A skeleton-based study of gait with applications in
lidar-based gait recognition and pathological gait
identification

A Dissertation
Presented to
The faculty of the School of Engineering and Applied Science

University of Virginia

In partial fulfillment
of the requirements for the degree

Doctor of Philosophy (Electrical and Computer Engineering)

by

Nasrin Sadeghzadehyazdi
April 2021

Approval Sheet

This dissertation is submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Electrical and Computer Engineering)

Author: Nasrin Sadeghzadehyazdi

This dissertation has been read and approved by the examining committee:

Scott T. Acton, Dissertation Adviser

Zongli Lin, Committee Chair

Laura Barnes, Committee Member

Tom Fletcher, Committee Member

Daniel S. Weller, Committee Member

Accepted for the School of Engineering and Applied Science:

Dean, School of Engineering and Applied Science

April 2021

Acknowledgement

I would like to express my deepest gratitude to my advisor, Dr. Scott T. Acton for
continuous support, encouragement, and guidance throughout my research work. My
sincere thanks to my committee members, Dr. Zongli Lin, Dr. Laura Barnes, Dr. Dan
Weller, and Dr. Tom Fletcher for their time and consideration.

I would like to thank all my wonderful friends in VIVA Laboratory for their help and
support. I am truly grateful for the friendly atmosphere that I experienced during my
PhD studies. My sincere thanks to Dr. Tamal Batabyal and Dr. Andrea Vaccari for their
scientific advice and the insightful discussions about research.

A big thanks to my amazing friends, with whom I have shared so many cherished mem-
ories. I am fortunate to have your friendship and support.

To my parents and my siblings. Thank you for your endless love and support. Thank
you for believing in me and encouraging me to pursue my dreams.

Lastly, to my husband, Hamid. Thank you for your patience, understanding, and support.

I couldn’t finish this journey without you.

Abstract

The study of human locomotion has been bolstered by automated gait analysis in the
computer vision community. For years, gait analysis has been mostly limited to academic
labs. The emergence of new modalities and the development of computational hardware
that are essential for big data analysis has shifted gait analysis toward more practical
methodologies. In recent years, gait analysis has emerged as a leading remote identifica-
tion method for application in areas such as forensic investigation, surveillance, security,
and medical fields.

Among the vision-based gait analysis methods, skeleton-based approaches are amenable
for reliable feature compaction and fast processing. Model-based gait recognition meth-
ods that exploit features from a fitted model, like a skeleton, are recognized for their view
and scale-invariant properties. This thesis investigates two problems associated with gait
analysis: gait recognition and classification of gait abnormalities.

In the first part of this thesis, we focus on the application of flash lidar imagery
to the gait recognition problem. Among available modalities, the emergence of depth
cameras, such as Kinect and lidar that provide range (depth) and intensity simultaneously,
has alleviated the computationally expensive model fitting that plays a critical role in
many gait recognition studies. The current state-of-the-art model-based gait recognition
methods take advantage of the high-quality data provided by Kinect and motion capture
(Mocap) systems, which are mostly limited to controlled lab environments. Unlike Kinect
and Mocap, the lidar camera is suitable for real-world applications; however, the data
collected by lidar are noisy and have a lower associated resolution.

In this thesis, we utilize the data collected by a single flash lidar camera for the task of
gait recognition. We seek to address the gait identification problem when a considerable
number of feature vectors contain faulty and missing values. In particular, we will present
methods to avoid the common practice of data elimination under the described conditions
while still achieving high accuracy and precision in gait recognition. We describe filtering
mechanisms to correct and interpolate the faulty and missing joint locations in the skele-
tons. In addition, methods are presented to incorporate the dynamic of the motion in
the presence of noisy data. We discuss outlier removal as an alternative method for ap-
plications in which data elimination is not an issue and present a modification of Tukey’s

method for the vector-based attributes. Experimental evaluation demonstrates that joint

correction can effectively improve the classification scores in the proposed method and
several relevant state-of-the-art approaches.

The second part of this thesis presents skeleton-based methods for the gait anomaly
recognition problem. The main contributions in this part involve designing skeleton-based
features and presenting end-to-end deep learning models that take minimally processed
skeleton joints as the input. Unlike the common two-class or one-class approaches of
skeleton-based methods, the proposed model considers a multi-class framework. There-
fore, the approach can be easily adapted for a more convenient gait assessment outside
clinical facilities. The proposed models are evaluated on three publicly available multi-
class skeleton datasets with normal/pathological gait data, and achieve high classification
scores in detecting minor gait abnormalities. The results indicate the potential of mark-
erless modalities such as Kinect for designing less costly and more convenient health
infrastructures for assisted living. Besides, an automatic and non-invasive gait assess-
ment can further augment the clinical diagnosis for an extensive list of ailments that

cause different types of gait disorders.

Contents

Contents \%
List of Figures viii
List of Tables xii
1 Introduction 1
1.1 Objectives and contributions00 4
1.2 Thesisoutline 7

2 Gait recognition with flash lidar 8
2.0.1 Background on gait recognition 8

2.1 The proposed model-based method 10
2.1.1 Feature vectors 12

2.1.2 TigerCub 3D Flash lidar 14

2.1.3 Dataset 14

2.1.4 Experimental results oo 16

2.2 Remarks 17

3 Improving flash lidar-based gait identification 18
3.1 Outlier removal 20
3.1.1 Outlier removal for length-based features 20

3.1.2 Outlier removal for vector-based features 23

3.1.3 Experimental results with outlier removal 25

3.2 Skeleton joint correctiono 25
3.2.1 Skeleton joint correction by GlidarCo 26

3.2.1.1 Experimental results with GlidarCo 28

3.2.2 Skeleton joint correction by GlidarPoly 29

3.2.2.1 Computational complexity of GlidarPoly 31

3.2.2.2 Experimental results with GlidarPoly 32

3.2.3 Incorporating motion dynamics 35

3.2.3.1 Results with motion dynamics 36

3.2.4 Effect of the number of training samples 38

3.2.5 Evaluation on TAS-Lab 39

Contents vi

3.2.5.1 GlidarPoly for joint correction in IAS-Lab 41

3.2.5.2 Evaluation of gait cycle statistics 41

3.3 Remarks 43
4 Gait anomaly recognition 45
4.1 Skeleton-based gait anomaly recognition (SGAR) 48
4.2 Some background on deep learningo 50
4.2.1 Overfitting L 54
4.2.1.1 Dropout to prevent overfitting 55

4.2.1.2 Early stopping to prevent overfitting 55

4.3 SGAR with handcrafted features 56
4.3.1 Feature extraction Lo 57
4.3.2 Data augmentation oL 58
4.3.3 Bidirectional LSTM oo 60
4.3.3.1 Some backgrounds on LSTM 61

4.3.3.2 Stochastic weight averaging 63

4.3.3.3 Description of the bidirectional LSTM architecture . . . 65

4.3.4 MMGS dataseto 69
4.3.5 Experimental resultso 70

4.4 SGAR with preprocessed skeleton joints 73
4.4.1 Data augmentation 75
4.4.2 Preprocessing 76
4.4.3 Description of the models 7
4.4.3.1 Some background on one-dimensional CNNs 7

4.4.3.2 Transfer learning 78

4.4.3.3 Architecture of the deep learning models 79

4.4.4 Walking gait dataset L. 90
4.4.5 Pathological gait dataset 91
4.4.6 Experimental resultso 92
4.4.6.1 Performance evaluation on Walking gait 92

4.4.6.2 Ablation study on CNN-LSTM layers 95

4.4.6.3 Effect of data augmentation 96

4.4.6.4 Ablation study on the pipeline 97

4.4.6.5 Effect of the number of classes 99

4.4.6.6 Experimental results with transfer learning 100

4.4.7 SGAR: Handcrafted vs deep learning-based features 107

4.5 Remarkso 109
5 Conclusion and future work 111
5.1 Flash lidar-based gait recognition 112
5. 1.1 Summary . . o.o. ..o 113
5.1.2 Future work 114

5.2 Multi-class SGAR 115

5.2.1 Summaryo 116

Contents vil

5.2.2 Future work 118

Bibliography 123

List of Figures

2.1
2.2

2.3
2.4

2.5

2.6

2.7

3.1
3.2

3.3

3.4

3.5

3.6

Examples of noisy segmented silhouettes from flash lidar data
Sample frames of lidar data. The top and bottom rows show range (depth)
and intensity data, respectively. L.
Sample skeletons.o
The skeleton model we use in this work. Left: index of each joint in the
skeleton model. Right: skeleton model in a sample frame.
[lustration of two types of feature vectors: distance-based feature vector
(left), vector-based feature vector (right). All The features are depicted in
red color.
[lustration of two types of walking path: walking forward and backward
(in blue), and diamond walking (inred).

Sample frames of diamond walking that captures a range of different poses.

Pipeline for gait recognition using the joint correction methodology

Pipeline for gait recognition using the outlier removal methodology. Inputs
to "8D Joint location estimator” remain the same as in Figure 3.1
Top row: sample frames with correctly detected skeletons, bottom row:
frames with faulty skeletons o0
Average classification accuracy with length-based outlier removal for differ-
ent values of T}, (threshold value that is used for prefiltering in length-
based outlier removal). Ti,per = N7 means no threshold was applied.
While Tpper = 4.8 results in the highest accuracy, it also results in the
lowest percentage of training and test data being preserved after applying
Tukey’s test. Higher values of T,,e, or no threshold preserve more than

twice the number of training and test samples compared with T}, = 4.8.

Test accuracy for length-based outlier removal for different threshold values
(Tupper), given different numbers of test samples. Tipper = NT means
no threshold was applied. While smaller values of T}, result in higher
classification accuracy for a smaller number of test samples, this difference
disappears for larger numbers of test samples (number of test samples >=
800) . . o
CV (coefficient of variation) of average classification accuracy over different
numbers of test samples for various values of T},pe- (threshold value that
is used for prefiltering in length-based outlier removal). Tipper = NT'
means no threshold was applied. The lowest C'V, which is achieved with
Tupper = NT, results in the least dispersion of accuracy over different
numbers of test samples.

viil

11
11

12

13

14

19

19

20

21

22

23

List of Figures

1X

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

4.1

Effect of the skeleton joint location correction with GlidarPoly. From top:
sample joint location sequences before (first row) and after (second row)
joint location sequence filtering (each joint location sequence corresponds
with one coordinate (z,y,z) of the location of one joint through time).
Notice the abundance of missing values in the first row, which are shown
as missing sections of the plotted signal that have been recovered through
the joint correction (figures in the second row). The last two rows show
samples of faulty and missing skeleton joints before (third row) and after
(bottom row) joint location sequence filtering.
Failure examples of the joint location correction filtering. Sample frames
of skeleton joints, before (top) and after (bottom) applying GlidarPoly for
the skeleton joint location correction
t-SNE visualization of the length-based features before (left) and after
(right) applying the joint correction using GlidarPoly. There is a high
level of inter-class intersection before joint correction (left) that is mostly
resolved after correcting joint location, creating clusters that are more
distinctive (right).o
t-SNE visualization of the vector-based features before (left) and after
(right) applying the joint correction using GlidarPoly. Before joint cor-
rection, high inter-class intersection and intra-class separation is observed
(left). Joint correction transforms features into well-separated clusters

Comparison of classification accuracy for vector-based features based on
the number of missing joints in the original skeletons, before and after ap-
plying GlidarPoly for joint correction. The samples with no missing joints
also include noisy samples. All cases show improvement after applying the
joint location correction.
Two examples of the ankle to ankle distance sequence of lidar data after
joint correction. While the graph on the left presents a periodic pattern,
the sequence on the right lacks such a pattern.
Average classification accuracy for different numbers of training samples
given multiple numbers of test examples for the single-shot (left), and
statistics over the gait cycle (right) scenarios. Both plots are acquired for
vector-based features. Lo
Comparison of the performance of mean, max, standard deviation set, and
lower quartile, upper quartile, median set, and the set of all the six statis-
tics to capture the dynamic of the motion after joint location correction.
Comparison is performed for lidar and TAS-Lab datasets with both types
of features and SVM and NN as classifiers. LB and VB stand for length-
based and vector-based features, respectively. In the majority of cases,
lower quartile, upper quartile, median set outperforms the mean, max,
standard deviation set. oL

An illustration of a neuron (perceptron), the building blocks of a deep
learning model. The activation function acts on the weighted sum of the
inputs to create the output.o

30

31

33

33

34

36

38

43

50

List of Figures

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

A simple neural neural network that consists of one dense hidden layer.
The hidden layer is called a dense or fully-connected layer because all the
inputs are fully/densely connected to all the outputs.
[lustration of early stopping. The validation error starts increasing after
some point, while the training error keeps decreasing. With early stopping,
model parameters at the early stopping epoch are saved for evaluation on
the test data.
Pipeline for gait anomaly recognition with handcrafted features and bidi-
rectional LSTMo
Skeleton joints for Kinect v2o
Representation of the handcrafted features for skeleton-based gait anomaly
recognition. There are six 3-dimensional (3D) vectors that are shown in
red and 4 angles that are depicted in green.
[lustration of data augmentation using window warping for a sample joint
coordinate sequence. The small plot on the top right of the figure shows
time-ordered samples of the values in the red window that have been se-
lected uniformly at random. oL
Structure of an LSTM cell. Each block with o shows a sigmoid function.
By creating a value between 0 and 1, sigmoid functions act as the gating
function, controlling the flow of information. h; and C; are hidden and cell
states that are passed to the next LSTM cell that also takes X, (input at
time step ¢ + 1) as the input. The building blocks of an LSTM are shown
by three blue blocks inside the LSTM cell. From Left to right, these blocks
are: forget gate, input gate, and output gate.
Conceptual visualization of Flat and Sharp Minima. The Y-axis represents
values of the loss function and the X-axis shows the variables (parameters)
[1]. If the learning algorithm lands on a solution in the weight space that
corresponds with a sharp minimum in the training loss surface, the test
loss at the same point might be a large value. On the other hand, finding a
solution in the flat region of training loss will most likely result in a small
value for the test loss function.o
Effect of the number of subjects for validation on the average classification
accuracy in the MMGS dataset.
Percentage of training data for validation, based on the non-subject-based
train-validation split for the MMGS dataset.
Pipeline for skeleton-based gait anomaly recognition, using minimally pre-
processed 3D skeleton joints information. The knowledge of the trained
model is then transferred to initialize similar networks for modeling of gait
patterns in other datasets with different types of gait anomalies.
Data augmentation using the temporal moving mean for a sample joint
coordinate sequence. Each value in the small plot on the top right of the
figure shows the average of values within one of the red windows.

[lustration of how a one-dimensional convolutional kernel works, using an
arbitrary input feature. In this figure, the kernel size is 3 and the input
has 6 features. A 1D-convolutional kernel only moves in the direction of
time (here from left to right).o 0oL

o1

5}

o6

57

o8

99

60

64

72

72

74

5

7

List of Figures

x1

4.15

4.16

4.17

4.18

4.19

4.20
4.21

4.22

4.23

4.24

4.25

4.26

4.27

Structure of the CNN-LSTM for modelling and classifying selected normal-
ized joints. Each convl1D block consists of one-dimensional convolutional
layers followed by a ReLU activation function.
[lustration of zero-padding and stride for a kernel of size = 2 and a sample
input sequence of length = 3, where the zero at the beginning of the input
sequence is used for zero-padding to create an output of the same length as
the input sequence. The filter moves from left to right (in the direction of

the red arrow), acting on the input elements to create the output elements.
Structure of the FCN for modelling and classifying selected normalized joints.

Structure of the LSTM for modelling and classifying selected normalized
joints. The bidirectional layer merges its outputs by taking their average
at each time step.
Structure of the CNN-LSTM for modelling and classifying leg angles fea-
tures [2].
Structure of the FCN for modelling and classifying leg angles features [2].
Structure of the CNN-LSTM for gait anomaly classification using the dis-
tance between skeleton joints [3]. oo 0L
Structure of the FCN for modeling and classifying normal/pathological
gait patterns, using the distance between skeleton joints [3] as the input.

Ablation study on the CNN-LSTM layers: boxplots of the average clas-
sification accuracy for the Walking gait dataset. Each boxplot represents
the average classification accuracy acquired by removing part of the CNN-
LSTM network.
Boxplots of average classification accuracy for the Walking gait dataset,
with and without augmentation. "Both augmentations” refers to the sce-
nario where both ”temporal moving mean” (in the figure "moving mean”)
and "window warping” are used for augmentation.
Boxplots of average classification accuracy for ablation study on the pipeline
with the Walking gait dataset. Each boxplot represents average classifica-
tion accuracy acquired by removing one step in the pipeline.
Average classification accuracy for three features for the different number
of gait anomaly classes. The graphs on the left and right side of the figure
show the results with the SVM and the FCN, respectively.
Average classification accuracy for five types of features: Distance be-
tween joints [3], Leg angles [2], Leg joints [4], Selected normalized joints
(proposed), Leg angles & 3D limb vectors (proposed) with three classi-
fiers: Logistic regression (LR), Random forest (RF), and Support vector
machines (SVM). The results are reported on (A) the Walking gait dataset
with 9 classes, (B) the Pathological gait dataset with 6 classes, and (C) the
MMGS dataset with 3 classes.

80

83

84
85

38

89

95

96

97

99

List of Tables

2.1

2.2

2.3

24

3.1

3.2

3.3

3.4

3.5

3.6

3.7

List of length-based feature vectors (L and R refer to the left and right
joints, respectively)
List of three-dimensional vectors in the vector-based feature vector (L and
R refer to the left and right joints, respectively)
Number of frames per type of walking action for each subject. FB Walk:
front back walk, D Walk: diamond walk, DS Walk: diamond walk holding
stick . . L
Correct identification scores for the proposed features and the other meth-
ods. LB and VB stand for length-based and vector-based feature vector,
respectively. Features are computed without joint correction.

Correct identification scores for the proposed features before and after ap-
plying outlier removal. LB and VB stand for the length-based and vector-
based feature vectors, respectively. L.
Correct identification scores for the proposed features and the other meth-
ods after applying GlidarCo. LB and VB stand for the length-based and
vector-based feature vectors, respectively. Features from all of the methods
are computed from the corrected joints. L.
Correct identification scores for the proposed features and the other meth-
ods. LB and VB stand for the length-based and vector-based feature vec-
tors, respectively. Features from all of the methods are computed from the
joints that are corrected by GlidarPoly.
Correct identification scores with statistics of features computed over gait
cycle after joint correction. LB and VB stand for the length-based and
vector-based feature vectors, respectively. L
Correct identification scores for each class of subject for the single-shot
scenario of vector-based features after applying GlidarPoly for the joint
correction. The minimum and the next-to-lowest accuracy and F-score are
underlined.
Correct identification scores for each class of subject for the statistics of
vector-based features over the gait cycle after applying GlidarPoly for the
joint correction. The minimum and the next-to-lowest accuracy and F-
score are underlined.o
Single-shot identification: Rank-1 identification accuracy for the proposed
features, several RGB-based, and depth-based features for IAS-Lab RGBD-
ID 7" TestingA” and ”TestingB” sets. Dashes are for cases where no pub-
lished information is available.

xii

13

13

15

16

25

28

32

37

37

37

40

List of Tables xiii
3.8 Single-shot identification: Rank-1 identification accuracy for the proposed
features on IAS-Lab RGBD-ID "TestingA” and ”TestingB” before (with

noisy and missing joints) and after joint location correction 42

3.9

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

Rank-1 identification accuracy using the 6 statistics of the proposed fea-

tures on TAS-Lab ”TestingA” and ”TestingB” after joint location correction 42

Description of the bidirectional LSTM model for gait anomaly recognition.
Number of units shows the number of units in each LSTM layer.
Summary of the MMGS dataset for SGAR. Min frames and max frames
show the minimum and maximum number of sequence frames in each class,
respectively. Total frames shows the total number of frames from all the
sequences in each class. L.
Average accuracy, precision, and recall (sensitivity) of gait anomaly recog-
nition for the MMGS dataset using the proposed feature vector with five
different classifiers. The results with LSTM is with data augmentation.

Average accuracy, precision, and recall (sensitivity) of gait anomaly recog-
nition for the MMGS dataset with the proposed feature vector and the
low limbs flexion angles in [5]. The last two rows, labeled by *x*, show the
results with our proposed feature and the designed bidirectional LSTM
network. NA stands for no augmentation.
Hyperparameters of the designed FCN for SGAR using the Walking gait
dataset and selected normalized joints. The number of layers refers to the
number of convolutional layers. The network also includes a max pooling
layer of pool size 2, and a flatten layer to concatenate the two-dimensional
arrays into the one-dimensional arrays required by the softmax for classi-
fication.
LSTM network hyperparameters for SGAR using the Walking gait dataset
with selected normalized joints as the input.
Hyperparameters of the CNN-LSTM for SGAR using leg angles [2] as the
feature for the Walking gait dataset.
Key hyperparameters of the FCN network for SGAR using leg angles [2] as
the feature for the Walking gait dataset. The number of layers only refers
to the number of 1D convolutional layers in this network.
Hyperparameters of the LSTM network for the Walking gait dataset us-
ing leg angles [2] as the input. The first and second LSTM layers are
bidirectional and unidirectional, respectively.
Hyperparameters of the CNN-LSTM for the Walking gait dataset using
distance between joints [3] as the input.
The hyperparameters of the FCN network with the distance between joints
[3] as the input for the Walking gait dataset. The number of layers only
points to the number of 1D convolutional layers. There are 256 units
(neurons) in the first two convolutional layers, and the last convolutional
layer has 128 neurons.

65

69

71

71

82

83

84

85

87

87

88

List of Tables

X1iv

4.12

4.13
4.14

4.15

4.16

4.17

4.18

4.19

Description of the LSTM network using the distance between joints [3] as
the feature vector for the Walking gait dataset. There are two LSTM layers
and one dense layer in this network. The first and second LSTM layers are
bidirectional and unidirectional, respectively. The number of units refers
to the number of kernels in the LSTM layersonly.
Description of each class in the Walking gait dataset
Description of five pathological gait categories in the Pathological gait
dataset [4] L
Summary of the Pathological gait dataset for SGAR. Min frames and max
frames shows the minimum and maximum number of sequence frames in
each class, respectively. Total frames shows the total number of frames
from all the sequences in each class.
Average recognition accuracy and F-score for the Walking gait dataset
using selected normalized joints (proposed), leg angles [2]|, and distance
between joints [3]. For comparison, we look at the performance of three
deep learning and three non-deep learning classifiers (LR: logistic regression
and RF: random forest).
Average recognition accuracy and F-score on MMGS dataset [5] for the
proposed features (selected normalized joints) and other features. Except
for the leg flexion feature, all the other results are acquired using transfer
learning. It should be noted that the result with the flexion angles is based
on an ensemble of five LSTMs. The last three lines show the results when
train and validation split is non-subject-based. The underlined and bold
scores present the best results with subject-based and non-subject-based
criteria, respectively. Lo
Average recognition accuracy and F-score on MMGS dataset [5] for the
proposed features (selected normalized joints) and other features using
three non deep learning classifiers: LR (logistic regression), RF (random
forest), and SVM.
Average recognition accuracy and F-score on Pathological gait dataset [4]
for the proposed features (selected normalized joints) and other features.
All the results are based on transfer learning, except for the result in the
last row that is the best reported result in [4]. The results in the last row
with LR (logistic regression), RF (random forest), and SVM are based on
our experiments, using the leg joints as the feature vector.

89
90

91

92

93

102

102

Chapter 1

Introduction

Gait analysis refers to the systematic study of the way that humans walk. Walking is an
important aspect of daily life, yet we often ignore it due to its very nature of being a daily
habit. Early studies in medicine and psychology have recognized the uniqueness of gait to
individuals [6,7]. Furthermore, it has been shown that gait can be affected by the mental
and physical health of the subjects [8]. Gait has become an essential tool for identification
and health evaluation. The development of modalities such as pressure sensors, video
cameras, and accelerometers has allowed studying different aspects of the gait. Unlike
other biometrics such as those computed from the face, fingerprint, and iris, gait can
be acquired without the cooperation of the subjects, and contact between subjects and
sensors is not required. These properties, along with the development of new modalities,
have led to a widespread application of the gait analysis. In forensic studies, we use gait
patterns to see whether the collected gait information in the crime scene matches with a
certain individual [9]. In security monitoring and surveillance, video technology has been
hired to recognize the potential threats by investigating the patterns of gait in suspicious
individuals [10]. Researchers have been using gait for identity recognition [11-15], to

recognize age and gender [16,17], to detect abnormal behavior [18,19], for human-robot

Chapter 1. Intro. 2

interfaces [20]. In medicine, gait analysis is employed for diagnosis of certain motion-
affected diseases, or to evaluate the efficacy of therapeutic exercises [21-24].

Skeleton-based study of human gait describes a model-based framework for the gait
analysis by way of fitting a skeleton to the human silhouette. This shift of modality
from the structured (image/video) to unstructured (skeleton) datatype provides benefits
in terms of data compaction, computation, storage, scalability, and recognition accuracy.
The skeleton-related attributes mimic actual physical traits in the human body and can be
utilized as a soft biometric identification (ID) for the individuals. Monitoring such phys-
ical traits over time also conveys valuable information about the health of an individual.
The latter investigation has contributed to applications in assisted living, therapeutic,
rehabilitation, sport, and medical field. This thesis exploits 3D skeleton data for appli-
cations in gait recognition and pathological gait identification. For gait recognition, we
leverage pose estimation and focus on flash lidar modality. For normal/pathological gait
identification, our main objective is to provide a pipeline for classification of minor gait
anomalies that can be adopted for frequent gait monitoring outside clinical facilities.

In gait recognition, researchers study the gait features that can be utilized to identify
individuals. Soft biometrics such as height, step length, and limb lengths have been
derived as they mimic the actual physical traits of individuals [25-27]. The ultimate goal
in gait recognition is to design gait features that act as a biometric ID.

The emergence of the depth cameras such as Kinect and lidar has provided the
opportunity of investigating gait in the 3-dimensional real-world frame of reference. A
depth-sensing camera generates intensity and depth (range) data simultaneously. The
provided depth information is not affected by changes in illumination and lighting con-
ditions, which are common issues with the intensity data in optical cameras. These
properties make the depth-camera an ideal tool for gait analysis. Furthermore, with the

direct estimation of skeleton joints by modalities such as Kinect, and deep learning-based

Chapter 1. Intro. 3

pose estimation tools, such as OpenPose [28] and DensePose [29], the computationally-
expensive model fitting procedure, critical to model-based gait recognition methods, is
not a costly task anymore.

In this thesis, we focus on the gait recognition problem through the lens of flash lidar
imaging technology. A flash lidar is a proper choice for many real-world applications,
and unlike Kinect and Mocap, it fits into a wide range of outdoor environment scenarios.
However, the data collected by a flash lidar camera is low resolution and noisy that makes
successful gait recognition a challenging task. With limited data availability, contrary to
the common practice of noisy data elimination, we perform an extensive data correction
to correct and recover noisy and missing skeleton joints extracted from the flash lidar
data. Besides, to capture the dynamic of motion after data correction, we incorporate
robust statistics to traditional feature moments.

The second part of this thesis investigates the application of gait analysis for the
detection of gait abnormalities. Numerous studies have shown the significance of gait
in the health assessment of individuals [30,31]. Researchers have found that the pat-
terns of gait can be adopted for diagnosis and severity detection in various neurological
and physiological ailments [32,33]. Furthermore, analysis of gait patterns is an essential
tool in rehabilitation after injuries or a surgery [34,35]. Clinical assessments of gait are
conducted in specialized lab facilities, which are generally costly. In addition, the appli-
cation of essential tools often requires careful sensor placement that is time-consuming
and inconvenient. More recently, wearable sensors have become more common in health-
related studies of gait [36,37]. In practice, these sensors are light-weight and less costly.
Nonetheless, the quality of the generated data is affected by the correct placement of
the sensors [38]. Multiple studies have investigated the liability of Microsoft Kinect as

a modality for gait evaluation [39,40]. Unlike wearable sensors, Kinect does not require

Chapter 1. Intro. 4

any accurate sensor placement. The main advantages of Kinect are its low cost and ac-
curate markerless skeleton joint detection and tracking. The latter property makes the
application of Kinect convenient for both patients and the healthcare provider.

The majority of state-of-the-art skeleton-based gait anomaly recognition studies are
categorized as either a one-class or a two-class problem, recognizing anomalous from nor-
mal class only. Numerous of these works have reported high recognition scores. However,
in the real world, abnormal gait can be divided into multiple categories, each describ-
ing one symptom or a minor abnormality. In this study, we take a multi-class approach
toward gait anomaly classification based on the skeleton modality. Under a multi-class
framework, gait anomaly recognition can be adopted for real-world applications, which
can render frequent gait evaluation out of designated lab facilities. The presented work
offers an end-to-end method toward gait anomaly classification, where minimally pre-
processed skeleton joints are fed to a deep learning model. By taking an end-to-end
approach, we let the deep model detect relevant features by itself while attempting to
minimize classification error over all existing classes. Also, unlike other skeleton-based
gait anomaly recognition, we evaluate the presented models on three public datasets with
different gait abnormalities. High classification scores on these datasets with distinct
classes of pathological abnormalities have two main indications. It shows the efficiency
of the presented pipeline in classifying minor gait abnormalities. Besides, it shows the
usefulness of markerless modalities such as the Kinect camera for minor gait anomaly

classification.

1.1 Objectives and contributions

The primary objective of this thesis is to design efficacious pipelines based on 3D skeleton

data for applications in gait identification and gait anomaly classification, by leveraging

Chapter 1. Intro.)

depth-based cameras such as flash lidar and Kinect. To deliver on such objectives, we

attempt to address the following questions:

e If the collected data are noisy to a level such that a considerable number of feature
vectors contain faulty and missing values, can we still achieve high accuracy and

precision in gait recognition?

e When a high percentage of the input features are either noisy or missing, can we

avoid data elimination and do any better through model correction?

e Can we perform frequent gait evaluation in the convenience of living environment
with a low-cost and markerless equipment such as Kinect and without the need for

an equipped specialized lab?

The first two questions are investigated in the first part of this thesis, as we describe a
simple yet effective pipeline for gait recognition designed for flash lidar modality. We will
address the last question in the second part of this thesis, where we present a pipeline for
multi-class gait anomaly recognition. The following list outlines the contributions as we

address each of these questions:

Contribution 1:

The main goal in the first part of this thesis is to present a pipeline for gait identification
that overcomes the difficulties that arise as a result of imaging with flash lidar. In order
to fulfill this goal, we adopt a model-based gait recognition approach due to the view
and scale-invariant properties of this type of method. In addition, a model-free method
generally requires background removal that is quite challenging with the low resolution
and noisy data provided by the flash lidar. To remove the computationally expensive
process of three-dimensional model fitting, we use the depth data provided by lidar and

hire a pretrained pose detector model.

Chapter 1. Intro. 6

The noisy nature of lidar data presents a real challenge to the skeleton detection
procedure, degrading the performance of the state-of-the-art pose detectors. Therefore,
erroneous and missing joint location measurements is a real issue, resulting in gait recog-
nition with low precision and accuracy. To resolve this problem and improve the gait
identification scores, we will discuss offline approaches to correct the faulty skeleton joints.
Correction is performed on each joint location coordinate, modeled as a time sequence.
With limited data availability, data correction is valuable as it preserves temporal in-
formation, which is critical for timely applications such as gait recognition. To capture
motion dynamics after an extensive skeleton correction, we incorporate robust statistics
with traditional feature moments. Through a set of experiments, we show that conven-
tional feature moments can be a better representative of motion dynamics if they are
incorporated with robust statistics such as median, lower and upper quartiles.

We will also discuss performing outlier removal on the feature vectors to acquire
higher quality data and present methods for length-based and vector-based attributes.
The presented outlier removal methods can be adopted for applications where data elim-
ination is not an issue. This contribution is an effort to follow the traditional practice
of removing noisy data and performing classification on the remaining higher quality

examples.

Contribution 2:

In the second part of this thesis, we focus on the problem of anomaly recognition with
the skeleton data collected by Kinect. The majority of state-of-the-art gait anomaly
detection methods have been focused on evaluating certain parameters of the gait that
are clinically relevant. Such analysis is valuable, as they link health evaluation of gait
with suitable parameters that are clinically interpretable. However, they also limit the
acquired information to a few selected factors and do not take into account the interaction

between different body segments in forming gait patterns. Skeleton-based models try to

Chapter 1. Intro. 7

avoid the limitation in traditional approaches by taking into account the interactions
between individual body parts.

We purpose an end-to-end deep learning model that uses the skeleton data recorded
by Kinect to capture spatio-temporal patterns for gait anomaly recognition. By consid-
ering the whole skeleton, the proposed model considers the relationship between differ-
ent body joints in locomotion. Unlike the common two-class or one-class approaches of
skeleton-based methods, the proposed model considers a multi-class framework. There-
fore, it can be easily adapted for a more frequent gait assessment outside clinical facilities.
Besides, for the first time, we evaluate the purposed pipeline on the three largest publicly
available datasets. The high classification scores that are acquired on all three datasets
demonstrate the efficacy of the proposed pipeline for minor gait anomaly recognition.
Also, the whole framework of this design indicates the potential of markerless modalities
such as Kinect for designing less costly and more convenient health infrastructures for
assisted living. In addition, an automatic and non-invasive gait assessment can further
augment the clinical diagnosis for an extensive list of ailments that cause different types

of gait disorders.

1.2 Thesis outline

The dissertation is organized as follows: In Chapter 2, we present some background on
gait recognition, describe the challenges of gait recognition with flash lidar, and present
our methodology for gait recognition in the framework of flash lidar modality. Chapter 3
presents methods for improving the gait recognition methodology with the flash lidar data.
Chapter 4 is dedicated to the problem of gait anomaly recognition. In this chapter, we
present methods based on deep learning models for classification of minor gait anomalies
using the skeleton data. Finally, we conclude in Chapter 5 and outline avenues for future

work.

Chapter 2

Gait recognition with flash lidar

In this chapter, first, we present a brief background on the gait recognition problem
and outline the advantages of using a depth-based camera, such as flash lidar, for gait
recognition. Next, we explain the imaging mechanism of the flash lidar camera and
describe the properties of the collected data. We present a model-based gait recognition
method for the data collected by a single flash lidar camera. Finally, we will present the
experimental results and outline some of the challenges of gait recognition with the flash

lidar data.

2.0.1 Background on gait recognition

Traditionally, there are two dominant trends in video-based gait recognition, model-based
and model-free methods. Model-free methods utilize the features that are computed from
human silhouette [41,42]. In terms of implementation and computation, model-free meth-
ods are less costly compared to their model-based counterparts. However, the performance
of model-free approaches depends on the quality of silhouettes. The silhouette quality is
affected by several factors such as lighting conditions and outfits of the subjects [43,44].
Model-based methods exploit the features that can be computed from a fitted model, like

a skeleton [45,46]. Therefore, this class of methods is scale and view-invariant. While

8

Chapter 2. Gait recognition with flash lidar 9

FI1GURE 2.1: Examples of noisy segmented silhouettes from flash lidar data

model-free methods deliver a representation of human shape, model-based approaches de-
scribe human locomotion. Skeleton-based features mimic actual physical traits, and the
shift of modality from image or video to skeleton offers benefits in terms of compaction,
storage, computation, and scalability. With the emergence of depth cameras like Kinect
and lidar, the computationally expensive process of model fitting is not an issue anymore.

The only existing lidar-based gait recognition studies are model-free, rely on the
data provided by rotating multi-beam lidar, and exploit point clouds to extract the sil-
houette [42,47]. With the data that is collected by a single flash lidar camera, several
factors diminish the quality of segmented silhouettes. Figure 2.1 shows examples of faulty
detected silhouettes. Apart from faulty silhouettes, there are frames with no detected sil-
houette, which mostly happen in successive frames.

There are a few studies in the literature that address the problem of gait identifica-
tion with low quality or missing silhouettes. In [48] and [49], the authors study multiple
scenarios with incomplete silhouettes. But, these researchers do not address the cases
when an entire silhouette is missing. In general, these studies depend on the proper seg-
mentation of a reference silhouette. Silhouette reconstruction methods such as inpainting
are only effective when smaller parts of the silhouette are missing [49]. Methods based
on gait features such as gait energy image (GEI) [11] and its variations, which are less
sensitive to segmentation error, are also based on the non-missing silhouette criterion.
In [50] and [51], the problem of the missing silhouette is treated. However, these studies

only focus on sequences with a 90-degree camera view in the former and frontal view in

Chapter 2. Gait recognition with flash lidar 10

the latter study. A 3D model-based approach is view and scale-invariant and can avoid
the problem of missing and faulty segmented silhouettes.

Multiple studies have utilized skeleton joint information provided by Kinect in ap-
plications such as activity recognition, person identification, and gait analysis [52-54].
Within the framework of gait recognition, authors have investigated angle-based at-
tributes [25], static anthropometric [55], and gait features [56]. In [26], authors took
covariance-based features of skeleton joints’ trajectory. Sinha et al. combined a set of
area-based features and the distance between body segment centroids with the angle be-
tween lower body limbs and anthropometric attributes [57]. In [58], relative distance and
angles were used along with the Dynamic Time Warping (DTW). Ali et al. introduced
area-based features of the lower body during motion [59]. Weighted anthropometric, dy-
namic, and trajectory features over segmented gait cycles were presented in [20]. In the
majority of these studies, the mean, maximum, and standard deviation of the proposed
features over each gait cycle integrate the motion dynamic for a high-accuracy recogni-
tion. A gait cycle is a fundamental concept in describing the human locomotion and is
defined with respect to one of the legs. One gait cycle is the time between an initial
contact between one foot and the ground and the next contact of the same foot with the
ground.

In this dissertation, we take a model-based approach for the gait recognition problem
using the data recorded by a single flash lidar camera. To tackle the computationally

expensive model fitting problem, we hire a pretrained deep network for pose detection.

2.1 The proposed model-based method

The input to the proposed gait recognition system are sequences recorded by a flash lidar
camera. A lidar sequence like V' with f frames, consists of intensity I = [I3, I, ..., I| and

range (depth) frames R = [Ry, R, ..., Ry], where the images are preprocessed to reduce

Chapter 2. Gait recognition with flash lidar 11

FIGURE 2.2: Sample frames of lidar data. The top and bottom rows show range (depth) and
intensity data, respectively.

the noise in the data. Sample frames of intensity and range data are shown in Figure 2.2,
top and bottom rows, respectively. Using the intensity information of lidar, we leverage
OpenPose, a state-of-the-art real-time pose detector [28] to fit a two-dimensional skeleton
model, and extract the location of the body joints. Figure 2.3 illustrates sample frames
with correctly detected skeletons. The two-dimensional skeletons generated by OpenPose
has 18 joints. However, 5 out of 18 joints represent facial limbs that do not convey any
information about gait. By removing these 5 joints, we adopt a skeleton model that
contains the remaining 13 joints. Figure 2.4 gives an illustration of the skeleton model
that we use in this work. The table on the left side of this figure lists all the joints in this

model.

FI1GURE 2.3: Sample frames with correctly detected skeletons.

With I; being the input to the skeleton detector, the output is the joint location

coordinates J; in the following vectorized form

J; = [.’Iik, yk]i\/[:jl S §R2N (21)

Chapter 2. Gait recognition with flash lidar 12

Joint

5
a
@D
X

Mid Shoulder
Right Shoulder
Right Elbow
Right Wrist
Left Shoulder
Left Elbow
Left Wrist
Right Hip
Right Knee
10 Right Ankle
11 Left Hip

12 Left Knee

13 Left Ankle

©o0O~NO A WNPE

FIGURE 2.4: The skeleton model we use in this work. Left: index of each joint in the skeleton
model. Right: skeleton model in a sample frame.

where M, is the number of joints and (z, yx) represents the coordinates of the kth joint
in the image frame of reference. The 2-dimensional coordinates of the joints in the z
and y directions are projected into real-world coordinates using the range data and the
properties of the lidar camera. Equation 2.2 describes the projection from image reference

frame into the real-world coordinates system

i =

j camera
Npimels

0(10'[1 3 3
X tan(5) x Lp; x D (2.2)

where Lé represents the real-world location of joint 4 in the direction j € {x,y}. L' in
the z direction equals to the depth (range) value at the location of joint i. Npzes is the
number of pixels in the j direction, 0, represents the angle of view, and D!, is the

range value of joint i. Lpz- shows the location of joint ¢ in the direction j in the image

coordinate system.

2.1.1 Feature vectors

In this work, the purposed methods are tested on two sets of feature vectors: length-
based (LB) and vector-based (VB). The length-based feature vector comprises a set of
limb lengths and Euclidean distance between selected joints in the skeleton. Table 2.1

lists the components of the length-based feature vector.

Chapter 2. Gait recognition with flash lidar

13

TABLE 2.1: List of length-based feature vectors (L and R refer to the left and right joints,
respectively)

Feature

Feature

R and L Shoulder

R and L upper arm
R and L lower arm
Spine

R and L upper leg
R and L lower leg
Shoulder to shoulder

Elbow to elbow

Wrist to wrist

Hip to hip

Knee to knee

Ankle to ankle

R shoulder to L ankle
L shoulder to R ankle

TABLE 2.2: List of three-dimensional vectors in the vector-based feature vector (L and R refer
to the left and right joints, respectively)

Feature

Feature

Neck to R Shoulder
Neck to L Shoulder
Neck to R Hip

Neck to L Hip

R Shoulder to R Elbow
L Shoulder to L Elbow

R Hip to R Knee

L Hip to L Knee

R Elbow to R Wrist
L Elbow to L. Wrist
R Knee to R Ankle
L Knee to L Ankle

The second set of feature vectors is vector-based. This means that each feature is a

3-dimensional vector, computed between two skeleton joints. Unlike trajectory features

in [26] that are computed with respect to a reference joint, the vectors in the proposed

feature vector mimic the limb vectors in the skeleton model. Vector-based features provide

information about the angle and distance between selected joints of the skeleton. In Table

2.2 we list the joints that form each of the 3-dimensional vectors. Figure 2.5 presents an

illustration of the proposed length-based and vector-based features.

l

FIcUurE 2.5: Illustration of two types of feature vectors: distance-based feature vector (left),
vector-based feature vector (right). All The features are depicted in red color.

Chapter 2. Gait recognition with flash lidar 14

Lidar
camera

FIGURE 2.6: Illustration of two types of walking path: walking forward and backward (in blue),
and diamond walking (in red).

Diamond walking path ()

2.1.2 TigerCub 3D Flash lidar

The TigerCub is a light-weight 3D flash lidar camera that uses eye-safe pulsed laser to
illuminate the whole scene and generates real-time range and intensity data [60]. A laser
beam can be focused to conform to the objects of interest. Therefore, a lidar camera can
provide a detailed depth imaging of the recorded scene. These properties of flash lidar
have lead to extensive applications in areas such as geology, seismology, atmospheric
physics, forestry, archaeology, autonomous driving, and space missions. The capability
of the lidar camera to perform robustly in the dark, in the fog, and the dust, makes it
stand out among other depth-based cameras. The working range of a flash lidar camera is
above 1000 meters, and in the generated detailed 3D mapping, the spatially close objects
can be recognized from one another. Considering such properties, flash lidar can be a

suitable candidate for real-time data acquisition and autonomous operations.

2.1.3 Dataset

The dataset in this work has been collected by a single TigerCub 3D Flash lidar camera.
The data is captured at the rate of 15 fps with 128 x 128 frame resolution. The dataset
consists of a total of 34 sequences of the walking action performed by 10 subjects. Each
subject performs the walking action in three different ways: walking toward and away
from the camera, walking on a diamond shape, and walking on a diamond shape while

holding a yardstick with one hand. Figure 2.6 illustrates the paths of walking for the two

Chapter 2. Gait recognition with flash lidar 15

FIGURE 2.7: Sample frames of diamond walking that captures a range of different poses.

cases of walking forward and backward (walking toward and away from the camera) and
the diamond walking. For those frames in which subjects walk toward and away from the
camera, most of the views are from the front and back of the person, with some frames
of side views when the subjects turn away. The sequences with walking on a diamond
shape include frames with a wider range of views. This will offer a wider range of poses
as is shown in Figure 2.7.

Table 2.3 lists the number of frames per subject for each category of the walking
action. The number of frames per video is different, ranging from 130 to 498 frames.
Each frame has two sets of data, intensity and range, both with the same number of
pixels. The intensity data are presented in gray-scale, and the range data show the
distance of each point in the field of view from the camera sensor.

TABLE 2.3: Number of frames per type of walking action for each subject. FB Walk: front
back walk, D Walk: diamond walk, DS Walk: diamond walk holding stick

FB Walk D Walk DS Walk Total

subject 1 130 215 463 808

subject 2 248 462 451 1161
subject 3 199 398 391 988

subject 4 224 377 405 1006
subject 5 257 459 486 1202
subject 6 226 483 881 1590
subject 7 204 429 394 1027
subject 8 249 474 445 1168
subject 9 203 897 375 1475

subject 10 216 441 385 1042

Chapter 2. Gait recognition with flash lidar 16

2.1.4 Experimental results

Table 2.4 summarizes the average accuracy and F-score for the proposed features and
several relevant methods. In [56], authors use a set of static features plus step length and
speed. In [25], the moments of six lower body angles are computed over each gait cycle.
Sinha et al. integrate the features in [56] and [25] with their area-based and distance
between body segment features and compute the moments of each feature over every gait
cycle. Instead of the common anthropometric features, in [27], Yang et al. utilize selected
relative distance along different motion directions. As can be seen from the results, the
proposed vector-based feature outperforms the state-of-the-art related methods. We also
observe that none of the methods could acquire high classification scores as a result of

low quality skeletonization and the resulting erroneous features.

TABLE 2.4: Correct identification scores for the proposed features and the other methods.
LB and VB stand for length-based and vector-based feature vector, respectively. Features are
computed without joint correction.

Method Average Accuracy(%) Average F-score(%)

[56] 27.90 25.36
[25] 25.34 23.24
[57] 61.81 54.61
[27] 63.82 58.64
Ours, LB 54.96 51.58
Ours, VB 67.16 63.47

Several factors diminish the quality of the joint localization, and therefore the features
that are computed from the skeleton’s joints. By looking at the sample intensity frames in
Figure 2.2, bottom row, we observe the lack of color, and similarity between the clothing
of the subjects, skin, and the background. Depth images are plagued with edge noise and
missing pixels. Furthermore, as the distance between subjects and the camera lessens,
range data is affected by noise. The acquired skeletons are riddled with missing and
inaccurately-located joints. Therefore, the resulting features contain many missing and

noisy measurements.

Chapter 2. Gait recognition with flash lidar 17

2.2 Remarks

In this chapter, we described the gait recognition problem and addressed some of the
challenges and opportunities of gait recognition with the flash lidar data. We discussed
a gait recognition methodology for the flash lidar modality by presenting skeleton-based
features. Our results and analysis shows how performing a successful gait identification
using the flash lidar data is a challenging task. In the next chapter, we will come back to
this problem and present methods for improving gait recognition for the data collected

by a flash lidar camera.

Chapter 3

Improving flash lidar-based gait

identification

Most of the existing successful model-based methods rely on the high-quality data col-
lected by Kinect or Mocap. While such modalities have removed the burden of model
fitting, they are not always the best choice for real-world applications. Mocap is mostly
limited to laboratory environments. The working range of the Kinect is very limited (< 5
meters) and its performance degrades in outdoor environments because the infrared light
of the sensor cannot be easily separated from the high-intensity ambient infrared [61,62].
On the other hand, flash lidar has an extensive working range (> 1000 meters). Further-
more, due to the high irradiance power of pulsed laser with respect to the background,
the performance of a flash lidar is not degraded in the outdoor environments. However,
as we discussed in the previous chapter, several factors diminish the quality of the data
collected by a flash lidar camera. Therefore, compared with Kinect and Mocap, the data
collected by flash lidar is noisy and low resolution. These factors degrade the performance
of the pose detector, resulting in many missing and faulty joint localization.

Under the described condition, a common practice consists of noisy data removal and

performing further processing on the remaining clean data. In this chapter, following the

18

Chapter 3. Improving flash lidar-based gait identification 19

b 4
: # ‘ 3 < ngt | Joint Correction
"/ % Depth data location
- E estimator

A v
Feature
extraction
\ 4
2D Skeleton _) Person D
detector Gait Recognition

FIGURE 3.1: Pipeline for gait recognition using the joint correction methodology

3D Joint . .
Person ID
location Featu_re Outlier Gal_t _
. extraction removal recognition
estimator

FI1GURE 3.2: Pipeline for gait recognition using the outlier removal methodology. Inputs to
73D Joint location estimator” remain the same as in Figure 3.1

traditional trend of noisy data removal, we employ the Tukey method for outlier removal
and present a modification for the vector-based features. This approach results in a
higher quality data; however, it might not be the best choice for real-world surveillance
problems with limited data availability. In fact, under such a scenario, data elimination
can be problematic. We will address this problem and present filtering methods to correct
the noisy joints in the time sequences of joint coordinate measurements. Furthermore,
robust statistics are integrated with conventional feature moments to encode the dynamics
of the motion after skeleton joint correction.

Figures 3.1 and 3.2 describe the workflow for gait recognition based on joint co-
ordinate correction and outlier removal, respectively. In the following sections, we will
describe the steps in each of these two pipelines and present an extensive set of experi-

ments to investigate the efficacy of the proposed methods.

Chapter 3. Improving flash lidar-based gait identification 20

3.1 Outlier removal

Outlier samples do not follow the underlying model of a process. In general, outliers
should be detected to either understand an interesting event or process (i.e. surveillance
and abnormal behavior) or be removed if they are the result of noise or caused by erro-
neous measurements. A model that is estimated based on a dataset corrupted by such
outliers, cannot provide a fair description of the system and will result in many false
predictions. A common practice in gait recognition involves removing outliers by set-
ting some thresholds and performing the main analysis on the remaining higher quality
data [20,27,63,64]. Therefore, as an alternative method, we use the Tukey method to
detect outliers in the feature vectors that are computed from noisy and missing joint loca-
tion coordinates. The pipeline for gait recognition based on outlier removal methodology
is given in Figure 3.2. By choosing the Tukey method, we avoid making any assumption
about the underlying distribution of each feature. The second row in Figure 3.3 shows

examples of faulty detected skeletons. Besides, there are frames with missing skeletons.

FiGure 3.3: Top row: sample frames with correctly detected skeletons, bottom row: frames
with faulty skeletons

3.1.1 Outlier removal for length-based features

We define Jd = [Jdy, Jds, ..., Jdp| as a feature vector, where P is the number of features
in Jd and Jd; is the Euclidean distance between two skeleton joints. For length-based

features, removing outliers is performed in three main steps. First, we remove all the

Chapter 3. Improving flash lidar-based gait identification 21

80 T T T T T T T T T T T T

D
o

Accuracy(%)
5
o

N
o

48 483 486 49 5 52 56 58 6 20 50 NT

upper

FIGURE 3.4: Average classification accuracy with length-based outlier removal for different

values of Typper (threshold value that is used for prefiltering in length-based outlier removal).

Tupper = NT means no threshold was applied. While Tpper = 4.8 results in the highest

accuracy, it also results in the lowest percentage of training and test data being preserved after

applying Tukey’s test. Higher values of T,pper Or no threshold preserve more than twice the
number of training and test samples compared with T pper = 4.8.

frames with missing skeletons. In the second step, we filter the remaining samples by
setting an upper threshold of Tpper. To determine 715, we compute the median and

interquartile of each feature in Jd

M4 = mazx(median(Jd;) + IQR(Jd;))|L, (3.1)

If Jd* is the feature that maximizes the summation in the above equation, then M, is
the value of the above summation for feature Jd*. Once we determine M4, we perform
a grid search around the value of M4 to find Tipper. Tupper is the value that results in
the highest accuracy after applying Tukey’s test in the next step.

A feature vector with a feature that is beyond T,,,,., will be removed. In the last

step, Tukey’s test is employed on each feature. Jd is not an outlier if

Tukey({Jd;}Z,) =0p where Jd; € R* (3.2)

where Op is a zero vector of length P. Tukey(Jd;) = 0 means that feature Jd; passed
the Tukey’s test, or Jd; is not an outlier. Based on Equation 3.2, Jd is not an outlier,

if all of its feature components are non-outliers. In other words, Jd is an outlier if there

Chapter 3. Improving flash lidar-based gait identification 22

IN
S

Accuracy(%)

4.8 4.9 5 5.2

20 50 NT

I Num test = 340
I Num test = 500
[INum test = 800
I Num test = 1000
T T T
5.6 5.8 6
T

upper

F1GURE 3.5: Test accuracy for length-based outlier removal for different threshold val-

ues (Tupper), given different numbers of test samples. Typper = NT means no threshold

was applied. While smaller values of Ti,per result in higher classification accuracy for a

smaller number of test samples, this difference disappears for larger numbers of test samples
(number of test samples >= 800)

exists a Jd;, such that Tukey(Jd;) = 1. We will show later that while outlier removal
will improve gait recognition scores, it comes at the cost of eliminating a considerable
portion of the data.

Figure 3.4 shows the test accuracy with different values of T),,.,. Smaller values of
Toypper Tesult in the removal of one or more classes and therefore are not included in this
figure. In Figure 3.4, the distance between juxtaposed Ty,pe- values (values along x-axis)
become larger as we go toward larger values. This is because those values in-between
the shown T},,pers did not make a difference in terms of accuracy compared with values
close to them that are illustrated in this figure. 7T,,per = NT means no threshold was
applied for prefiltering, and only the samples with no skeleton have been removed before
applying Tukey’s method. It is important to keep in mind that the value of T}, that
gives the highest accuracy also preserves the smallest percentage of training and test data
after applying Tukey’s test. In contrast, using higher values of T, or removing T'pper
altogether (T,,per = NT') corresponds with preserving a higher percentage of the training
and test data.

Figure 3.5 shows a comparison of the performance of length-based outlier removal

for different values of T,pper, given various numbers of test samples. The comparison

Chapter 3. Improving flash lidar-based gait identification 23

0.1 T T T T T T T T T T

0.08

0.06

Ccv

0.04

0.02

4.8 4.9 5 5.2 5.6 5.8 6 20 50 NT

upper

FIGURE 3.6: CV (coefficient of variation) of average classification accuracy over different num-

bers of test samples for various values of Typper (threshold value that is used for prefiltering in

length-based outlier removal). Typper = NT means no threshold was applied. The lowest C'V,

which is achieved with Typper = NT, results in the least dispersion of accuracy over different
numbers of test samples.

shows that for smaller numbers of test samples, values of T3, close to M, give higher
classification accuracy. But, as we increase the number of test samples, this difference
fades. To study the effect of T},,per, for each value of T}, We also calculate the coefficient
of variation (CV) of the test accuracy over different numbers of test samples. For each
Tyupper, We compute accuracy for different numbers of test samples and then compute
the CV of the resulting test accuracy values for the given Tipper. CV = o/pu, where o
and p are defined as standard deviation and mean of the resulting test accuracy values,
respectively. As we observe in Figure 3.6, the case with no threshold (Typper = NT')
gives the lowest CV. These results can indicate that applying no threshold creates a more
reliable classifier with the least percentage of accuracy dispersion, given various numbers

of test samples.

3.1.2 Outlier removal for vector-based features

Let Jv*P = [Ju}P, Ju3P, .., Ju}l] be a 3 x Q matrix of the joint coordinates, where Q
is the number of 3-dimensional vectors in Jv*”. The ith column in Jv*”, which is the

3-dimensional vector between two skeleton joints, is defined as follows

JU?D = [xi,yz-,zi] € 3%3N (33)

Chapter 3. Improving flash lidar-based gait identification 24

Each of the 3-dimensional vectors represents one entity and cannot be treated individually.
To reduce each 3-dimensional vector to one entity, we first use the concept of marginal
median [65]. Each component of the marginal median represents the median of all the
vector components in that direction. Next, we employ cosine distance to calculate vector
similarity between each set of 3-dimensional vectors with their corresponding median
vector. We define Jo™¢%9" a5 the marginal median over all the given Jv?P feature vectors

53D = cos(Jumedian Jy3P)|@ (3.4)

7

where S3P = cos(Jvmedian Jy3P) is the cosine similarity between ith element of feature

vector Juv3P and Jymedian

This way, we create the cosine similarity measure between
each Jv3P and the median vector Jv™*%" and reduce each 3-dimensional vector in Jv?”
to one entity. Lastly, the Tukey method is applied to the cosine similarity measures. A

feature vector is an outlier if at least one of its features is an outlier. The algorithm below

describes outlier detection on the feature vectors built from 3-dimensional vectors.

Outlier detection for vector-based features
1. Over all the given feature vectors, calculate the marginal
median vector. Call this vector Jymedian
2. For each 3D vector Ju3P in each feature vector Jv3P,
calculate cos(Jvmedian Jy3P): save the results in one
row of S.
3. Employ Tukey’s test on each row of S.

4. A given feature vector Jv3P will pass Tukey’s test if

its corresponding row in S passes Tukey’s test.

Chapter 3. Improving flash lidar-based gait identification 25

3.1.3 Experimental results with outlier removal

Table 3.1 summarizes the gait identification scores before and after applying outlier re-
moval. We observe that applying outlier removal can improve the identification scores
for both types of features. However, outlier removal also results in the elimination of the
data that can be problematic when data is limited. Due to the noisy and low quality
nature of flash lidar data, a high percentage of the detected skeletons have missing and
noisy joints. For such cases, outlier removal can eliminate a good portion of the collected
data. Besides, data elimination will result in the loss of temporal information that is valu-
able for applications such as gait identification and activity recognition. In the following
section, we describe skeleton joint location correction to resolve these problems.

TABLE 3.1: Correct identification scores for the proposed features before and after applying
outlier removal. LB and VB stand for the length-based and vector-based feature vectors, re-
spectively.

Method Average Accuracy(%) Average F-score(%)

LB (before) 54.96 51.58
VB (before) 67.16 63.47
LB (after) 76.60 68.89
VB (after) 80.70 75.22

3.2 Skeleton joint correction

To improve gait recognition, we present two filtering mechanisms. First we describe Gli-
darCo (gait recognition by lidar through joint correction). GlidarCo is a three-step filter-
ing mechanism that corrects erroneous joint location measurements and recovers missing
joints. Next, we describe GlidarPoly (gait recognition by lidar through polynomial
correction), that is a two-step filtering approach. Besides, we will show that with an
extensive skeleton correction, we can improve gait identification even further by incorpo-

rating robust statistics with the common feature moments.

Chapter 3. Improving flash lidar-based gait identification 26

3.2.1 Skeleton joint correction by GlidarCo

Figure 3.1 illustrates the joint correction methodology. By investigating the time se-
quences of the joint location coordinates, we realize that missing joint location mea-
surements form the majority of erroneous joint localization. In order to perform joint
correction, we model each joint location of a skeleton in a lidar video as a time sequence,
where each joint location is composed of three time sequences in the z, y, and z directions.
Given a skeleton model of 13 joints, we define L as a matrix of the size of 39 x F},, where
each row represents one time sequence that is extended over F,, frames. To correct the
joint localization, filtering is carried out on each row of the L matrix, where L,, represents
the mth row of L

Ly ={L,(t)} L.{t)eR (3.5)

For each row like L,,, we find the sorted location of all the nonzero elements. For each lidar
video, given matrix L, we perform filtering on L, (each row of L), in three main steps.
First, Tukey’s test is utilized to detect all the values that are below Qu;p, — 1.5 X IQR or
above Qu,, + 1.5 X IQR, where IQR = Quyp — Qi stands for the interquartile range,
Quiow and Qu,, are lower and upper quartile or 25 and 75 percentiles, respectively.
Defining oy, as the set of all the detected outlier indices in L, (each index corresponds
with one frame)

;

oL,, = [017027“-;01%

01 < 09 < ... < Op (3.6)

where R is the number of detected outliers in L,,. Each detected outlier will be corrected
by the value of its one nearest neighbor in time that is not an outlier. In those cases
with two nearest neighbors, one is selected randomly. In the second step, piece-wise

cubic Hermite polynomials [66] are utilized to interpolate the missing values in L,, over

Chapter 3. Improving flash lidar-based gait identification 27

(tg,try1) interval

213 — 32 + 1 th
—2t3 + 312 thtt

323+t Vit

I 3 — t? | [Vt
where Vi, and Vi, are the derivative at ¢; and tx 1, respectively.

In the final step, RLOWESS (locally weighted scattered plot smoothing) [67] is
performed to smooth the resulting curve of L,,, and mitigate the effect of the remaining
outlier values that resemble lower-amplitude spikes. RLOWESS locally fits first order
polynomial using weighted linear regression. In the first step, the weighted least square

problem in each neighborhood is solved using the tricube weight function that is defined

according to the following equation

)’ (3:8)

where w; is the regression weight of point ¢; located in the neighborhood of ¢, and d(t)
is the distance along the abscissa between t and the point which is furthest from ¢ in its
designated neighborhood (¢ and t; are the predictor values). Using these weights, each
point like ¢ is estimated and the residual of that point calculated r = t — ¢, where £ is the
estimation of ¢ through the weighted least square. Next, the robust weight of point #; is

calculated by the bisquare weight function

2

)* (3.9)

T
6 x median(|r|)

w=(1-|

where median(|r|) is the median of residuals, and wj; is nonzero if r; < 6 x median(|r|).
The weighted least square is then implemented with robust weights and the local regres-

sion weights of equation (3.8) and all the new f are estimated and used to find residuals.

Chapter 3. Improving flash lidar-based gait identification 28

The weights are updated over p iterations until fitted values stabilize, where in practice

p € [2,5] works pretty well for most of the problems.

TABLE 3.2: Correct identification scores for the proposed features and the other methods after
applying GlidarCo. LB and VB stand for the length-based and vector-based feature vectors,
respectively. Features from all of the methods are computed from the corrected joints.

Method Average Accuracy(%) Average F-score(%)

[56] 43.40 38.43
[25] 28.33 26.25
[57] 73.01 73.83
[27] 74.52 71.68
GlidarCo, LB 73.66 69.60
GlidarCo, VB 80.58 76.24

3.2.1.1 Experimental results with GlidarCo

Table 3.2 summarizes the gait identification scores after employing joint correction us-
ing GlidarCo. By comparing the results with the gait identification scores before joint
correction in chapter 2, we observe that GlidarCo can improve joint localization and
identification scores in all of the methods. Besides, while our feature vectors in Table
3.2 do not contain the dynamics of the motion, vector-based features still outperform the
methods that incorporate temporal information by computing moments of features over
the gait cycle.

By comparing the results in Tables 3.2 and 3.1, we make some noteworthy obser-
vations. First, outlier removal and joint correction through GlidarCo both improve gait
recognition scores. However, outlier removal also results in data elimination and loss
of temporal information. Second, both methods acquire almost the same scores with
vector-based features. But, compared with GlidarCo, outlier removal achieves higher
scores with length-based features. One reason for such a result can be the elimination of
data by outlier removal. This way, outlier removal is tested on much fewer data compared
with other methods. Skeleton joint correction through GlidarCo can recover noisy and
missing skeleton joints. However, joint correction is also prone to noisy estimation, in

particular when there are missing joints over consecutive frames. On the other hand,

Chapter 3. Improving flash lidar-based gait identification 29

outlier removal also results in loss of temporal information. Later in section 3.2.3, we will
show that by incorporating temporal information after joint correction, we can further

improve classification scores.

3.2.2 Skeleton joint correction by GlidarPoly

In this section, we will describe how GlidarPoly acts on skeleton joint location measure-
ments to correct and recover the noisy and missing skeleton joints. For each lidar video,
given matrix L as was described in section 3.2.1, we perform filtering on L,, (each row
of L), in two main steps: interpolation for the missing values, and robust smoothing to
correct the outliers. Given the joint location sequence L,,, we find the sorted location of
all the nonzero elements. We define ny,, as the sorted set of all the indices in L,, with a

non-zero value (each index corresponds with one time instant ;) such that

(

nr, = [n17n2>m,nR]

ny<ng <..<ng (3.10)

ni€[1,2,.. . F:i€[1,2,.., R

\

where R is the number of non-zero elements in L,,. Next, between any two nonzero values
with non-consecutive indices along time, we fit a first-order polynomial through the least

squares criterion

ny 1 Y4 Lm(nr)
- (3.11)
Ng 1 D2 Lm(ns)
where n,,ns € ny,, and ng —n, > 1. L, (n,) and L,,(n,) are the values of L,, at n, and

ng, respectively. p; and py can be obtained by finding the least squares solution to the

system of equations in 3.11. Finally, we utilize RLOWESS (locally weighted scattered

Chapter 3. Improving flash lidar-based gait identification

30

plot smoothing) filter [67] to smooth the resulting joint location sequence and alleviate

the effect of remaining lower-amplitude spikes in L,,.

% 100 18 200
Frame number

- ri ISaE

~ .

AN

b

'y

% e 150 200
Frame number

N
50 100 150 200
Frame number

50 100 150
Frame number

E.SW ‘,W

200

15| /‘\/-\
.
1 |l
50 00 50 200
Frame number

14
12
=1
=
o
8 o

\/f\w

P A

n

s 10 150 200
Frame number

s e 150 200
Frame number

50 100 150 200
Frame number

50 100 150
Frame number

200

E) 100 150 200
Frame number

FiGURE 3.7: Effect of the skeleton joint location correction with GlidarPoly. From top: sample
joint location sequences before (first row) and after (second row) joint location sequence filtering
(each joint location sequence corresponds with one coordinate (z,y, z) of the location of one
joint through time). Notice the abundance of missing values in the first row, which are shown
as missing sections of the plotted signal that have been recovered through the joint correction
(figures in the second row). The last two rows show samples of faulty and missing skeleton

joints before (third row) and after (bottom row) joint location sequence filtering.

Figure 3.7 illustrates the result of applying GlidarPoly on samples of joint location

coordinate time sequences and skeleton localization in the image reference frame. The

results in this figure show the effectiveness of joint correction in interpolating and correct-

ing missing and faulty joints. We observe that the original joint location sequences are

noisy, containing many missing values and outliers. In the third row of Figure 3.7, we see

the sample frames with missing skeleton joints in the image reference frame. As we ob-

serve in the last row, the missing joints are interpolated successfully through the filtering

mechanism. We can also see examples where a whole skeleton is recovered through the

joint location correction. The joint location correction can be easily applied in the cases

of occlusion for the one-subject and multi-subjects scenarios. While in this study the

missing joint locations are the result of erroneous joint localization, it can be the result of

Chapter 3. Improving flash lidar-based gait identification 31

FI1GURE 3.8: Failure examples of the joint location correction filtering. Sample frames of skele-
ton joints, before (top) and after (bottom) applying GlidarPoly for the skeleton joint location
correction

occlusion. For most of the corrected skeletons, the interpolation of missing or noisy joints
follows the correct joint locations. However, there exist cases where the obtained local-
ization results are not accurate. Figure 3.8 shows a few failure examples of GlidarPoly
in joint localization correction. The majority of such failure cases are the result of the
existence of a considerable number of successive frames with missing or noisy joints that
make the joint correction prone to faulty estimations. However, even for failure cases, at
least half of the joints are predicted correctly. This can enhance the likelihood of correct

identification compared to the original localization of the joints.

3.2.2.1 Computational complexity of GlidarPoly

The main computational bottleneck of GlidarPoly is in the last step, where we use
RLOWESS [67] for smoothing the curve of joint location time sequences, and allevi-
ate the effect of outliers with O(Nlog(N)+3N(d+1)k) computational complexity. Here,
N shows the number of points in a joint location time sequence, d is the degree of the
polynomial used in the regression (here d = 1), and k is the number of k-nearest point or
length of each span in the local regression smoothing (k is constant and the same for all

the points) [68].

Chapter 3. Improving flash lidar-based gait identification 32

TABLE 3.3: Correct identification scores for the proposed features and the other methods. LB
and VB stand for the length-based and vector-based feature vectors, respectively. Features from
all of the methods are computed from the joints that are corrected by GlidarPoly.

Method Average Accuracy(%) Average F-score(%)
[56] 40.77 36.21
[25] 32.55 32.49
57] 80.11 80.40
[27] 75.79 72.75
GlidarPoly, LB 73.84 70.66
GlidarPoly, VB 84.07 80.49

3.2.2.2 Experimental results with GlidarPoly

Table 3.3 summarizes the gait identification scores after employing joint correction using
GlidarPoly. By comparing the results with the gait identification scores before joint
correction in Chapter 2, we observe that GlidarPoly can improve joint localization and
identification scores in all of the methods. We do not consider the dynamic of the motion
with any of the proposed features. However, our vector-based features still outperform
other methods that incorporate the dynamics of the motion by computing the moments
of features over the gait cycle.

By comparing results in Tables 3.2 and 3.3, we observe that both joint correction
methods achieve almost the same improvement with length-based features. However,
with vector-based features, GlidarPoly performs better. This observation can be due
to over-smoothing the final correction estimation with GlidarCo that employs 3rd-order
polynomial in the first step of joint correction. By comparing the results in Tables 3.3
and 3.1, we also observe that GlidarPoly outperform outlier removal with vector-based
features. With the length-based features, outlier removal acquires better results compared
with GlidarPoly. For this observation, we can make the same argument as in subsection
3.2.1.1. Besides, since both joint correction methods achieve better performance with the
vector-based features, we speculate that vector-based features are more robust to noisy

estimations of joint correction compared with the length-based features.

Chapter 3. Improving flash lidar-based gait identification 33

® class 1 ® class 1
® class 2 ® class 2
* class 3 ® class 3
® class 4 ® class 4
® class 5 ® class 5
class 6 class 6
® class7 ® class7
® class 8 ¢ class 8
® class 9 ® class 9
class 10 class 10

50

50
0 5050 °
FIGURE 3.9: t-SNE visualization of the length-based features before (left) and after (right)
applying the joint correction using GlidarPoly. There is a high level of inter-class intersection
before joint correction (left) that is mostly resolved after correcting joint location, creating
clusters that are more distinctive (right).

e class 1 /L\ e class 1
® class2 |50 | ® class 2
* class 3 ® class 3
® class 4 ® class 4
® class 5 ® class 5
class 6 | 0 class 6
® class7 ® class7
® class 8 ® class 8
e class 9 190 ® class 9
class 10 class 10
-100 -

50 50
0 5050 O

FIGURE 3.10: t-SNE visualization of the vector-based features before (left) and after (right)

applying the joint correction using GlidarPoly. Before joint correction, high inter-class inter-

section and intra-class separation is observed (left). Joint correction transforms features into
well-separated clusters (right).

Among the evaluated methods, we do not observe a considerable improvement in
the performance of [25]. Authors in [25] use six angles between lower body joints as
features and compute the mean, max, and standard deviation of each angle over every
gait cycle. The skeleton model that we adopted in this work lacks foot joints that are
essential to estimate two of the angles in [25]. To calculate these angles, we estimate
the floor plane and use the normal vector to the plane. We speculate that the error in
this estimation might also cause lower classification scores with this method. Besides,
it was reported before that angle-based features might perform poorly compared with
distance-based features, in particular when the number of subjects is relatively low [69].

Variations in the walking speed can also cause changes in the joint angles [70,71].

Chapter 3. Improving flash lidar-based gait identification 34

T T
Il Before joint correction | |
I After joint correction

@
=}

Accuracy(%)
5 &

oW A
o O

=
o

o

1-5 missing joints 6-10 missing joints No missing joint Whole skeleton missing

Ficure 3.11: Comparison of classification accuracy for vector-based features based on the

number of missing joints in the original skeletons, before and after applying GlidarPoly for

joint correction. The samples with no missing joints also include noisy samples. All cases show
improvement after applying the joint location correction.

In Figures 3.9 and 3.10, we present t-SNE visualization of length-based and vector-
based features for the training data before and after joint location correction with Gli-
darPoly. Some of the interesting observations from these visualizations are as follows:

1. We observe a high level of the inter-class intersection before the joint correction
for both features, that transforms into a wider separation among classes after applying
GlidarPoly.

2. In the right graph of Figure 3.10, we see a non-homogeneous scatter of some
of the classes, in particular class 9, which makes it more difficult to find the decision
boundary. Such class distributions result in lower accuracy for these classes and overall
lower accuracy for the whole dataset.

3. In the left graph of Figure 3.10, we observe two separate clusters that transform
into a single one after joint correction (right graph).

4. After applying the joint correction, the transformed features become well sepa-
rated, which shows we do not necessarily need a more sophisticated classifier.

Figure 3.11 presents the average identification accuracy before and after applying
GlidarPoly, considering the number of missing joints in the originally detected skeletons.
Samples with no missing joints also include noisy joint data. We observe that accu-

racy improves in all of the categories after the joint location correction, which confirms

Chapter 3. Improving flash lidar-based gait identification 35

the effectiveness of the joint correction in improving skeleton joint localization and gait

identification.

3.2.3 Incorporating motion dynamics

As humans, we integrate both anatomy and the way that people move their bodies during
activities such as walking, to recognize a familiar person. Features that describe motion
play a crucial role in gait identification when different individuals have approximately the
same body measurements. In several model-based methods, features like speed and step
length are integrated to include the dynamic of the motion [56,72]. Another common
practice consists of computing mean, max, and standard deviation of selected features
over every gait cycle and performing classification on such measurements [20, 27, 57].
This practice has proven to be successful in achieving high accuracy in gait recognition.
However, the considered datasets generally have a low level of noise with a few to none
outliers. Such datasets are recorded under controlled conditions such as limited walking
directions.

The distance between two leg ankles, which is commonly utilized for the gait cycle
estimation, has a cyclic pattern in general. However, variations in different walking
factors such as walking direction, walking speed, and step length can cause aperiodicities
in the walking patterns [20]. This can cause complexities in the interpretation of the
motion, such as in gait cycle computation. In addition to such intra-personal variations
in the gait, with the flash lidar data, there are numerous instances of consecutive frames
with a missing skeleton. Therefore, the result of joint sequence correction is prone to
noisy measurements. This noisy estimation will exacerbate the problem of the observed
acyclic patterns. Figure 3.12 illustrates the ankle to ankle distance instances of flash
lidar data. The sequence on the left shows a periodic pattern. However, the sequence

on the right side of Figure 3.12 lacks a clear cyclic pattern. Irrespective of a sequence

Chapter 3. Improving flash lidar-based gait identification 36

~
o
~

w
o
w

e
©
F

o
o

20 40 60 80 100 20 40 60 80 100
Frame number Frame number

Ankle-to-Ankle distance(m)
o o o o
N
Ankle-to-Ankle distance(m)
o
N

F1GURE 3.12: Two examples of the ankle to ankle distance sequence of lidar data after joint
correction. While the graph on the left presents a periodic pattern, the sequence on the right
lacks such a pattern.

being periodic or aperiodic, we consider a gait cycle as a local time sequence with three
consecutive local maxima. To compensate for large variations in the gait cycle throughout
one sequence of walking, we incorporate statistics that are robust to noisy measurements.
In addition to commonly employed statistics of mean, standard deviation, and maximum,
we also include median, upper, and lower quartiles that are robust to noisy data. We
build feature vectors that comprise mean, standard deviation, maximum, median, lower

quartile, and upper quartile of each feature over every gait cycle.

3.2.3.1 Results with motion dynamics

Table 3.4 shows gait recognition scores after joint correction when statistics of features are
considered over gait cycles to incorporate the motion dynamics. For this experiment, we
considered both joint correction methods with length-based and vector-based features. By
comparing the results in Table 3.4 with the single-shot (per-frame) identification scores
after joint location correction in Tables 3.2 and 3.3, we observe incorporating motion
dynamics can improve identification scores for both features. We also observe that Gli-
darPoly acquires higher classification scores compared with GlidarCo. As we mentioned
before, this observation can be due to over-smoothing of estimation with GlidarCo.

The average per-class accuracy and F-score for the single-shot (per-frame) case is
presented in Table 3.5. We also show the per-class accuracy and F-score when statistics

over the gait cycle are considered in Table 3.6. The results in both tables are computed

Chapter 3. Improving flash lidar-based gait identification 37

TABLE 3.4: Correct identification scores with statistics of features computed over gait cycle
after joint correction. LB and VB stand for the length-based and vector-based feature vectors,

respectively.

Method Average Accuracy(%) Average F-score(%)
GlidarCo (LB) 75.22 73.22
GlidarCo (VB) 84.65 80.38
GlidarPoly (LB) 76.03 74.88

GlidarPoly (VB) 89.12 87.06

TABLE 3.5: Correct identification scores for each class of subject for the single-shot scenario of
vector-based features after applying GlidarPoly for the joint correction. The minimum and the
next-to-lowest accuracy and F-score are underlined.

Subject # Accuracy(%) F-score(%)

subject 1 93.85 96.83
subject 2 80 79.69
subject 3 79.23 69.36
subject 4 74.62 64.03
subject 5 93.08 82.88
subject 6 76.92 64.52
subject 7 100 84.69
subject 8 76.92 85.29
subject 9 66.92 78.61
subject 10 82.31 88.25

TABLE 3.6: Correct identification scores for each class of subject for the statistics of vector-
based features over the gait cycle after applying GlidarPoly for the joint correction. The mini-
mum and the next-to-lowest accuracy and F-score are underlined.

Subject # Accuracy(%) F-score(%)

subject 1 71.42 83.33
subject 2 85.71 80

subject 3 85.71 92.31
subject 4 85.71 75

subject 5 100 93.33
subject 6 100 82.35
subject 7 100 77.78
subject 8 85.71 92.31
subject 9 85.71 92.31
subject 10 78.57 88

after applying GlidaPoly for the joint correction. By comparing the results in these two
tables, we observe that the minimum per-class accuracy and F-score are improved by
4.5% and 10.97% as a result of employing gait cycle statistics. These results indicate that
by employing features that capture motion dynamics, we can build a more reliable model

compared to the case that only considers static features.

Chapter 3. Improving flash lidar-based gait identification 38

85 100
_.80 / _. 90}
S S
= =
Q Q
751 S 8ot
35 =}
[&] (8]
Q (8]
IS I
S701 > 70t
o o
g Num test = 1000| |2 Num test = 100
< 65 I Num test =600 |{< 60 Num test = 70
Num test = 200 Num test = 40
Num test = 100 Num test = 30
60 50
200 400 600 800 1000 50 100 150 200
Number of frames Number of gait cycles

FIGURE 3.13: Average classification accuracy for different numbers of training samples given
multiple numbers of test examples for the single-shot (left), and statistics over the gait cycle
(right) scenarios. Both plots are acquired for vector-based features.

3.2.4 Effect of the number of training samples

In real-world applications, limited data availability is one of the main challenges of gait
recognition. Therefore, it is essential to investigate how the designed model or the selected
features perform under limited data availability. Here, we will examine the performance
of the vector-based features, both for the single-shot scenario as well as the statistics over
a gait cycle for different numbers of training observations given various numbers of test
samples.

In Figure 3.13, the left graph illustrates the single-shot identification accuracy as a
function of the number of training examples. For each experiment, we consider a different
number of test samples, where the number of test samples changes in [100, 1000] range.
For a given number of test samples, the average accuracy improves as we increase the
number of training data. For smaller number of test samples, accuracy increases at a
higher rate when we use a larger number of training samples. A test sample size equal
to or larger than 200 frames appears to be a proper choice empirically, as the accuracy
trend shows to be more stable. We also observe that irrespective of the number of test

data, we acquire the best performance with a training set of 1000 samples.

Chapter 3. Improving flash lidar-based gait identification 39

In the right graph of Figure 3.13, we show the average classification accuracy for
different numbers of gait cycles for training. Each plot in this graph shows average
accuracy for a certain number of test gait cycles. We observe that the highest accuracy
is acquired with at least 200 gait cycles for training, irrespective of the number of test
samples. When the number of gait cycles per subject is severely limited, this limitation

can be problematic.

3.2.5 Evaluation on IAS-Lab

In this thesis, our focus is on the application of flash lidar modality for gait identification.
However, due to the lack of publicly available flash lidar data for gait recognition, we
evaluate the performance of the joint correction methodology on the IAS-Lab RGB-ID [73]
dataset. For skeleton joints correction, we investigate the performance of GlidarPoly as
it acquires higher classification scores. To evaluate the performance of joint location
correction on IAS-Lab, we manually add noise to skeleton joints, as well as removing the
whole skeletons in consecutive frames.

The IAS-Lab dataset includes the sequences collected from 11 different subjects.
IAS-Lab consists of three sets, ”Training”, ” TestingA”, and ”TestingB”. The outfits of
the subjects in " TestingA” are different from their outfits in the " Training” set. Sequences
in "TestingB” are captured in a different room, but subjects wear the same outfits as in
the "Training” set. In addition, some sequences in ”TestingB” are recorded in a dark
environment. In this experiment, first, we compute the single-shot rank-1 identification
accuracy for the proposed vector-based and length-based features and compare it with
several state-of-the-art methods. Next, we manually add noise to some of the skeleton
joint locations and randomly remove some of the other joint location information. Then,
we apply GlidarPoly and compare the results of gait recognition before and after applying

GlidarPoly to correct the corrupted joints.

Chapter 3. Improving flash lidar-based gait identification 40

TABLE 3.7: Single-shot identification: Rank-1 identification accuracy for the proposed fea-
tures, several RGB-based, and depth-based features for IAS-Lab RGBD-ID ”TestingA” and
”TestingB” sets. Dashes are for cases where no published information is available.

Method TestingA TestingB

RGB-based features

HOG [74, 75] 31 47.21
Gabor-LBP [75, 76] 28.71 51.38
LOMO [75,77] 26.37 30.97

Depth-based features
Skeleton (SVM) [78] — —

Skeleton (NN) [78] 22.5 55.5
PCM+Skeleton [73] 25.6 63.3
3D CNN [79] 44.2 56.2

3D RAM ([79] 48.3 63.7
ED+SKL [75] 48.75 58.65
Length-based (NN) 46.61 70.64
Length-based (SVM) 34.09 67.51
Vector-based (NN) 54.11 61.07
Vector-based (SVM) 55.21 67.71

Table 3.7 shows the single-shot rank-1 identification accuracy for the IAS-Lab dataset.
We compare the performance of the proposed length-based and vector-based features
with several RGB and depth-based methods. The results with the RGB-based features
are reported according to [75]. As we can see, RGB-based features achieve better re-
sults on ”TestingB” compared with ”TestingA”, where subjects are wearing different
outfits. This is because changes in the outfit can affect the consistency of these types
of features. Skeleton feature in [78] consists of 11 length-based features and 2 ratios
of length-based features. PCM+Skeleton [73] consists of point cloud matching and the
skeleton-based features of [78]. The 3D CNN [79] is trained on the 3D point cloud, and
3D RAM [79] is a recurrent attention model trained on 4D tensors of 3D point cloud over
time. ED+SKL [75] is a depth-based feature, computed from eigen-depth and skeleton-
based attributes. In the last four rows, we present the results with our length-based and

vector-based features with both SVM and nearest neighbor (NN) classifiers. For the NN

Chapter 3. Improving flash lidar-based gait identification 41

classifier, we use the Manhattan distance with five nearest neighbors as in [80]. The
results show that our vector-based feature outperforms other methods on ”TestingA”,
where subjects are wearing outfits different from the training set. Besides, our length-
based feature achieves the highest accuracy on ”TestingB”, where there are changes in

the illumination.

3.2.5.1 GlidarPoly for joint correction in IAS-Lab

To evaluate the performance of the joint correction filtering on IAS-Lab, we added some er-
ror, using Gaussian distribution, to randomly-selected joints. We also randomly removed
the joint location information of some other joints. Table 3.8 presents the single-shot
rank-1 identification accuracy on IAS-Lab with the corrupted joints and after applying
GlidarPoly for joint location correction. We observe that GlidarPoly improves the identi-
fication scores in the range of [15%, 33%|. Besides, we see that the identification accuracy
after applying GlidarPoly is close to the results with the original data (the last four rows
of Table 3.7). This observation confirms the effectiveness of the proposed joint correction
filtering mechanism. Considering the length-based features in ”TestingA”, the results
with GlidarPoly are even better than the results with the original uncorrupted data in
Table 3.7. This suggests the removal of some of the noise that might exist in the original
data. We also observe that improvement is more pronounced with the ”TestingB” set.
Considering the features, length-based features, in general, see a higher percentage of

improvement after joint correction compared with the vector-based features.

3.2.5.2 Evaluation of gait cycle statistics

Table 3.9 shows the rank-1 identification scores after computing the six statistics of each
feature over the gait cycles for the corrected skeletons. By comparing the results with
the single-shot identification accuracy after joint correction in Table 3.8, we only observe

improvements in three cases (shown in boldface). Earlier in subsection 3.2.4, we discussed

Chapter 3. Improving flash lidar-based gait identification 42

TABLE 3.8: Single-shot identification: Rank-1 identification accuracy for the proposed features
on IAS-Lab RGBD-ID ”TestingA” and ”TestingB” before (with noisy and missing joints) and
after joint location correction

Method TestingA TestingB

With added noise

Length-based (NN) 23.86 30.18
Length-based (SVM) 31.20 41.43
Vector-based (NN) 28.05 31.76
Vector-based (SVM) 39.19 46.35

After applying GlidarPoly

Length-based (NN) 48.24 63.93
Length-based (SVM) 48.09 63.01
Vector-based (NN) 52.44 59.57
Vector-based (SVM) 52.58 62.34

TABLE 3.9: Rank-1 identification accuracy using the 6 statistics of the proposed features on
TAS-Lab ”"TestingA” and ”TestingB” after joint location correction

Method TestingA TestingB
Length-based (NN) 53.88 66.88
Length-based (SVM) 45.88 65.29
Vector-based (NN) 50.24 53.56
Vector-based (SVM) 46.89 61.29

how our evaluation shows that we need an order of 10 gait cycles for training to acquire
improvement over the single-shot scenario. With the lidar dataset, we required, on av-
erage, at least 20 gait cycles per subject to achieve such an improvement. In the lidar
dataset, there is only one subject with less than 20 gait cycles for training. But, in the
IAS-Lab dataset there are three subjects with such a condition. Therefore, we observe
fewer cases of improvement in IAS-Lab compared with our flash lidar dataset.

In Figure 3.14, we show the performance of three sets of feature statistics over every
gait cycle after applying GlidarPoly. The performance comparison is done on the lidar
data, and "TestingA” and ”TestingB” in [AS-Lab. We use NN and SVM as classifiers.
In the majority of cases, the lower quartile, upper quartile, and median set outperform
the mean, max, and standard deviation set after joint location correction. We also see

cases where the former set can acquire higher identification accuracy compared with the

Chapter 3. Improving flash lidar-based gait identification 43

90 T T m T T T T T T T T
I Vean, Max, Std

80 [Lower Q, Upper Q, Median |—
[6 statistics

Accuracy(%)

V\N 5Q\N V\\A\ Q\J\\ ‘\@\\ 6\‘“\\ X\\A\ QVY‘\ X\ﬁ\ K\ ,\“\\ C_,q@

3 £ ©” =)
N3 W N N \a
&t Q e Q \al
o \;\éa* W \;\éa‘

FIGURE 3.14: Comparison of the performance of mean, max, standard deviation set, and lower

quartile, upper quartile, median set, and the set of all the six statistics to capture the dynamic

of the motion after joint location correction. Comparison is performed for lidar and TAS-Lab

datasets with both types of features and SVM and NN as classifiers. LB and VB stand for

length-based and vector-based features, respectively. In the majority of cases, lower quartile,
upper quartile, median set outperforms the mean, max, standard deviation set.

combination of all the six statistics. These observations suggest that lower and upper
quartiles and median, as robust statistics, are better identifiers of temporal information
when we employ joint correction to recover noisy and missing data. Our experiments
also show that, in general, the combination of lower quartile, upper quartile, and median
of the features in an SVM classifier framework yields about the same accuracy using
either an RBF or a linear kernel. However, for the IAS-Lab dataset, the linear kernel
performs better than the RBF kernel with the lower quartile, upper quartile, and median

of vector-based features.

3.3 Remarks

In this chapter, we presented an efficient pipeline to improve the application of flash lidar
for the gait recognition problem. The main challenge is caused by the low quality and
noisy imaging process of flash lidar. Such signal quality adversely affects the performance
of state-of-the-art algorithms for skeleton detection. The detected skeletons from the col-

lected sequences contain a considerable number of erroneous joint location measurements.

Chapter 3. Improving flash lidar-based gait identification 44

Furthermore, the detections for several skeleton joints are missing in many frames. Under
the described scenario, a common practice involves removing noisy data. However, data
elimination results in the loss of temporal information and renders identification impos-
sible in numerous frames, which is not desirable for time-critical applications, such as
surveillance. To improve the quality of joint localization and to enhance gait recognition
accuracy using flash lidar modality, we present methods for joint correction: GlidarCo,
and GlidarPoly. We also present an automatic outlier detection method for applications
where data elimination is not an issue. Furthermore, to incorporate motion dynamics
after data correction, robust statistics are integrated that can effectively improve the
performance of the designed features that only employ traditional feature moments over
the gait cycles. The proposed pipeline is appealing in terms of computational complexity,

scalability, and a simple, yet effective design.

Chapter 4

Gait anomaly recognition

Gait is a dynamic entity that changes over time. The relation between joints that are
not directly connected can change from one pose to another (a.k.a. spatial variation).
Besides, the relationship between joints that belong to different poses continuously varies
through time (a.k.a. temporal variation). Among other objectives, the analysis of hu-
man gait can provide information that is beneficial for the medical assessment in the
variety of physiological and neurological conditions [30,31]. Researchers have evaluated
gait patterns for diagnosis, progress assessment, and treatment evaluation of age-related
impairments of locomotion, hip and knee osteoarthritis, post-stroke patients, multiple
sclerosis, cerebral palsy, neurodegenerative disorders such amyotrophic lateral sclerosis,
Huntington’s disease, and Parkinson’s disease [32,33, 81].

Clinical assessment of gait is commonly conducted in specialized laboratory environ-
ments, using tools such as pressure-sensitive walkways, e.g., GaitRite, and marker-based
systems, e.g., Vicon motion capture, that provide reliable gait data. However, such de-
vices are costly and require extensive and elaborate sensor placement. Besides, such
systems do not capture gait patterns that are observed in a natural environment [82],
where the subjects show their habitual behavior. These patterns are vital for an accu-

rate gait assessment. However, carefully supervised in-lab techniques are not a proper

45

Chapter 4. Gait anomaly recognition 46

representative of the gait patterns in a free-living environment. As life expectancy grows
and with a growing elderly population, the development of appropriate frameworks for
free-living gait assessment has become more vital. Such frameworks can be utilized for a
frequent out-of-the-lab gait evaluation to detect early signs of age-related ailments that
affect the patterns of gait. In recent years, numerous studies have attempted to address
this issue by presenting frameworks for a free-living gait assessment [83-85]. Modalities
such as wearable sensors and Kinect, which can collect spatiotemporal gait informa-
tion out of specialized labs, have become the focus of numerous gait analysis studies
for healthcare-related applications. The main advantage of Kinect is its low cost and
markerless accurate human skeleton joint tracking capability that provides a convenient
evaluation for the patients and the clinical laboratory technicians. Furthermore, multiple
studies have investigated the liability of Kinect for clinical evaluation purposes [39,40].
The majority of state-of-the-art gait anomaly detection methods have been focused
on the evaluation of certain parameters of the gait. Examples of these parameters are
gait speed, cadence (the rate at which a person walks, usually defined as the number of
steps per minute), stride length (defined as twice the step length), and their alternation
from the standard ranges in the healthy gaits. Numerous studies focused on gait features
from certain lower limbs to recognize an abnormal gait. In [86,87], the authors performed
a statistical analysis of selected gait factors. Daliri et al. [33] presented a time series anal-
ysis of stride intervals, swing intervals, stance, and double support intervals. Statistical
analysis of the estimated probability density function of the stride signal was employed
in [88] to detect abnormal gaits. In [89], authors used a wavelet-based characterization of
stride time signals. An adaptive neuro-fuzzy inference on stride, stance, and double sup-
port intervals was presented in [90]. These studies are valuable, as they link the health
evaluation of gait with relevant parameters that are clinically interpretable. However,

they also limit the acquired information to a few selected factors and do not take into

Chapter 4. Gait anomaly recognition 47

account the interaction between different body segments in forming locomotion [91]. In
recent years, success of the skeleton-based models in machine vision applications such as
gait identification and activity recognition [52-54] has inspired numerous skeleton-based
gait evaluation methods [3,92,93]. Such methods try to avoid the limitation in traditional
approaches by taking into account the interactions between different body parts.

In this chapter, we employ the data collected via Kinect for a contact-free, marker-less
approach to gait assessment. The skeleton data is captured by Kinect at a fixed interval.
Subjects do not walk at the same speed throughout a whole recorded sequence. Besides,
different subjects perform the same task at different paces that can create spatiotemporal
patterns similar to other classes of normal /pathological gaits. These two scenarios can re-
sult in intra-class dissimilarity and inter-class similarities, which makes minor pathological
gait recognition quite challenging. We present multi-class and computationally-efficient
frameworks that can be adapted for convenient out-of-the-lab gait evaluation. First, fol-
lowing the recent surge of RNN-based networks in skeleton-based anomaly recognition, we
present a multi-class gait anomaly classification framework that uses an LSTM network
to detect embedded features in sequences of gait postures. Using the skeleton informa-
tion provided by Kinect, we propose interpretable handcrafted features to represent each
posture. For our first study, we will focus on a problem with large intra-class variations
(a large collection of subjects) but a small number of class abnormalities. Next, we will
consider a larger set of gait abnormalities, presenting a deep learning-based pipeline with
minimal, yet effective skeleton data preprocessing. The presented framework can clas-
sify minor gait anomalies with high accuracy (state-of-the-art), can be applied to other
datasets through transfer learning, and has the potential to be integrated into a free-living

gait assessment framework for real-world applications.

Chapter 4. Gait anomaly recognition 48

4.1 Skeleton-based gait anomaly recognition (SGAR)

Skeleton-based gait anomaly recognition (SGAR) methods have become popular due
to the low cost and data collection convenience of markerless modalities such as Kinect.
Furthermore, skeleton-based features mimic real, interpretable human physiological traits.
The majority of SGAR studies have been focused on handcrafted features and machine
learning-based approaches. In this section, we briefly review some of the gait anomaly
recognition methods that employ skeleton-based features and machine learning tools.

In [94], the authors employed the idea of joint motion history (JMH) to capture spa-
tiotemporal motion information. Skeletons are normalized, a sliding window collects the
normalized skeletons, which are transformed into a volume that is divided into voxels that
capture the history of joint coordinates. The acquired JMH goes through dimensionality
reduction, and abnormal gaits are detected by matching with a set of key pose templates.
Meng et al.. [3] used the distance between 20 joints in the skeleton and employed a sliding
window technique to capture temporal information. A random forest model was hired to
detect abnormal gaits from the extracted spatiotemporal features. Paiement et al. [92]
employed skeleton normalization for preprocessing and diffusion maps for dimensionality
reduction. They built a statistical model of normal gait, and new observations were tested
against the learned model of normal gait. In [2], the authors used a set of lower body
limb angles to describe each pose. The resulting feature vectors were concatenated over
every gait cycle, then transformed into a set of codewords using K-Means clustering. The
normal gait model was built using Hidden Markov model, and a threshold based on the
log-likelihood of such a model was used to recognize abnormal gaits. In [93], the authors
build two covariance matrices, one for the mutual distance of joints in a skeleton, and

another for the velocity of each joint. A custom covariance-based metric and K-nearest

Chapter 4. Gait anomaly recognition 49

classifier were used for abnormal gait detection. Khokhlova et al. [5] created a set of fea-
tures based on low limb flexion angles and designed a long short-term memory (LSTM)
network for classification. In [95], authors designed an autoencoder with recurrent layers
for feature extraction and performed a series of classification experiments with multiple
classifiers using the features from the encoder.

Among the proposed methods for SGAR, our work is closest to the approaches
presented in [5], [95] and [4]. All of these studies employ deep learning-based techniques
for the classification of an anomaly in a multi-class framework. A multi-class framework
is unlike the traditional approaches in this field, where anomaly recognition is treated
as either a one-class or a two-class problem. In [5], [95] and [4], an RNN-based network
is designed for modeling and classification of gait abnormalities. Besides, the authors
in [95] perform their experiments with subject cross-over between the training and test
data. Finally, all of these studies evaluate their proposed model on one dataset only and
have not demonstrated versatility for multiple scenarios.

Due to the dynamic nature of gait, sequential-based models such as Hidden Markov
Model (HMM) and RNN-based networks such as LSTM and Gated Recurrent Units
(GRU) have been the focus of many studies for modeling human gait [2,5,95-99]. In
this chapter, we will focus on deep learning-based frameworks for a multi-class SGAR.
To provide a fair evaluation, we design multiple deep learning networks for modeling and
classification of spatiotemporal patterns of different normal/pathological gait categories.
Thereby, before going into more detail about the proposed methodologies, we provide

some background on deep learning and define major relevant concepts in this area.

Chapter 4. Gait anomaly recognition 50

H 41 ¥ =iz xiwi)
w, _ Y:output
—)y L .
f:activation function

5

FIGURE 4.1: An illustration of a neuron (perceptron), the building blocks of a deep learning
model. The activation function acts on the weighted sum of the inputs to create the output.

4.2 Some background on deep learning

Deep learning is a sub-field of machine learning, which itself is a sub-field of artificial in-
telligence. Artificial intelligence is a set of techniques that enables a machine to mimic in-
telligent human behavior. According to Tom Mitchell, a machine learning pioneer, in ma-
chine learning, the goal is to design computer algorithms that can improve automatically
through experience. Traditional machine learning algorithms require hand-engineered
features for prediction and classification. Inspired by the structure of the human brain,
deep learning models extract underlying features directly from data to carry on a cer-
tain task. After the surge of modern deep learning models in 2006 [100], deep learning
has revolutionized various fields from computer vision and robotics to natural language
processing, finance, and medicine.

Deep learning models consist of multiple layers of neurons (perceptrons). Figure 4.1
shows a neuron. Each of the x;s in this figure represents one input that has its weight
of w;. The weighted summation of the input is calculated as is described in this figure
and passed to an activation function that produces the output. In general, each neuron
also has a bias term that is added to the other weighted inputs and shifts the activation

function to the left or right. We can write the equation in Figure 4.1 in a vectorized

Chapter 4. Gait anomaly recognition 51

Input Hidden layer Output

FIGURE 4.2: A simple neural neural network that consists of one dense hidden layer. The
hidden layer is called a dense or fully-connected layer because all the inputs are fully/densely
connected to all the outputs.

format. By adding the bias term, the output of a neuron can be written as follows

j=f(b+X"W) (4.1)

where f is the activation function, b is a vector of biases, X7 is the vector of inputs,
W is the matrix of weights, and 7 is the vector of outputs. For a multi-layer network,
this equation describes the relationship between the inputs and outputs of each layer. A
neural network has at least one hidden layer. A simple neural network is shown in Figure
4.2 with two inputs, two outputs, and a single hidden layer that consists of three neurons.
This figure is an example of a dense or fully-connected network since all the inputs are
densely connected with all the outputs.

The outputs of each layer of a neural network are the multiplication of its inputs
(or the output of the previous layer) and its weights. Thereby, each layer of a neural
network is a linear function on its own. A neural network requires non-linearity for mod-
eling highly complex and nonlinear functions, and activation functions are responsible
for introducing non-linearity to the model. Thereby, activation functions are generally
nonlinear functions. There are various types of activation functions. For a long time, sig-

moid function has been the most commonly used activation function. However, sigmoid

Chapter 4. Gait anomaly recognition 52

outputs the same value for a large range of positive and negative inputs (+1 and —1,
respectively). This makes training difficult, as the activation function can saturate and
the model stops to learn after some time. In recent years, rectified linear unit or ReLLU
has become the most widely used activation function. RELU is the default activation
function in dense and convolutional layers. RELU is partly inspired by a neurological
analogy that the neurons in our brain are either inactive or activated. The ReLU func-
tion is a piece-wise linear function that will produce an output of zero for a negative input

and outputs the same input otherwise
ReLU(x) = max(0, z) (4.2)

Therefore, if the input of a neuron is beyond some threshold, the neuron acts like an
identity function. ReLLU and other piece-wise activation functions preserve many proper-
ties of linear functions such as easy optimization by gradient-based algorithms. Thereby,
training with ReLLU is fast and fairly easy.

To approximate a proper function, a deep neural network needs to learn the right
weights and biases. This is done through a learning phase, in which a deep model ap-
proximates a function to predict or classify, such that the cost of incorrect predictions is
minimized. For each input, a loss or cost function tells the difference between the actual
value or label of that input and the prediction of the model for that input. An empirical

loss can be written as the average of losses over each training example

TOV) = =3 L0 W),) (4.3

where W is the weight matrix, x; shows the input for training example i, and y; shows
the true value or label of input example x;. The goal is to find W*, the set of values

for weight matrix W, such that W* = argminy, J(W). There are different types of

Chapter 4. Gait anomaly recognition 53

loss functions, such as mean square error (regression), hinge loss, cross-entropy, and
KL-divergence (classification). We use the latter two loss functions in our problem and
provide more detail about them later in this chapter.

Once a loss function is formulated, the weights of a neural network are initialized
randomly. The goal is to find a set of weights that minimize the loss function. These
weights are determined through an iterative procedure until some conditions are satisfied.

In each iteration, gradients of the loss function with respect to all the weights (and biases)

0T (W)
ow -

are computed, The gradient of the loss function with respect to each weight tells us
how sensitive the loss function is to the change in that weight. Each gradient has a value,
which shows how important each weight is, as well as a direction, which tells us in what
direction the cost should move. The algorithm that is used for computing the gradient
of the loss function with respect to each of the weights is called backpropagation.

Backpropagation uses the chain rule to compute the gradients. The gradients are used

for updates to the weights according to the following

W= W — 773—{/17/ (4.4)

where 7 represents learning rate that determines the step size in the direction of the

gradient, toward the minimum of the loss function at each iteration !

. Computing the
gradients of the loss function and weight update according to Equation 4.4 is done in
each iteration until a local minimum is reached. This optimization algorithm is known
as gradient descent and is widely employed in finding optimum parameters in deep
learning models. Apart from gradient descent and its derivatives (stochastic gradient

descent and mini-batch gradient descent), deep learning has seen a surge of numerous

optimizers over the last years. Many of these optimizers, such as Adagrad, Adadelta,

! Biases are updated according to an equation that looks the same as Equation 4.4, the only difference

is that gradient of loss with respect to bias is used instead: b — b — n%—‘z. From now on, everywhere you

see a weight update equation, consider the same equation for bias update by substituting g—‘{, with %—*Z.

Chapter 4. Gait anomaly recognition 54

RMSProp, and Adam are based on adaptive learning-based approaches. Later, we will
describe each of the optimizers that are utilized in designing any of the deep learning

models in this chapter.

4.2.1 Overfitting

One of the problems that happen during the training phase of a deep learning model is
overfitting. Overfitting occurs when the training loss of the network keeps improving and
reaching a very small value, but when we evaluate the network on unseen data, it shows a
large loss. This occurs because the network is overly trained on the training data. At this
point, the network stops learning features that could be generalized and only memorizes
the training data.

Deep learning models are notorious for their large number of parameters. The com-
plexity of deep networks enables them to model complex functions. The high complexity
can also result in overfitting because deep models learn the patterns from data. More
parameters in a network require more data for training. In particular, this can be prob-
lematic when the function that the network is modeling is too complex. One way to
prevent overfitting is to reduce the complexity of the model. We can reduce complexity
by reducing the number of parameters, such as the number of layers or the number of
neurons in each layer. Adding a penalty to the loss function is another way to reduce the
complexity of a deep model.

With more data, models generally improve their performance. However, after some
point, the performance of classic machine learning models plateaus, while a deep learning
model keeps improving until it reaches its capacity of learning. More complex models have
a higher capacity of learning and require more data to learn generalizable patterns, or
they might overfit otherwise. Thereby, adding more data or creating more data through

data augmentation is another way to reduce overfitting in a deep learning morel.

Chapter 4. Gait anomaly recognition 55

Validation error curve

Error

FI1GURE 4.3: Illustration of early stopping. The validation error starts increasing after some
point, while the training error keeps decreasing. With early stopping, model parameters at the
early stopping epoch are saved for evaluation on the test data.

There are other regularization techniques, such as dropout, early stopping, weight
decay, and activity regularization for reducing overfitting in a deep model. In the following
subsections, we will describe some of these methods that have been employed in our

models’ design.

4.2.1.1 Dropout to prevent overfitting

Dropout [101] works as a regularization technique in deep neural networks and helps
to prevent overfitting and reduce the generalization error. On each training iteration,
each node of the network, along with all its in-going and out-going connections, will be
eliminated with some probability. At each iteration, this process will generate a smaller
network, preventing each node from overreliance on the nodes that are connected to it. In
practice, dropout will result in a structure with smaller weights, acting like an adaptive

L2 regularization [102].

4.2.1.2 Early stopping to prevent overfitting

Early stopping [103] is another regularization technique to avoid overfitting. Figure 4.3

provides an illustration of early stopping. As we observe in this figure, as the training

Chapter 4. Gait anomaly recognition 56

Skeleton Feature Data Bidirectional-
joints extraction [®| augmentation [LSTM

FIGURE 4.4: Pipeline for gait anomaly recognition with handcrafted features and bidirectional
LSTM

epoch 2 increases, the training error decreases. However, by looking at the validation
error 3, we see that the error decreases to some point and then start increasing. This
behavior is a sign of overfitting. The network is just memorizing the training data after
the early stopping point, thereby cannot be generalized to the validation data. In early
stopping, the training stops at the early stopping epoch based on a criterion *, and the
parameters of the model are saved for later evaluation on test data. Early stopping
has a hyperparameter that is called patience. Patience is the number of epochs that
the training continues after the early stopping epoch. The validation error curve is not
always as simple as the one in Figure 4.3. Sometimes, the validation starts increasing
and after some point starts decreasing again and reaches a new minimum, and sometimes
this increase and decrease in the validation error curve happens more than once. We use

patience for such scenarios because we always want to save the model that reaches its

high performance on the validation data.

4.3 SGAR with handcrafted features

Figure 4.4 describes the pipeline for the gait anomaly recognition using handcrafted fea-
tures from the skeleton data. The inputs to the presented SGAR system are sequences

of skeleton joints J = [Jy, Ja, ..., J¢|, where f is the number of frames in a sequence and

Ji = [wn, yps i, € WY (4.5)

2An epoch is the single pass of all the training data in a neural network.

3The network does not use validation data for training. Validation data is used for model evaluation
during the training phase.

4like the epoch at which validation error reaches minimum or validation accuracy reaches its maximum.

Chapter 4. Gait anomaly recognition 57

0: Spine base 13: Left knee

1: Mid-Spine 14: Left ankle

2: Neck 15: Left foot

3: Head 16: Right hip

4: Left shoulder 17: Right knee

5: Left elbow 18: Right ankle

6: Left wrist 19: Right foot

7: Left hand 20: Spine shoulder

17 413 8: Right shoulder 21: Left hand tip

T 9: Right elbow 22: Left thump

10: Right wrist ~ 23: Right hand tip
11: Right hand 24: Right thumb

} 12: Left hip
18 14
19 \

15

FIGURE 4.5: Skeleton joints for Kinect v2

with (zk, Yk, 2x) representing the kth joint coordinates in frame i. We use skeleton joints
generated by a Kinect camera as the input. Figure 4.5 shows joint information that is
generated by a Kinect camera. Features in each frame are extracted from skeleton joints.
In the next step, data augmentation is performed on the designed features. Finally, the
output of the augmented features is fed into a bidirectional LSTM network for modeling
the gait patterns and classification. In the following subsection, we describe each building

block of the presented pipeline in more detail.

4.3.1 Feature extraction

Previous studies have shown that lower-body limbs can provide reliable information for
gait representation and detecting anomalous gaits for various types of gait disorders
[2,5,104-106]. Following this direction, we propose a set of attributes based on lower body
joints. Figure 4.6 shows the proposed feature vector. As we can see in this figure, the
proposed feature vector consists of six 3-dimensional (3D) vectors and four angles [2,25].

Therefore, each frame is represented by a concatenated vector of these ten features,

Chapter 4. Gait anomaly recognition 58

V1: Vector from mid- V6: Vector from right

spine to left hip knee to right ankle
V2: Vector from left ©1: Angle between left
hip to left knee hip and left thigh

Vagvi V3: Vector from left ~ ©2: Angle between left
knee to left ankle thigh and left ankle

vs [63 O17 5 V4: Vector from mid- ©3: Angle between right

spine to right hip hip and right thigh

o4 02 V5: Vector from right ~ ©2: Angle between right
hip to right knee thigh and right ankle

V6 V3

FIGURE 4.6: Representation of the handcrafted features for skeleton-based gait anomaly recog-
nition. There are six 3-dimensional (3D) vectors that are shown in red and 4 angles that are
depicted in green.

creating a feature vector of 22 dimensions. Each of the 3-dimensional vectors presents a
limb vector in the lower body and is the same as part of the vector-based feature vector
that we designed for gait recognition with flash lidar data (refer to Chapter 2.1.1) [80].
Previous studies have shown that the joints in the foot are prone to noisy measurements
[107,108], and our anecdotal experiments support this conclusion. Therefore, we do not

consider the angles and 3-dimensional vectors in the foot area.

4.3.2 Data augmentation

The main superiority of deep learning comes from its ability to learn nonlinear patterns
in a high-dimensional space. However, to design deep models that can extract such high-
level features and can generalize well to unseen data, we need a large number of data
for training. While acquiring a considerable number of data might not be an issue for
applications in computer vision and natural language processing, for some tasks, such
as gait anomaly recognition, it is challenging. This difficulty is mainly due to the high
cost of data collection. Most of the skeleton-based datasets for anomaly classification

are not publicly available due to confidentiality concerns for patients. There are only a

Chapter 4. Gait anomaly recognition 59

-0.07 T T T

i ;"
-0.08 [E
',/“.. . “/ 4/
* % ° r 4
-0.09 . . g & ”, 7
3 .. {,) CNS
0.1 * \) °
5 3 ° ‘ '. .
O o011l ° L] L] L] L] .
T . . o . :
(&)
o -012f * ®
- . . . °
L]

< oa3f * . o . LI
=) . ° * M .

0.14fe e .-' . . i

. L] L
L] L]
0.15f ~ . ® _
155 s
-0.16 “out® -
0.17 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Frame number

FI1Gure 4.7: Illustration of data augmentation using window warping for a sample joint
coordinate sequence. The small plot on the top right of the figure shows time-ordered
samples of the values in the red window that have been selected uniformly at random.

few publicly available datasets that do not contain a large collection of observations and
include anomalies that are simulated by healthy subjects. Under such conditions, data
augmentation can be a valuable tool for improving the performance of a deep model.

In computer vision, multiple data augmentation techniques such as rescaling, flipping,
cropping, and rotating have been purposed and successfully employed to improve the
performance of a model in a variety of different tasks. Unlike computer vision studies,
the application of augmentation has been limited in time series-based problems with deep
learning. Many augmentation methods in computer vision cannot be directly employed
on time-series datasets. Furthermore, with time-series data, data augmentation is not
trivial, as it heavily depends on the nature of the dataset and the context of the problem.
We can look at SGAR as a multivariate time-series classification problem, where each time
sequence represents joint coordinates or a set of feature values through time. However, due
to the complex relationships between different features or skeleton joints during motion,
data augmentation is not trivial for such type of problems. Besides, for datasets with
high inter-class similarity, data augmentation becomes even more challenging.

In this study, we use sequences of features that are computed using the lower-body

joints coordinates. Here, we perform data augmentation in two steps. First, we divide all

Chapter 4. Gait anomaly recognition 60

he
b
/ Jan J o X¢:Input
Ce-a ® Lt Cq: Cell state
I h;: Output
)
Lo J{{Le] [eane])i] < |
he—q | | | | > h,
Xe

FIGURE 4.8: Structure of an LSTM cell. Each block with ¢ shows a sigmoid function.
By creating a value between 0 and 1, sigmoid functions act as the gating function,
controlling the flow of information. h; and C; are hidden and cell states that are passed
to the next LSTM cell that also takes X;y; (input at time step ¢ + 1) as the input.
The building blocks of an LSTM are shown by three blue blocks inside the LSTM cell.
From Left to right, these blocks are: forget gate, input gate, and output gate.

the available sequences into sequences of smaller lengths, where all the resulting sequences
will have the same length of L (there are L frames in each resulting sequence) [109].
The next step of data augmentation involves window warping [110]. From the original
sequences, we select sequences of the same length of M where M > L. Then we down-
sample uniformly to remove extra frames and generate sequences of the same length of L.
Figure 4.7 illustrates window warping for a sample of joint coordinate sequence. We can
determine L based on the condition under which the data was collected. For example, we
can use the reliable range of Kinect camera and the average number of frames that can be
collected when a subject is walking in front of the camera in that range. In general, both
L and M can be determined by experimentation. Next, we will provide some background

on LSTM networks and describe the architecture of the designed LSTM model.

4.3.3 Bidirectional LSTM

In this subsection, we will describe the structure of the designed bidirectional LSTM for
modeling and classifying the gait patterns. But, before going into more detail about the

network architecture, we will provide a brief background on LSTMs. Also, we explain the

Chapter 4. Gait anomaly recognition 61

stochastic weight averaging that is used in the design of the network to reduce variance

and generalization error.

4.3.3.1 Some backgrounds on LSTM

LSTM is a specific type of recurrent neural network (RNN) with memory blocks and a
gated structure. While RNNs can work with problems that involve short-term dependen-
cies, they fail to capture the context for problems with longer sequences. A neural network
uses gradients of a cost function to update the weights and biases in the network such that
the desired cost function of the network is minimized. The gradients of the cost func-
tion are computed using the backpropagation algorithm [111]. In RNNs, the gradient
solution backpropagates through time [112]. As the gap between relevant information
in a sequence increases, the gradient shrinks that disables the network from learning.
The shrinkage of gradients during backpropagation is called the vanishing gradient prob-
lem [113] and is the reason behind the failure of RNNs with long-term dependencies. The
LSTM [114] was introduced to address the problem of RNNs with long sequences. The
gated structure of LSTMs regulates the flow of information, helping the network to forget
the unnecessary information and retain what is essential.

Figure 4.8 shows the structure of one LSTM cell. Like any RNN, each LSTM layer
is a chain of repeating LSTM cells, where the cell state and output at time step t will
be fed to the next LSTM cell at the time step of t + 1. Each LSTM cell has three gates
that are shown by three blue blocks in Figure 4.8. Given zy, ..., 241, Xy, Tyi1, ..., 7 that
is a sequence of length 7', first it is decided what information to forget through a sigmoid

function in the forget gate
fe=o(z,U" + hyy W)
1

o(p) = a+ exp (—p)

Chapter 4. Gait anomaly recognition 62

where U/ and W/ are the weight matrices of the forget gate. The input gate decides

which information to update

it = O'(J?tUi -+ ht,lwi) (47)

with U? and W* defining the weight matrices of the input gate. Finally, the output gate

provides activation to the LSTM cell at time step t + 1

Oy = O'(I'tUO + ht_lwo) (48)

where U° and W are the weight matrices of the output gate. The candidate cell state
ét, the cell state C, and the output h; can be described by the following formulas

C, = tanh(z,U? + hy_1W?Y)
Ct = O'(ft * Ct—l + l't * ét) (49)

hy = tanh(Cy) * o,

where * shows a point-wise operation. In an LSTM cell, sigmoid function (o) is called the
recurrent activation and tangent hyperbolic, tanh(p) = (1 — exp (—2p))/(1 + exp (—2p)),
is called activation. The role of an activation function is to introduce non-linearity to the
networks that is required for modelling complex non-linear processes.

LSTMs can detect patterns in sequence-based data with their gated structure that
removes the unnecessary information and retains the relevant context. The bidirectional
LSTM is a specific variety of LSTM networks in which each sequence is presented in both
forward and backward order. Unlike unidirectional LSTMs that only look at the past con-
text, a bidirectional LSTM can utilize both past and future contexts [115]. Bidirectional
LSTMs have shown superior performance compared to their unidirectional counterparts

in a variety of sequence-based problems [116-118].

Chapter 4. Gait anomaly recognition 63

4.3.3.2 Stochastic weight averaging

The loss landscape of many deep learning models contains various sharp minima. These
minima are often caused by a combination of noisy/anomalous training data and the
structure of the model. As such, small changes in the input can result in a very different
solution, causing high variance. With smaller datasets, the effect of changes in the input
on the prediction of the model can be more dramatic. In a small dataset, the variance
in the input can be high, but the lack of enough data avoids the network to discover the
hidden relationships between input and outputs.

To achieve low generalization error, it is desirable to use an algorithm that can
avoid sharp minima [119]. While prevalent gradient-based optimization algorithms for
training deep learning models are flexible in exploring the solution space, they are not
capable of avoiding/detecting such sharp minima. Designing an ensemble model is a
solution to mitigate the effect of such minima, which ultimately reduces the variance of
a deep learning model. Besides, ensemble models can also improve the performance of
the model, resulting in higher accuracy. However, training a deep learning ensemble is
time-consuming and memory-demanding. Stochastic weight averaging (SWA) [120] offers
a solution to the computational inefficiency of deep learning ensembles.

SWA takes multiple snapshots of the model during the training phase and computes
an average over the weights of the model in each of the saved snapshots. The aggregated

weight average is updated according to the following equation:

WswA X Nmodels + W
WewA ot (4.10)
Nmodels +]-

where w is the network weights at the epoch that SWA is initialized, and n,,04e5 is the
number of models at the end of each epoch in which wgy 4 is updated. If ¢ defines the
length of the cycle for a cyclic learning rate (¢ = 1 for constant learning rate), wsy 4 gets

an update at the end of epoch for which mod(i,c) = 0 , where i is the epoch number.

Chapter 4. Gait anomaly recognition 64

=—=Training loss
\ — =Test loss

FIGURE 4.9: Conceptual visualization of Flat and Sharp Minima. The Y-axis repre-

sents values of the loss function and the X-axis shows the variables (parameters) [1]. If

the learning algorithm lands on a solution in the weight space that corresponds with a

sharp minimum in the training loss surface, the test loss at the same point might be a

large value. On the other hand, finding a solution in the flat region of training loss will
most likely result in a small value for the test loss function.

The goal of a deep learning model is to find a point in the high-dimensional weight
space such that the loss function acquires a low value both on training and test set. To
achieve this goal, the learning algorithm of a deep learning model travels the weight space
during the training phase. The main idea is that train and test loss surfaces are similar
but not the same. Imagine the learning algorithm has found a solution in the weight
space that corresponds with a sharp minimum of the training loss surface. Then, for
a slightly shifted test loss surface, this solution might result in a big value for the test
loss. By averaging in the weight space, SWA leads stochastic gradient descent (SGD)
toward wide flat regions of the loss surface. So, a point that results in a low value in the
training loss surface also acquires a low value in the test loss surface, which corresponds
with a lower generalization error. Figure 4.9 shows simplified loss surfaces in 2D for a
sharp and flat minimum scenarios. By taking the average in the weight space, SWA
offers the benefits of an ensemble, such as low variance and higher accuracy, without
the computational overhead of traditional ensemble models that happen in the model
space [120]. Previous studies have demonstrated performance improvement with SWA in

different fields such as computer vision [120], language modelling [121], semi-supervised

Chapter 4. Gait anomaly recognition 65

TABLE 4.1: Description of the bidirectional LSTM model for gait anomaly recognition. Number
of units shows the number of units in each LSTM layer.

Hyperparameter | Value | Hyperparameter Value
Number of layers 2 SWA learning rate 0.01
Number of units 256 Epochs 110
Batch size 16 Optimizer SGD
Learning rate 0.1 Loss function Cross-entropy

learning [122], and Bayesian model averaging [123]. We implement SWA in the design of
the proposed bidirectional LSTM model to reduce the generalization error of the model

in predicting the class of anomalous gaits.

4.3.3.3 Description of the bidirectional LSTM architecture

Table 4.1 shows a description of the designed bidirectional model for gait anomaly recog-
nition. The model is trained with mini-batches of 16 samples. The inputs to the network
are all scaled in the (—1,1) range. Rescaling all the features to a certain range is essential
because each feature vector consists of angles and 3-dimensional vectors that have differ-
ent scales. For each feature v; € [ronin, "maz), Wwhere 7, and r,,,, represent the lower and
upper limit of the range of values that feature v; takes over all the training examples. In

general with [t,in, tmez] as the target range, each feature like v; is rescaled according to

Vi — M X (tmaz - tmzn) + tmzn (411>

Tmaz — Tmin

Here, [—1, 1] is the target range. Studies have shown that feature scaling can lead to faster
convergence and also avoids the network becoming stuck in local optima [124]. Each mini-
batch consists of sequences of the features that are drawn from lower body joints (refer

R3*22_ with a sequence length of

to subsection 4.3.1). Each sequence has a dimension of
L = 35, and 22 features per time step.

Each bidirectional LSTM layer has 256 neurons with a dropout of 50%. The network
is trained for 110 epochs, and SWA is initialized roughly in the last half of the epochs

(epoch = 61). To compensate for the class imbalance in this dataset, we use weighted

Chapter 4. Gait anomaly recognition 66

categorical cross-entropy as the loss function

M
Z wiy® log(he (@mk)) (4.12)

1 m=1

Mx

B
Il

where M is the number of training samples, K is the number of classes, y*, is the k’th
element of one-hot-encoded target label of example m, hy is the k’th element of the
prediction of neural network for example m, and w;, is the weight for class k. Here, we

define class weights according to the following formulation

maz(Uy_, Ni)
N;

(4.13)

w; =

where w; is the class weight for class ¢, N; is the number of samples in class i, and K is
the number of classes in the dataset. As we observe, the weights of each class depends on
the population of that class, as well as the population of the majority class. This way, the
least populated class gets the highest weight and the majority class gets the unit weight.
Thereby, to avoid a bias of the loss function toward more populated classes, we penalize
the miss-classification in classes with less samples with larger weights. To optimize the

loss function, we use mini-batch gradient descent

grev — gold . UVOJ(Qa x(i:“‘nb); y(iii‘i‘nb)) (414)

where 6 is the model’s parameters, 7 is the learning rate that determines the step-size
toward a (local) minimum at each iteration of the model’s parameters update, Vy.J is
the gradient of the loss function with respect to its parameters, and ny is the batch size.
Mini-batch gradient descent is a variation of gradient descent, where a subset of training
data is used to update the weights. Compared with batch gradient descent that uses all

the training data for each weight update, mini-batch gradient descent is computationally

Chapter 4. Gait anomaly recognition 67

efficient; however, it adds another hyperparameter to the model, which is the batch size.
In this dissertation, every time we employ the SGD (stochastic gradient descent)
as the optimizer, we are using mini-batch gradient descent with learning rate decay and

momentum. Learning rate decay is defined according to the following equation

1
Ir = lry, * , , (4.15)
1 + steration * decay

where [r;, is the initial learning rate and decay is the amount of weight decay at each
iteration. With learning decay, the learning rate is updated according to Equation 4.15
at the end of each epoch. Using learning rate decay can help in converging closer to the
minimum of the loss function compared with a fixed learning rate. A learning rate defines
how strongly we move in the direction of gradient descent at each mini-batch update.
Generally, we might afford to take larger steps in the beginning to accelerate training.
But, as we get closer to the minimum of the loss function, taking large steps might cause
overshoot or wander around the solution. On the other hand, if the learning rate decays
over time, as we get closer to the solution, the steps toward the solution become smaller.
This will land the model in the small neighborhood of the minimum (an area of lower
loss), helping the convergence of the model toward an acceptable accuracy [125].
Another parameter in stochastic gradient descent optimizer is momentum [111]. Mo-
mentum can be helpful in two ways: it can accelerate convergence and can lead to a
smoother convergence. Mini-batch gradient descent and gradient descent ® provide a
noisy weight update, since each time, we only use a subset of training data for weight
update. As a result, weight updates cause oscillations, and this will slow down the con-

vergence. Besides, the training loss function has a complex landscape with many narrow

5In gradient descent, parameters are updated with every training example

Chapter 4. Gait anomaly recognition 68

valleys and local minima, where loss varies differently in different directions ¢. To get
a solution that can be generalized well to unseen data, we need to avoid shallow local
minima. We also need to reach a flat minimum, such that a shift in the loss surface of
unseen data does not land the model on a large loss value 7. As gradient descent leads
the model toward a proper local minimum, the model might get trapped in shallow or
narrow valleys of the loss landscape as gradient values are not large enough to push the
model out of such local minima. Momentum adds a boosting term to the gradient descent
by taking an average over several (or few depending on the momentum coefficient) of the

previous gradient steps. Using momentum in gradient descent, the weight update rule

changes to

Wi— W — nyy
4.1

ve=PBria+(1— 5)%

where 7 is the learning rate as before, v is called velocity and vy = 0, and 8 € [0,1) is
called momentum coefficient. The equation that describes the update on the velocity is
an exponentially weighted average equation 8. The first term in this equation takes a
weighted average of the accumulated gradients in previous steps, while the second term
considers the weighted gradient at the current step. Equation 4.16 will reduce to standard
gradient descent for § = 0. By averaging over previous gradient steps with momentum,
the gradient will become smaller in those directions that standard gradient descent might
cause fluctuations. In the directions that gradient does not fluctuate, the average of

gradient values is still large. Given a proper value of momentum, gradient descent with

momentum can lead to a smoother and faster convergence toward a stable minimum. In

SWe are talking about a high dimensional space, where each dimension corresponds with one parameter
of the deep learning model. Not all parameters have the same effect on the loss function. For the same
amount of variation in different parameters, the loss function can change quite differently. In other words,
gradients of loss are different with respect to different parameters.

"Please refer to subsection 4.3.3.2

8This is called an exponentially weighted average equation because if we expand it, we see that at
each time step, the current gradient is multiplied by 1 — 3, but the previous gradients are weighted by
exponentially decaying values of 3.

Chapter 4. Gait anomaly recognition 69

TABLE 4.2: Summary of the MMGS dataset for SGAR. Min frames and max frames show the
minimum and maximum number of sequence frames in each class, respectively. Total frames
shows the total number of frames from all the sequences in each class.

Class min frames | max frames | Total frames
Normal 33 195 15726

Knee 41 216 19896
Padding 57 193 17180

general, § = 0.9 works well in many problems. We also use this value of momentum in

each case where we utilize the SGD optimizer.

4.3.4 MMGS dataset

For this study, we use the multi-modal gait symmetry database (MMGS). This dataset
was introduced in [5] by Khokhlova et al. MMGS contains three normal/pathological
gait classes, simulated by healthy subjects. The gait classes include normal gait, limping
gait that is simulated by wearing a 7-cm padding sole by each subject, and gait with knee
injury-related problems. The latter category can represent an after-fracture recovering
gait or a prosthesis-wearing gait and is simulated by asking subjects not to bend their
right knee during walking. There are 27 subjects, each performing each of the gait
categories between 5 to 7 times. The sequences in this dataset have different numbers of
frames, ranging from 33 to 216 frames. Thus, different subjects have sequences of different
lengths, and there exists class imbalance in this dataset. Table 4.2 summarizes the MMGS
dataset, presenting the minimum and the maximum number of sequence frames, as well
as the total number of frames in each class. As we observe from this table, the anomaly
related to the knee injury has the maximum total number of frames among all the classes.
We also see that normal class has the minimum number of total frames among the three
classes. The numbers in this table confirm the class imbalance in this dataset.

Among the publicly available skeleton datasets for normal/pathological gaits, this

dataset has the largest number of subjects. The large number of subjects in this dataset

Chapter 4. Gait anomaly recognition 70

and multiple records of the same walk results in high intra-class variations, which makes

classification challenging for this dataset.

4.3.5 Experimental results

Table 4.3 shows classification scores of SGAR using the proposed features with different
classifiers for the MMGS dataset. We use accuracy, precision, and recall (sensitivity)
for classification evaluation. As we observe, compared with SVM, classification accuracy
improves by almost 4% with the designed LSTM model. In Table 4.4, we present a com-
parison between the proposed feature vector and the work presented in [5] by Khokhlova
et al.. They present low limb flexion angles as the feature vectors for SGAR. The low
limb flexion angles in [5] is classified by an SVM with a polynomial kernel, a single bidi-
rectional LSTM, and an ensemble of five bidirectional LSTMs as is reported in Table
4.4. Considering the results in Tables 4.3 and 4.4, we observe that with the proposed
features, we acquired higher classification scores with Random Forest and SVM compared
with the low limbs flexion with SVM and LSTM. Even without data augmentation, the
proposed features can achieve better performance compared with both LSTM and ensem-
ble of LSTMs in [5]. Our results also confirm the effectiveness of data augmentation in
improving the performance of the LSTM model. With simple data augmentation, we can
improve the average classification accuracy by more than 4% compared with an ensemble
of LSTM networks in [5]. By comparing the minimum and maximum accuracy in the
last two rows of Table 4.4, we see data augmentation can reduce accuracy variation of
the model, resulting in a more robust model, as we expected.

In this study, we used the same subjects for testing as in the original study by
Khokhlova et al. [5]. Out of 27 subjects, 8 of them were selected for testing and the
rest for training and validation. From the remaining subjects, they used 5 subjects for
validation and the rest for training. As a part of our experiments, we also investigated

the effect of using different numbers of subjects for validation. Figure 4.10 shows average

Chapter 4. Gait anomaly recognition 71

TABLE 4.3: Average accuracy, precision, and recall (sensitivity) of gait anomaly recognition for
the MMGS dataset using the proposed feature vector with five different classifiers. The results
with LSTM is with data augmentation.

Model Accuracy Precision Recall/sensitivity
KNN (N=5) 62.89 62.29 63.99
Nailve Bayes 70.20 69.63 69.73
Random Forest 79.33 79.21 79.37
SVM 81.87 81.22 81.80
LSTM 85.63 85.14 85.33

TABLE 4.4: Average accuracy, precision, and recall (sensitivity) of gait anomaly recognition

for the MMGS dataset with the proposed feature vector and the low limbs flexion angles in [5].

The last two rows, labeled by *x, show the results with our proposed feature and the designed
bidirectional LSTM network. NA stands for no augmentation.

Model Accuracy Min accuracy Max accuracy
[5] SVM 77.6 - -
[5] LSTM 7 71 94
[5] LSTM ensemble 82 75 91
LSTM* (NA) 83.67 71.54 89.89
LSTM** 85.63 76 91

classification accuracy as a function of number of subjects for validation over the range
of [3,7] subjects. For the tested range of [3,7] subjects for validation, the average score
doesn’t change dramatically. However, the standard deviation of the average accuracy
varies significantly. When we use 5 subjects for validation, the standard deviation of the
scores over 30 runs of the network is the lowest, and for 6 subjects, the standard deviation
reaches its highest value. We also observe that for 4 subjects, the average accuracy is the
highest, while the standard deviation of the scores is slightly higher than the 5 subjects
scenario. The reported results in Tables 4.3 and 4.4 shows the average classification scores
with Ngypjects = 4 for validation.

As we mentioned earlier, in the original study [5], the authors used two different sets
of subjects for validation and training. While in gait anomaly recognition, it is essen-
tial to test on the subjects that the model was not trained on, using different subjects
for training and validation is not required. Using data from more subjects for training
can be beneficial, as the network will see a more diverse set of patterns per class during

the training phase. Ultimately, with limited data, this can improve the generalization

Chapter 4. Gait anomaly recognition 72

95 T T T

DO

Accuracy[%]

60~

55 1 1 1 1 1
3 4 5 6 7

Number of subjectsfor validation

FIGURE 4.10: Effect of the number of subjects for validation on the average classifica-
tion accuracy in the MMGS dataset.

95 T T T T

o] _

0
a1
T
L

1

Accuracy[%]
3
T

~
al
T

n0r 1

65 1 1 1 1 1 1 1 1 1
10 15 20 25 30 35 40 45 50
Per centage of training data for validation [%]

FIGURE 4.11: Percentage of training data for validation, based on the non-subject-
based train-validation split for the MMGS dataset.

error of the network. Using a non-subject-based train-validation split criterion, we ob-
serve an increase in the classification scores. Figure 4.11 shows average classification
accuracy using a non-subject-based train-validation split criterion. We computed the
average classification accuracy over the range of [10%, 50%] of the training data used for
validation. With a non-subject-based criterion, we acquired an accuracy of 87.97% for
three classes of normal/pathological gaits, using 15% of the training data for validation.
This is an improvement of 2.34% over the best result that we achieved with the subject-
based train-validation split and 7.97% improvement over the LSTM ensemble. Besides,

we could improve the standard deviation of the network accuracy over multiple runs

Chapter 4. Gait anomaly recognition 73

(here 30 iterations) from 3.18% in the subject-based train-validation split to 1.88% for
the non-subject-based train-validation split, that shows a more robust model in the latter
case. As we mentioned earlier, when we utilize a subject-based train-validation split, we
get the highest classification accuracy with 4 subjects for validation. Using 4 subjects
for validation roughly corresponds with using 15% of the training data for validation in
the non-subject-based train-validation split. We also observe that we acquire the highest
classification accuracy with non-subject-based train-validation split when we use 15% of
the training data for validation. These results suggest that for the MMGS dataset with
the subject-based train-validation split, using 4 subjects for validation might be a better

choice compared with the 5 subjects for validation that was originally suggested in [5].

4.4 SGAR with preprocessed skeleton joints

In the previous section, we presented a model for SGAR that was based on a set of
handcrafted features. We designed an LSTM model for detecting and classifying the
embedded patterns in different normal /pathological gait classes. We performed our ex-
periments on the MMGS dataset, which includes sequences from 27 subjects with three
classes of normal/pathological gaits. Relevant feature representation plays a pivotal role
in any classification problem. Before the emergence of deep learning, feature descriptors
in SGAR were mostly handcrafted. Such features are commonly learned through an un-
supervised process. Handcrafted features can perform well in some applications, as they
require domain knowledge. However, dismissing class information in the design process
can also result in features that are domain-specific and cannot be generalized well. In
contrast with the handcrafted features, deep learning models extract relevant features by
considering class information. As a result, the extracted features are both pertinent and

discriminatory.

Chapter 4. Gait anomaly recognition 74

s
Data Fingers and Mid-torso
Skeleton i s
oirts augmentation [mid-shoulder =1 joint centering model
joint removal
N

FIGURE 4.12: Pipeline for skeleton-based gait anomaly recognition, using minimally

preprocessed 3D skeleton joints information. The knowledge of the trained model is

then transferred to initialize similar networks for modeling of gait patterns in other
datasets with different types of gait anomalies.

In general, in many classification problems, the input data exist in a high dimensional
space. Traditional machine learning classifiers are not always proficient in learning mean-
ingful features from high-dimensional inputs. With a feature representation, we create a
set of relevant features in a low-dimensional space, such that a classifier can successfully
distinguish between different classes. Given enough input samples, a well-designed deep
learning model is capable of learning latent features embedded in the high-dimensional
input data. Furthermore, studies have shown that given enough data, the learned features
can be successfully transferred to relevant tasks [126].

Here, we present end-to-end feed-forward deep learning models for modeling and
classification of spatiotemporal patterns of gait anomaly using minimally preprocessed
skeleton data. Figure 4.12 describes the workflow of the presented gait anomaly recog-
nition methodology. It starts with data augmentation. In the next step, a preprocessing
procedure is performed that consists of removing certain joints and mid-torso joint cen-
tering. As can be seen from this figure, we remove fingers and mid-shoulder joints that
are generally noisy. For mid-torso centering, we centralize the skeleton with respect to
the mid-torso joint. This is accomplished by subtracting the coordinates of the mid-torso
joint from the coordinates of each skeleton joint. Finally, we provide the resulting input
to a deep learning model for gait anomaly classification. Besides, the trained models will
be evaluated on other datasets through transfer learning. In the following subsections,

we describe each of the steps in the presented pipeline.

Chapter 4. Gait anomaly recognition 75

-0.07 T T T T g
e e
0.08 o, I I
- g o .ﬂ
v.. » L] . bl
0.09 A s o ° % d, b
N % d, '0. °
0.1 o o
< o ° D ° S
| o 0 - o |
o L]
0 -0.121 ’ 3 B
= o . o b
-g 0134 © . . o .
] - . S . .
014fe .. .o . ° 4
L] L]
L] m J L]
0.15 5 . ° R
o »
-0.16 - s’ g
017 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Frame number

FIGURE 4.13: Data augmentation using the temporal moving mean for a sample joint
coordinate sequence. Each value in the small plot on the top right of the figure shows
the average of values within one of the red windows.

4.4.1 Data augmentation

Data augmentation is performed on the training data in three steps. In the first step,
we use a temporal moving mean to compute the mean of each joint coordinate over a
temporal window. This augmentation method is inspired by the local averaging in the
spectral space in [127]. We compute the temporal moving mean over consecutive windows

with no overlap. The resulting sequence can be presented by the following equation

s = il Hi =

| =

Z P (4.17)

where p; is the mean over the ith temporal window, M is the total number of non-
overlapping temporal windows in the original sequence, and k is the length of the tem-
poral window that can be determined based on experimentation. p represents the joint
coordinate in one of the x, y, or z directions, and j = 1 and j = k mark the first and last
element inside the ith moving window. By sorting the mean over each window in a timely
order, we create a new sequence. Figure 4.13 illustrates data augmentation through tem-
poral moving mean. Each red window in this figure shows one of the instances of the

moving window. As can be seen, there is no overlap between consecutive instances of the

Chapter 4. Gait anomaly recognition 76

moving mean. We can see the newly created sequence in a small box at the top right
corner of this figure. The next two steps of data augmentation are the same as what was
described in subsection 4.3.2 for handcrafted features, except for the length of sequences.
Here, all the sequences have the same length of 50 frames. This length has been selected
following the same criterion as in [95]. To select the proper length, we use the approxi-
mate number of frames that can be collected in the reliable range of Kinect V2 when a
subject walks in front of the sensor. Together, these three steps of data augmentation

generate more data that can be used for training the deep learning models.

4.4.2 Preprocessing

In the preprocessing stage, following [3], we first remove all the finger joints along with
the mid-shoulder spine joint from each skeleton, as they are noisy and do not offer useful
information for detecting anomalies. The initial 25 joints of a Kinect skeleton is then
reduced to 20 joints. Next, we translate the coordinates of each remaining joint by
centralizing the skeleton with respect to the mid-torso joint. For a Kinect sequence with
f frames, the translated 3-dimensional coordinates of the joints in frame ¢ is represented

by the following vectorized format

Ji = [zk = Tty Yk — Ymt, fk — th]zo:l € éRSN (418)

where (g, Yk, zx) and (T, Yme, Zme) Tepresent the joint coordinates of each of the remain-
ing joints and the mid-torso joint coordinate in frame i, respectively. We will call the
resulting preprocessed joints, selected normalized joints. Finally, in order to have a
model that can effectively learn the patterns in the input skeleton sequences, each fea-
ture (here each coordinate of the selected normalized skeleton joints) is rescaled into the

[—1, 1] range as was described in Equation 4.11.

Chapter 4. Gait anomaly recognition 7

—_—

Input feature

—

%_J

Kernel size Time

FIGURE 4.14: TIllustration of how a one-dimensional convolutional kernel works, using an ar-
bitrary input feature. In this figure, the kernel size is 3 and the input has 6 features. A
1D-convolutional kernel only moves in the direction of time (here from left to right).

4.4.3 Description of the models

We present end-to-end feed-forward deep learning models for modeling and classification
of normal /pathological gait patterns. In particular, we compare the performance of three
types of deep learning models: a fully convolutional network (FCN), a long short term
memory network (LSTM), and a CNN-LSTM network. LSTM and one-dimensional CNN
layers are principal parts of the presented models. We already described the mechanism
behind a vanilla LSTM network. Before going into more detail about the architecture of

the models, we will provide some background on one-dimensional CNN networks.

4.4.3.1 Some background on one-dimensional CNNs

During the last decade, convolutional neural networks have become the state-of-the-art in
areas such as computer vision [128], natural language processing (NLP) [129,130], image
and video processing and analysis [131,132], genomics [133], clinical data classification
[134,135], and finance [136]. Compared with their fully connected counterparts, CNN-
based networks have fewer parameters. Furthermore, they are specialized in learning
spatial features, with deeper layers