hummingbird kinematics suggest that 

hummingbird sustained yaw turns by tiling up the outer wing stroke plane and suppressing 

the outer wing figure eight motion; also by increase the wing pitching angle in downstroke 
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and decrease the wing pitching angle in upstroke to create wing angle of attack asymmetry 

between inner and outer wings. At the near wake, the hummingbird alters the inner wing 

pitching angle to control the LEV circulation, and therefore create asymmetry in drag 

forces of the two wings to generate yaw torque. The results show that in the turning phase, 

the LEV circulation of inner wing is about 2.5 times greater than that of the outer wing 

during downstroke and 2.1 times greater during the upstroke. Moreover, the lift force is 

produced near the wing tip region (90% wing span) and the drag force is produce near the 

mid wing region (60% wing span). At the far wake, strong asymmetric wake topology is 

identified. More importantly, a unique duel-ring vortex structure, which is the source of 

the wake asymmetry, is found in the wake of one of the two wings of the hummingbird. 

The duel-ring vortex structure corresponds to larger wing twisting and lower drag 

production, which creates unbalanced aerodynamic forces to help with the maneuver. This 

is the first computational study on hummingbird maneuvering flight. Also, this is the 

first report of the unique dual-ring vortex structure generated by the flapping wings. 

By comparing the results of the above three cases, we conclude that the morphing 

modes/kinematics of the biological flapping propulsors play important roles in their 

associated aero/hydrodynamic performance and wake structures. The dragonfly utilizes 

their wing morphing to reduce the wing tip vortex to improve the lift efficiency in hovering 

flight. The orca utilizes the fluke spanwise and chordwise morphing to form a tri-ring wake 

structure to improve the propulsive performance and produce additional vertical force for 

the purpose of breathing or aerial jumping. The hummingbird utilizes the wing twist to 

form a dual-ring wake structure in one of the two wings, which leads to the asymmetric 
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wake developments of the inner and outer wings. The wake asymmetry results in drag 

asymmetry, which creates torque to sustain the yaw turn of the hummingbird.  

 

8.2. Future Work 

One possible extension of the current research includes exploring the design space of 

propulsor morphing kinematics for highly complex biological propulsion systems, such as 

maneuvering birds/insects/fishes, burst-and-coast fishes, etc. We have ongoing works on a 

sunfish which performs maneuvering motion to avoid obstacle, and a blue fish which 

performs burst-and-coast motion to save energy during the swimming. Such investigations 

could lead to valuable insights into enduring scientific mysteries about the flow 

mechanisms of high performance propulsion systems beyond biology to the extent of bio-

inspired flapping propulsion system design in the future. 

Another possible extensive study is to perform proper orthogonal decomposition (POD) 

on the unsteady flow field of flapping propulsion system, and build a linkage between the 

POD modes of the flow field and the SSVD modes of the propulsor morphing kinematics. 

Once the linkage is built, the existing flow control mechanisms based on POD modes of 

the flow field will be much more straightforward to implement in engineered systems by 

altering the corresponding SSVD modes of the propulsor morphing kinematics. 
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