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Introduction

Elliptic curves have been studied by mathematicians since the time of Dio-
phantus. Their flexibility and versatility have allowed them to be examined
from a variety of vantage points, yielding insight into complex analysis, alge-
braic geometry, and number theory. Indeed, the study of elliptic curves has
contributed substantially to the accumulation of mathematical knowledge over-
all, and elliptic curves have been used in the proofs of extremely deep results.
For example, building upon the work of Ribet et al., Taylor and Wiles proved
Fermat’s Last Theorem by showing that semistable elliptic curves are modular.

In this text, we discuss certain results on elliptic curves over arithmeti-
cally important fields such as C,Fq, and Q. In the first chapter, we prove
that for a complex elliptic curve E, the group of C-rational points E(C) as an
abelian group is a torus (Theorem 1.3.3). To do this, we introduce some back-
ground on elliptic functions, and then define an explicit elliptic function known
as the Weierstrass ℘ function that is then used to construct an isomorphism
between E(C) and C/Λ for a given lattice Λ. We will then restrict our study to
conjugation-invariant lattices in order to show that for an elliptic curve over R,
that E(R) is isomorphic to either S1 or Z2 × S1 (Theorems 1.4.5 and 1.4.6).

In the second chapter, we turn our attention to elliptic curves over finite
fields and provide a bound for the number of Fq-rational points an elliptic curve
may have. This bound, known as Hasse’s inequality (Theorem 2.2.6), can be
quite strict as we will demonstrate with a couple of examples. To prove Hasse’s
inequality, we will introduce the notion of the degree map and prove in Propo-
sition 2.2.5 that #E(Fq) is equal to the deg(ϕq − 1), where ϕq is the Frobenius
endomorphism.

Lastly, we explore elliptic curves over Q. We will begin with a discussion
on the theory of heights, and then show that E(Q)/2E(Q) is finite (Theorem
3.2.3). Using this result, known as the Weak Mordell-Weil theorem, and the
theory of heights, we will prove the full Mordell-Weil theorem (Theorem 3.3.1),
which states that E(Q) is a finitely generated abelian group. We then close
with a discussion on some extensions of Mordell-Weil, including the Birch and
Swinnerton-Dyer conjecture, which relates the rank of an elliptic curve E over
Q to the order of vanishing at s = 1 of the L-function L(E, s) of E. This con-
jecture, if true, would lend a lot of insight into the theory of elliptic curves, and
would provide an effective means of finding generators for E(Q).
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Background Information

We start by recalling some information on elliptic curves that will be necessary
for the remainder of the paper.

We first recall the definition of an elliptic curve:

Definition. Let K be a field, then an elliptic curve E over K is a curve E ⊂ P2

defined by the homogenization of smooth plane cubic

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (0.1)

We call equation (0.1) and its homogenization

Y 2Z + a1XY Z + a3XZ
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

the Weierstrass equation of E.

In the previous definition, we identify the affine plane A2 with

{[X : Y : Z] ∈ P2|Z 6= 0},

and we call the unique point O := [0 : 1 : 0] on E not in A2 the point at infinity.
In the case that the field K is also of characteristic 6= 2, 3, then after a linear
change of variables we may assume the smooth plane cubic defining an elliptic
curve E is of the form y2 = x3 + ax + b, where a, b ∈ K and x3 + ax + b does
not have multiple roots.

Example.

1. Let K = C, then the projective curve defined by the homogenization of
y2 = x3 − 7x− 6 is an elliptic curve.

2. Let K = C, then the projective curve defined by y2 = x3 + 4x2 + 5x+ 2 =
(x+1)2(x+2) is not an elliptic curve, as the cubic in x has multiple roots.

3. Let K = F97 where F97 denotes the algebraic closure of F97. Then the
projective curve defined by the homogenization of y2 = x3 +2 is an elliptic
curve.

3



On the points of an elliptic curve E over a field K, we may define a group
law as follows:

1. Let P,Q be distinct points on E. Then by Bezout’s theorem [7, Theorem
1], the line PQ intersects E at precisely three points: P , Q, and one
additional point that we will denote P ∗Q.

2. If P = Q, the line PQ is defined as the tangent line to E at P , and we
still denote the additional point of intersection P ∗Q

3. The point O on E is an inflection point [2, page 10], so in particular,
O ∗ O = O.

4. For a point P on E, denote by −P the third point of intersection of the
line PO with E.

5. For two points P,Q on E, define P +Q := O ∗ (P ∗Q)

Proposition. The operation + makes E into an abelian group with identity
element O

Proof. Associativity requires some work (see [2, Theorem 6]), but the other
axioms are a bit easier to establish.
For points P,Q on E, the lines PQ and QP are the same, so the operation is
commutative. Next, for P on E,

P +O = O ∗ (P ∗ O) = P,

so O is the identity. For a point P , the point −P as defined in item 4 is its
inverse:

P + (−P ) = O ∗ (P ∗ −P ) = O ∗ (P ∗ (P ∗ O)) = O ∗ O = O.

In particular, for an affine point P on an elliptic curve E, the point −P is the
reflection of P about the x-axis. Hence, E is an abelian group under +.

We can actually say a bit more than just that the points of E form an abelian
group. In fact, the group law is also given by everywhere defined rational func-
tions [4, page 54]. That is for affine points, we have the following formulas:

P1, P2, P3 ∈ E with P1 + P2 = P3 and Pi = (xi, yi)

x3 = λ2 + a1λ− a2 − x1 − x2

y3 = −(λ+ a1)x3 − ν − a3,

Then

x3 = λ2 + a1λ− a2 − x1 − x2

y3 = −(λ+ a1)x3 − ν − a3,

4



λ ν

x1 6= x2
y2 − y1

x2 − x1

y1x2 − y2x1

x2 − x1

x1 = x2
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

−x3
1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3

In particular, the group law yields a group structure on rational points over any
field that contains the field K of definition of an elliptic curve E, as the above
functions all have coefficients in K. The formula for x3 when x1 = x2 is also
called the duplication formula

If L contains the field of definition K, we denote by E(L) the set of L-
rational points of E, that is the points on E where each coordinate of the point
is in L. Then E(L) is also an abelian group by the proposition, and if L|M is
a field extension where both contain K, then E(M) is a subgroup of E(L).
It is worth mentioning also what the points of order 2 on an elliptic curve are.
We also have the following result that can sometimes be useful:

Proposition. Let E be an elliptic curve over a field K, and let P,Q,R ∈ E be
colinear. Then P +Q+R = O.

Proof. We have

P +Q+R = (O ∗ (P ∗Q)) +R = O ∗ ((O ∗ (P ∗Q)) ∗R) = O ∗ ((O ∗R) ∗R)

= O ∗ O = O,

which proves the result.

This concludes the background information.
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Chapter 1

Elliptic Curves over C and
R

The aim of this chapter is to show for an elliptic curve E over C, that as an
abelian group, E(C) is isomorphic to a torus C/Λ, for a lattice Λ ⊂ C. We
begin by discussing some necessary facts from the theory of elliptic functions
and then focus on a specific elliptic function, the Weierstrass ℘ function, in
the second section. In the third section, we construct our explicit isomorphism
between E(C) and C/Λ. In the final section, we turn our attention to real
elliptic curves, and show that for an elliptic curve E over R, E(R) is isomorphic
to either the circle S1 or Z2 × S1.

1.1 Background on Elliptic Functions

We begin with the following definition:

Definition 1.1.1. Let ω1, ω2 ∈ C be two elements that are linearly independent
over R. A function f : C→ C∪{∞} is called elliptic with respect to the periods
ω1 and ω2, if f is meromorphic and f(z + ω1) = f(z + ω2) = f(z) for all z ∈ C.

To any such ω1, ω2 that are linearly independent over R, we associate the
set Π := {t1ω1 + t2ω2 | t1, t2 ∈ [0, 1)}, known as the fundamental parallelogram.
Given α ∈ C, we denote by Πα the set {α + x | x ∈ Π}, called the period
parallelogram corresponding to α.

Proposition 1.1.2. If f is an entire elliptic function, then f is constant.

Proof. Let Π be the fundamental parallelogram for the periods corresponding
to f . Then as f is entire, f is holomorphic on the closure Π of Π. As Π is
compact, f is thus bounded on Π, and hence f is bounded on all of C since f
is elliptic. Therefore by Liousville’s theorem, f is a constant function.
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Proposition 1.1.3. Let f be an elliptic function, and α ∈ C such that the
boundary ∂Πα of Πα contains no poles of f . Then the sum of the residues of f
inside Πα is zero.

Proof. Let reszf denote the residue of f at a point z ∈ C. Then by the residue
theorem, we have

1

2πi

∫
∂Πα

f(z) dz =
∑
z∈Πα

reszf, (1.1.1)

thus it suffices to show that the integral on the left-hand side is zero. Next,
observe

α+ω1∫
α

f(z) dz +

α+ω2∫
α+ω1+ω2

f(z) dz =

α+ω1∫
α

f(z) dz +

α∫
α+ω1

f(z + ω2) dz,

as f is elliptic, the integrand in the second integral on the right side is f(z).
Hence, the entire right side is zero as the two integrals cancel. Similarly,

α+ω1+ω2∫
α+ω1

f(z) dz +

α∫
α+ω2

f(z) dz = 0,

and therefore since∫
∂Πα

f(z) =

α+ω1∫
α

f(z) dz +

α+ω1+ω2∫
α+ω1

f(z) dz +

α+ω2∫
α+ω1+ω2

f(z) dz +

α∫
α+ω2

f(z) dz,

we have that the left-hand side of (1.1.1) is zero, and so the proposition follows.

Proposition 1.1.4. Let f be an elliptic function, and α ∈ C such that the
boundary ∂Πα of Πα contains no poles of f . Let {mi} and {nj} denote the
orders of the zeros and poles respectively inside Πα. Then

∑
imi =

∑
j nj.

Proof. Let g(z) = f ′(z)/f(z), then as f is elliptic so too is f ′ and hence g is also
an elliptic function. We claim that if f has order m at z0, then resz0g = m. To
begin, if m = 0, then f(z0) 6= 0, and thus g is holomorphic at z0, so resz0g = 0.
Next, suppose m 6= 0, then we may write f(z) = (z − z0)mh1(z), where h1

is a holomorphic function that does not vanish at z0. By differentiating, this
equality, we obtain f ′(z) = m(z − z0)m−1h1(z) + (z − z0)mh′1(z). Thus,

g(z) =
m(z − z0)m−1h1(z) + (z − z0)mh′1(z)

(z − z0)mh1(z)
=

m

z − z0
+
h′1(z)

h1(z)
.

Therefore, resz0g = m. By the previous proposition, as g has no poles or zeros
on ∂Πα, we have ∑

i

mi −
∑
j

nj =
∑
z0∈Πα

resz0g = 0.

Hence,
∑
imi =

∑
j nj .

7



We now introduce the Weierstrass ℘ function, which we will use to calculate
E(C) as an abelian group for a complex elliptic curve.

1.2 Weierstrass ℘ function

We start with the following definition:

Definition 1.2.1. Let f be an elliptic function. The order of f is the number
of zeros of f inside of Πα for an α ∈ C such that ∂Πα contains no poles of f .

For a function f that is elliptic with respect to two periods ω1, ω2 that are
linearly independent over R, we can define a certain lattice Λ ⊂ C depending
on these periods:

Definition 1.2.2. Let ω1, ω2 ∈ C be linearly independent over R. Define
Λ(ω1, ω2) := {mω1 + nω2 | m,n ∈ Z}, then Λ is called the period lattice of ω1

and ω2.

When it is clear from context, often times we will omit the ω1 and ω2 and sim-
ply write Λ for Λ(ω1, ω2). Similarly, when referring to a period lattice Λ(ω1, ω2),
we assume that ω1 and ω2 are linearly independent over R. Note that if f is
elliptic with respect to ω1 and ω2, then

f(z + ω) = f(z) for all ω ∈ Λ(ω1, ω2).

Hence, if f is elliptic with respect to two periods ω1 and ω2, we will also write
that f is elliptic with respect to Λ = Λ(ω1, ω2).

The goal of the first part of this section is to prove that the following function
is an elliptic function of order 2:

Definition 1.2.3. Let ω1, ω2 ∈ C be linearly independent over R with period
lattice Λ. The Weierstrass ℘ function corresponding to Λ is

℘(z) :=
1

z2
+

∑
ω∈Λ\{0}

[
1

(z − ω)2
− 1

ω2

]
We begin with the following result:

Proposition 1.2.4. Let Λ := Λ(ω1, ω2) be a period lattice. For any real number
s > 2, ∑

ω∈Λ\{0}

1

|ω|s

converges.

Proof. Let
Π̃ := Π ∪ (Π−ω1

) ∪ (Π−ω2
) ∪ (Π−ω1−ω2

)

be the union of the four translates of Π which surround the origin, and let ∂Π̃
be the boundary of Π̃. Then ∂Π̃ is compact and does not contain 0, so there
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exists c > 0 such that for all z ∈ ∂Π̃, |z| ≥ c. Let ω = mω1 + nω2 ∈ Λ be such
that |m| ≥ |n| > 0, then we have

|ω| = |mω1 + nω2| ≥ |m| ·
∣∣∣ω1 +

n

m
ω2

∣∣∣ ≥ |m|c.
Similarly, if ω is such that |n| ≥ |m| > 0, then |w| ≥ |n|c. If either m = 0
or n = 0, then |mω1 + nω2| ≥ c· max(|m|, |n|), and so in general, for all
ω = mω1 + nω2 ∈ Λ, we have |w| ≥ c· max(|m|, |n|).

Next, observe for each N ∈ N, the number of (m,n) ∈ Z2 such that
max(|m|, |n|) = N is less than or equal to 8N , therefore

∑
ω∈Λ\{0}

1

|ω|s
=

∑
m,n∈Z2\(0,0)

1

|mω1 + nω2|s
≤
∞∑
M=1

8M

csMs
.

The series on the right hand side converges since c > 0 is constant, and s−1 > 1
since s > 2, so the proposition follows.

Proposition 1.2.5. The series defining ℘(z) converges absolutely and uni-
formly on every compact subset of C\Λ. Moreover, ℘(z) is a meromorphic
function and its poles are precisely the elements of Λ, each of which is a pole of
order 2.

Proof. Let ω ∈ Λ be such that |ω| > 2|z|, then we have∣∣∣∣ 1

(z − ω)2
− 1

ω2

∣∣∣∣ =

∣∣∣∣ 2ωz − z2

(z − ω)2ω2

∣∣∣∣ ≤ 2|ω||z|+ |z|2

(|ω| − |z|)2|ω|2
≤ 10|z|
|ω|3

Next, for each z ∈ C, there are only finitely many ω ∈ Λ such that ω ≤ 2|z|,
thus ∣∣∣∣∣∣ 1

z2
+

∑
ω∈Λ\{0}

[
1

(z − ω)2
− 1

ω2

]∣∣∣∣∣∣ <∞
by the previous proposition. Therefore, by the Weierstrass M -test, ℘(z) con-
verges absolutely and uniformly on every compact subset of C\Λ.

As each term 1
(z−ω)2 −

1
ω2 is holomorphic on C\Λ, and the series defining

℘(z) converges uniformly, we also have ℘(z) is holomorphic on C\Λ. Hence,
℘(z) is meromorphic on C, and the poles of ℘(z) are precisely the elements of
Λ, with each element contributing a pole of order 2 due to the term 1

(z−ω)2 .

We may now prove that ℘ is elliptic of order 2.

Proposition 1.2.6. ℘(z) is an even elliptic function of order 2, and its deriva-
tive is

−2
∑
ω∈Λ

1

(z − ω)3

which is an odd elliptic function.
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Proof. The second statement follows from the first and the fact that the series
defining ℘(z) converges uniformly, and hence ℘′(z) is equal to the term by term
differentiation of ℘(z). The result of this term by term differentiation is precisely
the above sum, hence ℘′(z) is an elliptic function.

To see that ℘(z) is even, observe that

℘(−z) =
1

(−z)2
+

∑
ω∈Λ\{0}

[
1

(−z − ω)2
− 1

ω2

]
=

1

z2
+

∑
ω∈Λ\{0}

[
1

(z − ω)2
− 1

ω2

]
= ℘(z),

where the second equality follows since the series converges absolutely and hence
the order of summation does not matter.

Next, consider the function g(z) = ℘(z + ω1) − ℘(z). Differentiating both
sides, we have g′(z) = ℘′(z + ω1)− ℘′(z) ≡ 0, since ℘′(z) is an elliptic function
with respect to the periods ω1, ω2 defining Λ. Therefore, g(z) is constant, and
g(−ω1

2 ) = ℘(ω1

2 )−℘(−ω1

2 ) = 0, since ℘ is even and ω1

2 is not a pole of ℘. Hence,
℘(z + ω1) = ℘(z), and similarly ℘(z + ω2) = ℘(z), so ℘ is an elliptic function.
Lastly, as 0 is the only pole of ℘ inside Π, and it is a pole of order 2, we have
that the order of ℘ is 2.

It is also useful to know what the zeros of ℘′(z) are:

Proposition 1.2.7.

1. For any u ∈ C, g(z) := ℘(z)− u has either one double zero or two simple
zeros inside Π.

2. The zeros of ℘′(z) in Π are ω1/2, ω2/2 and (ω1 + ω2)/2, each of which is
a simple zero.

3. The values u1 = ℘(ω1/2), u2 = ℘(ω2/2) and u3 = ℘((ω1 + ω2)/2) are the
values for which g has a double zero, and u1, u2, u3 are distinct.

Proof.

1. As g is elliptic of order 2, by Proposition 2.4, g(z) has precisely two zeros
inside Π counting multiplicities.

2. We have

℘′
(ω1

2

)
= ℘′

(ω1

2
− ω

)
= ℘′

(
−ω1

2

)
= −℘′

(ω1

2

)
,

so ω1/2 is a zero of ℘′(z). Similarly, ω2/2 and (ω1 + ω2)/2 are zeroes of
℘′(z). As ℘′(z) has a pole of order 3 at 0 and no other poles in Π, these
are all the zeros of ℘′(z) in Π.

3. In order for g to have a double zero at z, we must have g′(z) = ℘′(z) = 0,
hence z must be one of ω1/2, ω2/2 or (ω1 +ω2)/2, and so u must be one of
the ui. The ui are distinct, as if say u1 = u2, then g would have a double
zero at both ω1/2 and ω2/2, which would contradict part (1). Hence, the
ui are distinct.
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Our next goal is to show that ℘(z) and its derivative ℘′(z) satisfy a certain
differential equation. Namely, we will show that 4℘′(z) = 4℘(z)3 − g2℘(z)− g3,
where g2 and g3 are constants that we will define shortly. We begin with the
following result:

Proposition 1.2.8. Let f be an elliptic function with respect to two periods
ω1, ω2, then f(z) = g(℘(z))+wp′(z)h(℘(z)) where g and h are rational functions

Proof. We first show that every even elliptic function f(z) may be written
f(z) = g(℘(z)), where g is a rational function. For each a ∈ Π\{0, ω1

2 ,
ω2

2 ,
ω1+ω2

2 },
let a∗ denote the element of Π congruent to −a modulo Λ(ω1, ω2). Then we have

a∗ =

 ω1 + ω2 − a if a is interior
ω1 − a if a is on the side along ω1

ω2 − a if a is on the side along ω2

Moreover, fk(z) = (−1)kfk(ω − z) for all ω ∈ Λ since f is even and elliptic
with respect to ω1 and ω2. Therefore, if a is a zero of order m, then a∗ is a zero
of order m. Similarly, since 1

f(z) is even and elliptic with respect to ω1 and ω2,

if a is a pole of order m, then a∗ is a pole of order m.
Next, suppose a ∈ {0, ω1

2 ,
ω2

2 ,
ω1+ω2

2 }, then

f(a− z) = f(−2a+ a− z) = f(−a− z) = f(a+ z),

where the first equality follows since 2a ∈ Λ and f is elliptic. Hence, the Taylor
expansion of f around a is even, so the order of f at a is even. Similarly, the
Taylor expansion of 1

f(z) around a is even, so the same argument holds if a is a

pole.
Now, let Ã denote the set of all zeros of f in Π, and B̃ the set of all

poles of f in Π. From Ã\0, let A be a subset such that for each pair a, a∗ ∈
Ã\{ω1

2 ,
ω2

2 ,
ω1+ω2

2 }, A contains either a or a∗, but not both, and each of ω1

2 ,
ω2

2 ,
ω1+ω2

2

is an element of A if it is an element of Ã. Similarly, let B be a subset of B̃\{0}
in the form of A ⊂ Ã. Hence, A and B are both finite since Ã and B̃ are finite,
and we define

F (z) =

∏
a∈A

[℘(z)− ℘(a)]∏
b∈B

[℘(z)− ℘(b)]
.

Then the zeros and poles of F (z) in Π\{0} are precisely the zeros and poles
respectively of f(z). To see this, if a 6∈ {ω1

2 ,
ω2

2 ,
ω1+ω2

2 } is a zero of f , then
by Proposition 1.2.7, ℘(z) − ℘(a) has two distinct zeros at a and a∗ and if
a ∈ {ω1

2 ,
ω2

2 ,
ω1+ω2

2 }, then ℘(z)−℘(a) has a double zero at a. Similarly, the poles
of F are precisely the poles of f of the same order, so f(z)/F (z) is holomorphic
on Π\{0}. However, by Proposition 1.1.4, f(z)/F (z) is also holomorphic at 0,
and hence holomorphic on all of C. Thus, f(z)/F (z) is constant, establishing
the claim.
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Now let f be an arbitrary function that is elliptic with respect to ω1 and
ω2, and let fe(z) := 1

2 (f(z) + f(−z)), fo(z) := 1
2 (f(z) − f(−z)). Then fe and

fo/℘
′(z) are even elliptic, thus

fe(z) = g(℘(z)),
fo
℘′(z)

= h(℘(z))

for some rational functions g, h. Therefore,

f(z) = fe(z) + fo(z) = g(℘(z)) + ℘′(z)h(℘(z)).

We are now in a position to show that ℘(z) satisfies the claimed differential
equation:

Theorem 1.2.9. Let

Gm = Gm(Λ) :=
∑

ω∈Λ\{0}

1

ωm
,

and let g2 = 60G4, g3 = 140G6. Then

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

Proof. By Proposition 1.2.4, each Gm converges for m ≥ 2, so by the Weierstrass
doubles series theorem [c.f. 2, Lemma 6.13], we have

℘(z)− 1

z2
=

∑
ω∈Λ\{0}

( ∞∑
k=1

k + 1

ωk+2
zk

)
=

∞∑
k=1

(k + 1)Gk+2z
k.

℘(z) =
1

z2
+ 3G4z

2 + 5G6z
4 + . . .

and differentiating, we have

℘′(z) = −2
2

z3
+ 6G4z + 20G6z

3 + . . .

Next, by direct calculation, we have

℘(z)2 =
1

z4
+ 6G4 + 10G6z

2 + . . . , ℘(z)3 =
1

z6
+ 9G4

1

z2
+ 15G6 + . . .

℘′(z)2 =
4

z6
− 24G4

1

z2
− 80G6 + . . .

Hence, we obtain g(z) := ℘′(z)2 − ℘(z)3 + 60G4℘(z) + 140G6 has a zero at
0, and is an entire elliptic elliptic function. Thus, g(z) ≡ 0, and the theorem
follows.
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1.3 Group Structure of E(C)
In this section, we will use the function ℘(z) in order to construct an explicit
isomorphism of groups between C/Λ(ω1, ω2) and the complex elliptic curve
Y 2Z = 4X3 − g2XZ

3 − g3Z
3. We begin with the following result:

Proposition 1.3.1. The polynomial 4x3−g2x−g3 has distinct roots, and hence
E : Y 2Z = 4X3− g2XZ

3− g3Z
3 is indeed an elliptic curve. Moreover, E(C) is

a complex manifold.

Proof. By Theorem 1.2.9 and Proposition 1.2.7(2), the roots of 4x3 − g2x− g3

are ℘(ω1

2 ), ℘(ω2

2 ), ℘(ω1+ω2

2 ), which are distinct by Proposition 1.2.7(3) For the
second claim, we define charts around each point [X : Y : Z] ∈ E(C). Define
F (x, z) = y2−(4x3−g2x−g3), and let [X : Y : 1] ∈ E(C) with affine coordinates
(x, y). If y 6= 0, then ∂F

∂y (x, y) = 2y 6= 0. Thus, by the Implicit Function
Theorem, we can define y as analytic function of x, and hence a chart is given
by (x, y) 7→ x.

Similarly, if y = 0, then ∂F
∂x (x, y) = 12x2 − g2 6= 0, since the roots of the

cubic are distinct by the first part of this proposition. Hence, by the Implicit
Function Theorem, we can define x as an analytic function of y, and a chart is
given by (x, y) 7→ y.

It remains to consider a chart about [0 : 1 : 0]. Define G(x, z) = z − (43 −
g2x− g3), then ∂G

∂z (0, 0) 6= 0. Hence, we can define z as an analytic function of
x, and a chart is given by (x, z) 7→ x. Thus, E(C) is a complex manifold.

Theorem 1.3.2. Let E be the complex elliptic curve E : Y 2Z = 4X3−g2XZ
3−

g3Z
3, and consider the map ϕ : C/Λ→ E(C) given by

ϕ(z) =

{
[℘(z) : ℘′(z) : 1] for z 6∈ Λ
[0 : 1 : 0] for z ∈ Λ

Then ϕ is bijective and biholomorphic.

Proof. First observe that ϕ does indeed map C/Λ into E(C) by Theorem 1.13,
so ϕ is well defined. Next, suppose ϕ(z1) = ϕ(z2). Then ℘(z1) = ℘(z2),
℘′(z1) = ℘′(z2), and z2 = z∗1 where z∗1 is the element of Π congruent to −z1

modulo Λ as in Proposition 1.2.8 Thus we have,

℘′(z2) = ℘′(z∗1) = ℘′(−z1) = −℘′(z1) = −℘′(z2),

and so ℘′(z2) = ℘′(z1) = 0. Therefore, z1, z2 ∈ {ω1

2 ,
ω2

2 ,
ω1+ω2

2 }, and so z2 =
z∗1 = z1. Thus, ϕ is injective.

Now let O 6= P ∈ E(C), and write P in affine coordinates as P = (x, y).
Then by Proposition 1.2.7(1), there exists z ∈ Π such that ℘(z) = x, and
moreover,

℘′(z)2 = 4℘(z)− g2℘(z)− g3 = 4x3 − g2x− g3 = y2.

Thus, ℘′(z) = ±y. If ℘′(z) = y, then ϕ(z) = P , and if ℘′(z) = −y, then
℘(z∗) = x and ℘′(z∗) = y, so ϕ(z∗) = P. As O is also in the image of ϕ by
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construction, ϕ is surjective.
We now show that ϕ is biholomorphic. Let z ∈ C\{0}, and write ϕ(z) in

affine coordinates as (x, y). Suppose z 6∈ {ω1

2 ,
ω2

2 ,
ω1+ω2

2 }. Then y 6= 0, so we
have a chart given by (x, y) 7→ x, hence we get a map z 7→ ℘(z). As ℘′(z) 6= 0,
by the Inverse Function Theorem we thus have that ϕ is biholomorphic about
z.

Next, let z ∈ {ω1

2 ,
ω2

2 ,
ω1+ω2

2 }. Then we have a chart given by (x, y) 7→ y,
and hence we get a map z 7→ ℘′(z). As ℘′′(z) 6= 0 since ℘′(z) has no double
roots by Proposition 1.2.7(2), ϕ is biholomorphic about z.

We lastly consider the case z = 0. Then we have a chart given by (x, z) 7→ x,

and hence we get a map z 7→ ℘(z)
℘′(z) . As

(
℘(z)
℘′(z)

)′
6= 0, since z is a simple zero,

ϕ is also biholomorphic about z = 0, establishing that ϕ is a biholomorphic
map.

We are now in a position to prove that the group structure of E(C) is a
torus:

Theorem 1.3.3. Let E be the complex elliptic curve E : Y 2Z = 4X3−g2XZ
3−

g3Z
3, and let ϕ : C/Λ→ E(C) be the map from the previous proposition. Then

ϕ is a group isomorphism.

Proof. By the previous proposition, we know that ϕ is bijective, so it suffices
to show that ϕ is a homomorphism. Let f : C/Λ × C/Λ → C/Λ and g :
E(C) × E(C) → E(C) be the respective addition maps. Then we show that
g ◦ (ϕ × ϕ) = ϕ ◦ f . First, observe that both f and g are continuous, so it
suffices to prove the equality of functions on a dense subset of C/Λ× C/Λ. We
claim that

X̃ := {(u1, u2) ∈ C× C | u1, u2, u1 ± u2, 2u1 + u2, u1 + 2u2 6∈ Λ}

is dense in C × C. To see this, observe that for any (u1, u2) ∈ C × C, we can

change u1 and u2 by arbitrarily small values to force (u1, u2) into X̃, since Λ

is discrete. Therefore, X̃ is dense in C × C, and hence its image X is dense in
C/Λ× C/Λ.

Now, let (u1 + Λ, u2 + Λ) ∈ X, u3 = −(u1 +u2), and Pi := ϕ(ui). Then each
of the Pi are distinct, and different from O, so we may consider each of them
as an element of A2. Since P1 6= ±P2, we have that the line P1P2 is given by
y = ax+ b, where a 6= 0. As P1 and P2 are both on this line, we have

℘′(u1) = a℘(u1) + b and ℘′(u2) = a℘(u2) + b.

Next, define the function h(z) := ℘′(z) − a℘(z) − b. Then h is an elliptic
function which has a pole of order 3 at zero and no other poles in Π. It also
has two zeros at u1 and u2, and thus has one more zero ω ∈ Π such that
u1 + u2 +w ≡ 0 mod Λ. Thus, ω ≡ u3 mod Λ, so h(u3) = 0 and thus u3 lies on
P1P2. Therefore, P1, P2, and P3 lie on a line, so P1 +P2 +P3 = O by definition
of the group law on E. Hence,

ϕ(u1) + ϕ(u2) = P1 + P2 = −P3 = −ϕ(−(u1 + u2)) = ϕ(u1 + u2)
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since ϕ(−u) = −ϕ(u) since ℘ is even and ℘′(z) is odd. Thus, ϕ is a homomor-
phism and so C/Λ and E(C) are isomorphic as groups.

Remark 1.3.4. In fact, for each elliptic curve E over C, there is a lattice Λ ⊂ C
such that E(C) ∼= C/Λ, establishing a converse to the previous theorem. For a
proof of this fact, see [2, Chapter 6].

We now turn our attention to real elliptic curves.

1.4 Elliptic curves over R
Throughout this section, we assume that we have a lattice Λ, such that σ(Λ) =
Λ, where σ denotes complex conjugation. We show E(R) is isomorphic to either
S1 or Z2 × S1, where E : Y 2Z = 4X3 − g2XZ

2 − g3Z
3.

To begin, consider the action on the affine points of E(C) given by σ(x, y) :=
(σ(x), σ(y)). Then (x, y) ∈ E(R) ⇐⇒ σ(x, y) = (x, y). We also have a natural
action on P 2(C) given by σ([x0 : x1 : x2]) := [σ(x0) : σ(x1) : σ(x2)].

Lemma 1.4.1. This action of σ on P 2(C) is well-defined, and

σ([x0 : x1 : x2]) = [x0 : x1 : x2] ⇐⇒ [x0 : x1 : x2] ∈ P 2(R)

Proof. Suppose [x0 : x1 : x2] = [x′0 : x′1 : x′2]. Then there exists λ ∈ C× such
that xi = λx′i, for i = 0, 1, 2. Thus,

σ([x0 : x1 : x2]) = [σ(x0) : σ(x1) : σ(x2)] = [σ(λx′0) : σ(λx′1) : σ(λx′2)] =

[σ(λ)σ(x′0) : σ(λ)σ(x′1) : σ(λ)σ(x′2)] = [σ(x′0) : σ(x′1) : σ(x′2)] = σ([x′0 : x′1 : x′2]).

Thus, the action is well-defined.
For the second statement, the backwards direction is clear, so we prove the

forward direction. Suppose σ([x0 : x1 : x2]) = [x0 : x1 : x2], then there exists
λ ∈ C× such that σ(xi) = λxi for i = 0, 1, 2. Applying σ again, we see that
xi = σ(λ)σ(xi).

Adding the expressions, we have

2Re(xi) = xi + σ(xi) = xi + xiλ = xi(1 + λ)

=⇒ xi(1 + λ)

2
= Re(xi).

If λ = −1, then each of the xi are of the form iyi, for some yi ∈ R, and
hence [x0 : x1 : x2] = [iy0 : iy1 : iy2] = [y0 : y1 : y2] ∈ P 2(R). Otherwise,
(1 +λ)/2 ∈ C×, so [x0 : x1 : x2] is the same as [z0 : z1 : z2] for some zi in R.

As a result of the previous claim, the real points of E are precisely the points
that are fixed by the action of σ on P 2(C). Since Λ = Λ, we have a natural
well-defined action on C/Λ given by σ(z + Λ) := σ(z) + Λ.
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Lemma 1.4.2. The action of σ commutes with the map ϕ from the previous
section, that is, ϕ ◦σ = σ ◦ϕ, where first σ denotes the action on C/Λ and then
on P 2(C):

Proof. We have

℘(z) =
1

z2 +
∑

ω∈Λ\{0}

[
1

(z − ω)2
− 1

ω2

]
=

1

z2
+

∑
ω∈Λ\{0}

[
1

(z − ω)2
− 1

ω2

]

1

z2
+

∑
ω∈Λ\{0}

[
1

(z − ω)2
− 1

ω2

]
=

1

z2 +
∑

ω∈Λ\{0}

[
1

(z − ω)2
− 1

ω2

]
= ℘(z)

where in the second equality, we use the fact that the sum representing ℘(z) is
absolutely convergent. The case with ℘′(z) is similar.

As a result of this claim, we deduce that it suffices to describe the fixed
points of the action of σ on C/Λ, (C/Λ)σ.

We have that Λ is a free Z-module of rank 2. Let Λ+ := {a ∈ Λ | σ(a) = a},
and let Λ− := {a ∈ Λ | σ(a) = −a}.

Proposition 1.4.3. Λ is of the form Λ = Λ+ ⊕ Λ−, or there is a basis for Λ
such that Λ = Zω1 ⊕ Zω2, where σ(ω1) = ω2

Proof. We claim that there exists v1 ∈ Λ+ such that v1 generates Λ+. To see
this, let x1, x2 be any basis for Λ such that the xi are linearly independent over
R. Suppose that we need two elements v1, v2 to form a basis for Λ+ (note that
it cannot be more than 2 since Z is a PID, and Λ+ is a Z-submodule of Λ).
Then there exist a, b, c, d ∈ Z such that v1 = ax1 + bx2, and v2 = cx1 + dx2.
Then,

0 = v1 − v1 = v1 −
v1

v2
v2 = (a− v1

v2
c)x1 + (b− v1

v2
d)x2,

hence a = v1
v2
c, and b = v1

v2
d, since v1, v2 ∈ R. Thus, v1

v2
∈ Q, so, there exist

p, q ∈ Z such that v1
v2

= p
q . Thus, qv1 + pv2 = 0, contradicting the assumption

that v1 and v2 are linearly independent over Z. The case showing Λ− has only
one element as its basis is similar.

Thus, let v1,v2 be a basis for Λ+ and Λ− respectively. Suppose there exists
ω ∈ Λ\Λ+ ⊕ Λ−. Then we may assume that ω is in the area of C enclosed
by the parallelogram with vertices 0, v1, v2, v1 + v2. To see this, observe that
ω = x + iy, so by subtracting multiples of v1 and v2 if necessary, we can force
ω into this region. Next, we have 2ω = (ω + ω) + (ω − ω) ∈ Λ+ ⊕ Λ−. Since ω
by construction is not in Λ+ or Λ−, we must have that 2ω = ω1 + ω2. Thus, Λ
is generated by ω and ω, since ω = ω − ω2.

We now have a specific form for Λ− in the case Λ = Zω1 ⊕ Zω2, where
σ(ω1) = ω2:

Proposition 1.4.4. Suppose Λ = Zω1 ⊕ Zω2, where σ(ω1) = ω2, then

Λ− = (σ − 1)Λ.
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Proof. Certainly we have the reverse inclusion. Conversely, suppose x ∈ Λ−.
Then x = aω1 + bω2, and applying σ, we obtain σ(x) = bω1 + aω2. Adding the
expressions, we have 0 = x + σ(x) = (a + b)ω1 + (a + b)ω2, so a = −b. Thus,
x = σ(aω2)− aω2 ∈ (σ − 1)Λ.

We now state and prove the first possibility for the structure of E(R):

Theorem 1.4.5. If Λ = Zω1 ⊕ Zω2, where σ(ω1) = ω2, then E(R) ∼= S1

Proof. Let z ∈ (C/Λ)σ, then σ(z+ Λ) = z+ Λ, so σ(z)−z ∈ Λ. Moreover, since
(σ − 1)Λ = Λ− by the previous proposition, we actually have σ(z) − z ∈ Λ−.
Thus, σ(z) − z = σ(λ) − λ, for some λ ∈ Λ. Hence, σ(z − λ) = z − λ, so
z − λ ∈ R. Thus, z and z − λ lie in the same coset mod Λ, and z − λ is
real. As z was arbitrary, we then have that the map R 7→ (C/Λ)σ must then be
surjective. Moreover, the kernel of this map is precisely Λ+, so R/Λ+

∼= (C/Λ)σ,
and R/Λ+

∼= S1 from which we deduce the result.

We now consider the case that Λ = Λ+ ⊕ Λ−:

Theorem 1.4.6. Suppose Λ is of the form Λ = Λ+⊕Λ−, then E(R) ∼= Z2×S1

Proof. First note that in this case, (σ − 1)Λ is a proper subset of Λ−. To see
this, let ω be a basis for Λ−, and suppose ω ∈ (σ−1)Λ. Then Im(ω) = 2Im(x),
for some x ∈ Λ. Then x = a + bi, where a is divisible by the real part of some
basis for Λ+. Hence, subtracting by the necessary multiple of this basis, we may
assume x = bi, where b ∈ R. Thus, x ∈ Λ−, and b < ω, a contradiction.

Let m ∈ Λ−\(σ−1)Λ, and let q = m
2 . Then Λ− = (σ−1)Λ+〈σ(q)−q〉 (note

that (σ−1)Λ is of index 2 in Λ−, since if ω is a basis for Λ−, then 2ω ∈ (σ−1)Λ).
Next, let z ∈ (C/Λ)σ, then σ(z+Λ) = z+Λ, so σ(z)−z ∈ Λ−. Thus, z is either
in the same coset of z − λ, where z − λ is real and we proceed as before, or

σ(z + q − λ) = z + q − λ =⇒ z + q − λ ∈ R,

so (C/Λ)σ ∼= (R/Λ+) + (q + R/Λ+) ∼= Z2 × S1.
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Chapter 2

Elliptic Curves over Finite
Fields

We now turn our attention to elliptic curves over finite fields Fq. The goal of
the first section is to prove Hasse’s inequality, which states that for an elliptic
curve E over Fq,

|E(Fq)− q + 1| ≤ 2
√
q.

As we will see with a couple of examples, this inequality is quite strong. We
first require some background on endomorphisms of elliptic curves.

2.1 Endomorphisms of Elliptic curves

In an effort to simplify our exposition, we will assume that any field we are
working over has characteristic 6= 2, 3. The reason for doing so is that in this
case, we may assume that any elliptic curve E is defined by a cubic of the form
y2 = x3 + ax+ b.

We begin with the following definition:

Definition 2.1.1. An endomorphism of an elliptic curve E over a field K is a
homomorphism ϕ : E(K)→ E(K) given by rational functions.

In fact, we have the following result:

Proposition 2.1.2. Let ϕ : E(K) → E(K) be a map given by rational func-
tions. Then ϕ is an endomorphism if and only if ϕ(O) = O. [2, Chapter 3,
Theorem 4.8]

With this result in hand, we have the following:

Definition 2.1.3. Let End(E) denote the set of endomorphisms of a given
elliptic curve E over a field K. Then End(E) is a ring via the operations

(ϕ1 + ϕ2)(P ) := ϕ1(P ) + ϕ2(P ), and (ϕ1ϕ2)(P ) := ϕ1(ϕ2(P )),
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and taking the zero element in End(E) to be ϕ(P ) = O for all P

Note that this definition is indeed well-defined by the previous proposition.
Indeed, since ϕ1(O) + ϕ2(O) = O + O = O for all ϕ1, ϕ2 ∈ End(E), the sum
of two endomorphisms is again an endomorphism. Similarly the product of two
elements in End(E) is again in End(E).

We will now introduce the notion of the degree of an endomorphism of an
elliptic curve. We first require some preliminary remarks.

Remark 2.1.4. Let ϕ = (f(x, y), g(x, y)) be an endomorphism of an elliptic
curve E over K. Note that since char(K) 6= 2, 3, we may assume E is of the
form y2 = x3 + ax + b. Hence, any term in f(x) or g(x) with a power of y
greater or equal to 2 may be replaced with some power of x3 + ax + b. Thus,
we may assume both f and g are of the form

f(x, y) = p1(x) + yq1(x), g(x, y) = p2(x) + yq2(x),

where pi(x) and qi(x) are rational functions for i = 1, 2. Finally, since ϕ is also
a homomorphism, we have that for any ϕ(−P ) = −ϕ(P ) for any P ∈ E(K),
and hence that ϕ(x,−y) = −ϕ(x, y). Therefore, both q1 and p2 are identically
0. Hence, we conclude that given ϕ ∈ End(E), that ϕ = (f(x), g(x)y), where f
and g are rational functions.

In light of the previous remark, we now define the degree of an endomor-
phism:

Definition 2.1.5. Let ϕ = (f(x), g(x)y) be an endomorphism of an elliptic
curve E over a field K. Write f(x) = p1(x)/p2(x), where the pi(x) are coprime
polynomials. Then the degree of ϕ is max{deg(p1(x)), deg(p2(x))}. If ϕ is the
zero endomorphism, then we say the degree is zero.

We will now discuss the notion of (in)separability of an endomorphism:

Definition 2.1.6. Let ϕ = (f(x), g(x)y) be an endomorphism of an elliptic
curve E over a field K. Then ϕ is separable if f ′(x) is not identically zero, and
is called inseparable otherwise.

The following result on relating the size of the kernel of a separable endo-
morphism to its degree will prove crucial in proving Hasse’s inequality:

Theorem 2.1.7. Let E be an elliptic curve over a field K, and let ϕ be a
nonzero separable endomorphism, then

1. ϕ is surjective

2. For all Q ∈ E(K), |ϕ−1(Q)| = |Ker(ϕ)|

3. |Ker(ϕ)| = deg(ϕ)
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Proof. Suppose ϕ is of degree m, and write ϕ(x, y) = (r1(x), r2(x)y), where
ri(x) = ai(x)/bi(x) and gcd(ai(x), bi(x)) = 1. Consider the following three
subsets of E(K):

S1 := {Q = (u, v) | u = 0 or deg(ub1(x)− a1(x)) < deg(ϕ)}

S2 := {Q = (u, v) | ∃x ∈ K such that u = r1(x) and r′1(x) = 0}

S3 := {Q = (u, v) | ∃x ∈ K such that u = r1(x) and r2(x) = 0}

Let S denote the union of the Si. We claim that S is finite, and for any
point Q = (u, v) ∈ E(K)\S, that ub1(x)− a1(x) has m distinct roots.

S1 is finite since m = deg(ϕ) is by definition the larger of the degrees of a1

and b1, so the only way deg(ub1(x)−a1(x)) is strictly less than m if the degrees
of ai and bi are the same, and multiplication by u with the leading coefficient
of b1 yields the leading coefficient of a1. This can only happen for at most one
choice of u, which in turn yields only finitely many choices for v, so S1 is finite.

The finiteness of S2 follows since ϕ is separable, so r1 is not the zero poly-
nomial, and hence r′1(x) has finitely many roots.

Similarly, S3 is finite since r2 has only finitely many zeros, and so there are
only finitely many choices for u with u = r1(x), where x is a zero of r2. Thus,
S is finite, and for any point Q = (u, v) ∈ E(K)\S, ub1(x)− a1(x) is of degree
m. It remains to show for any choice of Q, that this polynomial has no multiple
roots.

Choose, Q = (u, v) ∈ E(K)\S, and suppose that x0 is a multiple root. Then
ub1(x0)− a1(x0) = ub′1(x0)− a′1(x0) = 0, and therefore, u(a1b

′
1− a′1b1)(x0) = 0,

but then since u 6= 0, that (a1b
′
1 − a′1b1)(x0) = 0, and hence that the numera-

tor of r′1(x0) is zero. However, then Q is an element of S2, contradicting that
Q ∈ E(K)\S, so ub1(x)− a1(x) has m distinct roots.

Next, for Q = (u, v) 6∈ S, r2(x) 6= 0 for any root of ub1(x)−a1(x), since Q 6∈
S3, and therefore, ϕ−1(Q) = {(x, y) | ub1(x) − a1(x) = 0, y = v/r2(x)}, which
has cardinality m since ub1(x)− a1(x) is separable of degree m. Therefore,
ϕ the complement of the image of ϕ is at most finite, namely the cardinality of
S. However, if P ∈ E(K)\Image(ϕ), then P +Q ∈ E(K)\Image(ϕ) for all Q ∈
Image(ϕ), so E(K)\Image(ϕ) is infinite as |E(K)| is infinite, a contradiction.
Thus, ϕ is surjective.

To prove the second statement, observe that since ϕ is surjective, ϕ−1(Q)
is nonempty for every Q ∈ E(K). Thus, for any P0 ∈ ϕ−1(Q) the map
f : Ker(ϕ) → ϕ−1(Q) given by P 7→ P + P0 is a well-defined bijection,
|ϕ−1(Q)| = |Ker(ϕ)|.

The third statement follows from the second statement and taking Q ∈
E(K)\S, where it has been established that |ϕ−1(Q)| = deg(ϕ) in the argu-
ment that ϕ is surjective.

It is worth mentioning that a similar result holds in general, that is, for
nonseparable endomorphism of elliptic curves. In fact, the first two claims of
Theorem 2.1.7 are true for all endomorphisms, and in general we must replace
equality with |Ker(ϕ)| ≤ deg(ϕ) in the third claim. To prove the result in
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general, one introduces the notion of separable degree of an endomorphism,
however, we only need the version of Theorem 2.1.7 as stated.

We now have the following proposition whose proof may be found in [1,
Theorem 6.2.7]:

Proposition 2.1.8. Let E : y2 = x3 + ax+ b be an elliptic curve over K, then

1. Suppose P3 = P1 + P2 for points Pi = (xi, yi), then viewing x3 and y3 as
rational functions in the indeterminates x1, y1, x2, y2, we have

∂x3

∂x1
=
y3

y1
and

∂x3

∂x2
=
y3

y2

2. Suppose Q = [m]P , where [m] is the multiplication by m map, and write
P = (x, y), Q = (xm, ym), then

∂xm
∂x1

= m
ym
y1

3. If α ∈End(E), P = (x, y), and α(P ) = (xα, yα), then there exists cα ∈ K
such that

∂xα
∂x1

= cα
yα
y1
,

and moreover the map f : End(E)→ K is a ring homomorphism.

4. The constant cα from part (3) is zero ⇐⇒ α is inseparable. In particular,
for any non-zero integer m, the multiplication by m map [m] is separable
in characteristic p > 0 if and only if p does not divide m.

We are now going to use the degree map in order to define a symmetric
bilinear form on End(E). To do this, we first require a few lemmas on the
degree map:

Lemma 2.1.9. Let α, β ∈ End(E), then

deg(α+ β) + deg(α− β) = 2deg(α) + 2deg(β)

Proof. As deg(0) = 0, deg([−1]) = 1, and deg([2]) = 4, the result holds when α
or β is 0 or α = ±β. We now show the result in general by mutual inequality.

Let P = (x, y) ∈ E(K), α, β ∈ End(E), and write

P1 = α(x, y) = (x1, y1), P2 = β(x, y) = (x2, y2)

P3 = (α+ β)(x, y) = (x3, y3), P4 = (α− β)(x, y) = (x4, y4),

where xi = ai(x)/bi(x) for polynomials ai(x), bi(x) such that gcd(ai(x), bi(x)) =
1. Let di = max{deg(ai(x)), deg(bi(x))}, then in these notations, showing
deg(α+ β) + deg(α− β) ≤ 2deg(α) + 2deg(β) amounts to showing that

d3 + d4 ≤ 2d1 + 2d2.
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By the addition formulas, we have

(x1 − x2)2x3 = (x1x2 +A)(x1 + x2)− 2y1y2 + 2B

(x1 − x2)2x4 = (x1x2 +A)(x1 + x2) + 2y1y2 + 2B,

and hence, adding these two expressions and multiplying them, we have the
following two equations:

(x1 − x2)2(x3 + x4) = 2(x1x2 +A)(x1 + x2) + 4B (2.1.1)

(x1 − x2)4x3x4 = (x1x2 −A)2 − 4B(x1 + x2) (2.1.2)

Therefore, by (2.1.1) and (2.1.2), in projective coordinates, we have the following
identity in the xi:

[1 : x3+x4 : x3x4] = [(x1−x2)2 : 2(x1x2+A)(x1+x2)+4B : (x1x2−A)2−4B(x1+x2)].

Next, homogenize each xi via

Xi :=
Zdiai(X/Z)

Zdibi(X/Z)
:=

Ui(X,Z)

Vi(X,Z)
,

then from the projective coordinates identity, we have the following:

[U3V4 : U3V4 + U4V3 : U3U4] = [F : G : H] (2.1.3)

where

F = (U1V2 − U2V1)2, G = 2(U1U2 + 2AV1V2)(U1V2 + U2V1) + 4BV 2
1 V

2
2

H = (U1U2 −AV1V2)2 − 4B(U1V1 + U2V2)V1V2.

We claim that the polynomials on the left hand side of (2.1.3) are coprime.
Suppose H is an irreducible polynomial that divides both V3V4 and U3U4. Then
without loss of generality, H divides both V3 and U4 as the case with V4 and U3

is similar. Hence, in this case H divides neither U3 nor V4, and so then H does
not divide the middle term of the left hand side of (2.1.3).

Next, observe that the polynomials on the left hand side are all of degree
d3 + d4 and all the polynomials on the right hand side are of degree 2d1 + 2d2.
We have just established that the polynomials on the left are coprime, hence,
let D = gcd(F,G,H), then we have

[U3V4 : U3V4 + U4V3 : U3U4] = [DF̃ : DG̃ : DH̃] = [F̃ : G̃ : H̃],

where the polynomials on the right hand side are coprime. Therefore, we have

d3 + d4 = 2d1 + d2 − deg(D) ≤ 2d1 + 2d2,
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and hence
deg(α+ β) + deg(α− β) ≤ 2deg(α) + 2deg(β).

We lastly show the other inequality to establish the lemma. Observe that we
proved this first inequality for arbitrary α, β ∈ End(E), so applying this result
to α± β in place of α and β respectively, we obtain

deg(2α) + deg(2β) ≤ 2deg(α+ β) + 2deg(α− β),

which by multiplicativity of degree is equal to

2deg(α) + 2deg(β) ≤ deg(α+ β) + deg(α− β),

which proves the lemma.

As a corollary of the lemma, we have the following result on the degree of
the multiplication by m map:

Corollary 2.1.10. Let [m] denote the multiplication by m map, then

deg([m]) = m2

Proof. We first show the claim for m nonnegative by induction. The cases
m = 0, 1 hold, so it suffices to consider m > 1.

By Lemma 2.1.9, we have deg([m+1])+deg([m−1]) = 2deg([m])+2deg([1]),
so by our induction hypothesis, we have

deg([m+1]) = 2deg([m])+2deg([1])−deg([m−1]) = 2m2+2−(m−1)2 = (m+1)2

Lastly, the result holds for m negative by the above argument and multiplica-
tivity of degree, since deg([−1]) = 1.

2.2 Hasse’s Inequality

We begin with the following lemma on obtaining a bilinear form from maps
from an abelian group into a field:

Lemma 2.2.1. Let A be an abelian group, F a field of characteristic different
from 2, and Q : A→ F such that

Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y).

Define

B(x, y) :=
Q(x+ y)−Q(x)−Q(y)

2
,

then B is a symmetric bilinear form.
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Proof. SinceQ(0)+Q(0) = Q(0+0)+Q(0−0) = 2Q(0)+2Q(0), and char(F ) 6= 2,
we have Q(0) = 0, so B(0, 0) = 0.
Next, we have

B(x, y) =
Q(x+ y)−Q(x)−Q(y)

2
=
Q(y + x)−Q(y)−Q(x)

2
= B(y, x).

Finally,

2B(x, y) + 2B(z, y) = Q(x+ y)−Q(x)−Q(y) +Q(z + y)−Q(z)−Q(y) =

= (2Q(x) + 2Q(y)−Q(x− y))−Q(x)−Q(y) +Q(z + y)−Q(z)−Q(y)

= Q(x)−Q(x− y) +Q(z + y)−Q(z) =
Q(x+ z + y)−Q(x+ z − y)

2

= Q(x+ z + y)−Q(x+ z)−Q(y) = 2B(x+ z, y),

and so linearity follows since the characteristic of F is different from 2.

We now introduce the following map:

Definition 2.2.2. For α, β ∈ End(E), define

〈α, β〉 :=
deg(α+ β)− deg(α)− deg(β)

2

In light of Lemma 2.2.1, the map in Definition 2.2.2 is a symmetric bilinear
form. Moreover, as the degree of an endomorphism is nonnegative, this form is
also positive definite.

We now prove the Cauchy-Schwarz inequality on this bilinear form:

Proposition 2.2.3. For any α, β ∈ End(E), we have

〈α, β〉2 ≤ deg(α)deg(β)

Proof. If either α or β is the zero endomorphism, the result certainly holds, so
we may assume that both endomorphisms are nonzero.

Consider the map H : Z×Z→ Q given by H(m,n) := 〈mα+nβ,mα+nβ〉.
Then in view of 2.2.2, this is a positive definite symmetric bilinear form, and
the matrix representation of H is given by

A :=

(
deg(α) 〈α, β〉
〈α, β〉 deg(β)

)
Hence, the map F : Q×Q→ Q given by F (x, y) = (x, y)A(x, y)T is a positive
definite, and so the determinant of A is positive. Thus, 〈α, β〉2 ≤ deg(α)deg(β).

We now introduce a particular endomorphism that is vital in the proof of
Hasse’s inequality:
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Definition 2.2.4. Let E be an elliptic curve over Fq, then the Frobenius map
ϕq : E(Fq)→ E(F q) of E is given by ϕq(x, y) := (xq, yq), and ϕq(O) := O

It is worth mentioning that ϕq is indeed an endomorphism. The map is given
by rational functions, and ϕq(O) := O, so assuming ϕq is even well-defined, then
it is an endomorphism. For well-definedness, one uses the fact that E is defined
over Fq, so

(yq)2 = (y2)q = (x3 + ax+ b)q = (xq)3 + axq + b,

and hence ϕq is a well-defined map.
We now have the following proposition:

Proposition 2.2.5. Let E be an elliptic curve over Fq, then

|E(Fq)| = deg(ϕq − 1)

Proof. The proof of this fact will be done in two stages. First, we will argue
that ϕq − 1 is separable, and then we will use appeal to Theorem 2.1.7 after
showing that |E(Fq)| = |Ker(ϕq − 1)|.

To begin, observe that ϕq is inseparable, as the derivative of xq is 0, so by
(4) of Proposition 2.1.8, cϕq = 0. Next, by (3) of Proposition 2.1.8, we have the
constant cϕq−1 for the endomorphism ϕq − 1 is given by

cϕq−1 = cϕq + c−1 = 0 + 1 = 1,

and so again by (5) of 2.1.8, ϕq − 1 is separable.
Next, let P := (x, y) ∈ E(F q), then we have the following chain of equiva-

lences:

P ∈ E(Fq) ⇐⇒ (xq, yq) = (x, y) ⇐⇒ ϕq(P ) = P ⇐⇒ P ∈ Ker(ϕq − 1),

and so |E(Fq)| = |Ker(ϕq − 1)|. The result now follows by Theorem 2.1.7 since
ϕq − 1 is separable.

We are now in a positive to proof Hasse’s inequality:

Theorem 2.2.6. (Hasse)
Let E be an elliptic curve over Fq, then we have

|#E(Fq)− (q + 1)| ≤ 2
√
q

Proof. We prove Hasse’s theorem by using the bilinear form introduced in 2.2.2.
Observe that the degree of the Frobenius map ϕq is q, and so we have by
Proposition 2.2.3,

|〈ϕq, 1〉| ≤
√
q.

Thus, by Proposition 2.2.5,

#E(Fq) = deg(ϕq − 1) = deg(ϕq)− 2〈ϕq, 1〉+ 1,

and so
|#E(Fq)− (q + 1)| = 2|〈ϕq, 1〉| ≤ 2

√
2
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The bound given by Hasse’s inequality ends up being pretty sharp in some
cases. For example, using Sage, one can compute the following:

Example 2.2.7. Let E be the elliptic curve over F97 defined by the cubic
y2 = x3 + 2. Then we compute #E(F97) = 117, and Hasse tells us

|#E(F97)− 98| ≤
√

97 ≈ 19.7
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Chapter 3

Elliptic Curves over Q

3.1 Heights on Elliptic Curves

We begin with some remarks on general heights on Pn(Q) and then consider
heights on elliptic curves.
We begin with the following definition:

Definition 3.1.1. Let P = [a0 : . . . : an] ∈ P(Q). Then by clearing denomina-
tors and dividing by common factors, we may assume that the ai are coprime
integers. We define the height H(P ) to be the max of the |ai|.

We now have the following lemma:

Lemma 3.1.2. Let c ∈ R be positive, and S := {P ∈ Pn(Q) | H(P ) ≤ c}. Then
|S| is finite

Proof. If P = [a0 : . . . : an] ∈ S, with ai coprime integers, then each ai ∈ [−c, c].
As the number of integers in [−c, c] is less than 2(c+ 1), we thus have

|S| < (2(c+ 1))n+1 <∞.

We now introduce the notion of the resultant of two polynomials:

Definition 3.1.3. Given two polynomials f = amt
m+. . .+a0, g = bnt

n+. . .+b0
over a unique factorization domain A, we define the resultant of f and g to be
the determinant

Rf,g :=

∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 . . . am 0 . . .
0 a0 a1 . . . am . . .
· · · · · · · · · · · · · · · · · ·
b0 b1 . . . bn 0 . . .
0 b0 b1 . . . bn . . .
· · · · · · · · · · · · · · · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣
27



This leads to the following lemma:

Lemma 3.1.4. Let f(X,Y ), g(X,Y ) be two homogeneous polynomials of degrees
m and n respectively over Q. Let f1, f2 and g1, g2 be the dehomogenizations of
f and g with respect to X and Y respectively. Then Rf1,g1 = Rf2,g2 .

Proof. This follows since dehomogenizing with respect to Y instead of X will
just reverse the order of the coefficients as they appear in each row, which will
not change the value of the determinant. Hence, the resultants are the same.

In the situation of the previous lemma, we call Rf1,g1 = Rf2,g2 the resultant
of f and g. We now have the following two lemmas about general heights, before
we restrict our discussion of heights to those on elliptic curves.

Lemma 3.1.5. Let f(X,Y ), g(X,Y ) be two homogeneous polynomials of degree
m over Q. Let S ⊂ P1(Q)} be the set of points where f and g are not both zero.
Then:

1. The map ϕ : S → P1(Q) given by ϕ(P ) = (f(P ), g(P )) is well-defined.

2. There exists c > 0 such that H(ϕ(P )) ≤ cH(P )m for all P ∈ S.

3. Let R be the resultant of f and g. If R is not identically zero, then S =
P1(Q), and there exists c′ > 0 such that H(ϕ(P )) ≥ rH(P )m for all P.

Proof.

1. This follows since f and g are homogeneous of the same degree, and
ϕ(P ) 6= [0 : 0] for all P ∈ S.

2. Clearing denominators on the coefficients, which does not change ϕ(P ), we
may assume both f and g have integer coefficients. Let us write f(X,Y ) =
m∑
k=0

akX
kY n−k and g(X,Y ) =

m∑
k=0

bkX
kY n−k, then for [x, y] ∈ S we have

|f(x, y)| =

∣∣∣∣∣
m∑
k=0

akx
kyn−k

∣∣∣∣∣ ≤
m∑
k=0

|ak||xkyn−k| ≤

(
m∑
k=0

|ak|

)
Nm =: c1H(P )m,

whereN is the maximum of |x| and |y|. Similarly, we obtain that |g(x, y)| ≤
c2H(P )m, where c2 is the sum of the magnitudes of the coefficients of g.
Letting c be the larger of c1, c2 yields the this part of the lemma.

3. As R 6= 0, F and G have no common factor, and so S = P1(Q). Next, by
Lemma 3.1.4, we may write

V1(X,Y )F (X,Y ) + U1(X,Y )G(X,Y ) = RX2m−1

V2(X,Y )F (X,Y ) + U2(X,Y )G(X,Y ) = RY 2m−1,

where the Ui and the Vi are homogeneous polynomials of degree m − 1
over Z.
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Next, let P := [a : b] ∈ P1(Q) with a and b coprime integers, and write
P ′ := ϕ(P ) = [a′ : b′] where a′, b′ coprime. Then we have

V1(a, b)a′ + U1(a, b)b′ =
Ra2m−1

d

V2(a, b)a′ + U2(a, b)b′ =
Rb2m−1

d
,

where d is the greatest common divisor of F (a, b) and G(a, b). By part
(ii) of this lemma, we have that there exists some c1 > 0 such that
|Ui(a, b)|, |Vi(a, b)| ≤ c1H(P )m−1 and thus we have

|R|
|d|

H(P )2m−1 =
|R|
|d|

max{|a|2m−1, |b|2m−1} ≤ 2c1H(P )m−1H(ϕ(P )).

Finally, dividing everything by 2C1H(P )m−1, and letting c′ := 1/(2c1),
we have

H(ϕ(P )) ≥ |R|
c′|d|

H(P )m ≥ c′H(P )m,

which proves the claim.

Lemma 3.1.6. Let Pi = [ai : bi] ∈ P1(Q), for i = 1, 2. Then P3 := [b1b2 :
a1b2 + a2b1 : a1a2] is in P2(Q), and moreover

1

2
H(P1)H(P2) ≤ H(P3) ≤ 2H(P1)H(P2)

Proof. As usual, we may assume that ai, bi are coprime integers, which then
implies the three components of P3 are coprime. Hence, P3 is a well-defined
point of P2(Q).
To prove the first inequality, observe that by symmetry, it is enough to show
|a1b2| ≤ 2max{|b1b2|, |a1b2 + a2b1|, |a1a2|}. Hence, assume a1b2 6= 0, and that
2|b1b2|, 2|a1a2| < |a1b2|, then we have

|a1b2| = |a1b2 + a2b1 − a2b1| ≤ |a1b2 + a2b1|+ |a2b1| < |a1b2 + a2b1|+
1

4
|a1b2|,

where the last inequality follows since 2|b1b2|, 2|a1a2| < |a1b2| implies that
|b1| < 1

2 |a1|, |a2| < 1
2 |b2|. Hence, subtracting both sides by 1

4 |a1b2| completes
the proof.

We now turn our attention to heights on elliptic curves.

Definition 3.1.7. Let E be an elliptic curve over Q, define h : E(Q) → R by
h(P ) = logH(P ) if P 6= O, and h(P ) = 0 if P = O. The function h is called
the naive height.
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Note that in view of Lemma 3.1.2, for each c ∈ R+, the number of points on
an elliptic curve E over Q is bounded.

Our next goal is to prove that this naive height satisfies an approximate
parallelogram law. To do so, we require the following two lemmas:

Lemma 3.1.8. Let E : be an elliptic curve over Q with whose defining cubic is
of the form y2 = x3 +ax+b, with a, b ∈ Z. Then there exists c > 0 such that for
every pair of points P,Q ∈ E(Q), h(P +Q) + h(P −Q) ≤ 2h(P ) + 2h(Q) + c2.

Proof. Let P,Q ∈ E(Q), and let xi = ai/bi be the x-coordinate of P,Q, P +
Q, and P − Q respectively. By [equation reference(this is from finite fields
identities], we have

[1 : x3+x4 : x3x4] = [(x1−x2)2 : 2(x1x2+a)(x1+x2)+4b : (x1x2−a)2−4b(x1+x2)],

hence, after clearing denominators, [b3b4 : a3b4 + a4b3 : a3a4] = [z1 : z2 : z3],
where

z1 = (a1b2 − a2b1)2, z2 = 2(a1a2 + ab1b2)(a1b2 + a2b1) + 4bb21b
2
2,

z3 = (a1a2 − ab1b2)2 − 4b(a1b2 + a2b1)b1b2.

Hence, by Lemma 3.1.6

H(x3)H(x4) ≤ 2max{|b3b4|, |a3b4+a4b3|, |a3a4|} ≤ 2max{|z1|, |z2|, |z3|} ≤ cH(x1)2H(x2)2,

where c > 0 is some constant obtained as in Lemma 3.1.5. Taking the log of
both the left and right side completes the proof.

Lemma 3.1.9. Let E : be an elliptic curve over Q with whose defining cubic is
of the form y2 = x3 + ax + b, with a, b ∈ Z. Then there exists c > 0 such that
for every P ∈ E(Q), 4h(P ) ≤ h(2P ) + c.

Proof. From the duplication formulas, we have the following identity:

x(2P ) =
x4 − 2ax2 − 8bx+ a2

4(x3 + ax+ b)
=:

f(x)

g(x)
.

Let F (X,Y ) and G(X,Y ) be the homogenizations of f and g respectively with
respect to a variable Y , and let u(x) and v(x) be given by

u(x) = −3x2 − 4a, v(x) = 3x3 − 5ax− 27b,

then we have v(x)f(x) + u(x)g(x) = −4a3 − 27b2. However, −4a3 − 27b2 is
precisely the discriminant of E, that is, the discriminant of x3 + ax+ b, which
is necessarily nonzero since E is an elliptic curve. As the resultant of f and g is
also the discriminant of E c.f. [1, Lemma 10.2.4], we may thus apply part (3) of
Lemma 3.1.4 to F and G, and so there exists c′ > 0 such that H(P )4 ≤ c′H(2P ).
Therefore, taking the logarithm of both sides, we obtain

4h(P ) ≤ c+ h(2P ),

where c = log(c′).
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We now state and prove the approximate parallelogram law for the naive
height.

Lemma 3.1.10. Let E : be an elliptic curve over Q with whose defining cubic
is of the form y2 = x3 + ax+ b, with a, b ∈ Z. Then there exists c > 0 that only
depends on E such that for every P,Q ∈ E(Q),

|h(P +Q) + h(P −Q)− 2h(P )− 2h(Q)| < c

Proof. Let P,Q ∈ E(Q). By Lemmas 3.1.8 and 3.1.9, there is c1 and c2 both
greater than zero such that

4h(P )+4h(Q) ≤ h(2P )+h(2Q)+c1, and h(2P )+h(2Q) ≤ 2h(P+Q)+2h(P−Q)+c2.

Therefore, 2h(P ) + 2h(Q) ≤ h(P +Q) + h(P −Q) + c, where c is the larger of
c1 and c1+c2

2 , which proves the approximate parallelogram law.

We now have the preparation to define the (canonical) height of an elliptic
curve. We will then close this section with a theorem on properties of this canon-
ical height that will be instrumental when deducing the Mordell-Weil theorem
from the Weak Mordell-Weil theorem.

Definition 3.1.11. Let E be an elliptic curve over Q. The canonical height
ĥ : E(Q)→ R≥0 on E(Q) is given by

ĥ(P ) := lim
n→∞

1

4n
h(2nP )

Theorem 3.1.12. Let E be an elliptic curve over Q with canonical height ĥ,
then

1. ĥ is well-defined.

2. There exists c > 0 such that for all P ∈ E(Q), |h(P )− ĥ(P )| ≤ c

3. For all c > 0, S := {P ∈ E(Q) | ĥ(P ) ≤ c} is finite.

4. For m ∈ Z and every P ∈ E(Q), ĥ(mP ) = m2ĥ(P )

5. For every P,Q ∈ E(Q), ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q)

6. ĥ(P ) = 0 ⇐⇒ P has finite order.

Proof.

1. By Lemma 3.1.9, there exists c > 0 such that for all P ∈ E(Q), |h(2P )−
4h(P )| ≤ c. Next, for N ≥M ≥ 0 integers, we have

|4−Nh(2NP )− 4−Mh(2MP )| =

∣∣∣∣∣
N−1∑
n=M

4−n−1h(2n+1P )− 4−nh(2nP )

∣∣∣∣∣ ≤
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≤
N−1∑
n=M

4−n−1
∣∣h(2n+1P )− 4h(2nP )

∣∣ ≤ N−1∑
n=M

4−n−1c ≤ 4−Mc.

Thus, the sequence 4−nh(2nP ) is Cauchy and hence converges.

2. This follows from the argument in part (1), taking M = 0 and letting
N → ∞ in the estimate |4−Nh(2NP ) → 4−Mh(2MP )| ≤ 4−Mc for some
constant c.

3. This follows from part (2) and Lemma 3.1.2, as if |S| is infinite, then
choosing sufficient c, there would be infinitely many P with H(P ) ≤ c.

4. We first claim h(mP ) = m2h(P )+c for some constant c > 0 that depends
on P . We prove the claim by induction. The case m = 1 holds, and by
Lemma 3.1.10, we have for some c′ > 0

h([m+ 1]P ) = −h([m− 1]P ) + 2h([m]P ) + 2h(P ) + c′.

By our induction hypothesis, we then have the right hand size is equal to

(−(m− 1)2 + 2m2 + 2)h(P ) + c′′ = (m+ 1)2h(P ) + c′′,

for a constant c′′. Hence, the claim follows by induction.
Lastly, the result for part (4) now follows by replacing P in the just proved
claim with [2n]P , dividing by 1

4n and letting n→∞.

5. By Lemma 3.1.10, we have h(P +Q) + h(P −Q) = 2h(P )− 2h(Q) + c for
any P,Q ∈ E(Q). Replacing P and Q with [2n]P and [2n]Q respectively,
dividing by 4n and letting n go to infinity, we then have

ĥ(P +Q) + ĥ(P −Q) = 2ĥ(P ) + 2ĥ(Q)

as claimed.

6. If P is a torsion point, then [2n]P takes on only finitely many values as n

goes to infinity, so 4−nh(2nP ) → 0 as n → ∞. Conversely, if ĥ(P ) = 0,

then for every integer m, we have ĥ([m]P ) = m2ĥ(P ) = 0. By part (ii),
there exists a constant c > 0 such that

h([m]P ) = |ĥ([m]P )− h([m]P )| ≤ c.

As the set of points P such that h(P ) ≤ c is finite, and all powers of P
are contained in this finite set, it follows that P must be of finite order.
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3.2 The Weak Mordell-Weil Theorem

In this section, we show that for an elliptic curve E over Q, that E(Q)/2E(Q)
is finite. As char(Q) 6= 2, 3, we may assume that E is of the form

y2 = x3 + ax+ b = (x− α)(x− β)(x− γ), (3.2.1)

for some a, b ∈ Q. We first assume that each of the roots α, β, γ of x3 + ax+ b
are in Z, and then prove the result in general. We begin with the following
result, whose proof may be found in [2, Chapter 4, Theorem 4.2]:

Proposition 3.2.1. Let K be a field of characteristic not equal to 2 or 3, and
suppose E is an elliptic curve over K of the form y2 = (x− α)(x− β)(x− γ),
for some α, β, γ ∈ K. Then a point (x, y) on E is a square in E(K) if and only
if x− α, x− β, and x− γ are squares in K.

Proposition 3.2.2. Let E be as in (4.1), and let ϕα : E(Q)/ → Q×/Q×2 be
the map

ϕα(P ) =

 Q×2 if P = O
(x− α)Q×2 if P = (x, y) and x 6= α
(α− β)(α− γ)Q×2 if P = (α, 0)

and similarly define ϕβ. Then ϕα and ϕβ are group homomorphisms, and hence
each descend to homomorphisms ϕα, ϕβ : E(Q)/2E(Q)/→ Q×/Q×2. Moreover,

ϕ = ϕα × ϕβ : E(Q)/2E(Q)→ Q×/Q×2 ×Q×/Q×2

is injective.

Proof. By definition of the group law and the fact that ϕ(−P ) = ϕ(P ) =
ϕ(P )−1, it suffices to show that if P1+P2+P3 = O, then ϕα(P1)ϕα(P2)ϕα(P3) ∈
Q×2. Note that if any of the Pi are the point O, then the claim follows, so we
may write Pi = (xi, yi) for i = 1, 2, 3.

First suppose that none of the Pi are the point (α, 0), and let y = mx+ b be
the line on which the Pi lie. As the Pi are in E(Q), the roots of the polynomial
(x− α)(x− β)(x− γ)− (mx+ b)2 are precisely x1, x2 and x3, thus

(x− α)(x− β)(x− γ)− (mx+ b)2 = (x− x1)(x− x2)(x− x3).

Hence, substituting in x = α, we get

(mα+ b)2 = (x1 − α)(x2 − α)(x3 − α) = ϕα(P1)ϕα(P2)ϕα(P3),

so ϕα(P1)ϕα(P2)ϕα(P3) ∈ Q×2.
We now consider the case that one of the Pi is equal to (α, 0). Observe that

indeed only one of the Pi may be (α, 0), otherwise the third point is necessarily
O, and we have already dealt with this case. Hence, without loss of generality,
suppose P1 = (α, 0). Then from the previous case, we obtain

(x− α)(x− β)(x− γ)− (mx+ b)2 = (x− α)(x− x2)(x− x3),
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and so mx+ b = m(x− α), as (x− α) must divide (mx+ b)2. Substituting this
into the above expression, we obtain

(x− β)(x− γ)−m2(x− α) = (x− x2)(x− x3).

Lastly, substituting x = α, we obtain ϕα(P1)ϕα(P2)ϕα(P3) = 1 ∈ Q×2, so
ϕα is indeed a homomorphism. Similarly, ϕβ is a homomorphism, and so both
descend to maps on E(Q)/2E(Q), as thus ϕα(2P ) = ϕα(P )2 ∈ Q×2. It remains
to show that ϕ is injective.

Suppose ϕ(x, y) = 0. We again consider two cases. First suppose that
(x, y) 6= O, (α, 0)(β, 0). Then if ϕ(x, y) = 0, we have that both (x − α) and
(x − β) are squares in Q×. As y2 = (x − α)(x − β)(x − γ), we thus have that
(x − γ) is a square in Q× as well. Thus, by Proposition 3.2.1, there exists
(x′, y′) ∈ E(Q) such that 2(x′, y′) = (x, y), and so (x, y) ∈ 2E(Q).

We now consider the case that (x, y) = (α, 0). Then by assumption, ϕα(x, y) =
(α − β)(α − γ) and ϕβ(x, y) = (α − β) are both squares, and hence so is
(α − γ). Thus, by Proposition 3.2.1, since 0 is also a square in Q, there exists
(x′, y′) ∈ E(Q) such that 2(x′, y′) = (α, 0), and so (α, 0) ∈ 2E(Q). Similarly,
the argument proceeds if (x, y) = (β, 0). Thus, ϕ is injective.

We can now prove the Weak-Mordell Weil theorem in the case that all the
roots of the cubic defining E are integers:

Theorem 3.2.3. Let E be as in (3.2.1) such that each of α, β, γ are in Z. Then
E/2E(Q) is finite.

Proof. Let P denote the set of primes in Z (including negatives). By unique
factorization of integers, we may write

Q×/Q×2 = {±2n13n25n37n4 · . . . | n = (ni) ∈ {0, 1}N} ∼=
⊕
p∈P

Z2.

Identifying Q×/Q×2 with A := ⊕p∈PZ2, we will show that the image of ϕ
in Proposition 3.2.2 is contained in summands of A×A such that p divides the
discriminant d of (x− α)(x− β)(x− γ).

Let (x, y) = ( n1

m1
, n2

m2
) ∈ E(Q)\O, where x 6= α, β, γ and let p ∈ P be

positive. Next, let a := vp(x − α), b := vp(x − β), and c := vp(x − γ), where
vp is the p-adic valuation on Q. Suppose that a < 0, then as α ∈ Z, we have
p|a||m1. Hence, pa divides each of x − α, x − β, and x − γ, so a, b, and c are
equal. As (x − α)(x − β)(x − γ) = x3 + ax + b = y2, we have that each of a, b
and c are even, and thus the image of (x, y) in the p-th coordinate of A× A is
0. Similarly if either either b or c is less than zero.

Now suppose that a > 0. If p does not divide d, then necessarily p does not
divide α− β and hence b ≤ 0 as x− β = (x−α) + (α− β). By the argument in
the previous paragraph, if b < 0, then the image of (x, y) in the p-th coordinate
of A × A is 0, so we may assume then that b = 0. By symmetry, we may also
assume that c = 0, and hence as (x− α)(x− β)(x− γ) = y2, we then have that
a is even. Therefore, the image of (x, y) in the p-th coordinate of A×A is 0.
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Finally, we consider the case that x = α, β, or γ. In this case, if p does not
divide the discriminant d, then by definition of ϕa and ϕb, p necessarily does
not divide ϕa(x) nor ϕb(x) and hence the p-th coordinate of ϕ(x, y) is 0. As ϕ
is injective by Proposition 3.2.2, the result follows.

Note that in the proof of theorem 3.2.3, we used the fact that Z is a unique
factorization ring. In the case that each of the roots of the cubic polynomial
defining our elliptic curve are not all integers, we require a different approach
as the ring of integers of the splitting field of the cubic may not be a UFD. The
full case is addressed in Section 4 of Chapter 4 of [2], and relies on the Dirichlet
Unit Theorem, the finiteness of the class number for rings of algebraic integers,
and the fact that rings of algebraic integers are Dedekind domains.

One proves that if k denotes the splitting field of (x−α)(x−β)(x− γ), that
the kernel canonical map

E(Q)/2E(Q)→ E(k)/2E(k)

has at most 22[k:Q], and so it suffices to then show E(k)/2E(k) is finite. This
then follows by the following result:

Theorem 3.2.4. Let k be a number field with ring of integers Ok, then there
exists a ring R such that Ok ⊆ R ⊆ k with

1. R is a principal ideal domain

2. The groups of units in R is finitely generated

The proof of this theorem uses the facts from algebraic number theory listed
above, and may be found in Section 9 of Chapter 4 of [2].

One then interprets units and primes of Ok as units and primes in the ring
R obtained from Theorem 3.2.4 in order to write k×/(k×2) as we did Q/Q×2 in
the proof of Theorem 3.2.3. The argument then proceeds as in Theorem 3.2.3
to show that E(k)/2E(k) is finite, which in turn proves the Weak Mordell-Weil
theorem in the general case by the remark prior to Theorem 3.2.4.

3.3 The Mordell-Weil Theorem and the Rank

We are now in a position to prove that E(Q) is finitely generated:

Theorem 3.3.1. Let E be an elliptic curve over Q, then E(Q) is a finitely
generated abelian group.

Proof. By the previous section, we know that E(Q)/2E(Q) is finite, hence

E(Q)/2E(Q) = {R12E(Q), . . . , Rn2E(Q)}

for some n ∈ N. Without loss of generality, take R1 ∈ 2E(Q) and n minimal.

Next, let c be the maximum of the ĥ(Ri), and let {Q1, . . . , Qm} be the (finite)
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set of all points in E(Q) such that ĥ(Qi) ≤ c. Let A be the subgroup of E(Q)
generated by the Qi and by way of contradiction, suppose A 6= E(Q). Then

there exists P ∈ E(Q)\A, and taking P to be such that ĥ(P ) is minimal, we
have that there exists an Ri such that P − Ri ∈ 2E(Q). Hence, there exists
Q ∈ E(Q) such that P −Ri = 2Q. Therefore, we have that

4ĥ(Q) = ĥ(2Q) = ĥ(P −Ri) = 2ĥ(P ) + 2ĥ(Ri)− ĥ(P +Ri) ≤ 2ĥ(P ) + 2ĥ(Ri).

By construction of c, we also have

2ĥ(P ) + 2ĥ(Ri) ≤ 2ĥ(P ) + 2c < 2ĥ(P ) + 2ĥ(P ) = 4ĥ(P ).

Hence, we obtain that ĥ(Q) < ĥ(P ), and so by minimality of ĥ(P ), we obtain
Q ∈ A. Therefore, P = Ri + 2Q ∈ A, which is a contradiction.

Thus, A = E(Q), so E(Q) is finitely generated.

By Theorem 3.2.4, for an elliptic curve E over Q, E(Q) is a finitely generated
abelian group. Hence, by the fundamental theorem for finitely generated abelian
groups, E(Q) is isomorphic to Zr ⊕ T , where T is a finite abelian group.

This motivates the following definition:

Definition 3.3.2. Let E be an elliptic curve over Q, with E(Q) ∼= Zr⊕T . The
integer r in this direct sum is known as the rank of E, or the geometric rank of
the elliptic curve E.

Example.

1. Let E be the elliptic curve defined by y2 = x3 + 10x + 5, then, via Sage,
one can compute E(Q) ∼= Z

2. Let E be the elliptic curve defined by y2 = x3 − 7x + 6, then, via Sage,
one can compute E(Q) ∼= Z2 × Z2

A natural question to ask is whether r may be arbitrarily large, and what
the possibilities for the T are. The second question turns out to be much easier
to answer than the first. It is a theorem of Mazur that the following are the
only possibilities for T up to isomorphism:

Theorem 3.3.3. (Mazur)
Let E be an elliptic curve over Q, with E(Q) ∼= Zr ⊕ T . Then

T ∼=

 Z/nZ (n = 1, . . . , 10 or 12); or

Z/2Z× Z/2nZ (n = 1, 2, 3 or 4)

The question on the boundedness of the rank is another matter, and in fact
remains an open problem.

The largest known possibility for the rank of an elliptic curve was found by
Elkies in 2006, when he found a curve of rank at least 28:

y2+xy+y = x3−x2−20067762415575526585033208209338542750930230312178956502x
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+34481611795030556467032985690390720374855944359319180361266008296291939448732243429

The problem of determining if there is a bound on the rank is a well-studied
problem in number theory and has motivated much research, including a con-
jecture of Birch and Swinnerton-Dyer.

3.4 Birch and Swinnerton-Dyer Conjecture

Before we can state this conjecture, we must introduce a bit of new machinery.
Throughout this section, we assume that E is an elliptic curve over Q, with
defining cubic of the form y2 = x3 + ax+ b, where a and b are integers.
We begin with the following definition:

Definition 3.4.1. Let p be prime, and let Ẽ denote the reduction curve of E
modulo p. Then we say E has good reduction modulo p if Ẽ is an elliptic curve.
If Ẽ is singular at a point P ∈ Ẽ(Fp), then we say that E has bad reduction at
p.

If E has bad reduction at a prime p, with Ẽ singular at a point P = (x0, y0),
then we may write the Taylor expansion of y2 − x3 − ax− b around P as:

((y − y0)− α(x− x0))((y − y0)− β(x− x0))− (x− x0)3,

where α, β ∈ Fp. In the case that α 6= β, then we say P is a node, and if α = β,
we say that P is a cusp.

We now have the following definition:

Definition 3.4.2. Suppose E has bad reduction at a prime p, with Ẽ singular
at a point P . Then

1. If Ẽ has a cusp at P , we say that E has additive reduction.

2. If Ẽ has a node at P , then we say E has multiplicative reduction. If both
α and β are actually elements of Fp then the reduction is referred to as
split multiplicative, and is called non-split multiplicative otherwise

If E has good reduction at a prime p, denote by Np the cardinality #Ẽ(Fp),
and define ap := p+ 1−Np. Note by Hasse’s inequality, that |ap| ≤ 2

√
p.

We can now define the L-function of E:

Definition 3.4.3. Define the local factor at p of the L-series of E to be

Lp(T ) :=


1− apT + pT 2, if E has good reduction at p
1− T, if E has split multiplicative reduction at p
1 + T, if E has non-split multiplicative reduction at p
1, if E has additive reduction at p

and define the L-function of E by

L(E, s) :=
∏
p≥2

p prime

1

Lp(p−s)
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It is a fact [c.f. 3, Remark 5.1.2] that L(E, s) converges and is analytic
whenever the real part of s is larger than 3/2. However, L(E, s) actually has
an analytic continuation to all of C and moreover satisfies a certain functional
equation. This functional equation depends on a certain quantity called the
conductor NE/Q of E, which we will not define, but the overall functional equa-
tion is as follows:

Theorem 3.4.4. Let E be an elliptic curve over Q, then L(E, s) has an analytic
continuation to all of C. Define

Λ(E, s) := (NE/Q)s/2(2π)−sΓ(s)L(E, s),

where Γ(s) is the Gamma function, then

Λ(E, s) := w · Λ(E, 2− s),

where w is ±1, and is called the root number of E.

Theorem 3.4.4 actually follows from a conjecture called the Taniyama-Shimura-
Weil conjecture, which Taylor and Wiles proved a special case of in proving
Fermat’s last theorem. The conjecture was later proved in full by Breuil et al.

We can finally state the Birch and Swinnerton-Dyer conjecture:

Conjecture 3.4.5. (Birch and Swinnerton-Dyer)
Let E be an elliptic curve over Q, with E(Q) ∼= Zr ⊕ T . Then L(E, s) has a
zero at s = 1 of order r.

The Birch and Swinnerton-Dyer conjecture remains wide open and has only
been proved in a few special cases. It is known by a theorem of Gross-Zagier
and Kolyvagin that in the case ords=1L(E, s) ≤ 1, that then the Birch and
Swinnerton-Dyer conjecture is true. However the full conjecture is unknown,
and is one of the most famous open problems in the study of elliptic curves.
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