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Abstract

Material synthesis involves the fabrication and tailoring of mate-

rial properties at the micro and even nano-structure level and has

the potential to drastically change industries and introduce new func-

tionalities and applications for existing materials. In particular, ma-

terial monolayers, which are ultrathin, 2D films of molecular com-

pounds used in metals and semiconductors, have been at the fore-

front of advancements in materials synthesis due to their emerging

applications involving the fabrication of microelectronic devices. Our

ability to characterize, identify, and synthesize these unique micro-

structures relies heavily on understanding properties and observed

material behaviors from past experiments. Fortunately, the screening

of high-performance materials via deep learning methods has o↵ered a

completely new approach for expediting materials characterization by

allowing scientists to quickly recognize patterns in high-dimensional

data [1]. As part of an ongoing research project in the Materials Sci-

ence department at the University of Virginia, this project focuses

on utilizing methods of natural language processing (NLP) and text

mining to extract and codify synthesis parameters from scientific liter-

ature. By providing an automated method for collecting and codifying

materials synthesis parameters from prior literature, we believe this
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approach has the potential to significantly expedite the time it takes to

discover new material properties and understand the unique behavior

of their monolayers.

1 Background

Recent developments in the fields of machine learning and natural lan-
guage processing have gave way to new applications of artificial intelligence
(A.I.) relating to materials synthesis and compound identification. Natu-
ral Language Processing (NLP) is one such branch of A.I. that deals with
deciphering and deriving meaning from human natural language, and has
led to some of the most prominent technologies used commonly today such
as speech recognition, entity recognition, predictive typing, and more. The
intersection of materials science and NLP-based methods have shown signifi-
cant potential in accelerating the discovery and knowledge of novel materials,
specifically 2D materials [2].

However, NLP developments within the materials science community
have been bottlenecked by the limited availability of training data, primarily
due to the closed nature of niche scientific communities. New developments
and insights into material parameters can often be overlooked or hidden in
di↵erent scientific journals, e↵ectively requiring researchers to constantly stay
updated with the most recent scientific literature, even in other specialized
fields of Materials Science. Prior to the era of big data, materials science
research was limited by a lack of an extensive data set that would other-
wise better help to understand material properties. Thus, a recent trend
in materials informatics has involved exploring new ways to consolidate and
codify parameters from research papers for di↵erent types of materials and
microstructures. By congregating new information from both successful and
failed experiments in an automated fashion, we believe scientists will soon
have the data necessary to be able to make use of NLP methods to find
hidden insights on the unique properties of monolayers.

1.1 Related Work

Scientific databases such as Google Scholar, Crossref, and PubMed o↵er
thousands of consolidated research articles across several di↵erent scientific
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disciplines. However, knowledge extraction from these databases is far too
limited to be used solely from the query engines of these tools, which o↵er
only minimal query options such as keywords and titles but are not able to
view the individual texts. Furthermore, AtomWork, one of the largest of
such databases with records of over 55,000 properties of materials, is able to
query material parameters by properties such as basic crystal structure and
phase diagram data. However, these queries still are not able to provide key
parameters from experimentation such as annealing temperatures or grain
size to reach desired properties, and thus are not able to independently pro-
vide enough information to adequately inform materials design in the current
landscape of materials synthesis research.

One prior study has aimed to begin approaching this dilemma by uti-
lizing weakly supervised learning and NLP-based techniques to identify en-
tity relations within scientific texts from several di↵erent scientific literature
sources and Web texts [3]. The focus of this study was to extract processing-
structure-property-performance (PSPP) relationships, such as how a phe-
nomenon such as annealing at a certain temperature can produce a a spe-
cific physical or chemical property within a material. In order to construct
these graph relationships, several keywords were used to identify process (i.e.
’annealing’), structure (i.e. ’grain refining’), and property (i.e. ’strength’)
parameters from a fixed list. Weakly supervised learning allows sentences to
be automatically labeled by a relational descriptor, such that these factors
can be identified in di↵erent lingual contexts and categorized appropriately.
A convolutional neural network (CNN) model with multiple hidden layers
was trained on a corpus of 5000 sentences to approximate the probability
of a desired relation in order to correctly place instances of these factors
into a PSPP chart. The outcome of this study was a model for representing
extracted knowledge from scientific literature as relationships, although the
limited factor collection and single-labeling limited the scope and accuracy
of this model.

A similar study focused on building a framework for using NLP tech-
niques to compile metal oxide synthesis parameters across thousands of schol-
arly publications. This study even demonstrated how machine learning
method could use the data extracted to predict parameters needed to synthe-
size titania nanotubes via hydrothermal methods [2]. The system developed
was able to automatically retrieve articles and parse and codify materials syn-
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thesis parameters in order to build a database containing information about
synthesis conditions and properties of the materials they produce. The cor-
pus was constructed from the CrossRef Application Programming Interface
and sentences were classified as materials synthesis paragraphs manually to
enable supervised learning, which were then tokenized and parsed into de-
pendency trees. This data was transformed into word embeddings that could
be fed into neural network models implemented with tensorflow and sci-kit

learn libraries in order to classify metal oxide parameters. The same ap-
proach was conducted using a Support Vector Machine (SVM) to further
validate the accuracy of binary classification problems used in this model.
Although the training data is primarily centric to metal-oxide parameters,
we believe the open-source sentence dependency algorithm and other aspects
of the classifier will serve useful in our classification model for monolayer
synthesis parameters.

1.2 Motivation

We believe the next step in utilizing NLP-based methods to push advance-
ments in material design will be to construct a scalable and machine-readable
database for codified synthesis parameters of monolayer materials. Monolay-
ers can take the form of a single-molecule thick film of organic or inorganic
compounds that spontaneously form on surfaces by adsorption [4].They have
become a highly relevant topic of discussion in the materials science commu-
nity due to their emerging applications in microelectronic devices and poten-
tial for developments in nanotechnology. They are known to be the thinnest
material today and have been used in thin computer chips and semiconduc-
tor technology. One single molecule layer of a material can serve as a switch
or a logic device and allow utilization of about 1013 units/cm2, as opposed
to present utilization in these technologies of about 108 units/cm2 [5].

Little is known in the scientific community about what the most re-
liable way of extracting monolayers of materials is and how they can be
synthesized. Most of what is known about monolayer synthesis is through
self-assembled monolayers (SAMs), which are molecular assemblies that form
from chemisorption between the substrate of a molecular compound and a
metal surface [5]. Scientists have made some progress in recent years in un-
derstanding how SAMs can be prepared in the laboratory through various
methods. One study demonstrated that adding salt to reduce the melting
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point can reinforce the growth of monolayer films [6]. Another prior study
demonstrated that simply dipping the desired substrate in a millimolar so-
lution for a set time can increase the chances of extracting a monolayer from
a material [7]. The compound Molybdenum Disulfide (MoS2), an inorganic
compound of molybdenum and sulfur, has become a material of particular in-
terest after it began being used to build transistors over a decade ago. MoS2

is composed of closely compact monolayers with weak interlayer bonding that
give it unique properties such as charge density waves, although integrating
compounds such as this into modern electronic materials can be challenging
to achieve the right transport signature [8]. Still, the proliferation of MoS2

growth studies has led to significant progress in understanding how mono-
layers of this material are formed.

We believe that applying new advancements in the fields of machine
learning and deep learning will allow us to build an automated tool that can
build these constructive datasets and provide us more insight into the synthe-
sis of monolayer materials. One of the major bottlenecks in the application
of machine learning methods for materials discovery is the database building
process. Our project aims to improve our understanding of how monolayers
can be used to develop revolutionary technologies by using PDF documents
from prior experiments to form a database that is machine-readable. Our
preliminary study revealed some substrates of key interest such as graphene
and quartz, as well as common procedural methods amongst these studies
including Atomic force spectroscopy and Raman spectroscopy. MoS2 thin
films are typically grown using chemical vapor deposition methods and we
will also consider specific growth parameters, such as growth temperature,
pressure, and time, to use as keywords in our database construction.

The purpose of this project is to utilize methods of machine learning
and text mining to extract and codify synthesis parameters from research
papers for material monolayers. By providing an automated way to collect
and classify information from previous experiments, we will be able to train
machine learning models using this data to develop new key insights into the
synthesis of monolayers. This project will focus on using machine learning
to gain a better understanding of the unique structure and properties of 2D
materials or monolayers. To address these research questions, we will be us-
ing MoS2 as a template material because significant research has been done
on the structure and synthesis of MoS2 monolayers.
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2 Prior Work

2.1 Manually Building Parameter Database

We began this research project in Spring of 2019, and the following methods
detail the work that we accomplished on the project prior to the Spring 2021
semester during which I took my Capstone course.

The first step of our project was to begin manually constructing a database
for materials synthesis parameters for training and evaluating our model per-
formance, which involved identifying and downloading over 50 di↵erent scien-
tific papers relevant to MoS2 monolayer growth. Each paper was labeled with
a numeric identifier, and the experiments/methods section was extracted for
analysis from each paper. We prioritized key parameters that we could find
across all articles to include in our database in order to provide the most use-
ful information relating to the growth conditions of monolayer films within
each experiment. The ”CVD” parameter was used to indicate the form of
chemical vapor deposition (double or single vapor). The ”Mo precursor”
would indicate whether a Molybdenum film or powder was synthesized, and
”Mo precursor T” would indicate the growth temperature of the Molybde-
num precursor. ”S precursor” was used to tag the Sulfur precursor used
(powder or vapor), and ”S precursor T” to indicate the growth temperature
of the Sulfur. The substrate on which the MoS2 was grown was also tagged
under ”substrate”, and the highest growth temperature and time for which
this temperature was used in the experiment were recorded under the ”high-
est growth T degC” and ”growth time mins” columns respectively. Growth
Pressure in Torrs was marked under the parameter ”growth P torr”. The
thickness of a monolayer was marked under ”thickness coverage” and la-
beled as monolayer, bilayer, or multilayer, in order to describe the molecular
thickness of the film that was synthesized in a given experiment. Lastly,
we created a ”distance btwn MoS2 Raman peaks” parameter to provide ad-
ditional information about the molecular structure of the synthesized films
from Raman Spectroscopy analyses. Furthermore, for all qualitative param-
eters, we provided an additional column and mapped the possible parameter
values to a unique numeric identifier so that all of our data could be repre-
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Figure 1: Manually built Database for MoS2 parameters.

sented quantitatively. Although this manual database could provide a useful
and condensed source of information for experts in the field of MoS2 synthe-
sis, the primary purpose of this database was to create a baseline to compare
the parameters we expect our model to extract. The result of this manual
building was a database of over 50 articles with no null values. A sample of
codified parameters in our database is shown in Figure 1.

2.2 Article Retrieval and Data Preprocessing

The scientific papers were retrieved from both CrossRef and Web sources
and compiled into a single directory in order for us to begin an automated
procedure for extracting parameters from literature. For each paper we iden-
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tified previously, we created a new directory with the original file renamed
with its unique identifier appended, as well as the XML version of the PDF
file if it existed for more accurate parsing. For scientific papers with an XML
format, the metadata was used to directly access di↵erent parts of the pa-
per, particularly the sections containing variations of keywords ”Methods”,
”Experiment”, ”Recipe” or ”Procedure”. For those with only a PDF pro-
vided, we compared several di↵erent Python libraries for extracting text from
PDF files and found the most success with the tika PDF converter library.
By combining a python script implementing tika with the natural language

tool kit (NLTK), we could convert our PDFs to text and remove stopwords
(words like ”the” or ”in” that are not needed for our database) as well as
punctuation and non-scientific special characters. The NLTK library suite
also allowed us to perform other preprocessing factors like word tokenization
so that our text could be represented as a vector of words and prepared for
sentence embeddings.

2.3 Data Labeling

Before we could begin tagging parameters dynamically with our model, we
needed to extract only the relevant experimentation sections from the scien-
tific papers to create our training data. We selected 20 PDFs of scientific
papers and manually extracted the synthesis paragraphs from each of the
papers. The paragraphs were then tagged for the same material parameters
used in the MoS2 database using the format [parameter] [LABELCATEGORY ] [LABEL].
Figure 2 shows a sample of the Methods section for the PDF from the paper
”Strongly enhanced photoluminescence in nanostructured monolayer MoS2

by chemical vapor deposition” by Zhu et. al. Figure 3 shows the correspond-
ing extracted text tagged with our parameters.

3 Methods

3.1 Identifying Synthesis Paragraphs with Binary Clas-
sification

Using this training data, we began building a binary classification model
to classify experimental synthesis paragraphs. To train our model, the full
scientific papers corresponding to the extracted text paragraphs were first
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Figure 2: Original PDF for Reference No. 7 [9]

Figure 3: Codified, tagged text for Reference No. 7.
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split into 600 paragraphs and preprocessed to remove stop words, punctu-
ation, and special characters. The paragraphs were tagged with a 1 if they
were a part of a synthesis paragraph, and a 0 if they were not, as shown
in Figure 4. The paragraphs were then converted to numeric features using
the CountVectorizer from the sklearn package to construct a Bag of Words
(BoW) representation. The paragraph data was split so that 2/3 of the sen-
tences would be training data and the remaining 1/3 would be used as test
data. A Logistic Regression model was then fitted to the training set to
classify synthesis paragraphs based o↵ common keywords. A chart of the
word frequency and feature weights was graphed to determine how the fre-
quency of keywords a↵ected the model’s weighting scheme. As seen in Figure
5, the highest weighted words had the highest word frequencies, and the 5
highest words were identified as ’tube’, ’min’, ’temperature’, ’grown’, and
’powder’, which verified that the model was correctly weighting words that
are likely to appear in synthesis paragraphs. The resulting confusion matrix
revealed that the model correctly identified 164 paragraphs as non-synthesis,
12 paragraphs correctly identified as synthesis, 1 non-synthesis paragraph in-
correctly identified as synthesis, and no false negatives. The model achieved
an accuracy of 0.9944, precision of 0.9231, and recall of 1.0 on this testing
set, indicating that a Logistic Regression model could successfully identify
experimental paragraphs in scientific papers and was su�cient to solve this
binary classification problem.

3.2 Parameter Tagging with a Conditional Random
Field (CRF) Model

Using the labeled paragraphs as training data, we constructed a Conditional
Random Field (CRF) model to identify and predict parameters in synthesis
paragraphs based on contextual information and hand-crafted features. A
CRF model allowed us to build features based o↵ the word’s characteristics
as well as the location of a word in a sentence and the context words around
it to make our predictions. The paragraphs were split into sentences and
once again preprocessed to remove stop words and special characters. We
compiled a list of features based o↵ context words before and after a labeled
parameter, as well as word-specific features such as its part of speech and the
word’s stem. Using the CRF’s highest weighted features for each label, we
were able to adjust and refine these features to improve our model’s accuracy
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Figure 4: Labeled Sentences for Supervised Learning

Figure 5: Word Frequency vs Weights in Experimental Paragraphs
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Figure 6: Hand-Crafted Features for CRF Entity Recognition

and recall on the test set. A full list of features can be found in Figure 6 for
the example word ’insulator’. A 5-cross fold validation was used to optimize
the L1 and L2 regularization coe�cients and fit our training paragraphs to
a CRF model over 100 iterations. The model was tested on 36 validation
sentences to locate and predict parameter labels, and achieved a maximum
weighted F1 score of 0.65 and an average recall and precision of 0.653 and
0.526, respectively.

3.3 Future Work

The primary bottleneck for our CRF model was a limited amount of super-
vised training data on our test set, and future work on this project will entail
various methods we can use to improve the model’s accuracy. Because the
model was only trained on the sentences of synthesis paragraphs and not
the entirety of the scientific paper, we will need 30 � 50 more hand-labeled
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paragraphs to see significant improvements in our model’s accuracy. Data
augmentation can also be used to provide more training data, such as flipping
digits in numeric parameters like ’highest growth temperature’ and swapping
context words around parameters. Random deletion and insertion of context
words may also help to augment our training set. Furthermore, marginal im-
provements can be made by experimenting with other hand-crafted features
and changing the normalization coe�cients.

After further refining our model, we will be able to extract parameters
from scientific articles and automatically assemble a database of monolayer
synthesis parameters for the MoS2 compound. We are starting to look into
other compounds relevant to monolayer synthesis such as Tungsten dise-
lenide (WSe2), which is also starting to be used more in material design for
monolayer synthesis. Furthermore, we would like to add more automation
to our model by being able to web-scrape for relevant articles to feed our
model automatically, rather than us having to find the set of articles to ex-
tract information from. We will be able to utilize query engines in scientific
databases like Google Scholar to pick the articles we need, and will thus be
able to add more training data in a much more e�cient manner. Lastly,
we see potential to build o↵ this project in the future by using unsupervised
learning methods to detect patterns in synthesis conditions for certain mono-
layers in our database. For example, a K-Means clustering model could be
used for partitional clustering so that a set of optimal growth conditions for
a WSe2 monolayer or bilayer could be identified and singled out.

4 Conclusion

The data preparation, pre-processing, and initial classification model con-
struction are currently being used in the final step of this project - having
our system identify parameters in various contexts so that we can dynami-
cally take in new research papers and grow our database. With our paragraph
classifier and CRF model for tagging parameters, we are able to automate
the entirety of the process of converting a PDF to text, identifying the ex-
perimental section, and extracting relevant information about the successful
syntheses of monolayers. We hope that we can continue refining these tools
to more accurately codify parameters from various contexts, and future work
will allow us to build on existing machine learning pipelines to predict opti-
mal properties for monolayer growth. This would help provide some direction
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for materials scientists working on synthesizing these new materials, and thus
the long term ramifications of this tool might be that new materials can be
discovered much quicker than they ever have before.
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