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Abstract

The classical sense of the centrifugal barrier comes from a single infalling particle
at the edge of a collapsing molecular cloud core. As the particle collapses, it
reaches a location, the centrifugal barrier, where it must rotate at a superkeplerian
speed in order to generate a centripetal force large enough to slow down the infall
speed. Within this thesis, we attempt to understand and identify this phenomenon
by using hydrodynamic simulations. We present three sets of simulations exploring
the parameter space of our physical model. The first set of simulations utilizes
the isothermal equation of state and a 1/A2 initial density profile. Then a uniform
density profile was used, and finally we present our reference model, a uniform
density profile with the Stiffened equation of state. We find a superkeplerian
rotating region near the edge of a protostellar disk in our reference model, which
is similar to this classical sense of the centrifugal barrier, but differs in that the
superkeplerian rotation exists because of fluid interactions necessary to slow the
collapse of the infalling envelope, rather than a single infalling particle.



I. Introduction

The physical processes related to the distribution of angular momentum during star
formation are not fully understood. For example, if angular momentum was fully
conserved during the collapse of a rotating molecular cloud core to form a star,
then we would expect collapsed material at smaller radii to be rotating significantly
faster than what is observed. This problem is referred to as the ’angular momentum
problem’ within astrophysics and was first explored by Spitzer Jr (2008)

In the late 1970s, a series of papers includingUlrich (1976)Cassen&Moosman
(1981) Shu (1977), and later Stahler et al. (1994) in the 90s, were published
focusing on single particle trajectories during star formation. These papers probe
into the the classical sense of the centrifugal barrier. The trajectory of an individual
particle of gas can be followed as is collapses towards the protostar. As it collapses,
its initial gravitational potential energy is exchanged for kinetic energy. By the time
it reaches the point in which its centripetal force is balanced by the gravitational
force, a location known as the centrifugal radius, it still has significant infall
velocity and continues to collapse further. The particlemust increase its centripetal
force in order to prevent further infall. The location where this happens is referred
to as the centrifugal barrier. At this point all of the available kinetic energy has
been converted into rotational motion. As the core continues to collapse, material
continues to pile onto this location. Piling up of material causes an increase of
density, and consequently temperature, making these locations not only significant
to know the mechanism for star and protostellar disk formation, but it also has
application in astrochemical studies, as high temperatures and densities to a certain
point aid in the formation of complex organic molecules.

As stated previously, the centrifugal barrier is the location in which all of the
infall kinetic energy has been converted into rotational energy. From the definition
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of angular momentum and energy conservation, we can equate the gravitational
energy to rotational and infall kinetic energy.
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At the centrifugal barrier E8= 5 0;; = 0. Rearranging for EA>C gives us the follow-
ing expression,
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Writing 1.2 in terms of Keplerian velocity...
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√
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Equation 1.3 will be referenced within the data analysis further in this thesis
as a way of identifying the location of the centrifugal barrier. Equation 1.2 can be
solved for the radius at the centrifugal barrier...
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Which can then be compared to the point in which the particle is rotating at the
Keplerian speed for the first time - the centripetal force balances the gravitational
force.
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When comparing equation 1.6 and 1.4, it is apparent that the radius of the
centrifugal barrier is twice that of the centrifugal radius.
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Figure 1.1: Sakai et al. (2017)

Observational confirmation for the existence of what seems to be a centrifugal
barrier comes from Sakai et al. (2017) at Riken, who observed the envelope/disc
system of the low-mass Class 0 protostar L1527 using ALMA. One such obser-
vation from their paper can be found in Figure 1.1. In addition to presenting
observational evidence of a centrifugal barrier, Sakai reflects on limitations of the
assumptions made within the classical centrifugal barrier model. The assumption
that all of the available kinetic energy must be converted into rotational energy
at the point of the centrifugal barrier cannot always be made, as the kinetic en-
ergy can be converted into other forms of energy such as thermal energy in the
form of a shock or emitting gas. Other limitations of this classical view of the
centrifugal barrier is that it disregards any effects of the magnetic field, which can
drive outflow from the system, acting to reduce the specific angular momentum
available.
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II. Problem Setup

2.1 Governing Equations
The following two equations, derived by Euler’s equations for self-gravitating
hydrodynamics, are evaluated within our physical model. The first equation is
the differential form of the continuity equation. The second equation is the time
dependent momentum equation.

md

mC
+ ∇ · (dv) = 0, (2.1)

d
mv

mC
+ d (v · ∇) v = −∇% − d∇Φ6 + a0∇2v, (2.2)

The gravitational potential is evaluated using the Poisson equation, which
follows as

∇2Φ6 = 4c�d, (2.3)

The term a0∇2v in equation 2.2 corresponds to the viscous force. a0 is the
dynamical viscosity, a product of the the sound speed, the disk height, and some
constant alpha, given by Kuiper et al. (2010)

a0 = U2(� (2.4)
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The disk height, H, can be written as a ratio of the sound speed to local
Keplerian angular velocity, where the Keplerian angular velocity is calculated by
integrating the enclosed mass of a sphere up to radius r. Finally, the dynamical
viscosity is evaluated within our physical model with the following expression.

a0 = UΩ (A)'2
(�
'

)2
(2.5)

The ratio
(
�
'

)
is taken to be 1/10. The parameterization of viscosity dis-

cussed within this paper refers to this constant ’alpha’, therefore the dynamical
viscosity will frequently be referred to as alpha viscosity. Viscosity can also be
parameterized in terms of the constant V where V ≈ 0.01U.

2.2 Numerical Method
The physical model presented was performed using Athena++, a grid based sim-
ulation that allows for the solving of conservative magnetohydrodynamic (MHD)
equations. In this paper, we disregard the effects of themagnetic field on star forma-
tion, strictly utilizing the computational hydrodynamic capabilities of Athena++.

Our model utilizes a 2-dimensional spherical polar coordinate system, sym-
metric across the rotational axis. The chosen grid based model uses logarithmic
spacing in the radial directions and constant spacing in the theta direction. Loga-
rithmic spacing has the advantage of producing smaller cell sizes at smaller radial
values, producing higher resolution results at radii relevant to disk formation, at
the expense of producing larger cells at larger radii, which are not as critical for
our analysis. Cubic cells were obtained using the logarithmic spacing scale by the
following equation,

A =

(G<0G
G<8=

)1/=
(2.6)

Where G<0G and G<8= are the range of r values in the Cartesian Coordinate
system, and n is the total number of cells in the r direction. 128 cells in the r
direction and 64 cells in the theta direction were used during the majority of the
explorations within this paper. The resolution was increased twofold in both the r
and theta directions, for a total of 256 cells in the r direction and 128 cells in the
theta direction within specified ’high resolution’ runs.
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There are 3 boundary conditions treated within the simulation frame. The
boundaries at the inner and outer edge are treated the same, assumed to be a semi-
outflow boundary condition. Material is allowed to exit the computational domain
but not enter back in. When the vector of the velocity is pointing outwards, the
ghost zones along these boundary conditions become equivalent to the velocity
and density of the last cell bordering the boundary. In this way, the velocity in the
ghost zone is always pointed outwards. The boundary condition taken at the pole
is treated as a reflective boundary condition, the standard boundary condition used
for poles in similar simulations.

2.3 Model Setup and Parameters
We present three series of models within section 3, consisting of several different
parameter explorations, concluding with a presented ’Reference Model’.

Within section 3.1, an initial density profile scaled to 1/A2 is used. An enclosed
mass of "4=2;>B43 = 4"� and isothermal sound speed of cs = 0.2 km s−1 was
conserved within all models.

Thefirst presented set of simulations had an initial density profile scaled to 1/A2.
The inner radius of these models was 10AU with an outer radius of 10,000AU.
An initial solid body rotation of Ω = 1.189 × 10−13 s−1 was used. This series
of models were ran assuming an isothermal equation of state, with a temperature
of ) = 10 . A range of alpha viscosity values were utilized within one of our
parameter explorations, ranging from 0-100.

The second set of models conducted had an initial constant density profile.
The inner radius of these models was 2AU with an outer radius of 10,000AU. The
initial solid body rotation was decreased by a factor of 2 in comparison to the 1/A2

exploration, with Ω = 5.945 × 10−14 s−1. The model was once again conducted
using the isothermal equation of state with the same temperature as before. The
range of alpha viscosity values conducted within this set of models was smaller,
only ranging from 0-10. This set of models concluded with identified reference
model parameters, as will be discussed with in section 3.2. This specific model
was ran again increasing the overall resolution of the simulation, two-fold in both
the r and theta directions, specified within section 2.2.

Lastly, we use the StiffenedEquation of State in order to reproduce our reference
model. The Stiffened equation of state assumes an isothermal equation of state
with ) = 10 when the density within that locality is under a specified critical
density. Above this critical density, an adiabatic equation of state is used. This
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critical density value was set to be 10−13g cm−1. The same initial constant density
profile and initial solid body rotation, specified within the previous exploration,
were conserved. The reference model uses an alpha viscosity = 7.

7



Simulations

3.1 A−2 Initial Density Profile
This initial density profile was chosen because it has been shown from observations
that cores are centrally dense, and can be approximated with a power law scaling
d ≈ A−2

The first set of simulations conducted explored the effect of differing alpha
viscosity on disk formation. The first model had an alpha viscosity of 0. Within
our physical models, without an adequate amount of viscosity, there is not an
efficient mechanism to shed angular momentum as material falls inward, and this
material ends up accumulating within a turbulent, self-gravitating ring, which
expands outwards as the simulation progresses. The below figure illustrates a
2-dimensional depiction of this ring.

Following this ring formation, models were ran to find the viscosity in which a
protostellar disk would form instead of the ring. This range included models with
alpha viscosities equal to .01, 0.1, 0.3, 3.0, and 10.0.

The lowest viscosity model once again formed a ring. The turbulent nature
observed prior with the 0 viscosity case was observed again with this simulation.
It was found that increasing the alpha viscosity eventually transitions this ring into
an intermediate between a disk and a ring. The increased viscosity also acted
to prevent the turbulent nature seen previously. Above alpha viscosities = 0.1 or
so, a self-gravitating disk forms, which grows in size as the simulation continues.
Egregiously high viscosity values greater than 10 resulted in quick accretion of the
gas material into the inner boundaries because of the efficiency of the transfer of
angular momentum within the protostellar disk. Figure 3.2 illustrates the different
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Figure 3.1: Density map for the viscosity = 0 simulation. The density colorbar is
in units g cm−1

stages of disk or ring formation for several alpha viscosity values in terms of
density, infall, and radial velocity at various times. These data values are gathered
from the midplane of the simulation.

All of the models began with the prescribed initial density distribution, de-
creasing with a power law, starting with d ≈ 10−14g cm−1 at the inner boundary of
10 AU to d ≈ 10−20g cm−1 at the outer boundary of 10,000 AU. There is initially
no infall velocity, but there is some initial solid body rotation specified within
section 2.2. As time progresses, material closer to the inner edge of the simulation
begins to fall inwards and rotate faster until ≈ C = 50, 000H40AB, when the first
rotationally supported structures form. This time frame can be seen within Figure
3. The density at smaller radii are orders of magnitude larger than the density
outside of this structure. The infall velocity of E8 ≈ 0km s−1 is also indicative of
this rotationally supported structure - material at these radii is supported by its
centripetal force against the gravitational force exerted by the protostar.

Past these initial frames, the behavior of each model becomes more distinct.
A 1-dimensional depiction of Figure 3.1, along the midplane, can be found within
Figure 3.2c. This time of t = 100,000 years is still relatively early within the
simulation, thus there is still material at the smaller radii, albeit considerably less
than the other viscosity simulations. This material is not falling inwards, but
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(a) t = 30,000 years

(b) t = 50,000 years
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(c) t = 100,000 years

(d) t = 210,000 years

Figure 3.2: Infall velocity, rotational velocity, and density along the midplane of
the above described models. A negative infall velocity indicates material that is
moving inwards, towards the center of the simulation.
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rather moving outwards due to its high rotational velocity. The ring structure itself
starts at A ≈ 4 × 10142< and ends around A = 1 × 10152<. Within this radius
range, the density of the ring is comparable to the other simulations. The next
lowest viscosity simulation has an alpha viscosity = 0.01. At this time frame, the
intermediate nature of the lower viscosity values can begin to be observed. At
smaller radii, it has comparable densities to that of the higher viscosity simulations.
It differs from the 0 viscosity model at these small radii in that it is not expanding
outwards, the infall velocity within this range is 0. However, past 20AU, there is a
significant decrease in density, matched by an increased in infall velocity towards
the center of the simulation. This density decrease continues until 80AU, where
the density increases exponentially and more-so matches that of the remainder of
the simulations. Finally, the behavior of the alpha viscosity simulations equal to
0.1 and 0.3 are very similar. A rotationally supported structure forms on the order
of 110-120AU.

The last provided figure for this viscosity exploration occurs at a time t =
210,000 years. The ring at this time frame is more pronounced, with low densities
at lower radii and a large increase in density starting at r=100AU. This hump at
100AU is extremely turbulent and will increase or decrease in size by 5-10AU
between two adjacent time frames. The alpha viscosity equivalent to 0.01 shares
this behavior with its equivalent hump at around 100AU. Both the 0 viscosity
and 0.01 viscosity have a structure that follows closely to the protostellar disks of
the other simulations between 300-1,000AU that grows in size outwards for the
remainder of the simulation. At this point within the model, the higher viscosity
cases simply grow outwards with time, no other additional behavior as seen with
the smaller viscosity cases is noted.

As discussed in section 1, identification of the centrifugal barrier can occur by
comparing the local Keplerian velocity to rotational velocity. The local Keplerian
velocity was calculated at every r,theta value within the simulation. The ratio of
rotational velocity to local Keplerian velocity, as a function of radius, along the
midplane of the simulation, was then obtained.

In the previously presented series of models, this ratio was obtained for each
outputted time step. It was generally seen, that prior to disk formation (which
occurs C ≈ 50,000 years) the ratio increases stronger at smaller radii than at larger
radii. The value of the ratio increases until a value of 1.4 is reached at the inner
edge of the simulation, every time prior to formation of a protostellar disk. Once
this value was reached, a Keplerian rotating disk propagates outwards for the
remainder of the simulation. This once again supports the claim that the disks
formed within these simulations are rotationally supported.
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Figure 3.3: Ratio of the rotational velocity to the Keplerian velocity at time
= 40,000 years (left) and time = 50,000 years (right). The legend in this plot
corresponds to the angle \ the data was obtained from. The angle is taken from
the rotational axis, making 90 degrees the midplane of the simulation.

3.2 Initial Uniform Density Profile
Following the viscosity explorations of the previous section, the effect of the initial
density profile had on the identification of the centrifugal barrier was studied. This
initial density profile was changed from the A−2 profile to a constant density profile.
A new viscosity exploration was repeated with the identical viscosity values used
within section 3.1.

It was found that the lower viscosity cases which would have formed a disk,
or disk-like structure, in the previous A−2 density profile tends to form rings under
this constant initial density profile. With angular momentum scaling to ! = <EA,
it can be seen that with a uniform density sphere, there will be higher angular
momentum at larger radii in comparison to the previous density profile. A more
efficient mechanism is needed to shed angular momentum so that infalling material
does not clump up within a ring, but rather form a rotationally supported disk.
Keeping the other parameters constant, since angular momentum also scales with
rotational velocity, the initial solid body rotation Ω was reduced by a factor of two
from Ω = 1.189 × 10−13 s−1 to Ω = 5.945 × 10−14 s−1.

After reducing the angularmomentumwithin the simulation, the same viscosity
exploration done within section 3.1 was conducted. However, it was quickly found
that within the lower viscosity values that would form a disk in the A−2 density
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(a) Time = 110,000 years

profile still formed ring after this reduced initial solid body rotation. A smaller
viscosity regime was identified along the transition between ring and protostellar
disk in order to identify the lowest possible alpha viscosity that would allow a disk
to form. This alpha viscosity range included 5.5, 7.7, to 10.0. Additionally, the
inner boundary was decreased to 2AU. The following plot illustrates the evolution
of density, rotational velocity, and infall velocity along the midplane much like
Figure 3.3, but with one time frame at 110,000 years.

In the 5.5 alpha viscosity simulation, a high density ring of magnitude d =
10−9g cm−1 forms around C ≈ 90, 000H40AB initially at the inner edge of the simu-
lation. A similar behavior found within section 3.1 is observed for this simulation,
as it exhibits characteristics of both a ring and a disk. As the simulation progresses,
material at smaller radii accumulates into a turbulent, unstable ring. Interestingly
enough, the ring moves towards smaller radii as the simulation progresses, rather
than outwards. The disk like structure, identified by the 0 infall velocity and
density hump progresses outwards for the remainder of the simulation.

The 7.7 and 10 viscosity simulations are the ones that are able to form a rota-
tionally supported disk. This disk forms first within the 7.7 viscosity simulation,
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Figure 3.5: Ratio of the rotational velocity to the Keplerian velocity at time =
106,000 years (left) and time = 110,000 years (right). The legend in this plot
corresponds to the angle \ the data was obtained from. The angle is taken from
the rotational axis, making 90 degrees the midplane of the simulation.

at t = 81,000 years with a density of d ≈ 10−17g cm−1. It is not until t = 84,000
years that the 10 viscosity simulation is able to form a disk at a radius of 25AU,
while the 7.7 viscosity simulation already has evolved a disk to ≈ 75�*. This lag
in terms of disk size in comparison to simulation time remains for the remainder
of the model.

The difference between the 7.7 and 10 viscosity simulations is additionally
interesting when looking at the plots of the ratio of rotational velocity to local
Keplerian velocity. As found in the previous section, we still find that this ratio
reaches a value equal to 1.4 prior to disk formation. Further we find that for the
7.7 viscosity simulation, there exists a sharp hump along the disk edge equivalent
to this ratio of 1.4 which grows with the protostellar disk for the remainder of the
simulation. The disk remains a Keplerian rotating structure. The higher viscosity
case does not reach this value of 1.4. Rather, a superkeplerian value of 1.2 is
maintained along the disk edge for the remainder of the simulation. Because of
this finding, the viscosity value of 7.7 was chosen to be the fiducial value to be
tested within the section.

Within Figure 3.5, the rotational speed meets the Keplerian speed at a radius of
around. A = 2 × 10162<. The location of the local maximum occurs at a radius of
A = 1.5×10162<. These locations differ from the classical sense of the centrifugal
barrier where the location of the centrifugal radius, where the rotational speed is
equivalent to Keplerian speed is at a radius twice as far as the centrifugal barrier,
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the location where the ratio of these two velocities is 1.4.

3.3 Reference Model, Stiffened EOS
The fiducial parameters to be used within the Stiffened equation of state were
established using the isothermal equation of state. The disk that forms with these
parameters is above the critical density of d = 10−13g cm−1, therefore it is apparent
that the adiabatic equation of state will play some role in disk formation at densities
above such values.

The model begins with a 90,000 year collapse. Immediately after the collapse,
a thermally-supported first core with a radius of 20AU at 91,000 years forms.
Following the first core, a rotationally supported disk forms which grows in radius
with time for the remainder of the simulation. At time 98,000 years, we form a
disk with the radius on the order of 150AU. This progression within our reference
model can be seen within the sequence of density plots in Figure 3.6.
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(a) time = 90,000 years

(b) time = 91,000 years
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(c) time = 92,000 years

(d) time = 95,000 years

Figure 3.6: Density Maps for our Reference Model. The scale of the colorbar is
in g cm−1
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Figure 3.7: Ratio of the rotational velocity to the Keplerian velocity at time =
90,000 years (left) and at 94,000 years (right)

The analysis of the density plots for this simulation does not necessarily dis-
tinguish it from the isothermal equation of state. An analysis of the rotational to
Keplerian velocity reveals that disk formation is not preceded by the ratio of this
value reaching 1.4 along the inner boundary of the simulation, as was the case in
the isothermal simulations. Instead, the thermopressure gradient acts to erase this
phenomenon. The characteristic hump found along the edge of the disk, reaching a
maximum value of 1.4 is still foundwhile using the Stiffened equation of state. The
following two figures illustrate this ratio before and after disk formation. Looking
at the locations of the centrifugal radius and barrier within Figure 3.5 shows that
these radii are not a factor of two apart, consistent with the isothermal simulations.
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Figure 3.8: Force terms from equation 2.2. Units of the y scale is in 62<3B−1 It
should be noted that since the dt of the simulation was too large, the time derivative
of radial velocity is not significantly accurate. Time = 93,000 years.

Further analysis of this simulation is possible by plotting the different forces
involved in equation 2.2.

A Keplerian rotating particle would have a 1/A2 profile for its centripetal
force (orange line). Within this figure, there is a bump along this orange line
which corresponds to the superkeplerian rotating region in Figure 3.7b. Around
0.33 × 10152< from the peak on this graph is a significant minimum in the radial
gradient, corresponding to a large deceleration of material at that location. This
is likely from the infalling material accreting onto the envelope. If we mark
1× 10152< as the edge of the disk, then the superkeplerian region is disk material,
not the infalling material, proving to be one derivation from the classical sense of
the centrifugal barrier. We tentatively conclude that the envelope material must
spin up to this superkeplerian speed in order to slow down the collapsing envelope
onto the disk.
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Conclusion

In summary, we have used Athena++ to perform conservative hydrodynamic simu-
lations of the formation of lowmass stars in an attempt to reproduce and understand
the concept of the Centrifugal Barrier.

The first portion of this exploration was performed with an initial density
profile scaled to a power law of 1/A2 with an isothermal equation of state. Within
this set of simulations, we find that when viscosity is absent from the simulation,
material tends to clump together and form a ring. The addition of viscosity to the
simulation allows this ring to transform into an intermediate between a ring and a
protostellar disk, and when the viscosity is high enough, a disk. Along the inner
boundary of these simulations, we found that prior to the formation of the disk, the
material at small radii must reach a value of this ratio between rotational velocity
and Keplerian velocity equivalent to 1.4.

Next, we presented a set of simulations assuming a constant initial density
profile. Because of this density profile, there is too much angular momentum in
the simulation with to form a disk with the parameters from Section 3.1. For
a disk to form, we reduced this angular momentum by lowering the initial solid
body rotation was reduced by a factor of 2. As in the previous section, a viscosity
regime transitioning from a ring to disk was identified. When plotting this ratio
of rotational velocity to Keplerian velocity as a function of radius, we find that in
the viscosity = 7.7 simulation, material reaches this ratio value equal to 1.4 near
the outer edge of a Keplerian rotating disk.

The fiducial parameters found in Section 3.2 were ran using the stiffened
equation of state for our Reference Model. After a 90,000 year collapse, we form a
thermally supported first core, which flattens out to form a ring. The superkeplerian
initialization condition from the isothermal explorations was found to be an artifact
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of that equation of state, as it is erased by the thermopressure gradient with the
stiffened equation of state. The superkeplerian hump found within Section 3.2 still
occurs.

In our simulation, we have found something that is similar to the centrifugal
barrier, identified by a superkeplerian rotating structure with the rotational velocity√

2 higher than the Keplerian velocity near the outer edge of the disk. However,
this structure differs from the classical sense of the centrifugal barrier outlined
within the introduction. We found that the centrifugal radius, the point in which
the rotational velocity is equivalent to the Keplerian velocity for the first time,
does not occur at a radius twice that of what we identify to be the centrifugal
barrier. Our tentative conclusion from the reference model is that the material at
the centrifugal barrier is actually part of the disk. The material here needs to rotate
at a superkeplerian velocity in order to generate enough of a centripetal force to
slow down of the infalling envelope. In the classical picture, the single infalling
particle has to slow down without the interaction of other particles, requiring its
centripetal force to be large enough to slow down its free fall speed, our presented
models support a more hydrodynamic concept of the centrifugal barrier where the
superkeplerian portion is not required for the slow down of the individual particle,
but rather necessary to support and slow down the infalling envelope.
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