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Abstract

The study of human locomotion has been bolstered by automated gait analysis in the

computer vision community. For years, gait analysis has been mostly limited to academic

labs. The emergence of new modalities and the development of computational hardware

that are essential for big data analysis has shifted gait analysis toward more practical

methodologies. In recent years, gait analysis has emerged as a leading remote identifica-

tion method for application in areas such as forensic investigation, surveillance, security,

and medical fields.

Among the vision-based gait analysis methods, skeleton-based approaches are amenable

for reliable feature compaction and fast processing. Model-based gait recognition meth-

ods that exploit features from a fitted model, like a skeleton, are recognized for their view

and scale-invariant properties. This thesis investigates two problems associated with gait

analysis: gait recognition and classification of gait abnormalities.

In the first part of this thesis, we focus on the application of flash lidar imagery

to the gait recognition problem. Among available modalities, the emergence of depth

cameras, such as Kinect and lidar that provide range (depth) and intensity simultaneously,

has alleviated the computationally expensive model fitting that plays a critical role in

many gait recognition studies. The current state-of-the-art model-based gait recognition

methods take advantage of the high-quality data provided by Kinect and motion capture

(Mocap) systems, which are mostly limited to controlled lab environments. Unlike Kinect

and Mocap, the lidar camera is suitable for real-world applications; however, the data

collected by lidar are noisy and have a lower associated resolution.

In this thesis, we utilize the data collected by a single flash lidar camera for the task of

gait recognition. We seek to address the gait identification problem when a considerable

number of feature vectors contain faulty and missing values. In particular, we will present

methods to avoid the common practice of data elimination under the described conditions

while still achieving high accuracy and precision in gait recognition. We describe filtering

mechanisms to correct and interpolate the faulty and missing joint locations in the skele-

tons. In addition, methods are presented to incorporate the dynamic of the motion in

the presence of noisy data. We discuss outlier removal as an alternative method for ap-

plications in which data elimination is not an issue and present a modification of Tukey’s

method for the vector-based attributes. Experimental evaluation demonstrates that joint



correction can effectively improve the classification scores in the proposed method and

several relevant state-of-the-art approaches.

The second part of this thesis presents skeleton-based methods for the gait anomaly

recognition problem. The main contributions in this part involve designing skeleton-based

features and presenting end-to-end deep learning models that take minimally processed

skeleton joints as the input. Unlike the common two-class or one-class approaches of

skeleton-based methods, the proposed model considers a multi-class framework. There-

fore, the approach can be easily adapted for a more convenient gait assessment outside

clinical facilities. The proposed models are evaluated on three publicly available multi-

class skeleton datasets with normal/pathological gait data, and achieve high classification

scores in detecting minor gait abnormalities. The results indicate the potential of mark-

erless modalities such as Kinect for designing less costly and more convenient health

infrastructures for assisted living. Besides, an automatic and non-invasive gait assess-

ment can further augment the clinical diagnosis for an extensive list of ailments that

cause different types of gait disorders.
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Chapter 1

Introduction

Gait analysis refers to the systematic study of the way that humans walk. Walking is an

important aspect of daily life, yet we often ignore it due to its very nature of being a daily

habit. Early studies in medicine and psychology have recognized the uniqueness of gait to

individuals [6,7]. Furthermore, it has been shown that gait can be affected by the mental

and physical health of the subjects [8]. Gait has become an essential tool for identification

and health evaluation. The development of modalities such as pressure sensors, video

cameras, and accelerometers has allowed studying different aspects of the gait. Unlike

other biometrics such as those computed from the face, fingerprint, and iris, gait can

be acquired without the cooperation of the subjects, and contact between subjects and

sensors is not required. These properties, along with the development of new modalities,

have led to a widespread application of the gait analysis. In forensic studies, we use gait

patterns to see whether the collected gait information in the crime scene matches with a

certain individual [9]. In security monitoring and surveillance, video technology has been

hired to recognize the potential threats by investigating the patterns of gait in suspicious

individuals [10]. Researchers have been using gait for identity recognition [11–15], to

recognize age and gender [16, 17], to detect abnormal behavior [18, 19], for human-robot

1
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interfaces [20]. In medicine, gait analysis is employed for diagnosis of certain motion-

affected diseases, or to evaluate the efficacy of therapeutic exercises [21–24].

Skeleton-based study of human gait describes a model-based framework for the gait

analysis by way of fitting a skeleton to the human silhouette. This shift of modality

from the structured (image/video) to unstructured (skeleton) datatype provides benefits

in terms of data compaction, computation, storage, scalability, and recognition accuracy.

The skeleton-related attributes mimic actual physical traits in the human body and can be

utilized as a soft biometric identification (ID) for the individuals. Monitoring such phys-

ical traits over time also conveys valuable information about the health of an individual.

The latter investigation has contributed to applications in assisted living, therapeutic,

rehabilitation, sport, and medical field. This thesis exploits 3D skeleton data for appli-

cations in gait recognition and pathological gait identification. For gait recognition, we

leverage pose estimation and focus on flash lidar modality. For normal/pathological gait

identification, our main objective is to provide a pipeline for classification of minor gait

anomalies that can be adopted for frequent gait monitoring outside clinical facilities.

In gait recognition, researchers study the gait features that can be utilized to identify

individuals. Soft biometrics such as height, step length, and limb lengths have been

derived as they mimic the actual physical traits of individuals [25–27]. The ultimate goal

in gait recognition is to design gait features that act as a biometric ID.

The emergence of the depth cameras such as Kinect and lidar has provided the

opportunity of investigating gait in the 3-dimensional real-world frame of reference. A

depth-sensing camera generates intensity and depth (range) data simultaneously. The

provided depth information is not affected by changes in illumination and lighting con-

ditions, which are common issues with the intensity data in optical cameras. These

properties make the depth-camera an ideal tool for gait analysis. Furthermore, with the

direct estimation of skeleton joints by modalities such as Kinect, and deep learning-based
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pose estimation tools, such as OpenPose [28] and DensePose [29], the computationally-

expensive model fitting procedure, critical to model-based gait recognition methods, is

not a costly task anymore.

In this thesis, we focus on the gait recognition problem through the lens of flash lidar

imaging technology. A flash lidar is a proper choice for many real-world applications,

and unlike Kinect and Mocap, it fits into a wide range of outdoor environment scenarios.

However, the data collected by a flash lidar camera is low resolution and noisy that makes

successful gait recognition a challenging task. With limited data availability, contrary to

the common practice of noisy data elimination, we perform an extensive data correction

to correct and recover noisy and missing skeleton joints extracted from the flash lidar

data. Besides, to capture the dynamic of motion after data correction, we incorporate

robust statistics to traditional feature moments.

The second part of this thesis investigates the application of gait analysis for the

detection of gait abnormalities. Numerous studies have shown the significance of gait

in the health assessment of individuals [30, 31]. Researchers have found that the pat-

terns of gait can be adopted for diagnosis and severity detection in various neurological

and physiological ailments [32, 33]. Furthermore, analysis of gait patterns is an essential

tool in rehabilitation after injuries or a surgery [34, 35]. Clinical assessments of gait are

conducted in specialized lab facilities, which are generally costly. In addition, the appli-

cation of essential tools often requires careful sensor placement that is time-consuming

and inconvenient. More recently, wearable sensors have become more common in health-

related studies of gait [36, 37]. In practice, these sensors are light-weight and less costly.

Nonetheless, the quality of the generated data is affected by the correct placement of

the sensors [38]. Multiple studies have investigated the liability of Microsoft Kinect as

a modality for gait evaluation [39, 40]. Unlike wearable sensors, Kinect does not require



Chapter 1. Intro. 4

any accurate sensor placement. The main advantages of Kinect are its low cost and ac-

curate markerless skeleton joint detection and tracking. The latter property makes the

application of Kinect convenient for both patients and the healthcare provider.

The majority of state-of-the-art skeleton-based gait anomaly recognition studies are

categorized as either a one-class or a two-class problem, recognizing anomalous from nor-

mal class only. Numerous of these works have reported high recognition scores. However,

in the real world, abnormal gait can be divided into multiple categories, each describ-

ing one symptom or a minor abnormality. In this study, we take a multi-class approach

toward gait anomaly classification based on the skeleton modality. Under a multi-class

framework, gait anomaly recognition can be adopted for real-world applications, which

can render frequent gait evaluation out of designated lab facilities. The presented work

offers an end-to-end method toward gait anomaly classification, where minimally pre-

processed skeleton joints are fed to a deep learning model. By taking an end-to-end

approach, we let the deep model detect relevant features by itself while attempting to

minimize classification error over all existing classes. Also, unlike other skeleton-based

gait anomaly recognition, we evaluate the presented models on three public datasets with

different gait abnormalities. High classification scores on these datasets with distinct

classes of pathological abnormalities have two main indications. It shows the efficiency

of the presented pipeline in classifying minor gait abnormalities. Besides, it shows the

usefulness of markerless modalities such as the Kinect camera for minor gait anomaly

classification.

1.1 Objectives and contributions

The primary objective of this thesis is to design efficacious pipelines based on 3D skeleton

data for applications in gait identification and gait anomaly classification, by leveraging
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depth-based cameras such as flash lidar and Kinect. To deliver on such objectives, we

attempt to address the following questions:

• If the collected data are noisy to a level such that a considerable number of feature

vectors contain faulty and missing values, can we still achieve high accuracy and

precision in gait recognition?

• When a high percentage of the input features are either noisy or missing, can we

avoid data elimination and do any better through model correction?

• Can we perform frequent gait evaluation in the convenience of living environment

with a low-cost and markerless equipment such as Kinect and without the need for

an equipped specialized lab?

The first two questions are investigated in the first part of this thesis, as we describe a

simple yet effective pipeline for gait recognition designed for flash lidar modality. We will

address the last question in the second part of this thesis, where we present a pipeline for

multi-class gait anomaly recognition. The following list outlines the contributions as we

address each of these questions:

Contribution 1:

The main goal in the first part of this thesis is to present a pipeline for gait identification

that overcomes the difficulties that arise as a result of imaging with flash lidar. In order

to fulfill this goal, we adopt a model-based gait recognition approach due to the view

and scale-invariant properties of this type of method. In addition, a model-free method

generally requires background removal that is quite challenging with the low resolution

and noisy data provided by the flash lidar. To remove the computationally expensive

process of three-dimensional model fitting, we use the depth data provided by lidar and

hire a pretrained pose detector model.
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The noisy nature of lidar data presents a real challenge to the skeleton detection

procedure, degrading the performance of the state-of-the-art pose detectors. Therefore,

erroneous and missing joint location measurements is a real issue, resulting in gait recog-

nition with low precision and accuracy. To resolve this problem and improve the gait

identification scores, we will discuss offline approaches to correct the faulty skeleton joints.

Correction is performed on each joint location coordinate, modeled as a time sequence.

With limited data availability, data correction is valuable as it preserves temporal in-

formation, which is critical for timely applications such as gait recognition. To capture

motion dynamics after an extensive skeleton correction, we incorporate robust statistics

with traditional feature moments. Through a set of experiments, we show that conven-

tional feature moments can be a better representative of motion dynamics if they are

incorporated with robust statistics such as median, lower and upper quartiles.

We will also discuss performing outlier removal on the feature vectors to acquire

higher quality data and present methods for length-based and vector-based attributes.

The presented outlier removal methods can be adopted for applications where data elim-

ination is not an issue. This contribution is an effort to follow the traditional practice

of removing noisy data and performing classification on the remaining higher quality

examples.

Contribution 2:

In the second part of this thesis, we focus on the problem of anomaly recognition with

the skeleton data collected by Kinect. The majority of state-of-the-art gait anomaly

detection methods have been focused on evaluating certain parameters of the gait that

are clinically relevant. Such analysis is valuable, as they link health evaluation of gait

with suitable parameters that are clinically interpretable. However, they also limit the

acquired information to a few selected factors and do not take into account the interaction

between different body segments in forming gait patterns. Skeleton-based models try to
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avoid the limitation in traditional approaches by taking into account the interactions

between individual body parts.

We purpose an end-to-end deep learning model that uses the skeleton data recorded

by Kinect to capture spatio-temporal patterns for gait anomaly recognition. By consid-

ering the whole skeleton, the proposed model considers the relationship between differ-

ent body joints in locomotion. Unlike the common two-class or one-class approaches of

skeleton-based methods, the proposed model considers a multi-class framework. There-

fore, it can be easily adapted for a more frequent gait assessment outside clinical facilities.

Besides, for the first time, we evaluate the purposed pipeline on the three largest publicly

available datasets. The high classification scores that are acquired on all three datasets

demonstrate the efficacy of the proposed pipeline for minor gait anomaly recognition.

Also, the whole framework of this design indicates the potential of markerless modalities

such as Kinect for designing less costly and more convenient health infrastructures for

assisted living. In addition, an automatic and non-invasive gait assessment can further

augment the clinical diagnosis for an extensive list of ailments that cause different types

of gait disorders.

1.2 Thesis outline

The dissertation is organized as follows: In Chapter 2, we present some background on

gait recognition, describe the challenges of gait recognition with flash lidar, and present

our methodology for gait recognition in the framework of flash lidar modality. Chapter 3

presents methods for improving the gait recognition methodology with the flash lidar data.

Chapter 4 is dedicated to the problem of gait anomaly recognition. In this chapter, we

present methods based on deep learning models for classification of minor gait anomalies

using the skeleton data. Finally, we conclude in Chapter 5 and outline avenues for future

work.



Chapter 2

Gait recognition with flash lidar

In this chapter, first, we present a brief background on the gait recognition problem

and outline the advantages of using a depth-based camera, such as flash lidar, for gait

recognition. Next, we explain the imaging mechanism of the flash lidar camera and

describe the properties of the collected data. We present a model-based gait recognition

method for the data collected by a single flash lidar camera. Finally, we will present the

experimental results and outline some of the challenges of gait recognition with the flash

lidar data.

2.0.1 Background on gait recognition

Traditionally, there are two dominant trends in video-based gait recognition, model-based

and model-free methods. Model-free methods utilize the features that are computed from

human silhouette [41,42]. In terms of implementation and computation, model-free meth-

ods are less costly compared to their model-based counterparts. However, the performance

of model-free approaches depends on the quality of silhouettes. The silhouette quality is

affected by several factors such as lighting conditions and outfits of the subjects [43, 44].

Model-based methods exploit the features that can be computed from a fitted model, like

a skeleton [45, 46]. Therefore, this class of methods is scale and view-invariant. While

8
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Figure 2.1: Examples of noisy segmented silhouettes from flash lidar data

model-free methods deliver a representation of human shape, model-based approaches de-

scribe human locomotion. Skeleton-based features mimic actual physical traits, and the

shift of modality from image or video to skeleton offers benefits in terms of compaction,

storage, computation, and scalability. With the emergence of depth cameras like Kinect

and lidar, the computationally expensive process of model fitting is not an issue anymore.

The only existing lidar-based gait recognition studies are model-free, rely on the

data provided by rotating multi-beam lidar, and exploit point clouds to extract the sil-

houette [42, 47]. With the data that is collected by a single flash lidar camera, several

factors diminish the quality of segmented silhouettes. Figure 2.1 shows examples of faulty

detected silhouettes. Apart from faulty silhouettes, there are frames with no detected sil-

houette, which mostly happen in successive frames.

There are a few studies in the literature that address the problem of gait identifica-

tion with low quality or missing silhouettes. In [48] and [49], the authors study multiple

scenarios with incomplete silhouettes. But, these researchers do not address the cases

when an entire silhouette is missing. In general, these studies depend on the proper seg-

mentation of a reference silhouette. Silhouette reconstruction methods such as inpainting

are only effective when smaller parts of the silhouette are missing [49]. Methods based

on gait features such as gait energy image (GEI) [11] and its variations, which are less

sensitive to segmentation error, are also based on the non-missing silhouette criterion.

In [50] and [51], the problem of the missing silhouette is treated. However, these studies

only focus on sequences with a 90-degree camera view in the former and frontal view in
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the latter study. A 3D model-based approach is view and scale-invariant and can avoid

the problem of missing and faulty segmented silhouettes.

Multiple studies have utilized skeleton joint information provided by Kinect in ap-

plications such as activity recognition, person identification, and gait analysis [52–54].

Within the framework of gait recognition, authors have investigated angle-based at-

tributes [25], static anthropometric [55], and gait features [56]. In [26], authors took

covariance-based features of skeleton joints’ trajectory. Sinha et al. combined a set of

area-based features and the distance between body segment centroids with the angle be-

tween lower body limbs and anthropometric attributes [57]. In [58], relative distance and

angles were used along with the Dynamic Time Warping (DTW). Ali et al. introduced

area-based features of the lower body during motion [59]. Weighted anthropometric, dy-

namic, and trajectory features over segmented gait cycles were presented in [20]. In the

majority of these studies, the mean, maximum, and standard deviation of the proposed

features over each gait cycle integrate the motion dynamic for a high-accuracy recogni-

tion. A gait cycle is a fundamental concept in describing the human locomotion and is

defined with respect to one of the legs. One gait cycle is the time between an initial

contact between one foot and the ground and the next contact of the same foot with the

ground.

In this dissertation, we take a model-based approach for the gait recognition problem

using the data recorded by a single flash lidar camera. To tackle the computationally

expensive model fitting problem, we hire a pretrained deep network for pose detection.

2.1 The proposed model-based method

The input to the proposed gait recognition system are sequences recorded by a flash lidar

camera. A lidar sequence like V with f frames, consists of intensity I = [I1, I2, ..., If ] and

range (depth) frames R = [R1, R2, ..., Rf ], where the images are preprocessed to reduce
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Figure 2.2: Sample frames of lidar data. The top and bottom rows show range (depth) and
intensity data, respectively.

the noise in the data. Sample frames of intensity and range data are shown in Figure 2.2,

top and bottom rows, respectively. Using the intensity information of lidar, we leverage

OpenPose, a state-of-the-art real-time pose detector [28] to fit a two-dimensional skeleton

model, and extract the location of the body joints. Figure 2.3 illustrates sample frames

with correctly detected skeletons. The two-dimensional skeletons generated by OpenPose

has 18 joints. However, 5 out of 18 joints represent facial limbs that do not convey any

information about gait. By removing these 5 joints, we adopt a skeleton model that

contains the remaining 13 joints. Figure 2.4 gives an illustration of the skeleton model

that we use in this work. The table on the left side of this figure lists all the joints in this

model.

Figure 2.3: Sample frames with correctly detected skeletons.

With Ii being the input to the skeleton detector, the output is the joint location

coordinates Ji in the following vectorized form

Ji = [xk, yk]
Mj

k=1 ∈ <
2N (2.1)
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Index

  

Joint 

1 Mid Shoulder 
2  Right Shoulder 
3 Right Elbow 
4 Right Wrist 
5 Left Shoulder 
6 Left Elbow 
7 Left Wrist 
8 Right Hip 
9 Right Knee 
10 Right Ankle 
11 Left Hip 
12 Left Knee  
13 Left Ankle 

Figure 2.4: The skeleton model we use in this work. Left: index of each joint in the skeleton
model. Right: skeleton model in a sample frame.

where Mj is the number of joints and (xk, yk) represents the coordinates of the kth joint

in the image frame of reference. The 2-dimensional coordinates of the joints in the x

and y directions are projected into real-world coordinates using the range data and the

properties of the lidar camera. Equation 2.2 describes the projection from image reference

frame into the real-world coordinates system

Lij =
2

Npixels

× tan(
θaov

2
)× Lpij ×Di

camera (2.2)

where Lij represents the real-world location of joint i in the direction j ∈ {x, y}. Li in

the z direction equals to the depth (range) value at the location of joint i. Npixels is the

number of pixels in the j direction, θaov represents the angle of view, and Di
camera is the

range value of joint i. Lpij shows the location of joint i in the direction j in the image

coordinate system.

2.1.1 Feature vectors

In this work, the purposed methods are tested on two sets of feature vectors: length-

based (LB) and vector-based (VB). The length-based feature vector comprises a set of

limb lengths and Euclidean distance between selected joints in the skeleton. Table 2.1

lists the components of the length-based feature vector.
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Table 2.1: List of length-based feature vectors (L and R refer to the left and right joints,
respectively)

Feature Feature

R and L Shoulder Elbow to elbow
R and L upper arm Wrist to wrist
R and L lower arm Hip to hip
Spine Knee to knee
R and L upper leg Ankle to ankle
R and L lower leg R shoulder to L ankle
Shoulder to shoulder L shoulder to R ankle

Table 2.2: List of three-dimensional vectors in the vector-based feature vector (L and R refer
to the left and right joints, respectively)

Feature Feature

Neck to R Shoulder R Hip to R Knee
Neck to L Shoulder L Hip to L Knee
Neck to R Hip R Elbow to R Wrist
Neck to L Hip L Elbow to L Wrist
R Shoulder to R Elbow R Knee to R Ankle
L Shoulder to L Elbow L Knee to L Ankle

The second set of feature vectors is vector-based. This means that each feature is a

3-dimensional vector, computed between two skeleton joints. Unlike trajectory features

in [26] that are computed with respect to a reference joint, the vectors in the proposed

feature vector mimic the limb vectors in the skeleton model. Vector-based features provide

information about the angle and distance between selected joints of the skeleton. In Table

2.2 we list the joints that form each of the 3-dimensional vectors. Figure 2.5 presents an

illustration of the proposed length-based and vector-based features.

 
 
 
 

     
 

 

 

 

 

 

 

 

 

Figure 2.5: Illustration of two types of feature vectors: distance-based feature vector (left),
vector-based feature vector (right). All The features are depicted in red color.
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Figure 2.6: Illustration of two types of walking path: walking forward and backward (in blue),
and diamond walking (in red).

2.1.2 TigerCub 3D Flash lidar

The TigerCub is a light-weight 3D flash lidar camera that uses eye-safe pulsed laser to

illuminate the whole scene and generates real-time range and intensity data [60]. A laser

beam can be focused to conform to the objects of interest. Therefore, a lidar camera can

provide a detailed depth imaging of the recorded scene. These properties of flash lidar

have lead to extensive applications in areas such as geology, seismology, atmospheric

physics, forestry, archaeology, autonomous driving, and space missions. The capability

of the lidar camera to perform robustly in the dark, in the fog, and the dust, makes it

stand out among other depth-based cameras. The working range of a flash lidar camera is

above 1000 meters, and in the generated detailed 3D mapping, the spatially close objects

can be recognized from one another. Considering such properties, flash lidar can be a

suitable candidate for real-time data acquisition and autonomous operations.

2.1.3 Dataset

The dataset in this work has been collected by a single TigerCub 3D Flash lidar camera.

The data is captured at the rate of 15 fps with 128× 128 frame resolution. The dataset

consists of a total of 34 sequences of the walking action performed by 10 subjects. Each

subject performs the walking action in three different ways: walking toward and away

from the camera, walking on a diamond shape, and walking on a diamond shape while

holding a yardstick with one hand. Figure 2.6 illustrates the paths of walking for the two
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Figure 2.7: Sample frames of diamond walking that captures a range of different poses.

cases of walking forward and backward (walking toward and away from the camera) and

the diamond walking. For those frames in which subjects walk toward and away from the

camera, most of the views are from the front and back of the person, with some frames

of side views when the subjects turn away. The sequences with walking on a diamond

shape include frames with a wider range of views. This will offer a wider range of poses

as is shown in Figure 2.7.

Table 2.3 lists the number of frames per subject for each category of the walking

action. The number of frames per video is different, ranging from 130 to 498 frames.

Each frame has two sets of data, intensity and range, both with the same number of

pixels. The intensity data are presented in gray-scale, and the range data show the

distance of each point in the field of view from the camera sensor.

Table 2.3: Number of frames per type of walking action for each subject. FB Walk: front
back walk, D Walk: diamond walk, DS Walk: diamond walk holding stick

FB Walk D Walk DS Walk Total

subject 1 130 215 463 808
subject 2 248 462 451 1161
subject 3 199 398 391 988
subject 4 224 377 405 1006
subject 5 257 459 486 1202
subject 6 226 483 881 1590
subject 7 204 429 394 1027
subject 8 249 474 445 1168
subject 9 203 897 375 1475
subject 10 216 441 385 1042
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2.1.4 Experimental results

Table 2.4 summarizes the average accuracy and F-score for the proposed features and

several relevant methods. In [56], authors use a set of static features plus step length and

speed. In [25], the moments of six lower body angles are computed over each gait cycle.

Sinha et al. integrate the features in [56] and [25] with their area-based and distance

between body segment features and compute the moments of each feature over every gait

cycle. Instead of the common anthropometric features, in [27], Yang et al. utilize selected

relative distance along different motion directions. As can be seen from the results, the

proposed vector-based feature outperforms the state-of-the-art related methods. We also

observe that none of the methods could acquire high classification scores as a result of

low quality skeletonization and the resulting erroneous features.

Table 2.4: Correct identification scores for the proposed features and the other methods.
LB and VB stand for length-based and vector-based feature vector, respectively. Features are

computed without joint correction.

Method Average Accuracy(%) Average F-score(%)

[56] 27.90 25.36
[25] 25.34 23.24
[57] 61.81 54.61
[27] 63.82 58.64

Ours, LB 54.96 51.58
Ours, VB 67.16 63.47

Several factors diminish the quality of the joint localization, and therefore the features

that are computed from the skeleton’s joints. By looking at the sample intensity frames in

Figure 2.2, bottom row, we observe the lack of color, and similarity between the clothing

of the subjects, skin, and the background. Depth images are plagued with edge noise and

missing pixels. Furthermore, as the distance between subjects and the camera lessens,

range data is affected by noise. The acquired skeletons are riddled with missing and

inaccurately-located joints. Therefore, the resulting features contain many missing and

noisy measurements.
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2.2 Remarks

In this chapter, we described the gait recognition problem and addressed some of the

challenges and opportunities of gait recognition with the flash lidar data. We discussed

a gait recognition methodology for the flash lidar modality by presenting skeleton-based

features. Our results and analysis shows how performing a successful gait identification

using the flash lidar data is a challenging task. In the next chapter, we will come back to

this problem and present methods for improving gait recognition for the data collected

by a flash lidar camera.



Chapter 3

Improving flash lidar-based gait

identification

Most of the existing successful model-based methods rely on the high-quality data col-

lected by Kinect or Mocap. While such modalities have removed the burden of model

fitting, they are not always the best choice for real-world applications. Mocap is mostly

limited to laboratory environments. The working range of the Kinect is very limited (< 5

meters) and its performance degrades in outdoor environments because the infrared light

of the sensor cannot be easily separated from the high-intensity ambient infrared [61,62].

On the other hand, flash lidar has an extensive working range (> 1000 meters). Further-

more, due to the high irradiance power of pulsed laser with respect to the background,

the performance of a flash lidar is not degraded in the outdoor environments. However,

as we discussed in the previous chapter, several factors diminish the quality of the data

collected by a flash lidar camera. Therefore, compared with Kinect and Mocap, the data

collected by flash lidar is noisy and low resolution. These factors degrade the performance

of the pose detector, resulting in many missing and faulty joint localization.

Under the described condition, a common practice consists of noisy data removal and

performing further processing on the remaining clean data. In this chapter, following the

18
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Figure 3.1: Pipeline for gait recognition using the joint correction methodology
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Figure 3.2: Pipeline for gait recognition using the outlier removal methodology. Inputs to
”3D Joint location estimator” remain the same as in Figure 3.1

traditional trend of noisy data removal, we employ the Tukey method for outlier removal

and present a modification for the vector-based features. This approach results in a

higher quality data; however, it might not be the best choice for real-world surveillance

problems with limited data availability. In fact, under such a scenario, data elimination

can be problematic. We will address this problem and present filtering methods to correct

the noisy joints in the time sequences of joint coordinate measurements. Furthermore,

robust statistics are integrated with conventional feature moments to encode the dynamics

of the motion after skeleton joint correction.

Figures 3.1 and 3.2 describe the workflow for gait recognition based on joint co-

ordinate correction and outlier removal, respectively. In the following sections, we will

describe the steps in each of these two pipelines and present an extensive set of experi-

ments to investigate the efficacy of the proposed methods.
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3.1 Outlier removal

Outlier samples do not follow the underlying model of a process. In general, outliers

should be detected to either understand an interesting event or process (i.e. surveillance

and abnormal behavior) or be removed if they are the result of noise or caused by erro-

neous measurements. A model that is estimated based on a dataset corrupted by such

outliers, cannot provide a fair description of the system and will result in many false

predictions. A common practice in gait recognition involves removing outliers by set-

ting some thresholds and performing the main analysis on the remaining higher quality

data [20, 27, 63, 64]. Therefore, as an alternative method, we use the Tukey method to

detect outliers in the feature vectors that are computed from noisy and missing joint loca-

tion coordinates. The pipeline for gait recognition based on outlier removal methodology

is given in Figure 3.2. By choosing the Tukey method, we avoid making any assumption

about the underlying distribution of each feature. The second row in Figure 3.3 shows

examples of faulty detected skeletons. Besides, there are frames with missing skeletons.

Figure 3.3: Top row: sample frames with correctly detected skeletons, bottom row: frames
with faulty skeletons

3.1.1 Outlier removal for length-based features

We define Jd = [Jd1, Jd2, ..., JdP ] as a feature vector, where P is the number of features

in Jd and Jdi is the Euclidean distance between two skeleton joints. For length-based

features, removing outliers is performed in three main steps. First, we remove all the
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Figure 3.4: Average classification accuracy with length-based outlier removal for different
values of Tupper (threshold value that is used for prefiltering in length-based outlier removal).
Tupper = NT means no threshold was applied. While Tupper = 4.8 results in the highest
accuracy, it also results in the lowest percentage of training and test data being preserved after
applying Tukey’s test. Higher values of Tupper or no threshold preserve more than twice the

number of training and test samples compared with Tupper = 4.8.

frames with missing skeletons. In the second step, we filter the remaining samples by

setting an upper threshold of Tupper. To determine Tupper, we compute the median and

interquartile of each feature in Jd

MJd = max(median(Jdi) + IQR(Jdi))|Pi=1 (3.1)

If Jds is the feature that maximizes the summation in the above equation, then MJd is

the value of the above summation for feature Jds. Once we determine MJd, we perform

a grid search around the value of MJd to find Tupper. Tupper is the value that results in

the highest accuracy after applying Tukey’s test in the next step.

A feature vector with a feature that is beyond Tupper will be removed. In the last

step, Tukey’s test is employed on each feature. Jd is not an outlier if

Tukey({Jdi}Pi=1) = 0P where Jdi ∈ <+ (3.2)

where 0P is a zero vector of length P . Tukey(Jdi) = 0 means that feature Jdi passed

the Tukey’s test, or Jdi is not an outlier. Based on Equation 3.2, Jd is not an outlier,

if all of its feature components are non-outliers. In other words, Jd is an outlier if there
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Figure 3.5: Test accuracy for length-based outlier removal for different threshold val-
ues (Tupper), given different numbers of test samples. Tupper = NT means no threshold
was applied. While smaller values of Tupper result in higher classification accuracy for a
smaller number of test samples, this difference disappears for larger numbers of test samples

(number of test samples >= 800)

exists a Jdi, such that Tukey(Jdi) = 1. We will show later that while outlier removal

will improve gait recognition scores, it comes at the cost of eliminating a considerable

portion of the data.

Figure 3.4 shows the test accuracy with different values of Tupper. Smaller values of

Tupper result in the removal of one or more classes and therefore are not included in this

figure. In Figure 3.4, the distance between juxtaposed Tupper values (values along x-axis)

become larger as we go toward larger values. This is because those values in-between

the shown Tuppers did not make a difference in terms of accuracy compared with values

close to them that are illustrated in this figure. Tupper = NT means no threshold was

applied for prefiltering, and only the samples with no skeleton have been removed before

applying Tukey’s method. It is important to keep in mind that the value of Tupper that

gives the highest accuracy also preserves the smallest percentage of training and test data

after applying Tukey’s test. In contrast, using higher values of Tupper or removing Tupper

altogether (Tupper = NT ) corresponds with preserving a higher percentage of the training

and test data.

Figure 3.5 shows a comparison of the performance of length-based outlier removal

for different values of Tupper, given various numbers of test samples. The comparison
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Figure 3.6: CV (coefficient of variation) of average classification accuracy over different num-
bers of test samples for various values of Tupper (threshold value that is used for prefiltering in
length-based outlier removal). Tupper = NT means no threshold was applied. The lowest CV ,
which is achieved with Tupper = NT , results in the least dispersion of accuracy over different

numbers of test samples.

shows that for smaller numbers of test samples, values of Tupper close to MJd give higher

classification accuracy. But, as we increase the number of test samples, this difference

fades. To study the effect of Tupper, for each value of Tupper, we also calculate the coefficient

of variation (CV) of the test accuracy over different numbers of test samples. For each

Tupper, we compute accuracy for different numbers of test samples and then compute

the CV of the resulting test accuracy values for the given Tupper. CV = σ/µ, where σ

and µ are defined as standard deviation and mean of the resulting test accuracy values,

respectively. As we observe in Figure 3.6, the case with no threshold (Tupper = NT )

gives the lowest CV. These results can indicate that applying no threshold creates a more

reliable classifier with the least percentage of accuracy dispersion, given various numbers

of test samples.

3.1.2 Outlier removal for vector-based features

Let Jv3D = [Jv3D
1 , Jv3D

2 , ..., Jv3D
Q ] be a 3 × Q matrix of the joint coordinates, where Q

is the number of 3-dimensional vectors in Jv3D. The ith column in Jv3D, which is the

3-dimensional vector between two skeleton joints, is defined as follows

Jv3D
i = [xi, yi, zi] ∈ <3N (3.3)
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Each of the 3-dimensional vectors represents one entity and cannot be treated individually.

To reduce each 3-dimensional vector to one entity, we first use the concept of marginal

median [65]. Each component of the marginal median represents the median of all the

vector components in that direction. Next, we employ cosine distance to calculate vector

similarity between each set of 3-dimensional vectors with their corresponding median

vector. We define Jvmedian as the marginal median over all the given Jv3D feature vectors

S3D = cos(Jvmediani , Jv3D
i )|Qi=1 (3.4)

where S3D
i = cos(Jvmediani , Jv3D

i ) is the cosine similarity between ith element of feature

vector Jv3D and Jvmedian. This way, we create the cosine similarity measure between

each Jv3D and the median vector Jvmedian and reduce each 3-dimensional vector in Jv3D

to one entity. Lastly, the Tukey method is applied to the cosine similarity measures. A

feature vector is an outlier if at least one of its features is an outlier. The algorithm below

describes outlier detection on the feature vectors built from 3-dimensional vectors.

Outlier detection for vector-based features

1. Over all the given feature vectors, calculate the marginal

median vector. Call this vector Jvmedian

2. For each 3D vector Jv3D
i in each feature vector Jv3D,

calculate cos(Jvmediani , Jv3D
i ); save the results in one

row of S.

3. Employ Tukey’s test on each row of S.

4. A given feature vector Jv3D will pass Tukey’s test if

its corresponding row in S passes Tukey’s test.
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3.1.3 Experimental results with outlier removal

Table 3.1 summarizes the gait identification scores before and after applying outlier re-

moval. We observe that applying outlier removal can improve the identification scores

for both types of features. However, outlier removal also results in the elimination of the

data that can be problematic when data is limited. Due to the noisy and low quality

nature of flash lidar data, a high percentage of the detected skeletons have missing and

noisy joints. For such cases, outlier removal can eliminate a good portion of the collected

data. Besides, data elimination will result in the loss of temporal information that is valu-

able for applications such as gait identification and activity recognition. In the following

section, we describe skeleton joint location correction to resolve these problems.

Table 3.1: Correct identification scores for the proposed features before and after applying
outlier removal. LB and VB stand for the length-based and vector-based feature vectors, re-

spectively.

Method Average Accuracy(%) Average F-score(%)

LB (before) 54.96 51.58
VB (before) 67.16 63.47
LB (after) 76.60 68.89
VB (after) 80.70 75.22

3.2 Skeleton joint correction

To improve gait recognition, we present two filtering mechanisms. First we describe Gli-

darCo (gait recognition by lidar through joint correction). GlidarCo is a three-step filter-

ing mechanism that corrects erroneous joint location measurements and recovers missing

joints. Next, we describe GlidarPoly (gait recognition by lidar through polynomial

correction), that is a two-step filtering approach. Besides, we will show that with an

extensive skeleton correction, we can improve gait identification even further by incorpo-

rating robust statistics with the common feature moments.
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3.2.1 Skeleton joint correction by GlidarCo

Figure 3.1 illustrates the joint correction methodology. By investigating the time se-

quences of the joint location coordinates, we realize that missing joint location mea-

surements form the majority of erroneous joint localization. In order to perform joint

correction, we model each joint location of a skeleton in a lidar video as a time sequence,

where each joint location is composed of three time sequences in the x, y, and z directions.

Given a skeleton model of 13 joints, we define L as a matrix of the size of 39×Fn, where

each row represents one time sequence that is extended over Fn frames. To correct the

joint localization, filtering is carried out on each row of the L matrix, where Lm represents

the mth row of L

Lm = {Lm(t)}Fn
t=1 Lm(t) ∈ < (3.5)

For each row like Lm, we find the sorted location of all the nonzero elements. For each lidar

video, given matrix L, we perform filtering on Lm (each row of L), in three main steps.

First, Tukey’s test is utilized to detect all the values that are below Qulow−1.5× IQR or

above Quup + 1.5× IQR, where IQR = Quup −Qulow stands for the interquartile range,

Qulow and Quup are lower and upper quartile or 25 and 75 percentiles, respectively.

Defining oLm as the set of all the detected outlier indices in Lm (each index corresponds

with one frame) 

oLm = [o1, o2, ..., oR]

o1 < o2 < ... < oR

oLm ∈ [1, ..., Fn]

(3.6)

where R is the number of detected outliers in Lm. Each detected outlier will be corrected

by the value of its one nearest neighbor in time that is not an outlier. In those cases

with two nearest neighbors, one is selected randomly. In the second step, piece-wise

cubic Hermite polynomials [66] are utilized to interpolate the missing values in Lm over
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(3.7)

where ∇tk and ∇tk+1 are the derivative at tk and tk+1, respectively.

In the final step, RLOWESS (locally weighted scattered plot smoothing) [67] is

performed to smooth the resulting curve of Lm, and mitigate the effect of the remaining

outlier values that resemble lower-amplitude spikes. RLOWESS locally fits first order

polynomial using weighted linear regression. In the first step, the weighted least square

problem in each neighborhood is solved using the tricube weight function that is defined

according to the following equation

wi = (1−
∣∣∣∣t− tid(t)

∣∣∣∣3)3 (3.8)

where wi is the regression weight of point ti located in the neighborhood of t, and d(t)

is the distance along the abscissa between t and the point which is furthest from t in its

designated neighborhood (t and ti are the predictor values). Using these weights, each

point like t is estimated and the residual of that point calculated r = t− t̂, where t̂ is the

estimation of t through the weighted least square. Next, the robust weight of point ti is

calculated by the bisquare weight function

wi = (1−
∣∣∣∣ ri
6×median(|r|)

∣∣∣∣2)2 (3.9)

where median(|r|) is the median of residuals, and wi is nonzero if ri < 6 ×median(|r|).

The weighted least square is then implemented with robust weights and the local regres-

sion weights of equation (3.8) and all the new t̂ are estimated and used to find residuals.
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The weights are updated over p iterations until fitted values stabilize, where in practice

p ∈ [2, 5] works pretty well for most of the problems.

Table 3.2: Correct identification scores for the proposed features and the other methods after
applying GlidarCo. LB and VB stand for the length-based and vector-based feature vectors,

respectively. Features from all of the methods are computed from the corrected joints.

Method Average Accuracy(%) Average F-score(%)

[56] 43.40 38.43
[25] 28.33 26.25
[57] 73.01 73.83
[27] 74.52 71.68

GlidarCo, LB 73.66 69.60
GlidarCo, VB 80.58 76.24

3.2.1.1 Experimental results with GlidarCo

Table 3.2 summarizes the gait identification scores after employing joint correction us-

ing GlidarCo. By comparing the results with the gait identification scores before joint

correction in chapter 2, we observe that GlidarCo can improve joint localization and

identification scores in all of the methods. Besides, while our feature vectors in Table

3.2 do not contain the dynamics of the motion, vector-based features still outperform the

methods that incorporate temporal information by computing moments of features over

the gait cycle.

By comparing the results in Tables 3.2 and 3.1, we make some noteworthy obser-

vations. First, outlier removal and joint correction through GlidarCo both improve gait

recognition scores. However, outlier removal also results in data elimination and loss

of temporal information. Second, both methods acquire almost the same scores with

vector-based features. But, compared with GlidarCo, outlier removal achieves higher

scores with length-based features. One reason for such a result can be the elimination of

data by outlier removal. This way, outlier removal is tested on much fewer data compared

with other methods. Skeleton joint correction through GlidarCo can recover noisy and

missing skeleton joints. However, joint correction is also prone to noisy estimation, in

particular when there are missing joints over consecutive frames. On the other hand,
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outlier removal also results in loss of temporal information. Later in section 3.2.3, we will

show that by incorporating temporal information after joint correction, we can further

improve classification scores.

3.2.2 Skeleton joint correction by GlidarPoly

In this section, we will describe how GlidarPoly acts on skeleton joint location measure-

ments to correct and recover the noisy and missing skeleton joints. For each lidar video,

given matrix L as was described in section 3.2.1, we perform filtering on Lm (each row

of L), in two main steps: interpolation for the missing values, and robust smoothing to

correct the outliers. Given the joint location sequence Lm, we find the sorted location of

all the nonzero elements. We define nLm as the sorted set of all the indices in Lm with a

non-zero value (each index corresponds with one time instant tk) such that



nLm = [n1, n2, ..., nR]

n1 < n2 < ... < nR

ni ∈ [1, 2, ..., Fn]; i ∈ [1, 2, ..., R]

(3.10)

where R is the number of non-zero elements in Lm. Next, between any two nonzero values

with non-consecutive indices along time, we fit a first-order polynomial through the least

squares criterion  nr 1

ns 1


 p1

p2

 =

 Lm(nr)

Lm(ns)

 (3.11)

where nr, ns ∈ nLm and ns − nr > 1. Lm(nr) and Lm(ns) are the values of Lm at nr and

ns, respectively. p1 and p2 can be obtained by finding the least squares solution to the

system of equations in 3.11. Finally, we utilize RLOWESS (locally weighted scattered
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plot smoothing) filter [67] to smooth the resulting joint location sequence and alleviate

the effect of remaining lower-amplitude spikes in Lm.

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Effect of the skeleton joint location correction with GlidarPoly. From top: sample
joint location sequences before (first row) and after (second row) joint location sequence filtering
(each joint location sequence corresponds with one coordinate (x, y, z) of the location of one
joint through time). Notice the abundance of missing values in the first row, which are shown
as missing sections of the plotted signal that have been recovered through the joint correction
(figures in the second row). The last two rows show samples of faulty and missing skeleton

joints before (third row) and after (bottom row) joint location sequence filtering.

Figure 3.7 illustrates the result of applying GlidarPoly on samples of joint location

coordinate time sequences and skeleton localization in the image reference frame. The

results in this figure show the effectiveness of joint correction in interpolating and correct-

ing missing and faulty joints. We observe that the original joint location sequences are

noisy, containing many missing values and outliers. In the third row of Figure 3.7, we see

the sample frames with missing skeleton joints in the image reference frame. As we ob-

serve in the last row, the missing joints are interpolated successfully through the filtering

mechanism. We can also see examples where a whole skeleton is recovered through the

joint location correction. The joint location correction can be easily applied in the cases

of occlusion for the one-subject and multi-subjects scenarios. While in this study the

missing joint locations are the result of erroneous joint localization, it can be the result of
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Figure 3.8: Failure examples of the joint location correction filtering. Sample frames of skele-
ton joints, before (top) and after (bottom) applying GlidarPoly for the skeleton joint location

correction

occlusion. For most of the corrected skeletons, the interpolation of missing or noisy joints

follows the correct joint locations. However, there exist cases where the obtained local-

ization results are not accurate. Figure 3.8 shows a few failure examples of GlidarPoly

in joint localization correction. The majority of such failure cases are the result of the

existence of a considerable number of successive frames with missing or noisy joints that

make the joint correction prone to faulty estimations. However, even for failure cases, at

least half of the joints are predicted correctly. This can enhance the likelihood of correct

identification compared to the original localization of the joints.

3.2.2.1 Computational complexity of GlidarPoly

The main computational bottleneck of GlidarPoly is in the last step, where we use

RLOWESS [67] for smoothing the curve of joint location time sequences, and allevi-

ate the effect of outliers with O(Nlog(N)+3N(d+1)k) computational complexity. Here,

N shows the number of points in a joint location time sequence, d is the degree of the

polynomial used in the regression (here d = 1), and k is the number of k-nearest point or

length of each span in the local regression smoothing (k is constant and the same for all

the points) [68].
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Table 3.3: Correct identification scores for the proposed features and the other methods. LB
and VB stand for the length-based and vector-based feature vectors, respectively. Features from

all of the methods are computed from the joints that are corrected by GlidarPoly.

Method Average Accuracy(%) Average F-score(%)

[56] 40.77 36.21
[25] 32.55 32.49
[57] 80.11 80.40
[27] 75.79 72.75

GlidarPoly, LB 73.84 70.66
GlidarPoly, VB 84.07 80.49

3.2.2.2 Experimental results with GlidarPoly

Table 3.3 summarizes the gait identification scores after employing joint correction using

GlidarPoly. By comparing the results with the gait identification scores before joint

correction in Chapter 2, we observe that GlidarPoly can improve joint localization and

identification scores in all of the methods. We do not consider the dynamic of the motion

with any of the proposed features. However, our vector-based features still outperform

other methods that incorporate the dynamics of the motion by computing the moments

of features over the gait cycle.

By comparing results in Tables 3.2 and 3.3, we observe that both joint correction

methods achieve almost the same improvement with length-based features. However,

with vector-based features, GlidarPoly performs better. This observation can be due

to over-smoothing the final correction estimation with GlidarCo that employs 3rd-order

polynomial in the first step of joint correction. By comparing the results in Tables 3.3

and 3.1, we also observe that GlidarPoly outperform outlier removal with vector-based

features. With the length-based features, outlier removal acquires better results compared

with GlidarPoly. For this observation, we can make the same argument as in subsection

3.2.1.1. Besides, since both joint correction methods achieve better performance with the

vector-based features, we speculate that vector-based features are more robust to noisy

estimations of joint correction compared with the length-based features.
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Figure 3.9: t-SNE visualization of the length-based features before (left) and after (right)
applying the joint correction using GlidarPoly. There is a high level of inter-class intersection
before joint correction (left) that is mostly resolved after correcting joint location, creating

clusters that are more distinctive (right).

Figure 3.10: t-SNE visualization of the vector-based features before (left) and after (right)
applying the joint correction using GlidarPoly. Before joint correction, high inter-class inter-
section and intra-class separation is observed (left). Joint correction transforms features into

well-separated clusters (right).

Among the evaluated methods, we do not observe a considerable improvement in

the performance of [25]. Authors in [25] use six angles between lower body joints as

features and compute the mean, max, and standard deviation of each angle over every

gait cycle. The skeleton model that we adopted in this work lacks foot joints that are

essential to estimate two of the angles in [25]. To calculate these angles, we estimate

the floor plane and use the normal vector to the plane. We speculate that the error in

this estimation might also cause lower classification scores with this method. Besides,

it was reported before that angle-based features might perform poorly compared with

distance-based features, in particular when the number of subjects is relatively low [69].

Variations in the walking speed can also cause changes in the joint angles [70,71].



Chapter 3. Improving flash lidar-based gait identification 34

1-5 missing joints 6-10 missing joints No missing joint Whole skeleton missing
0

10

20

30

40

50

60

70

80

90

A
cc

u
ra

cy
(%

)

Before joint correction
After joint correction

Figure 3.11: Comparison of classification accuracy for vector-based features based on the
number of missing joints in the original skeletons, before and after applying GlidarPoly for
joint correction. The samples with no missing joints also include noisy samples. All cases show

improvement after applying the joint location correction.

In Figures 3.9 and 3.10, we present t-SNE visualization of length-based and vector-

based features for the training data before and after joint location correction with Gli-

darPoly. Some of the interesting observations from these visualizations are as follows:

1. We observe a high level of the inter-class intersection before the joint correction

for both features, that transforms into a wider separation among classes after applying

GlidarPoly.

2. In the right graph of Figure 3.10, we see a non-homogeneous scatter of some

of the classes, in particular class 9, which makes it more difficult to find the decision

boundary. Such class distributions result in lower accuracy for these classes and overall

lower accuracy for the whole dataset.

3. In the left graph of Figure 3.10, we observe two separate clusters that transform

into a single one after joint correction (right graph).

4. After applying the joint correction, the transformed features become well sepa-

rated, which shows we do not necessarily need a more sophisticated classifier.

Figure 3.11 presents the average identification accuracy before and after applying

GlidarPoly, considering the number of missing joints in the originally detected skeletons.

Samples with no missing joints also include noisy joint data. We observe that accu-

racy improves in all of the categories after the joint location correction, which confirms
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the effectiveness of the joint correction in improving skeleton joint localization and gait

identification.

3.2.3 Incorporating motion dynamics

As humans, we integrate both anatomy and the way that people move their bodies during

activities such as walking, to recognize a familiar person. Features that describe motion

play a crucial role in gait identification when different individuals have approximately the

same body measurements. In several model-based methods, features like speed and step

length are integrated to include the dynamic of the motion [56, 72]. Another common

practice consists of computing mean, max, and standard deviation of selected features

over every gait cycle and performing classification on such measurements [20, 27, 57].

This practice has proven to be successful in achieving high accuracy in gait recognition.

However, the considered datasets generally have a low level of noise with a few to none

outliers. Such datasets are recorded under controlled conditions such as limited walking

directions.

The distance between two leg ankles, which is commonly utilized for the gait cycle

estimation, has a cyclic pattern in general. However, variations in different walking

factors such as walking direction, walking speed, and step length can cause aperiodicities

in the walking patterns [20]. This can cause complexities in the interpretation of the

motion, such as in gait cycle computation. In addition to such intra-personal variations

in the gait, with the flash lidar data, there are numerous instances of consecutive frames

with a missing skeleton. Therefore, the result of joint sequence correction is prone to

noisy measurements. This noisy estimation will exacerbate the problem of the observed

acyclic patterns. Figure 3.12 illustrates the ankle to ankle distance instances of flash

lidar data. The sequence on the left shows a periodic pattern. However, the sequence

on the right side of Figure 3.12 lacks a clear cyclic pattern. Irrespective of a sequence



Chapter 3. Improving flash lidar-based gait identification 36

20 40 60 80 100
Frame number 

0

0.1

0.2

0.3

0.4

A
n

kl
e-

to
-A

n
kl

e 
d

is
ta

n
ce

(m
)

20 40 60 80 100
Frame number 

0

0.1

0.2

0.3

0.4

A
n

kl
e-

to
-A

n
kl

e 
d

is
ta

n
ce

(m
)

Figure 3.12: Two examples of the ankle to ankle distance sequence of lidar data after joint
correction. While the graph on the left presents a periodic pattern, the sequence on the right

lacks such a pattern.

being periodic or aperiodic, we consider a gait cycle as a local time sequence with three

consecutive local maxima. To compensate for large variations in the gait cycle throughout

one sequence of walking, we incorporate statistics that are robust to noisy measurements.

In addition to commonly employed statistics of mean, standard deviation, and maximum,

we also include median, upper, and lower quartiles that are robust to noisy data. We

build feature vectors that comprise mean, standard deviation, maximum, median, lower

quartile, and upper quartile of each feature over every gait cycle.

3.2.3.1 Results with motion dynamics

Table 3.4 shows gait recognition scores after joint correction when statistics of features are

considered over gait cycles to incorporate the motion dynamics. For this experiment, we

considered both joint correction methods with length-based and vector-based features. By

comparing the results in Table 3.4 with the single-shot (per-frame) identification scores

after joint location correction in Tables 3.2 and 3.3, we observe incorporating motion

dynamics can improve identification scores for both features. We also observe that Gli-

darPoly acquires higher classification scores compared with GlidarCo. As we mentioned

before, this observation can be due to over-smoothing of estimation with GlidarCo.

The average per-class accuracy and F-score for the single-shot (per-frame) case is

presented in Table 3.5. We also show the per-class accuracy and F-score when statistics

over the gait cycle are considered in Table 3.6. The results in both tables are computed
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Table 3.4: Correct identification scores with statistics of features computed over gait cycle
after joint correction. LB and VB stand for the length-based and vector-based feature vectors,

respectively.

Method Average Accuracy(%) Average F-score(%)

GlidarCo (LB) 75.22 73.22
GlidarCo (VB) 84.65 80.38

GlidarPoly (LB) 76.03 74.88
GlidarPoly (VB) 89.12 87.06

Table 3.5: Correct identification scores for each class of subject for the single-shot scenario of
vector-based features after applying GlidarPoly for the joint correction. The minimum and the

next-to-lowest accuracy and F-score are underlined.

Subject # Accuracy(%) F-score(%)

subject 1 93.85 96.83
subject 2 80 79.69
subject 3 79.23 69.36
subject 4 74.62 64.03
subject 5 93.08 82.88
subject 6 76.92 64.52
subject 7 100 84.69
subject 8 76.92 85.29
subject 9 66.92 78.61
subject 10 82.31 88.25

Table 3.6: Correct identification scores for each class of subject for the statistics of vector-
based features over the gait cycle after applying GlidarPoly for the joint correction. The mini-

mum and the next-to-lowest accuracy and F-score are underlined.

Subject # Accuracy(%) F-score(%)

subject 1 71.42 83.33
subject 2 85.71 80
subject 3 85.71 92.31
subject 4 85.71 75
subject 5 100 93.33
subject 6 100 82.35
subject 7 100 77.78
subject 8 85.71 92.31
subject 9 85.71 92.31
subject 10 78.57 88

after applying GlidaPoly for the joint correction. By comparing the results in these two

tables, we observe that the minimum per-class accuracy and F-score are improved by

4.5% and 10.97% as a result of employing gait cycle statistics. These results indicate that

by employing features that capture motion dynamics, we can build a more reliable model

compared to the case that only considers static features.
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Figure 3.13: Average classification accuracy for different numbers of training samples given
multiple numbers of test examples for the single-shot (left), and statistics over the gait cycle

(right) scenarios. Both plots are acquired for vector-based features.

3.2.4 Effect of the number of training samples

In real-world applications, limited data availability is one of the main challenges of gait

recognition. Therefore, it is essential to investigate how the designed model or the selected

features perform under limited data availability. Here, we will examine the performance

of the vector-based features, both for the single-shot scenario as well as the statistics over

a gait cycle for different numbers of training observations given various numbers of test

samples.

In Figure 3.13, the left graph illustrates the single-shot identification accuracy as a

function of the number of training examples. For each experiment, we consider a different

number of test samples, where the number of test samples changes in [100, 1000] range.

For a given number of test samples, the average accuracy improves as we increase the

number of training data. For smaller number of test samples, accuracy increases at a

higher rate when we use a larger number of training samples. A test sample size equal

to or larger than 200 frames appears to be a proper choice empirically, as the accuracy

trend shows to be more stable. We also observe that irrespective of the number of test

data, we acquire the best performance with a training set of 1000 samples.
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In the right graph of Figure 3.13, we show the average classification accuracy for

different numbers of gait cycles for training. Each plot in this graph shows average

accuracy for a certain number of test gait cycles. We observe that the highest accuracy

is acquired with at least 200 gait cycles for training, irrespective of the number of test

samples. When the number of gait cycles per subject is severely limited, this limitation

can be problematic.

3.2.5 Evaluation on IAS-Lab

In this thesis, our focus is on the application of flash lidar modality for gait identification.

However, due to the lack of publicly available flash lidar data for gait recognition, we

evaluate the performance of the joint correction methodology on the IAS-Lab RGB-ID [73]

dataset. For skeleton joints correction, we investigate the performance of GlidarPoly as

it acquires higher classification scores. To evaluate the performance of joint location

correction on IAS-Lab, we manually add noise to skeleton joints, as well as removing the

whole skeletons in consecutive frames.

The IAS-Lab dataset includes the sequences collected from 11 different subjects.

IAS-Lab consists of three sets, ”Training”, ”TestingA”, and ”TestingB”. The outfits of

the subjects in ”TestingA” are different from their outfits in the ”Training” set. Sequences

in ”TestingB” are captured in a different room, but subjects wear the same outfits as in

the ”Training” set. In addition, some sequences in ”TestingB” are recorded in a dark

environment. In this experiment, first, we compute the single-shot rank-1 identification

accuracy for the proposed vector-based and length-based features and compare it with

several state-of-the-art methods. Next, we manually add noise to some of the skeleton

joint locations and randomly remove some of the other joint location information. Then,

we apply GlidarPoly and compare the results of gait recognition before and after applying

GlidarPoly to correct the corrupted joints.
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Table 3.7: Single-shot identification: Rank-1 identification accuracy for the proposed fea-
tures, several RGB-based, and depth-based features for IAS-Lab RGBD-ID ”TestingA” and

”TestingB” sets. Dashes are for cases where no published information is available.

Method TestingA TestingB

RGB-based features

HOG [74,75] 31 47.21

Gabor-LBP [75,76] 28.71 51.38

LOMO [75,77] 26.37 30.97

Depth-based features

Skeleton (SVM) [78] — —

Skeleton (NN) [78] 22.5 55.5

PCM+Skeleton [73] 25.6 63.3

3D CNN [79] 44.2 56.2

3D RAM [79] 48.3 63.7

ED+SKL [75] 48.75 58.65

Length-based (NN) 46.61 70.64

Length-based (SVM) 34.09 67.51

Vector-based (NN) 54.11 61.07

Vector-based (SVM) 55.21 67.71

Table 3.7 shows the single-shot rank-1 identification accuracy for the IAS-Lab dataset.

We compare the performance of the proposed length-based and vector-based features

with several RGB and depth-based methods. The results with the RGB-based features

are reported according to [75]. As we can see, RGB-based features achieve better re-

sults on ”TestingB” compared with ”TestingA”, where subjects are wearing different

outfits. This is because changes in the outfit can affect the consistency of these types

of features. Skeleton feature in [78] consists of 11 length-based features and 2 ratios

of length-based features. PCM+Skeleton [73] consists of point cloud matching and the

skeleton-based features of [78]. The 3D CNN [79] is trained on the 3D point cloud, and

3D RAM [79] is a recurrent attention model trained on 4D tensors of 3D point cloud over

time. ED+SKL [75] is a depth-based feature, computed from eigen-depth and skeleton-

based attributes. In the last four rows, we present the results with our length-based and

vector-based features with both SVM and nearest neighbor (NN) classifiers. For the NN
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classifier, we use the Manhattan distance with five nearest neighbors as in [80]. The

results show that our vector-based feature outperforms other methods on ”TestingA”,

where subjects are wearing outfits different from the training set. Besides, our length-

based feature achieves the highest accuracy on ”TestingB”, where there are changes in

the illumination.

3.2.5.1 GlidarPoly for joint correction in IAS-Lab

To evaluate the performance of the joint correction filtering on IAS-Lab, we added some er-

ror, using Gaussian distribution, to randomly-selected joints. We also randomly removed

the joint location information of some other joints. Table 3.8 presents the single-shot

rank-1 identification accuracy on IAS-Lab with the corrupted joints and after applying

GlidarPoly for joint location correction. We observe that GlidarPoly improves the identi-

fication scores in the range of [15%, 33%]. Besides, we see that the identification accuracy

after applying GlidarPoly is close to the results with the original data (the last four rows

of Table 3.7). This observation confirms the effectiveness of the proposed joint correction

filtering mechanism. Considering the length-based features in ”TestingA”, the results

with GlidarPoly are even better than the results with the original uncorrupted data in

Table 3.7. This suggests the removal of some of the noise that might exist in the original

data. We also observe that improvement is more pronounced with the ”TestingB” set.

Considering the features, length-based features, in general, see a higher percentage of

improvement after joint correction compared with the vector-based features.

3.2.5.2 Evaluation of gait cycle statistics

Table 3.9 shows the rank-1 identification scores after computing the six statistics of each

feature over the gait cycles for the corrected skeletons. By comparing the results with

the single-shot identification accuracy after joint correction in Table 3.8, we only observe

improvements in three cases (shown in boldface). Earlier in subsection 3.2.4, we discussed
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Table 3.8: Single-shot identification: Rank-1 identification accuracy for the proposed features
on IAS-Lab RGBD-ID ”TestingA” and ”TestingB” before (with noisy and missing joints) and

after joint location correction

Method TestingA TestingB

With added noise

Length-based (NN) 23.86 30.18

Length-based (SVM) 31.20 41.43

Vector-based (NN) 28.05 31.76

Vector-based (SVM) 39.19 46.35

After applying GlidarPoly

Length-based (NN) 48.24 63.93

Length-based (SVM) 48.09 63.01

Vector-based (NN) 52.44 59.57

Vector-based (SVM) 52.58 62.34

Table 3.9: Rank-1 identification accuracy using the 6 statistics of the proposed features on
IAS-Lab ”TestingA” and ”TestingB” after joint location correction

Method TestingA TestingB

Length-based (NN) 53.88 66.88

Length-based (SVM) 45.88 65.29

Vector-based (NN) 50.24 53.56

Vector-based (SVM) 46.89 61.29

how our evaluation shows that we need an order of 10 gait cycles for training to acquire

improvement over the single-shot scenario. With the lidar dataset, we required, on av-

erage, at least 20 gait cycles per subject to achieve such an improvement. In the lidar

dataset, there is only one subject with less than 20 gait cycles for training. But, in the

IAS-Lab dataset there are three subjects with such a condition. Therefore, we observe

fewer cases of improvement in IAS-Lab compared with our flash lidar dataset.

In Figure 3.14, we show the performance of three sets of feature statistics over every

gait cycle after applying GlidarPoly. The performance comparison is done on the lidar

data, and ”TestingA” and ”TestingB” in IAS-Lab. We use NN and SVM as classifiers.

In the majority of cases, the lower quartile, upper quartile, and median set outperform

the mean, max, and standard deviation set after joint location correction. We also see

cases where the former set can acquire higher identification accuracy compared with the
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Figure 3.14: Comparison of the performance of mean, max, standard deviation set, and lower
quartile, upper quartile, median set, and the set of all the six statistics to capture the dynamic
of the motion after joint location correction. Comparison is performed for lidar and IAS-Lab
datasets with both types of features and SVM and NN as classifiers. LB and VB stand for
length-based and vector-based features, respectively. In the majority of cases, lower quartile,

upper quartile, median set outperforms the mean, max, standard deviation set.

combination of all the six statistics. These observations suggest that lower and upper

quartiles and median, as robust statistics, are better identifiers of temporal information

when we employ joint correction to recover noisy and missing data. Our experiments

also show that, in general, the combination of lower quartile, upper quartile, and median

of the features in an SVM classifier framework yields about the same accuracy using

either an RBF or a linear kernel. However, for the IAS-Lab dataset, the linear kernel

performs better than the RBF kernel with the lower quartile, upper quartile, and median

of vector-based features.

3.3 Remarks

In this chapter, we presented an efficient pipeline to improve the application of flash lidar

for the gait recognition problem. The main challenge is caused by the low quality and

noisy imaging process of flash lidar. Such signal quality adversely affects the performance

of state-of-the-art algorithms for skeleton detection. The detected skeletons from the col-

lected sequences contain a considerable number of erroneous joint location measurements.
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Furthermore, the detections for several skeleton joints are missing in many frames. Under

the described scenario, a common practice involves removing noisy data. However, data

elimination results in the loss of temporal information and renders identification impos-

sible in numerous frames, which is not desirable for time-critical applications, such as

surveillance. To improve the quality of joint localization and to enhance gait recognition

accuracy using flash lidar modality, we present methods for joint correction: GlidarCo,

and GlidarPoly. We also present an automatic outlier detection method for applications

where data elimination is not an issue. Furthermore, to incorporate motion dynamics

after data correction, robust statistics are integrated that can effectively improve the

performance of the designed features that only employ traditional feature moments over

the gait cycles. The proposed pipeline is appealing in terms of computational complexity,

scalability, and a simple, yet effective design.
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Gait anomaly recognition

Gait is a dynamic entity that changes over time. The relation between joints that are

not directly connected can change from one pose to another (a.k.a. spatial variation).

Besides, the relationship between joints that belong to different poses continuously varies

through time (a.k.a. temporal variation). Among other objectives, the analysis of hu-

man gait can provide information that is beneficial for the medical assessment in the

variety of physiological and neurological conditions [30, 31]. Researchers have evaluated

gait patterns for diagnosis, progress assessment, and treatment evaluation of age-related

impairments of locomotion, hip and knee osteoarthritis, post-stroke patients, multiple

sclerosis, cerebral palsy, neurodegenerative disorders such amyotrophic lateral sclerosis,

Huntington’s disease, and Parkinson’s disease [32,33,81].

Clinical assessment of gait is commonly conducted in specialized laboratory environ-

ments, using tools such as pressure-sensitive walkways, e.g., GaitRite, and marker-based

systems, e.g., Vicon motion capture, that provide reliable gait data. However, such de-

vices are costly and require extensive and elaborate sensor placement. Besides, such

systems do not capture gait patterns that are observed in a natural environment [82],

where the subjects show their habitual behavior. These patterns are vital for an accu-

rate gait assessment. However, carefully supervised in-lab techniques are not a proper

45
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representative of the gait patterns in a free-living environment. As life expectancy grows

and with a growing elderly population, the development of appropriate frameworks for

free-living gait assessment has become more vital. Such frameworks can be utilized for a

frequent out-of-the-lab gait evaluation to detect early signs of age-related ailments that

affect the patterns of gait. In recent years, numerous studies have attempted to address

this issue by presenting frameworks for a free-living gait assessment [83–85]. Modalities

such as wearable sensors and Kinect, which can collect spatiotemporal gait informa-

tion out of specialized labs, have become the focus of numerous gait analysis studies

for healthcare-related applications. The main advantage of Kinect is its low cost and

markerless accurate human skeleton joint tracking capability that provides a convenient

evaluation for the patients and the clinical laboratory technicians. Furthermore, multiple

studies have investigated the liability of Kinect for clinical evaluation purposes [39,40].

The majority of state-of-the-art gait anomaly detection methods have been focused

on the evaluation of certain parameters of the gait. Examples of these parameters are

gait speed, cadence (the rate at which a person walks, usually defined as the number of

steps per minute), stride length (defined as twice the step length), and their alternation

from the standard ranges in the healthy gaits. Numerous studies focused on gait features

from certain lower limbs to recognize an abnormal gait. In [86,87], the authors performed

a statistical analysis of selected gait factors. Daliri et al. [33] presented a time series anal-

ysis of stride intervals, swing intervals, stance, and double support intervals. Statistical

analysis of the estimated probability density function of the stride signal was employed

in [88] to detect abnormal gaits. In [89], authors used a wavelet-based characterization of

stride time signals. An adaptive neuro-fuzzy inference on stride, stance, and double sup-

port intervals was presented in [90]. These studies are valuable, as they link the health

evaluation of gait with relevant parameters that are clinically interpretable. However,

they also limit the acquired information to a few selected factors and do not take into
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account the interaction between different body segments in forming locomotion [91]. In

recent years, success of the skeleton-based models in machine vision applications such as

gait identification and activity recognition [52–54] has inspired numerous skeleton-based

gait evaluation methods [3,92,93]. Such methods try to avoid the limitation in traditional

approaches by taking into account the interactions between different body parts.

In this chapter, we employ the data collected via Kinect for a contact-free, marker-less

approach to gait assessment. The skeleton data is captured by Kinect at a fixed interval.

Subjects do not walk at the same speed throughout a whole recorded sequence. Besides,

different subjects perform the same task at different paces that can create spatiotemporal

patterns similar to other classes of normal/pathological gaits. These two scenarios can re-

sult in intra-class dissimilarity and inter-class similarities, which makes minor pathological

gait recognition quite challenging. We present multi-class and computationally-efficient

frameworks that can be adapted for convenient out-of-the-lab gait evaluation. First, fol-

lowing the recent surge of RNN-based networks in skeleton-based anomaly recognition, we

present a multi-class gait anomaly classification framework that uses an LSTM network

to detect embedded features in sequences of gait postures. Using the skeleton informa-

tion provided by Kinect, we propose interpretable handcrafted features to represent each

posture. For our first study, we will focus on a problem with large intra-class variations

(a large collection of subjects) but a small number of class abnormalities. Next, we will

consider a larger set of gait abnormalities, presenting a deep learning-based pipeline with

minimal, yet effective skeleton data preprocessing. The presented framework can clas-

sify minor gait anomalies with high accuracy (state-of-the-art), can be applied to other

datasets through transfer learning, and has the potential to be integrated into a free-living

gait assessment framework for real-world applications.
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4.1 Skeleton-based gait anomaly recognition (SGAR)

Skeleton-based gait anomaly recognition (SGAR) methods have become popular due

to the low cost and data collection convenience of markerless modalities such as Kinect.

Furthermore, skeleton-based features mimic real, interpretable human physiological traits.

The majority of SGAR studies have been focused on handcrafted features and machine

learning-based approaches. In this section, we briefly review some of the gait anomaly

recognition methods that employ skeleton-based features and machine learning tools.

In [94], the authors employed the idea of joint motion history (JMH) to capture spa-

tiotemporal motion information. Skeletons are normalized, a sliding window collects the

normalized skeletons, which are transformed into a volume that is divided into voxels that

capture the history of joint coordinates. The acquired JMH goes through dimensionality

reduction, and abnormal gaits are detected by matching with a set of key pose templates.

Meng et al.. [3] used the distance between 20 joints in the skeleton and employed a sliding

window technique to capture temporal information. A random forest model was hired to

detect abnormal gaits from the extracted spatiotemporal features. Paiement et al. [92]

employed skeleton normalization for preprocessing and diffusion maps for dimensionality

reduction. They built a statistical model of normal gait, and new observations were tested

against the learned model of normal gait. In [2], the authors used a set of lower body

limb angles to describe each pose. The resulting feature vectors were concatenated over

every gait cycle, then transformed into a set of codewords using K-Means clustering. The

normal gait model was built using Hidden Markov model, and a threshold based on the

log-likelihood of such a model was used to recognize abnormal gaits. In [93], the authors

build two covariance matrices, one for the mutual distance of joints in a skeleton, and

another for the velocity of each joint. A custom covariance-based metric and K-nearest
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classifier were used for abnormal gait detection. Khokhlova et al. [5] created a set of fea-

tures based on low limb flexion angles and designed a long short-term memory (LSTM)

network for classification. In [95], authors designed an autoencoder with recurrent layers

for feature extraction and performed a series of classification experiments with multiple

classifiers using the features from the encoder.

Among the proposed methods for SGAR, our work is closest to the approaches

presented in [5], [95] and [4]. All of these studies employ deep learning-based techniques

for the classification of an anomaly in a multi-class framework. A multi-class framework

is unlike the traditional approaches in this field, where anomaly recognition is treated

as either a one-class or a two-class problem. In [5], [95] and [4], an RNN-based network

is designed for modeling and classification of gait abnormalities. Besides, the authors

in [95] perform their experiments with subject cross-over between the training and test

data. Finally, all of these studies evaluate their proposed model on one dataset only and

have not demonstrated versatility for multiple scenarios.

Due to the dynamic nature of gait, sequential-based models such as Hidden Markov

Model (HMM) and RNN-based networks such as LSTM and Gated Recurrent Units

(GRU) have been the focus of many studies for modeling human gait [2, 5, 95–99]. In

this chapter, we will focus on deep learning-based frameworks for a multi-class SGAR.

To provide a fair evaluation, we design multiple deep learning networks for modeling and

classification of spatiotemporal patterns of different normal/pathological gait categories.

Thereby, before going into more detail about the proposed methodologies, we provide

some background on deep learning and define major relevant concepts in this area.
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Figure 4.1: An illustration of a neuron (perceptron), the building blocks of a deep learning
model. The activation function acts on the weighted sum of the inputs to create the output.

4.2 Some background on deep learning

Deep learning is a sub-field of machine learning, which itself is a sub-field of artificial in-

telligence. Artificial intelligence is a set of techniques that enables a machine to mimic in-

telligent human behavior. According to Tom Mitchell, a machine learning pioneer, in ma-

chine learning, the goal is to design computer algorithms that can improve automatically

through experience. Traditional machine learning algorithms require hand-engineered

features for prediction and classification. Inspired by the structure of the human brain,

deep learning models extract underlying features directly from data to carry on a cer-

tain task. After the surge of modern deep learning models in 2006 [100], deep learning

has revolutionized various fields from computer vision and robotics to natural language

processing, finance, and medicine.

Deep learning models consist of multiple layers of neurons (perceptrons). Figure 4.1

shows a neuron. Each of the xis in this figure represents one input that has its weight

of wi. The weighted summation of the input is calculated as is described in this figure

and passed to an activation function that produces the output. In general, each neuron

also has a bias term that is added to the other weighted inputs and shifts the activation

function to the left or right. We can write the equation in Figure 4.1 in a vectorized
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Figure 4.2: A simple neural neural network that consists of one dense hidden layer. The
hidden layer is called a dense or fully-connected layer because all the inputs are fully/densely

connected to all the outputs.

format. By adding the bias term, the output of a neuron can be written as follows

ŷ = f(b +XTW ) (4.1)

where f is the activation function, b is a vector of biases, XT is the vector of inputs,

W is the matrix of weights, and ŷ is the vector of outputs. For a multi-layer network,

this equation describes the relationship between the inputs and outputs of each layer. A

neural network has at least one hidden layer. A simple neural network is shown in Figure

4.2 with two inputs, two outputs, and a single hidden layer that consists of three neurons.

This figure is an example of a dense or fully-connected network since all the inputs are

densely connected with all the outputs.

The outputs of each layer of a neural network are the multiplication of its inputs

(or the output of the previous layer) and its weights. Thereby, each layer of a neural

network is a linear function on its own. A neural network requires non-linearity for mod-

eling highly complex and nonlinear functions, and activation functions are responsible

for introducing non-linearity to the model. Thereby, activation functions are generally

nonlinear functions. There are various types of activation functions. For a long time, sig-

moid function has been the most commonly used activation function. However, sigmoid
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outputs the same value for a large range of positive and negative inputs (+1 and −1,

respectively). This makes training difficult, as the activation function can saturate and

the model stops to learn after some time. In recent years, rectified linear unit or ReLU

has become the most widely used activation function. RELU is the default activation

function in dense and convolutional layers. RELU is partly inspired by a neurological

analogy that the neurons in our brain are either inactive or activated. The ReLU func-

tion is a piece-wise linear function that will produce an output of zero for a negative input

and outputs the same input otherwise

ReLU(x) = max(0, x) (4.2)

Therefore, if the input of a neuron is beyond some threshold, the neuron acts like an

identity function. ReLU and other piece-wise activation functions preserve many proper-

ties of linear functions such as easy optimization by gradient-based algorithms. Thereby,

training with ReLU is fast and fairly easy.

To approximate a proper function, a deep neural network needs to learn the right

weights and biases. This is done through a learning phase, in which a deep model ap-

proximates a function to predict or classify, such that the cost of incorrect predictions is

minimized. For each input, a loss or cost function tells the difference between the actual

value or label of that input and the prediction of the model for that input. An empirical

loss can be written as the average of losses over each training example

J (W ) =
1

n

n∑
i=1

L(f(xi;W ), yi) (4.3)

where W is the weight matrix, xi shows the input for training example i, and yi shows

the true value or label of input example xi. The goal is to find W ∗, the set of values

for weight matrix W , such that W ∗ = arg minW J (W ). There are different types of
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loss functions, such as mean square error (regression), hinge loss, cross-entropy, and

KL-divergence (classification). We use the latter two loss functions in our problem and

provide more detail about them later in this chapter.

Once a loss function is formulated, the weights of a neural network are initialized

randomly. The goal is to find a set of weights that minimize the loss function. These

weights are determined through an iterative procedure until some conditions are satisfied.

In each iteration, gradients of the loss function with respect to all the weights (and biases)

are computed, ∂J (W )
∂W

. The gradient of the loss function with respect to each weight tells us

how sensitive the loss function is to the change in that weight. Each gradient has a value,

which shows how important each weight is, as well as a direction, which tells us in what

direction the cost should move. The algorithm that is used for computing the gradient

of the loss function with respect to each of the weights is called backpropagation .

Backpropagation uses the chain rule to compute the gradients. The gradients are used

for updates to the weights according to the following

W 7→ W − η ∂J
∂W

(4.4)

where η represents learning rate that determines the step size in the direction of the

gradient, toward the minimum of the loss function at each iteration 1. Computing the

gradients of the loss function and weight update according to Equation 4.4 is done in

each iteration until a local minimum is reached. This optimization algorithm is known

as gradient descent and is widely employed in finding optimum parameters in deep

learning models. Apart from gradient descent and its derivatives (stochastic gradient

descent and mini-batch gradient descent), deep learning has seen a surge of numerous

optimizers over the last years. Many of these optimizers, such as Adagrad, Adadelta,

1Biases are updated according to an equation that looks the same as Equation 4.4, the only difference
is that gradient of loss with respect to bias is used instead: b 7→ b− η ∂J

∂b . From now on, everywhere you

see a weight update equation, consider the same equation for bias update by substituting ∂J
∂W with ∂J

∂b .
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RMSProp, and Adam are based on adaptive learning-based approaches. Later, we will

describe each of the optimizers that are utilized in designing any of the deep learning

models in this chapter.

4.2.1 Overfitting

One of the problems that happen during the training phase of a deep learning model is

overfitting. Overfitting occurs when the training loss of the network keeps improving and

reaching a very small value, but when we evaluate the network on unseen data, it shows a

large loss. This occurs because the network is overly trained on the training data. At this

point, the network stops learning features that could be generalized and only memorizes

the training data.

Deep learning models are notorious for their large number of parameters. The com-

plexity of deep networks enables them to model complex functions. The high complexity

can also result in overfitting because deep models learn the patterns from data. More

parameters in a network require more data for training. In particular, this can be prob-

lematic when the function that the network is modeling is too complex. One way to

prevent overfitting is to reduce the complexity of the model. We can reduce complexity

by reducing the number of parameters, such as the number of layers or the number of

neurons in each layer. Adding a penalty to the loss function is another way to reduce the

complexity of a deep model.

With more data, models generally improve their performance. However, after some

point, the performance of classic machine learning models plateaus, while a deep learning

model keeps improving until it reaches its capacity of learning. More complex models have

a higher capacity of learning and require more data to learn generalizable patterns, or

they might overfit otherwise. Thereby, adding more data or creating more data through

data augmentation is another way to reduce overfitting in a deep learning morel.
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Figure 4.3: Illustration of early stopping. The validation error starts increasing after some
point, while the training error keeps decreasing. With early stopping, model parameters at the

early stopping epoch are saved for evaluation on the test data.

There are other regularization techniques, such as dropout, early stopping, weight

decay, and activity regularization for reducing overfitting in a deep model. In the following

subsections, we will describe some of these methods that have been employed in our

models’ design.

4.2.1.1 Dropout to prevent overfitting

Dropout [101] works as a regularization technique in deep neural networks and helps

to prevent overfitting and reduce the generalization error. On each training iteration,

each node of the network, along with all its in-going and out-going connections, will be

eliminated with some probability. At each iteration, this process will generate a smaller

network, preventing each node from overreliance on the nodes that are connected to it. In

practice, dropout will result in a structure with smaller weights, acting like an adaptive

L2 regularization [102].

4.2.1.2 Early stopping to prevent overfitting

Early stopping [103] is another regularization technique to avoid overfitting. Figure 4.3

provides an illustration of early stopping. As we observe in this figure, as the training
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Figure 4.4: Pipeline for gait anomaly recognition with handcrafted features and bidirectional
LSTM

epoch 2 increases, the training error decreases. However, by looking at the validation

error 3, we see that the error decreases to some point and then start increasing. This

behavior is a sign of overfitting. The network is just memorizing the training data after

the early stopping point, thereby cannot be generalized to the validation data. In early

stopping, the training stops at the early stopping epoch based on a criterion 4, and the

parameters of the model are saved for later evaluation on test data. Early stopping

has a hyperparameter that is called patience. Patience is the number of epochs that

the training continues after the early stopping epoch. The validation error curve is not

always as simple as the one in Figure 4.3. Sometimes, the validation starts increasing

and after some point starts decreasing again and reaches a new minimum, and sometimes

this increase and decrease in the validation error curve happens more than once. We use

patience for such scenarios because we always want to save the model that reaches its

high performance on the validation data.

4.3 SGAR with handcrafted features

Figure 4.4 describes the pipeline for the gait anomaly recognition using handcrafted fea-

tures from the skeleton data. The inputs to the presented SGAR system are sequences

of skeleton joints J = [J1, J2, ..., Jf ], where f is the number of frames in a sequence and

Ji = [xk, yk, zk]
25
k=1 ∈ <3N (4.5)

2An epoch is the single pass of all the training data in a neural network.
3The network does not use validation data for training. Validation data is used for model evaluation

during the training phase.
4like the epoch at which validation error reaches minimum or validation accuracy reaches its maximum.
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Figure 4.5: Skeleton joints for Kinect v2

with (xk, yk, zk) representing the kth joint coordinates in frame i. We use skeleton joints

generated by a Kinect camera as the input. Figure 4.5 shows joint information that is

generated by a Kinect camera. Features in each frame are extracted from skeleton joints.

In the next step, data augmentation is performed on the designed features. Finally, the

output of the augmented features is fed into a bidirectional LSTM network for modeling

the gait patterns and classification. In the following subsection, we describe each building

block of the presented pipeline in more detail.

4.3.1 Feature extraction

Previous studies have shown that lower-body limbs can provide reliable information for

gait representation and detecting anomalous gaits for various types of gait disorders

[2,5,104–106]. Following this direction, we propose a set of attributes based on lower body

joints. Figure 4.6 shows the proposed feature vector. As we can see in this figure, the

proposed feature vector consists of six 3-dimensional (3D) vectors and four angles [2,25].

Therefore, each frame is represented by a concatenated vector of these ten features,
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Figure 4.6: Representation of the handcrafted features for skeleton-based gait anomaly recog-
nition. There are six 3-dimensional (3D) vectors that are shown in red and 4 angles that are

depicted in green.

creating a feature vector of 22 dimensions. Each of the 3-dimensional vectors presents a

limb vector in the lower body and is the same as part of the vector-based feature vector

that we designed for gait recognition with flash lidar data (refer to Chapter 2.1.1) [80].

Previous studies have shown that the joints in the foot are prone to noisy measurements

[107, 108], and our anecdotal experiments support this conclusion. Therefore, we do not

consider the angles and 3-dimensional vectors in the foot area.

4.3.2 Data augmentation

The main superiority of deep learning comes from its ability to learn nonlinear patterns

in a high-dimensional space. However, to design deep models that can extract such high-

level features and can generalize well to unseen data, we need a large number of data

for training. While acquiring a considerable number of data might not be an issue for

applications in computer vision and natural language processing, for some tasks, such

as gait anomaly recognition, it is challenging. This difficulty is mainly due to the high

cost of data collection. Most of the skeleton-based datasets for anomaly classification

are not publicly available due to confidentiality concerns for patients. There are only a
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Figure 4.7: Illustration of data augmentation using window warping for a sample joint
coordinate sequence. The small plot on the top right of the figure shows time-ordered
samples of the values in the red window that have been selected uniformly at random.

few publicly available datasets that do not contain a large collection of observations and

include anomalies that are simulated by healthy subjects. Under such conditions, data

augmentation can be a valuable tool for improving the performance of a deep model.

In computer vision, multiple data augmentation techniques such as rescaling, flipping,

cropping, and rotating have been purposed and successfully employed to improve the

performance of a model in a variety of different tasks. Unlike computer vision studies,

the application of augmentation has been limited in time series-based problems with deep

learning. Many augmentation methods in computer vision cannot be directly employed

on time-series datasets. Furthermore, with time-series data, data augmentation is not

trivial, as it heavily depends on the nature of the dataset and the context of the problem.

We can look at SGAR as a multivariate time-series classification problem, where each time

sequence represents joint coordinates or a set of feature values through time. However, due

to the complex relationships between different features or skeleton joints during motion,

data augmentation is not trivial for such type of problems. Besides, for datasets with

high inter-class similarity, data augmentation becomes even more challenging.

In this study, we use sequences of features that are computed using the lower-body

joints coordinates. Here, we perform data augmentation in two steps. First, we divide all
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Figure 4.8: Structure of an LSTM cell. Each block with σ shows a sigmoid function.
By creating a value between 0 and 1, sigmoid functions act as the gating function,
controlling the flow of information. ht and Ct are hidden and cell states that are passed
to the next LSTM cell that also takes Xt+1 (input at time step t + 1) as the input.
The building blocks of an LSTM are shown by three blue blocks inside the LSTM cell.

From Left to right, these blocks are: forget gate, input gate, and output gate.

the available sequences into sequences of smaller lengths, where all the resulting sequences

will have the same length of L (there are L frames in each resulting sequence) [109].

The next step of data augmentation involves window warping [110]. From the original

sequences, we select sequences of the same length of M where M > L. Then we down-

sample uniformly to remove extra frames and generate sequences of the same length of L.

Figure 4.7 illustrates window warping for a sample of joint coordinate sequence. We can

determine L based on the condition under which the data was collected. For example, we

can use the reliable range of Kinect camera and the average number of frames that can be

collected when a subject is walking in front of the camera in that range. In general, both

L and M can be determined by experimentation. Next, we will provide some background

on LSTM networks and describe the architecture of the designed LSTM model.

4.3.3 Bidirectional LSTM

In this subsection, we will describe the structure of the designed bidirectional LSTM for

modeling and classifying the gait patterns. But, before going into more detail about the

network architecture, we will provide a brief background on LSTMs. Also, we explain the
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stochastic weight averaging that is used in the design of the network to reduce variance

and generalization error.

4.3.3.1 Some backgrounds on LSTM

LSTM is a specific type of recurrent neural network (RNN) with memory blocks and a

gated structure. While RNNs can work with problems that involve short-term dependen-

cies, they fail to capture the context for problems with longer sequences. A neural network

uses gradients of a cost function to update the weights and biases in the network such that

the desired cost function of the network is minimized. The gradients of the cost func-

tion are computed using the backpropagation algorithm [111]. In RNNs, the gradient

solution backpropagates through time [112]. As the gap between relevant information

in a sequence increases, the gradient shrinks that disables the network from learning.

The shrinkage of gradients during backpropagation is called the vanishing gradient prob-

lem [113] and is the reason behind the failure of RNNs with long-term dependencies. The

LSTM [114] was introduced to address the problem of RNNs with long sequences. The

gated structure of LSTMs regulates the flow of information, helping the network to forget

the unnecessary information and retain what is essential.

Figure 4.8 shows the structure of one LSTM cell. Like any RNN, each LSTM layer

is a chain of repeating LSTM cells, where the cell state and output at time step t will

be fed to the next LSTM cell at the time step of t + 1. Each LSTM cell has three gates

that are shown by three blue blocks in Figure 4.8. Given x1, ..., xt−1, xt, xt+1, ..., xT that

is a sequence of length T , first it is decided what information to forget through a sigmoid

function in the forget gate

ft = σ(xtU
f + ht−1W

f )

σ(p) =
1

a+ exp (−p)

(4.6)
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where U f and W f are the weight matrices of the forget gate. The input gate decides

which information to update

it = σ(xtU
i + ht−1W

i) (4.7)

with U i and W i defining the weight matrices of the input gate. Finally, the output gate

provides activation to the LSTM cell at time step t+ 1

ot = σ(xtU
o + ht−1W

o) (4.8)

where U o and W o are the weight matrices of the output gate. The candidate cell state

C̃t, the cell state Ct, and the output ht can be described by the following formulas

C̃t = tanh(xtU
g + ht−1W

g)

Ct = σ(ft ∗ Ct−1 + it ∗ C̃t)

ht = tanh(Ct) ∗ ot

(4.9)

where ∗ shows a point-wise operation. In an LSTM cell, sigmoid function (σ) is called the

recurrent activation and tangent hyperbolic, tanh(p) = (1− exp (−2p))/(1 + exp (−2p)),

is called activation. The role of an activation function is to introduce non-linearity to the

networks that is required for modelling complex non-linear processes.

LSTMs can detect patterns in sequence-based data with their gated structure that

removes the unnecessary information and retains the relevant context. The bidirectional

LSTM is a specific variety of LSTM networks in which each sequence is presented in both

forward and backward order. Unlike unidirectional LSTMs that only look at the past con-

text, a bidirectional LSTM can utilize both past and future contexts [115]. Bidirectional

LSTMs have shown superior performance compared to their unidirectional counterparts

in a variety of sequence-based problems [116–118].
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4.3.3.2 Stochastic weight averaging

The loss landscape of many deep learning models contains various sharp minima. These

minima are often caused by a combination of noisy/anomalous training data and the

structure of the model. As such, small changes in the input can result in a very different

solution, causing high variance. With smaller datasets, the effect of changes in the input

on the prediction of the model can be more dramatic. In a small dataset, the variance

in the input can be high, but the lack of enough data avoids the network to discover the

hidden relationships between input and outputs.

To achieve low generalization error, it is desirable to use an algorithm that can

avoid sharp minima [119]. While prevalent gradient-based optimization algorithms for

training deep learning models are flexible in exploring the solution space, they are not

capable of avoiding/detecting such sharp minima. Designing an ensemble model is a

solution to mitigate the effect of such minima, which ultimately reduces the variance of

a deep learning model. Besides, ensemble models can also improve the performance of

the model, resulting in higher accuracy. However, training a deep learning ensemble is

time-consuming and memory-demanding. Stochastic weight averaging (SWA) [120] offers

a solution to the computational inefficiency of deep learning ensembles.

SWA takes multiple snapshots of the model during the training phase and computes

an average over the weights of the model in each of the saved snapshots. The aggregated

weight average is updated according to the following equation:

wSWA ←
wSWA × nmodels + w

nmodels + 1
(4.10)

where w is the network weights at the epoch that SWA is initialized, and nmodels is the

number of models at the end of each epoch in which wSWA is updated. If c defines the

length of the cycle for a cyclic learning rate (c = 1 for constant learning rate), wSWA gets

an update at the end of epoch for which mod(i, c) = 0 , where i is the epoch number.
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Figure 4.9: Conceptual visualization of Flat and Sharp Minima. The Y-axis repre-
sents values of the loss function and the X-axis shows the variables (parameters) [1]. If
the learning algorithm lands on a solution in the weight space that corresponds with a
sharp minimum in the training loss surface, the test loss at the same point might be a
large value. On the other hand, finding a solution in the flat region of training loss will

most likely result in a small value for the test loss function.

The goal of a deep learning model is to find a point in the high-dimensional weight

space such that the loss function acquires a low value both on training and test set. To

achieve this goal, the learning algorithm of a deep learning model travels the weight space

during the training phase. The main idea is that train and test loss surfaces are similar

but not the same. Imagine the learning algorithm has found a solution in the weight

space that corresponds with a sharp minimum of the training loss surface. Then, for

a slightly shifted test loss surface, this solution might result in a big value for the test

loss. By averaging in the weight space, SWA leads stochastic gradient descent (SGD)

toward wide flat regions of the loss surface. So, a point that results in a low value in the

training loss surface also acquires a low value in the test loss surface, which corresponds

with a lower generalization error. Figure 4.9 shows simplified loss surfaces in 2D for a

sharp and flat minimum scenarios. By taking the average in the weight space, SWA

offers the benefits of an ensemble, such as low variance and higher accuracy, without

the computational overhead of traditional ensemble models that happen in the model

space [120]. Previous studies have demonstrated performance improvement with SWA in

different fields such as computer vision [120], language modelling [121], semi-supervised
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Table 4.1: Description of the bidirectional LSTM model for gait anomaly recognition. Number
of units shows the number of units in each LSTM layer.

Hyperparameter Value Hyperparameter Value

Number of layers 2 SWA learning rate 0.01

Number of units 256 Epochs 110

Batch size 16 Optimizer SGD

Learning rate 0.1 Loss function Cross-entropy

learning [122], and Bayesian model averaging [123]. We implement SWA in the design of

the proposed bidirectional LSTM model to reduce the generalization error of the model

in predicting the class of anomalous gaits.

4.3.3.3 Description of the bidirectional LSTM architecture

Table 4.1 shows a description of the designed bidirectional model for gait anomaly recog-

nition. The model is trained with mini-batches of 16 samples. The inputs to the network

are all scaled in the (−1, 1) range. Rescaling all the features to a certain range is essential

because each feature vector consists of angles and 3-dimensional vectors that have differ-

ent scales. For each feature vi ∈ [rmin, rmax], where rmin and rmax represent the lower and

upper limit of the range of values that feature vi takes over all the training examples. In

general with [tmin, tmax] as the target range, each feature like vi is rescaled according to

vi 7→
vi − rmin
rmax − rmin

× (tmax − tmin) + tmin (4.11)

Here, [−1, 1] is the target range. Studies have shown that feature scaling can lead to faster

convergence and also avoids the network becoming stuck in local optima [124]. Each mini-

batch consists of sequences of the features that are drawn from lower body joints (refer

to subsection 4.3.1). Each sequence has a dimension of R35×22, with a sequence length of

L = 35, and 22 features per time step.

Each bidirectional LSTM layer has 256 neurons with a dropout of 50%. The network

is trained for 110 epochs, and SWA is initialized roughly in the last half of the epochs

(epoch = 61). To compensate for the class imbalance in this dataset, we use weighted
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categorical cross-entropy as the loss function

J = − 1

M

K∑
k=1

M∑
m=1

wky
k
m log(hθ(xm,k)) (4.12)

where M is the number of training samples, K is the number of classes, ykm is the k’th

element of one-hot-encoded target label of example m, hθ is the k’th element of the

prediction of neural network for example m, and wk is the weight for class k. Here, we

define class weights according to the following formulation

wi =
max(

⋃K
k=1 Nk)

Ni

(4.13)

where wi is the class weight for class i, Ni is the number of samples in class i, and K is

the number of classes in the dataset. As we observe, the weights of each class depends on

the population of that class, as well as the population of the majority class. This way, the

least populated class gets the highest weight and the majority class gets the unit weight.

Thereby, to avoid a bias of the loss function toward more populated classes, we penalize

the miss-classification in classes with less samples with larger weights. To optimize the

loss function, we use mini-batch gradient descent

θnew = θold − η∇θJ(θ;x(i:i+nb); y(i:i+nb)) (4.14)

where θ is the model’s parameters, η is the learning rate that determines the step-size

toward a (local) minimum at each iteration of the model’s parameters update, ∇θJ is

the gradient of the loss function with respect to its parameters, and nb is the batch size.

Mini-batch gradient descent is a variation of gradient descent, where a subset of training

data is used to update the weights. Compared with batch gradient descent that uses all

the training data for each weight update, mini-batch gradient descent is computationally
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efficient; however, it adds another hyperparameter to the model, which is the batch size.

In this dissertation, every time we employ the SGD (stochastic gradient descent)

as the optimizer, we are using mini-batch gradient descent with learning rate decay and

momentum. Learning rate decay is defined according to the following equation

lr = lrin ∗
1

1 + iteration ∗ decay
(4.15)

where lrin is the initial learning rate and decay is the amount of weight decay at each

iteration. With learning decay, the learning rate is updated according to Equation 4.15

at the end of each epoch. Using learning rate decay can help in converging closer to the

minimum of the loss function compared with a fixed learning rate. A learning rate defines

how strongly we move in the direction of gradient descent at each mini-batch update.

Generally, we might afford to take larger steps in the beginning to accelerate training.

But, as we get closer to the minimum of the loss function, taking large steps might cause

overshoot or wander around the solution. On the other hand, if the learning rate decays

over time, as we get closer to the solution, the steps toward the solution become smaller.

This will land the model in the small neighborhood of the minimum (an area of lower

loss), helping the convergence of the model toward an acceptable accuracy [125].

Another parameter in stochastic gradient descent optimizer is momentum [111]. Mo-

mentum can be helpful in two ways: it can accelerate convergence and can lead to a

smoother convergence. Mini-batch gradient descent and gradient descent 5 provide a

noisy weight update, since each time, we only use a subset of training data for weight

update. As a result, weight updates cause oscillations, and this will slow down the con-

vergence. Besides, the training loss function has a complex landscape with many narrow

5In gradient descent, parameters are updated with every training example
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valleys and local minima, where loss varies differently in different directions 6. To get

a solution that can be generalized well to unseen data, we need to avoid shallow local

minima. We also need to reach a flat minimum, such that a shift in the loss surface of

unseen data does not land the model on a large loss value 7. As gradient descent leads

the model toward a proper local minimum, the model might get trapped in shallow or

narrow valleys of the loss landscape as gradient values are not large enough to push the

model out of such local minima. Momentum adds a boosting term to the gradient descent

by taking an average over several (or few depending on the momentum coefficient) of the

previous gradient steps. Using momentum in gradient descent, the weight update rule

changes to

W 7→ W − ηνt

νt = βνt−1 + (1− β)
∂J
∂W

(4.16)

where η is the learning rate as before, ν is called velocity and ν0 = 0, and β ∈ [0, 1) is

called momentum coefficient. The equation that describes the update on the velocity is

an exponentially weighted average equation 8. The first term in this equation takes a

weighted average of the accumulated gradients in previous steps, while the second term

considers the weighted gradient at the current step. Equation 4.16 will reduce to standard

gradient descent for β = 0. By averaging over previous gradient steps with momentum,

the gradient will become smaller in those directions that standard gradient descent might

cause fluctuations. In the directions that gradient does not fluctuate, the average of

gradient values is still large. Given a proper value of momentum, gradient descent with

momentum can lead to a smoother and faster convergence toward a stable minimum. In

6We are talking about a high dimensional space, where each dimension corresponds with one parameter
of the deep learning model. Not all parameters have the same effect on the loss function. For the same
amount of variation in different parameters, the loss function can change quite differently. In other words,
gradients of loss are different with respect to different parameters.

7Please refer to subsection 4.3.3.2
8This is called an exponentially weighted average equation because if we expand it, we see that at

each time step, the current gradient is multiplied by 1 − β, but the previous gradients are weighted by
exponentially decaying values of β.
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Table 4.2: Summary of the MMGS dataset for SGAR. Min frames and max frames show the
minimum and maximum number of sequence frames in each class, respectively. Total frames

shows the total number of frames from all the sequences in each class.

Class min frames max frames Total frames

Normal 33 195 15726
Knee 41 216 19896

Padding 57 193 17180

general, β = 0.9 works well in many problems. We also use this value of momentum in

each case where we utilize the SGD optimizer.

4.3.4 MMGS dataset

For this study, we use the multi-modal gait symmetry database (MMGS ). This dataset

was introduced in [5] by Khokhlova et al. MMGS contains three normal/pathological

gait classes, simulated by healthy subjects. The gait classes include normal gait, limping

gait that is simulated by wearing a 7-cm padding sole by each subject, and gait with knee

injury-related problems. The latter category can represent an after-fracture recovering

gait or a prosthesis-wearing gait and is simulated by asking subjects not to bend their

right knee during walking. There are 27 subjects, each performing each of the gait

categories between 5 to 7 times. The sequences in this dataset have different numbers of

frames, ranging from 33 to 216 frames. Thus, different subjects have sequences of different

lengths, and there exists class imbalance in this dataset. Table 4.2 summarizes the MMGS

dataset, presenting the minimum and the maximum number of sequence frames, as well

as the total number of frames in each class. As we observe from this table, the anomaly

related to the knee injury has the maximum total number of frames among all the classes.

We also see that normal class has the minimum number of total frames among the three

classes. The numbers in this table confirm the class imbalance in this dataset.

Among the publicly available skeleton datasets for normal/pathological gaits, this

dataset has the largest number of subjects. The large number of subjects in this dataset



Chapter 4. Gait anomaly recognition 70

and multiple records of the same walk results in high intra-class variations, which makes

classification challenging for this dataset.

4.3.5 Experimental results

Table 4.3 shows classification scores of SGAR using the proposed features with different

classifiers for the MMGS dataset. We use accuracy, precision, and recall (sensitivity)

for classification evaluation. As we observe, compared with SVM, classification accuracy

improves by almost 4% with the designed LSTM model. In Table 4.4, we present a com-

parison between the proposed feature vector and the work presented in [5] by Khokhlova

et al.. They present low limb flexion angles as the feature vectors for SGAR. The low

limb flexion angles in [5] is classified by an SVM with a polynomial kernel, a single bidi-

rectional LSTM, and an ensemble of five bidirectional LSTMs as is reported in Table

4.4. Considering the results in Tables 4.3 and 4.4, we observe that with the proposed

features, we acquired higher classification scores with Random Forest and SVM compared

with the low limbs flexion with SVM and LSTM. Even without data augmentation, the

proposed features can achieve better performance compared with both LSTM and ensem-

ble of LSTMs in [5]. Our results also confirm the effectiveness of data augmentation in

improving the performance of the LSTM model. With simple data augmentation, we can

improve the average classification accuracy by more than 4% compared with an ensemble

of LSTM networks in [5]. By comparing the minimum and maximum accuracy in the

last two rows of Table 4.4, we see data augmentation can reduce accuracy variation of

the model, resulting in a more robust model, as we expected.

In this study, we used the same subjects for testing as in the original study by

Khokhlova et al. [5]. Out of 27 subjects, 8 of them were selected for testing and the

rest for training and validation. From the remaining subjects, they used 5 subjects for

validation and the rest for training. As a part of our experiments, we also investigated

the effect of using different numbers of subjects for validation. Figure 4.10 shows average
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Table 4.3: Average accuracy, precision, and recall (sensitivity) of gait anomaly recognition for
the MMGS dataset using the proposed feature vector with five different classifiers. The results

with LSTM is with data augmentation.

Model Accuracy Precision Recall/sensitivity

KNN (N=5) 62.89 62.29 63.99

Näıve Bayes 70.20 69.63 69.73

Random Forest 79.33 79.21 79.37

SVM 81.87 81.22 81.80

LSTM 85.63 85.14 85.33

Table 4.4: Average accuracy, precision, and recall (sensitivity) of gait anomaly recognition
for the MMGS dataset with the proposed feature vector and the low limbs flexion angles in [5].
The last two rows, labeled by ∗∗, show the results with our proposed feature and the designed

bidirectional LSTM network. NA stands for no augmentation.

Model Accuracy Min accuracy Max accuracy

[5] SVM 77.6 - -

[5] LSTM 77 71 94

[5] LSTM ensemble 82 75 91

LSTM∗∗ (NA) 83.67 71.54 89.89

LSTM∗∗ 85.63 76 91

classification accuracy as a function of number of subjects for validation over the range

of [3, 7] subjects. For the tested range of [3, 7] subjects for validation, the average score

doesn’t change dramatically. However, the standard deviation of the average accuracy

varies significantly. When we use 5 subjects for validation, the standard deviation of the

scores over 30 runs of the network is the lowest, and for 6 subjects, the standard deviation

reaches its highest value. We also observe that for 4 subjects, the average accuracy is the

highest, while the standard deviation of the scores is slightly higher than the 5 subjects

scenario. The reported results in Tables 4.3 and 4.4 shows the average classification scores

with Nsubjects = 4 for validation.

As we mentioned earlier, in the original study [5], the authors used two different sets

of subjects for validation and training. While in gait anomaly recognition, it is essen-

tial to test on the subjects that the model was not trained on, using different subjects

for training and validation is not required. Using data from more subjects for training

can be beneficial, as the network will see a more diverse set of patterns per class during

the training phase. Ultimately, with limited data, this can improve the generalization
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Figure 4.10: Effect of the number of subjects for validation on the average classifica-
tion accuracy in the MMGS dataset.
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Figure 4.11: Percentage of training data for validation, based on the non-subject-
based train-validation split for the MMGS dataset.

error of the network. Using a non-subject-based train-validation split criterion, we ob-

serve an increase in the classification scores. Figure 4.11 shows average classification

accuracy using a non-subject-based train-validation split criterion. We computed the

average classification accuracy over the range of [10%, 50%] of the training data used for

validation. With a non-subject-based criterion, we acquired an accuracy of 87.97% for

three classes of normal/pathological gaits, using 15% of the training data for validation.

This is an improvement of 2.34% over the best result that we achieved with the subject-

based train-validation split and 7.97% improvement over the LSTM ensemble. Besides,

we could improve the standard deviation of the network accuracy over multiple runs
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(here 30 iterations) from 3.18% in the subject-based train-validation split to 1.88% for

the non-subject-based train-validation split, that shows a more robust model in the latter

case. As we mentioned earlier, when we utilize a subject-based train-validation split, we

get the highest classification accuracy with 4 subjects for validation. Using 4 subjects

for validation roughly corresponds with using 15% of the training data for validation in

the non-subject-based train-validation split. We also observe that we acquire the highest

classification accuracy with non-subject-based train-validation split when we use 15% of

the training data for validation. These results suggest that for the MMGS dataset with

the subject-based train-validation split, using 4 subjects for validation might be a better

choice compared with the 5 subjects for validation that was originally suggested in [5].

4.4 SGAR with preprocessed skeleton joints

In the previous section, we presented a model for SGAR that was based on a set of

handcrafted features. We designed an LSTM model for detecting and classifying the

embedded patterns in different normal/pathological gait classes. We performed our ex-

periments on the MMGS dataset, which includes sequences from 27 subjects with three

classes of normal/pathological gaits. Relevant feature representation plays a pivotal role

in any classification problem. Before the emergence of deep learning, feature descriptors

in SGAR were mostly handcrafted. Such features are commonly learned through an un-

supervised process. Handcrafted features can perform well in some applications, as they

require domain knowledge. However, dismissing class information in the design process

can also result in features that are domain-specific and cannot be generalized well. In

contrast with the handcrafted features, deep learning models extract relevant features by

considering class information. As a result, the extracted features are both pertinent and

discriminatory.
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Figure 4.12: Pipeline for skeleton-based gait anomaly recognition, using minimally
preprocessed 3D skeleton joints information. The knowledge of the trained model is
then transferred to initialize similar networks for modeling of gait patterns in other

datasets with different types of gait anomalies.

In general, in many classification problems, the input data exist in a high dimensional

space. Traditional machine learning classifiers are not always proficient in learning mean-

ingful features from high-dimensional inputs. With a feature representation, we create a

set of relevant features in a low-dimensional space, such that a classifier can successfully

distinguish between different classes. Given enough input samples, a well-designed deep

learning model is capable of learning latent features embedded in the high-dimensional

input data. Furthermore, studies have shown that given enough data, the learned features

can be successfully transferred to relevant tasks [126].

Here, we present end-to-end feed-forward deep learning models for modeling and

classification of spatiotemporal patterns of gait anomaly using minimally preprocessed

skeleton data. Figure 4.12 describes the workflow of the presented gait anomaly recog-

nition methodology. It starts with data augmentation. In the next step, a preprocessing

procedure is performed that consists of removing certain joints and mid-torso joint cen-

tering. As can be seen from this figure, we remove fingers and mid-shoulder joints that

are generally noisy. For mid-torso centering, we centralize the skeleton with respect to

the mid-torso joint. This is accomplished by subtracting the coordinates of the mid-torso

joint from the coordinates of each skeleton joint. Finally, we provide the resulting input

to a deep learning model for gait anomaly classification. Besides, the trained models will

be evaluated on other datasets through transfer learning. In the following subsections,

we describe each of the steps in the presented pipeline.
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Figure 4.13: Data augmentation using the temporal moving mean for a sample joint
coordinate sequence. Each value in the small plot on the top right of the figure shows

the average of values within one of the red windows.

4.4.1 Data augmentation

Data augmentation is performed on the training data in three steps. In the first step,

we use a temporal moving mean to compute the mean of each joint coordinate over a

temporal window. This augmentation method is inspired by the local averaging in the

spectral space in [127]. We compute the temporal moving mean over consecutive windows

with no overlap. The resulting sequence can be presented by the following equation

s = [µi]
M
i=1 µi =

1

k

k∑
j=1

pj (4.17)

where µi is the mean over the ith temporal window, M is the total number of non-

overlapping temporal windows in the original sequence, and k is the length of the tem-

poral window that can be determined based on experimentation. p represents the joint

coordinate in one of the x, y, or z directions, and j = 1 and j = k mark the first and last

element inside the ith moving window. By sorting the mean over each window in a timely

order, we create a new sequence. Figure 4.13 illustrates data augmentation through tem-

poral moving mean. Each red window in this figure shows one of the instances of the

moving window. As can be seen, there is no overlap between consecutive instances of the
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moving mean. We can see the newly created sequence in a small box at the top right

corner of this figure. The next two steps of data augmentation are the same as what was

described in subsection 4.3.2 for handcrafted features, except for the length of sequences.

Here, all the sequences have the same length of 50 frames. This length has been selected

following the same criterion as in [95]. To select the proper length, we use the approxi-

mate number of frames that can be collected in the reliable range of Kinect V2 when a

subject walks in front of the sensor. Together, these three steps of data augmentation

generate more data that can be used for training the deep learning models.

4.4.2 Preprocessing

In the preprocessing stage, following [3], we first remove all the finger joints along with

the mid-shoulder spine joint from each skeleton, as they are noisy and do not offer useful

information for detecting anomalies. The initial 25 joints of a Kinect skeleton is then

reduced to 20 joints. Next, we translate the coordinates of each remaining joint by

centralizing the skeleton with respect to the mid-torso joint. For a Kinect sequence with

f frames, the translated 3-dimensional coordinates of the joints in frame i is represented

by the following vectorized format

Ji = [xk − xmt, yk − ymt, zk − zmt]20
k=1 ∈ <3N (4.18)

where (xk, yk, zk) and (xmt, ymt, zmt) represent the joint coordinates of each of the remain-

ing joints and the mid-torso joint coordinate in frame i, respectively. We will call the

resulting preprocessed joints, selected normalized joints. Finally, in order to have a

model that can effectively learn the patterns in the input skeleton sequences, each fea-

ture (here each coordinate of the selected normalized skeleton joints) is rescaled into the

[−1, 1] range as was described in Equation 4.11.
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Figure 4.14: Illustration of how a one-dimensional convolutional kernel works, using an ar-
bitrary input feature. In this figure, the kernel size is 3 and the input has 6 features. A

1D-convolutional kernel only moves in the direction of time (here from left to right).

4.4.3 Description of the models

We present end-to-end feed-forward deep learning models for modeling and classification

of normal/pathological gait patterns. In particular, we compare the performance of three

types of deep learning models: a fully convolutional network (FCN), a long short term

memory network (LSTM), and a CNN-LSTM network. LSTM and one-dimensional CNN

layers are principal parts of the presented models. We already described the mechanism

behind a vanilla LSTM network. Before going into more detail about the architecture of

the models, we will provide some background on one-dimensional CNN networks.

4.4.3.1 Some background on one-dimensional CNNs

During the last decade, convolutional neural networks have become the state-of-the-art in

areas such as computer vision [128], natural language processing (NLP) [129,130], image

and video processing and analysis [131, 132], genomics [133], clinical data classification

[134, 135], and finance [136]. Compared with their fully connected counterparts, CNN-

based networks have fewer parameters. Furthermore, they are specialized in learning

spatial features, with deeper layers in the network learning higher-level patterns in the

data. 1D convolutional networks (1D CNN), which are used for time series analysis, have

been popularized after the successful application of 1D CNN in the classification of ECG

signals [137]. In the last few years, numerous 1D CNN architectures have been proposed

for modeling univariate and multivariate time series problems [138–140]. In general, for
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the time point t, the result of applying a 1D convolution with filter ω of length l on

a univariate time sequence followed by a nonlinear function f such as ReLU, can be

presented with the following [141]:

Ct = f(ω ·Xt−l/2:t+l/2 + b) | ∀t ∈ [1, T ] (4.19)

where b is the bias. Figure 4.14 shows how a 1D-convolutional kernel acts on an arbitrary

input. As we can observe from this figure, compared to a 2D convolutional filter that

moves in two directions, a 1D convolutional filter only moves along the time direction.

4.4.3.2 Transfer learning

In general, deep learning models work well on the dataset they have been trained on.

However, they might not generalize well to new examples that raise conditions the model

did not experience during the training. Transfer learning refers to the process of training a

network on the source dataset and then using that network for a relevant task on another

dataset. We adopt the description presented by Pan and Yang [142] for a mathematical

definition of transfer learning that is based on the concepts of domain and task. A domain

consists of two components: a feature space X and a marginal probability distribution

P (X), where X = {x1, . . . , xn} ∈ X . Given a domain, D = {X , P (X)}, a task consists

of a label space Y and an objective predictive function f(.) (T = {Y , f(.)}), where f(.)

is learned from the training data consisting of pairs xi ∈ X and yi ∈ Y .

Definition of transfer learning: Given a source domain DS and its corresponding

learning task of TS, a target domain DT and its learning task of TT , the goal of trans-

fer learning is to improve the learning of the target predictive function fT (.) using the

knowledge in DS and TS, where DS 6= DT , or TS 6= TT .

The application of the pre-trained network on the target dataset can be in the form

of feature extraction or fine-tuning. In feature extraction, we change the final layer of the
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network that provides the probability of each class. All or some parts of a model that

was trained on the source dataset are used for feature extraction, meaning the weights

of them are retained. Next, one or more layers are added for class prediction in the

target domain. During the training phase, only the newly added layers are trained. This

approach is more suitable when the target and source domains are similar and the dataset

in the target domain is small. In fine-tuning, the final layer of the pre-trained network

is changed. The network is initialized with the weights of the pre-trained model, and

the weights are fine-tuned with the target dataset, generally with a smaller learning rate.

In fine-tuning, we can freeze some earlier layers of the network that are responsible for

the high-level features and fine-tune only the deeper layers. Transfer learning can be

in particular useful for smaller datasets, where training on a larger related collection of

observations can boost the performance of the model on a smaller dataset.

While transfer learning has been successfully employed in numerous natural language

processing [143,144], computer vision [145,146], and image and video processing [147–150]

problems, the application of transfer learning has remained mostly limited for time-series

data [151]. As is discussed in [151], one of the main challenges in employing transfer

learning for time series datasets is finding a properly-related set of datasets as the source

and target. With the availability of smaller datasets in time series-based classification

problems, finding the proper source and target datasets for transfer learning can further

reduce the generalization error of deep models for such applications. Considering SGAR

as a time series-based problem, the majority of studies in SGAR focus on one dataset,

and to the best of our knowledge, transfer learning has never been employed in any SGAR

study.

4.4.3.3 Architecture of the deep learning models

In this subsection, we describe the architecture of the different deep learning models that

we designed for SGAR. We explain the structure of the CNN-LSTM model that we used
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Figure 4.15: Structure of the CNN-LSTM for modelling and classifying selected normalized
joints. Each conv1D block consists of one-dimensional convolutional layers followed by a ReLU

activation function.

for modeling and classification of the selected normalized joints in more detail. Other

networks will be described more briefly as the structures are straightforward, and there

are similarities in terms of the number of inputs, number of outputs, weight initialization,

optimizer, loss function, and some other settings.

CNN-LSTM model for selected normalized joints: Figure 4.15 shows the

structure of the designed CNN-LSTM model. The designed model is a sequential CNN-

LSTM, which is trained by mini-batches of 32 samples. Each mini-batch consists of

sequences of selected normalized joints. Each sequence has a dimension of R50×60, with

a sequence length of 50 and 60 features per time step corresponding with 20 normalized

joint location coordinates in three dimensions (refer to Equation 4.18).

Each convolutional layer has 32 neurons with a kernel size of 5, followed by a rectified

linear unit (ReLU) as the nonlinear transformation. The output of each convolutional

layer is a matrix of R50×32, where each column of this matrix contains the weights of one

filter. The convolutional layers use same padding which means the size of the output

feature map of each layer is the same as the size of its input feature map. This is also

equivalent to stride = 1, where stride is the amount of movement of the kernel on the

input feature map between any two successive applications of the kernel. Figure 4.16

provides an illustration of stride and zero padding for a sample input with a sequence of
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Figure 4.16: Illustration of zero-padding and stride for a kernel of size = 2 and a sample
input sequence of length = 3, where the zero at the beginning of the input sequence is used for
zero-padding to create an output of the same length as the input sequence. The filter moves
from left to right (in the direction of the red arrow), acting on the input elements to create the

output elements.

length 3 and a 1D convolutional kernel of size = 2. The zero at the beginning of the

input sequence is for zero-padding that is required for generating an output of the same

length as the input. As we observe in this figure, the filter moves from left to right and

acts on the input to create the output.

After the 3rd convolutional layer, we use a one-dimensional max pooling layer with

a pool size of 2 that acts along the time direction and creates outputs of size R25×32. The

max pooling layer is followed by a single bidirectional LSTM layer, with 100 neurons and

a recurrent dropout of 50% probability that creates a feature map of R1×100. Through

a random dropout of the neurons in the LSTM layer, the likelihood of different neurons

affecting one another reduces, and the resulting network is less sensitive to smaller vari-

ations in the data. After the bidirectional layer, there is a fully connected layer of 100

neurons with ReLU activation, followed by a dropout layer of 30% probability. Finally,

there is a softmax layer for classification. To reduce the generalization error, apart from

the dropout, we also use L1-norm for the kernel regularization. The Kullback-Leibler

divergence is adopted as the loss function

DKL(p ‖ q) =
N∑
i=1

p(xi) log
p(xi)

q(xi)
(4.20)

where xis are the observations, and p and q are the true and predicted distributions,
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Figure 4.17: Structure of the FCN for modelling and classifying selected normalized joints.

respectively. The weights in all the layers are initialized using Glorot’s uniform initializa-

tion [152], where weights are sampled uniformly from the [−
√

6
nin+nout

,
√

6
nin+nout

] interval.

Here, nin and nout are the number of input and output units to the weight tensor. The

network is trained for 400 epochs, uses early stopping with patience = 220, and SWA is

initialized at epoch = 211.

Table 4.5: Hyperparameters of the designed FCN for SGAR using the Walking gait dataset
and selected normalized joints. The number of layers refers to the number of convolutional
layers. The network also includes a max pooling layer of pool size 2, and a flatten layer to
concatenate the two-dimensional arrays into the one-dimensional arrays required by the softmax

for classification.

Hyperparameter Value Hyperparameter Value

Number of layers 4 SWA learning rate 0.0003
Number of units 650 Epochs 400

Batch size 32 Optimizer SGD
Learning rate 0.0007 Loss function KL-divergence

FCN model for selected normalized joints: Figure 4.17 shows the architecture

of the designed FCN model for modeling and classifying normal/pathological gait cate-

gories using selected normalized joints as the input features. Like before, each feature

is scaled in the [−1, 1] range before feeding to the network. The network has four one-

dimensional convolutional layers followed by a max pooling layer with a pool-size of 2.

Each convolutional block uses kernels of size 3, ReLU activation, and same padding 9.

Convolutional layers also use L1 kernel regularization. The number of epochs, the epoch

9All the 1D convolutional layers in this thesis use same padding and are followed by ReLU as the
activation function, unless otherwise stated
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at which SWA is initialized and patience are all the same as the CNN-LSTM network

above. We summarized some of the key hyperparameters in the designed FCN model in

Table 4.5.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In
p

u
t 

B
id

ir
e

ct
io

n
al

 L
ST

M
 

So
ft

m
ax

 

U
n

id
ir

ec
ti

o
n

al
 L

ST
M

 

 

U
n

id
ir

ec
ti

o
n

al
 L

ST
M

 

 

U
n

id
ir

ec
ti

o
n

al
 L

ST
M

 

 

Figure 4.18: Structure of the LSTM for modelling and classifying selected normalized joints.
The bidirectional layer merges its outputs by taking their average at each time step.

LSTM model for selected normalized joints: Figure 4.18 shows the structure

of the designed LSTM model for modeling and classifying normal/pathological gait cate-

gories using selected normalized joints as the input. The network has four LSTM layers,

with the first layer being bidirectional and the next three LSTM layers are unidirectional.

Each LSTM layer uses L1 kernel regularization. The patience for early stopping and

SWA initialization both occur at the same epochs as in CNN-LSTM and FCN networks.

Table 4.6 shows the key hyperparameters in the designed LSTM model.

Table 4.6: LSTM network hyperparameters for SGAR using the Walking gait dataset with
selected normalized joints as the input.

Hyperparameter Value Hyperparameter Value

Number of layers 4 SWA learning rate 0.001
Number of units 64 Epochs 400

Batch size 32 Optimizer SGD
Learning rate 0.005 Loss function KL-divergence

CNN-LSTM model for leg angles: Figure 4.19 shows the structure of the de-

signed CNN-LSTM network for SGAR using leg angles proposed in [2] as the input fea-

tures. Each input feature is scaled in the [0, 1] range according to Equation 4.11 before
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Figure 4.19: Structure of the CNN-LSTM for modelling and classifying leg angles features [2].

Table 4.7: Hyperparameters of the CNN-LSTM for SGAR using leg angles [2] as the feature
for the Walking gait dataset.

Hyperparameter Value Hyperparameter Value

Epochs 400 SWA learning rate 0.001
Batch size 32 Optimizer SGD

Learning rate 0.005 Loss function Cross-entropy

being passed to the network. Each conv1D has 32 one-dimensional convolutional filters of

length 3. There is a dropout layer of probability 40% after each convolutional block that

acts as a regularizer to reduce overfitting of the network. A max pooling of pool-size = 2

is located after the second dropout layer to reduce the dimension of the feature map in

the time direction. The max pooling is followed by a bidirectional LSTM layer with 100

units and a recurrent dropout of 50% to capture the spatiotemporal patterns. A dense

layer of 100 neurons comes after the bidirectional LSTM that passes its output to the

softmax layer for classification of normal/pathological gaits. We summarized the main

hyperparameters of this network in Table 4.7.

FCN model for leg angles: Figure 4.20 shows the structure of the designed FCN

network for SGAR using the leg angles [2] as the input. Before feeding each example

to the network, each feature is scaled in the [−1, 1] range. The network has three one-

dimensional convolutional layers, each followed by a dropout of 40% probability. Each

convolutional layer uses kernels of size 3 and L2 kernel regularization. There is a global

max pooling layer after the 3rd convolutional layer and a dropout. Finally, the global max

pooling layer is followed by a dropout layer of 35% probability and a softmax layer for
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Figure 4.20: Structure of the FCN for modelling and classifying leg angles features [2].

Table 4.8: Key hyperparameters of the FCN network for SGAR using leg angles [2] as the
feature for the Walking gait dataset. The number of layers only refers to the number of 1D

convolutional layers in this network.

Hyperparameter Value Hyperparameter Value

Number of layers 3 SWA learning rate 0.0001
Number of units 64 Epochs 400

Batch size 16 Optimizer Adam
Learning rate 0.0007 Loss function Cross-entropy

classification. The number of epochs, patience, and the epoch at which SWA is initialized

are all the same as the CNN-LSTM model for 7 Angles that was described above. The key

hyperparameters of the FCN model are presented in Table 4.8. Among the deep learning

models that were designed for the Walking gait dataset, this is the only network that

uses an optimizer other than SGD. In the following paragraphs, we will briefly describe

how Adam works. Adam takes advantage of two main ideas in its design. Part of the

concepts behind Adam is based on RMSprop, another gradient-based optimizer. In the

following paragraphs, first, we will explain how RMSprop works. Next, we will describe

the idea behind Adam.

RMSprop: Root mean square propagation (RMSprop) [153] is a gradient-based

optimization method that was proposed by Geoffrey Hinton for mini-batch learning. It

uses different learning rates for different parameters of the network, and each of these

learning rates adapts individually over time. At each iteration, the weights are updated
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according to the following equation

W 7→ W − η
√
νt + ε

∂J
∂W

νt = ρνt−1 + (1− ρ)(
∂J
∂W

)2

(4.21)

where ρ is the moving average parameter, η is the learning rate, ∂J
∂W

is the partial derivative

of cost function with respect to weight, νt is the exponential average of the squares of

gradient, and ε is a very small constant for numerical stability. By normalizing the

learning rate by the root of squared gradient, RMSprop reduces the learning rate in the

directions with large fluctuations (large gradient value) and increases learning rate in the

directions with small gradients. Similar to momentum in SGD, RMSprop can reduce the

fluctuations in the directions with large-amplitude gradient oscillations and accelerate the

learning process.

Adam: Along with RMSprop, adaptive moment estimation (Adam) [154] is an-

other adaptive learning-based optimization technique that has been applied successfully

in a wide range of different deep learning architectures. Adam combines RMSprop and

momentum together to update the parameters of the model at each iteration. Just like

momentum, Adam keeps an exponentially decaying average of the past gradients, and like

RMSprop it reserves an exponentially decaying average of the previous squared gradients.

So, for each parameter of the model, Adam computes the following two parameters

mt = β1mt−1 + (1− β1)
∂J
∂W

νt = β2νt−1 + (1− β2)(
∂J
∂W

)2

(4.22)

where mt and νt are estimates of the first and second moments (the mean and variance,

respectively). As m and ν are initialized as zero, the authors of Adam recognized that m

and ν tend to be biased towards zero. Therefore, they performed a bias-correction such
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Table 4.9: Hyperparameters of the LSTM network for the Walking gait dataset using leg
angles [2] as the input. The first and second LSTM layers are bidirectional and unidirectional,

respectively.

Hyperparameter Value Hyperparameter Value

Number of layers 2 SWA learning rate 0.0005
Number of units 256 Epochs 500

Batch size 64 Optimizer SGD
Learning rate 0.001 Loss function Cross-entropy

that

m̂t =
mt

1− βt1

ν̂t =
νt

1− βt2

(4.23)

Finally, the weights are updated according to the following

W 7→ W − η√
ν̂t + ε

m̂t (4.24)

Like before, η is the learning rate, and ε is a small number for numerical stability. In the

original paper, the authors proposed β1 = 0.9 and β2 = 0.999. These values of β1 and β2

work quite well in most of the problems.

LSTM model for leg angles: Table 4.9 provides a description of the LSTM

network for modeling and classifying normal/pathological gait categories using leg angles

[2] as the input. Each of the input features is scaled in the [0, 1] range following Equation

4.11. The network has two LSTM layers, where the first and second layers are bidirectional

and unidirectional, respectively. The second LSTM layer is followed by a softmax layer

for classification. Both layers use L2 kernel regularization. The network utilizes early

stopping with patience = 270 and SWA initialization happens at epoch = 266.

Table 4.10: Hyperparameters of the CNN-LSTM for the Walking gait dataset using distance
between joints [3] as the input.

Hyperparameter Value Hyperparameter Value

Epochs 80 SWA learning rate 0.0007
Batch size 32 Optimizer SGD

Learning rate 0.003 Loss function KL-divergence



Chapter 4. Gait anomaly recognition 88

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In
p

u
t 

C
o

n
v1

D
 

M
ax

 p
o

o
l 

C
o

n
v1

D
 

B
id

ir
e

ct
io

n
al

-L
ST

M
 

D
e

n
se

 

So
ft

m
ax

 

D
e

n
se

 

Figure 4.21: Structure of the CNN-LSTM for gait anomaly classification using the distance
between skeleton joints [3].

Table 4.11: The hyperparameters of the FCN network with the distance between joints [3] as
the input for the Walking gait dataset. The number of layers only points to the number of 1D
convolutional layers. There are 256 units (neurons) in the first two convolutional layers, and

the last convolutional layer has 128 neurons.

Hyperparameter Value Hyperparameter Value

Number of layers 3 SWA learning rate 0.0003
Number of units 256/128 Epochs 80

Batch size 16 Optimizer SGD
Learning rate 0.003 Loss function Cross-entropy

CNN-LSTM model for distance between joints: Figure 4.21 shows the struc-

ture of the designed CNN-LSTM network for SGAR using distance between joints fea-

ture [3] as the input. Each input feature is scaled in the [−1, 1] range according to Equa-

tion 4.11 before being passed to the network. There are two 1D convolutional layers, each

with 100 one-dimensional convolutional filters. The first and second convolutional layers

have filters of length 3 and 1, respectively. A max pooling of pool-size = 2 is located after

the second convolutional block, followed by a bidirectional LSTM layer with 100 kernels

and a recurrent dropout of 50%. There are two dense layers of 100 neurons that come after

the bidirectional LSTM. Both dense layers use ReLU activation function. Finally, there

is a softmax layer for the classification of normal/pathological gaits. The layers use L1

kernel regularization. The network is trained for 80 epochs, with early stopping patience

of 50 and SWA initialization at epoch = 46. We summarized the main hyperparameters

of this network in Table 4.10.
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Figure 4.22: Structure of the FCN for modeling and classifying normal/pathological gait
patterns, using the distance between skeleton joints [3] as the input.

FCN model for distance between joints: Figure 4.22 shows the structure of the

designed FCN network using the distance between joints [3] as the input feature. Before

feeding any input to the network, each feature is scaled in the [−1, 1] range. The network

has three one-dimensional convolutional layers, all using L1 kernel regularization. The

first and third convolutional layers use kernels of size 3, but the second conv1D uses kernels

of size 1. There is a global max pooling layer after the 3rd convolutional layer followed

by a softmax layer for classification. The number of epochs, patience, and the epoch

at which SWA is initialized are the same as the CNN-LSTM model that was described

above. The main hyperparameters of the FCN model are presented in Table 4.11.

Table 4.12: Description of the LSTM network using the distance between joints [3] as the fea-
ture vector for the Walking gait dataset. There are two LSTM layers and one dense layer in this
network. The first and second LSTM layers are bidirectional and unidirectional, respectively.

The number of units refers to the number of kernels in the LSTM layers only.

Hyperparameter Value Hyperparameter Value

Number of layers 3 SWA learning rate 0.0003
Number of units 512 Epochs 350

Batch size 16 Optimizer SGD
Learning rate 0.0009 Loss function KL-divergence

LSTM model for distance between joints: Table 4.12 provides a description

of the LSTM network for SGAR using distance between joints [3] as the input features.

Each of the input features is scaled in the [−1, 1] range following Equation 4.11. The
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network has two LSTM layers, where the first and second layers are bidirectional and

unidirectional, respectively. The second LSTM layer is followed by a dense layer with 100

kernels. Finally, a softmax layer is used for classification. The LSTM and dense layers

all use L1 kernel regularization. The network utilizes early stopping with patience = 175

and SWA initialization happens at epoch = 170.

Next, we will describe the Walking gait and Pathological gait datasets and then

present experimental results.

Table 4.13: Description of each class in the Walking gait dataset

Class Class description

Gait 1 Normal
Gait 2 Padding a 5 cm thick sole under left foot
Gait 3 Padding a 10 cm thick sole under left foot
Gait 4 Padding a 15 cm thick sole under left foot
Gait 5 Weight of 4 kg on the left ankle
Gait 6 Padding a 5 cm thick sole under right foot
Gait 7 Padding a 10 cm thick sole under right foot
Gait 8 Padding a 15 cm thick sole under right foot
Gait 9 Weight of 4 kg on the right ankle

4.4.4 Walking gait dataset

Nguyen et al. [155] collected a dataset containing nine classes of normal/pathological

gaits. They asked subjects to wear padded soles of 5, 10, and 15 cm in thickness. Each

subject wore each of the padded sole once on the right foot and once on the left foot.

To collect more classes of anomalies, subjects also wore a 4-kg weight ankle once on each

ankle. In total, there are nine subjects, each performing eight abnormal and one normal

walk, where every sequence contains 1200 frames. This means there are 10800 frames per

class. Apart from the work of Jun et al. [95], all the SGAR studies on the Walking gait

dataset have used a two-class framework, which considers all the anomalous gait types

as one class. However, as we mentioned earlier in section 4.1 in the work of Jun et al.,

there is cross-over between the training and test subjects. Table 4.13 shows a description
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Table 4.14: Description of five pathological gait categories in the Pathological gait dataset [4]

Pathological gait Characteristics Causes

Antalgic gait Attempt to keep weight off the injured leg to avoid
pain, shortening the stance phase of the injured leg

Pain in the foot, ankle,
knee, or hip

Stiff-legged gait Stiffness of the problematic leg while walking, making
an outward semicircle while swinging the problematic
leg

Joint-related patholo-
gies, such as rheumatoid
arthritis

Lurching gait lurching the trunk backward at the heel strike of the
problematic leg to compensate for weakness of hip ex-
tension

Weakness or paralysis of
the gluteus maximus mus-
cle

Steppage gait Dorsiflexion problem in the problematic leg, lifting the
problematic leg higher than normal to keep the toes
from scraping the ground

Weakness or paralysis of
the anterior tibialis mus-
cle

Trendelenburg
gait

Moving the problematic hip up and the opposite hip
down during the stance phase to balance the hip level,
lurching the trunk toward the problematic side

Weakness or paralysis of
gluteus medius and glu-
teus minimus

of each of the gait classes in the Walking gait dataset based on the way each category is

simulated by the healthy subjects.

4.4.5 Pathological gait dataset

Pathological gait dataset was collected by Jun et al. [4] using a system of six calibrated

Kinect sensors. The sensors have been calibrated to acquire the same XYZ coordinate

to collect consistent data from different directions. Ten healthy subjects simulated five

categories of pathological gaits: antalgic, stiff-legged, lurching, steppage, and Trendelen-

burg gaits. Table 4.14 describes each class of the pathological gaits, along with examples

of each type of abnormality.

Each subject repeated each class of gait 20 times. Considering the normal gait, this

dataset contains six classes of normal/pathological gaits. Therefore, 120 sequences were

collected from each subject. Among the publicly available datasets for SGAR, this dataset

has the largest number of frames per class and the largest total number of frames. Table

4.15 presents a summary of the number of frames in each class of the Pathological gait

dataset. As we see, the lurch gait is the largest class in this dataset that has more than

twice the number of frames as in the normal gait, the class with the smallest number of
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frames in this dataset. We also see that sequences do not have the same length. Therefore,

like MMGS, this dataset also has a class imbalance.

Table 4.15: Summary of the Pathological gait dataset for SGAR. Min frames and max frames
shows the minimum and maximum number of sequence frames in each class, respectively. Total

frames shows the total number of frames from all the sequences in each class.

Class min frames max frames Total frames

Normal 42 100 80972
Antalgic gait 51 218 142208

steppage 56 212 131130
lurch 58 314 167956

Stiff-legged 58 231 133281
Trendelenburg 58 230 156809

4.4.6 Experimental results

For this study, one goal is to design a framework that can be extended to other types of gait

anomalies. To investigate the transferability of the proposed framework, we use transfer

learning. In the first step, we perform a multi-class SGAR on the source dataset. Next, we

use the network that was pre-trained on the source dataset to predict classes in the target

datasets via transfer learning techniques. While Pathological gait is the largest publicly

available dataset for SGAR, Walking gait has the largest number of normal/pathological

gait classes, which means it covers a higher range of minor gait abnormalities. Besides,

in the Walking gait dataset, each subject contributes only one sequence per class, which,

of course, yields less intra-class variation. Based on these properties, we select Walking

gait as the source dataset for transfer learning. Therefore, evaluation on the MMGS and

Pathological gait datasets is performed through transfer learning.

4.4.6.1 Performance evaluation on Walking gait

To evaluate the efficacy of the proposed model for multi-class minor gait recognition,

we compared the performance of our method with the features presented in [2] and [3].

In [2], authors use seven angles in the lower body for abnormal gait recognition. In [3],
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Table 4.16: Average recognition accuracy and F-score for the Walking gait dataset using
selected normalized joints (proposed), leg angles [2], and distance between joints [3]. For com-
parison, we look at the performance of three deep learning and three non-deep learning classifiers

(LR: logistic regression and RF: random forest).

Input Score LR RF SVM LSTM FCN CNN-LSTM

Leg angles [2]
Accuracy 53.76 67.16 63.27 65.59 65.56 63.83
F-score 53.99 68.90 65.65 66.82 66.75 64.65

Distance between joints [3]
Accuracy 42.45 25.67 50.93 57.31 58.34 52.47
F-score 47.68 39.54 53.34 60.83 62.42 55.30

Selected normalized joints
Accuracy 70.04 68.47 74.42 78.61 88.52 90.57
F-score 71.33 69.66 74.59 79.29 88.81 90.90

Meng et al.. utilize the distance between each pair of skeleton joints, excluding the fingers

and mid-shoulder joints, for gait anomaly recognition. Selecting these two features for

comparison is based on the following assumptions. A lot of clinical gait assessment

methodologies are based on the features from the lower body, which suggests these types

of features are discriminative attributes for gait anomaly recognition. On the other hand,

distance between skeleton joints considers a relation (here, Euclidean distance) between

each pair of skeleton joints. Different body parts interact with one another during motion.

Thereby, distance between skeleton joints that describes a relationship between different

body parts can also be a proper candidate for comparison. For a fair comparison, we

designed three deep learning models for the features in each of these studies. Besides, all

the networks have around the same number of layers, where each structure has at most five

layers (here we do not consider dropout, pooling, and flattening layers). We also compare

the performance of each feature with three other classifiers: support vector machine

(SVM), logistic regression (LR), and random forest (RF). For these three classifiers, we

concatenate feature vectors over the same time window that we use as the sequence length

of the input in the deep learning models. The performance evaluation is conducted on

both datasets.

For each classifier, we train the model 15 times and report the average test accuracy

and F-score. We use the sequences of 6 subjects for training and the remaining 3 subjects

for test. We use 20% of the training data for validation for all of the cases. Table 4.16
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shows the performance of each feature with six different classifiers. To avoid overfitting,

we use early stopping in all of the deep learning models. The results show that our

proposed feature (selected normalized joints) outperforms the other input features with

all the classifiers. Among the features, distance between the joints [3] acquires minimal

improvement with the deep learning models. One reason for the poor performance of

this feature can be its high dimension (180 features per frame) that might require a more

complex model and further tuning to attain higher classification scores. For the proposed

features, CNN-LSTM outperforms the other models. But, considering all the competing

features, on average, the FCN achieves the best classification scores among all the models.

The results also show that among the deep learning models, the LSTM networks acquire

the lowest scores.

Handcrafted features offer an interpretable set of descriptors for a classification

task. However, their performance is more likely to be affected by the quality of new

datasets. Previous studies have suggested as the condition under which data is collected

changes, methods that employ handcrafted features might require further preprocess-

ing [156]. Therefore, handcrafted features that perform well in one problem might not

achieve reasonable performance in another problem, or they might need proper handling.

Our results suggest that a deep network that learns the relevant features for maximal

class distinction outperforms those models that employ handcrafted features for abnor-

mal gait classification. Among the competing features, deep learning models that take

selected normalized joints as the input, yield the maximum improvement relative to the

performance of non-deep learning models.

In the next section, we will take a look at the CNN-LSTM model that was designed

for selected normalized joints and achieved the highest prediction accuracy among other

models. We will perform an ablation study to investigate the effect of different parts of

the network on the performance of the model. This can be helpful in designing simpler
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Figure 4.23: Ablation study on the CNN-LSTM layers: boxplots of the average classifica-
tion accuracy for the Walking gait dataset. Each boxplot represents the average classification

accuracy acquired by removing part of the CNN-LSTM network.

models, while still achieving high prediction scores. This study is important because, in

general, models that are simpler are less likely to overfit and can generalize better to the

unseen data.

4.4.6.2 Ablation study on CNN-LSTM layers

We performed an ablation study to investigate the effect of different layers in the classifi-

cation performance of the designed CNN-LSTM network. Figure 4.23 shows the boxplot

of the classification accuracy for the original CNN-LSTM and structures that are the

result of excluding different layers. By comparing the boxplots in Figure 4.23, we see

that removing the dense layer has the least effect on the performance of the network,

reducing the average accuracy by about 2%. Eliminating one and two convolutional lay-

ers degrade accuracy by about 3.68% and more than 10%, respectively. Removing the

LSTM layer has the most significant effect on the performance of the network with more

than 11% reduction on the average classification accuracy. Besides, removing LSTM also

results in a large variation on the average classification accuracy over multiple runs of the

network, which suggests a larger generalization error. This observation further stresses

the significance of the LSTM layer in this network.
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Figure 4.24: Boxplots of average classification accuracy for the Walking gait dataset, with
and without augmentation. ”Both augmentations” refers to the scenario where both ”temporal
moving mean” (in the figure ”moving mean”) and ”window warping” are used for augmentation.

The results of this study can be helpful in transfer learning. For example, since the

dense layer does not have a significant contribution to the performance of the model, if

overfitting occurs during transfer learning, one way to improve the performance of the

model is to remove the dense layer. In the next section, we will investigate the effect of

data augmentation on the performance of the model. In particular, we are interested to

see whether data augmentation could improve the classification accuracy of a deep model.

for this study, we will once again use the CNN-LSTM model that was designed for the

selected normalized joints.

4.4.6.3 Effect of data augmentation

The boxplots in Figure 4.24 illustrate the effect of data augmentation on classification

accuracy of Walking gate dataset. As we can see in this figure, both temporal moving

mean and window warping improve the average classification accuracy. The results also

show that while temporal moving mean augmentation can result in some outlier scores,

it improves the average accuracy the most. With window warping, we get less improve-

ment; but, the classifier demonstrates the least variations over multiple runs of the model.

Finally, by combining both augmentation methods, the model can acquire higher clas-

sification scores compared with the ”no augmentation” case, without generating outlier
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Figure 4.25: Boxplots of average classification accuracy for ablation study on the pipeline with
the Walking gait dataset. Each boxplot represents average classification accuracy acquired by

removing one step in the pipeline.

scores over several iterations of training. These results suggest the benefits of data aug-

mentation for the SGAR problem in terms of improvement in prediction accuracy and

variance of scores. The lower variance also indicates the resulting model is more robust,

learning features with higher generalization potential. The results of this experiment also

suggest that temporal moving mean and window warping are both proper augmentation

methods for the SGAR problem.

So far, we performed an ablation study on a deep learning model and investigated

the effect of the augmentation methods on the performance of the deep model. We also

showed that how end-to-end deep learning models perform better compared with hand-

crafted features. But, is the success of the proposed framework all due to the deep learning

models? In the next portion of the work, we will look at this question and investigate

the significance of different steps of the pipeline in the performance of the CNN-LSTM

model.

4.4.6.4 Ablation study on the pipeline

In this work, we utilized three strategies to improve the performance of the deep learning

models: data preprocessing, data augmentation, and the SWA. The first two strategies are

two of the main steps in the proposed pipeline, and the last strategy is implemented in the
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design of the deep learning model. Figure 4.25 shows the average classification accuracy

with an ablation study on these strategies. As we observe in this figure, preprocessing has

the most impact on the performance of the network. Removing the preprocessing step

from the proposed pipeline results in a 20% reduction in the average accuracy and more

than 5% increase in the variance. Removing SWA from the deep learning model has the

least amount of impact on the average classification score compared with the complete

pipeline. However, removing SWA from the model increases the likelihood of generating

outlier classification scores. The result with no augmentation is the same as in Figure

4.24.

This analysis shows the importance of the preprocessing step in the performance

of the model. One of the major difficulties in using a skeleton model relates to the

fact that they are noisy and contain irrelevant information [95]. Based on the results of

this experiment, we speculate that applying the proposed preprocessing (removing noisy

joints and mid-torso joint centering of the skeleton) has a major impact on alleviating

these challenges. In this work, we design deep learning models that take minimally

preprocessed skeleton joints as the input. The results in Figure 4.25 indicate that the

success of the presented pipeline is not solely based on the design of a deep learning

model. The handling and preprocessing of the data play important roles in the success

of the model. The average classification accuracy without preprocessing is around 70%,

which is even lower than the best result with a non-deep learning model (refer to SVM

scores for selected normalized joints input in Table 4.16). By comparing the results in

Figure 4.25, we also realize that while data augmentation can improve the performance of

the model, it is not as effective as the preprocessing step. This observation indicates the

importance of proper preprocessing of the skeleton data for a successful pathological gait

classification. Next, we will look at the effect of the number of classes on the performance

of two models, one deep learning and one non-deep learning. Our goal is to see how
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Figure 4.26: Average classification accuracy for three features for the different number of gait
anomaly classes. The graphs on the left and right side of the figure show the results with the

SVM and the FCN, respectively.

resilient each feature is to the number of gait abnormality classes. We are also interested

in studying the performance of a deep model when we increase the number of pathological

gait classes.

4.4.6.5 Effect of the number of classes

In real-world scenarios, we encounter different types of gait anomalies caused by surgical

operations, injuries, and various physiological and neurological disorders. Therefore, it

is essential to investigate how the performance of a particular model or set of features

changes as the number of abnormality classes varies. To address this challenge, we ex-

amine how the performance of different features changes as we increase the number of

gait abnormality categories. For this experiment, we use the Walking gait dataset. This

experiment is carried out with two classifiers: the SVM and the FCN. Both of these clas-

sifiers demonstrated an overall best performance over different features (refer to Table

4.16). We use a deep network and a non-neural network classifier to reduce the effect of

the classifier and concentrate on the performance of the features instead.

Figure 4.26 presents the average classification accuracy with different numbers of

classes. For this experiment, we considered Nclass = [3, 5, 7, 9], where Nclass is the set of

all the class numbers we used for each experiment. The Walking gait dataset has 9 classes
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in total. When the number of classes is less than 9, we always select normal class as one

of the classes, and Nclass− 1 classes are selected at random from the abnormality classes.

Except for the case in which Nclass = 9, we carried each experiment 100 times, every time

selecting Nclass − 1 number of abnormal classes at random. The results in Figure 4.26

shows the average accuracy over 100 runs of the model. Except for one case, we see that

both the SVM and the FCN perform the best when the number of classes is the smallest,

Nclass = 3. With the SVM, all features show a linear degradation in the performance

as the number of classes increases. With the FCN, we observe a different behavior with

selected normalized joints. While the performance of the other two features degrades

as the number of classes increases, the FCN shows a more robust performance with a

small variance over different numbers of classes. We even observe that the FCN acquires

its best performance with selected normalized joints when Nclass = 9. This might be

because, for each feature, we use the same model that acquires the best result with the

original 9-class dataset. With leg angles, we have two noteworthy observations. First,

Leg angles outperforms other features with Nclass = 3, which might indicate that with

smaller numbers of class abnormalities, leg angles can be a more discriminative set of

attributes. Second, the performance of the FCN with leg angles as the input degrades

with the steepest slope among the comparing features. With distance between joints as

the feature, we observe the slowest degradation in performance with both the SVM and

the FCN. However, this feature also leads to lower accuracy compared with the other

features. As we mentioned before, this might be partly caused by the high dimension of

this feature and the requirement for a more complex model to acquire better performance.

4.4.6.6 Experimental results with transfer learning

In this part, we look at the effect of transfer learning, evaluating the performance of

the proposed models on two datasets: MMGS and pathological gait. We use the same
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models as was presented in subsection 4.4.3.3, using the weights of the best models to

initialize the networks on the target datasets. With the CNN-LSTM model for the selected

normalized joints, we change the kernel size in the convolutional layers to 3 for transfer

learning. Optimizer changes in a few cases, using either Adam or RMSprop instead of

SGD. Other than this, the only parameters of the networks that we change for the target

datasets are learning rate, regularization, and batch size. Each of the target models can

have one or more of these parameters different from the source model. We also observed

that not using SWA in training the deep models on the source dataset (here Walking gait)

works better for transfer learning compared with applying SWA on the model trained on

the source dataset. We speculate that using SWA might make a network too specialized

in one dataset and result in overfitting on the source dataset. Therefore, causing the

network to undermine some of the more generalizing patterns that can be transferred to

another dataset with different classes of abnormalities. Based on this observation, for all

the deep learning models, we removed SWA when we trained the model on the source

dataset for transfer learning.

In the following paragraphs, we present experimental results for the MMGS and

Pathological gait datasets.

Experimental results with MMGS: Table 4.17 illustrates the mean classification

accuracy and F-score for the MMGS dataset, using different features as the input of deep

learning model. Each deep learning classifier is initialized using the weights of the best

corresponding model that was trained on the Walking gait dataset. To compensate for

the class imbalance in the MMGS dataset, we use class weights when fitting the model.

The class weights are implemented according to Equation 4.13. For MMGS dataset, we

also compare the performance of the proposed framework with the work of Khokhlova et

al. [5]. In the latter study, the authors use low limb flexion angles as the features and

design an ensemble of LSTM networks for modeling and classification. It should be noted
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Table 4.17: Average recognition accuracy and F-score on MMGS dataset [5] for the proposed
features (selected normalized joints) and other features. Except for the leg flexion feature, all
the other results are acquired using transfer learning. It should be noted that the result with
the flexion angles is based on an ensemble of five LSTMs. The last three lines show the results
when train and validation split is non-subject-based. The underlined and bold scores present

the best results with subject-based and non-subject-based criteria, respectively.

Input Score LSTM FCN CNN-LSTM

Leg angles [2]
Accuracy 77.10 82.84 81.70
F-score 75.60 81.57 79.89

Distance between joints [3]
Accuracy 62.20 79.52 71.98
F-score 61.77 78.58 70.97

Leg flexion angles [5]
Accuracy 82 — —
F-score — — —

Selected normalized joints
Accuracy 78.03 80.27 80.74
F-score 77.14 79.82 80.53

Leg angles [2] (NS)
Accuracy 81.04 83.51 82.55
F-score 79.44 82.14 80.64

Distance between joints [3] (NS)
Accuracy 63.74 81.35 76.49
F-score 63.01 80.44 74.96

Selected normalized joints (NS)
Accuracy 83.64 81.51 82.71
F-score 82.61 80.31 82.04

Table 4.18: Average recognition accuracy and F-score on MMGS dataset [5] for the proposed
features (selected normalized joints) and other features using three non deep learning classifiers:

LR (logistic regression), RF (random forest), and SVM.

Input Score LR RF SVM

Leg angles [2]
Accuracy 74.56 78.41 81.67
F-score 72.13 76.87 80.45

Distance between joints [3]
Accuracy 74.90 47.49 74.10
F-score 72.66 47.87 71.97

Leg flexion angles [5]
Accuracy — — 77.6
F-score — — —

Selected normalized joints
Accuracy 80.08 60.16 76.09
F-score 78.34 59.45 74.47

that the accuracy reported in Table 4.17 for [5] is based on an ensemble of five LSTM

networks. They also reported accuracy based on a single LSTM network that is 77%.

Considering the complexity and a large number of parameters in an ensemble of LSTM

networks, the LSTM and CNN-LSTM that we designed have less number of parameters,

yet can acquire comparable classification scores through transfer learning.

The last three rows of Table 4.17 show the classification scores when train-validation

split is non-subject based. Like before, using a non-subject-based train-validation split

criterion, we observe an increase in the classification scores with all the features. The

largest improvement is acquired with distance between joints using the CNN-LSTM
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model. The results also show that when the subject-based train-validation split is applied

(the first four rows of the table), leg angles achieve the best results. With a non-subject-

based train-validation split (the last three rows of the table), the proposed feature set

demonstrates the best performance.

To have a better understanding of the performance of each feature set, we also

compared the three feature vectors with non-deep learning models. In Table 4.18, we

present the results of this comparison. The results in this table also show that with the

MMGS dataset, leg angles outperform other features. Considering the results in Tables

4.17 and 4.18, we observe that leg angles perform better than other features irrespective

of the type of classifier for a three-class problem. Here, two points should be considered.

First, leg angles build a low dimensional feature vector compared with selected normalized

joints and distance between joints. Second, in general, as we increase the dimension of

the input vector, we require more data for detecting the relevant discriminatory patterns.

Our observations in Figure 4.26 also show that leg angles might be a suitable feature set

with a small number of classes. Utilizing transfer learning and data augmentation, we

might do better with higher dimensional input features, still, the dataset is relatively small

and has a large intra-class variation (a large number of subjects compared with Walking

gait). These results might suggest that with fewer data and a small number of anomalous

classes, we might not need a complicated end-to-end deep learning classifier to acquire

high classification scores. Of course, such a statement is limited to our observations as

well as the complexity of the target dataset.

Experimental results with Pathological gait: Table 4.19 presents classification

accuracy and F-score with the Pathological gait dataset, using transfer learning. Classi-

fication scores are computed based on the one-vs-all criterion that was employed in the

original paper [4]. Every time, the data from one subject is separated for test, and train-

ing is performed using the data from the rest of subjects. For each subject selected for
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Table 4.19: Average recognition accuracy and F-score on Pathological gait dataset [4] for the
proposed features (selected normalized joints) and other features. All the results are based on
transfer learning, except for the result in the last row that is the best reported result in [4]. The
results in the last row with LR (logistic regression), RF (random forest), and SVM are based

on our experiments, using the leg joints as the feature vector.

Input Score LR RF SVM LSTM FCN CNN-LSTM GRU

Leg angles [2]
Accuracy 60.50 83.65 76.78 80.66 83.42 81.55 —
F-score 61.81 84.39 77.49 81.49 85.08 82.72 —

Distance between joints [3]
Accuracy 80.23 82.74 79.24 81.39 86.46 82.87 —
F-score 82.86 84.74 81.67 82.63 87.75 84.20 —

Selected normalized joints
Accuracy 81.24 90.83 77.51 90.10 79.63 89.83 —
F-score 81.80 91.45 78.73 90.73 78.73 90.63 —

Leg joints [4] Accuracy 87.95 83.02 86.88 93.67

test, training and test is performed ten times. The final result is the average over 100

times of training and testing (for which there are 10 subjects in this dataset). The last

row of Table 4.19 shows the best result as was reported by Jun et al.. They acquired this

accuracy by using only the leg joints. For modeling and classification, they designed a

gated recurrent unit (GRU) network. The network has five layers, with four GRU layers,

and one dense layer, each having 125 units. The network also includes a ReLU layer after

the input layer. Other results in the last row is based on our experiments, using the leg

joints with LR, RF, and SVM.

The results in Table 4.19 show that leg joints [4] outperform other features. There

are couple of points that should be considered here:

• Except for the leg joints case [4], all the results with the deep learning models are

reported based on transfer learning. Considering the fact that we designed our

models based on another dataset with different classes of abnormalities, the results

with the proposed method are fairly reasonable.

• With random forest, we achieved an accuracy of > %90 using selected normalized

joints as the feature. None of the other features could acquire such high accuracy

with non-deep models. This observation suggests that selected normalized joints is
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a discriminatory feature vector that can perform well even without a deep learning

model.

• With the Walking gait dataset, LSTM performed poorly compared with other deep

learning models. However, with transfer learning, LSTM outperformed other deep

models with both MMGS and Pathological gait datasets.

• The FCN model that performed well with selected normalized joints on the Walking

gait dataset, did poorly on both of the transfer learning Tasks. This might be caused

by the high number of parameters in this model (four convolutional layers with 650

units per layer). This observation confirms the fact that complex models cannot

generalize well to other datasets. This also suggests that FCN was likely overfitted

on the Walking gait dataset.

• Compared with other deep learning models in this work, the GRU network in [4] is

a computationally expensive model with larger number of parameters (four GRU

layers and one dense layer, with 125 units per layer), that also takes longer to train.

Large deep learning models that are well tuned to one dataset might not generalize

well to unseen data with different and more diverse underlying patterns.

• Comparing the performance of distance between joints and leg angles, we observe

that unlike the other two datasets, the former feature set outperforms the latter.

This might suggest that given enough data, higher dimensional features can acquire

better improvements compared to the low dimensional feature vectors. In particular,

this can indicate that designing a model that solely relies on the features that are

related to certain joints might not be the best practice. This assumption can be

bolstered by considering the fact that gait is a complex pattern that is built upon

the interaction between different body parts.
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In this dataset, the proposed GRU model by Jun et al. that uses leg joints as the

input outperforms the other features, including the proposed (selected normalized joints).

However, the GRU model was specifically designed for the Pathological gait dataset. Also,

the versatility of the model was not tested on other datasets. In contrast, our proposed

models were designed on another dataset and achieve high classification scores on both the

source dataset (Walking gait) and two target datasets (MMGS and Pathological gait),

which demonstrates the versatility of the proposed model. Considering the classes of

pathological gait anomalies in this dataset that includes antalgic gait, stiff-legged gait,

lurching gait, steppage gait, and Trendelenburg gait, we notice these anomalies are mostly

related to the locomotion in the lower body. Therefore, it makes sense that leg joints

become more relevant and distinctive for these types of gait anomalies. On the contrary,

our model looks at more joints that some of which might not be informative for these

particular classes of abnormalities, therefore resulting in lower performance. However, the

sole purpose of this work is not simply improving classification performance. Gait is a

complex physiological system that consists of many subtle interactions between different

body muscles. There are many types of gait anomalies that include interactions between

lower and upper body joints. For example, in Parkinson’s disease, bradykinesia (slowness

of movement) can effect both lower and upper body limbs. During tremor which can

be observed in various neurological diseases such as Parkinson’s disease, cerebral palsy,

and Huntington’s disease, knee joints, elbows, and shoulder shake heavily. In Ataxia

(a degenerative disease that causes impaired coordination), motions of different body

parts such as hands, arms, and legs are affected. Therefore, for clinical assessment, we

need to observe almost every functional muscle. By considering different body joints,

our model is designed to detect distinctive patterns, which are the result of interactions

between different body joints. This property makes the proposed pipeline more suitable

for adaptation in monitoring symptoms of various ailments that affect gait patterns.
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Figure 4.27: Average classification accuracy for five types of features: Distance between
joints [3], Leg angles [2], Leg joints [4], Selected normalized joints (proposed), Leg angles & 3D
limb vectors (proposed) with three classifiers: Logistic regression (LR), Random forest (RF),
and Support vector machines (SVM). The results are reported on (A) the Walking gait dataset
with 9 classes, (B) the Pathological gait dataset with 6 classes, and (C) the MMGS dataset

with 3 classes.

4.4.7 SGAR: Handcrafted vs deep learning-based features

Our analysis and experimental results lead us to two the following questions:

• Among the investigated features, what are the most discriminatory features for

SGAR?

• Should a successful SGAR pipeline rely on hand-crafted features or end-to-end deep

learning models?

Figure 4.27 presents three graphs, each comparing the performance of five different

features: distance between joints [3], leg angles [2], leg joints [4], selected normalized
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joints (proposed), leg angles & 3D limb vectors (proposed). The latter feature was in-

troduced in the first SGAR problem that we investigated in this chapter. Each of these

graphs shows average classification accuracy for one of the datasets that we employed in

this chapter. Comparison between features is performed using three classifiers: logistic

regression (LR), random forest (RF), and support vector machines (SVM). We observe

that Leg angles & 3D limb vectors outperform the othere features in most of the cases.

Selected normalized joints only outperform Leg angles & 3D limb vectors in the Walking

gait dataset, the dataset with the most number of classes. However, as we see the per-

formance of these two feature sets is quite close in the Walking gait dataset. In MMGS,

selected normalized joints performance comes after three other features. This confirms

our previous observation, when the number of classes is small, lower dimensional features

perform better. Leg joints [4] that outperformed other competing features in combination

with a deep GRU on the Pathological gait dataset, does not perform well with the Walk-

ing gait dataset. Even on the Pathological gait dataset, Leg angles & 3D limb vectors and

selected normalized joints could acquire accuracy of above 90% with non deep learning

models, but Leg joints could only achieve > 90% accuracy with a computationally ex-

pensive GRU model. By comparing the graphs in Figure 4.27, we see the performance of

leg joints degrade as the number of classes increase. In contrary, performance of selected

normalized joint improves as the number of classes increases.

Our observations in Figure 4.27 suggest that leg angles & 3D limb vector are the

most discriminatory features among the competing features. However, we also observe

that with the Walking gait dataset, selected normalized joints outperforms the latter.

What if we have a dataset with more classes? Based on our observations, leg angles & 3D

limb vectors and selected normalized joint are both discriminatory features for the SGAR

problem. Selected normalized joint also performs quite well with deep learning models

and could generalize well to other datasets with different types of gait abnormalities. In
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particular, as the number of classes increases, performance of selected normalized joints

improves that hints this feature set is likely to perform well with a more diverse set of

gait abnormalities.

Leg angles & 3D limb vectors is a handcrafted feature vector. Selected normalized

joints is a set of minimally preprocessed skeleton joint coordinates that performed well

with both deep learning and non-deep learning models. Our observations suggest that

the design of the features and how they are handled are critical steps in an

SGAR framework. Deep learning models can help to improve the performance of a

set of well-designed features. We might need more complex and novel architectures as

the number of classes increases. But, relevant and discriminatory features can make this

procedure easier. Therefore, a successful SGAR framework can benefit from carefully

designed handcrafted features and properly filtered input data in combination with deep

learning models to further improve its prediction ability.

4.5 Remarks

In this chapter, we present an efficient pipeline for the classification of different gait

abnormalities using the skeleton data. Unlike the prevalent practice of gait anomaly

recognition with skeleton data, we investigate this problem in a multi-class framework,

designing models for minor gait abnormality recognition. The multi-class layout makes

this problem challenging because of the high inter-class similarities. In the first problem,

we focus on a small normal/pathological gait dataset, with three classes of normal/patho-

logical gaits. This dataset has a large intra-class variation due to multiple short sequences

and a relatively large number of subjects. Many clinical gait assessment methods mea-

sure parameters that are extracted from lower body limbs. Therefore, for this problem,

we propose a set of features extracted from the lower body skeleton joints. We design a
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bidirectional LSTM network for modeling and classification and acquire state-of-the-art

accuracy.

Next, we focus on a large dataset with nine classes of normal/pathological gaits. We

present a deep learning model that extracts relevant features from the skeleton data. To

reduce generalization error, we present an effective data preprocessing and implement

proper data augmentation. While deep learning models acquire the best performance in

this work, the success of the presented pipeline is mostly due to a proper data preprocess-

ing step. The high prediction accuracy on Walking gait, a 9-class normal/pathological gait

dataset, demonstrates the superiority of the proposed method. Besides, through transfer

learning, we also acquire high classification scores on two other skeleton-based patholog-

ical gait datasets that contain different types of gait abnormalities. This further shows

the ability of the proposed pipeline to learn the embedded gait patterns that can be gen-

eralized to various types of gait abnormalities through transfer learning. The presented

pipeline also shows a robust performance with different numbers of class abnormalities

that are randomly selected from the Walking gait dataset. Our experiments with several

features also suggest that while end-to-end deep learning models can improve state-of-

the-art performance in SGAR, proper handling of the input data is a significant aspect of

a successful SGAR pipeline. This is the first skeleton-based gait anomaly recognition that

employs data augmentation and is evaluated on multiple datasets under heterogeneous

scenarios. The presented framework can be employed for frequent and convenient gait

assessment inside and outside of specialized clinical facilities. Besides, to further improve

the performance of a free-living gait assessment system, the presented methodology can

be integrated with models that employ other biomedical sensors.
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Conclusion and future work

The study of gait goes back to Aristotle. In Parts of animals; Movement of animals;

Progression of animals/De partibus animalium [157], Aristotle gives a detailed description

of gait in different animals. However, his description was solely based on his observations

of locomotion in human beings and various animals [158]. Giovanni Borelli (1608–1679)

was the first person who provided a theoretical framework of gait based on his observations

from a set of scientifically designed experiments. Wilhelm and Eduard Weber analyzed

gait through a set of experimental studies. They published their findings in Anatomy

and mechanics of walking in 1836, discussing several aspects of gait such as cadence

and walking speed, along with positioning of body limbs during motion. In the early

1900s, Eadweard Muybridge in America and Étienne-Jules Marey in France became the

first people who studied locomotion through sequences of photographs (credited as the

first video analysis in history). Wilhelm Braune and Otto Fischer performed the first

3-dimensional study of gait. Inman and Eberhart started an interdisciplinary group

of scientists, physicians, and engineers at the University of California, Berkeley, and

made significant contributions to the field of gait analysis. While video cameras and

instrumented gait analysis have been around since the 1970s, for years, the application

111
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of designated equipment for the gait analysis has been limited, and mainly cumbersome

[158].

Modern gait analysis has been empowered by the advancements in computer hard-

ware, analyzing software, and design of new modalities. Human gait is a complex phys-

iological pattern that conveys important information about the health, gender, age, and

identity of individuals. These properties, along with the advancement of new technolo-

gies have transformed gait analysis into a major tool for the identification and health

evaluation of individuals. In this dissertation, we utilize modalities such as flash lidar

and Kinect and provide engineering solutions for the two widespread applications of gait

analysis: identification and health evaluation. Both of the presented solutions are model-

based, utilizing skeleton information of individuals. The skeleton-related attributes mimic

actual physical traits in the human body and provide benefits in terms of data compaction,

computation, and scalability.

5.1 Flash lidar-based gait recognition

In the first part of this dissertation (chapter 2 and 3), we present an efficacious pipeline

of 3D gait recognition for flash lidar data based on pose estimation and robust correction

of erroneous and missing joint measurements. A flash lidar can provide new opportu-

nities for gait recognition through a fast acquisition of depth and intensity data over

an extended range of distances. However, the flash lidar data are plagued by artifacts,

outliers, noise, and sometimes missing measurements, which negatively affects the perfor-

mance of existing analytics solutions. At the beginning of this dissertation, we proposed

three questions. Two of these questions were related to the first part of this dissertation:

• If the collected data are noisy to a level such that a considerable number of feature

vectors contain faulty and missing values, can we still achieve high accuracy and

precision in gait recognition?
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• When a high percentage of the input features are either noisy or missing, can we

avoid data elimination and do any better through model correction?

In the following subsections, we provide a summary of gait recognition with flash

lidar data, address these two questions, and outline some avenues for future research.

5.1.1 Summary

By modeling the coordinates of each joint through time as a set of time sequences, we

present filtering mechanisms that correct noisy and missing skeleton joint measurements

to improve gait recognition. The correction mechanism is valuable because:

• The shortage of data is a major challenge in many real-world surveillance scenarios

and data removal will only exacerbate the data scarcity problem. A correcting fil-

tering mechanism can preserve the original data that is costly to collect in numerous

applications.

• Data removal will also result in loss of temporal information for cases where cor-

rupted or missing data exists in the successive frames. Temporal information en-

codes the dynamics of a motion that is critical in describing an activity or identifying

an individual.

• Occlusion is a common problem in gait recognition that adversely affects the per-

formance of state-of-the-art methods. When information from a fitted skeleton is

used, the presented joint correction filtering can be employed in cases of occlusion.

This is because the existence of occlusion would create missing skeleton joints that

can be recovered through the joint location correction.

We integrate robust statistics with conventional feature moments to encode the dy-

namics of the motion. Through a set of experimental results, we show that traditional

feature moments can serve as a better representative of motion dynamics after skeleton
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correction if they are considered along with robust statistics such as the median, and the

lower and upper quartiles. As an alternative method for applications where data elimi-

nation is not an issue, we investigate features extracted from noisy skeletons for outliers

and present a method for detecting outliers in vector-based features. This contribution

is an effort to follow the traditional practice of removing noisy data and performing clas-

sification on the remaining higher quality features. With a considerable amount of flash

lidar data, outlier removal can be employed. The remaining data can be used in methods

with per-frame (one-shot) identification.

Back to the questions that were proposed at the beginning of this section: our results

suggest that we can still acquire high classification scores with the flash lidar data that

is plagued with a considerable amount of noisy and missing values. Even better, we

can achieve higher classification scores when we perform data correction and avoid the

common practice of data elimination.

5.1.2 Future work

The presented filtering mechanism improves gait recognition by correcting missing and

noisy skeleton joints in two steps. The two step criterion is vital, as it avoids the effect

of noisy measurements in generating an initial prediction for the missing values in the

first step. A robust smoothing filter in the second step reduces the negative effect of the

remaining outliers and noisy prediction of the first step. However, as we have shown in

Figure 3.8, there are cases that correction fails. The filtering procedure can fail if a joint or

a whole skeleton is missing over multiple consecutive frames. As the number of successive

frames with a missing joint or skeleton increases, the failure cases are more likely to

happen. With the first-order polynomial fitting in the first step, GlidarPoly loses adequate

support as the number of missing skeleton or missing joints increases. On the other

hand, higher-order polynomial in GlidarCo over-smooths the final estimation, resulting
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in more false predictions. For a better imputation of missing values and correction of

noisy measurements, modeling the dynamics of the motion is also helpful. In particular,

this becomes essential in more realistic scenarios, where the dynamic of the motion, such

as walking speed, might change. For such a direction of study, a larger collection of data

from each subject is required.

The flash lidar dataset contains sequences of 10 subjects, who are walking in three

different manners that cover poses from multiple views. A major direction for future work

calls for a dataset that consists of a larger population of subjects with a more diverse

group of settings. This can be beneficial in multiple ways. First, it will open an avenue for

training a deep pose estimation tool that generally requires a large and diverse collection of

images. In the first step of the presented pipeline, we utilize OpenPose, a state-of-the-art

pose estimation tool. Such deep learning-based pose estimators are trained with images

collected by optical cameras. Therefore, their performance is adversely affected by the

noisy imaging process of flash lidar camera. With a large collection of flash lidar images,

flash lidar-based deep pose models can be designed that can improve the performance of

skeleton detection. Second, the availability of a large collection of flash lidar data paves

the path for a well-designed optimization model to find relevant, yet interpretable features.

In this work, we opt for anthropometric-based features to avoid the interpretability issue

of a complex feature design. However, with a large data collection, there might be a

need for a more distinct set of features to recognize a larger collection of the population

considering the limitations of flash lidar modality.

5.2 Multi-class SGAR

The second part of this dissertation (chapter 4) is focused on the application of gait for

a health evaluation, providing modeling and classification approaches for minor gait ab-

normalities. There is an extensive list of ailments that affect gait function, with each

having multiple symptoms. Every disease or gait-affecting injury has its own set of
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the diagnostic list. There are also overlaps in symptoms between different pathological

abnormalities [159]. Therefore, clinical diagnosis involves a long list of lab tests, gait

performance assessments, and diagnostic imaging screening. These analyses are costly,

time-consuming, and in some cases, inconvenient for the patient. Traditional gait assess-

ment techniques are certainly informative. But, they are mainly limited to specialized

labs. These techniques are not a proper representative of the gait patterns that are mostly

observed in a free-living environment (collecting data in an uncontrolled and unsupervised

environment) [82], yet are vital for an accurate gait assessment.

The last question that we proposed at the beginning of this dissertation concerned

the application of gait anomaly recognition:

• Can we perform frequent gait evaluation without the need for an equipped special-

ized lab, in the convenience of living environment with a low-cost and markerless

equipment such as Kinect?

In the following subsections, we provide a summary for the multi-class SGAR that was

presented in this dissertation, address the above question, and outline future work pro-

posals.

5.2.1 Summary

We employ the data collected by Kinect for a contact-free, markerless approach of minor

pathological gait classification. Sequences are simulated by healthy subjects and there are

multiple recordings of the same abnormality imitation by each subject. Besides, subjects

do not walk at the same speed. These facts will result in intra-class dissimilarity and

inter-class similarities, which makes minor pathological gait recognition quite challenging.

We build a multi-class and computationally-efficient framework that can be adapted for

convenient out-of-the-lab gait evaluation. Our contributions are three-fold:
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• Unlike the majority of the SGAR studies (and gait anomaly recognition in general),

this work presents a multi-class framework. The multi-class framework makes

this study adaptable for real-world medical diagnosis of gait abnormalities, where

each class can represent a minor gait anomaly or a specific symptom.

• We employ data augmentation that is vital for reducing the generalization error in

deep learning models. The significance of data augmentation for applications such

as SGAR with limited data becomes even more significant. Unlike computer vision

tasks, data augmentation for time series-based problems is not trivial and depends

on the nature of the dataset. To the best of our knowledge, this is the first study

that employs data augmentation as a part of the SGAR pipeline.

• The majority of state-of-the-art SGAR studies focus on a single dataset and are not

capable of extending to a broad range of input data due to the mismatch between

simple handcrafted features and the complexity of the human gait. For the first

time, we present a model that is evaluated on the three largest publicly available

skeleton-based gait anomaly datasets. Since each of these datasets represent differ-

ent types of anomalies, design of the model is not dependent on the specific

patterns in one dataset and can be adopted for similar tasks. In contrast to

standard SGAR solutions, we apply transfer learning to two other datasets and

provide an evaluation.

For the multi-class pathological gait classification, we design multiple deep learning-

based models, both for the proposed features and competing methods. The design of

proper deep learning models is an engineering problem that requires an understanding

of deep networks’ structure and the underlying concepts such as gradient-based learning

methods, overfitting and underfitting of the models, regularization techniques, data aug-

mentation, and transfer learning. However, designing sophisticated deep learning models
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for the SGAR problem is not the purpose of this study. Our main goal is to develop a

pipeline for SGAR that is effective, computationally efficient, can achieve high prediction

accuracy, and can be adapted to datasets with different types of anomalies. We believe,

the presented framework provides a proper solution for gait anomaly recognition using

skeleton data. This work is also focused to set forth a model that is resilient to the number

of investigated classes. Our experimental results with transfer learning indicate that the

presented research can easily be extended to recognize other types of gait anomalies out of

the designated lab facilities. Numerous age-related ailments manifest themselves by gait

pattern alternation. Frequent and convenient monitoring of the elderly population can be

helpful by diagnosing such early symptoms. The early diagnosis of age-related diseases

can improve life quality, extend life expectancy, and reduce treatment and diagnostic

costs. The presented SGAR mechanism can be combined with models that employ other

modalities such as wearable sensors to improve the prediction capability of a free-living

gait evaluation framework. The results of this study present an affirmative response to

the proposed question, indicate the potential of markerless equipment such as Kinect for

a convenient and frequent out of the lab minor gait anomaly classification.

Our results suggest that designing relevant features and the proper handling of these

features are an important aspect of a successful SGAR pipeline. Such features can be in-

tegrated with the well-designed deep networks to accomplish state-of-the-art performance

for pathological gait identification.

5.2.2 Future work

The gait assessment methodologies in clinics are the results of decades of studies. These

methods are based on parameters that are interpretable and highly accurate. However,

such gait assessment methodologies require specialized labs and involve a cumbersome
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procedure for patients and healthcare providers. These evaluations are costly and time-

consuming. A question that naturally arises is: How can we create models and methods

that make gait assessment affordable and convenient that can be performed in a doctor’s

office, assisted living environment, or the convenience of home, with minimum to none

supervision?

To address this question and considering the result of the current study, here we

outline a few proposals for future research.

Our observations show that certain handcrafted features can be valuable in the SGAR

problem. Numerous studies in the past have shown that combining deep learning-based

attributes with non-deep learning features can result in state-of-the-art performance in

different fields. One avenue for future study can be to design models to fuse deep learning-

based features with proper handcrafted attributes to acquire multi-class SGAR frame-

works with higher prediction accuracy. With handcrafted attributes, we integrate domain

knowledge and interpretability to the model. With deep learning-based features, we in-

troduce more abstract attributes that are designed based on maximum class separation.

Our results indicate that while non-deep learning models could achieve high classifi-

cation scores in a few cases, deep networks outperformed other models in the majority of

scenarios. A major challenge in gait anomaly recognition is limited data availability. In

general, a large dataset is one of the main requirements for acquiring high performance

with a deep learning model. While data collection for various tasks in computer vision

and natural language processing is not an issue, there are applications for which data col-

lection is quite costly and time-consuming. Designing a proper augmentation method is

valuable for applications such as skeleton-based normal/pathological gait recognition due

to data limitation, difficulties of data collection, and confidentiality concerns for patients.

In this work, we used data augmentation for skeleton-based gait anomaly recognition

and achieved improvement in the classification of gait abnormalities. A future study can
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concentrate on adopting and evaluating other augmentation methods from relevant tasks.

Besides, considering the nature of the SGAR problem, new augmentation methods should

be designed and examined.

Finally, with limited publicly available data for SGAR, a systematic study of deep

learning and non-deep learning methods for a large population with a more diverse set

of abnormalities is missing. Such study is critical in recognizing the most discriminative

features in this field and designing proper generative models for clinical and non-clinical

applications.

We live in an era with fast-paced progress in advanced hardware and software design,

and healthcare is one of the fields with many underlying potentials to benefit from such

advancement. In this dissertation, we aimed to address one of the problems in this field

and tried to pave the path for future studies that take a multi-class approach toward the

problem of gait recognition with the goal of real-world applications.
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