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ABSTRACT 

 The membrane-embedded injectisome, the structural component of the virulence-

associated type III secretion system (T3SS), is used by gram-negative bacterial pathogens 

to inject species-specific effector proteins into eukaryotic host cells. The cytosolic 

injectisome proteins, also known as the sorting platform and ATPase, are required for 

export of effectors and display both stationary, injectisome-bound populations and freely 

diffusing cytosolic populations. In Yersinia enterocolitica, evidence supports an effector 

protein shuttling model, in which effector proteins are shuttled from the cytosol to the 

injectisome prior to secretion through the hollow needle complex. However, how the 

cytosolic injectisome proteins interact with each other in the cytosol and associate with 

membrane-embedded injectisomes remains unclear. Additionally, it is difficult to reconcile 

the observed exchange rate of YeSctQ, the primary component of the sorting platform, with 

reported rates of substrate secretion. To determine the subcomplexes formed by the sorting 

platform and ATPase in the cytosol of live Y. enterocolitica, I utilized 3D single-molecule 

localization and tracking microscopy. Specifically, I developed a novel data analysis 

pipeline that relies on the diffusion coefficient spectrum, which provided a straightforward 

approach towards interpreting complex intracellular diffusion data. I also developed a data 

processing pipeline for 2D single-molecule bound-time data, which allowed for 

quantitative analysis of an individual protein’s binding kinetics with stationary 

injectisomes. Results support a model in which distinct complexes readily form among the 

sorting platform and ATPase in the cytosol of live Y. enterocolitica, where the propensity 

for complex formation changes in the presence or absence of injectisomes. Additionally, 

bound-time analysis of YeSctQ supports the effector protein shuttling mechanism. Our data 
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indicates that YeSctQ can deliver effector proteins to the injectisome at a maximum 

secretion rate of approximately one effector protein every 0.6 seconds. Further research is 

needed to support these findings, which has important implications for how the sorting 

platform and ATPase functionally regulate secretion.  
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1.1 Virulence-associated T3SS in gastrointestinal pathogens 

1.1.1 Overview of the injectisome 

 Bacterial secretion systems are a class of membrane-embedded, macromolecular 

complexes that are responsible for secreting proteins from the bacterial cytosol into the 

extracellular space, into other bacteria, or into plant and eukaryotic cells. To date, nine 

different secretion systems have been identified. These secretion systems play crucial roles 

in bacterial survival, virulence, cell-to-cell communication, and interactions with host 

organisms, contributing to processes such as pathogenesis, cell motility, biofilm formation, 

and nutrient acquisition (1,2).  

 The injectisome, otherwise known as the virulence-associated type III secretion 

system (vT3SS), is expressed by many bacterial pathogens, including Escherichia 

coli, Salmonella, Pseudomonas, Shigella, and Yersinia, which are responsible for 

widespread human disease both historically and currently. The injectisome connects the 

bacterial cytosol with the eukaryotic cytosol, essentially acting as a molecular syringe, 

which allows pathogens to inject effector proteins into host cells (3,4), thereby 

manipulating host cellular processes and promoting infection. In particular, secretion of 

virulent effectors into host cells enables pathogens to evade host defenses, modulate 

immune responses, and establish a conducive environment for their survival and replication 

within the host organism (5). For example, in Yersinia enterocolitica, the injectisome 

secretes the effector protein YopE, which functions as a GTPase-activating protein, 

disrupting the actin cytoskeleton and impairing the host cell's ability to phagocytose the 

bacteria (6). While the proteins of the injectisome have been (structurally) characterized 
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and share homology among pathogens, the effector proteins exhibit species-specificity, 

varying based on the specific site and mode of pathogenesis within the host organism.  

 With the rising threat of antibiotic resistance (7), the injectisome, a target specific 

to pathogenic bacteria, may serve as an attractive drug target for combatting infection. 

Modern-day antibiotics are generally either bacteriostatic or bactericidal, creating selective 

pressure on bacteria to mutate as a survival mechanism against these drugs. Targeting the 

injectisome may be beneficial, because disrupting this system could not only combat 

antibiotic-resistant bacterial strains but also potentially reduce the selective pressure 

imposed by traditional antibiotics (8). Additionally, re-programming of the injectisome for 

the delivery of biomolecules is attractive for a variety of biomedical applications (9). 

 

1.1.2 Structure of the injectisome  

 In its fully-assembled state, the injectisome is composed of multiple subcomplexes 

and spans the inner- and outer-bacterial cell membranes and the host cell membrane. These 

subcomplexes are known as the needle complex and translocon pore, the inner- and outer-

membrane rings, the export apparatus, and the cytosolic complex (Fig. 1.1a). Specifically, 

the needle complex protrudes from the bacterial cell wall (approximately 60 nm) into the 

extracellular space and is composed of the structural protein, SctF (10). The needle 

complex is capped with the needle tip protein, SctA. SctB and SctE form a translocon pore 

in the host cell membrane (11). At the base of the needle complex are SctC, SctD, and SctJ, 

which form the inner- and outer-membrane rings that stably anchor the injectisome in the 

bacterial cell wall. The export apparatus is embedded in the inner-membrane and is 

composed of SctR, SctS, SctT, SctU, and SctV. Finally, at the base of the injectisome is 
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the cytosolic complex, which is composed of SctK, SctQ, and SctL, and the ATPase, SctN 

(12–14). The cytosolic complex can be further classified as a combination of the sorting 

platform, which includes SctK, SctQ, and SctL, and the ATPase, composed of hexameric 

SctN.  

 

1.1.3 Assembly of the injectisome and effector protein secretion 

 Injectisome assembly follows a two-step process: first, the establishment of the 

primary secretion-competent machinery, and second, the assembly of the needle filament, 

tip, and translocon pore, which is dependent on type III secretion. The principle secretion-

competent machinery consists of the export apparatus and inner- and outer-membranes 

rings. Two assembly models have been proposed (3,12,15). In the inside-out model of 

assembly, the export apparatus proteins SctR, SctS, and SctT form a hexameric structure 

in the inner-membrane, followed by the addition of SctU and SctV (16). The fully-

assembled export apparatus then serves as a nucleation point for the assembly of the inner-

membrane ring. Specifically, SctJ and SctD collectively organize into two 24-membered 

rings, forming a nested configuration, where SctJ resides within the interior of the ring 

surrounding the export apparatus. The outer-membrane ring, formed independently by 

SctC, then combines with the formed export apparatus/inner-membrane ring structure, 

permitting binding of the cytosolic complex (17,18). An inside-out assembly model is 

favored in Salmonella and E. coli, while Y. enterocolitica favors an outside-in assembly 

model. The key difference in the outside-in model is that the outer-membrane ring is 

formed prior to the incorporation of the inner-membrane ring and export apparatus (19).  
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 Formation of the secretion-competent machinery permits type III secretion-

dependent assembly of the needle filament, tip, and translocon pore, which occurs in a 

hierarchal manner. After formation of the inner rod complex, composed of SctI, SctF is 

secreted through the injectisome and forms the needle by polymerizing into a helical 

structure, creating a channel that protrudes from the bacterial surface (20–23). Intermittent 

secretion of the needle length regulator protein, SctP, modulates the length of the needle 

by controlling the polymerization of needle subunits (24,25). Upon reaching the desired 

length, the needle is capped with the needle tip protein, SctA (26), and the injectisome 

switches from early- to middle-secretion substrates, a process that is in part due to the 

export apparatus protein, SctU (27–32). The middle-secretion substrates or translocases, 

SctB and SctE, are secreted through the needle, where they interact with and form the 

translocon pore in the host cell membrane (14,33,34). With a conduit between the bacterial 

and eukaryotic cell cytosol established, the injectisome finally switches its substrate 

selectivity to the late-secretion substrates, otherwise known as virulent effectors.  

 

1.1.4 Binding properties and molecular organization of the sorting platform 

 The sorting platform is not embedded within the inner-membrane but instead 

transiently associates with SctD through its interaction with SctK. The transient nature of 

this complex has made its in vitro purification and characterization challenging. By 

capturing multiple two-dimensional images of a rapidly frozen, thin specimen from 

different angles (35), visualization of the sorting platform through cryogenic electron 

tomography (cryo-ET) with fully-assembled injectisomes has been possible (36).  
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 Recent studies suggest distinct binding properties of the sorting platform in situ, 

which are contingent upon the bacterial species of origin. Subtomogram averages of the 

Shigella flexneri and Salmonella Typhimurium sorting platform complexes suggest that 

they are structurally similar. S. Typhimurium injectisomes show binding of the sorting 

platform leads to structural changes in the inner membrane ring, composed of 24 SeSctD 

proteins, to accommodate 6-fold symmetry. Specifically, helices from 4 SeSctD proteins 

arrange to associate with an individual SeSctK, with 6 SeSctK proteins binding to each 

injectisome (37). Axial scanning of the S. Typhimurium and S. flexneri sorting platform 

subtomogram averages suggest 6 distinct puncta consistent with the presence of separate 

complexes, or "pods," where each sorting platform pod follows a SctK-SctQ-SctL 

sequence of interactions, with the hexameric ATPase at the base of the complex (37,38) 

(Fig. 1.1b). Unlike the observation of distinct puncta observed for SeSctD in S. 

Typhimurium, however, SfSctD in S. flexneri and YeSctD in Y. enterocolitica form a 

continuous ring-like structure in the inner-membrane (39,40). Additionally, subtomogram 

averages of the Y. enterocolitica injectisome show continuous, ring-like densities in the 

region of YeSctQ (40) (Fig. 1.1c). However, it is worth noting that this observation was 

limited by the resolution (~10 Å) of cryo-ET, and thus, the existence of distinct pods cannot 

be ruled out. Additionally, the choice of an initial reference structure for alignment during 

the iterative reconstruction process can introduce bias. A poor choice may lead to 

convergence towards local minima instead of the global minimum, and the final 

reconstructed structure may reflect the features present in the poorly chosen initial 

reference rather than the true structure of the specimen (41,42). 
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 Despite these potentials for bias from cryo-ET studies, in vitro and in vivo evidence 

support the above findings and suggest that the stoichiometric combination of proteins that 

compose each pod complex differs among gastrointestinal pathogens. Photocrosslinking 

followed by purification and characterization of sorting platform subcomplexes in S. 

Typhimurium revealed that only an individual SeSctQ is required for binding with SeSctK 

and SeSctL. The presence of SeSctL, however, is required for the interaction between 

SeSctQ and SeSctK, suggesting that a conformational shift of SeSctQ induced by SeSctL 

permits binding with SeSctK (43). Two-hybrid analyses coupled with biophysical 

characterization of sorting platform subcomplexes in S. flexneri suggests the formation of 

distinct SfSctK:SfSctQ and SfSctQ:SfSctL complexes, with SfSctQ adopting different 

conformational states for each (44). In Y. enterocolitica, live-cell fluorescence microscopy 

data of eGFP-tagged YeSctQ suggested approximately 22-24 YeSctQ per injectisome 

(45,46), yet the precise stoichiometry of YeSctQ-containing complexes remains unknown.  

   



Chapter 1: Introduction           

 

8 

 

Figure 1.1: Graphical representation of the injectisome. a) The injectisome is composed 

of multiple subcomplexes and spans three membranes. Effectors are dissociated from their 

cognate chaperons prior to secretion through the hollow needle. b) Current model of the 

sorting platform and ATPase in S. Typhimurium and S. flexneri. Axial scanning of their 

respective cryo-ET subtomogram averages suggests 6 distinct puncta.  c) Current model of 

the sorting platform and ATPase in Y. enterocolitica. Axial scanning of cryo-ET 

subtomogram averages suggests excess density and a ring-like structure in the region of 

YeSctQ. 
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1.1.5 Binding properties and functional regulation of the ATPase, SctN 

 The functional relevance of the ATPase, SctN, as well as its molecular organization 

with fully-assembled injectisomes, is generally known and ubiquitous among bacterial 

species. For each injectisome, the homo-hexameric ATPase is cradled by 6 spoke-like 

dimers of SctL. SctN hexamerization activates its ATPase activity and thus establishes a 

proton motive force (PMF) across the bacterial inner membrane, where the energy derived 

from ATP hydrolysis allows for the secretion of substrates through the needle complex 

(47,48).  

 Despite these similarities, however, the binding properties of cytosolic (i.e., 

injectisome-unbound) SctN differs among bacterial species. In S. Typhimurium, it was 

shown that SeSctN required the presence of SeSctK, SeSctQ, and SeSctD in order to 

interact with SeSctL. Removal of any of these proteins abolished high-molecular weight 

species of SeSctN, supporting the notion that a fully assembled sorting platform is required 

for SeSctN recruitment and hexamerization (43). Conversely, in S. flexneri and Y. 

enterocolitica, SctN readily binds SctL. In vitro characterization of isolated SfSctN:SfSctL 

complexes in S. flexneri revealed that dimers of SfSctL differentially regulate SfSctN 

ATPase activity depending on its oligomeric state. Specifically, while SfSctL increases the 

ATPase activity of monomeric SfSctN, it decreases its activity for higher-order SfSctN 

oligomers, suggesting functionally distinct roles for these freely diffusing complexes 

(44,49). Similarly, isolated YeSctN:YeSctL complexes in Y. enterocolitica revealed that 

increasing concentrations of YeSctL correlates with decreasing ATPase activity of freely 

diffusing YeSctN (50). SctL thus serves as an ATPase regulator protein in S. flexneri and 
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Y. enterocolitica, while such regulatory properties are seemingly not required in S. 

Typhimurium.  

 

1.1.6 Functional roles of the sorting platform and ATPase 

 A key feature of injectisomes for all the aforementioned bacterial species is their 

ability to selectively secrete substrates in a defined order during type III secretion-

dependent assembly and effector protein secretion – this feature is due, in part, to and the 

reason for the term “sorting platform.” Specifically, a 2011 study in S. Typhimurium 

revealed that, depending on the presence or absence of specific substrates necessary for 

injectisome assembly and effector protein secretion, a mDa-sized complex composed of 

SeSctK, SeSctQ, and SeSctL was sequentially bound to (or “loaded” with) different 

secretion substrates complexed with their cognate chaperones (51). In particular, deletion 

of the translocases, or middle-secretion substrates, resulted in binding of 

chaperone:effector complexes, or late-secretion substrates. Upon deletion of the needle 

length regulator protein, which is an early-secretion substrate, neither the translocases nor 

the effector proteins associate to this complex. It was therefore concluded that SeSctK, 

SeSctQ, and SeSctL bind secretion substrates in a hierarchal manner. Despite these 

findings, they have not been replicated in other gastrointestinal pathogens. Additionally, 

the aforementioned differences in the binding properties and corresponding structures of 

the sorting platform and ATPase in different gastrointestinal pathogens leaves many 

questions unanswered.  

 Similar to the FliM/FliN pair found in the flagellar-associated T3SS, SctQ is 

expressed alongside its alternatively expressed C-terminal fragment, SctQC. In Y. 
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enterocolitica, YeSctQC is a core structural component of the injectisome and is required 

for secretion of effectors (45,52). The crystal structure of YeSctQC revealed that it forms a 

homodimer that associates with full-length YeSctQ (52). In S. flexneri, SfSctQC is also 

required for secretion and forms a 2SfSctQC:SfSctQ heterotrimer (44,53). In S. 

Typhimurium, however, full-length SeSctQ alone (i.e., without the presence of SeSctQC) 

is stable and permits secretion of effectors, albeit with reduced efficiency (54).  

 In order to help clarify the functional roles of the sorting platform and ATPase, 

live-cell microscopy in combination with in vitro interaction data in Y. enterocolitica has 

been leveraged.  Specifically, secretion of effector proteins in Y. enterocolitica can be 

turned OFF or ON in the presence or absence of extracellular calcium, respectively. 

Fluorescence recovery after photobleaching (FRAP) experiments revealed that YeSctQ 

dynamically binds and unbinds with injectisomes under secretion-ON conditions. 

Interestingly, under secretion-OFF conditions, the YeSctQ exchange rate is reduced by 

approximately a factor of two (45). Additional studies showed that YeSctQ, YeSctK, 

YeSctL, and YeSctN have substantial cytosolic populations in addition to injectisome-

bound populations (45,46). Under secretion-OFF conditions, the interaction strengths 

among these proteins increases and the diffusion rates of the corresponding complexes 

decreases (46). Collectively, these findings suggest that the binding properties among 

cytosolic and injectisome-bound complexes containing YeSctK, YeSctQ, YeSctL, and 

YeSctN are sensitive to the secretion-state of the injectisome. This feature allows for faster 

exchange of cytosolic subcomplexes with injectisomes during secretion, which is 

potentially correlated with the delivery of chaperone:effector secretion substrates by these 

subcomplexes (Fig. 1.2). These findings may help explain the reason for the excess YeSctQ 
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and YeSctQC protein density (see section 1.1.4), as it may be a required feature to ensure 

rapid delivery of secretion substrates.  

 The Y. enterocolitica injectisome additionally switches between secretion-ON and 

-OFF states under neutral and low pH conditions, respectively (55). Gastrointestinal 

pathogens experience low pH environments during infection, which negatively impacts 

cell viability. It was found that, under these conditions, the Y. enterocolitica sorting 

platform and ATPase dissociate from injectisomes, halting secretion. Secretion resumes 

shortly after restoration of neutral pH conditions. This reversible mechanism likely 

regulates the injectisome’s energy consumption, where consumption is minimal under 

environmentally harsh conditions.  

 Despite these findings, it remains to be determined precisely how the cytosolic 

population of proteins that compose the sorting platform and ATPase in Y. enterocolitica 

1) associate with one another in the cytosol and 2) contribute to the functionality and 

regulation of secretion. Specifically, determining the cytosolic subcomplexes formed in Y. 

enterocolitica will begin to uncover the steps that contribute to the assembly of the sorting 

platform and ATPase. Results shown in S. Typhimurium suggest that SeSctK first binds 

with injectisomes, followed by a SeSctQ:SeSctL complex and, finally, the ATPase, SeSctN 

(43). Conversely, live-cell microscopy results in Y. enterocolitica revealed that all the 

proteins composing the sorting platform and ATPase are required for injectisome binding 

(45,46,52). This suggests that these proteins first associate with one another in the cytosol 

prior to their association with injectisomes. Establishing the cytosolic subcomplexes that 

compose the sorting platform and ATPase is ultimately necessary in order to determine 

their functional roles.  
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Figure 1.2: Potential mechanism of substrate recruitment to the Y. enterocolitica 

injectisome. Live-cell fluorescence microscopy data reveals the exchange rate of YeSctQ 

with injectisomes increases upon activation of effector protein secretion. In vitro 

interaction data reveals interaction between YeSctQ with chaperone:effector complexes. 

Additional in vitro interaction data reveals a network of interactions among YeSctK, 

YeSctQ, YeSctL, and/or YeSctN.  

 

1.2 Dissertation Outline 

 Live-cell fluorescence imaging has been pivotal in determining functional roles of 

the proteins that compose the sorting platform and ATPase. The work presented in this 

dissertation leverages advancements in super-resolution fluorescence imaging to uncover 

the roles of these proteins. In Chapter 2, single-molecule localization microscopy (SMLM) 

will be introduced. Chapter 3 focuses on the previously established (56) and newly updated 

data analysis pipeline utilized to process single-molecule localizations and quantify the 
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diffusive states of freely-diffusing proteins. Single-molecule tracking analysis that reveals 

cytosolic subcomplexes formed by YeSctQ, YeSctL, and YeSctN in Y. enterocolitica will 

be presented in Chapter 4. Long-exposure, 2D single-molecule tracking data reveals the 

binding times of YeSctK, YeSctQ, YeSctL, and YeSctN with injectisomes, which will be 

discussed in Chapter 5. Finally, Chapter 6 will focus on the significance of these findings 

as well as future directions in aimed at uncovering the complex nature of the sorting 

platform and ATPase.
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2.1 Super-resolution fluorescence imaging 

 Fluorescence microscopy allows for the visualization of biomolecules within their 

native biological context. The inherent resolution constraints of conventional diffraction-

limited fluorescence imaging restrict the amount of detail that can be captured from a 

fluorescence image. Specifically, the diffraction limit represents the distance in which two 

fluorescent emitters can no longer be distinguished from one another. This is due to the 

fact that light waves diffract as they pass through a lens, causing the signal from individual 

molecules, otherwise known as the point-spread-function (PSF), to spread out and overlap. 

The diffraction limit, described by the Airy pattern, therefore sets a fundamental constraint 

on the achievable resolution in optical microscopy. The diffraction-limit of light was first 

described by Ernest Abbe with the following equation,  

 
𝑑𝑥,𝑦 =  

𝜆

2 ∗ 𝑛 ∗ 𝑠𝑖𝑛𝜃
 

(2.1) 

where d is the diameter of the PSF, λ is the wavelength of the emitted light, n is the 

refractive index of the medium the lens is in, and 𝜃 is the maximum half-angle of the cone 

of light entering the lens. The numerical aperture (NA) is equal to 𝑛 ∗ 𝑠𝑖𝑛𝜃, simplifying 

the Equation 2.1 to: 

 
𝑑𝑥,𝑦 =  

𝜆

2 ∗ 𝑁𝐴
 

(2.2) 

In practical terms, the diffraction-limit defines the smallest resolvable details in the 

specimen being imaged, which is approximately 300 nm. Therefore, it is not possible 

extract desirable information from a biological structure of interest with features smaller 

than this limit, as the resulting image would appear blurred. 
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 In order to surpass the resolution constraints of optical microscopy, various 'super-

resolution' techniques were devised, culminating in the award of the Nobel Prize in 

Chemistry in 2014. Super-resolution fluorescence microscopy can be broadly classified 

into two main approaches, each relying on distinct mechanisms: point-spread-function 

(PSF)-based localization and modulation-enhanced localization. For PSF-based 

localization methods, such as PALM (57,58) and STORM (59), the diffraction-limited 

image of a point source (i.e. the PSF) is analyzed to estimate the emitter position (56,60,61). 

In modulation-enhanced localization methods (62), such as MINFLUX (63–66), pulsed 

interleaved MINFLUX (p-MINFLUX) (67), single-molecule confocal laser tracking 

combined with fluorescence correlation spectroscopy (SMCT–FCS) (68), Orbital scanning 

(69–71), 3D-DyPLoT(72,73), 3D-SMART (74), and TSUNAMI (75), spatially structured 

illumination patterns result in fluorescence intensity modulations that are analyzed to 

localize individual fluorophores. The temporal resolution of modulation-enhanced 

localization can reach 0.1 ms, which is about two orders of magnitude higher than what is 

typically achieved in PSF-based localization methods. The increased time resolution of 

modulation-enhanced localization methods derives from a more efficient use of the 

information delivered by each photon (63). However, in modulation-enhanced methods, 

individual fluorescent molecules are imaged sequentially in time, whereas PSF-based 

localization methods permits imaging of many fluorescent molecules concurrently.   

 

2.1.1 PSF engineering 

 The conventional 2D PSF provides the lateral xy positions of any fluorescent 

emitter. Scanning above and below the focal plane for the conventional 2D PSF results in 
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a spatially-symmetric Airy pattern, and therefore, any information about the axial z position 

of the fluorescent emitter is lost. PSF engineering is achieved by placing a phase mask in 

the back focal plane of the microscope, where this phase mask introduces aberrations into 

the PSF signal. These aberrations therefore encode 3D information about the 2D PSF shape 

(76).  

 While several approaches towards engineering the 2D PSF have emerged, only a 

subset of these approaches will be mentioned here. The earliest approach leveraged the 

astigmatism imaging method, which incorporates a cylindrical lens into the back focal 

plane of the imaging pathway. The cylindrical lens generates two marginally distinct focal 

planes along the x and y directions, and as a result, the ellipticity and orientation of the 

fluorophores PSF changes as the z-position changes (77). Shortly after the introduction of 

the astigmatic PSF, the double-helix PSF (DHPSF) was introduced. Briefly, a phase mask 

placed in the back focal plane of the microscope splits a single 2D PSF into two distinct 

lobes. As the z-position of the emitter changes with respect to the focal plane, these lobes 

rotate around one another. Given that the angle of the lobes relative to one another are 

asymmetric above and below the focal plane, the z-position of the molecule can be 

extracted (78). Finally, the DHPSF was improved upon through the introduction of the 

tetrapod PSF, which exhibits a larger axial range compared to the DHPSF (79). All of the 

experiments presented in this dissertation were performed in bacteria. Given that the axial 

range of the DHPSF is approximately 1.5 µm, while bacteria are typically 0.2 – 1 µm in 

width, the DHPSF is suitable for achieving 3D super-resolution capabilities throughout the 

entire bacterial cell.  
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2.1.2 Labelling target molecules with fluorescent emitters 

 The work described in this dissertation utilizes PSF-based localization, which relies 

on controlling the fluorescent emitter concentration in space and time. In PSF-based 

experiments, a majority of the fluorescent emitters are in a fluorescence OFF state. 

Therefore, only a small subset of  fluorophores are in a fluorescence ON state at any given 

time. Sparse fluorescence signal avoids overlapping signals from nearby molecules and 

allows for the localization of individual emitters. Therefore, this technique is known as 

single-molecule localization microscopy (SMLM). The number of photons collected from 

an individual fluorescent emitter is correlated with the precision of the localization, 𝜎,  

 𝜎 ≈  
𝑠

√𝑁
 

(2.3) 

where 𝑠 is the standard deviation of the PSF and 𝑁 is the number of photons collected 

above the background.  

 For any super-resolution fluorescence imaging experiment, the choice of 

fluorophore must be appropriate for the desired application. Given that fluorescence-

labeling has been covered extensively (80,81) and is not the focus of this dissertation, it 

will only be briefly mentioned here. Generally, fluorescent labels can be broadly placed 

into two categories: fluorescent proteins or fluorescent dyes. Fluorescent proteins are 

genetically encodable, allowing for 100% labelling efficiency of the target molecule. 

Fluorescent protein labelling can be achieved in trans through the use of expression 

plasmids or through genetic incorporation into chromosomal DNA. However, fluorescent 

proteins are large (typically ~ 30 kDa) and are approximately 10 times less bright than 

fluorescent dyes. Given that the number of collected photons correlates with the precision 
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of the localization, fluorescent dyes therefore provide more precise localizations. Despite 

this advantage, fluorescent dyes have their own drawbacks. Specifically, nonspecific 

labeling of fluorescent dyes results in fluorescence background. For any single-molecule 

imaging experiment, the choice of fluorophore must ultimately be appropriate for the 

desired application.  

 

2.2 Instrumentation 

 In order to perform 3D super-resolution fluorescence imaging, a custom-built 

inverted fluorescence microscope was previously constructed (Fig 2.1). Utilizing a custom-

built microscope is advantageous, as the instrument is modular, allowing for the addition 

or switching out of optics necessary for the needs of the fluorescence imaging experiment. 

The microscope consists of excitation and emission pathways for the collection of 

fluorescence signal, as well as a phase contrast pathway for imaging of bacterial cell 

shapes. While this microscope has been described in detail previously, the following 

sections will walk the reader through the details of each pathway. 

 

2.2.1 Fluorescence imaging 

 Fluorescence microscopy necessitates the utilization of a precise wavelength of 

light to effectively excite fluorophores within a specimen. This wavelength corresponds to 

the energy required to excite electrons in the fluorescent emitter to higher energy states, 

enabling the subsequent emission of fluorescence upon their return to lower energy levels. 

Our custom-built, inverted fluorescence microscope contains four lasers with different 
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excitation wavelengths, and therefore, four excitation pathways. A 514 nm laser (Coherent 

Genesis MX514 MTM) and a 561nm laser (Coherent Genesis MX561 MTM) is used for 

excitation of fluorescent emitters, while a 405 nm laser (Coherent OBIS 405) and a 488 

nm laser (Genesis MX488-1000 STM) are used to ‘activate’ photo-activatable fluorescent 

emitters prior to excitation with the 561 nm laser. In each excitation pathway, the initial 

laser beam undergoes expansion through a two-lens telescope, resulting in the formation 

of a collimated beam with dimensions larger than the original input. The excitation beam 

is then circularly polarized after passing through a wavelength-appropriate zero order 

quarter wave plate. There is an additional bandpass filter in the 514 nm excitation pathway 

(Chroma ET510/10bp) to limit the excitation wavelength range. A set of dichroic mirrors 

(Chroma T470lpxr and Chroma T525lpxr) is then utilized, where the three excitation 

pathways converge into the same pathway. The excitation laser is then directed towards 

another dichroic mirror (Chroma ZT405-440/514/561rpc-UF1). This allows the excitation 

laser to be reflected into the objective of the microscope (UPLSAPO 60X 1.4 NA), which 

focuses the light onto the sample.  

 Photons from fluorescent emitters within the sample are collected by the objective 

lens. The objective lens used in the microscope is infinity corrected. In this design, the lens 

is designed so that parallel rays of light coming from an object at an infinite distance are 

focused at the back focal plane of the lens. This means that the focal plane is effectively 

moved to infinity. In order to capture the image plan, a tube lens is therefore used to collect 

and transmit emission light. After passing through the tube lens, the emitted light is then 

passed through two achromatic doublet lenses, which limits the effects of chromatic and 

spherical aberrations. These lenses are set up in a 4f configuration. The first lens performs 
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a Fourier transform of the image, which is multiplied by the DHPSF transfer function 

through a custom DHPSF phase mask. The second lens then converts the Fourier transform 

of the image back into the real image. The fluorescence signal finally reaches the detector 

and appears as a DHPSF, allowing for the 3D super-resolution capabilities (see section 

2.1.1).  

 The emission signal also passes through a series of filters. A 514 nm long-pass filter 

(Semrock LP02-514RU-25) and 561 nm notch filter (Semrock NF03-561E-25) are used to 

limit the amount of scattered excitation light from the 514 nm and 561 nm excitation beams, 

respectively, entering the emission pathway. Additionally, a 700 nm short pass filter 

(Chroma ET700SP-2P8) is used to limit any additional light outside the range of the 

fluorescence signal from entering the emission pathway.   

 In order to switch between the 561 nm and 514 nm emission pathways, a dichroic 

beam-splitter (Chroma T560lpxr-uf3) placed after the first 4f lens directs the respective 

pathways to separate cameras. The resulting fluorescence signal is recorded on a scientific 

Complimentary Metal-Oxide Semiconductor (sCMOS) detector (Hamamatsu ORCA-

Flash 4.0 V2). The advantages of sCMOS detectors over Charged-Coupled Device (CCD) 

detectors are plentiful. Specifically, sCMOS detectors exhibit higher quantum efficiency 

across a broader range of wavelengths, making them more sensitive in detecting light and 

resulting in better signal-to-noise ratios. Additionally, sCMOS detectors offer faster 

readout speeds as well as larger fields-of-view compared to CCD detectors.   
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2.2.2 Phase contrast imaging  

 After collecting fluorescence signal from a field-of-view, a phase contrast image of 

the bacterial cell shapes is acquired. Phase contrast imaging permits imaging of biological 

structures without a fluorescent label. By collecting a phase contrast image of bacterial 

cells after collection of single-molecule fluorescence data, individual molecules can be 

assigned to the bacterial cell they originate from.  

 The sample is illuminated with a red light-emitting diode (LED) that is positioned 

on the illumination tower above the microscope stage. After passing through a set of lenses, 

the red LED is then passed through an annulus ring, producing a ring of light. This ring is 

then passed through a condenser lens, which focuses the ring onto the sample stage. 

Importantly, light passing through, in this case, the cell membrane, will be scattered. Light 

passing through the membrane is phase shifted by -90 and is scattered in all directions. 

Similar to the fluorescence pathway, the light is then collected by the objective and passed 

through the tube lens. However, for collection of phase contrast data, a flip mirror situated 

after the tube lens is moved to the “up” position, and the light is reflected into a separate 

pathway. The light then passes through an additional 4f system, where a phase ring is 

placed in the Fourier plane between the two 4f lenses. As light passes through the phase 

ring, it is phase shifted by +90. As a result, light that has not passed through the biological 

sample is phase shifted 180 with respect to the light that was scattered. The scattered and 

transmitted light then destructively interfere with one another, where this interference 

enhances the contrast between the biological sample and the transparent mounting 

substrate. The final phase contrast image is then visualized on the detection camera (Aptina 

MT9P031).  
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Figure 2.1. Schematic of microscope layout including excitation, emission, and phase 

contrast pathways. A detailed description of optical elements can be found in 

accompanying text. Special thanks to Dr. Alecia Achimovich for producing this figure.
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3.1 Processing Experimental Single-molecule Localization Data 

 In order to extract the 3D positions of each single-molecule, the corresponding 

DHPSF signals must be processed and filtered. Given that the processing software used in 

this dissertation has been described in detail previously, only a brief explanation will be 

provided here. However, an additional filtering step was added to the existing software, 

which is described at the end of this section.  

 

3.1.1 PSF fitting 

 Raw, single-molecule fluorescence data is processed using a modified version of 

the easy-DHPSF MATLAB software (56,82,83). Potential DHPSF signals are found based 

on a template image matching step. Specifically, a series of DHPSF images of a bright 

fluorescent bead is used to create a series of template images for different z positions.  

These template images are then used to match and select DHPSFs within the full 

experimental image. After template matching, single-molecule fluorescence data is fit with 

a modified double-Gaussian model. Specifically, a Maximum Likelihood Estimator (MLE) 

was implemented for the double-Gaussian fitting, which has been previously shown to be 

a more robust estimator of single-molecule positions compared to least-squares (LS). The 

center position between the two, fit lobes corresponds to the lateral xy position of the single-

molecule, where the angle of the lobes corresponds the axial z position. If necessary, the 

fit localizations can be further filtered based on specific quality metrics, such as lobe 

distance, lobe diameter, and the number of photons collected for each localization.  

 Lateral and axial drift is a common problem encountered when collecting 

fluorescence imaging data. In order to correct for such drift, a bright fluorescent bead is 
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used as a fiducial marker for each single-molecule fluorescence movie. For each frame, the 

fiducial is fit to a double-Gaussian model, where the lateral and axial positions are 

determined. Obtaining the known positions of the fiducial therefore allows for drift 

correction of single-molecule localizations.  

 

3.1.2 Cell registration and localization filtering  

 Single-molecule localizations are assigned to the bacterial cells they originate from, 

where localizations outside of cells were not considered for further analysis. Specifically, 

phase contrast images of bacterial cells were segmented using the OUFTI software (84). 

Abnormal cells, such as ones that are abnormally long or currently undergoing cell 

division, were discarded. Meshes of bacterial cell outlines were then input into a previously 

described MATLAB script. Specifically, the alignment of outlines with fluorescence data 

involves a two-step 2D affine transformation utilizing the 'cp2tform' function in MATLAB. 

In the initial step, five control point pairs were manually chosen for the segmented cell 

outlines and the corresponding single-molecule localizations. After generating the initial 

transformation, cells containing fewer than 10 localizations were discarded. The center of 

mass for all remaining cell outlines and the corresponding single-molecule localizations 

were then used to generate a more extensive set of control point pairs for calculating the 

final transformation function. The inclusion of a substantial set of control points ensures 

the robustness of the transformation, preventing biases introduced by cells with few 

localizations or those partially outside the field-of-view.  

 An additional filtering step was added to the cell-segmented single-molecule 

localizations. Specifically, localizations that are beyond or far from the axial (z) boundaries 
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of the cell were not included for further analysis (Fig 3.1ab). After registering single-

molecule fluorescence data to their respective bacterial cell outlines, z-position quality 

scores of all cell-segmented single-molecule localizations were computed as  

 𝑄𝑆𝑖 = exp(−𝑎 ∗ |𝑧𝑖 −  〈𝑧〉|) (3.1) 

where 𝑎 = 0.0008 and 〈𝑧〉 is the average z-position of all emitters (Fig 3.1c). This step is 

necessary, as the following processing step links the single-molecule localizations into 

trajectories. Therefore, linking of molecules that are outside the axial (z) boundaries of the 

cell is avoided.  
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Figure 3.1: a) 3D scatterplot of YeSctQ localizations in a single bacterial cell. 

Localizations of a putative single-molecule trajectory are connected by blue lines. 

However, the second localization corresponds to an incorrect localization.  b) Individual 

camera frames giving rise to the connected localizations shown in panel a.  The second 

frame shows only a dim fluorescence signal due to fluorophore blinking, which leads to 

mislocalization of the emitter.  c)  z-position quality scores of all localizations detected in 

N ~ 40 cells across the field-of-view. z-position quality score of the i-th emitter is computed 

as 𝑄𝑆𝑖 = 𝑒𝑥𝑝(−𝑎 ∗ |𝑧𝑖 − 〈𝑧〉|), where 𝑎 = 0.0008 and 〈𝑧〉 is the average z-position of all 

emitters.  
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3.2 Single-molecule tracking 

 Historically, single-molecule trajectories have been analyzed by computing the 

mean squared displacements (MSDs) at different time lags 

 

𝑀𝑆𝐷𝑛 =  
1

𝑁 − 𝑛
∑ (|𝑟𝑖+𝑛 − 𝑟𝑖|)

2

𝑁−𝑛

𝑖=1

           𝑛 = 1, … . 𝑁 − 1 

(3.2) 

where 𝑁 is the number of localizations in the trajectory and 𝑟𝑖 are single-molecule positions 

within that trajectory, typically sampled at a constant time interval ∆𝑡. For a randomly 

diffusing Brownian particle, the MSD is proportional to the translational diffusion 

coefficient 𝐷, i.e. 

 𝑀𝑆𝐷𝑛 =  2𝑚𝐷𝑛∆𝑡 (3.3) 

where 𝑚 is the dimensionality of the acquired single-molecule localizations (𝑑 = 2 for 2D 

tracking and 𝑑 = 3 for 3D tracking). In any experiment, there are two main sources of 

localization errors that affect single-molecule position measurements. Static localization 

errors limit the precision of single-molecule position measurements, most notably because 

of the finite number of detected fluorescence photons (60,61)  (Fig 3.2a). In addition, 

localizations of moving emitters suffer from dynamic localization errors, because the 

fluorescence signal is motion-blurred (Fig 3.2b). Dynamic localization errors limit both 

the precision and accuracy of single-molecule localizations. The combined localization 

error 𝜎 modifies the MSD vs. time relationship to 𝑀𝑆𝐷𝑛(𝑛; 𝛥𝑡) = 2𝑑𝐷𝑛𝛥𝑡 + 2𝑑𝜎2 (85). 

The straightforward relationship between the experimental observable, 𝑀𝑆𝐷𝑛, and the 

quantity interest, 𝐷, has made MSD analysis an immensely popular approach in the 

biophysical life sciences. However, many (>1000) trajectory points are needed to reliably 
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estimate (within 10% error) the diffusion coefficient of a single-molecule acquired with 

experimentally-realistic localization errors (85). Experimentally acquired single-molecule 

trajectories typically contain only around 10-1000 displacements, which does not meet the 

above threshold. If the tracked particles undergo unconfined Brownian motion that is 

governed by a single diffusion coefficient value, >1000 trajectory points could be obtained 

by pooling a sufficient number of short trajectories. In such a case, MSD analysis would 

provide an accurate estimation of the diffusion coefficient. However, the assumption of 

homogeneous, unconfined Brownian motion is unlikely to hold for protein diffusion in 

living cells. MSD analysis is therefore not suitable to determine diffusion coefficient(s) of 

single molecules in living cells.     

 To overcome the drawbacks of MSD analysis, the field has developed a variety of 

alternative approaches. These approaches are based on curve-fitting (56,83) or Bayesian 

inference methods (86–89) to analyze pooled trajectory data. In the following section, the 

curve-fitting approach used to analyze trajectory data in this dissertation will be outlined. 

The full processing and analysis pipeline is depicted in Figure  3.4. 
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Figure 3.2.  Experimental considerations affecting single-molecule tracking results. 

Special thanks to Olivia de Cuba for generating the data used for and helping create this 

figure. (a) For a stationary fluorophore at a fixed position in space (blue diamond), different 

PSF images will be obtained at different times due to uncorrelated Gaussian camera read 

noise and Poisson shot noise. (Two sets of simulated images are shown for the standard 

PSF and the double-helix PSF, respectively). Because of these random noise contributions, 

the estimated emitter positions (red circles) will differ from the actual position of the 

emitter. (b)  For a freely-diffusing fluorophore, motion-blurred PSF images will be 

obtained. (Two sets of simulated images are shown for the standard PSF and the double-

helix PSF, respectively. Gaussian camera read noise and Poisson shot noise are omitted 

here for clarity). Because of motion blur, the estimated emitter position (red circle) will 

differ from the center-of-mass position of the emitter during the exposure/illumination time 

(blue diamond). By reducing the exposure/illumination time from 25 ms to 2 ms (referred 

to as stroboscopic illumination), the amount of motion blur can be reduced.  
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3.2.1 The apparent diffusion coefficient 

 Filtered 3D single-molecule localizations in subsequent frames were linked into 

trajectories using a distance threshold of 2.2 m. Trajectories with fewer than 4 

localizations were not considered for further analysis. Additionally, if 2 or more 

localizations were present in the same cell at the same time, the trajectories corresponding 

to each localization were not considered for further analysis. After computing the MSD of 

each trajectory, the apparent diffusion coefficient, 𝐷∗, could then be computed as 

 
𝐷∗ =  

𝑀𝑆𝐷

2 ∗ 𝑚 ∗ ∆𝑡
 

(3.4) 

where 𝑚 is the dimensionality of the data and ∆𝑡 is the camera exposure time. For tracking 

experiments performed in this dissertation, 𝑚 = 3 and ∆𝑡 = 25 ms. The calculated diffusion 

coefficient from single-molecule 𝑀𝑆𝐷𝑛 calculations (i.e. averaged over a single-molecule 

trajectory) should be regarded as the apparent single-molecule diffusion coefficient 𝐷∗ to 

distinguish it from the actual diffusion coefficient D that governs the motion of the 

molecule. Estimates of 𝐷∗ differ from D because of the drawbacks of MSD analysis, 

namely short trajectory lengths and localization errors due to limited photon budgets and 

motion blurring, but also confinement of trajectories within small volumes, such as 

bacterial cells (56,83,90,91), cellular organelles (92), and phase-separated condensates 

(93,94). For each tracking experiment presented in this dissertation, thousands of single-

molecule trajectories were acquired and, therefore, thousands of 𝐷∗ values were computed 

for a tracked molecule of interest.  
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3.2.2 Generating simulated model functions 

  A previously developed approach to account for the complex interdependencies 

between trajectory length, localization errors, and confinement effects contained in 

experimental D* distributions (Fig. 3.3a) by simulating D* distributions (Fig. 3.3b) and 

then using them to fit the experimental D* distributions was modified and further optimized 

(56,95). For bacterial cell imaging, realistically simulated D* distributions was achieved 

through a numerical forward convolution approach that begins with Monte Carlo sampling 

of Brownian motion within a confining volume matching the size and shape of the bacterial 

cells being imaged. Fine time steps of 100 ns are chosen to generate a list of positions 

visited by a diffusing molecule during the chosen camera and/or laser exposure time (e.g. 

25 ms). The fine trajectory is split up into 50 segments, and the center-of-mass within each 

segment is computed. The center-of-mass positions are then convolved with the 

microscope’s PSF to generate 50 subframes, which are summed to generate a motion-

blurred image of the diffusing molecule. Next, the signal intensity is scaled to match the 

experimentally observed signal intensities, and the resulting image is modulated by the 

addition of background intensity as well as by the addition of Gaussian camera read noise 

and Poisson shot noise that is inherent to the photon detection process. Simulated 

localizations and trajectories are obtained through the same localization and tracking 

algorithms as used for experimentally acquired data, and an apparent diffusion coefficient 

D*  is calculated for each simulated trajectory. This process is repeated for N = 5000 

trajectories to obtain a well-sampled D* distribution corresponding to a single “true” 

diffusion coefficient, D. 
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 The simulation library used to analyze empirical D* distributions was modified. The 

previous simulation library contained 64 D* distributions, which corresponded to D values 

ranging from 0.05 to 20 m2/s. This library was updated after simulating additional D* 

distributions with D values ranging from 0.01 to 0.1 m2/s with a step size of 0.01 as well 

as 0.1 to 0.5 m2/s with a step size of 0.05. Additionally, D* distributions ranging from 16 

to 20 m2/s were removed from the library. The final library contains 70 diffusion 

coefficient values ranging from 0.01 to 15 m2/s.  

 In order to analyze empirical D* distributions (Fig. 3.3a) with the simulated D* 

distributions, where the “true” diffusion coefficient, D, is known, the above library of 

simulated D* distributions (Fig. 3.3b) was used to generate a 2D gridded interpolant 

function. The empirical cumulative distribution function (eCDF) is first computed for each 

simulated distribution. After initializing variables and setting query points, the eCDFs are 

padded, extending them for subsequent interpolation. The interpolation process is executed 

separately for the first 25 simulated curves and the remaining curves, with distinct 

interpolation methods employed for optimal accuracy. Specifically, the first 25 curves of 

the library were interpolated using a B-spline (order 3), while the remaining curves were 

interpolated using a cubic smoothing spline. A second interpolation along the diffusion 

coefficient dimension using a cubic smoothing spline with the addition of a smoothing 

parameter was then performed. The smoothing parameter controls the trade-off between 

fitting the data closely and achieving a smooth interpolation. For the first 200 data points, 

the smoothing weights are adjusted to have higher roughness at the beginning of the curve 

and lower roughness at the end of the curve. Beyond the first 200 points, the smoothing 

weights are set to have moderate roughness throughout the entire range of diffusion 
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coefficient values. Each of the 1D interpolations then serve as an input to compute the 2D 

interpolation using the ‘griddedInterpolant’ MATLAB function. Finally, a matrix of curves 

computed from the 2D gridded interpolant is generated for subsequent analysis of empirical 

D* distributions.  

 

3.2.3 Linear fitting – Diffusion coefficient spectrum  

 After obtaining the simulated model function that directly accounts for the complex 

interdependencies between trajectory length, localization errors, and confinement effects 

contained in experimental D* distributions, curve-fitting of experimental D* distributions is 

now possible. Major revisions were made to the previously established curve-fitting 

method (56). Specifically, the curve-fitting approach of D* distributions utilized in this 

dissertation follows a two-step process: 1) linear fitting using the trust-region method, 

which results in a spectrum of D values, and 2) nonlinear fitting using the particle swarm 

optimization method, which refines the number of parameters selected in the linear fitting 

process into a defined number of diffusive states and their relative population fractions.  

 Trust region methods are optimization algorithms used to solve unconstrained or 

constrained optimization problems (96). Specifically, trust-region methods iteratively 

optimize a model of the objective function within a region around the current iterate, also 

known as the trust region. The trust region is updated dynamically based on the 

performance of the model compared to the true objective function. Within each iterate, the 

trust region is either accepted or updated. If the model accurately represents the objective 

function, the algorithm accepts the step and moves towards the minimum. However, if the 

model deviates significantly, the size of the trust region is adjusted to restrict the step size, 
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preventing too large of steps that may lead to divergence or overshooting of the minimum. 

Ultimately, trust region methods provide a robust and computationally efficient approach 

to optimization.  

 For the software developed in this dissertation, the objective function is defined by 

the ‘lsqlin’ MATLAB function, which is used for constrained least squares optimization. 

The objective function in this context is the sum of squared differences between the 

predicted values and the actual data points. Specifically, ‘lsqlin’ seeks to minimize the 

residual sum of squares (𝑅𝑆𝑆) 

 
𝑅𝑆𝑆 =  ∑(𝑦𝑖 −  �̂�𝑖)

2

𝑛

𝑖=1

 
(3.5) 

where 𝑦𝑖 is the observed value for the i-th data point, �̂�𝑖 is the predicted value for the  

i-th data point obtained from the model, and 𝑛 is the total number of data points. After 

interpolation of the observed data, the software sets up the optimization problem using the 

‘trust-region-reflective’ algorithm within the ‘lsqlin’ MATLAB function.  

 The software utilizes a bootstrapping approach, which involves repeatedly 

sampling subsets from the original dataset and estimating the parameters of interest for 

each samples subset. During each iteration, the sampled data are then fit based on the above 

minimization problem, and 100 total bootstrapping iterations are performed. Bootstrapping 

therefore provides 100 different spectra that were obtained for each sampled subset of the 

data, allowing for the calculation of a mean bootstrapped spectrum as well as its standard 

deviation. The mean bootstrapped spectrum ultimately contains the fitted linear 

coefficients that most accurately represent the observed data. These linear coefficients are 
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then plotted as a spectrum of D values that manifest for a Brownian diffuser confined 

within the cytosol of rod-shaped bacterial cells (Fig. 3.3c). 

 

 

Figure 3.3. (a) Experimentally measured D* distribution of eYFP-labeled SctQ in Yersinia 

enterocolitica. (b) Simulated distributions of apparent diffusion coefficients based on 

Monte Carlo simulations of confined Brownian motion in rod-shaped bacterial cells. These 

simulations account for both random and systematic measurement errors encountered in 

single-molecule tracking measurements. (c) The diffusion coefficient spectrum (red) of 

eYFP-YeSctQ shows two prominent peaks centered at D = 1.3 µm2/s and D = 4.8 µm2/s, 

as well as a smaller peak centered at D = 6.5 µm2/s. Bootstrapping analysis provides the 

standard deviation of the spectrum (red, shaded). A two diffusive state model (pink line, 

dashed) was selected by 5-fold cross-validation. The different diffusive states are due to 

YeSctQ participating in different hetero-oligomeric protein complexes in the bacterial 

cytoplasm. SctQ also dynamically binds and unbinds from the membrane-imbedded type 

III secretion system. Thus, a large stationary population (shaded gray area) is observed as 

well.   
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3.2.4 Nonlinear fitting – Diffusive state analysis 

 The peaks and integrated peak areas in the diffusion coefficient spectrum provide 

the initial values for curve fitting using a more constrained model function  

 

𝐶𝐷𝐹𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 = ∑ 𝑎𝑖𝐶𝐷𝐹𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑,𝑖(𝐷𝑖)

𝐾

𝑖=1

  
(3.6) 

 

∑ 𝑎𝑖

𝐾

𝑖=1

= 1 

(3.7) 

where K = 1,2,3… enumerate the different diffusive states that are resolved in the diffusion 

coefficient spectrum and 𝑎𝑖 are the nonlinear coefficients. Determining the optimal K -state 

model has historically been challenging, because optimization routines can get stuck in 

local minima corresponding to vastly different parameter values that, in some cases, are 

heavily influenced by the initial parameter values.  

 To determine the optimal fit parameters for each K-state model, particle swarm 

optimization was used. In particle swarm optimization, the algorithm iteratively updates a 

population of potential solutions, which are referred to as particles, with each particle 

representing a potential set of parameters that describe the observed data (97). At each 

iteration, the particles adjust their positions, or parameter values, based on their own 

historical best positions and the global best positions found by any particle in the swarm. 

This adjustment is determined by the objective function ‘linearComb’ in MATLAB, which 

computes the mean squared error (MSE) between the predicted values and the observed 

data for each set of parameters. The MSE is computed as 
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𝑀𝑆𝐸 =  

1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 
(3.8) 

The parameters of the nonlinear fit model are extracted from the particle positions, and the 

model’s predicted values are computed based on these parameters. Ultimately, the result 

of the particle swarm optimization routine includes optimal parameter sets, or the diffusion 

coefficient(s), D, and its respective population fraction(s), for different K-state models.  

 An independent approach to select the optimal K-state model that does not overfit 

the data with too many diffusive states is m-fold cross-validation (98). In this approach, the 

data is divided into m subsets. One subset is considered the “validation” data while the 

others are considered “training” data. A model is then fit to the training data and evaluated 

on the validation data. Generally, as more parameters are added to the model, the cross-

validated errors decrease, reach a minimum, and then increase again due to overfitting. 

When fitting experimental D* CDFs, the optimal K-state model can thus be selected based 

on two criteria: the m-fold cross-validation error is comparable to or lower than those of 

other models, and the model fit parameters agree with the peaks observed in the diffusion 

coefficient spectrum. This 2-step procedure addresses the problem of model selection 

commonly encountered in frequentist (i.e. least squares- or maximum likelihood-based) 

curve fitting approaches of single-molecule tracking data. 
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Figure 3.4: Data processing pipeline for experimental and simulation data of spatially-

confined, motion-blurred DHPSFs. Connected lines represent inputs from a previous 

processing module into the proceeding module,  (pink) Experimental processing route. 1a) 

Experimental, single-molecule fluorescence data initially undergoes DHPSF fitting (gray). 

1b) Successful DHPSF fits are filtered from cell-segmented meshes (xy) and axial (z) 

position quality scores. 2) Cell- and axial position-filtered DHPSFs undergo nearest 

neighbor tracking (gray), forming single-molecule trajectories with respective apparent 

diffusion coefficients. 3) Diffusion coefficient spectrum analysis and 4) diffusive state 

analysis of the corresponding apparent diffusion coefficient distributions. (blue) 

Simulation processing route. 1) Spatially-confined, motion-blurred DHPSFs from Monte 

Carlo simulations are fitted (gray) in the same manner as experimental data. 2) Succesful 

DHPSF fits undergo nearest-neighbor tracking (gray) in the same manner as the processing 

route. 3) A library of simulated apparent diffusion coefficients are used to generate the 2D 
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gridded-interpolant fitting function. 4) The simulated model function is used to fit 

experimental apparent diffusion coefficient distributions within the diffusion coefficient 

spectrum analysis module and diffusive state analysis module.  
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Chapter 4  

DISTINCT CYTOSOLIC COMPLEXES 

CONTAINING THE TYPE III SECRETION 

SYSTEM ATPASE RESOLVED BY 

THREE-DIMENSIONAL SINGLE-

MOLECULE TRACKING IN LIVE 

YERSINIA ENTEROCOLITICA 
 

 

 

**Chapter adapted from Prindle, J. R., Wang, Y., Rocha, J. M., Diepold, A., & 

Gahlmann, A. Distinct Cytosolic Complexes Containing the Type III Secretion System 

ATPase Resolved by Three-Dimensional Single-Molecule Tracking in Live Yersinia 

Enterocolitica (ASM Microbiology Spectrum, 2022, Vol. 10, No. 6) 

 

JR Prindle created bacterial strains required for imaging, designed and performed 

experiments, and generated software necessary for analysis of single-molecule 

tracking data. Y Wang generated the software necessary for k-fold cross-validation. 

JM Rocha helped collect single-molecule tracking data.  
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4.1 ABSTRACT 

 The membrane-embedded injectisome, the structural component of the virulence-

associated type III secretion system (T3SS), is used by gram-negative bacterial pathogens 

to inject species-specific effector proteins into eukaryotic host cells. The cytosolic 

injectisome proteins are required for export of effectors and display both stationary, 

injectisome-bound populations as well as freely-diffusing cytosolic populations. How the 

cytosolic injectisome proteins interact with each other in the cytosol and associate with 

membrane-embedded injectisomes remains unclear. Here, we utilize 3D single-molecule 

tracking to resolve distinct cytosolic complexes of injectisome proteins in living Yersinia 

enterocolitica cells. Tracking of the eYFP-labeled ATPase, YeSctN, and its regulator, 

YeSctL, reveals that these proteins form a cytosolic complex with each other and then 

further with YeSctQ.  YeSctNL and YeSctNLQ complexes can be observed both in wild 

type cells and in ΔsctD mutants, which cannot assemble injectisomes. In ΔsctQ mutants, 

the relative abundance of the YeSctNL complex is considerably increased. These data 

indicate that distinct cytosolic complexes of injectisome proteins can form prior to 

injectisome binding, which has important implications for how injectisomes are 

functionally regulated.     

 

4.2 IMPORTANCE 

 Injectisomes are membrane-embedded, multiprotein assemblies used by bacterial 

pathogens to inject virulent effector proteins into eukaryotic host cells. Protein secretion is 

regulated by cytosolic proteins that dynamically bind and unbind at injectisomes. However, 

how these regulatory proteins interact with each other remains unknown. By measuring the 
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diffusion rates of single molecules in living cells, we show that cytosolic injectisome 

proteins form distinct oligomeric complexes with each other prior to binding to 

injectisomes. We additionally identify the molecular compositions of these complexes and 

quantify their relative abundances. Quantifying to what extent cytosolic proteins exist as 

part of larger complexes in living cells has important implications for deciphering the 

complexity of biomolecular mechanisms. The results and methods reported here are thus 

relevant for advancing our understanding of how injectisomes, and related multiprotein 

assemblies, such as bacterial flagellar motors, are functionally regulated. 

 

4.3 INTRODUCTION 

Bacterial type III secretion systems (T3SS) are used by gram-negative bacteria to 

assemble flagellar motors for cell motility and injectisomes that translocate virulence 

factors, called effector proteins, into eukaryotic host cells. Injectisomes are expressed by 

many bacterial pathogens, including E. coli, Salmonella, Pseudomonas, Shigella, and 

Yersinia, which are responsible for widespread human disease both historically and 

currently. Flagellar motors and injectisomes are large, multicomponent protein structures 

that span two and sometimes three cell membranes, as well as the bacterial cell wall (12). 

Assembly of the injectisome is achieved through hierarchal secretion of early, intermediate, 

and late secretion substrates (3,4,12,99–102). Early secretion substrates form an 

extracellular needle that extends away from the bacterial cell envelope. Upon contact with 

a host cell, middle secretion substrates are secreted through the needle to form a translocon 

pore in the eukaryotic cell membrane (12,99–101). Late secretion substrates, also called 

effector proteins, are then translocated into the host cell cytosol  (3,4,102). While there are 
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species-specific differences among the effector proteins, the structural proteins of 

injectisomes are highly conserved (103). 

Molecular-resolution structures of the fully-assembled cytosolic injectisome 

complex remain elusive. The cytosolic injectisome proteins SctN, L, Q, and K, associate 

with the injectisome loosely and transiently, so that structural imaging of fully-assembled 

injectisomes is only possible in situ through the use of cryo-electron tomography (cryo-

ET) (104,38,105–107). Injectisomes in Salmonella and Shigella minicell mutants were 

found to not exhibit continuous densities representative of a cytosolic ring (C-ring) 

(38,104), a feature that has been observed consistently for bacterial flagellar motors 

(100,108). Instead, the sub-tomogram averages suggested six distinct pods composed of 

SctK, Q, and L that seem to cradle the hexameric ATPase (38,104). More recently, cryo-

focused ion beam milling followed by cryo-ET enabled the visualization of Y. 

enterocolitica injectisomes inside the phagosomes of infected human myeloid cells (40). 

In contrast to the six distinct cytosolic pods observed in Shigella and Salmonella minicell 

mutants, the Y. enterocolitica injectisome contained more continuous, ring-like densities 

likely composed of SctD, K, and Q, and a 6-fold symmetric, cradle-like structure likely 

composed of SctL.  

The cytosolic injectisome proteins have substantial freely-diffusing populations. In 

vivo fluorescence recovery after photobleaching (FRAP) experiments revealed a continual 

exchange (on a 1-minute time scale) between freely-diffusing and injectisome-bound states 

for YeSctQ (Ye prefix indicates Yersinia enterocolitica). Interestingly, the YeSctQ 

exchange rate at the injectisome increased by a factor of two upon chemical activation of 

secretion (45), suggesting that structural dynamism may be important for functional 
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regulation of type 3 secretion. Fluorescence correlation spectroscopy (FCS) further 

revealed the presence of freely-diffusing and injectisome-bound populations for YeSctK, 

L, and N (46). In that study, the average diffusion rate for each cytosolic injectisome 

protein shifted upon chemical activation of secretion. These results further point to a 

dynamic and adaptive network of cytosolic interactions that may be required for 

injectisome binding. Earlier work from our lab identified two distinct YeSctQ-containing 

cytosolic protein complexes in living cells (83). However, the full compositions of these 

and additional SctQ-independent cytosolic complexes are yet to be determined.  

Efforts at reconstituting cytosolic injectisome protein complexes in vitro have 

begun to elucidate how these proteins may interact with one another. Native mass 

spectrometry (MS) experiments showed the ability of SeSctQ (Se prefix indicates 

Salmonella enterica) to bind SeSctL and N with various stoichiometries. Importantly 

however, a SeSctL2:SeSctN heterotrimer was consistently observed in any complex that 

included these two proteins (109). Dynamic light scattering was used to determine the 

relative size of cytosolic injectisome proteins and their respective complexes (44). Key 

differences were observed for reconstituted complexes containing SfSctK and SfSctQ and 

complexes containing SfSctQ and SfSctL (Sf prefix indicates Shigella flexneri). 

Specifically, the complex of SfSctK and SfSctQ is globular and compact (hydrodynamic 

diameter = 10.2 nm), whereas the complex of SfSctQ and SfSctL is much larger 

(hydrodynamic diameter = 18.5 nm). These differences were attributed to the ability of 

SfSctQ to adopt different conformational states depending on its binding partner.  

To gain further insights into how the cytosolic injectisome protein complexes 

interact with each other in living Y. enterocolitica, we use 3D single-molecule localization 
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and tracking microscopy to resolve the different diffusive states of YeSctQ, L, and N in 

different genetic backgrounds. We show that deletion of the injectisome protein YeSctD, 

which presumably binds YeSctK(40), abrogates the clustered, membrane proximal 

localization of all cytosolic injectisome proteins and increases the abundance of the same 

cytosolic complexes that are also present in wild-type cells. We further find that deletion 

of YeSctQ increases the abundance of a complex containing YeSctN and L and eliminates 

the diffusive state assigned to the larger complex containing YeSctN, L, and Q. Comparing 

the diffusion rates of all tracked proteins allows us to distinguish between oligomerization 

models that differ in terms of protein complex stoichiometry. Our combined results narrow 

down the possible stoichiometries of cytosolic injectisome protein complexes that can form 

prior to injectisome binding.  

 

4.4 RESULTS 

4.4.1 Diffusion of monomeric eYFP under secretion-active conditions 

Tracking of the cytosolic injectisome proteins under secretion-active conditions 

requires that cells are exposed to a 25°→ 37° C temperature jump and that calcium ions 

are removed from the growth medium through chelation (110–114). Concurrent with the 

removal of Ca2+ ions, MgCl2 and glycerol are added (see methods). The altered growth 

medium composition results in a different osmotic environment for the cells, which could 

alter the density of the cytosol. To quantify this effect, we tracked monomeric eYFP under 

secretion-active conditions in living Y. enterocolitica cells. The pooled single-molecule 

trajectories provide highly sampled distributions of molecular motion behaviors, quantified 

using the apparent diffusion coefficient (D*). A simulated library of D* distributions 
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(Fig. 4.1a) enables linear fitting of experimentally acquired D* distributions to obtain 

spectra of intracellular Brownian diffusion coefficients that manifest for a given protein. 

Peaks in these spectra can be analyzed to determine the diffusion rates of different diffusive 

states, and the areas underneath the peaks determine their relative abundances. These 

parameters can then be further refined by nonlinear fitting of a defined number of diffusive 

states (see Methods). Transforming the raw data (cumulative distribution functions (CDFs) 

of apparent diffusion coefficients) into diffusion coefficient spectra addresses a key 

challenge in analyzing single-molecule tracking data, namely choosing a suitable fitting 

model among many with different numbers of parameters (diffusive states and their relative 

abundances) (88,115).   

For monomeric eYFP under secretion-active conditions, we observe a diffusion 

coefficient spectrum exhibiting a single, well-defined peak at D = 9.1 µm2/s that produces 

a good fit to the experimentally acquired D* distribution (Fig. 4.1bc). Non-linear fitting 

using a single diffusive state at D = 9.2 µm2/s results in an equally good fit (Fig. 4.1bc). 

The narrowness of the sole spectral peak shows that the motion of eYFP is homogeneous 

in the Y. enterocolitica cytosol and well described by a single diffusive state with a 

Brownian diffusion coefficient at 9.2 µm2/s. This property establishes eYFP as a suitable 

probe for measuring the diffusion coefficients for eYFP-labeled proteins. We note that a D 

= 9.2 µm2/s diffusive state is slower than the single diffusive state at 11.9 µm2/s, which we 

measured previously under standard, i.e. non-secreting, growth conditions (83,116). This 

observation is consistent with an overall osmotic upshift that increases the biomolecular 

density of the cytosol and thus limits the mobility of eYFP. Controlled osmotic upshifts 
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have been previously shown to slow diffusion of fluorescent and fluorescently-labeled 

proteins (117,118).  

Under secretion-active conditions, we also observe a small (7%) population of slow 

(D < 0.5 µm2/s) eYFP, indicating that even small proteins can occasionally get trapped, 

presumably in crowded pockets of the cytosol (117). We verified that trajectories 

corresponding to slow moving eYFP are indeed randomly localized to the cytosol and do 

not show a preference for subcellular locations, such as the membrane or the cell poles 

(Fig. 4.2a). Notably, the slow population is not detectable when tracking eYFP under 

standard growth conditions.  
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Figure 4.1:  a) Simulated distributions of apparent diffusion coefficients based on Monte 

Carlo simulations of confined Brownian motion in rod-shaped bacterial cells. These 

simulations account for both random and systematic measurement errors encountered in 

single-molecule tracking measurements (see Methods). (b and c) The experimentally 

measured apparent diffusion coefficient distribution of freely diffusing eYFP molecules is 

fit well using a tightly peaked distribution of diffusion coefficients centered at D = 
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9.2 µm2/s (red curve in panel b) or using a single diffusive state with D = 9.2 µm2/s (blue 

line in panel c). The excellent agreement between theory and experiment supports that the 

assumption of bacterial cell-confined Brownian diffusion is valid.  

 

 

Figure 4.2: a) 3D trajectories for eYFP under secretion active conditions. b) Trajectories 

classified as with D* < 0.5 µm2 /s are not localized to the cell membrane. b) 3D trajectories 

for YeSctQ ΔsctD under secretion active conditions. Trajectories classified as with D* < 

0.5 µm2 /s are not localized to the cell membrane. 
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4.4.2 Diffusive state assignment of YeSctQ indicates two distinct protein complexes  

 Our previously published YeSctQ tracking results in Y. enterocolitica under 

secretion-active conditions suggested the presence of three diffusive states at D ~ 1.0, 4.0, 

and 15 µm2/s, with the D ~ 15 µm2/s diffusive state constituting a 20% population fraction 

of all tracked proteins. Such a result is however inconsistent with the monomeric eYFP 

tracking result, as an eYFP-labeled protein should not be able to diffuse faster than 9.2 

µm2/s under secretion-active conditions. We therefore re-examined the raw YeSctQ single-

molecule trajectories and found that uncharacteristically fast apparent diffusion 

coefficients are often due to large displacements resulting from mislocalization of 

fluorescence signals beyond the axial (z-) boundaries of the cell (Fig. 3.1).  Removal of 

these localizations and the associated trajectories removed the fast D = 15 µm2/s diffusive 

state. Importantly, the diffusive states below 9.2 µm2/s are largely unaffected by this 

filtering step.  

  In contrast to freely diffusing eYFP (Fig. 4.1), the diffusion coefficient spectrum 

of YeSctQ shows two prominent peaks at D ~ 1.3 and 4.8 µm2/s and a small peak at 6.5 

µm2/s in addition to an injectisome-bound, stationary population at D = 0 µm2/s (Fig. 4.3a). 

eYFP-YeSctQ fusion proteins were expressed as a genomic replacement under the control 

of its native promotor in actively secreting cells, and the fusion protein was stable and not 

degraded (83). These results are roughly consistent with our previous study (83), which 

identified three cytosolic diffusive states for YeSctQ at D ~ 1.1, 4.0, and 13.9 µm2/s (the 

fastest state was assigned to the eYFP-YeSctQ monomer). The distinct peaks in the newly 

analyzed diffusion coefficient spectrum provide the initial diffusion rates and populations 

fractions for non-linear fitting of the experimental D* CDF of YeSctQ. Still, to test whether 
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overfitting the data with too many different diffusive states (i.e. a non-linear model with 

too many free parameters) could be an issue, we initialized 1-, 2-, and 3-state fits by 

combining population fractions and initial guesses for diffusion coefficients from the 

spectrum (see Methods). Non-linear fitting using a 2-state model produced diffusive states 

at D ~ 1.3, and 5.3 µm2/s, which agrees with the prominent peaks in the diffusion 

coefficient spectrum (Fig. 4.3a) although the 5.3 µm2/s diffusive state appears to be right 

shifted by the small spectral density at 6.5 µm2/s. Non-linear fitting using a 3-state model 

produced diffusive states at D ~ 1.2, 4.4, and 7.0 µm2/s, however the population fraction 

of the D ~ 7.0 µm2/s diffusive state appears to be vastly overestimated (Fig. 4.4a). 

Additionally, 5-fold cross-validation analysis favors a 2-state over a 3-state model (Fig. 

4.4b). These results suggest that the majority of YeSctQ is part of two predominant 

cytosolic complexes diffusing at D ~ 1.3 and 4.8 µm2/s, while the monomeric fraction of 

this injectisome protein remains small by comparison.  
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Figure 4.3: (a) Diffusion coefficient spectrum for YeSctQ in wild-type cells. The 

experimentally measured distribution is best fitted with two states at D values of ~1.3 

μm2/s and ~5.3 μm2/s (Fig. 4.4). (b) Diffusion coefficient spectrum for YeSctL in wild-type 

cells. The experimentally measured distribution is best fitted with two states at D values of 

~1.3 μm2/s and ~3.1 μm2/s (Fig. 4.7). (c) 3D trajectories for YeSctL with D* values of <0.5 

μm2/s exhibit clustering at the membrane indicative of association with injectisomes. (d) 

Diffusion coefficient spectrum for YeSctN in wild-type cells. The experimentally measured 

distribution is best fitted with two diffusive states at D values of ~1.2 μm2/s and ~3.0 μm2/s 

(Fig. 4.8). 
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Figure 4.4: a) Fitting model comparison for eYFP-YeSctQ single-molecule tracking data. 

Individual rows correspond to 1-, 2-, and 3-state models, respectively. A 2-state model 

converged on D ~ 1.3 and 5.3 µm2 /s, which agrees well with peaks in the diffusion 

coefficient spectrum. b) The 2-state model is also supported by 5-fold cross-validation 
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analysis, which shows that a 2-state model does not overfit the data. A 3-state model could 

also have been chosen based on the cross-validation analysis alone. However, the 3-state 

model includes diffusive states at D ~ 7.0 µm2 /s with an overly large population fraction 

of 36%, which does not match the diffusion coefficient spectrum. 

 

4.4.3 YeSctL shares one diffusive state with YeSctQ 

Having reproduced our previously obtained results in the diffusion coefficient 

spectra, we next analyzed the intracellular diffusive behaviors of eYFP-labeled YeSctL. 

We had previously tracked YeSctL with PAmCherry1 but chose to switch the fluorescent 

label to eYFP for the present study due to its homogeneous diffusion behavior in Y. 

enterocolitica (Fig. 4.1ab). Again, we expressed eYFP-YeSctL as a genomic replacement 

under the control of its native promotor. The eYFP-YeSctL fusion protein was functional 

and not degraded (Fig. 4.5 & 4.6). Examination of the YeSctL diffusion coefficient 

spectrum reveals a prominent spectral peak at D ~ 1.3 with a small shoulder to the right 

(Fig. 4.3b). The 3-state model for YeSctL produced diffusive states at D ~ 1.3 (population 

fraction = 17%), 3.2 (population fraction = 3%), and 7.4 µm2/s (population fraction = 7%). 

Given that the diffusion coefficient spectrum clearly indicates a prominent peak at D ~ 1.3 

µm2/s and does not include a peak at D ~ 0.9 or 7.4 µm2/s, we turned to the 2-state model, 

whose fitted values agree better with the spectral peak positions. The choice of the 2-state 

model is also supported by 5-fold cross-validation analysis (Fig. 4.7).  

The 2-state model provides two diffusive states for YeSctL at D ~ 1.3 and 3.1 µm2/s 

with corresponding population fractions of 13% and 14%, respectively (Fig. 4.3b, Fig. 

4.7). These mobile states are in addition to an abundant (population fraction = 73%) 
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stationary, injectisome-bound population with D < 0.5 µm2/s. Plotting the 3D trajectories 

using a D* = 0.5 µm2/s threshold clearly shows membrane-associated clusters representing 

the injectisome-bound population (Fig. 4.3c). The D ~ 1.3 µm2/s diffusive state is 

consistent with our previous result obtained with PAmCherry-YeSctL, based on which we 

concluded that both YeSctQ and YeSctL diffuse at the same slow rate as part of the same 

complex (83). The SctLQ interaction is also supported by a number of previous studies 

(44,46,109). On the other hand, the D ~ 3.1 µm2/s YeSctL diffusive state has not been 

previously observed. The presence of this additional state suggests another homo- or 

hetero-oligomeric complex containing YeSctL. However, such a complex does not contain 

YeSctQ, because a D ~ 3.1 µm2/s diffusive state is not observed in the eYFP-YeSctQ data.   
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Figure 4.5: Secretion profile for mutant strains expressing eYFP-labeled cytosolic 

injectisome proteins in place of the unlabeled protein. eYFP-YeSctL and eYFP-YeSctN 

both show near WT levels of secretion in the WT background. The deletion of any one 

(cytosolic) injectisome protein abolishes secretion, as observed previously36. Also of 

note is the loss of secretion for eYFP-YeSctQ in the ΔYeSctQC background, further 

confirming the functional relevance for YeSctQC for secretion. Data collected and 

analyzed by the lab of Dr. Andreas Diepold.  
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Figure 4.6: Expression levels and stability of the used fusion proteins. All fusions 

proteins seem to be expressed to a similar degree (YscQ > YscL > YscN, as expected) at 

the expected MW. No visible degradation is evident for eYFP-YeSctL, some degradation 

for eYFP-YeSctN (~ 60 kDa, ~20- 40% of intensity of full-length band, and very weak 

degradation for eYFP-YeSctQ (weak band at around 55-60 kDa). Data collected and 

analyzed by the lab of Dr. Andreas Diepold. 
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Figure 4.7: a) Fitting model comparison for eYFP-YeSctL single-molecule tracking data. 

Individual rows correspond to 1-, 2-, and 3-state models, respectively. A 2-state model 

converged on D ~ 1.3 and 3.1µm2/s, which agrees well with peaks in the diffusion 

coefficient spectrum. b) The 2-state model is also supported by 5-fold cross-validation 
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analysis, which shows that a 2-state model does not overfit the data. A 3-state model could 

also have been chosen based on the cross-validation analysis. However, the 3-state model 

includes diffusive states at D ~ 7.4 µm2/s, which does not match the diffusion coefficient 

spectrum. 

 

4.4.4 YeSctN and YeSctL share two distinct diffusive states in Y. enterocolitica 

There are numerous reports documenting interactions between SctN and SctL in 

both flagellar and virulence-associated T3SSs (119,120,50,121). SctL binding prevents 

SctN hexamerization prior to injectisome binding and thereby negatively regulates SctN’s 

ATPase activity, which is the one of the most well-established functional roles of the 

cytosolic injectisome proteins (49,50,119,122–124). To detect the SctNL interaction in 

living cells, we expressed eYFP-YeSctN as a genomic replacement under the control of its 

native promotor and acquired YeSctN single-molecule trajectories in actively secreting 

cells. The eYFP-YeSctN fusion protein was functional and only minimally degraded (Fig. 

4.5 & 4.6). The resulting diffusion coefficient spectrum shows a very prominent spectral 

peak at D ~ 1.3 µm2/s with, similar to the YeSctL diffusion coefficient spectrum, a small 

shoulder to the right (Fig. 4.3d). Non-linear fitting with a 1-state model produces a 

diffusive state at D ~ 1.7 µm2/s. A 2-state models produces diffusive states at D ~ 1.2 and 

3.0 µm2/s with corresponding population fractions of 19% and 23% (Fig. 4.3d, Fig. 4.8a), 

a result that better matches the diffusion coefficient spectrum. The 2-state model is also 

supported by cross-validation analysis (Fig. 4.8b). The robust emergence of a D ~ 1.3 

µm2/s diffusive state, a state that is also observed in YeSctL and YeSctQ measurements (in 

both the 2- and 3-state models) suggests the formation of a hetero-oligomeric YeSctNLQ 
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complex. The 2-state model produces an intermediate diffusive state at D ~ 3.0 µm2/s, and 

such a diffusive state was also observed for YeSctL (D ~ 3.1 µm2/s). We thus tentatively 

assign this diffusive state to a SctNL complex. While the SctNL interaction is supported 

by a number of previous studies, the population fraction of this state is low for both YeSctN 

and YeSctL in wild-type cells. We therefore concluded that establishing the existence of 

this state needed further experimental support.   

We argued above that the oligomeric complex that gives rise to the D ~ 3.0 µm2/s 

diffusive state does not contain YeSctQ. It follows that deletion of sctQ should not affect 

the formation of that complex. To test this hypothesis, we acquired single-molecule 

trajectories for YeSctN and YeSctL in a ΔsctQ mutant background. Remarkably, the CDFs 

of apparent diffusion coefficients for these two proteins (i.e. the raw data) are essentially 

congruent in the ΔsctQ background, strongly indicating co-diffusive behavior (Fig. 4.9a). 

Plotting the 3D trajectories for eYFP-YeSctN in the ΔsctQ background using a D* = 0.5 

µm2/s threshold shows an absence of membrane-associated clusters (Fig. 4.9b). The same 

phenomenon is observed for eYFP-YeSctL in the ΔsctQ background (data not shown), 

indicating that injectisome association is no longer possible in the absence of SctQ (46). 

The spectra of diffusion coefficients of these two proteins show the same trend: each 

spectrum contains a prominent peak at D ~ 2.8 µm2/s. Notably, a peak at D ~ 1.3 µm2/s, 

which we previously assigned to a YeSctNLQ complex, is also absent. A 1-state non-linear 

fit converged on D ~ 2.7 µm2/s in each case with corresponding population fractions of 

93% for YeSctL and 92% for YeSctN, respectively (Fig. 4.10, Fig. 4.11).  

Together, these results support the conclusion that YeSctL and YeSctN are able to 

form two distinct cytosolic complexes. One of these complexes contains YeSctQ and the 
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other does not. Under our experimental conditions, the YeSctNLQ complex diffuses at D 

~ 1.3 µm2/s, while the YeSctNL complex diffuses at D ~ 2.8 µm2/s.  In wild-type cells, the 

presence of YeSctQ leads to a smaller abundance of the YeSctNL complex in favor of the 

YeSctNLQ complex as well as injectisome-bound YeSctL and YeSctN.  
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Figure 4.8: a) Fitting model comparison for eYFP-YeSctN single-molecule tracking data. 

Individual rows correspond to 1-, 2-, and 3-state models, respectively. A 2-state model 

converged on D ~ 1.2 and 3.0 µm2/s, which agrees well with peaks in the diffusion 

coefficient spectrum. b) The 2-state model is also supported by 5-fold cross-validation 
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analysis, which shows that a 2-state model does not overfit the data. A 3-state model could 

also have been chosen based on the cross-validation analysis. However, the 3-state model 

includes diffusive states at D ~ 8.7 µm2/s, which does not match the diffusion coefficient 

spectrum. 

 

 

Figure 4.9: a) Experimentally measured CDFs of YeSctL and YeSctN apparent diffusion 

coefficients in wild type cells and ΔsctQ mutants. The YeSctL and YeSctN distributions 

overlay very well in the ΔsctQ background. b) 3D trajectories for YeSctN in the ΔsctQ 

background show an absence of membrane-associated clusters for D* < 0.5 µm2/s. c) and 

d) Diffusion coefficient spectra for YeSctL and YeSctN in the ΔsctQ background. In each 
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case, the experimentally measured distribution is best fit with one state at D = 2.7 µm2/s 

(Figure 4.10 & 4.11). 

 

 

Figure 4.10: a) Fitting model comparison for eYFP-YeSctL ΔsctQ single-molecule 

tracking data. Individual rows correspond to 1-and 2-state models, respectively. A 1-state 

model converged on D ~ 2.7 µm2/s, which agrees well with peaks in the diffusion 

coefficient spectrum. b) The 1-state model is also supported by 5-fold cross-validation 
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analysis, which shows that a 1-state model does not overfit the data. A 2-state model could 

also have been chosen based on the cross-validation analysis. However, the 2-state model 

includes a diffusive state at D ~ 5.8 µm2/s with a very small population fraction (3%) that 

does not agree with the diffusion coefficient spectrum. Thus, the 1-state model is favored 

over the 2-state model. 
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Figure 4.11: a) Fitting model comparison for eYFP-YeSctN ΔsctQ single-molecule 

tracking data. Individual rows correspond to 1-and 2-state models, respectively. A 1-state 

model converged on D ~ 2.7 µm2/s, which agrees well with peaks in the diffusion 

coefficient spectrum. b) The 1-state model is also supported by 5-fold cross-validation 

analysis, which shows that a 1-state model does not overfit the data. A 2-state model could 

also have been chosen based on the cross-validation analysis. However, the 2-state model 

includes a diffusive state at D ~ 5.4 µm2/s with a very small population fraction (3%) that 
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does not agree with the diffusion coefficient spectrum. Thus, the 1-state model is favored 

over the 2-state model. 

 

4.4.5 Complex formation among YeSctQ, L, and N increases in the  

absence of injectisomes 

 SctD is the inner-membrane ring protein of the injectisome. SctD is required for 

proper injectisome assembly (19) and subsequent effector protein secretion. SctD provides 

a binding interface for SctK, which in turn allows SctQ, L, and N to bind to the injectisome 

(125). Thus, SctQ, L, and N are completely cytosolic in the ΔsctD background. To test 

whether the same diffusive states manifest in the absence of fully-assembled injectisomes, 

we acquired single-molecule trajectories in the ΔsctD mutant background for YeSctQ, L, 

and N.  

The YeSctQ ΔsctD spectrum is very similar to the spectrum observed in wild-type 

cells.  Two clear spectral peaks are evident at D ~ 1.3, and 4.5 µm2/s (Fig. 4.12a, Fig. 4.13). 

A 2-state non-linear fit produces diffusive states at D ~ 1.2 and 4.5 µm2/s, a result that is 

in excellent agreement with the diffusive state observed in wild-type cells. These data show 

that the same complexes formed in wild-type cells can also form in the absence of 

injectisomes. Consistent with the loss of injectisome binding, the combined population 

fractions of the three distinct cytosolic diffusive states increase. The D < 0.5 µm2/s state(s) 

decreased from 24% in wild-type cells to 10% in the ΔsctD mutant. We note however that 

the 10% of slow diffusing molecules in the ΔsctD mutant do not localize to the membrane 

(Fig. 4.2b).   
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 The YeSctL and YeSctN ΔsctD spectra both show a broad peak extending from D 

~ 1 to 4 µm2/s. A 2-state fit converges to diffusive states at D ~ 1.2 and 2.6 µm2/s for 

YeSctL and D ~ 1.0 and 2.5 µm2/s for YeSctN. Both of these results agree well with the 

diffusion coefficient spectra (Fig. 4.12bc, Fig. 4.14, Fig. 4.15) and are also in close 

agreement with the diffusive states observed for each protein in wild-type and ΔsctQ 

cells. Taken together, these results establish that the same complexes formed in wild-type 

cells can also form, in increased abundance, in the absence of injectisomes. In other 

words, the presence of injectisomes is not necessary for cytosolic complex formation. 
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Figure 4.12: Removal of YeSctD results in an increased abundance of native cytosolic 

complexes.  a) YeSctQ, b) YeSctL, and c) YeSctN all share a diffusive state around D ~ 1.3 
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µm2/s, consistent with results obtained in wild type cells. Also consistent with wild type 

results is the presence of a diffusive state at D ~ 4.5 µm2/s for YeSctQ and the presence of 

a shared diffusive state for YeSctL and YeSctN at D ~ 2.5 µm2/s.  
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Figure 4.13: a) Fitting model comparison for eYFP-YeSctQ ΔsctD single-molecule 

tracking data. Individual rows correspond to 1-, 2- and 3-state models, respectively. A 2-

state model converged on D ~ 1.2 and 4.5 µm2/s, which agrees well with peaks in the 

diffusion coefficient spectrum. b) The 2-state model is also supported by 5-fold cross-
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validation analysis, which shows that a 2-state model does not overfit the data. A 3-state 

model could also have been chosen based on the cross-validation analysis. However, the 

3-state model includes a diffusive state at D ~ 2.3 µm2/s that does not agree with the 

diffusion coefficient spectrum. Thus, the 2-state model is favored over the 3-state model. 
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Figure 4.14: a) Fitting model comparison for eYFP-YeSctL ΔsctD single-molecule 

tracking data. Individual rows correspond to 1-, 2-, and 3-state models, respectively. A 2-

state model converged on D ~ 1.2 and 2.6 µm2/s, which agrees well with peaks and spectral 

densities in the diffusion coefficient spectrum. b) The 2-state model is also supported by 
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5-fold cross-validation analysis, which shows that a 2-state model does not overfit the data. 

A 3-state model could have also been chosen based on the cross-validation analysis. 

However, the 3-state model includes a diffusive state at D ~ 6.3 µm2/s with a very small 

population fraction (3%) that does not agree with the diffusion coefficient spectrum. Thus, 

the 2-state model is favored over the 3-state model. 
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Figure 4.15: a) Fitting model comparison for eYFP-YeSctN ΔsctD single-molecule 

tracking data. Individual rows correspond to 1-, 2-, and 3-state models, respectively. A 2-

state model converged on D ~ 1.0 and 2.5 µm2/s, which agrees well with peaks in the 

diffusion coefficient spectrum. b) The 2-state model is also supported by 5-fold cross-
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validation analysis, which shows that a 2-state model does not overfit the data. A 3-state 

model could have also been chosen based on the cross-validation analysis. However, the 

3-state model includes a diffusive state at D ~ 9.5 µm2/s with a very small population 

fraction (2%) that does not agree with the diffusion coefficient spectrum. Thus, the 2-state 

model is favored over the 3-state model. 

 

4.5 DISCUSSION 

Determining the functional role(s) of the cytosolic injectisome proteins has been 

challenging, because our understanding of their interactions at the injectisome and in the 

cytosol remains limited. Here, we present live-cell single-molecule tracking data that 

suggest the formation of distinct, freely-diffusing protein complexes. One complex 

containing YeSctN and YeSctL, but not YeSctQ, diffuses at D ~ 2.8 µm2/s. A larger complex 

containing YeSctN, L, and Q diffuses at D ~ 1.3 µm2/s. These complexes form robustly in 

wild-type and mutant cells that are unable to fully assemble T3SS injectisomes (Fig. 

4.16a).  

A YeSctNL complex is consistent with a proposed regulatory mechanism of 

YeSctL. SctL is thought to negatively regulate ATPase activity in both bacterial flagellar 

motors and injectisomes by preventing SctN hexamerization in the cytosol(50). Recent 

cryo-EM data on purified proteins show that the extreme N-terminus of FliI (the flagellar 

homologue of SctN) contains a charged region to which FliH (the flagellar homologue of 

SctL) can bind(126). Abolishing this interaction through point mutations results in a higher 

propensity of ATPase hexamerization in vitro, as well as decreased cell growth and cell 

motility phenotypes. Further, the SctNL (FliIH) complex has been consistently observed 
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as a heterotrimer using in vitro biochemical and biophysical approaches 

(53,105,109,119,123,124,127), with a dimer of SctL (FliH) binding to the ATPase 

monomer SctN (FliI). Based on these results, we posit that the D ~ 2.8 µm2/s diffusive state 

that we observe both wild-type and ΔsctQ mutants and the D ~ 2.5 µm2/s diffusive state 

that we observe in ΔsctD mutants is likely due to a YeSctN1:YeSctL2 heterotrimer.  In wild-

type cells, 19% of YeSctN and 13% of YeSctL contribute to this heterotrimer population. 

In ΔsctQ and ΔsctD mutants, the abundance of this heterotrimer increases substantially 

(93% and 92% for YeSctN and YeSctL, respectively, for ΔsctQ and 31% and 48% for 

YeSctN and YeSctL, respectively, for ΔsctD). 

A YeSctNLQ complex is consistent with cytosolic pod complexes containing SctN, 

L, Q, and K. Sub-tomogram averages in Shigella and Salmonella suggest six distinct pods 

composed of SctK, Q, and L that seem to cradle the hexameric ATPase at the 

injectisome(38,104). Subsequent work has focused on reconstituting such pod complexes 

in vitro. SeSctNLQ(109) and SfSctLQK complexes(44) were successfully isolated, and the 

estimated size and shapes of these complexes were qualitatively consistent with cryo-ET 

pod densities. Based on these results, we speculate that the D ~ 1.3 µm2/s diffusive state 

we observe in wild-type cells and in ΔsctD mutants is likely not just a SctNLQ complex, 

but in fact a SctNLQK heterooligomer. This claim is substantiated by the loss of the D ~ 

1.3 µm2/s diffusive state when we track eYFP-YeSctL and eYFP-YeSctN proteins in the 

ΔsctQ mutant. Whether a D ~ 1.3 µm2/s diffusive state also manifests for SctK in wild-

type cells and in ΔsctD mutants remains to be determined. 

The molecular composition of the D ~ 4.8 µm2/s diffusive state observed for eYFP-

YeSctQ could be consistent with a YeSctQK complex. In our previous work(83), we 



Chapter 4: Distinct Cytosolic Complexes Containing the T3SS ATPase     

 

81 

assigned this intermediate diffusive state to a YeSctQ homo-oligomer that also contains 

YeSctQC, the alternatively expressed C-terminal fragment of YeSctQ. This assignment was 

made based on tracking eYFP-YeSctQ proteins in a ΔpYV mutant, which does not express 

any other T3SS proteins. In that mutant, ~80% of the tracked YeSctQ proteins diffused at 

D ~ 3.6 µm2/s, which is notably smaller than the D ~ 4.8 µm2/s diffusive state that we 

observe in wild type cells. This discrepancy indicates that the D ~ 3.6 and 4.8 µm2/s 

diffusive states likely originate from different complexes. The spectrum of eYFP-YeSctQ 

diffusion coefficients in a ΔpYV background indeed show a prominent spectral peak 

ranging from D ~ 3 to 4.5 µm2/s, but little spectral density at D ~ 4.8 µm2/s (Fig. 4.17). In 

vitro light-scattering measurements on SfSctQ-containing complexes(44) suggested the 

ability of SfSctQ to adopt different conformational states depending on its interacting 

partner. A small, globular complex (hydrodynamic diameter = 10.2 nm) was observed upon 

co-expression and co-purification of SfSctQ and K, while a larger complex (hydrodynamic 

diameter = 13.4 nm) was observed for co-purified SfSctQ and QC. Based on these results, 

we speculate that the D ~ 4.8 µm2/s diffusive state in wild type cells and in ΔsctD mutants 

is due to a YeSctQK complex. In wild-type cells, we observe very little spectral density in 

the D = 3.5 - 4 µm2/s range, which indicates that a YeSctQQC complex is not abundantly 

present. On the other hand, if injectisomes are not assembled, as in the ΔsctD mutants, we 

do observe spectral density in the D = 3.5 - 4 µm2/s range. These results indicate that the 

presence of injectisomes and thus the ability of YeSctQ to bind to and unbind from 

injectisomes affects the type of complexes that YeSctQ forms in abundance. Determining 

the compositions and stoichiometries of YeSctQ-containing complexes in specific deletion 

mutants will be the subject of future work.  
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Complex formation among cytosolic injectisome proteins may provide the 

foundation for functional regulation of type 3 secretion. Specifically, a pool of freely 

diffusing complexes of injectisome proteins that are available for injectisomes binding 

would provide a mechanism for timely reactivation of secretion. Recent work has shown 

that an extracellular pH drop from 7 to 4 results in disassociation of YeSctN, L, Q, and K 

from injectisomes, an effect that correlated with loss of secretion(128). Notably, the 

intracellular pH decreased only slightly (pH=7→6.3) in acidic extracellular environments. 

Reverting the external pH from 4 to 7 reverses these effects. Injectisome binding is restored 

within ~10 min and effector protein secretion resumes shortly thereafter. The results 

reported here lend further support for a secretion reactivation model relying on cytosolic 

complexes of injectisome proteins: in ΔsctQ and in ΔsctD mutants, in which injectisome 

binding is not possible, we observe clear signatures of the same diffusive states in wild-

type cells that we assign to distinct YeSctNLQ, YeSctNL, and YeSctQK complexes. 

 Identifying which cytosolic injectisome proteins assemble into freely-diffusing 

complexes in a native biological context can help determine how these proteins bind and 

unbind dynamically to and from injectisomes. While we have identified the compositions 

of three prominent complexes, the exact stoichiometries and functions of these complexes 

remains to be determined. Previous work by others has shown that the cytosolic diffusion 

rate of proteins scales with molecular weight, but not according to the Stokes-Einstein 

equation, which stipulates that D∝(Molecular Weight)-1/3. Instead, a D∝(Molecular 

Weight)-2/3 scaling has been observed by others independently for different proteins (129–

132). Here, we obtain a D∝(Molecular Weight)-0.71 scaling when plotting the measured 

diffusion coefficients against the molecular weights of monomeric eYFP and the protein 
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complexes discussed above (likely stoichiometries were estimated based on current 

biophysical models of the cytosolic injectisome protein complexes) (Fig. 4.16b) (44,121). 

This analysis allows us to distinguish between oligomerization models that differ in terms 

of protein complex stoichiometry. For example, earlier studies suggested that SctK, Q, QC, 

L, and possibly N, form a high molecular weight (>1MDa) complex, termed the sorting 

platform, that sequentially interacts with different secretion substrates and their 

chaperones(51,133). However, efforts aimed at reconstituting sorting platform complexes 

in vitro have not been reported. The analysis in Figure 5b suggests that the majority of 

cytosolic injectisome proteins exist as part of smaller complexes with molecular weights 

of less than 500 kDa. Our combined results thus narrow down the possible stoichiometries 

of cytosolic injectisome protein complexes that can form prior to injectisome binding. 

Future work will need to determine the molecular structures of the complexes identified 

here and how their individual abundances change in response to environmental signals that 

induce T3SS assembly and activate secretion. However, as shown in this study, careful 

attention must be paid to the effect of the osmotic environment on cytosolic protein 

diffusion rates. Such efforts will help determine how the cytosolic injectisome proteins 

interact in the cytosol and when bound to injectisomes and how their dynamic exchange at 

injectisomes contributes to functional regulation of secretion. 
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Figure 4.16: a) Comparison of spectral peaks and fitted diffusive states for each indicated 

eYFP-labeled injectisome protein tracked in different genetic backgrounds. The relative 

population fraction for each peak/diffusive state is represented by the size of the circle. 

Spectra for eYFP-YeSctN and eYFP-YeSctL in the ΔsctD mutant do not contain prominent 

spectral peaks corresponding to the fitted D ~ 2.8 µm2/s diffusive state, whereas prominent 

spectral peaks are resolved in the ΔsctQ mutant. The fitted diffusive states for D < 0.5 

µm2/s in the ΔsctD, ΔsctQ, and ΔpYV mutants do not localize to the membrane. b) 

Measured diffusion coefficients plotted against the molecular weights of the indicated 

protein complexes. The straight line corresponds to the least squares fit using the model 

shown.    
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Figure 4.17: Diffusion coefficient spectrum for eYFP-YeSctQ in the ΔpYV mutant 

showing spectral density between D ~ 3 to 5 µm2/s. ΔpYV mutants do not express any 

other T3SS proteins. 
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4.6 MATERIALS AND METHODS 

4.6.1 Bacterial Strains  

Yersinia enterocolitica strains expressing fluorescent fusion proteins were generated by 

allelic exchange as previously described (19,134). Mutator plasmids containing 250-500bp 

flanking regions, the coding sequence for eYFP, and a 13 amino acid flexible linker region 

between the fluorescent and target protein were introduced into E. coli SM10 λpir for 

conjugation with Y. enterocolitica pIML421asd. After sucrose counter-selection for the 

second allelic exchange event, colonies were grown overnight in BHI media (Sigma 

Aldrich, St. Louis, Missouri) with nalidixic acid (Sigma Aldrich) [35 µg/mL] and 2,6-

diaminopimelic acid (Chem Impex International, Wood Dale, Illinois) [80 µg/mL]. PCR 

screening was then performed to confirm target insertion and constructs were confirmed 

by sequencing (GeneWiz, South Plainfield, New Jersey). 

4.6.2 Cell Culture 

Yersinia enterocolitica strains were inoculated from freezer stock one day prior to 

imaging and grown overnight in BHI media containing nalidixic acid (NaI) [35 µg/mL] 

and 2,6-diaminopimelic acid (dap) [80 µg/mL] at 28°C with shaking. On the day of 

imaging, 250 µL of overnight culture were transferred into fresh BHI media containing 

NaI, and dap and grown at 28°C with shaking for one hour. Glycerol [4 mg/mL], 

MgCl2 [20 mM] and EDTA [5 mM] were then added to culture medium and transferred to 

a 37°C water bath with shaking for 3 hours to induce expression of the yop regulon and 

ensure secretion activation, respectively. Cells were pelleted by centrifugation at 5000x g 

for 3 minutes and resuspended three times into fresh M2G (4.9 mM Na2HPO4, 3.1 mM 

KH2PO4, 7.5 mM NH4Cl, 0.5 mM MgSO4, 10 µM FeSO4 (EDTA chelate; Sigma), 0.5 mM 
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CaCl2) with 0.2% glucose as the sole carbon source. After the three washes, the remaining 

pellet was re-suspended in M2G, dap, MgCl2, glycerol, and EDTA/CaCl2. Cells were 

finally plated on 1.5 – 2% agarose pads in M2G containing dap, glycerol, and MgCl2. 

 

4.6.3 Secretion assay and protein analysis 

Cultures were inoculated to an optical density at 600 nm of 0.12 from stationary 

overnight cultures. After 1.5 h of growth at 28°C, induction of the yop regulon was 

performed by shifting the culture to 37°C. Cultures were further incubated at 37°C for 3 

hours. Bacteria from 2 ml culture were collected (15,000 g, 10 min, 4°C). 1.8 ml of 

supernatant was mixed with 0.2  ml trichloroacetic acid (final concentration 10%) and 

incubated over night at 4°C to precipitate proteins within the supernatant. Proteins were 

collected (15,000 g, 15 min, 4°C) and washed twice with ice-cold acetone (15,000 g, 5 min, 

4°C). The pellet was dried at room temperature for 1 h. The pellet was resuspended in SDS-

PAGE loading buffer (SDS (2% w/v), Tris-HCl (0.1 M), glycerol (10% w/v), DTT (0.05 

M), pH = 6.8) and 0.6 OD units (1 OD unit is the equivalent of 1 ml culture at an OD600 of 

1) in 15 µl were used for the SDS-PAGE gel analysis. For Western Blot analysis of the 

total cellular sample, the collected bacterial pellet was prepared for Western blot analysis 

by directly normalizing to 0.3 OD units in 15 µl loading buffer. All samples were heated 

for 10 min at 99°C before loading. Proteins were separated by SDS-PAGE on 15% 

acrylamide gels. For visualization, the gels were stained with InstantBlue (Expedeon). For 

immunoblots, the proteins were blotted on a nitrocellulose membrane. Detection of the 

eYFP-tag was performed by using primary rabbit antibodies against GFP (1:5000) 

(Invitrogen A6455, lot #1853896) and secondary anti-rabbit antibodies conjugated with 
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horseradish peroxidase (1:10,000) (Sigma A8275). The immunoblot was visualized using 

ECL chemiluminescence substrate (Pierce) on a LAS-4000 Luminescence Image Analyzer 

(Fujifilm). 

 

4.6.4 Single-Molecule Super-Resolution Fluorescence Imaging 

Image data were acquired on a custom-built inverted fluorescence microscope 

based on the RM21 platform (Mad City Labs, Inc, Madison, Wisconsin), as previously 

described (83,116). Immersion oil was placed between the objective lens (UPLSAPO 100 

1.4 NA) and the glass cover slip (VWR, Radnor, Pennsylvania, #1.5, 22 mm 22 mm). 

Single-molecule images were obtained by utilizing eYFP photoblinking(135). A 514 nm 

laser (Coherent, Santa Clara, California, Genesis MX514 MTM) was used for excitation 

of eYFP (B350 W cm2 ). Zero order quarter wave plates (Thorlabs, Newton, New Jersey, 

WPQ05M-405, WPQ05M-514, WPQ05M-561) were used to circularly polarize all 

excitation lasers, and the spectral profile of the 514 nm laser was filtered using a bandpass 

filter (Chroma, Bellows Falls, Vermont, ET510/10 bp). Fluorescence emission from both 

eYFP was passed through a shared filter set (Semrock, Rochester, New York, LP02-

514RU-25, Semrock NF03-561E-25, and Chroma ET700SP-2P8). The emission path 

contains a wavelength specific dielectric phase mask (Double Helix, LLC, Boulder, 

Colorado) that is placed in the Fourier plane of the microscope to generate a double-helix 

point-spread-function(78,136) (DHPSF). The fluorescence signals is detected on a sCMOS 

cameras (Hamamatsu, Bridgewater, New Jersey, ORCA-Flash 4.0 V2). Up to 20 000 

frames are collected per field-of-view with an exposure time of 25 ms. A flip-mirror in the 

emission pathway enables toggling the microscope between fluorescence imaging and 
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phase contrast imaging modes without having to change the objective lens of the 

microscope. 

 

4.6.5 Data Processing 

All fluorescence images were processed in MATLAB using a modified version of 

the easyDHPSF code (82,83,116). To extract 3D localizations, fluorescence intensity from 

single-molecule emitters was fit to a double-Gaussian PSF model with maximum 

likelihood estimation. A median filter with a time window of 10 frames was used for 

background subtraction.  

For each field-of-view, cell outlines were generated based on the phase contrast 

images using the open-source software OUFTI (84). Single-molecule localizations were 

then overlayed and aligned with the cell outlines. To ensure that single-molecule 

localizations align well with the corresponding cell, the cell outlines are registered to the 

fluorescence data by a two-step 2D affine transformation using the ‘cp2tform’ function in 

MATLAB. Five control points were manually selected based on the position of the cell 

poles of single-molecule localization data, which generated an initial transformation that 

allow for the removal of any cell containing less than 10 localizations. The center of mass 

for all the remining cells were then used to create a second, larger set of control pairs to 

compute the final transformation function. Only localizations within cell outlines were 

considered for further analysis.  
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4.6.6 Single-molecule Tracking Analysis 

 3D single-molecule localizations were filtered (Figure 3.1) and linked into 

trajectories with a distance threshold of less than 2.5 µm between subsequent localizations. 

If two or more localizations were present in the cell at the same time, the trajectory was 

not considered for further analysis to prevent the incorporation of two or more molecules 

into the same trajectory. Any trajectories containing less than 4 localizations were also not 

considered for further analysis.  

 Trajectory information was then used to calculate the Mean Square Displacement 

(MSD) 
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where N is the total number of time points and xn is the 3D position of the molecule at time 

point n. The apparent diffusion coefficient, D*, of a given molecule trajectory was then 

computed as  
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where m=3 is the dimensionality of the data and Δt is the camera exposure time. Δt=25 ms 

for all experiments reported here.  

 

4.6.7 Monte Carlo Simulations 

 To resolve the unconfined diffusion coefficients of distinct molecular complexes in 

living cells based on the experimentally measured distribution of apparent diffusion 

coefficients, we simulated confined Brownian motion trajectories inside a cylindrical 
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volume (radius = 0.4 μm, length = 5 μm). We added to our existing pool (116) of simulated 

diffusion coefficients to improve data fitting (see next section). Noisy, motion-blurred 

single-molecule images mimicking the raw experimental data were simulated for confined 

(in the cylindrical volume) single-molecules with defined Brownian diffusion coefficients. 

These images were then processed and linked into trajectories in the same manner as our 

experimental data. The resulting simulated CDFs account for confinement effects of the 

bacterial cell volume, signal integration over the camera exposure time, and experimentally 

calibrated signal-to-noise levels. Analyzing the simulation data in the same manner as 

experimental data ensures that static and dynamic localization errors (116) are accurately 

modeled for our data fitting routine. 

 

4.6.8 Data Fitting 

 Experimental distributions of apparent diffusion coefficients were fit using a linear 

combination of simulated CDFs, where each CDF corresponds to a single diffusive state 

described by a single diffusion coefficient. The coefficients of the best fitting linear 

combination were determined using the Matlab function lsqlin() with the trust-region-

reflective algorithm (The MathWorks, Inc, Natick, MA). The resulting linear coefficients 

can be displayed as a spectrum of diffusion coefficients that manifest for a tracked protein 

in living cells. To establish the robustness of individual peaks in the diffusion coefficient 

spectrum, we resampled the raw data using bootstrapping (N = 100). We then average these 

bootstrapped spectra and used the resulting linear coefficients to fit the experimental data 

(mean bootstrapped spectrum fit). The mean bootstrapped spectrum provides us with an 

initial estimate of the diffusion coefficients of prominent diffusive states and their relative 
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population fractions, estimated by determining the peak maxima and the area under the 

spectral peaks, respectively. The so-obtained parameters are then used as input parameters 

for non-linear fitting using the particleswarm() function in MATLAB. This approach 

allowed us to estimate the diffusion coefficients and population fractions of distinct 

diffusive states that manifest in living cells. In the case where the spectrum contains 

overlapping peaks or feature-less non-zero spectral density, we choose one or multiple 

diffusive states to initialize the non-linear fitting process. This approach results in the n-

state (n = 1-4) fitting models shown in Supplementary Figs. 3-10, which are then evaluated 

using 5-fold cross-validation and qualitative agreement with the diffusion coefficient 

spectrum obtained by linear fitting. 
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5.1 INTRODUCTION 

 If and how the proposed complexes containing the Y. enterocolitica sorting 

platform and ATPase (see Chapter 4) contribute to the functional mechanism of secretion 

remains unknown. A shuttling mechanism of effector proteins to the injectisome involving 

complexes containing YeSctQ has been previously proposed (45,46). Specifically, dynamic 

binding and unbinding of YeSctQ with injectisomes has been observed using fluorescence 

recovery after photobleaching (FRAP). After photobleaching of injectisome locations, the 

fluorescence intensity of PAmCherry-labeled YeSctQ under secretion-ON conditions 

recovered 50% of its pre-bleach intensity (t1/2) in ~68  8 seconds. However, under non-

secretion conditions, the t1/2 value increases to 134  16 seconds. In other words, the 

exchange of YeSctQ increases by a factor of two under secretion-ON conditions (45).  

 The shuttling mechanism by YeSctQ-containing complexes was more recently 

supported by additional experimental evidence (137). This study showed that the presence 

or absence of the effector protein YopO and its cognate chaperone SycO influenced the 

mobility of freely-diffusing YeSctQ and YeSctL. Specifically, in the presence of the 

YopO/SycO pair, decreased mobility of PAmCherry-labeled YeSctQ and YeSctL was 

observed in single-molecule tracking PALM experiments. This result was consistent with 

in vivo proximity labeling of YeSctQ followed by purification and proteomics analysis, 

which showed YeSctQ enriched with 6 of the 8 Y. enterocolitica effector proteins as well 

as YeSctL (137).  Taken together, the dynamic shuttling model of effector proteins by 

YeSctQ-containing complexes is supported by 1) the dynamic binding and unbinding of 

YeSctQ during secretion (45) and 2) the slowed diffusion of YeSctQ in the presence of the 
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YopO/SycO pair (137). The increased abundance of YeSctQ in the cytosolic fraction 

compared to the injectisome-bound fraction additionally supports this model (95,138). 

 Shuttling of effector proteins to the injectisome by YeSctQ-containing complexes 

is an intriguing model, yet many questions remain. For instance, it is not known whether 

or not YeSctQ exchanges with injectisomes as a monomer, in association with itself, in 

association with other proteins, or perhaps a combination of these different options. If 

YeSctQ binds chaperone:effector complexes in a 1:1 ratio (i.e. one effector protein is 

delivered per YeSctQ), then the rate of YeSctQ exchange at injectisomes must be fast 

enough to match measured secretion rates. Previous data in Salmonella estimated that 7-

60 effector proteins were secreted per second by an individual cell, with a range of 10-100 

injectisomes present per cell (139–141). Taking the lowest value of each of these ranges 

provides the smallest achievable effector protein secretion rate for an individual 

injectisome, which results in 7 effectors secreted per second per 10 injectisomes, which 

corresponds to a secretion rate with a lower-bound of 1 effector protein every 1.43 seconds 

per injectisome.  

 In order to begin to test the effector shuttling model, quantitative analyses of 

YeSctQ binding kinetics and protein secretion rates are useful. The existing data shows 

dynamic exchange of YeSctQ through FRAP experiments. While these experiments indeed 

showed that PAmCherry-labeled YeSctQ exchanges with bleached molecules during the 

fluorescence recovery time of individual injectisomes, the observed dynamics of YeSctQ 

were slow, which does not correlate with the rapid secretion of effectors by Salmonella. 

The work presented in this chapter leverages a novel single-molecule binding kinetics 

analysis workflow in combination with a stochastic simulation algorithm to correlate 
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theoretical protein secretion rates with measured rates of dissociation (𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔) of 

YeSctQ from injectisomes. Results show YeSctQ binding and unbinding with injectisomes 

during secretion. Re-analysis of previously published FRAP data shows significantly 

slower rates of dissociation compared to those obtained by single-molecule studies. 

Moreover,  the YeSctQ rate of injectisome unbinding is markedly faster than the measured 

unbinding rates of YeSctL and YeSctN. Stochastic simulations of injectisome binding 

kinetics support a model in which experimentally measured effector secretion rates are 

theoretically possible for the 𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  rates obtained from this study, but does not when 

using the 𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  value obtained from FRAP studies.  

 

5.2 RESULTS 

5.2.1 FRAP data suggests minimal YeSctQ exchange with injectisomes   

 In order to directly compare the measured rates of YeSctQ unbinding in Y. 

enterocolitica, the previously published FRAP data (45) was re-analyzed using custom-

built fitting and FRAP simulation functions in MATLAB. The fitting function fits 

experimental FRAP data (normalized to a pre-bleach intensity of 1) to the exponential 

recovery function 

 𝐼(𝑡) =  1 − (𝑒−𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  ∗  𝑡) (5.1) 

where 𝐼(𝑡) is the recovery in fluorescence intensity after bleaching and 𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  is the 

dissociation rate constant, also known as 𝑘𝑂𝐹𝐹 .. Equation 5.1 represents the cumulative 

probability that an event, which in this case is YeSctQ unbinding from the injectisome, has 

occurred by time 𝑡. Using this equation operates under the limiting constraint of full 
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occupancy of YeSctQ binding sites at the injectisome (46,106,142), and therefore,  the 

YeSctQ 𝑘𝑏𝑖𝑛𝑑𝑖𝑛𝑔  rate, i.e. 𝑘𝑂𝑁 rate, does not influence the return in fluorescence intensity.  

 Data from three different FRAP experiments were fit with Eq. 5.1, and the resulting 

𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  values determined by each fit served as inputs into the FRAP simulation. The 

first condition, in which Y. enterocolitica was grown under secretion-OFF conditions, 

shows a fluorescence recovery time spanning ~350 seconds with a total fluorescence 

recovery of only ~60% (Fig. 5.1a). Fitting of the secretion-OFF data provides a 𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  

value of 0.003 s-1 meaning that, on average, YeSctQ remains bound to the injectisome for 

1/ 𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  = 333 seconds. Fitting of secretion-ON data suggests faster rates of 

dissociation for YeSctQ, with a fit 𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  value of 0.010 s-1 (Fig. 5.1b). Under this 

condition, YeSctQ remains bound to the injectisome for 1 /  𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  = 94 seconds, on 

average, which is significantly faster than observations made under secretion-OFF 

conditions.  

 Diepold et al. also provide FRAP data for Y. enterocolitica when grown under a 

combination of the above two conditions. Specifically, they grew Y. enterocolitica under 

secretion-OFF conditions for 3 hours and, immediately before imaging, switched the 

growth medium to the secretion-ON condition. Fitting of the secretion-OFF to -ON data 

provides a 𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  value of 0.013 s-1 meaning that, on average, YeSctQ remains bound 

to the injectisome for 1 / 𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  = 77 seconds (Fig. 5.1c). Therefore, the rate of 

dissociation of YeSctQ is faster under the secretion-OFF to -ON condition compared to the 

secretion-ON condition. Collectively, re-analysis of these data suggests that the binding 

kinetics of YeSctQ are sensitive to secretion-state of the injectisome, where YeSctQ remains 
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bound to the injectisome for an extended period of time even in the secretion-ON state (77 

seconds).   

 

 

Figure 5.1: Distribution fits (black lines) of FRAP data (gray dots) for PAmCherry-labeled 

YeSctQ in Y. enterocolitica when grown under a) secretion-OFF conditions, b) secretion-

ON conditions, and c) secretion-OFF to -ON conditions.  
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5.2.2 Single-molecule bound-time analysis of YeSctQ 

 As a complement to the above FRAP analysis, we measured bound-times of YeSctQ 

with the injectisome by visualizing the corresponding single-molecule binding events of 

fluorescently-labeled YeSctQ. This approach requires constitutive fluorescence of labeled-

YeSctQ molecules, as the entire duration of YeSctQ binding times with injectisomes must 

be visualized. YeSctQ is highly expressed in Y. enterocolitica, so that it is impossible to 

detect individual, injectisome-bound YeSctQ labeled with constitutively-fluorescent 

proteins. However, labeling Halo-YeSctQ with HaloTag ligands offers a solution to this 

issue. HaloTag covalently binds to synthetic fluorescent dyes (the ligands), which contain 

a specific reactive linker. Using a fluorescent dye allows for control over how many YeSctQ 

proteins are labeled in a single-molecule imaging experiment.  

 Prior to imaging, Y. enterocolitica was grown under secretion-ON conditions. 

Halo-YeSctQ was expressed from the native pYV virulence plasmid and was sparsely 

labeled with the fluorescent dye JFX549. Additionally, the laser intensity used within the 

imaging experiment was attenuated to ensure minimal photobleaching of JFX549. The 

camera exposure time was set to 0.5 s to observe only slow or stationary molecules. At this 

exposure time, fluorescent signals originating from fast-diffusing proteins are motion-

blurred and become part of the background.  

 Individual YeSctQ proteins readily bind to injectisomes, which can be seen in the 

raw data (Fig. 5.2b). For each protein binding event, a bound-time trace containing the 

number of photons collected per frame for an individual protein was generated (Fig. 5.2c). 

From the duration of these traces, the bound time distribution of single YeSctQ at the 

injectisome was determined (Fig. 5.2c).  
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 Fitting the bound-time distribution with an exponential decay allows for the 

determination of the YeSctQ injectisome unbinding rate, kunbinding, value. The exponential 

decay function is written in the form of  

 𝑦 = (𝐴) ∗  𝑒−𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔∗𝑡 (5.2) 

Unlike the data from the above FRAP experiments, where we operate under the limiting 

constraint of full occupancy of YeSctQ binding sites at the injectisome (46,106,142), 

single-molecule bound-time data is not influenced by a given protein’s binding kinetics, or 

𝑘𝑏𝑖𝑛𝑑𝑖𝑛𝑔  rate. Examining the bound-time data for YeSctQ indeed shows an exponentially 

decaying relationship (Fig. 5.2d). Fitting this distribution with the above exponential decay 

function provides an excellent fit, with YeSctQ  𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = 0.075 s-1, which means that a 

single YeSctQ remains bound to the injectisome for 1 /  𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = 13.3 seconds on 

average. The unbinding rate determined from this single-molecule study is therefore ~6X 

faster than the unbinding rate determined the above FRAP analysis. This difference has 

important implications for the shuttling model. 
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Figure 5.2: Single-molecule bound time analysis. a) YeSctQ binds and unbinds with 

injectisomes, either as part of a complex or with YeSctK, YeSctL, and YeSctN. 

Effector:chaperone complexes are additionally delivered to injectisomes, potentially by the 

specified YeSctQ-containing complexes. b) (top) Average intensity images of JFX549-

labeled Halo-YeSctQ, -YeSctL, and -YeSctN reveal punctate foci at injectisome locations. 

(bottom) Example raw data of a YeSctQ injectisome binding event. The individual YeSctQ 

protein binds and unbinds with injectisome. The outline of the corresponding cell shows 

that unbound molecules remain localized within the cell but are severely blurred. c) 

Example bound-time traces from YeSctQ shows reveals clear binding signatures of 

individual molecules for a range of binding times. d-f) Bound-time distribution fits for 

YeSctQ, YeSctL, and YeSctN result in kOFF values of 0.075 s-1, 0.052 s-1, and 0.055 s-1, 
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respectively. The number of counts reflects the difference in expression levels among the 

three proteins.  

 

5.2.3 Simulating theoretical protein secretion rate distributions  

 I performed stochastic simulations based on the Gillespie algorithm (143,144) to 

quantify and test the effector protein shuttling model and to reconcile the difference 

between YeSctQ unbinding rates reported from the above single-molecule bound-time 

analysis and the previously published FRAP analysis (Fig. 5.3a). Stochastic simulations 

for systems with known reaction rates can be used to track specific events over time, for 

example, molecular interactions within a cell. Our algorithm assumes that 24 binding sites 

are available for YeSctQ at the injectisome (corresponding to the proposed copy number of 

YeSctQ at a single injectisome (46)). The algorithm is structured to simulate a system where 

the number of available binding sites, 𝑁𝐵𝑆 − 𝑁𝐵𝑜𝑢𝑛𝑑, varies with time, and the available 

proteins for binding is present in excess to ensure that binding events are not limited by a 

small number of unbound proteins. To understand the system's dynamics at any given 

moment, we compute the 'total rate' of events, as defined by a master equation. This rate is 

the sum of two components: the rate at which proteins can bind to available sites and the 

rate at which proteins can unbind from the sites they currently occupy. Mathematically, 

this is represented by the equation: 

 𝑡𝑜𝑡𝑎𝑙 𝑟𝑎𝑡𝑒 =  𝑘𝑏𝑖𝑛𝑑𝑖𝑛𝑔 ∗ (𝑁𝐵𝑆 − 𝑁𝐵𝑜𝑢𝑛𝑑) + 𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔 ∗ 𝑁𝐵𝑜𝑢𝑛𝑑   (5.3) 

where 𝑁𝐵𝑆 the total number of binding sites and 𝑁𝐵𝑜𝑢𝑛𝑑 is the number of proteins currently 

bound to the complex. In order to simulate the time-evolution of binding and unbinding 



Chapter 5: Bound-time Analysis          

 

103 

events, the time to the next event is not fixed but is instead determined by a random process, 

reflective of the natural unpredictability of molecular interactions. At each time step of the 

simulation, the next event is predicted by 𝛿𝑡, which is computed by  

 
𝛿𝑡 =  −

log (𝑟1)

𝑡𝑜𝑡𝑎𝑙 𝑟𝑎𝑡𝑒
 

(5.4) 

with 𝑟1 being a uniformly distributed random number between 0 and 1. This expression 

reflects the exponential waiting time for the next event in a Poisson process. Once the time 

until the next event is determined, another random number, 𝑟2, is generated, which reflects 

the probability of a binding event occurring at any given time. Specifically, if 

 
𝑟2 <  

𝑘𝑏𝑖𝑛𝑑𝑖𝑛𝑔 ∗ (𝑁𝐵𝑆 − 𝑁𝐵𝑜𝑢𝑛𝑑)

𝑡𝑜𝑡𝑎𝑙 𝑟𝑎𝑡𝑒
 

(5.5) 

then a binding event has occurred. Conversely, if 𝑟2 is greater than the ratio defined in Eq. 

5.5. expression, an unbinding event has occurred. If an unbinding event does occur, the 

algorithm finds the molecule that has spent the longest duration of time bound to the system 

and sets its binding time back to 0, indicating that it has unbound from the system. 

Additionally, 𝑁𝐵𝑜𝑢𝑛𝑑 is decremented by 1, indicating a binding site has been made 

available. The random numbers, 𝑟1 and 𝑟2, allow us to simulate the stochastic behavior of 

the system, where the occurrence of each type of event (binding or unbinding) is governed 

by its respective probability. In the limit of very high 𝑘𝑏𝑖𝑛𝑑𝑖𝑛𝑔  relative to 𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔 , the 

𝑡𝑜𝑡𝑎𝑙 𝑟𝑎𝑡𝑒 for an individual injectisome approaches 

 𝑘𝑏𝑖𝑛𝑑𝑖𝑛𝑔 ∗ (𝑁𝐵𝑆 − 𝑁𝐵𝑜𝑢𝑛𝑑) ≈  𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔 ∗ 𝑁𝐵𝑜𝑢𝑛𝑑 (5.6) 
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which represents the steady state of the system, i.e. the frequency of binding events is 

effectively equal to the frequency of unbinding events. The term  

𝑘𝑏𝑖𝑛𝑑𝑖𝑛𝑔 ∗ (𝑁𝐵𝑆 − 𝑁𝐵𝑜𝑢𝑛𝑑) represents the rate at which new binding events can 

potentially occur. As 𝑁𝐵𝑜𝑢𝑛𝑑 increases, the difference, 𝑁𝐵𝑆 − 𝑁𝐵𝑜𝑢𝑛𝑑, decreases, reducing 

the rate of new binding events. Therefore, as the system approaches a steady state, the 

number of available binding sites approaches zero (Fig. 5.3b). In this scenario, the above 

expression can be simplified and re-defined as  

 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑡𝑢𝑟𝑛𝑜𝑣𝑒𝑟 ≈ 𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  (5.7) 

In terms of the problem at hand,  the rate of unbinding is equal to the turnover rate of 

YeSctQ, which is governed by the YeSctQ dissociation rate constant. A key assumption of 

this algorithm is that, for each binding event by a simulated molecule (i.e., YeSctQ), a 

protein is secreted by the system (Fig. 5.3a). Further, only one YeSctQ is required to secrete 

an effector protein. Given these assumptions, theoretical protein secretion rates could be 

determined.  

 Given that the YeSctQ 𝑘𝑏𝑖𝑛𝑑𝑖𝑛𝑔 value is unknown, a range of 𝑘𝑏𝑖𝑛𝑑𝑖𝑛𝑔  values were 

considered in combination with the measured 𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  values from the single-molecule 

bound-time and FRAP analyses. As the 𝑘𝑏𝑖𝑛𝑑𝑖𝑛𝑔  grows larger, the number of occupied 

binding sites saturates and the rate of protein secretion becomes limited solely by the rate 

of YeSctQ dissociation. With 𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  set to 0.011 s-1, the results of the simulation show 

that the theoretical protein secretion rate distribution asymptotes at ~0.2 effector proteins 

per second (Fig. 5.3c). Given the ideality of the simulated scenario (individual YeSctQ 

proteins deliver effector:chaperone complexes with 100% efficiency), the calculated 
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secretion rate represents an upper bound. The reported 𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  values from FRAP data 

are not consistent with an effector protein shuttling model, as the rate of secretion is limited 

to slower rates than experimentally recorded rates(139–141). Contrarily, simulation results 

with 𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  set to 0.075 s-1 allows for faster secretion rates, up to 1.7 effector proteins 

per second (Fig. 5.3c), which is consistent with experimentally recorded rates (139–141). 

Thus, the results from the single-molecule bound-time analyses support the effector protein 

shuttling model. However, it remains unclear whether shuttling is done by YeSctQ alone 

or by YeSctQ-containing complexes. 

 

 

Figure 5.3: a) A model of effector protein secretion was developed, which simulates 

stochastic binding and unbinding events based on known 𝑘𝑏𝑖𝑛𝑑𝑖𝑛𝑔  and 𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  values. 
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For each simulation, a different 𝑘𝑏𝑖𝑛𝑑𝑖𝑛𝑔  value is selected, and the simulation is performed 

for 1 million seconds. Each binding event corresponds to the secretion of an individual 

effector protein. b) Theoretical secretion rate distributions for simulations with 𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  

set to 0.011 s-1 and 0.075 s-1 and a range of 𝑘𝑏𝑖𝑛𝑑𝑖𝑛𝑔  values. c) The percentage of available 

binding sites for YeSctQ is saturated (i.e., approaches zero) as the 𝑘𝑏𝑖𝑛𝑑𝑖𝑛𝑔  values grow 

larger. At a 𝑘𝑏𝑖𝑛𝑑𝑖𝑛𝑔  value of 3, virtually 0% of the binding sites for YeSctQ are available, 

which corresponds to the secretion rate being rate-limited by the 𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  value of 

YeSctQ.  

 

5.2.4 Single-molecule bound-time analysis of YeSctL and YeSctN 

 If YeSctQ binds and unbinds from injectisomes as part of a complex with YeSctL 

and/or YeSctN, then it stands to reason that YeSctL and/or YeSctN should have similar kOFF 

values. Specifically, our previously published tracking results support a model in which 

YeSctL and YeSctN form two distinct complexes in the cytosol of Y. enterocolitica under 

secretion-ON conditions. While YeSctL and YeSctN interact independently of YeSctQ, a 

majority of cytosolic YeSctL and YeSctN are complexed with YeSctQ, as evidenced by a 

shared diffusive state among the three proteins (95). Therefore, if the 𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  values for 

YeSctL and YeSctN differ from YeSctQ, then these proteins may be exchanging with 

injectisomes as independent proteins or protein complexes.  

 Fitting of the YeSctL and YeSctN bound time distributions results in 𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  

values of 0.052 s-1 and 0.055 s-1, respectively (Fig. 5.2cd). This correlates to an average 

injectisome-bound time of ~19.2 seconds for YeSctL and ~18.2 seconds for YeSctN. These 



Chapter 5: Bound-time Analysis          

 

107 

data therefore suggest that, on average, YeSctL and YeSctN remain bound to injectisomes 

longer than YeSctQ. There are two main possibilities that may explain this scenario: 1) 

YeSctQ, YeSctL, and YeSctN bind to injectisomes as part of a complex, but YeSctQ unbinds 

independently of and faster than YeSctL and YeSctN or 2) YeSctQ binds and unbinds from 

injectisomes independently of YeSctL and YeSctN. It is further possible, given the similar 

𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  values for YeSctL and YeSctN, that these proteins bind and unbind from 

injectisomes as part of the same complex, which is supported by the observed complex of 

YeSctL and YeSctN in our cytosolic tracking data (95). Further experiments are necessary 

to determine precisely which complexes are binding and unbinding from injectisomes. 

Such information will lend insight into the effector protein shuttling model, as each 

complex may have functionally distinct roles.  

 

5.3 DISCUSSION 

 A model of YeSctQ bound to effector:chaperone complexes in the cytosol of Y. 

enterocolitica as a means to deliver injectisome substrates for secretion has been proposed 

(137). However, in order to agree with experimentally measured protein secretion rates 

(139–141), the rate of effector protein delivery by YeSctQ-containing complexes must 

therefore be rapid. The single-molecule bound-time analysis presented in this chapter is 

quantitatively consistent with an effector protein shuttle model by YeSctQ containing 

complexes. If YeSctQ shuttles effectors to the injectisome, then it is likely that YeSctQ 

exchange occurs in dynamic equilibrium, where one YeSctQ binds immediately after 

another unbinds. Given that YeSctQ is expressed in excess abundance, a cytosolic pool of 

freely-diffusing YeSctQ is therefore made available for injectisomes. In this model, the 
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secretion of effector proteins is therefore directly related to the rate of YeSctQ dissociation 

from injectisomes.  

 Two assumptions made in this model need to be validated in order to confirm the 

values reported the theoretical rates of effector protein secretion. One component to the 

model that was not tested further is the efficiency of secretion. Specifically, the current 

model assumes that, for every YeSctQ binding event with injectisomes, an effector protein 

is secreted. In other words, 100% of the available pool of YeSctQ for injectisome binding 

is complexed with cognate effector:chaperone complexes. This assumption likely does not 

hold true in the context of living cells, and therefore, the effector secretion rate values 

provided here represent the fastest/highest theoretical secretion rates based on the measured 

YeSctQ 𝑘𝑢𝑛𝑏𝑖𝑛𝑑𝑖𝑛𝑔  values. If, for example, the system is only 50% efficient, then the 

average number of effector proteins secreted per second will decrease by 50%. In order to 

determine how the efficiency of effector protein delivery impacts secretion rate, one can 

simply compute 

 
𝑠𝑒𝑐𝑟𝑒𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =  

𝜂 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 𝑒𝑣𝑒𝑛𝑡𝑠

𝑡𝑇
 

(5.8) 

where 𝜂 represents the efficiency of effector protein delivery and 𝑡𝑇 is the total simulation 

time. Additionally, this model assumed that individual YeSctQ proteins deliver 

effector:chaperone complexes to the injectisome. If, for example, a complex containing  2 

or 4 YeSctQ were to deliver individual effector:chaperone complexes, then the effector 

secretion rate would decrease by 25% or 50%, respectively.  

 In order to verify the theoretical protein secretion rate estimates computed in this 

dissertation, quantitative protein secretion rate measurements in Y. enterocolitica under the 
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specific experimental conditions used in this dissertation are needed. While different 

methods have been introduced into the literature that allow for the quantification and 

visualization of protein secretion by injectisomes  (140,145–148), accurate quantification 

of secretion of individual injectisomes is non-trivial (see Section 6.2.2). However, such 

measurements, together with accurate injectisome counts per cell, will help to further 

support or refute the effector protein shuttling model. Additionally, the above bound-time 

measurements should be repeated under the same conditions used in the FRAP analysis, 

e.g. secretion-OFF and secretion-OFF to -ON conditions, to confirm that the rate of YeSctQ 

exchange is influence by the secretion-state of the injectisome. Taken together, these data 

will help further support or refute the effector protein shuttling model.  
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5.4 MATERIALS AND METHODS 

5.4.1 Cell culture 

 Y. enterocolitica cultures were prepared for imaging under secreting conditions as 

described in Section 4.6.2. After 3 hours of growth, JFX549 was added to 1.5 mL of culture 

to a final concentration of 1 – 3 nM, and cells were incubated for an additional 30 minutes. 

Cells were then washed and plated for imaging as described in Section 4.6.2. 

 

5.4.2  Super-resolution fluorescence imaging 

 Experiments were performed on a custom-built, dual-color inverted fluorescence 

microscope as described in Section 4.6.3. The laser intensity was attenuated significantly 

(lowest possible input laser power), and an optical density (OD) filter of 1.0 added to the 

imaging pathway. Additionally, for 2D tracking of stationary molecules, the DHPSF phase 

mask was removed. Up to 2000 frames were collected per field-of-view with an exposure 

time of 500 ms. 

 

5.4.3 Data processing 

 Prior to PSF fitting, images from each field-of-view were background subtracted. 

PSFs were fit using ThunderSTORM in ImageJ (149) using the difference of Gaussians 

(DoG) filter option. A standard deviation intensity image was generated for each image 

stack, which clearly show injectisome locations as punctate foci. Injectisome locations 

from standard deviation images were additionally fit using ThunderSTORM, and these 

locations were used to filter single-molecule localizations within each, respective image 

stack. A nearest-neighbor tracking was then used to generate a list of trajectories, where 
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mobile trajectories were filtered from the data based on a distance threshold of 500 nm, i.e. 

trajectories with displacements larger than this distance were not considered for further 

analysis. For each stationary trajectory, the photon counts from the corresponding images 

were calculated, generating a bound-time trace for an injectisome-bound protein. A 

MATLAB script that displays the bound-time trace as well as a movie of the corresponding 

single-molecule binding event from the raw data was written, which allowed for manual 

annotation of the post-filtered traces. Traces were manually categorized as 1) stationary, 2) 

semi-mobile / slowly moving, 3) multiple molecules present, or 4) undetermined. Only 

traces from the first category then used for further analysis, which only contained 

individual protein binding events with injectisomes.   

 

5.4.4 Data analysis 

 Bound-time distributions of each protein were fit to the Eq. 5.2. Fitting of the data 

was conducted utilizing the 'fitnlm' function within MATLAB, which incorporates a 

nonlinear model. To mitigate the influence of outliers, the 'RobustWgtFun' parameter was 

set to 'bisquare.’ 

 

5.4.5 Stochastic simulation algorithm 

 A stochastic simulation algorithm was written in MATLAB to explore the 

relationship between the binding rate constant (𝑘𝑏𝑖𝑛𝑑𝑖𝑛𝑔) and protein secretion rates in a 

biological system, which was modeled after the YeSctQ effector shuttling model. Each 

simulation operates over a total time of 1000 seconds and assumes that, at the beginning 
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of the simulation, all binding sites by YeSctQ are occupied. The script then performs 1000 

simulations for each 𝑘𝑏𝑖𝑛𝑑𝑖𝑛𝑔  value. During the simulation, the script tracks the binding 

and unbinding events of YeSctQ at each timestep, and a protein is secreted by the system 

each time YeSctQ binds. The average number of occupied binding sites at the injectisome 

and number of proteins secreted for each 𝑘𝑏𝑖𝑛𝑑𝑖𝑛𝑔  value was then computed.
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Chapter 6  

CONCLUSIONS AND  

FUTURE DIRECTIONS 
 

 

** Excerpts from this chapter are taken from Prindle, J. R., de Cuba, O.I.C., & 

Gahlmann, A. Single-molecule tracking to determine the abundances and 

stoichiometries of freely-diffusing protein complexes in living cells: Past applications 

and future prospects (J. Chem. Phys., 2023, Vol. 159, No. 7) 
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6.1 Significance   

 The injectisome is responsible for widespread human disease, both historically and 

currently. Determining the precise mechanisms that contribute to pathogenesis may aid in 

the development of novel drugs to combat its virulent properties. In Y. enterocolitica, the 

sorting platform and ATPase transiently associate with injectisomes during secretion, yet 

their functional roles remain largely unknown.  

 The work presented here leverages live-cell super-resolution microscopy 

approaches that provide an in-depth look into the binding properties of the sorting platform 

and ATPase, both in the cytosol and at the injectisome. A previously published diffusion 

analysis pipeline was updated to address the problem of model selection commonly 

encountered in frequentist (i.e. least squares- or maximum likelihood-based) curve fitting 

approaches of single-molecule tracking data. Specifically, the diffusion coefficient 

spectrum was introduced, which provides an easily-interpretable approach to analyzing 

complex diffusion data. Diffusion coefficient spectrum analysis of YeSctQ, YeSctL, and 

YeSctN revealed that these proteins form distinct complexes in the cytosol. Further, bound-

time analysis of these proteins with injectisomes revealed that, on average, YeSctQ unbinds 

from injectisomes more rapidly than YeSctL and YeSctN.  

  Collectively, these data support a model in which distinct YeSctQ-containing 

complexes shuttle effector proteins to the injectisome. According to this model, YeSctQ 

associates with effector:chaperone protein complexes that are then delivered to the 

injectisome for secretion. On average, YeSctQ remains bound to the injectisome for ~ 13.3 

seconds, which correlates to a theoretical maximum secretion rate of 1.7 proteins per 

second. However, it remains unknown which of the YeSctQ-containing complexes serves 
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as the shuttle. For instance, our data supports two, or perhaps three, YeSctQ-containing 

complexes in the cytosol of actively secreting Y. enterocolitica. Validation of the effector 

protein shuttling model and determination of the YeSctQ-containing complexes that deliver 

effector:chaperone complexes to the injectisome will be the subject of future research.  

 

6.2 Future Directions 

6.2.1 Deviations from Stokes-Einstein diffusion theory 

 As diffusion coefficient measurements of proteins become more common, it has 

become possible to test whether the 𝐷 ∝ 𝑇 (𝜂 ∙ 𝑀𝑊
1

3)⁄  scaling relation predicted by 

Stokes-Einstein diffusion theory applies to diffusion in intracellular aqueous environments. 

Deviations from Stokes-Einstein scaling should be expected, because the cytoplasm is not 

a homogeneous medium of uniform viscosity, but instead is a complex mixture of crowding 

agents, many of which (e.g. DNA, mRNA, or ribosomes) are substantially larger than the 

diffusing proteins and protein complexes of interest. Interestingly, currently available 

results show that, as molecular weight increases, the diffusion rates of proteins and protein 

complexes is slower than what is predicted by the Stokes-Einstein diffusion theory. One 

approach to explain this observation is to make the viscosity term dependent on the size of 

the diffusing molecule (150,151). Another approach is to adjust the 𝐷 ∝ 𝑀𝑊𝛽 scaling 

exponent 𝛽. The results from early, independent experiments clearly show that 𝛽 < -1/3. 

(We note that this scaling only considers negatively charged proteins. Positively-charged 

proteins exhibit even slower diffusion on average due to their strong electrostatic 

interactions with negatively-charged, quasi-stationary biomolecules (152).) In  a 2010 
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study (153), a scaling exponent 𝛽 of -0.7 was determined using pulsed-FRAP 

measurements on fluorescently labelled glucose (NBD-glucose, 423 Da), green fluorescent 

protein (GFP, 26.9 kDa), and a large oligomeric protein assumed to consist primarily of 

four subunits of GFP-tagged β-galactosidase ( (β-gal-GFP)4, ∼582 kDa). When cells were 

osmotically upshifted (i.e., grown in media supplemented with 2 M NaCl), NBD-glucose 

remained fairly mobile, whereas the diffusion of GFP and (β-gal-GFP)4 became 

comparatively more impeded. In these osmotically upshifted cells, a scaling exponent 𝛽 of 

-0.8 was determined – an effect attributed to increased biomolecular density in the 

cytoplasm. In a 2011 review (154), FRAP- and FCS-based diffusion coefficients 

measurements from multiple studies for different-sized proteins were combined and a 

scaling exponent 𝛽 of -0.7 was determined.  

 More recent experiments agree with these findings (Figure 6.1). The FCS-

measured diffusion rates for sfGFP fusion proteins with molecular weights ranging from 

25 kDa to 165 kDa produced a scaling exponent 𝛽 of -0.56 (131). The tested proteins are 

globular in shape and are not known to bind DNA or form homomultimers. Also in E. coli, 

single-molecule displacement mapping (155), was used to study diffusion of fluorescent 

fusion proteins with molecular weights ranging from 25 kDa to 300 kDa. The proteins were 

chosen based on the criteria that they do not interact with DNA or with any other proteins. 

The results showed a scaling exponent 𝛽 of -0.54 (132). DNA-binding proteins with 

molecular weights ranging from ~ 70 kDa to ~ 500 kDa were studied using single-molecule 

tracking in E. coli, in which DNA was enzymatically degraded. These experiments 

produced a scaling exponent 𝛽 of -0.75 (130). In contrast to the non-interacting proteins 

used in the above studies, 3D single-molecule tracking was used to measure the diffusion 
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coefficients of three soluble proteins of the type 3 secretion system (T3SS) in osmotically-

upshifted Y. enterocolitica. T3SS proteins are known to interact with each other to form 

hetero-oligomeric complexes. When calculating the molecular weights based on the likely 

complex stoichiometries, a scaling exponent 𝛽 of -0.71 was obtained (95). 

 Future work should be dedicated towards validating the above diffusion coefficient 

vs. molecular weight relationships. More recently, it has become possible to design proteins 

with specified folding and binding properties de novo (156). Previously testing the 

relationship between molecule size and its diffusion coefficient was made possible through 

the use of GFP-NS particles (157). However, GFP-NS particles are large (> 30 nm in 

diameter), and therefore, validating the Stokes-Einstein diffusion theory for small (< 10 

nm in diameter) proteins is not possible. By having the ability to design proteins de novo, 

it may be possible to design probes that systematically test the diffusion coefficient vs. 

molecule weight relationship. The tested probes should ideally be globular in shape and 

non-interacting with other proteins. Tracking these probes and analyzing the corresponding 

diffusion data may therefore provide a range of diffusion coefficients for small proteins 

ranging from 0 – 500 kDa.  
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Figure 6.1. Power-law scaling of diffusion coefficients vs. molecular weight data of 

different proteins and protein complexes. Measurements obtained from three independent 

studies in E. coli (black diamonds){Bellotto, 2022 #6447;Śmigiel, 2022 #6412;Stracy, 

2021 #6358} results in a scaling exponent 𝛽 of -0.66 (black line). In each study, cells were 

grown in minimal growth media on the day of imaging. In Y. enterocolitica (pink circles), 

a scaling exponent 𝛽 of -0.71 (pink line) was obtained for freely-diffusing proteins in 

osmotically-upshifted cells. Inset: log-log plot of same data.  
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6.2.2 Effector protein shuttling by YeSctQ-containing complexes 

 The data presented in Chapter 5 supports an effector protein shuttling model by 

YeSctQ-containing complexes, yet additional data is required to support this model. 

Interestingly, rates of effector protein secretion by injectisomes in Y. enterocolitica has not 

been previously reported. Such information is required to validate theoretical rates of 

protein secretion (Fig 5.3). Previously published data in  S. Typhimurium revealed that the 

effector SipA was secreted at a rate of 7 – 60 effector proteins per second with an average 

of 10 – 100 injectisomes per cell (139–141). These rates were determined from time-lapse 

fluorescence microscopy experiments.  

 The authors of the study (140) took a two-step approach at visualizing effector 

protein delivery into eukaryotic host cells: 1) measure the rate of SipA accumulation in the 

eukaryotic host cell and 2) measure the rate of SipA depletion in the bacterial cell. Given 

that proteins must be unfolded into their primary structure for secretion, tagging of SipA 

with a fluorescent protein was not possible. However, the chaperone protein for SipA, 

InvB, is not secreted. The authors expressed GFP-InvB in S. Typhimurium and in Cos7 

host cells, and modulations in GFP-InvB fluorescence intensity were visualized during 

infection. Specifically, GFP-InvB expressed from Cos7 host cells accumulated at the site 

of infection upon secretion of SipA from the bacterial cytosol. The accumulation of 

fluorescence intensity at the site of infection was then measured over time. From the slopes 

of this linear phase of GFP-InvB recruitment, the authors estimated the individual rates of 

SipA injection by single bacteria.  

 A more reasonable approach for measuring the rates of secretion by individual 

injectisomes would be to fuse the N-terminal fragment of YopE (see Section 1.1.1) to a 
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protein to be destined for secretion, which has been shown to act as a signal for the export 

of any given protein in Y. enterocolitica (147,148). Utilizing the secretion signal to track 

any protein's export through the injectisome offers the possibility for more precise studies 

of effector protein secretion rates at the level of single injectisomes. In order for this to be 

possible, the designed system must be sensitive enough to detect single molecules via 

fluorescence, requiring us to visualize individual proteins before and after they are 

secreted. This secretion signal could also be more easily leveraged in diffraction-limited 

FRAP and fluorescence loss in photobleaching (FLIP) studies in an experimental setup 

similar to what has been used in the study of bacterial flagellar motors (158,159). For 

example, by employing a quantitative FLIP experiment, we could monitor the depletion of 

GFP within the bacterial cytoplasm, correlating the intracellular concentration decrease 

with the secretion events observed outside the cell. Experimentally-measured effector 

secretion rates could then be compared with the theoretical secretion rates determined in 

this work, which will further validate the effector shuttle model by YeSctQ-containing 

complexes.   

 

6.3 Conclusions 

 The work presented here provides the approximate stoichiometries and relative 

abundances of distinct protein complexes containing the injectisome sorting platform and 

ATPase in the cytosol of living Y. enterocolitica. By introducing the diffusion coefficient 

spectrum, robust analysis of YeSctQ, YeSctL, and YeSctN tracking data in wild-type and 

deletion mutants was possible. One complex contains YeSctQ, another contains YeSctL and 

YeSctN, and a third contains all three of these proteins. The average binding times of 



Chapter 6: Conclusions and Future Directions        

 

121 

YeSctQ, YeSctL, and YeSctN were additionally measured. Collectively, these data support 

a model in which YeSctQ-containing complexes shuttle effectors to the injectisome for 

secretion. Future work should be dedicated towards validating this model by 1) validating 

the Stokes-Einstein diffusion theory by carefully controlling protein size/molecular weight 

and 2) measuring the approximate rates of effector protein secretion in Y. enterocolitica. 



References                                               

 

122 

References 
 

1. Costa TRD, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, et al. Secretion systems 
in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol. 2015 
Jun;13(6):343–59.  

2. Green ER, Mecsas J. Bacterial Secretion Systems – An overview. Microbiol Spectr. 2016 
Feb;4(1):10.1128/microbiolspec.VMBF-0012–2015.  

3. Wagner S, Grin I, Malmsheimer S, Singh N, Torres-Vargas CE, Westerhausen S. Bacterial type III 
secretion systems: a complex device for the delivery of bacterial effector proteins into eukaryotic 
host cells. FEMS Microbiol Lett [Internet]. 2018 Aug 9 [cited 2019 Oct 21];365(19). Available from: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6140923/ 

4. Lara-Tejero M, Galán JE. The Injectisome, a Complex Nanomachine for Protein Injection into 
Mammalian Cells. EcoSal Plus [Internet]. 2019 Mar 29 [cited 2022 Apr 15];8(2). Available from: 
https://journals.asm.org/doi/full/10.1128/ecosalplus.ESP-0039-2018 

5. Coburn B, Sekirov I, Finlay BB. Type III Secretion Systems and Disease. Clin Microbiol Rev. 2007 
Oct;20(4):535–49.  

6. Andor A, Trülzsch K, Essler M, Roggenkamp A, Wiedemann A, Heesemann J, et al. YopE of Yersinia, a 
GAP for Rho GTPases, selectively modulates Rac-dependent actin structures in endothelial cells. Cell 
Microbiol. 2001;3(5):301–10.  

7. Larsson DGJ, Flach CF. Antibiotic resistance in the environment. Nat Rev Microbiol. 2022 
May;20(5):257–69.  

8. McShan AC, De Guzman RN. The Bacterial Type III Secretion System as a Target for Developing New 
Antibiotics. Chem Biol Drug Des. 2015 Jan;85(1):30–42.  

9. Bai F, Li Z, Umezawa A, Terada N, Jin S. Bacterial type III secretion system as a protein delivery tool for 
a broad range of biomedical applications. Biotechnol Adv. 2018;36(2):482–93.  

10. Miletic S, Goessweiner-Mohr N, Marlovits TC. The Structure of the Type III Secretion System 
Needle Complex. Curr Top Microbiol Immunol. 2020;427:67–90.  

11. Dey S, Chakravarty A, Guha Biswas P, De Guzman RN. The type III secretion system needle, tip, 
and translocon. Protein Sci Publ Protein Soc. 2019 Sep;28(9):1582–93.  

12. Deng W, Marshall NC, Rowland JL, McCoy JM, Worrall LJ, Santos AS, et al. Assembly, structure, 
function and regulation of type III secretion systems. Nat Rev Microbiol. 2017 Jun;15(6):323–37.  

13. Bergeron JRC, Marlovits TC. Cryo-EM of the injectisome and type III secretion systems. Curr Opin 
Struct Biol. 2022 Aug 1;75:102403.  

14. Jenkins J, Worrall LJ, Strynadka NCJ. Recent structural advances towards understanding of the 
bacterial type III secretion injectisome. Trends Biochem Sci. 2022 Sep 1;47(9):795–809.  



References                                               

 

123 

15. Büttner D. Protein Export According to Schedule: Architecture, Assembly, and Regulation of 
Type III Secretion Systems from Plant- and Animal-Pathogenic Bacteria. Microbiol Mol Biol Rev. 2012 
Jun;76(2):262–310.  

16. Dietsche T, Mebrhatu MT, Brunner MJ, Abrusci P, Yan J, Franz-Wachtel M, et al. Structural and 
Functional Characterization of the Bacterial Type III Secretion Export Apparatus. PLOS Pathog. 2016 
Dec 15;12(12):e1006071.  

17. Kimbrough TG, Miller SI. Contribution of Salmonella typhimurium type III secretion components 
to needle complex formation. Proc Natl Acad Sci. 2000 Sep 26;97(20):11008–13.  

18. Wagner S, Königsmaier L, Lara-Tejero M, Lefebre M, Marlovits TC, Galán JE. Organization and 
coordinated assembly of the type III secretion export apparatus. Proc Natl Acad Sci. 2010 Oct 
12;107(41):17745–50.  

19. Diepold A, Amstutz M, Abel S, Sorg I, Jenal U, Cornelis GR. Deciphering the assembly of the 
Yersinia type III secretion injectisome. EMBO J. 2010 Jun 2;29(11):1928–40.  

20. Kubori T, Sukhan A, Aizawa SI, Galán JE. Molecular characterization and assembly of the needle 
complex of the Salmonella typhimurium type III protein secretion system. Proc Natl Acad Sci. 2000 
Aug 29;97(18):10225–30.  

21. Cordes FS, Komoriya K, Larquet E, Yang S, Egelman EH, Blocker A, et al. Helical Structure of the 
Needle of the Type III Secretion System of Shigella flexneri*. J Biol Chem. 2003 May 9;278(19):17103–
7.  

22. Galkin VE, Schmied WH, Schraidt O, Marlovits TC, Egelman EH. The Structure of the Salmonella 
typhimurium Type III Secretion System Needle Shows Divergence from the Flagellar System. J Mol 
Biol. 2010 Mar 12;396(5):1392–7.  

23. Loquet A, Sgourakis NG, Gupta R, Giller K, Riedel D, Goosmann C, et al. Atomic model of the type 
III secretion system needle. Nature. 2012 Jun;486(7402):276–9.  

24. Erhardt M, Singer HM, Wee DH, Keener JP, Hughes KT. An infrequent molecular ruler controls 
flagellar hook length in Salmonella enterica. EMBO J. 2011 Jul 20;30(14):2948–61.  

25. Journet L, Agrain C, Broz P, Cornelis GR. The Needle Length of Bacterial Injectisomes Is 
Determined by a Molecular Ruler. Science. 2003 Dec 5;302(5651):1757–60.  

26. Veenendaal AKJ, Hodgkinson JL, Schwarzer L, Stabat D, Zenk SF, Blocker AJ. The type III secretion 
system needle tip complex mediates host cell sensing and translocon insertion. Mol Microbiol. 
2007;63(6):1719–30.  

27. Björnfot AC, Lavander M, Forsberg Å, Wolf-Watz H. Autoproteolysis of YscU of Yersinia 
pseudotuberculosis Is Important for Regulation of Expression and Secretion of Yop Proteins. J 
Bacteriol. 2009 Jul;191(13):4259–67.  



References                                               

 

124 

28. Edqvist PJ, Olsson J, Lavander M, Sundberg L, Forsberg Å, Wolf-Watz H, et al. YscP and YscU 
Regulate Substrate Specificity of the Yersinia Type III Secretion System. J Bacteriol. 2003 
Apr;185(7):2259–66.  

29. Zarivach R, Deng W, Vuckovic M, Felise HB, Nguyen HV, Miller SI, et al. Structural analysis of the 
essential self-cleaving type III secretion proteins EscU and SpaS. Nature. 2008 May;453(7191):124–7.  

30. Deane JE, Graham SC, Mitchell EP, Flot D, Johnson S, Lea SM. Crystal structure of Spa40, the 
specificity switch for the Shigella flexneri type III secretion system. Mol Microbiol. 2008;69(1):267–76.  

31. Wiesand U, Sorg I, Amstutz M, Wagner S, van den Heuvel J, Lührs T, et al. Structure of the Type 
III Secretion Recognition Protein YscU from Yersinia enterocolitica. J Mol Biol. 2009 Jan 
23;385(3):854–66.  

32. Lountos GT, Austin BP, Nallamsetty S, Waugh DS. Atomic resolution structure of the cytoplasmic 
domain of Yersinia pestis YscU, a regulatory switch involved in type III secretion. Protein Sci. 
2009;18(2):467–74.  

33. Rudolph M, Carsten A, Kulnik S, Aepfelbacher M, Wolters M. Live imaging of Yersinia translocon 
formation and immune recognition in host cells. PLOS Pathog. 2022 May 23;18(5):e1010251.  

34. Russo BC, Duncan JK, Wiscovitch AL, Hachey AC, Goldberg MB. Activation of Shigella flexneri 
type 3 secretion requires a host-induced conformational change to the translocon pore. PLOS Pathog. 
2019 Nov 14;15(11):e1007928.  

35. Young LN, Villa E. Bringing Structure to Cell Biology with Cryo-Electron Tomography. Annu Rev 
Biophys. 2023;52(1):573–95.  

36. Keck C, Enninga J, Swistak L. Caught in the act: In situ visualization of bacterial secretion systems 
by cryo-electron tomography. Mol Microbiol [Internet]. [cited 2024 Feb 29];n/a(n/a). Available from: 
https://onlinelibrary.wiley.com/doi/abs/10.1111/mmi.15186 

37. Hu B, Lara-Tejero M, Kong Q, Galán JE, Liu J. In Situ Molecular Architecture of the Salmonella 
Type III Secretion Machine. Cell. 2017 Mar 9;168(6):1065-1074.e10.  

38. Hu B, Morado DR, Margolin W, Rohde JR, Arizmendi O, Picking WL, et al. Visualization of the 
type III secretion sorting platform of Shigella flexneri. Proc Natl Acad Sci. 2015 Jan 27;112(4):1047–
52.  

39. Tachiyama S, Chang Y, Muthuramalingam M, Hu B, Barta ML, Picking WL, et al. The cytoplasmic 
domain of MxiG interacts with MxiK and directs assembly of the sorting platform in the Shigella type 
III secretion system. J Biol Chem. 2019 Dec 13;294(50):19184–96.  

40. Berger C, Ravelli RBG, López-Iglesias C, Kudryashev M, Diepold A, Peters PJ. Structure of the 
Yersinia injectisome in intracellular host cell phagosomes revealed by cryo FIB electron tomography. J 
Struct Biol. 2021 Mar 1;213(1):107701.  

41. Henderson R. Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from 
noise. Proc Natl Acad Sci. 2013 Nov 5;110(45):18037–41.  



References                                               

 

125 

42. van Heel M. Finding trimeric HIV-1 envelope glycoproteins in random noise. Proc Natl Acad Sci. 
2013 Nov 5;110(45):E4175–7.  

43. Soto JE, Galán JE, Lara-Tejero M. Assembly and architecture of the type III secretion sorting 
platform. Proc Natl Acad Sci. 2022 Dec 20;119(51):e2218010119.  

44. Tachiyama S, Skaar R, Chang Y, Carroll BL, Muthuramalingam M, Whittier SK, et al. Composition 
and Biophysical Properties of the Sorting Platform Pods in the Shigella Type III Secretion System. 
Front Cell Infect Microbiol. 2021;11:488.  

45. Diepold A, Kudryashev M, Delalez NJ, Berry RM, Armitage JP. Composition, Formation, and 
Regulation of the Cytosolic C-ring, a Dynamic Component of the Type III Secretion Injectisome. PLOS 
Biol. 2015 Jan 15;13(1):e1002039.  

46. Diepold A, Sezgin E, Huseyin M, Mortimer T, Eggeling C, Armitage JP. A dynamic and adaptive 
network of cytosolic interactions governs protein export by the T3SS injectisome. Nat Commun. 2017 
Jun 27;8(1):1–12.  

47. Akeda Y, Galán JE. Chaperone release and unfolding of substrates in type III secretion. Nature. 
2005 Oct;437(7060):911–5.  

48. Minamino T, Morimoto YV, Kinoshita M, Aldridge PD, Namba K. The bacterial flagellar protein 
export apparatus processively transports flagellar proteins even with extremely infrequent ATP 
hydrolysis. Sci Rep. 2014 Dec 22;4(1):7579.  

49. Case HB, Dickenson NE. MxiN Differentially Regulates Monomeric and Oligomeric Species of the 
Shigella Type Three Secretion System ATPase Spa47. Biochemistry. 2018 Apr 17;57(15):2266–77.  

50. Blaylock B, Riordan KE, Missiakas DM, Schneewind O. Characterization of the Yersinia 
enterocolitica Type III Secretion ATPase YscN and Its Regulator, YscL. J Bacteriol. 2006 
May;188(10):3525–34.  

51. Lara-Tejero M, Kato J, Wagner S, Liu X, Galán JE. A sorting platform determines the order of 
protein secretion in bacterial type III systems. Science. 2011 Mar 4;331(6021):1188–91.  

52. Bzymek KP, Hamaoka BY, Ghosh P. Two Translation Products of Yersinia yscQ Assemble To Form 
a Complex Essential to Type III Secretion. Biochemistry. 2012 Feb 28;51(8):1669–77.  

53. McDowell MA, Marcoux J, McVicker G, Johnson S, Fong YH, Stevens R, et al. Characterisation of 
Shigella Spa33 and Thermotoga FliM/N reveals a new model for C-ring assembly in T3SS. Mol 
Microbiol. 2016;99(4):749–66.  

54. Lara-Tejero M, Qin Z, Hu B, Butan C, Liu J, Galán JE. Role of SpaO in the assembly of the sorting 
platform of a Salmonella type III secretion system. PLoS Pathog [Internet]. 2019 Jan 22 [cited 2019 
Oct 21];15(1). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358110/ 

55. Wimmi S, Balinovic A, Jeckel H, Selinger L, Lampaki D, Eisemann E, et al. Dynamic relocalization 
of cytosolic type III secretion system components prevents premature protein secretion at low 
external pH. Nat Commun. 2021 Mar 12;12(1):1625.  



References                                               

 

126 

56. Rocha J, Corbitt J, Yan T, Richardson C, Gahlmann A. Resolving Cytosolic Diffusive States in 
Bacteria by Single-Molecule Tracking. Biophys J. 2019 May 21;116(10):1970–83.  

57. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, et al. Imaging 
Intracellular Fluorescent Proteins at Nanometer Resolution. Science. 2006 Sep 15;313(5793):1642–5.  

58. Hess ST, Girirajan TPK, Mason MD. Ultra-High Resolution Imaging by Fluorescence 
Photoactivation Localization Microscopy. Biophys J. 2006 Dec 1;91(11):4258–72.  

59. Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction 
microscopy (STORM). Nat Methods. 2006 Oct;3(10):793–6.  

60. Small A, Stahlheber S. Fluorophore localization algorithms for super-resolution microscopy. Nat 
Methods. 2014 Mar;11(3):267–79.  

61. Huang F, Hartwich TMP, Rivera-Molina FE, Lin Y, Duim WC, Long JJ, et al. Video-rate nanoscopy 
using sCMOS camera–specific single-molecule localization algorithms. Nat Methods. 2013 
Jul;10(7):653–8.  

62. Reymond L, Huser T, Ruprecht V, Wieser S. Modulation-enhanced localization microscopy. J Phys 
Photonics. 2020 Jul;2(4):041001.  

63. Balzarotti F, Eilers Y, Gwosch KC, Gynnå AH, Westphal V, Stefani FD, et al. Nanometer resolution 
imaging and tracking of fluorescent molecules with minimal photon fluxes. Science. 2017 Feb 
10;355(6325):606–12.  

64. Gwosch KC, Pape JK, Balzarotti F, Hoess P, Ellenberg J, Ries J, et al. MINFLUX nanoscopy delivers 
3D multicolor nanometer resolution in cells. Nat Methods. 2020 Feb;17(2):217–24.  

65. Schmidt R, Weihs T, Wurm CA, Jansen I, Rehman J, Sahl SJ, et al. MINFLUX nanometer-scale 3D 
imaging and microsecond-range tracking on a common fluorescence microscope. Nat Commun. 2021 
Mar 5;12(1):1478.  

66. Eilers Y, Ta H, Gwosch KC, Balzarotti F, Hell SW. MINFLUX monitors rapid molecular jumps with 
superior spatiotemporal resolution. Proc Natl Acad Sci. 2018 Jun 12;115(24):6117–22.  

67. Masullo LA, Steiner F, Zähringer J, Lopez LF, Bohlen J, Richter L, et al. Pulsed Interleaved 
MINFLUX. Nano Lett. 2021 Jan 13;21(1):840–6.  

68. Marklund E, van Oosten B, Mao G, Amselem E, Kipper K, Sabantsev A, et al. DNA surface 
exploration and operator bypassing during target search. Nature. 2020 Jul;583(7818):858–61.  

69. Enderlein J. Tracking of fluorescent molecules diffusing within membranes. Appl Phys B. 2000 
Nov 1;71(5):773–7.  

70. Levi V, Ruan Q, Kis-Petikova K, Gratton E. Scanning FCS, a novel method for three-dimensional 
particle tracking. Biochem Soc Trans. 2003 Oct 1;31(5):997–1000.  



References                                               

 

127 

71. Berglund AJ, Mabuchi H. Tracking-FCS: Fluorescence correlation spectroscopy of individual 
particles. Opt Express. 2005 Oct 3;13(20):8069–82.  

72. Hou S, Lang X, Welsher K. Robust real-time 3D single-particle tracking using a dynamically 
moving laser spot. Opt Lett. 2017 Jun 15;42(12):2390–3.  

73. Hou S, Welsher K. An Adaptive Real-Time 3D Single Particle Tracking Method for Monitoring 
Viral First Contacts. Small. 2019;15(44):1903039.  

74. Hou S, Exell J, Welsher K. Real-time 3D single molecule tracking. Nat Commun. 2020 Jul 
17;11(1):3607.  

75. Perillo EP, Liu YL, Huynh K, Liu C, Chou CK, Hung MC, et al. Deep and high-resolution three-
dimensional tracking of single particles using nonlinear and multiplexed illumination. Nat Commun. 
2015 Jul 29;6(1):7874.  

76. Shechtman Y. Recent advances in point spread function engineering and related computational 
microscopy approaches: from one viewpoint. Biophys Rev. 2020 Nov 18;12(6):1303–9.  

77. Huang B, Wang W, Bates M, Zhuang X. Three-dimensional Super-resolution Imaging by 
Stochastic Optical Reconstruction Microscopy. Science. 2008 Feb 8;319(5864):810–3.  

78. Pavani SRP, Thompson MA, Biteen JS, Lord SJ, Liu N, Twieg RJ, et al. Three-dimensional, single-
molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread 
function. Proc Natl Acad Sci. 2009 Mar 3;106(9):2995–9.  

79. Shechtman Y, Weiss LE, Backer AS, Sahl SJ, Moerner WE. Precise Three-Dimensional Scan-Free 
Multiple-Particle Tracking over Large Axial Ranges with Tetrapod Point Spread Functions. Nano Lett. 
2015 Jun 10;15(6):4194–9.  

80. Lelek M, Gyparaki MT, Beliu G, Schueder F, Griffié J, Manley S, et al. Single-molecule localization 
microscopy. Nat Rev Methods Primer. 2021 Jun 3;1(1):1–27.  

81. Leake MC, Quinn SD. A guide to small fluorescent probes for single-molecule biophysics. Chem 
Phys Rev. 2023 Jan 13;4(1):011302.  

82. Lew M, Lew* MD, von Diezmann* ARS, Moerner WE. Easy-DHPSF open-source software for 
three-dimensional localization of single molecules with precision beyond the optical diffraction limit. 
Protoc Exch [Internet]. 2013 Feb 25 [cited 2022 Apr 24]; Available from: 
http://www.nature.com/protocolexchange/protocols/2622 

83. Rocha JM, Richardson CJ, Zhang M, Darch CM, Cai E, Diepold A, et al. Single-molecule tracking in 
live Yersinia enterocolitica reveals distinct cytosolic complexes of injectisome subunits. Integr Biol. 
2018 Sep 17;10(9):502–15.  

84. Paintdakhi A, Parry B, Campos M, Irnov I, Elf J, Surovtsev I, et al. Oufti: an integrated software 
package for high-accuracy, high-throughput quantitative microscopy analysis. Mol Microbiol. 2016 
Feb;99(4):767–77.  



References                                               

 

128 

85. Michalet X, Berglund AJ. Optimal diffusion coefficient estimation in single-particle tracking. Phys 
Rev E. 2012 Jun 21;85(6):061916.  

86. Persson F, Lindén M, Unoson C, Elf J. Extracting intracellular diffusive states and transition rates 
from single-molecule tracking data. Nat Methods. 2013 Mar;10(3):265–9.  

87. Heckert A, Dahal L, Tjian R, Darzacq X. Recovering mixtures of fast-diffusing states from short 
single-particle trajectories. Smal I, Akhmanova A, Paul MW, editors. eLife. 2022 Sep 6;11:e70169.  

88. Karslake JD, Donarski ED, Shelby SA, Demey LM, DiRita VJ, Veatch SL, et al. SMAUG: Analyzing 
single-molecule tracks with nonparametric Bayesian statistics. Methods. 2021 Sep 1;193:16–26.  

89. Kinz-Thompson CD, Ray KK, Gonzalez RL. Bayesian Inference: The Comprehensive Approach to 
Analyzing Single-Molecule Experiments. Annu Rev Biophys. 2021;50(1):191–208.  

90. Stracy M, Lesterlin C, Garza de Leon F, Uphoff S, Zawadzki P, Kapanidis AN. Live-cell 
superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. 
Proc Natl Acad Sci. 2015 Aug 11;112(32):E4390–9.  

91. Mohapatra S, Choi H, Ge X, Sanyal S, Weisshaar JC. Spatial Distribution and Ribosome-Binding 
Dynamics of EF-P in Live Escherichia coli. mBio. 2017 Jun 6;8(3):10.1128/mbio.00300-17.  

92. Xiang L, Yan R, Chen K, Li W, Xu K. Single-molecule displacement mapping unveils sign-
asymmetric protein charge effects on intraorganellar diffusion. Nano Lett. 2023 Mar 8;23(5):1711–6.  

93. Lasker K, von Diezmann L, Zhou X, Ahrens DG, Mann TH, Moerner WE, et al. Selective 
sequestration of signalling proteins in a membraneless organelle reinforces the spatial regulation of 
asymmetry in Caulobacter crescentus. Nat Microbiol. 2020 Mar;5(3):418–29.  

94. Saurabh S, Chong TN, Bayas C, Dahlberg PD, Cartwright HN, Moerner WE, et al. ATP-responsive 
biomolecular condensates tune bacterial kinase signaling. Sci Adv. 2022 Feb 16;8(7):eabm6570.  

95. Prindle JR, Wang Y, Rocha JM, Diepold A, Gahlmann A. Distinct Cytosolic Complexes Containing 
the Type III Secretion System ATPase Resolved by Three-Dimensional Single-Molecule Tracking in Live 
Yersinia enterocolitica. Microbiol Spectr. 2022 Nov 10;10(6):e01744-22.  

96. Yuan Y xiang. A Review of Trust Region Algorithms for Optimization. ICM99 Proc Fourth Int 
Congr Ind Appl Math. 1999 Sep 12;  

97. Gad AG. Particle Swarm Optimization Algorithm and Its Applications: A Systematic Review. Arch 
Comput Methods Eng. 2022 Aug 1;29(5):2531–61.  

98. Stone M. Cross-Validatory Choice and Assessment of Statistical Predictions. J R Stat Soc Ser B 
Methodol. 1974;36(2):111–33.  

99. Diepold A. Assembly and Post-assembly Turnover and Dynamics in the Type III Secretion System. 
In: Wagner S, Galan JE, editors. Bacterial Type III Protein Secretion Systems [Internet]. Cham: Springer 
International Publishing; 2020 [cited 2022 Apr 19]. p. 35–66. (Current Topics in Microbiology and 
Immunology). Available from: https://doi.org/10.1007/82_2019_164 



References                                               

 

129 

100. Diepold A, Armitage JP. Type III secretion systems: the bacterial flagellum and the injectisome. 
Philos Trans R Soc B Biol Sci. 2015 Oct 5;370(1679):20150020.  

101. Burkinshaw BJ, Strynadka NCJ. Assembly and structure of the T3SS. Biochim Biophys Acta BBA - 
Mol Cell Res. 2014 Aug 1;1843(8):1649–63.  

102. Galán JE, Wolf-Watz H. Protein delivery into eukaryotic cells by type III secretion machines. 
Nature. 2006 Nov;444(7119):567–73.  

103. Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants | Microbiology 
and Molecular Biology Reviews [Internet]. [cited 2022 Feb 15]. Available from: 
https://journals.asm.org/doi/full/10.1128/MMBR.62.2.379-433.1998 

104. Hu B, Lara-Tejero M, Kong Q, Galán JE, Liu J. In Situ Molecular Architecture of the Salmonella 
Type III Secretion Machine. Cell. 2017 09;168(6):1065-1074.e10.  

105. Kawamoto A, Morimoto YV, Miyata T, Minamino T, Hughes KT, Kato T, et al. Common and 
distinct structural features of Salmonella injectisome and flagellar basal body. Sci Rep. 2013 Nov 
28;3(1):3369.  

106. Nans A, Kudryashev M, Saibil HR, Hayward RD. Structure of a bacterial type III secretion system 
in contact with a host membrane in situ. Nat Commun. 2015 Dec 11;6(1):10114.  

107. Butan C, Lara-Tejero M, Li W, Liu J, Galán JE. High-resolution view of the type III secretion export 
apparatus in situ reveals membrane remodeling and a secretion pathway. Proc Natl Acad Sci. 2019 
Dec 3;116(49):24786–95.  

108. Oikonomou CM, Jensen GJ. Electron cryo-tomography of bacterial secretion systems. Microbiol 
Spectr. 2019 Mar;7(2):10.1128/microbiolspec.PSIB-0019–2018.  

109. Bernal I, Börnicke J, Heidemann J, Svergun D, Horstmann JA, Erhardt M, et al. Molecular 
Organization of Soluble Type III Secretion System Sorting Platform Complexes. J Mol Biol. 2019 Sep 
6;431(19):3787–803.  

110. Brubaker RR, Surgalla MJ. The Effect of $Ca^{++}$ and $Mg^{++}$ on Lysis, Growth, and 
Production of Virulence Antigens by Pasteurella pestis. J Infect Dis. 1964;114(1):13–25.  

111. Straley SC, Bowmer WS. Virulence genes regulated at the transcriptional level by Ca2+ in 
Yersinia pestis include structural genes for outer membrane proteins. Infect Immun. 1986 
Feb;51(2):445–54.  

112. Michiels T, Wattiau P, Brasseur R, Ruysschaert JM, Cornelis G. Secretion of Yop proteins by 
Yersiniae. Infect Immun. 1990 Sep;58(9):2840–9.  

113. Straley SC, Plano GV, Skrzypek E, Haddix PL, Fields KA. Regulation by Ca2+ in the Yersinia low-
Ca2+ response. Mol Microbiol. 1993;8(6):1005–10.  



References                                               

 

130 

114. Pettersson J, Nordfelth R, Dubinina E, Bergman T, Gustafsson M, Magnusson KE, et al. 
Modulation of Virulence Factor Expression by Pathogen Target Cell Contact. Science. 1996 Aug 
30;273(5279):1231–3.  

115. Elf J, Barkefors I. Single-Molecule Kinetics in Living Cells. Annu Rev Biochem. 2019;88(1):635–59.  

116. Rocha J, Corbitt J, Yan T, Richardson C, Gahlmann A. Resolving Cytosolic Diffusive States in 
Bacteria by Single-Molecule Tracking. Biophys J. 2019 May 21;116(10):1970–83.  

117. Mika JT, Van Den Bogaart G, Veenhoff L, Krasnikov V, Poolman B. Molecular sieving properties of 
the cytoplasm of Escherichia coli and consequences of osmotic stress. Mol Microbiol. 
2010;77(1):200–7.  

118. Mika JT, Schavemaker PE, Krasnikov V, Poolman B. Impact of osmotic stress on protein diffusion 
in Lactococcus lactis. Mol Microbiol. 2014;94(4):857–70.  

119. Minamino T, Macnab RM. FliH, a soluble component of the type III flagellar export apparatus of 
Salmonella, forms a complex with FliI and inhibits its ATPase activity. Mol Microbiol. 
2000;37(6):1494–503.  

120. González-Pedrajo B, Fraser GM, Minamino T, Macnab RM. Molecular dissection of Salmonella 
FliH, a regulator of the ATPase FliI and the type III flagellar protein export pathway. Mol Microbiol. 
2002;45(4):967–82.  

121. Bernal I, Römermann J, Flacht L, Lunelli M, Uetrecht C, Kolbe M. Structural analysis of ligand‐
bound states of the Salmonella type III secretion system ATPase InvC. Protein Sci Publ Protein Soc. 
2019 Oct;28(10):1888–901.  

122. Okabe M, Minamino T, Imada K, Namba K, Kihara M. Role of the N-terminal domain of FliI 
ATPase in bacterial flagellar protein export. FEBS Lett. 2009 Feb 18;583(4):743–8.  

123. Bai F, Morimoto YV, Yoshimura SDJ, Hara N, Kami-ike N, Namba K, et al. Assembly dynamics and 
the roles of FliI ATPase of the bacterial flagellar export apparatus. Sci Rep. 2014 Oct 6;4(1):6528.  

124. Imada K, Minamino T, Uchida Y, Kinoshita M, Namba K. Insight into the flagella type III export 
revealed by the complex structure of the type III ATPase and its regulator. Proc Natl Acad Sci U S A. 
2016 Mar 29;113(13):3633–8.  

125. Muthuramalingam M, Whittier SK, Lovell S, Battaile KP, Tachiyama S, Johnson DK, et al. The 
Structures of SctK and SctD from Pseudomonas aeruginosa Reveal the Interface of the Type III 
Secretion System Basal Body and Sorting Platform. J Mol Biol. 2020 Dec 4;432(24):166693.  

126. Kinoshita M, Namba K, Minamino T. A positive charge region of Salmonella FliI is required for 
ATPase formation and efficient flagellar protein export. Commun Biol. 2021 Apr 12;4(1):1–14.  

127. Chen S, Beeby M, Murphy GE, Leadbetter JR, Hendrixson DR, Briegel A, et al. Structural diversity 
of bacterial flagellar motors. EMBO J. 2011 Jun 14;30(14):2972–81.  



References                                               

 

131 

128. Wimmi S, Balinovic A, Jeckel H, Selinger L, Lampaki D, Eisemann E, et al. Dynamic relocalization 
of cytosolic type III secretion system components prevents premature protein secretion at low 
external pH. Nat Commun. 2021 Mar 12;12(1):1625.  

129. Mika JT, Poolman B. Macromolecule diffusion and confinement in prokaryotic cells. Curr Opin 
Biotechnol. 2011 Feb;22(1):117–26.  

130. Stracy M, Schweizer J, Sherratt DJ, Kapanidis AN, Uphoff S, Lesterlin C. Transient non-specific 
DNA binding dominates the target search of bacterial DNA-binding proteins. Mol Cell. 2021 
Apr;81(7):1499-1514.e6.  

131. Bellotto N, Agudo-Canalejo J, Colin R, Golestanian R, Malengo G, Sourjik V. Dependence of 
diffusion in Escherichia coli cytoplasm on protein size, environmental conditions and cell growth 
[Internet]. bioRxiv; 2022 [cited 2022 Mar 4]. p. 2022.02.17.480843. Available from: 
https://www.biorxiv.org/content/10.1101/2022.02.17.480843v1 

132. Śmigiel WM, Mantovanelli L, Linnik DS, Punter M, Silberberg J, Xiang L, et al. Protein diffusion in 
Escherichia coli cytoplasm scales with the mass of the complexes and is location dependent. Sci Adv. 
2022 Aug 12;8(32):eabo5387.  

133. Johnson S, Blocker A. Characterization of soluble complexes of the Shigella flexneri type III 
secretion system ATPase. FEMS Microbiol Lett. 2008 Sep 1;286(2):274–8.  

134. Kaniga K, Delor I, Cornelis GR. A wide-host-range suicide vector for improving reverse genetics in 
Gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica. Gene. 1991 Dec 
20;109(1):137–41.  

135. Biteen JS, Thompson MA, Tselentis NK, Bowman GR, Shapiro L, Moerner WE. Super-resolution 
imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat Methods. 2008 
Nov;5(11):947–9.  

136. Thompson MA, Lew MD, Badieirostami M, Moerner WE. Localizing and Tracking Single 
Nanoscale Emitters in Three Dimensions with High Spatiotemporal Resolution Using a Double-Helix 
Point Spread Function. Nano Lett. 2010 Jan 13;10(1):211–8.  

137. Wimmi S, Balinovic A, Brianceau C, Pintor K, Vielhauer J, Turkowyd B, et al. Cytosolic sorting 
platform complexes shuttle type III secretion system effectors to the injectisome in Yersinia 
enterocolitica. Nat Microbiol. 2024 Jan;9(1):185–99.  

138. Diepold A, Sezgin E, Huseyin M, Mortimer T, Eggeling C, Armitage JP. A dynamic and adaptive 
network of cytosolic interactions governs protein export by the T3SS injectisome. Nat Commun. 2017 
Jun 27;8(1):15940.  

139. Zhang Y, Lara-Tejero M, Bewersdorf J, Galán JE. Visualization and characterization of individual 
type III protein secretion machines in live bacteria. Proc Natl Acad Sci. 2017 Jun 6;114(23):6098–103.  

140. Schlumberger MC, Müller AJ, Ehrbar K, Winnen B, Duss I, Stecher B, et al. Real-time imaging of 
type III secretion: Salmonella SipA injection into host cells. Proc Natl Acad Sci U S A. 2005 Aug 
30;102(35):12548–53.  



References                                               

 

132 

141. Kubori T, Matsushima Y, Nakamura D, Uralil J, Lara-Tejero M, Sukhan A, et al. Supramolecular 
structure of the Salmonella typhimurium type III protein secretion system. Science. 1998 Apr 
24;280(5363):602–5.  

142. Makino F, Shen D, Kajimura N, Kawamoto A, Pissaridou P, Oswin H, et al. The Architecture of the 
Cytoplasmic Region of Type III Secretion Systems. Sci Rep. 2016 Sep 30;6(1):33341.  

143. Gillespie DT. Stochastic simulation of chemical kinetics. Annu Rev Phys Chem. 2007;58:35–55.  

144. Lecca P. Stochastic chemical kinetics. Biophys Rev. 2013 Jul 30;5(4):323–45.  

145. Enninga J, Mounier J, Sansonetti P, Nhieu GTV. Secretion of type III effectors into host cells in 
real time. Nat Methods. 2005 Dec;2(12):959–65.  

146. Mills E, Baruch K, Charpentier X, Kobi S, Rosenshine I. Real-time analysis of effector translocation 
by the type III secretion system of enteropathogenic Escherichia coli. Cell Host Microbe. 2008 Feb 
14;3(2):104–13.  

147. Ittig SJ, Schmutz C, Kasper CA, Amstutz M, Schmidt A, Sauteur L, et al. A bacterial type III 
secretion-based protein delivery tool for broad applications in cell biology. J Cell Biol. 2015 Nov 
23;211(4):913–31.  

148. Wölke S, Ackermann N, Heesemann J. The Yersinia enterocolitica type 3 secretion system (T3SS) 
as toolbox for studying the cell biological effects of bacterial Rho GTPase modulating T3SS effector 
proteins. Cell Microbiol. 2011;13(9):1339–57.  

149. Ovesný M, Křížek P, Borkovec J, Švindrych Z, Hagen GM. ThunderSTORM: a comprehensive 
ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics. 2014 
Aug 15;30(16):2389–90.  

150. Kwapiszewska K, Szczepański K, Kalwarczyk T, Michalska B, Patalas-Krawczyk P, Szymański J, et 
al. Nanoscale Viscosity of Cytoplasm Is Conserved in Human Cell Lines. J Phys Chem Lett. 2020 Aug 
20;11(16):6914–20.  

151. Kalwarczyk T, Ziȩbacz N, Bielejewska A, Zaboklicka E, Koynov K, Szymański J, et al. Comparative 
Analysis of Viscosity of Complex Liquids and Cytoplasm of Mammalian Cells at the Nanoscale. Nano 
Lett. 2011 May 11;11(5):2157–63.  

152. Elowitz MB, Surette MG, Wolf PE, Stock JB, Leibler S. Protein Mobility in the Cytoplasm 
ofEscherichia coli. J Bacteriol. 1999 Jan;181(1):197–203.  

153. Mika JT, van den Bogaart G, Veenhoff L, Krasnikov V, Poolman B. Molecular sieving properties of 
the cytoplasm of Escherichia coli and consequences of osmotic stress. Mol Microbiol. 2010 Jul 
1;77(1):200–7.  

154. Mika JT, Poolman B. Macromolecule diffusion and confinement in prokaryotic cells. Curr Opin 
Biotechnol. 2011 Feb 1;22(1):117–26.  



References                                               

 

133 

155. Xiang L, Chen K, Yan R, Li W, Xu K. Single-molecule displacement mapping unveils nanoscale 
heterogeneities in intracellular diffusivity. Nat Methods. 2020 May;17(5):524–30.  

156. Watson JL, Juergens D, Bennett NR, Trippe BL, Yim J, Eisenach HE, et al. De novo design of 
protein structure and function with RFdiffusion. Nature. 2023 Aug;620(7976):1089–100.  

157. Parry BR, Surovtsev IV, Cabeen MT, O’Hern CS, Dufresne ER, Jacobs-Wagner C. The Bacterial 
Cytoplasm Has Glass-like Properties and Is Fluidized by Metabolic Activity. Cell. 2014 Jan 
16;156(1):183–94.  

158. Branch RW, Sayegh MN, Shen C, Nathan VSJ, Berg HC. Adaptive remodelling by FliN in the 
bacterial rotary motor. J Mol Biol. 2014 Sep 23;426(19):3314–24.  

159. Delalez NJ, Wadhams GH, Rosser G, Xue Q, Brown MT, Dobbie IM, et al. Signal-dependent 
turnover of the bacterial flagellar switch protein FliM. Proc Natl Acad Sci. 2010 Jun 
22;107(25):11347–51.  

 


	Chapter 1  INTRODUCTION
	1.1 Virulence-associated T3SS in gastrointestinal pathogens
	1.1.1 Overview of the injectisome
	1.1.2 Structure of the injectisome
	1.1.3 Assembly of the injectisome and effector protein secretion
	1.1.4 Binding properties and molecular organization of the sorting platform
	1.1.5 Binding properties and functional regulation of the ATPase, SctN
	1.1.6 Functional roles of the sorting platform and ATPase

	1.2 Dissertation Outline

	Chapter 2  SUPER-RESOLUTION  FLUORESCENCE IMAGING
	2.1 Super-resolution fluorescence imaging
	2.1.1 PSF engineering
	2.1.2 Labelling target molecules with fluorescent emitters

	2.2 Instrumentation
	2.2.1 Fluorescence imaging
	2.2.2 Phase contrast imaging


	Chapter 3  PROCESSING AND ANALYSIS OF  SINGLE-MOLECULE TRAJECTORIES
	3.1 Processing Experimental Single-molecule Localization Data
	3.1.1 PSF fitting
	3.1.2 Cell registration and localization filtering

	3.2 Single-molecule tracking
	3.2.1 The apparent diffusion coefficient
	3.2.2 Generating simulated model functions
	3.2.3 Linear fitting – Diffusion coefficient spectrum
	3.2.4 Nonlinear fitting – Diffusive state analysis


	Chapter 4  DISTINCT CYTOSOLIC COMPLEXES CONTAINING THE TYPE III SECRETION SYSTEM ATPASE RESOLVED BY THREE-DIMENSIONAL SINGLE-MOLECULE TRACKING IN LIVE YERSINIA ENTEROCOLITICA
	4.1 ABSTRACT
	4.2 IMPORTANCE
	4.3 INTRODUCTION
	4.4 RESULTS
	4.4.1 Diffusion of monomeric eYFP under secretion-active conditions
	4.4.2 Diffusive state assignment of YeSctQ indicates two distinct protein complexes
	4.4.3 YeSctL shares one diffusive state with YeSctQ
	4.4.4 YeSctN and YeSctL share two distinct diffusive states in Y. enterocolitica
	4.4.5 Complex formation among YeSctQ, L, and N increases in the  absence of injectisomes

	4.5 DISCUSSION
	4.6 MATERIALS AND METHODS
	4.6.1 Bacterial Strains
	4.6.2 Cell Culture
	4.6.3 Secretion assay and protein analysis
	4.6.4 Single-Molecule Super-Resolution Fluorescence Imaging
	4.6.5 Data Processing
	4.6.6 Single-molecule Tracking Analysis
	4.6.7 Monte Carlo Simulations
	4.6.8 Data Fitting


	Chapter 5  INJECTISOME BOUND-TIME ANALYSIS OF THE  SORTING PLATFORM AND ATPASE
	5.1 INTRODUCTION
	5.2 RESULTS
	5.2.1 FRAP data suggests minimal YeSctQ exchange with injectisomes
	5.2.2 Single-molecule bound-time analysis of YeSctQ
	5.2.3 Simulating theoretical protein secretion rate distributions
	5.2.4 Single-molecule bound-time analysis of YeSctL and YeSctN

	5.3 DISCUSSION
	5.4 MATERIALS AND METHODS
	5.4.1 Cell culture
	5.4.2  Super-resolution fluorescence imaging
	5.4.3 Data processing
	5.4.4 Data analysis
	5.4.5 Stochastic simulation algorithm


	Chapter 6  CONCLUSIONS AND  FUTURE DIRECTIONS
	6.1 Significance
	6.2 Future Directions
	6.2.1 Deviations from Stokes-Einstein diffusion theory
	6.2.2 Effector protein shuttling by YeSctQ-containing complexes

	6.3 Conclusions

	References

