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Abstract

Childhood is a critical period for physical and cognitive development. Childhood

diarrhea is not only associated with high mortality and morbidity rate, its compli-

cation can also lead to long term growth faltering.

Existing studies treat diarrhea effect on growth as constant over time, or assume

diarrhea effect is the same across the population. Diarrhea episodes have different

clinical severity, and the resulting growth shortfalls may not be the same. Under

this rationale, we propose a semi-parametric model with latent subgroup to estimate

the heterogeneous dynamic diarrhea effect. To accommodate subject differences,

natural growth and diarrhea effect are treated as random effect curves and the mix-

ture distributional assumption is adopted. The latent subgroup designation in the

mixture model will help explain individual characteristics such as household socioe-

conomic status, hygiene level and other driving factors behind diarrhea. Parameter

estimate and has been developed using the Expectation-Maximization algorithm.

Asymptotic variance of the estimator is studied.

Simulation study shows that our model achieves simultaneous identification of

subgroups in growth and diarrhea vulnerability and estimation of growth patterns

and effect curves. The estimator variance is also validate by empirical coverage

probability. The proposed models are applied to the data from NIH cohort study

collected from children in Bangladesh. Results show that the diarrhea effect on

children’s HAZ score peaks at around 400 days with a decrease of HAZ -0.12, and

will leave long-term growth loss for 85% of the cohort. Overall, our model provides

new statistical tools to quantify the dynamic pattern of childhood growth and di-

arrhea affects, which helps us make better health policy and conduct more efficient

interventions.
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Chapter 1

Introduction

1.1 Medical Background

1.1.1 Childhood Growth

Childhood is a critical period for both physical and cognitive development. Growth

failure in childhood is the most prevalent form of undernutrition globally. In 2019,

144 million children are identified as stunting worldwide (UNICEF, WHO, World

Bank Group joint malnutrition estimates, 2020), defined as height-for-age Z score

(HAZ score) below -2. Even though stunted children are more than two standard

deviations below in height compared to the median of an age and gender matched

reference population, short stature is not usually in itself problematic. “Stunting

syndrome” in which multiple pathological changes marked by linear growth retar-

dation in early life are associated with increased morbidity and mortality. Stunting

are also linked with reduced physical, cognitive capacity and an elevated risk of

metabolic disease into adulthood (Prendergast and Humphrey, 2014). Moreover,

stunting is a cyclical process, because women who were themselves stunted in child-
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hood tend to have stunted offspring. Childhood stunting hinders economic produc-

tivity of adults, lead to poor living standard to children in the household (Derso

et al., 2017). Stunting creates an intergenerational cycle of poverty and reduced

human capital that is difficult to break. Due to its vast prevalence and dire short-,

medium- and long-term sequelae, stunting has been identified as a top priority in

public health, especially in low-income countries.

Despite the high global prevalence of stunting, the pathogenesis underlying stunt-

ing is surprisingly poorly understood. For this reason, the most tractable pathways

for effective interventions to promote healthy growth remain unclear (Piwoz et al.,

2012). Epidemiological studies show that suboptimal breastfeed, low meal frequency

and micronutrient deficiencies are important proximal determinants of stunting.

Stunting occurs within a complex interplay of more distal community and societal

factors, such as access to healthcare and education, political stability, urbanisation,

population density and social support networks (Prendergast and Humphrey, 2014).

Recurrent infections such as diarrhea, are also linked to poor growth.

Infection control and growth promoting nutritional intervention are common

practices to prevent stunting. Many intervention methods were studied and used

in practice. However, there is an on-going debate over the timing for intervention.

Victora et al. (2010) suggests -9 (9 months before birth) and 23 month is the opti-

mal window of opportunity within which growth-promoting nutritional interventions

should be focused, while Prentice et al. (2013) argues that substantial height catch-

up occurs between 24 month and midchildhood and again between midchildhood

and adulthood.

It is important to understand the dynamic pattern of childhood growth and

quantify how different factors affect the growth outcome to make better health

policy and conduct more efficient interventions. In this thesis, we study the pattern
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of diarrhea effect on growth over time and the heterogeneity of change pattern within

population.

1.1.2 Diarrhea and its Effect on Growth

Diarrhea has been one of the leading causes of death and illness for children under 5

years old, behind preterm birth complications, neonatal encephalopathy, and lower

respiratory infections(GBD 2015). It is a major cause for mortality and mobility,

especially in the developing countries. Troeger et al. (2017) shows that diarrheal

diseases were responsible for half million deaths among children under 5 years old,

representing 8.6% of the 5.82 million deaths in this age group. Diarrhea can also lead

to increased risk of other infectious diseases due to diarrhea induced undernutrition.

Infection is the major causes of diarrhea. The most prevalent infectious cause

is rotavirus (RV), followed by bacterial infections due to the presence of bacteria,

such as Enterobacter, Escherischia coli and Shigella, in contaminated water or food.

Parasitic infections are also common, caused by parasites from food or water such

as Cryptosporidium. These three contributed over half of deaths caused by diarrhea

(Tindyebwa, 2004). Treatment of childhood diarrhea should follow IMCI guidelines,

which include management and correction of dehydration, aggressive nutritional

management to minimise the occurrence of persistent diarrhea, and malnutrition

and nutrition counselling, including a review of household hygienic practices.

Childhood diarrhea can even continue to have impact into adulthood. Child-

hood diarrhea is associated with elevated risk of adult chronic diseases such as

cardiovascular disease, diabetes, obesity and hypertension (Wierzba and Muhib,

2018). Complications of diarrhea including dehydration and micronutrient defi-

ciencies may not necessarily lead to death but could still have long-term effect on
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children’s growth. Studies have suggested diarrhea could also have long term effect

on population health (Bowen et al, 2012, Troeger et al., 2018, Schnee et al, 2018).

Continued efforts to improve access to safe water, sanitation, and childhood

nutrition will be important in reducing the global burden of diarrhea. Better under-

standing of diarrhea effect will be vital in improvement of policy making, optimize

interventions and resource allocation.

1.1.3 NIH Study Cohort

During 2008-2012, a cohort of total 629 infants (332 boys and 297 girls) were enrolled

after birth in Dhaka, Bangladesh under the NIH study. The enrolled infants are

uniquely identified by their subject id. Every 3 months, the field team will take

the growth measurements of each child untill the end of the study, resulting in 6381

total observations. Measures of growth include weight and height, WHZ (weight-for-

height z-score), HAZ (height- for-age z-score), WAZ (weight-for-age z-score), BAZ

(BMI-for-age z-score), which are scores normalized within age and gender matched

reference population. Children’s health condition was monitored every two weeks

by visits of a research staff. During the visits, questionnaire and follow-ups were

given to record children’s health condition. If there was an acute illness, the child

would be sent to the study clinic for further evaluation. When a child had diarrhea

symptoms, stool samples were taken to further decide if it was diarrhea or not and if

there are any pathogens present in the stool sample. The information of the starting

date of each diarrhea episode was also provided by the questionnaire. In our study,

521 out of 629 children had diarrhea of totally 2605 episodes. Most of the episodes

we observed happened during first 3 years of life as shown in Figure (1.1) For each

episodes of diarrhea, we tested the presence of Crypto, EH and Giardia, which are
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Table 1.1: Summary of the NIH cohort data
NIH Cohort
Data Variables Summary

Growth data

subject id 629 subjects
gender 297 female, 332 male
age 1 - 1560 days
weight, height, WHZ,
HAZ, WAZ, BAZ

the growth outcome measured
at the visit date

Diarrhea data
subject id 521 subjects
diarrhea episodes 2605 episodes, up to 1623 days after birth
infection type include EH CTRT, GIA CTRT, CRY CTRT

3 common pathogens that could cause diarrhea. Out of all 2605 diarrhea episode

samples, 197 of them contain Crypto, 243 of them contain EH, and 731 contain

Giardia. Overall, majority of the samples (1601 samples) don’t contain any of the

three pathogens. Table (1.1.3) summarizes the data collected in the NIH study, it

consist of growth outcome data and diarrhea related data.

Figure 1.1: Histogram of recorded diarrhea

In the data from the NIH study cohort described above, we have both the diar-

rhea observations and growth outcomes which enables us to study the relationship
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between diarrhea and growth. Meanwhile, there exist 3 challenges to carry out the

statistical analysis to achieve our study goal. The first one being that, our goal

is to study growth as a continuous curve but the growth outcomes in the data are

measured at discrete time points. The second challenge is that, growth outcomes are

longitudinal data, which means they are correlated on the subject level. Ignoring the

within-subject correlation leads to inefficient, and even biased, statistical estimation.

Lastly, growth pattern and diarrhea effect on growth are different from subject to

subject, the heterogeneity needs to be considered when proposing statistical model.

To address those three challenges, smoothing techniques shall be adopted to

estimate the growth curve from discrete growth outcomes, longitudinal models are

used to account for within subject correlations, and random effects are introduced

to reflect different levels of diarrhea vulnerability. Mixture model distributional

assumption is imposed on the random effects. Depending on the subject, diarrhea

effect on growth ranges from mild digestion symptoms to severe malnutrition, or

in statistical terms, the reaction is long-tailed. Mixture model is flexible enough to

depict this long-tailed distribution. Moreover, mixture model divide subjects into

latent groups. By studying the relationship between group membership and the

available information on living hygiene level and societal factors, such as access to

healthcare, education and population density, we can provide useful insight on better

policy making and more efficient interventions. The next section reviews mixture

models.
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1.2 Mixture Model

1.2.1 Definition

Let Y1, . . . ,Yn denote a random sample of size n, where each Yk is a p-dimensional

random vector with probability density function f(Yk) on Rp. In an application

where we make p consecutive observations on subjects enrolled regarding some out-

come of interests, Yk will be the observed values on subject indexed by k.

The mixture model suppose that the density f(Yk) of Yk can be written in the

form

f(Yk) =
G∑
g=1

πgfg(Yk), (1.1)

where the fg(Yk) are proper probability density functions. The πg are non-negative

quantities that sum to one; that is,

0 ≤ πg ≤ 1, (g = 1, . . . , G) and
G∑
g=1

πg = 1. (1.2)

The quantities π1, . . . , πG are called the mixing proportions or weights. The fg(Yk)

are called the component densities of the mixture. We will refer to the density (1.1)

as a G-component finite mixture distribution. One popular choice of component

distribution is to assume fg(Y )s have Gaussian distribution, and the corresponding

mixture model is called Gaussian mixture model. While there can be infinite num-

ber of components, in this study we will be focusing on finite number of mixture

distributions, and hereafter we will refer to finite mixture model simply as mixture

model, without causing confusion. In this formulation of the mixture model, the

number of components G is considered fixed. But of course in any practical appli-

cation, the value of G is unknown and has to be inferred from the available data,
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along with the mixing proportions and the parameters in the specified forms of the

component densities.

1.2.2 Interpretation of Mixture Models

The introduction of latent subgroup variable gives rise an intuitive interpretation of

mixture model. Let Zk be a categorical random variable taking on values 1, . . . , G

with probabilities π1, . . . , πG, respectively, and suppose that the conditional density

of Yk given Zk = i is fi(Yk), i = 1, . . . , G. Then the unconditional density of Yk will

be given by the previous summation equation (1.1). In this context, the variable Zk

can be interpreted as subgroup membership indicator for subject indexed by k. It

is distributed according to a multinomial distribution consisting of one draw on G

categories

Zk ∼ MultG(1,π), where π = (π1, . . . , πG)ᵀ. (1.3)

Using the interpretation of mixture models above, the G-component mixture

model assumption is an intuitive assumption on how is {Yk, k = 1, . . . ,YN} gener-

ated. Observed vector Yk is drawn from a population consisting of G subgroups.

The proportion of subgroups is given by π1, . . . , πG. If the density of Yk in group

Gi is given by fi(yk) for i = 1, . . . , g, then the density of Yk has the G-component

mixture form (1.1). In this situation, the G components of the mixture can be

physically identified with the G externally existing groups. The concept of latent

subgroups provides opportunity for examining subjects in greater details.
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1.3 Function Approximation with B-spline

1.3.1 Function Approximation

Functions are the basic mathematical and statistical tools for describing and an-

alyzing processes of interest. In practice, the need for function approximation on

interval [a, b] often arise: some finite amount of data on an unknown function is

available, how to construct an approximation of this unknown function on inter-

val [a, b]. The most common approach to finding approximations to such unknown

functions proceeds in two steps

1. Select a reasonable class of functions, often based on smoothness requirements.

2. Search for plausible candidate within the given class, according to appropriate

selection scheme.

The polynomial function class seems a natural candidate, defined in the form of

p(t) =
∑d−1

i=0 cit
i, ci ∈ R. It can approximate any continuous function on an interval

[a, b] uniformly close, and precise convergence rate can be provided for the approx-

imation scheme. But unfortunately it is not flexible enough, suffering from wide

oscillation in certain scenarios.

The problem can be solved by extending polynomial function class to the space

of piecewise polynomials (of order d and knots {τi}). Here the term “piecewise”

indicates that the function is defined by multiple sub-functions, where each sub-

function applies to a different interval in the domain. Let {τi}k+1
i=0 be a sequence of

strictly increasing real numbers such that

a = τ0 < τ1 < . . . < τk < τk+1 = b, (1.4)
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then sequence {τ} partitions interval [a, b] into k + 1 sub-intervals. And the space

spanned by all the polynomial function of order-d associated with {τ}

PSd({τ}) = {f : f(t) = pi(t) for t ∈ Ii, i = 0, 1, . . . , k},

Ii = [τi, τi+1) for i = 0, 1, · · · , k − 1. Ik = [τk, τk+1]

pi(t)’s are polynomials of order-d,

(1.5)

is in fact a linear space of dimension d+ k (Schumaker, 1981). In practice, smooth-

ness requirement will be specified, and the most common requirement is Cd−2,

meaning 0th through d− 2th derivatives are continuous. A function belonging to

PSd(t)
⋂
Cd−2[a, b], a piecewise polynomial of order d that has continuous derivative

of order d− 2 is called a polynomial spline of order d with the knots t.

For PSd({τ}), a linear space of dimension d + k, a set of functions {Bi}k+di=1 is a

basis if and only if all the function belonging to the linear space can be represented

as linear combinations of Bi. Suppose we have a collection of 2-dimensional data

{xi, yi}ni=1 and would like to find a function to summarize the relationship between

x and y, f : X 7→ Y . Even though we do not know the underlying function, it

can always be approximated close enough by a polynomial spline function, and then

represented using the spline basis.

The number of knots is conventionally assumed to vary with number of observa-

tions n. With sufficient number of knots, any continuous function defined over the

close interval [a, b] can be well approximated by a set of polynomial spline functions

of fixed order d, known as spline basis functions in PS(t). The approximation rate

is well studied for functions with different smoothness in Schumaker (1981). There-

fore, given a set of spline basis, approximation of a continuous function is essentially

seeking an optimal coefficient vector of same length as the number of spline basis
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such that the resulting linear combination achieves the minimal distance from the

target continuous function within the polynomial space PS(t).

1.3.2 B-Splines

There are various equivalent basis functions to choose from PS(t), among which the

normalized B-spline basis is commonly used and largely preferred due to its fast

computation and other appealing features to be mentioned shortly.

Given a sequence of knots {τi}kn+1
i=0 , we define the augmented knot sequence ξ

such that

1. additional knots ξ1 ≤ ξ2 ≤ · · · ≤ ξd ≤ t0,

2. ξi+d = ti, i = 1, . . . , kn,

3. additional knots tkn+1 ≤ ξkn+d+1 ≤ · · · ≤ ξkn+2d.

The actual values of these additional knots beyond the boundary are arbitrary, and

it is customary to make them all the same as t0 and tkn+1, respectively. The subscript

n in kn indicates that the number of knots is conventionally assumed to vary with

number of observations n.

The B-Splines of order 1 is defined as

Bi,1(x) =


1, if ξi ≤ x < ξi+1;

0, otherwise

(1.6)

B-Spline functions of higher order are define by recurrence. Denote, by Bi,m(x),

the ith normalized B-spline basis function of order m define on knot-sequence ξ,

1 ≤ m ≤ d. The B-spline basis functions are defined recursively in terms of divided
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differences as follows,

Bi,m(x) =
x− ξi

ξi+m−1 − ξi
Bi,m−1(x) +

ξi+m − x
ξi+m − ξi+1

Bi+1,m−1(x), (1.7)

for i = 1, . . . , kn + d.

Some desirable properties of the normalized B-spline basis functions are listed

below; see Schumaker (1981) for details.

Property 1.3.1. B-spline basis functions are non-negative with local supports:

Bi,m =


> 0, ξi < t < ξi+d;

= 0 otherwise.

(1.8)

Therefore, on any Ii, i = 0, 1, . . . , kn, there are at most d non-zero basis functions.

This property is also referred to as local property.

Property 1.3.2. B-spline basis functions form a parition of unity,

kn+d∑
i=1

Bk,d(t) = 1,∀t ∈ [a, b]. (1.9)

This property is also referred to as unity partition property.

Property 1.3.3. B-spline basis functions are linearly independent. That is, suppose

there exists a set of constants c1, c2, . . . , ckn+d such that

kn+d∑
k=1

ckbk,d(t) = 0,∀t ∈ [a, b], (1.10)

then all the ck’s must be zero.
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Property 1.3.4. Let f be a continuous function on [a, b], and have bounded s-th

derivative for some s ≥ 1. Then for any n, there exists a vector c∗ = (c∗1, c
∗
2, . . . , c

∗
kn+d

)

and a constant C1 such that

sup
t∈[a,b]
|f(t)−

kn+d∑
k=1

c∗kbk,d(t)| ≤ C1k
−s
n . (1.11)

As mentioned earlier, n denotes the number of observations in data.

Along with fast computation due to recursive definition, the above properties

together make B-spline a popular choice among its spline family for function ap-

proximation.

1.4 Expectation-Maximization Algorithm

The Expectation-Maximization (Dempster et al., 1977) algorithm is a popular method

for parameter estimation in probabilistic models. Often, the data available for model

training are incomplete. Missing value can occur, or some value are simply not ob-

servable, hidden Markov model being one example. The EM algorithm enables

parameter estimation in probabilistic models with incomplete data.

Let γ denote unobserved data, φ the parameter of interests and y the observed

data. The EM algorithm can be viewed as an iterative method for finding the

maximizer of marginal likelihood p(φ|y), and is extremely useful for many common

models for which is hard to maximize p(φ|y) directly but easy to work with p(γ|φ, y)

and p(φ|γ, y). The algorithm proceeds in the following steps.

1. Start with a crude parameter estimate, φ0.

2. For t = 1, 2, . . . :
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(a) E-step: Determine the expected log posterior density function,

E(log p(γ, φ|y)) =

∫
p(γ|φt−1, y)log p(γ, φ|y)dγ,

where the expectation averages over the conditional distribution of γ,

given the current estimate, φt−1

(b) M-step: Update φ. φt = argmax E(log p(γ, φ|y))

In summary, the expectation maximization algorithm alternates between the

steps of finding the marginal log-likelihood over completions of missing data given

the current model (known as the E-step) and then re-estimating the model parame-

ters using these completions (known as the M-step). The name “E-step” comes from

the fact that one does not usually need to form the probability distribution over com-

pletions explicitly, but rather need only compute “expected” sufficient statistics over

these completions. Similarly, the name “M-step” comes from the fact that model

re-estimation can be thought of as ‘maximization’ of the expected log-likelihood of

the data.

As with most optimization methods for non-concave functions, the EM algorithm

comes with guarantees only of convergence to a local maximum of the objective func-

tion, except in degenerate cases (Gelman et al., 2013). Running the procedure using

multiple initial starting parameters is often helpful; similarly, initializing parameters

with approximated estimate also helps. With this limited set of tricks, the EM al-

gorithm provides a simple and robust tool for parameter estimation in models with

incomplete data. In theory, other numerical optimization techniques, such as gradi-

ent descent or Newton-Raphson, could be used instead of expectation maximization;

in practice, however, expectation maximization has the advantage of being simple,
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robust and easy to implement.

1.5 Fisher Information Matrix and its Approxi-

mation

Let X = [X1,X2, . . . ,Xn] be a sequence of n independent but not necessarily iden-

tically distributed (i.n.i.d.) random vectors (variables) where each Xi may contain

discrete or continuous components. The probability density/mass function of Xi,

say pi(xi,θ), depends on a p×1 vector of unknown parameters θ, where θ ∈ Θ and

Θ is a p-dimensional parameter space. Let θ̂n be an maximum likelihood estimator

(MLE) for θ based on X and the true value of θ in the underlying distribution be

θ∗. We use the notation ti to denote the ith component of θ because we reserve θ̂n

for the MLEs derived from a sample of size n. The joint probability density/mass

function of X is p(x,θ) ≡
∏n

i=1 pi(xi,θ). If we denote the negative log-likelihood

function as l(θ,x) = −lnp(x,θ), the p×p Fisher information matrix Fn(θ) is defined

as:

Fn(θ) ≡ E

(
∂lnp(x,θ)

∂θ
× lnp(x,θ)

∂θᵀ

)
= E

(
∂ − l(θ,x)

∂θ
× ∂ − l(θ,x)

∂θᵀ

)
= E

(
∂l(θ,x)

∂θ
× ∂l(θ,x)

∂θᵀ

) (1.12)

where θᵀ is the transpose of θ, all expectation are taken with respect to data X and

are conditional on the true parameter θ∗. The p×p Hessian matrix of l(θ,x),Hn(θ),
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is defined as the second derivative of l(θ,x) with respect to θ:

Hn(θ) ≡ ∂2l(θ,x)

∂θ∂θᵀ

Computation of Fn(θ) according to its definition in (1.12) in often formidable

because it involves direction calculation of expectation of an outer product form.

Under some regularity conditions where the interchange of differentiation and inte-

gral is valid, Fn(θ) has the following form equivalent to (1.12):

Fn(θ) = E(Hn(θ)), (1.13)

Expression (1.13) provides an alternative of computing Fn(θ), which is often more

computationally friendly than the definition in (1.12).

Standard statistical theory shows that the θ̂ from either i.i.d or i.n.i.d sam-

ples is asymptotically Gaussian under some reasonable conditions (Ljung, 1999, pp.

215–218):
√
n(θ̂n − θ∗)

dist−−→ N(0, F̄n(θ∗)−1), (1.14)

where F̄n(θ∗) ≡ limn→∞Fn(θ∗)/n, and the superscript “-1” denotes matrix inverse.

Given the asymptotic normality of MLEs, the problem of constructing confi-

dence intervals reduces largely to the problem of determining the covariance matrix

of MLEs. In practical applications, because the true parameter θ∗ is unknown, one

of two matrices is commonly used to approximate the covariance matrix of MLE:

F̄n(θ̂n)−1 or H̄n(θ̂n)−1. The first term F̄n(θ̂n)−1 is Fisher information matrix evalu-

ated at the MLE. The second term H̄n(θ̂n)−1 is Hessian matrix evaluated at MLE.

Because H̄n(θ̂n)−1 utilizes only the observed y instead of taking expectation over

distribution of y|θ as did in Fisher information matrix, it is referred to as observed



17

Fisher information matrix.

Efron and Hinkley (1978) demonstrate that for estimating scalar parameter θ,

the conditional variance of θ̂n is better approximated by H̄n(θ̂n)−1 than by F̄n(θ̂n)−1.

For the more general matrix case, there is not yet a solid theoretical validation for

the better choice between F̄n(θ̂n)−1 and H̄n(θ̂n)−1 . In fact, people in practice tend

to choose one or the other, depending on which one is easier to obtain for their

problems (Cao, 2013).

In the setting of mixture models, the structure of Gaussian log-likelihood often

makes F̄n(θ∗) difficult to compute. The likelihood is often in the form of

L =
p1f1(y)∑
pgfg(y)

f1(y) + . . .+
pGfG(y)∑
pgfg(y)

fG(y),

where p1f1(y)∑
pgfg(y)

is the conditional probability of the observed subject is coming from

subgroup 1. The second derivative of the log-likelihood will contain terms like

1

(
∑
pgfg(y))2

Fisher information matrix F̄n(θ̂n)−1 asks for the expectation of second derivatives.

Taking expectation of such terms over Gaussian mixture is a tedious computation

process, yet without guaranteed benefit. Instead, researchers often use H̄n(θ̂n) as

an approximation of the covariance of MLE (Cavanaugh and Shumway 1996).
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Chapter 2

Methodology

2.1 Model Description

Our goal is to study diarrhea effect on growth over time in the NIH study cohort.

Most of the children suffer from multiple episodes of diarrhea. Since our assumption

is that each episodes of diarrhea may have long lasting effect, at a given time t, all

the diarrhea episodes happened before t will have impact on the observed growth

outcome. Thus we are not able to observe the effect of one single diarrhea directly

from the data when the growth outcomes we measure include overlapping effects

from multiple episodes of diarrhea. In addition, the cumulative effect we observe is

hard to separate into individual effect curves because their starting points (diarrhea

onset times) are different.

The observed growth outcomes y(t) is an overlay of natural growth curve without

diarrhea plus the effect induced by diarrheas, possibly blurred by measurement

errors. For subject k, let gk(t) be the natural growth curve we should have observed

without diarrhea. And let dk,i(t) be the ith diarrhea’s effect, with respect to elapsed

time. Under such a formulation, the observed growth outcome for subject k can be
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represented as

yk(t) = gk(t) +

Nk∑
i=1

dk,i(t− lk,i) + εk(t), (2.1)

where lk,i is the on set time for ith diarrhea episode of subject k, Nk is the total

number of diarrhea episodes happened to subject k, and ε(t) is the measurement

error.

2.1.1 Multiplicative Curves Assumption

Different assumptions can be made when estimating the functions {gk(t), dk,i(t)}.

We can assume all these curves are distinct for each subject, for each diarrhea

episodes, and then set out to estimate each curve individually. This assumption

is the most flexible, providing the largest search space that should accommodate

observed data the best. But the introduction of too many free parameters makes

the estimation process unstable. We also simply may not have enough data to

perform accurate estimation of this many parameters.

If we are dealing with data collected from the cohort, or preliminary observation

concludes that diarrhea effects among the population are homogeneous, one viable

assumption is that all the curves are shared across subjects or different episodes,

i.e., gk(t) = g(t), dk,i = d(t), for all k and i ∈ {1, 2, . . . , Nk} (Lin et al., 2020).

This model estimates diarrhea effect on a population level. If individual estimation

of a specific subject is needed, or the data are collected from several cohort and

homogeneity is not guarantee, this model may not work very well.

In fact, what actually happened most likely lies somewhere in the middle. The

growth pattern and reaction to diarrhea episodes are different for different subjects,

but in the meantime, these patterns share characteristics to certain degree. In this

thesis, we attempt to propose a model in the middle ground. We propose that
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gk(t)’s share the same shape (temporal dynamics), but the magnitude of the growth

is different among subjects. That is, gk(t) = sk,0 · g(t). Here sk,0 is a subject specific

coefficient that represents personal magnitude of growth. For example, if a specific

subject k’s growth signal is strong, the corresponding sk,0 will be on the larger side

compared to group average. Similarly, dk,i(t) = sk,i · d(t), where d(t) is the shared

temporal dynamics of diarrhea effect, and si,k is the subject and episode specific

diarrhea multiplier. With introduction of such assumptions, the model is now,

yk(t) = sk,0 · g(t) +

Nk∑
i=1

sk,i · d(t− lk,i) + εk(t). (2.2)

This model specification takes between-individual differences into consideration,

so it can accommodate more data variability. The assumption of common temporal

dynamics enables sharing of information across subjects, so we are doing estima-

tion on too many parameters and ending up overfitting. The between-individual

differences are modeled by coefficients sk,0, sk,i.

2.1.2 Distributional Assumption

We propose mixture of normal distribution for natural growth random coefficients

sk,0 and diarrhea multiplier sk,−0. Here the subscript “−0” in sk,−0 means “other

than index 0”, which are the coefficients associated with diarrhea effects. It is well

known that patterns of natural growth has longer-than-normal tails. Depending on

the subject, diarrhea effect on growth ranges from mild digestion symptoms to severe

malnutrition, this wide spread of diarrhea reaction levels may not be captured by

normal distribution well. Moreover, in less developed area where the lack of hygienic

living condition and access healthcare makes diarrhea infection prevalent, growth

shortfall induced by diarrhea can be predominantly severe, meaning the distribution
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is skewed. Mixture of normal distributional assumption is flexible enough to capture

the long-tailed and skewed behaviour.

Mixture of normal distributional assumption also introduces the idea of latent

subgroups: given an individual, then his/her reaction to diarrhea will be varying

around the subgroup average. Interpretation of this will be, subgroup membership

individual characteristics, genetic or environmental. It will not be surprising chil-

dren from household with more educated mother or better living standards will be

consistently more resilient to diarrhea effects, indicating they come from the sub-

group with better average reaction. By studying the relationship between group

membership and the available information on living hygiene level and societal fac-

tors, such as access to healthcare, education and population density, we can provide

useful insight on better policy making and more efficient interventions.

Suppose there are U subgroups of natural growth and V subgroups of diarrhea

effect. The pdf functions are given by,

p(sk,0 = s) =
U∑
u=1

pu ϕ(s;λu, ν
2
u)

p(sk,−0 = s) =
V∑
v=1

πv ϕ(s;µv,Σv).

(2.3)

The dimension of sk,−0 is determined by the number of diarrhea episodes occurred

to subject k, Nk. To ensure the model is scalable with different number of infections

Nk, covariance Σi should have certain repeating patent, such as diagonal, compound

symmetry or AR1.

In the mixture model, different normal components correspond to different sub-

groups of natural growth/diarrhea patent. As mentioned in section 1.2, we intro-

duce a pair of latent class variables [zk,0, zk,1]. Indicator of natural growth subgroup
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membership zk,0 takes value from 1, 2, . . . , U . And zk,1 indicates which subgroup the

diarrhea loading factors sk,i are coming from, with a value range of 1, 2, . . . , V .

The normal components of mixture model corresponds to subgroups. Equation

(2.3) states that the subject k has pu possibility to be in the uth growth group, which

is a normal distribution parameterized by location λu and variance ν2i . Likewise,

the subject-specific diarrhea response vector sk,−0 has πv chance to be coming from

the vth subgroup, a normal distribution with mean vector µv and variance structure

Σj.

Measurement error εk is given the conventional i.i.d normal distribution assump-

tion

εk ∼ N (0, diag(σ2)).

2.1.3 Model Identifiability Constraints

Additional constraints need to be introduced to make model (2.2) identifiable. Since,

for any non-zero real constant r, g∗(t) = rg(t), s∗k,0 = sk,0/r balance the equation.

Infinite pairs of (M , s) are thus equivalent, making the parameters unidentifiable.

Without loss of generality, we impose the restriction that expectations of random

coefficients sk,0 equal to 1
U∑
u=1

puλu = 1.

Similar statement can be made for sk,−0, the fisrt entry shoule be bounded by

V∑
v=1

πvµv1 = 1.

By fixing the mean location of mixture distribution as a whole at 1, the temporal

dynamics g(t) can be viewed as the baseline natural growth. Likewise, temporal d(t)
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is the baseline diarrhea effect overtime.

2.2 Writing the Full Likelihood

2.2.1 Discretization and B-spline approximation of tempo-

ral dynamics

Since growth measurement and diarrhea onset are made on specific times, discretiza-

tion of the model’s functional representation is needed. For subject indexed k, let

{ti}Tki=1 be the set of measurement times, {li}Nk
i=1 the set of diarrhea onset time. Then

equation (2.2) is now



yk,1

yk,2
...

yk,Tk


=



g(t1) d(t1 − l1) d(t1 − l2) . . . d(t1 − lNk
)

g(t2) d(t2 − l1) d(t2 − l2) . . . d(t2 − lNk
)

...

g(tTk) d(tTk − l1) d(tTk − l2) . . . d(tTk − lNk
)





sk,0

sk,1
...

sk,Nk


+



εk,1

εk,2
...

εk,Tk


,

(2.4)

or using matrix notation

yk = Mksk + εk,

Mk : = [g(tk),d(tk,1), ...,d(tk,Nk
)].

(2.5)

We propose to approximate temporal dynamics functions g(t) and d(t) in interval

[0, T ] using B-splines, here T is the maximum followup time. Consider a strictly

increasing knots sequence u = {ui}N+1
i=0 that partitions interval [0, T ], i.e., 0 = u0 <

u1 < . . . < uN+1 = T . Let α = {α1(t), . . . , αp(t)} be the set of normalized B-spline

basis functions of order m associated with the partition u. Note that p = N + m,
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with N often being referred to as number of interior knots. The number of interior

knots used is data-adaptive and can vary with respect to sample size to increase

approximation accuracy. The common choices of N are two for linear splines, three

for quadratic splines and four for cubic splines. Two popular types of knots are used

in practice, equidistant knots and quantile knots. The former is referred to when the

knots are equally spaced while quantile knots are selected as the quantiles from the

empirical distribution of underlying variable and guarantee that the same number

of sample observations fall into each interval. Due to the computation complexity

involved in the smoothing parameters, it is however impractical to automatically

select all three components simultaneously: basis order, knot placement and number

of interior knots. In this thesis, we restrict our scope to quantile knots and fixed

order of basis functions similar to Huang et al. (2004) and only select the number

of interior knots as often done in the literature.

Now g(t) can be approximated by α as below

g(t) =

p∑
i=1

aiαi(t) + eg(t), (2.6)

where a = (a1, . . . , ap) is the p dimensional B-spline basis function approximation

coefficient vector for g(t) and eg is the approximation error, which is shown to be

uniformly bounded in [0, T ] as the number of knots goes to infinity with sample size,

described in Property 1.3.4 of B-spline basis functions.

Similarly, we can construct partition v of [0, T ], associated B-spline basis {βi}qi=1

such that d(t) can be approximated as

d(t) =

q∑
i=1

biβi(t) + ed(t). (2.7)
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It’s worth noting that, t − l maybe negative, and consequently d(t − l) is ill-

defined. But to keep writings simple, we keep using such notation, and extend the

domain of d,α,β


d(t− l) = 0, if t− l < 0

αi(t− l) = 0, if t− l < 0,∀i

βj(t− l) = 0, if t− l < 0,∀j.

(2.8)

After the introduction of B-spline approximation, matrix Mk is now

Mk =


∑p

i=1 aiαi(t1)
∑q

i=1 biβi(t1 − l1) . . .
∑q

i=1 biβi(t1 − lNk
)

...∑p
i=1 aiαi(tTk)

∑q
i=1 biβi(tTk − l1) . . .

∑q
i=1 biβi(tTk − lNk

)

 = XkCk.

(2.9)

Temporal dynamics matrix Xk is

Xk =

[
Ak Bk,1 . . . Bk,Nk

]
, (2.10)

where

Ak =


α1(t1) . . . αp(t1)

...
...

...

α1(tTk) . . . αp(tTk)

 , Bk,i =


β1(t1 − li) . . . βq(t1 − li)

...
...

...

β1(tTk − li) . . . βq(tTk − li).

 (2.11)

The matrix Xk is known given the B-spline basis, measurement times {ti}Tki=1 and

diarrhea on set times {li}Nk
i=1.
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The coefficient matrix Ck is:

Ck =



a . . . . . . . . .

... b . . . . . .

...
...

. . . . . .

...
...

... b


=

1 0

0 0

⊗


a1

a2
...

ap


+

0 0

0 INk

⊗


b1

b2
...

bq


. (2.12)

Now that we have our assumptions fully stated, the full likelihood of observed data

can be constructed.

2.2.2 Full Likelihood

Even though random multiplier sk and subgroup membership zk is not observed,

they are treated as if they were in the full likelihood. Based on model (2.2) and the

distribution specified in (2.3), the full likelihood can be written down as

p(Y ,S,Z;θ) =
∏
k

p(yk|sk, σ2)p(sk|zk)p(zk)

=
∏
k

ϕ(yk;XkCk,Σk)ϕ(sk,0;λzk,0 , ν
2
zk,0

)ϕ(sk,−0;µzk,1 ,Σzk,1)pzk,0πzk,1 ,

where Y = {yk},S = {sk} and Z = {zk}. Vector θ denotes all the parameter to

be estimated, namely {σ2,a, b,λ,µ,Σ,ν2,p,π}. The log likelihood would be

log p(Y ,S,Z;θ) =
N∑
k=1

logϕ(yk;Xk


1 0

0 0

⊗ a+

0 0

0 INk

⊗ b
 sk,Σk)

+ logϕ(sk,0;λzk,0 , ν
2
zk,0

) + logϕ(sk,−0;µzk,1 ,Σzk,1)

+ logpzk,0 + logπzk,1 .

(2.13)
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Next, the EM algorithm will be performed to maximize the marginal log likelihood.

The corresponding maximizer is the parameter estimate.

2.3 Estimation by Expectation-Maximization

Since latent variable Z and personal loading factor s in the complete log likelihood

cannot be observed, estimation of parameters θ need to be carried out by maximizing

the marginal log likelihood log p(Y ;θ). The EM algorithm is a perfect candidate

for such a task, since all the conditional distribution involved are normal. In this

section, we present the derived iteration procedure of the exact EM algorithm that

provides explicit E-step and M-step.

2.3.1 Expectation-step

At the E-step, we derive the expectation of full log likelihood by integrating it over

the conditional distribution S,Z|Y ,θ(t).

Given the hidden state [zk,0, zk,1] = [z
(r)
k,0, z

(r)
k,1], here the superscript r stands for

realization, s follows a multivariate normal distribution

sk|zk = z
(r)
k ,θ ∼ N (µ

(r)
k ,Γ

(r)
k ), (2.14)

where µ
(r)
k = [λ

z
(r)
k,0
, µ

z
(r)
k,1
, . . . , µ

z
(r)
k,1

], Γ
(r)
k = diag(ν2

z
(r)
k,0

, σ2

z
(r)
k,1

, . . . , σ2

z
(r)
k,1

). We can obtain

be conditional distribution of yk as

yk|zk = z
(r)
k ,θ ∼ N (XkCkµ

(r)
k ,XkCkΓ

(r)
k C

ᵀ
kX

ᵀ
k + Σk), (2.15)

Then using the Bayes rule, the posterior subgroup classification probability given
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observed data is

p(zk = z
(r)
k |yk,θ) =

p(yk|zk = z
(r)
k )p(zk = z

(r)
k )

p(yk)

=
p(yk|zk = z

(r)
k )p(zk = z

(r)
k )∑[U,V ]

i=[1,1] p(yk|zk = i)p(zk = i)

=
gk(z

(r)
k )∑

i gk(i)
,

(2.16)

where

gk(z
(r)
k ) = p

z
(r)
k,0
π
z
(r)
k,1
ϕ(yk;XkCkµ

(r)
k ,XkCkΓ

(r)
k C

ᵀ
kX

ᵀ
k + Σk).

Similarly, given the hidden state zk, model (2.5) is now a simple normal additive

model, the conditional probability P (sk|yk, zk = z
(r)
k ,θ) is found by

sk|yk,θ, zk = z
(r)
k ∼ N (ωk(z

(r)
k ),Ωk(z

(r)
k ))

Ωk(z
(r)
k ) =

[
(XkCk)

ᵀΣ−1k XkCk + Γ
(r)
k

−1]−1
ωk(z

(r)
k ) = Ωk(z

(r)
k )
[
(XkCk)

ᵀΣ−1k yk + Γ
(r)
k

−1
µ

(r)
k

]
.

(2.17)

Combining (2.16) and (2.17), we show that

p(sk|yk,θ) =

[U,V ]∑
z=[1,1]

gk(z)∑
i gk(i)

ϕ(sk;ωk(z),Ωk(z)). (2.18)

Based on the conditional distribution, the expectation of the full log likelihood

is found to be

Q(θ|θ(t)) = ES,Z|Y,θ(t) [log p(Y,S,Z;θ)]

= Q1(θ|θ(t)) +Q2(θ|θ(t)) +Q3(θ|θ(t))
(2.19)



29

with the terms being

Q1(θ|θ(t)) = ES|Y,θ(t)

[
N∑
k=1

logϕ(yk;XkCksk,Σk)

]

= −1

2

N∑
k=1

[
log|Σk|+ yᵀ

kΣ
−1
k yk − 2ykΣ

−1
k XkCkE(sv|yv,θ(t))

+ Tr(Σ−1k XkCkE(sks
ᵀ
k|yk,θ

(t))Cᵀ
kX

ᵀ
k )

]
,

Q2(θ|θ(t)) = ES,Z|Y,θ(t)
[

logϕ(sk,0;λzk,0 , ν
2
zk,0

) + logϕ(sk,−0;µzk,1 ,Σzk,1)
]

= −1

2

N∑
k=1

{
U∑
i=1

p(zk,0 = i|yk,θ(t))

[
logν2i +

1

ν2i

(
E(s2k,0|zk,0 = i,yk,θ

(t))

− 2λiE(sk,0|zk,0 = i,yk,θ
(t)) + λ2i

)]

+
V∑
i=1

p(zk,1 = i|yk,θ(t))
Nk∑
j=1

[
logσ2

i +
1

σ2
i

(
E(s2k,j|zk,1 = i,yk,θ

(t))

− 2µiE(sk,j|zk,1 = i,yk,θ
(t)) + µ2

i

)]}
,

Q3(θ|θ(t)) = EZ|Y,θ(t)

[
N∑
k=1

(
logpzk,0 + logπzk,1

)]

=
N∑
k=1

[
U∑
i=1

logpi p(zk,0 = i|yk,θ(t)) +
V∑
i=1

logπi p(zk,1 = i|yk,θ(t))

]
.

(2.20)

The posterior marginal probabilities in (2.20) can be calculated as

p(zk,0 = i|yk,θ(t)) =
V∑
j=1

p(zk = (i, j)|yk,θ(t)),

p(zk,1 = j|yk,θ(t)) =
U∑
i=1

p(zk = (i, j)|yk,θ(t)),
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and the posterior conditional expectations are given as follows

E(sk,0|zk,0 = i,yk,θ
(t)) =

V∑
j=1

E(sk,0|zk = (i, j),yk,θ
(t))p(zk = (i, j)|zk,0 = i,yk,θ

(t))

=
V∑
j=1

E(sk,0|zk = (i, j),yk,θ
(t))

p(zk = (i, j)|yk,θ(t))∑
j p(zk = (i, j)|yk,θ(t))

.

Now that Q(θ|θ(t)) is obtained, θ of next iteration t+ 1 will be found by maxi-

mizing Q(θ|θ(t)) with respect to θ.

2.3.2 Maximization step

In the maximization step, the EM algorithm proceeds with updating θ estimate by

maximizing Q(θ|θ(t)) with respect to θ. Explicit maximizer can be obtained. More

specifically, parameters can by updated by solving corresponding score functions.

Measurement error σ2 in the next iteration can be shown to be

σ2(t+1)
=

∑N
k=1

[
yᵀ
kyk − 2yᵀ

kXkC
(t)
k E(sk|yk,θ(t)) + Tr(XkCkE(sks

ᵀ
k|yk,θ(t))C

ᵀ
kX

ᵀ
k )
]

∑N
k=1 Tk

.

(2.21)

Iteration relationship regarding a, b can be obtained by taking derivatives of

Q1. Since Ck is a structured matrix, its entries are not “free paremeters”. Score

functions of a, b need to be derived using

∂Q1

∂ai
=

N∑
k=1

∑
xy

∂Q1

∂Ck,xy

∂Ck,xy
ai

,

∂Q1

∂bj
=

N∑
k=1

∑
xy

∂Q1

∂Ck,xy

∂Ck,xy
bj

.

(2.22)
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The resulted equations are

[∑
k

Aᵀ
kAkE(sk,0 · sk,0|yk,θ(t))

]
a+

[∑
k

∑
i

Aᵀ
kBk,iE(sk,0 · sk,i|yk,θ(t))

]
b

=
∑
k

Aᵀ
kykE(sk,0|yk,θ(t)),[∑

k

∑
i

Bᵀ
k,iAkE(sk,i · sk,0|yk,θ(t))

]
a+

[∑
k

∑
i

∑
j

Bᵀ
k,iBk,jE(sk,i · sk,j|yk,θ(t))

]
b

=
∑
k

∑
i

Bᵀ
k,iykE(sk,i|yk,θ(t)).

(2.23)

Adapting a block matrix denotation can make things clearer

M1 M2

M3 M4


a
b

 =

M5

M6

 , thus

a
b

 =

M1 M2

M3 M4


−1 M5

M6


,

M1 =
∑
k

Aᵀ
kAkE(sk,0 · sk,0|yk,θ(t)),

M2 =
∑
k

∑
i

Aᵀ
kBk,iE(sk,0 · sk,i|yk,θ(t)),

M3 =
∑
k

∑
i

Bᵀ
k,iAkE(sk,i · sk,0|yk,θ(t)),

M4 =
∑
k

∑
i

∑
j

Bᵀ
k,iBk,jE(sk,isk,j|yk,θ(t)),

M5 =
∑
k

Aᵀ
kykE(sk,0|yv,θ(t)),

M6 =
∑
k

∑
i

Bᵀ
k,iykE(sk,i|yk,θ(t)).

(2.24)

We can also derive the following explicit estimates for the parameters of normal
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components

λ
(t+1)
i =

∑N
k=1

[
p(zk,0 = i|yv,θ(t))E(sk,0|zk,0 = i,yk,θ

(t))
]∑N

k=1 p(zk,0 = i|yk,θ(t))
,

µ
(t+1)
i =

∑N
k=1

[
p(zk,1 = i|yk,θ(t))

∑Nk

j=1E(sk,j|zk,1 = i,yk,θ
(t))
]

∑N
k=1Nk · p(zk,1 = i|yv,θ(t))

,

ν
(t+1)
i =

∑N
k=1

[
p(zk,0 = i|yk,θ(t))E(s2k,0|zk,0 = i,yk,θ

(t))
]∑N

k=1 p(zk,0 = i|yk,θ(t))
− [λ

(t+1)
i ]2,

δ
(t+1)
i =

∑N
k=1

[
p(zk,1 = i|yk,θ(t))

∑Nk

j=1E(s2k,j|zk,1 = i,yk,θ
(t))
]

∑N
k=1Nk · p(zk,1 = i|yk,θ(t))

− [µ
(t+1)
i ]2.

(2.25)

Iteration relationship of mixing probability of normal distribution can be found

by taking derivatives of Q3

p
(t+1)
i =

∑N
k=1 p(zk,0 = i|yk,θ(t))

N

π
(t+1)
i =

∑N
k=1 p(zk,1 = i|yk,θ(t))

N

(2.26)

So far we have established the EM algorithm iteration relationship for our pro-

posed model, connecting parameter estimate of iteration t and iteration t + 1. In

summary, the EM algorithm alternates between the steps of guessing a probability

distribution over completions of subgroup membership and random multiplier given

the current parameter estimate (known as the E-step) and then re-estimating the

model parameters using these completions (known as the M-step). Start with initial

guess θ(0), and iterate until convergence.
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2.4 Model Selection

In the process of deriving EM algorithm, the numbers of components U, V in mixture

distribution (2.3) are considered fixed constants. While in practice, they correspond

to number of growth patterns, or number of diarrhea vulnerability clusters respec-

tively, and need to be selected. Identifying the number of latent subgroups in both

natural growth and diarrhea effects is of great practical interest. The number of

Bspline knots used p, q also have substantial impact on estimation outcome.

• U : number of natural growth subgroups,

• V : number of diarrhea vulnerability subgroups,

• p: number of inner knots used in the B-spline basis for estimating g(t),

• q: number of inner knots used in the B-spline basis for estimating d(t)

We proposed to select U, V, p, q based on the Bayesian information criterion (Schwarz

1978). A grid search will be performed on {U, V, p, q}. After estimating model

parameters using the EM algorithm at each combination of U, V, p, q, the BIC is

computed. The model with the lowest BIC will be selected.

The model proposed in this thesis is a mixed-effect model. Bsplines in the model

are fixed effects, and random multipliers are random effects. The BIC criterion for

mixed effect model (Delattre et al., 2014) is define as

BICmixed = −2logp(y|θ̂) + dim(θR) logN + dim(θF ) logntot

dim(θR) = 3(U + V )− 4

dim(θF ) = p+ q + 1.

(2.27)

The dimensionality associated with random effect is 3(U + V ) − 2, as each latent
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subgroup is parameterized by mixture proportion pu, subgroup mean λu and sub-

group variance ν2u, resulting in 3(U+V ) dimensions. There parameters are restricted

by summation of mixture proportion equals to 1 (two constrains, one for natural

growth and one for diarrhea), and two identifiability constrains. So the number of

free parameters is 3(U + V ) − 4. The random effects are penalized by a factor of

logN , N is the number of subjects.

The dimensionality associated with fixed effect is p + q + 1, p for length of B-

spline coefficients a estimating natural growth g(t), q for length of b estimating

diarrhea effect d(t), measurement error σ2 is another fixed effect. The fixed effects

are penalized by a factor of logntot =
∑

k Tk, total number of observations.

2.5 Asymptotic Variance of the Estimator

The Expectation-Maximization algorithm is used to obtain the maximum likelihood

estimates of parameters. It maximize the marginal likelihood, integrated over latent

data which was never intended to be observed in the first place. Given the asymp-

totic normality of MLE, the problem of finding asymptotic variance of the estimator

reduces largely to the problem of determining the Fisher information matrix.

In this section we demonstrate the derived Fisher information matrix in the

special case of U = V = 1. In this case, both natural growth and diarrhea multiplier

follows a normal distribution. When U 6= 1 or V 6= 1, the structure of mixture of

normal distribution makes it difficult to compute the Fisher information matrix, so

we use the observed Fisher information matrix as an approximation. The observed

Fisher information matrix for the general case of U 6= 1 or V 6= 1 has a more

complex form, the results can be found in Chapter 6.
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From (2.17), the marginal distribution of yk is multivariate normal

yk ∼ N(XCµ,V )

V = XCΓu,v(XC)ᵀ + Σ

µ = [λ, µ, . . . , µ]ᵀ

Γ = diag(ν2, σ2, . . . , σ2)

Σ = diag(σ2
0, . . . , σ

2
0),

The log-likelihood for yk is

logϕk(yk|µ,V ) = −1

2
log|2πV | − 1

2
(y −Mµ)ᵀV −1(y −Mµ).

And the Fisher information matrix, with respect to Bspline coefficients a, b,

random multiplier parameters ν2, σ2 and measurement error σ2
0, for logϕk is

F (θ̂) =



E ∂2l
∂a∂aᵀ E ∂2l

∂a∂bᵀ
E ∂2l
∂a∂ν2

E ∂2l
∂a∂σ2 E ∂2l

∂a∂σ2
0

E ∂2l
∂b∂bᵀ

E ∂2l
∂b∂ν2

E ∂2l
∂b∂σ2 E ∂2l

∂b∂σ2
0

E ∂2l
∂ν2∂ν2

E ∂2l
∂ν2∂σ2 E ∂2l

∂ν2∂σ2
0

E ∂2l
∂σ2∂σ2 E ∂2l

∂σ2∂σ2
0

E ∂2l
∂σ2

0∂σ
2
0


.
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where the blocks are

E(
∂2l

∂a∂aᵀ
) = ν4AᵀV −1AaaᵀAᵀV −1A+ ν4(aᵀAᵀV −1Aa)AᵀV −1A+ µ2

0A
ᵀV −1A

E(
∂2l

∂a∂bᵀ
) = ν2σ2AᵀV −1AabᵀBᵀV −1B + ν2σ2(aᵀAᵀV −1Bb)AᵀV −1B + µ0µ1A

ᵀV −1B

E(
∂2l

∂a∂ν2
) = ν2(aᵀAᵀV −1Aa)AᵀV −1Aa

E(
∂2l

∂a∂σ2
) = ν2(aᵀAᵀV −1Bb)AᵀV −1Bb

E(
∂2l

∂a∂σ2
0

) = ν2AᵀV −1V −1Aa

E(
∂2l

∂ν2∂ν2
) = 0.5(aᵀAᵀV −1Aa)2

E(
∂2l

∂σ2∂σ2
) = 0.5(bᵀBᵀV −1Bb)2

E(
∂2l

∂σ2
0∂σ

2
0

) = 0.5Tr(V −1V −1)

E(
∂2l

∂ν2∂σ2
) = 0.5(aᵀAᵀV −1Bb)2

E(
∂2l

∂ν2∂σ2
0

) = 0.5Tr(V −1AaaᵀAᵀV −1)

E(
∂2l

∂σ2∂σ2
0

) = 0.5Tr(V −1BbbᵀBᵀV −1).

(2.28)

All the expectations are evaluated at the parameter estimate θ̂.

Standard statistical theory shows that the θ̂ from i.n.i.d samples is asymptoti-

cally normal under some reasonable conditions (Ljung, 1999, pp. 215–218)

√
n(θ̂n − θ∗)

dist−−→ N(0, F̄n(θ∗)−1), (2.29)

The estimated covariance matrix of parameter esimate is then F (θ̂)−1. The asymp-

totic covariance matrix enable us to perform inference on parameter of interests,

such as finding the 95% pointwise confidence interval of estimated diarrhea effect
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curve.

2.6 Model Variants

The model we proposed in Section 2.1,

yk(t) = sk,0 · g(t) +

Nk∑
i=1

sk,i · d(t− lk,i) + εk(t),

assumes that growth curve of each child is only affected by diarrhea and that those

diarrhea episodes have the similar but not necessarily the same pattern of effect. In

reality, the size of available data affects the choice of model assumption. When not

enough samples are collected to estimate the differences between diarrhea episodes

of the same subject, regularization should be introduced and restrict the degree

of freedom so that the model is not overfitting. On the other hand, many factors

could affect growth or the diarrhea process. Even though it is reasonable to assume

those other factors can be averaged out when estimating diarrhea effect marginally,

when enough samples are available, including additional covariates can improve the

efficiency of estimation. In this section, we present two model variants to show how

our model can be adjusted in different scenarios.

2.6.1 Fixed Shape Diarrhea Effect within Individual

The model we proposed in Section 2.1 assumes natural growth differs among children

and a given subject’s diarrhea episodes has different random multiplier. While the

general assumption allows for different shapes of curve for all natural growth and all

diarrhea effects over time, estimating those differences requires more data. When

not enough samples are available, regularize the model by fixing sk,i ≡ si,1 can be
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a viable option to prevent overfitting. In this case, diarrhea effect dk(t) is subject

dependent, but within the subject, diarrhea effects from different episodes have the

same pattern over time:

yk(t) = sk,0 · g(t) + sk,1

Nk∑
i=1

d(t− lk,i) + εk(t)

The proposed methods and estimation procedure still apply in this scenario. We

can approximate the curves of interest in the same way

g(t) =

p∑
i=1

aiαi(t) + eg(t),

d(t) =

q∑
j=1

bjβj(t) + ed(t).

The model then becomes

yk(t) = sk,0 · g(t) + sk,1

Nk∑
n=1

·d(t− lk,n) + εk(t)

= sk,0 ·
p∑
i=1

aiαi(t) + sk,1

q∑
j=1

·bj[
Nk∑
n=1

βj(t− lk,n)] + εk(t).

The matrix representation is

yk = M ∗
ksk + εk

M ∗
k : = [g(tk),d(tk,1) + ...+ d(tk,Nk

)]

sk = [sk,0, sk,1]
ᵀ.
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Noticing that

M ∗
k = [Ak,

∑
n

Bk,n]Ck = [Ak,B
∗
k,1]

a 0

0 b

 ,
estimation of the regularized model can be still achieved by the EM algorithm pro-

posed in Section 2.3. The regularized model can be viewed as if only one diarrhea

episode occurred and the corresponding B∗k,1 matrix is computed by the sum of

Bk,n : B∗k,1 =
∑

nBk,n. The estimation procedure remain the same.

2.6.2 With Additional Covariates

One of the assumptions underlies model proposed in Section 2.1 is that the differ-

ences in natural growth pattern can be sufficiently explained by a multiplicative

factor: dk(t) = sk,0 · d(t). Other covariates associated with growth outcome such

as social economic status, nutritional biomarkers, etc, are not considered in the

modeling process.

Even though it is reasonable to assume those other factors can be averaged out

when there are enough samples to model the natural growth and diarrhea effects

marginally, we can easily extend the proposed model in Section 2.1 to take into

account other factors of our interests. Depending on the size of available data, we

can improve the efficiency of the estimation by including these additional covariates

in the model

yk(t) = Xk(t)
ᵀc+ sk,0 · g(t) +

Nk∑
i=1

sk,i · d(t− lk,i) + εk(t), (2.30)

whereXk(t) is the time-varying (or fixed) covariate of interest and c is the coefficient.
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The estimation can be carried out the same way by artificially associating one

degenerate coefficient sk,c ≡ 1 or sk,c ∼ N(1, 0) with the covariate component. The

equation (2.30) in vector form is now

yk = sk,c ·Xk(t)
ᵀc+ sk,0 · g(t) +

Nk∑
i=1

sk,i · d(t− lk,i) + εk(t)

= M ∗
kC
∗
k

sk,c
sk

+ εk,

where

M ∗
k =

[
Xk(t),Ak,Bk,1, . . . ,Bk,Nk

]
, C∗k =

c 0

0 Ck

 .
In the EM algorithm iteration update,

E(sk,c|yk,θ) = 1, E(s2k,c|yk,θ) = 1.

So the the estimation procedure is similar, with the distinction that one degenerate

normal component is added.
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Chapter 3

Simulation

In this chapter, simulation studies are conducted to evaluate the numerical perfor-

mance of the proposed estimation method in analyzing generated children growth

data with heterogeneous natural growth trend and diarrhea effects. BIC criterion

is shown to select the correct model with 100% accuracy. When classifying subjects

into subgroups, the misclassification rate remains low throughout different data sce-

narios. The asymptotic variance of model estimates presented in Section 2.5 is

validated by studying the empirical coverage probability of confidence interval for

parameter estimates.

3.1 Data Generation

The proposed model is evaluated with generated data sets. Each dataset contains

700 subjects. For each subjects, growth measurements are collected around every

three months. The number of followup times of a subject is uniformly generated

between 2 and 17. The number of diarrhea episodes Nk is generated according to a

Poisson distribution with a mean of 3. The onset time {lk,i} for diarrhea episodes
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are uniformly generated within the followup period.

We conduct simulation in three scenarios, where the number of natural growth

subgroups, the number of diarrhea vulnerability subgroups, the separation between

subgroups are manipulated.

Table 3.1: Mixture distribution parameters used in the three simulation scenarios
Scenario 1
Number of subjects 700
Natural growth multiplier distribution N(4, 12)
Diarrhea multiplier distribution .5MVN(2, 12) + .5MVN(6, 12)
Scenario 2
Number of subjects 700
Natural growth multiplier distribution N(1, 12)
Diarrhea multiplier distribution .5MVN(2.5, 12) + .5MVN(5.5, 12)
Scenario 3
Number of subjects 700
Natural growth multiplier distribution .5N(2, 12) + .5N(6, 12)
Diarrhea multiplier distribution .5MVN(2, 12) + .5MVN(6, 12)

For each scenario, 500 date sets are generated. Scenario 1 is used as the baseline

for studying the finite sample performance of the proposed estimation method. One

group of natural growth and two subgroups of diarrhea vulnerability are used for

data generation. Subgroups of diarrhea vulnerability are placed at 2 and 6, the

standard deviation for both groups is 1. In scenario 2, diarrhea subgroups are

3 standard deviation apart, closer than the 4 standard deviation in scenario 1.

The estimation performance can show how well can the proposed method separate

subgroups. Natural growth in scenario 3 is assume to follow a mixture of two normal

distribution. This scenario is used to evaluate performance of the proposed method

work under more complex data generation setting.
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3.1.1 Data Generation Procedure

First, we focus on the detailed data generation procedure for scenario 1. The growth

outcomes for the kth subject with diarrhea effect are generated according to

yk(t) = sk,0 · g(t) +

Nk∑
i=1

sk,i · d(t− lk,i) + εk(t). (3.1)

Since the natural growth loading factor has only one cluster, the natural growth

group membership is always 1

zk,0 =

{
1, with probability 1 ,∀k. (3.2)

And the natural growth multiplier sk,0 is given by

sk,0|zk,0 = 1 ∼ N(4, 12). (3.3)

Likewise, let zk,1 be subject k’s diarrhea subgroup membership indicator variable,

then

ck,1 =


1, with probability 0.5

2, with probability 0.5

, ∀k. (3.4)

And the diarrhea susceptibility coefficients sk,i in each subgroup will follow a normal

distribution, respectively

sk,i|ck,1 = 1 ∼ N(2, 12), sk,i|ck,1 = 2 ∼ N(6, 12), ∀i. (3.5)

The function g(t) is the natural growth pattern over time, which we set as the

estimated natural growth curve from the NIH cohort data. The true curve g(t)
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specified the simulation is plotted in dash line at the left panel of Figure (3.1),

along with the blue line representing the initial value used for the EM algorithm,

which we will explain in Section 3.1.2.

Figure 3.1: Left panel: dashed line is the natural growth pattern used in simulation
study, blue line is the initial value supplied in model estimation. Right panel: true
diarrhea effects pattern is plotted in dash line , blue line is the initial value for the
EM algorithm

The diarrhea effect pattern d(t) is specified as

d(t) =



1
5
· ( t

200
+ 0.423)( t

200
− 0.577)( t

200
− 1.577)− 0.077, if t ∈ [0, 230.8)

1
5
· ( t−230.8

200
+ 0.423)( t−230.8

200
− 0.577)( t−230.8

200
− 1.577)− 0.077, if t ∈ [230.8, 461.6)

0, otherwise.

(3.6)

We specify that εk ∼ N(0,Σk) has a diagonal covariance structure with standard

deviation σ = 0.1.

Figure (3.2) is the trajectory plot of one dataset generated based on the proce-

dures above, which connects the consecutive measurements on each individual.

Data sets for scenario 2 and scenario 3 are generated following similar procedure.
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Figure 3.2: Trajectory plot of one dataset generated based on the procedures above.
Each lines is formed by connecting the consecutive measurements on the same in-
dividual.

3.1.2 Initial Values

The B-spline basis for natural growth and diarrhea effect temporal dynamics are

constructed using quantile knots. As mentioned in Section 1.3, we restrict our scope

to quantile knots and fixed order of B-spline basis to be 4, cubic spline that is

commonly used in practice. The initial value of natural growth B-spline coefficient

a is obtained by assuming working independence among repeated measurements

of the same subject and fit B-spline approximation. In other works, disregard the

correlation between measurements of the same person, simply treat the dataset as
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independent points measurement. For starting value of diarrhea coefficient b, we

simply choose 0, the zero vector. Figure (3.1) plots the initial values in blue lines.

3.2 Evaluation Criteria

Identifying the numbers of latent subgroups in both natural growth and diarrhea

effects is of interests in our study. The numbers of latent subgroups need to be

inferred from the data, and we proposed in Section 2.4 to do model selection by BIC

criterion. In the simulation study, we evaluate the probability of correctly selecting

the underlying mixture model structure, by examine the percentage of repetition

where the true Model is selected

Pmodel =
# times when correct model selected

500
.

We obtain parameter estimates from the proposed the model estimation method.

Estimation bias, empirical standard error (ESE) and mean squared error (MSE) for

each parameter are calculated and used to evaluate numerical performance.

Let θ denote a parameter and also its population value, and let θ̂r and SEr denote

its estimate and the corresponding estimated standard error in the rth replication.

Then the parameter estimate of θ, θ̂, is calculated as the average of parameter

estimates of 500 simulation replications

θ̂ =
1

500

500∑
r=1

θ̂r.

With the introduction of subgroup indicator, given a subject, we are able to

calculate the posterior probability of it belonging to each subgroup combination.

Under the 1-0 loss commonly used in categorical prediction, the predicted subgroup
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membership will be the one with the highest posterior probability. The misclassi-

fication rate for one generated data set is defined as the empirical probability of

classifying subjects into the wrong group membership combination is evaluated as

Pmis =
# subjects that zpred 6= zk

700
.

The integrated squared error (ISE) between function f and its estimate f̂ on

region [0, T ] is defined as

ISE(f̂ , f) =
1

T

∫
(f(t)− f̂(t))2dt, (3.7)

and mean integrated squared error (MISE) is the average ISE

MISE =
1

500

500∑
r=1

ISE(f̂r, f).

MISE is used as the evaluation metric for performance of the g(t) and d(t) curve

estimates.

Lastly, we compute the variance of the b, B-spline coefficients for d(t), and

construct the pointwise 95% confidence interval according to asymptotic normality

for 100 evenly spaced t on the interval [0, 1500] : t = 15, 30, . . . , 1500. At each point,

the B-spline estimate for d(t) is b̂(t) = [B1(t), . . . , Bq(t)]b = B(t)ᵀb. The variance

of d̂(t) is given by the formula V ar(d̂(t)) = B(t)ᵀCov(b̂)B(t). The true value of d(t)

is compared to the pointwise 95% confidence interval, and the empirical coverage

probability of the confidence intervals are computed over the 500 generated data

sets.
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3.3 Simulation Result

Numerical results from the three data scenarios are aggregated and evaluated in

this section. The proposed estimation method works well. The correct number of

latent subgroup is identified with 100% accuracy in all scenarios. The individual

membership misclassfication rate 3.53% in scenario 1, and less than 6% for scenario

2&3.

3.3.1 Scenario 1

Figure 3.3 shows the estimated curves for the one of the 500 data sets generated.

The doted black lines represent true curves specified in data generation, the red ones

are our estimates. Visually the estimated ones are very close to the true ones. The

ISE for estimated natural growth curve is 2.77× 10−10, and for estimated diarrhea

effect is 1.31× 10−12.

Figure 3.3: Red lines are estimated curves for the one of generated data sets. The
doted black lines represent true curves specified in data generation. The ISE for
estimated natural growth curve is 2.77× 10−10, and for estimated diarrhea effect is
1.31× 10−12.
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Table 3.2 presents the summarized statistics over 500 repetitions. The misclas-

sification rate ranges from 1.57% to 6.14%, and the average misclassification rate

is 3.53%. Overall the estimated mixture distribution parameters are close to the

true values. It is worth mentioning that due to identifiability constraint, the mixing

probability is forced to be 100.00%, and mean forced to 4.00.

Table 3.2: Summary of estimation, scenario 1. Overall the estimates are close to
the true value. Due to identifiability constraint, the natural growth probability is
forced to be 100.00%, and mean forced to 4.00.

Estimate
Pmodel 100%

Mean of Pmis 3.53%
MISEa 6.27× 10−10

MISEb 2.09× 10−11

Median time 19.78s

Prob Mean Std
True Est True Est True Est

Natural growth multiplier group 1 100% 100% 4 4 1 0.998
Diarrhea multiplier group 1 50% 49.95% 2 1.982 1 1.007
Diarrhea multiplier group 2 50% 50.05% 6 6.018 1 1.003

3.3.2 Scenario 2

Figure 3.4 shows the estimated curves for the one of the 500 data sets generated.

The doted black lines represent true curves specified in data generation, the red ones

are our estimates. Visually the estimated ones are very close to the true ones. The

ISE for estimated natural growth curve is 2.76× 10−10, and for estimated diarrhea

effect is 2.23× 10−10.

Table 3.3 presents the summarized statistics over 500 repetitions. The misclas-

sification rate ranges from 3.42% to 8.71%, and the average misclassification rate

is 5.96%. Overall the estimated mixture distribution parameters are close to the



50

Figure 3.4: Red lines are estimated curves for the one of generated data sets. The
doted black lines represent true curves specified in data generation. The ISE for
estimated natural growth curve is 2.76× 10−10, and for estimated diarrhea effect is
2.23× 10−10.

true values. The distance between diarrhea subgroups is now 3 standard deviation,

compared to the 4 standard deviation in scenario 2. It is more difficult to separate

the two subgroups, which explains the increase in misclassification rate. When the

difference between subgroups is less obvious, it takes more time for the EM algo-

rithm to converge. Meanwhile, mixture distribution parameter estimates remains

similar to that of scenario 1.
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Table 3.3: Summary of estimation, scenario 2. The probability and mean of natural
growth group 1 is fixed according to identifiability constraints.

Estimate
Pmodel 100%

Mean of Pmis 5.96%
MISEa 6.25× 10−10

MISEb 1.50× 10−11

Median time 23.57s

Prob Mean Std
True Est True Est True Est

Natural growth multiplier group 1 100% 100% 4 4 1 0.998
Diarrhea group multiplier 1 50% 50.05% 2.5 2.488 1 1.007
Diarrhea group multiplier 2 50% 49.95% 5.5 5.516 1 1.003
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3.3.3 Scenario 3

Figure 3.5 shows the estimated curves for the one of the 500 data sets generated.

The doted black lines represent true curves specified in data generation, the red ones

are our estimates. Visually the estimated ones are very close to the true ones. The

ISE for estimated natural growth curve is 2.18 × 10−9, and for estimated diarrhea

effect is 6.33× 10−13.

Figure 3.5: Red lines are estimated curves for the one of generated data sets. The
doted black lines represent true curves specified in data generation. The ISE for
estimated natural growth curve is 2.18 × 10−9, and for estimated diarrhea effect is
6.33× 10−13.

Table 3.4 presents the summarized statistics over 500 repetitions. The misclas-

sification rate ranges from 3.86% to 9.29%, and the average misclassification rate

is 5.99%. With the introduction of the second natural growth group, scenario 3

is more complex in terms of subgroup structure. The median runtime increased.

The misclassification rate increased to 5.96%. As there is more variance associated

with natural growth curve in the generated data set, MISE(d̂(t), d(t)) increase to

1.94 × 10−9, while MISE for diarrhea curve remains almost the same to that of
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scenario 1.

Table 3.4: Summary of estimation, scenario 3.

Estimate
Pmodel 100%

Mean of Pmis 5.91%
MISEa 1.94× 10−9

MISEb 2.01× 10−11

Median time 80.57s

Group
Prob Mean Std
True Est True Est True Est

Natural growth multiplier group 1 50% 50.01% 2 2.002 1 0.995
Natural growth multiplier group 2 50% 49.99% 6 6.002 1 1.000
Diarrhea group multiplier 1 50% 50.05% 2 1.982 1 1.007
Diarrhea group multiplier 2 50% 49.95% 6 6.018 1 1.003
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3.3.4 Empirical Coverage Probability

In this subsection, evaluation on the asymptotic variance derived in Section 2.5 is

performed. We computed the variance of the d(t) B-spline coefficients and con-

structed the pointwise 95% confidence interval according to asymptotic normality

for 100 evenly spaced t on the interval [0, 1500] : t = 15, 30, . . . , 1500. At each point,

the B-spline estimate for d(t) is b̂(t) = [B1(t), . . . , Bq(t)]b = B(t)ᵀb. The variance

of d̂(t) is given by the formula V ar(d̂(t)) = B(t)ᵀCov(b̂)B(t).

Table 3.5: Setting for data generation used in validating asymptotic variance.
Number of subjects 700
Natural growth multiplier distribution N(4, 12)
Diarrhea multiplier distribution .5MVN(2, 12) + .5MVN(6, 12)
Measurement error std 0.1

Under setting of Table 3.5, we generated 500 data sets with sample size 700.

Mixture distribution parameters used in data generation are the same as those of

scenario 1. The true value of d(t) is compared to the pointwise 95% confidence inter-

val, and the empirical coverage probability of the confidence intervals are computed

over the 500 generated data sets, and plotted in Figure (3.6).

The empirical coverage probability stays at 95% for interval [150, 1300], vali-

dating that the asymptotic variance derived in Section 2.5. Quantiles knots are

used in constructing the B-spline basis, and the first knot is placed at around 100

for a typical data set. The boundary effect of B-spline causes bias in the interval

[0, first knot], thus coverage probability is lower near the left boundary. Not many

diarrhea episodes with elapsed time of 1500 are observed. With limited information

at the right boundary, the computed asymptotic variance is large. Boundary bias

is offsetted by the wider confidence interval, so that the coverage probability stays

relatively close to 95% for [1300, 1500].
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Figure 3.6: Empirical coverage probability of 95% pointwise confidence interval.
Date generated under settings of scenario 1, 500 data sets are generated with sample
size = 700.

Boundary effect can be mitigated by increasing sample size, the low CP at the

left boundary and slightly lower CP at the right boundary will be corrected as more

data becomes available.

In summary, simulation studies show satisfactory performance in estimating

model parameters. BIC criterion is shown to select the correct model with 100% ac-

curacy. When classifying subjects into subgroups, the misclassification rate remains

low throughout different data scenarios. The validity of derived asymptotic variance

is tested by studying the empirical coverage probability of confidence interval for

parameter estimates.
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Figure 3.7: Pointwise CI for one of the 500 simulation runs when sample size =
700. The boundary bias often causes the true curve (in red) to be outside of the
confidence interval
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Chapter 4

Real Data Application

This thesis is motivated by the NIH cohort study data set. During 2008-2012, a

cohort of total 629 infants (332 boys and 297 girls) were enrolled into the study

after birth in Dhaka, Bangladesh. The enrolled infants are uniquely identified by

their subject id. The growth outcomes of each child were recorded every 3 months

until the end of the study, resulting in 6381 observations. Measures of growth

include weight, height, WHZ (weight-for-height z-score), HAZ (height- for-age z-

score), WAZ (weight-for-age z-score), BAZ (BMI-for-age z-score), which are scores

set by WHO based on children’s growth worldwide. Children’s health condition

was monitored every two weeks by visits of a research staff. During the visits,

questionnaire and follow-ups were given to record children’s health condition. If

there was an acute illness, the child would be sent to the study clinic for further

evaluation. When a child had diarrhea symptoms, stool samples were taken to

further decide if it was diarrhea or not and if there are any pathogens present in

the stool sample. The information of the starting date of each diarrhea episode

was also provided by the questionnaire. In our study, 521 out of 629 children had

diarrhea of totally 2605 episodes. For each episodes of diarrhea, we tested the
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presence of Crypto, EH and Giardia, which are 3 common pathogens that could

cause diarrhea. Out of all 2605 diarrhea episode samples, 197 of them contain

Crypto, 243 of them contain EH, and 731 contain Giardia. Overall, majority of the

samples (1601 samples) don’t contain any of the three pathogens. Let tk,j denote

the jth follow up date of subject indexed by k, and lk,i denote the onset time of

subject k’s ith diarrhea episode, then tk,j − lk,i is the elapsed time for diarrhea effect

at time tk,j. Figure (4.1) shows the distribution of observed elapsed time of diarrhea

effect tk,j − lk,i.

Figure 4.1: Distribution of observed diarrhea elapsed time.

4.1 Choose the Best Response Variable

We choose ∆HAZ, the change of HAZ score since enrollment, as the response variable

when studying the diarrhea effect on childhood growth.

Weight-associated growth measurements are not selected as the response, for

weight is highly sensitive to diarrhea in the short term. The original height (cm) is
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not used, because when children grows taller, the range of their height grows wider.

This makes it hard to justify the constant variance assumption for the random errors.

Then we discuss the drawbacks of using HAZ as the response. Indeed, we can

adopt the constant variance assumption for random error if HAZ, the age adjusted

z-score for height, were to be used as the response variable. But if we do, fitting the

starting value becomes difficult. At enrollment, the starting value is

yk(0) = sk,0 · g(0) + sk,1
∑
i

d(0− lk,i) + ε(0)

= sk,0 · g(0) + sk,1
∑
i

0 + ε(0)

= sk,0 · g(0) + ε(0),

because there is no diarrhea effect yet at enrollment. In fact, g(0) is “fixed”, in the

sense that

ȳ(0) = s̄k,0g(0) + ε̄(0)

= 1 · g(0) + 0.

The second equal sign is based on identifiability constraint. So g(0) should be close

to the average of starting values, that leaves differences in HAZ score at the start

to be modeled only by sk,0. The natural growth multiplier sk,0 is largely determined

by the starting HAZ. The signals in natural growth is much stronger than that

of diarrhea effect. When sk,0s are determined, the relative small diarrhea will be

masked.

Therefore, to avoid the above concerns, we decide to use ∆HAZ as the response

variable. It is height-associated, which is less sensitive to diarrhea in the short term;

it is the difference between two z-scores, so the variance is stable hence justifying
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the constant variance assumption; most importantly, the starting value is always 0,

so sk,0s are not restricted solely by the starting value and can adjust accordingly to

provide a better fit to the data and more meaningful results.

4.2 Original Model Fitting

In order to apply the proposed model to the NIH cohort data, we need to first

specify the numbers of subgroup for both random effects, the number of knots and

the location of them. We find the d(t) estimate robust to the number of knots.

The growth signal is strong and there are plenty of evenly spaced observations,

besides that natural growth is not the main study interest, 4 inner quantile knots

are placed and we did not search for knot numbers. A three-way grid search of

U, V and number of d(t) Bspline knots are conducted. We search U in {1, 2}, V

in {1, 2, 3} and number of knots in {5, 6, . . . , 16}. The model with u latent natural

growth subgroups, v latent diarrhea vulnerability subgroups and q inners for d(t)

will be denoted as Mu,v,q.

The combination of 1 natural group, 3 diarrhea groups and 8 inner knots M1,3,8

is selected by the BIC criterion. M1,3,8 has the lowest BIC = 9352.50.

The mixture model parameters estimate is summarized in Table (4.2), and esti-

mated curves are plotted in Figure (4.2):

Table 4.1: Diarrhea group 3 has small probability. Out of the 521 children with at
least one diarrhea infection, 0.2% corresponds to exactly one child. The standard
deviation is small, the mean value is far from the other two subgroups.

Prob Mean Std
Natural growth multiplier group 1 100% 1 1.326

Diarrhea multiplier group 1 85.76% 0.658 0.842
Diarrhea multiplier group 2 14.04% 4.134 1.691
Diarrhea multiplier group 3 0.20 % -72.801 0.557
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Figure 4.2: Estimated curves for NIH cohort.

Estimated diarrhea effect on growth indicates that the first stage of negative

effect happens right after diarrhea infection. After 450 days of infection, the diarrhea

effect is at its worst, causing a 0.013 loss in HAZ. The catch up growth begin after

around 450 days of infection, but does not fully recover the previous growth deficit.

One episode of diarrhea infection will cause permanent HAZ loss. For 86% of the

NIH cohort, the permanent loss is -0.0518, and for 14% of the cohort, and permanent

loss is more severe: -0.3. The finding of long-term growth deficit is in line with

Troeger et al. (2018), which shows each day of diarrhea leads to -0.0033 HAZ score.

The above results provide a better understanding of the dynamic diarrhea effect

on childhood growth along with the overall natural childhood growth in the study

cohort.

The identification of diarrhea group 3 shows the possibility that our proposed

model can be applied in outlier detection. Group 3 has small probability, out of the

521 children with at least one diarrhea infection, 0.2% corresponds to exactly one

child. The standard deviation is small, and the mean value is far from the other
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two subgroups. These signs indicate this subject is an outlier in the data, and it

is are picked up by the model and recognized as a subgroup of its own. Group 3

corresponds to subject #8228, its growth trajectory is plotted in Figure (4.3)

Figure 4.3: Growth trajectory of #8228, the line is formed by connecting the con-
secutive measurements on the individual.

For the cohort, the overall diarrhea effect on growth is estimated to be negative

over time. Child #8228 contracted diarrhea 100 days after enrollment. Its HAZ at

the time is -2.31 standard deviation below average. Its HAZ continues to drop to -4,

then bounced back to 3, as if diarrhea had a positive impact on growth. The pattern

is far different from the common trend, so its diarrhea multiplier is predicted to be

-70. We believe this abnormal pattern of growth is an outlier to the cohort.

4.2.1 Identify Outlying Observations

The growth pattern of subject #8223 is for sure very different from the typical

trajectory in NIH study cohort, and identification of #8228 further motivate us to

study the possibility of the existence of other outliers. While examining the pre-



63

dicted diarrhea multipliers, we observe that several subjects have extreme values,

and this pattern is found consistently through out the top models ranked by BIC,

the smaller BIC the higher the ranking. Figure (4.4) are the histograms of predicted

diarrhea multipliers in the best model M1,3,8 with BIC = 9352.50, and the second

best model M1,3,7 with BIC = 9354.13. Not only are these children identified si-

multaneously, their relative ranks in predicted values are preserved as well. Figure

(4.5) provides a closer look at #7088 and #8371. All three children contracted only

one episode of diarrhea. Subjects #7088 and #8371 experienced shape drop after

diarrhea episode, both lost over 3 HAZ in 500 days. Their diarrhea multipliers are

estimated to be around 20, signifying high vulnerability compared to the population.

Figure 4.4: Subjects with high predicted diarrhea multiplier matched in the best
models by BIC ranking.

Table 4.2: Params est for M1,3,7

Prob Mean Std
Natural growth multiplier group 1 100% 1 1.323

Diarrhea multiplier group 1 79.78% 0.564 0.704
Diarrhea multiplier group multiplier2 18.99% 2.862 1.116
Diarrhea multiplier group multiplier 3 1.23% 0.478 31.196
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Figure 4.5: Trajectories of subjects with extreme predicted diarrhea multiplier. The
lines are formed by connecting consecutive measurements of the same subject.

The model proposed is mean-based and existence of outliers will have large im-

pact on the final model estimate. All the evidence suggests that we should try to

remove outliers. We proceed by excluding these subjects in the order of how far are

they being outliers, and stop when the model behaves moderately, in an attempt

to preserve as much data as possible. Starting with #8228, then #8371 and #7088

(see Fig 4.6).

Figure 4.6: Predicted diarrhea multiplier when removing outliers recursively

• If only 8228 is removed, there are still large values further at the right side



65

(upper panel).

• Once 7088 and 8371 are excluded, the predicted multiplier now look much

better (lower panel).

• Since #8213 is not lying too far away from other subjects, we decide to stop

removing at this step.

Outlying observations in data could result in unreliable parameter estimates,

incorrect standard errors and confidence intervals, and misleading statistical infer-

ences. Diagnosing multivariate outlying observations in longitudinal data is chal-

lenging due to the well-known “curse of dimensionality”. Because of the masking

effect, high-dimensional outlying observations in a given sample can be well hidden

and are barely all detected (Tong et al, 2020). As illustrated in Figure (4.7), be-

sides subject #8228, the other children is hiding in plain sight. This section shows

the possibility to use our proposed model for outlier detection in non-linear growth

models. The ill-behaving subjects will be group together, and low probability or

huge subgroup variance can be strong indicator of existence of outliers. Plotting the

predicted random effect will give confirmation about whether the growth pattern

and diarrhea reaction of a certain subject is very different compared to the rest.

4.2.2 Model Fit with Outliers Excluded

Due to the existence of outliers, especially #8228, BIC criterion prefers models with

3 diarrhea subgroups. Since classifying #8228 on its own can provide more gains

in likelihood than penalty incurred by adding one more subgroup. The highest

four ranking models by BIC all come with 3 diarrhea subgroups. Now that we

have excluded the influential observations, model selection concerning number of
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Figure 4.7: Trajectories of HAZ score change over time. Red lines indicates outliers
identified.

natural growth groups, diarrhea groups and number of d(t) B-spline inner knots is

needed. The best model selected this time is 1 natural growth group, 2 diarrhea

subgroups and 6 inner knots M1,2,6. The model estimate is summarized in Table

(4.3). And Figure (4.8) visualizes the curve estimates along with 95% pointwise

confidence interval. Since in the case of having two latent subgroups for diarrhea,

the Fisher information matrix can not be easily obtained, the confidence interval

is calculated based on observed Fisher information matrix for the proposed model.

See the Chapter 6 for more details.

Table 4.3: Summary of Model Estimates
Prob Mean Std

Natural growth multiplier group 1 100% 1 1.411
Diarrhea multiplier group 1 85.38% 0.721 0.817
Diarrhea multiplier group 2 14.62% 2.630 1.281

Figure (4.9) are the histograms of the predicted diarrhea multipier in different

latent subgroups. When cross referencing Table (4.3) and Figure (4.9), we can see
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Figure 4.8: Estimated growth curve and diarrhea effects, with 95% pointwise confi-
dence interval.

that the mixture model distribution here is working to approximate the long tail

behavior of diarrhea multiplier sk,i. The moderate values is classified into group 1,

and the more extreme values are bracketed under group 2.

Figure 4.9: Subjects are divided into two groups, group 1 for moderate diarrhea
multiplier and group 2 for more extreme values.
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The fitted natural growth curve shows that the HAZ score of children in Bangladesh

keeps dropping over first two years after birth and then remain roughly the same

level. The diarrhea effect pattern shows that the HAZ score is negatively affected

by diarrhea. For subjects in subgroup 1, which constitutes 85% of the cohort,

HAZ score will drop at an even pace, reaching the valley of the diarrhea effect

−0.013 × 0.658 = −0.0085 at around 400 days. The catch-up growth starts after

400 days of infection, at roughly an even speed, 25% that of the dropping rate. The

recovering trend is not shown to stop at the longest follow up time. The long-term

HAZ loss after 3 year is −0.004 × 0.658 = −0.0026. And since the 95% confidence

interval covers 0, so we are unable to conclude whether diarrhea will leave a per-

manent long term negative effect on growth. The above results provide a better

understanding of the dynamic diarrhea effect on childhood growth along with the

overall natural childhood growth in the study cohort.

It is worth mentioning that the indecisive conclusion about whether the catch

up growth will cover growth deficit, i.e., whether the long-term loss is significant,

is caused by the more extreme growth patterns in group 2. If only well-behaving

subjects are used in model building process, estimated curves and the 95% CI will be

Figure (4.10). Diarrhea effect seems to level off at -0.005. With confidence interval

not covering 0, we can conclude that this negative long term effect is significant.

How subjects in group 2 inflated estimation variance can be visualized more clearly

with bootstrap. Depending on which and how many group 2 subjects are included

in the bootstrapped sample, the estimated diarrhea effects have entirely different

outlook (see Figure 4.11). Too many subjects with negative predicted diarrhea

multiplier selected when sampling with replacement, the end result will looks like

“Fast, almost full recovery”, or to many large positive predicted selected, the end

result will be “No recovery”.
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Figure 4.10: Only subjects in group 1 from previous results used. 95% pointwise
confidence interval.

Figure 4.11: Depending on which and how many influential subjects are subjected
in the bootstrapped sample, the estimated diarrhea effects have entirely different
outlook.
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Chapter 5

Discussion

Literature on the dynamic effect of diarrhea on children growth is limited. In this

study, we propose a semi-parametric model to study the pattern of diarrhea ef-

fect over time and the heterogeneity of change pattern within cohort. Mixture of

Gaussian distribution assumption is adopted, for reaction to diarrhea effect is often

long-tailed. Since subgroup membership is latent and unobserved, Expectation-

Maximization algorithm is used to find the maximum likelihood estimator, and

asymptotic variance of the estimator is investigated. Simulation studies show that

the proposed model is capable of identifying the correct mixture distribution struc-

ture, classifying subjects into the right subgroups, and obtaining reliable estimate

of the functional effect of diarrhea over time. Based on the data from the NIH study

in Bangladesh, our analysis results separate children into two groups based on their

vulnerability to diarrhea. Diarrhea effect will reach its peak at 400 days after onset.

At the maximum follow up time, the slow catch up growth still continues. It is

inconclusive whether diarrhea effect is permanent for the cohort at large, but if only

the data of subjects from the “moderate” group is used, the permanent effect is

statistically significant. Two model variants are developed, and depending on the
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size of available data, these model variants can improve estimation efficiency. Over-

all, our models provide new statistical tools to quantify the relationship between

diarrhea and childhood growth in a dynamic fashion, which helps us make better

health policy and conduct more efficient interventions.

Several limitations exist when modeling the effect of a complicated biological

process such as diarrhea, in a statistical model with underlying model assumptions.

For example, inter-individual difference happens in both magnitude and pattern,

the assumption that inter-individual differences can be captured by multiplicative

factor may not be flexible enough. In our model, we assume that different diarrhea

episodes may have different effect curves, and the effects are additive. However, it

is possible that when children have diarrhea frequently, they might experience more

growth shortfall than the simple addition of each individual episode effect. B-spline

method is often applied in conjunction with penalty so that null-region of the curve

can be identified and smoothness achieved. But because the exact EM algorithm

is an optimization algorithm using marginal likelihood as the object function, it is

difficult to incorporate penalty term into the framework.

On the other hand, limitations of the estimating process can also be improved. If

the penalty terms is carefully constructed, we might be able to used generalized EM

algorithm to find the estimator. The asymptotic variance of the estimator is inflated

by the observations in the extreme value group. While the main focus of the study is

not outlier detection and robust estimation method, it is possible to develop robust

estimator of the variance of B-spline estimates. That would be another direction for

future research.
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Chapter 6

Asymptotic Variance of Model

Estimator

In this section, we derive the Fisher information matrix of subject k, FIMk. We start

the appendix with matrix derivatives tool necessary for computing the asymptotic

covariance matrix. Following the notation in Magnus and Neudecker (1999), for any

function y(x), the differential dy(x) is define to be that part of y(x + dx) − y(x)

which is linear in dx. Unlike the classical definition relying on limits, the equation:

y(x+ dx) = y(x) +Adx+ (higher order terms)

holds even when x or y are not scalars. Matrix A is defined as the derivative.

Therefore, the derivative of any expression involving matrices can be computed

in two steps:

1. compute the differential

2. rearrange the result into one of the canonical forms
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after which the derivative is immediately read off as the coefficient of dx, dx, or dX.

The canonical forms is one of the following:

dy = adx dy = ax dY = Adx

dy = adx dy = Adx

dy = tr(AdX)

Here are some useful rules for our derivation. These rules can be iteratively

applied because of the chain rule:

1. d(αX) = αdX;

2. d(Tr(X)) = Tr(dX);

3. d(XY ) = (dX)Y +XdY ;

4. dX−1 = −X−1(dX)X−1;

5. dln|X| = Tr(X−1dX);

6. dXᵀ = (dX)ᵀ.

Let L denote the marginal likelihood, and l log marginal likelihood. For clarity in

notation, we drop the subject index subscript k. We can write down the marginal

likelihood and the log of marginal likelihood as

L =

[U,V ]∏
i=[u,v]

p(y, z = i|θ)

=
∏

p(y|z = i,θ)p(z = i|θ) combine (2.15) and (2.16)

=
∏
i=[u,v]

ψu,v
puπvψu,v∑
u,v puπvψu,v

,

l = ln(
∑
u,v

puπvψ
2
u,v)− ln(

∑
u,v

puπvψu,v),

(6.1)
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where ψu,v is the conditional pdf of yi given s0 comes from the uth subgroup and s1

the vth subgroup, respectively. Then

yi|z = [u, v] ∼ N(XCµu,v,Vu,v)

Vu,v = XCΓu,v(XC)ᵀ + Σ

µu,v = [λu, µv, . . . , µv]
ᵀ

Γu,v = diag(ν2u, σ
2
v , . . . , σ

2
v),Σ = diag(σ2, . . . , σ2),

lnψu,v = −1

2
ln|2πV | − 1

2
(y −Mµ)ᵀV −1(y −Mµ).

For any function y(x), the differential dy(x) is defined to be that part of y(x +

dx) − y(x) which is linear in dx. This definition applies even when x or y are not

scalars. We start our derivation from computing the differential of lnψu,v. The

equation:

The differential of the first term is:

dln|V | = Tr(V −1dV ).

Differential for the second term is:

d(y −Mµ)ᵀV −1(y −Mµ) = −(dMµ)ᵀV −1(y −Mµ)

+ (y −Mµ)ᵀd(V −1)(y −Mµ) + (y −Mµ)ᵀV −1(−dMµ)

= (y −Mµ)ᵀV −1d(Mµ) +
1

2
Tr(V −1(y −Mµ)(y −Mµ)ᵀV −1dV ).

By dividing matrix M and V into blocks, we have

V = ν2Aa(Aa)ᵀ + σ2
∑

Bib(Bib)
ᵀ

Mµ = λAa+ µ
∑
i

Bib.
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Depending on which variable is being differentiate, dV and dMµ will be different.

Take a for example:

dV = ν2A(daaᵀ + adaᵀ)Aᵀ

d(Mµ) = λAda.

Use Y to denote y −Mµ, plug in the differential term, we arrive at

dlnψ =
1

2
Tr(V −1A(da aᵀ + a(da)ᵀ)Aᵀ) +

1

2
ν2Y ᵀV −1A(da aᵀ + a(da)ᵀ)AᵀV −1Y

− 1

2
λ(Ada)ᵀV −1Y − 1

2
λY ᵀV −1Ada.

(6.2)

Now aggregate terms associated with da, (da)ᵀ, and the derivative is obtained

as

∂lnψu,v
∂a

= ν2uA
ᵀV −1(y−Mµ)(y−Mµ)ᵀV −1Aa+λuA

ᵀV −1(y−Mµ)− ν2uAᵀV −1Aa.

Similarly, the derivative with respect to other parameters can be obtained:

∂lnψu,v
∂b

=
∑
k

[σ2
uB

ᵀ
nV
−1(y −Mµ)(y −Mµ)ᵀV −1Bnb+ µuB

ᵀ
nV
−1(y −Mµ)− σ2

uB
ᵀ
nV
−1Bna];

∂lnψu,v
∂λu

= −λu(Aa)ᵀV −1Aa+ (Aa)ᵀV −1(y −Bbµv);

∂lnψu,v
∂µv

= −µv(Bb)ᵀV −1Bb+ (Bb)ᵀV −1(y − Aaλu);

∂lnψu,v
∂ν2u

= −1

2
Tr(V −1AaaᵀAᵀ)− 1

2
(y −Mµ)ᵀAaaᵀAᵀ(y −Mµ);

∂lnψu,v
∂σ2

v

= −1

2
Tr(V −1BbbᵀBᵀ)− 1

2
(y −Mµ)ᵀBbbᵀBᵀ(y −Mµ);

∂lnψu,v
∂σ2

= − n

2σ2
− 1

2
(y −Mµ)ᵀ(y −Mµ).
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The Hessian matrix of l(θ,y),H(θ) is defined as the second derivative of l(θ,y)

with respect to θ:

H(θ) ≡ ∂2l(θ,y)

∂θ∂θᵀ
.

And the Hessian matrix under block representation is:

H =



∂2l
∂a∂aᵀ

∂2l
∂a∂bᵀ

∂2l
∂a∂ν2

∂2l
∂a∂σ2

∂2l
∂a∂σ2

0

∂2l
∂b∂bᵀ

∂2l
∂b∂ν2

∂2l
∂b∂σ2

∂2l
∂b∂σ2

0

∂2l
∂ν2∂ν2

∂2l
∂ν2∂σ2

∂2l
∂ν2∂σ2

0

∂2l
∂σ2∂σ2

∂2l
∂σ2∂σ2

0

∂2l
∂σ2

0∂σ
2
0


. (6.3)

Second derivative is obtained, again by computing differential on the first deriva-

tives. Take ∂lnψu,v

∂a∂aᵀ for example. The first derivative can be divided into three parts:

∂lnψ

∂a
= ν2AᵀV −1(y −Mµ)(y −Mµ)ᵀV −1Aa+ λAᵀV −1(y −Mµ)− ν2AᵀV −1Aa

= ν2T1 + λT2 − ν2T3,

dT1 = Aᵀd(V −1)Y Y ᵀV −1Aa+ (dY )Y ᵀV −1Aa+ AᵀY (dY )ᵀd(V −1)Aa,

+ AᵀV −1Y Y ᵀV −1Ada,

dT2 = Aᵀd(V −1)Y + AᵀV −1dY,

dT3 = Aᵀd(V −1)Aa+ AᵀV −1Ada.

Still, combine terms with da and (da)ᵀ. Every term containing da will be in the

form of PdaQ, where P is p×p matrix and Q is scalar. Then part of Hessian matrix

contributed by this term will be Q× P . Term associated with (da)ᵀ will be in the

form of P (da)ᵀQ, where P is a column vector and Q a column vector. Hessian

matrix contributed by this term should be outer product PQᵀ.



77

Thus we are able to derive all block matrices on the diagonal in equation (6.3):

∂lnψu,v
∂a∂aᵀ

= ν2u(M1 +M2 +M3) +M4 −M5

M1 = ν2uA
ᵀV −1AaaᵀAᵀV −1(y −Mµ)(y −Mµ)ᵀV −1A

− λuAᵀV −1(y −Mµ)aᵀAᵀV −1A+ ν2uA
ᵀV −1(y −Mµ)(y −Mµ)ᵀV −1AaaᵀAᵀV −1A

M2 = ν2uA
ᵀV −1AaᵀAᵀV −1(y −Mµ)(y −Mµ)ᵀV −1Aa

− λuAᵀV −1A(y −Mµ)ᵀV −1Aa+ ν2uA
ᵀV −1(y −Mµ)(y −Mµ)ᵀV −1AaᵀAᵀV −1Aa

M3 = AᵀV −1(y −Mµ)(y −Mµ)ᵀV −1A

M4 = λuν
2
u[AᵀV −1Aa(y −Mµ)ᵀA+ AᵀV −1AaᵀAᵀ(y −Mµ)]− λ2uAᵀV −1A

M5 = ν4u[AᵀV −1AaaᵀAᵀV −1A+ AᵀV −1AaᵀAᵀV −1Aa] + ν2uA
ᵀV −1A

∂lnψu,v
∂b∂bᵀ

= σ2
v(M1 +M2 +M3)−M4 +M5

M1 = σ2
vB

ᵀV −1BbbᵀBᵀV −1(y −Mµ)(y −Mµ)ᵀV −1B

− µvBᵀV −1(y −Mµ)bᵀBᵀV −1B + σ2
vB

ᵀV −1(y −Mµ)(y −Mµ)ᵀV −1BbbᵀBᵀV −1B

M2 = σ2
vB

ᵀV −1BbᵀBᵀV −1(y −Mµ)(y −Mµ)ᵀV −1Bb

− µvBᵀV −1B(y −Mµ)ᵀV −1Bb+ σ2
vB

ᵀV −1(y −Mµ)(y −Mµ)ᵀV −1BbᵀBᵀV −1Bb

M3 = BᵀV −1(y −Mµ)(y −Mµ)ᵀV −1B

M4 = µvσ
2
v [B

ᵀV −1Bb(y −Mµ)ᵀB +BᵀV −1BbᵀBᵀ(y −Mµ)]− µ2
vB

ᵀV −1B

M5 = σ4
v [B

ᵀV −1BbbᵀBᵀV −1B +BᵀV −1BbᵀBᵀV −1Bb] + σ2
vB

ᵀV −1B

∂lnψu,v
∂λu∂λu

= −(Aa)ᵀV −1Aa

∂lnψu,v
∂µv∂µv

= −(Bb)ᵀV −1Bb

∂lnψu,v
∂ν2u∂ν

2
u

= −1

2
(aᵀAᵀV −1Aa)2

∂lnψu,v
∂σ2

v∂σ
2
v

= −1

2
(bᵀBᵀV −1Bb)2

∂lnψu,v
∂σ2∂σ2

=
n

2σ4

(6.4)
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And these are the off-diagonal terms:

lnψu,v
∂a∂bᵀ

= ν2u(M1 +M2)−M3 +M4,

M1 = σ2
vA

ᵀV −1BbaᵀAV −1(y −Mµ)(y −Mµ)ᵀV −1B

− µvAᵀV −1(y −Mµ)aᵀAᵀV −1B + σ2
vA

ᵀV −1(y −Mµ)(y −Mµ)ᵀV −1BbaᵀAᵀV −1B,

M2 = σ2
vA

ᵀV −1BbᵀBᵀV −1(y −Mµ)(y −Mµ)ᵀV −1Aa

− µvAᵀV −1B(y −Mµ)ᵀV −1Aa+ σ2
vA

ᵀV −1(y −Mµ)(y −Mµ)ᵀV −1BbᵀBᵀV −1Aa,

M3 = λuσ
2
v [A

ᵀV −1Bb(y −Mµ)ᵀV −1B + AᵀV −1BbᵀBᵀV −1(y −Mµ)]− λuµvAᵀV −1B,

M4 = ν2uσ
2
v [A

ᵀV −1BbaᵀAᵀV −1B + AᵀV −1BbᵀBᵀV −1Aa],

∂lnψu,v
∂a∂λu

= 2ν2uA
ᵀV −1[λuAaa

ᵀAᵀ − Aa(y − λuBb)ᵀ]V −1Aa+ AᵀV −1(y −Mµ)− AᵀV −1Aa,

∂lnψu,v
∂a∂µv

= 2ν2uA
ᵀV −1[µvBbb

ᵀBᵀ −Bb(y − µvAa)ᵀ]V −1Aa− AᵀV −1Bb,

∂lnψu,v
∂a∂ν2u

= AᵀV −1(y −Mµ)(y −Mµ)ᵀV −1Aa,

+ ν2uA
ᵀV −1AaaᵀAᵀV −1(y −Mµ)(y −Mµ)ᵀV −1Aa

+ ν2vA
ᵀV −1(y −Mµ)(y −Mµ)ᵀV −1AaaAᵀV −1Aa

+ λuA
ᵀV −1AaaᵀAᵀV −1(y −Mµ)− AᵀV −1Aa− ν2uAᵀV −1AaaᵀAᵀV −1Aa,

∂lnψu,v
∂a∂σ2

v

= ν2uA
ᵀV −1BbbᵀBᵀV −1(y −Mµ)(y −Mµ)ᵀV −1Aa

+ ν2vA
ᵀV −1(y −Mµ)(y −Mµ)ᵀV −1BbbᵀBᵀV −1Aa

+ λuA
ᵀV −1BbbᵀBᵀV −1(y −Mµ)− ν2uAᵀV −1BbbᵀBᵀV −1Aa,

∂lnψu,v
∂a∂σ2

= ν2uA
ᵀV −1V −1(y −Mµ)(y −Mµ)ᵀV −1Aa

+ ν2vA
ᵀV −1(y −Mµ)(y −Mµ)ᵀV −1V −1Aa

+ λuA
ᵀV −1V −1(y −Mµ)− ν2uAᵀV −1V −1Aa.

(6.5)
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In Special case of U = V = 1, both natural growth and diarrhea multiplier

follows a Gaussian distribution. Then matrix (6.3) is in fact the Hessian matrix

of marginal likelihood defined in (6.1). As mentioned in Section 1.5, under some

regular conditions, F (θ) = E(H(θ)). And since

Y ∼ N(0,V ),

the Fisher information matrix is determined by these block matrices:

E(
∂2l

∂a∂aᵀ
) = ν4AᵀV −1AaaᵀAᵀV −1A+ ν4(aᵀAᵀV −1Aa)AᵀV −1A+ µ2

0A
ᵀV −1A,

E(
∂2l

∂a∂bᵀ
) = ν2σ2AᵀV −1AabᵀBᵀV −1B + ν2σ2(aᵀAᵀV −1Bb)AᵀV −1B + µ0µ1A

ᵀV −1B,

E(
∂2l

∂a∂ν2
) = ν2(aᵀAᵀV −1Aa)AᵀV −1Aa,

E(
∂2l

∂a∂σ2
) = ν2(aᵀAᵀV −1Bb)AᵀV −1Bb,

E(
∂2l

∂a∂σ2
0

) = ν2AᵀV −1V −1Aa,

E(
∂2l

∂ν2∂ν2
) = 0.5(aᵀAᵀV −1Aa)2,

E(
∂2l

∂σ2∂σ2
) = 0.5(bᵀBᵀV −1Bb)2,

E(
∂2l

∂σ2
0∂σ

2
0

) = 0.5Tr(V −1V −1),

E(
∂2l

∂ν2∂σ2
) = 0.5(aᵀAᵀV −1Bb)2,

E(
∂2l

∂ν2∂σ2
0

) = 0.5Tr(V −1AaaᵀAᵀV −1),

E(
∂2l

∂σ2∂σ2
0

) = 0.5Tr(V −1BbbᵀBᵀV −1).

For the more general cases where U 6= 1 or V 6= 1, the gradient of l with respect

to Bspline coefficient a, b is obtained by taking derivative to all combinations of



80

u, v. Take a for example:

∂l

∂a
=

∑
u,v 2puπvψ

2
u,v

∂lnψu,v

∂a∑
u,v puπvψ

2
u,v

−
∑

u,v puπvψu,v
∂lnψu,v

∂a∑
u,v puπvψu,v

(6.6)

The Hessian matrix can still be divided into blocks. These are the diagonal

blocks:

∂2l

∂a∂aᵀ
= 2

∑
u,v puπvψ

2
u,v(

∂lnψu,v

∂a∂aᵀ + 2[∂lnψu,v

∂a
][∂lnψu,v

∂a
]ᵀ)∑

u,v puπvψ
2
u,v

− 4

∑
u,v puπvψ

2
u,v

∂lnψu,v

∂a

∑
u,v puπvψ

2
u,v[

∂lnψu,v

∂a
]ᵀ

(
∑

u,v puπvψ
2
u,v)

2

−
∑

u,v puπvψu,v(
∂2lnψu,v

∂a∂aᵀ + [∂lnψu,v

∂a
][∂lnψu,v

∂a
]ᵀ)∑

u,v puπvψu,v

+

∑
u,v puπvψu,v

lnψu,v

∂a

∑
u,v puπvψu,v[

lnψu,v

∂a
]ᵀ

(
∑

u,v puπvψu,v)
2

∂2l

∂b∂bᵀ
= 2

∑
u,v puπvψ

2
u,v(

∂lnψu,v

∂b∂bᵀ
+ 2[∂lnψu,v

∂b
][∂lnψu,v

∂b
]ᵀ)∑

u,v puπvψ
2
u,v

− 4

∑
u,v puπvψ

2
u,v

∂lnψu,v

∂b

∑
u,v puπvψ

2
u,v[

∂lnψu,v

∂b
]ᵀ

(
∑

u,v puπvψ
2
u,v)

2

−
∑

u,v puπvψu,v(
∂2lnψu,v

∂b∂bᵀ
+ [∂lnψu,v

∂b
][∂lnψu,v

∂b
]ᵀ)∑

u,v puπvψu,v

+

∑
u,v puπvψu,v

lnψu,v

∂b

∑
u,v puπvψu,v[

lnψu,v

∂b
]ᵀ

(
∑

u,v puπvψu,v)
2

∂2l

∂ν2∂ν2
= 2

∑
u,v puπvψ

2
u,v(

∂lnψu,v

∂ν2∂ν2
+ 2[∂lnψu,v

∂ν2
][∂lnψu,v

∂ν2
])∑

u,v puπvψ
2
u,v

− 4

∑
u,v puπvψ

2
u,v

∂lnψu,v

∂ν2

∑
u,v puπvψ

2
u,v[

∂lnψu,v

∂ν2
]

(
∑

u,v puπvψ
2
u,v)

2

−
∑

u,v puπvψu,v(
∂2lnψu,v

∂ν2∂ν2
+ [∂lnψu,v

∂ν2
][∂lnψu,v

∂ν2
])∑

u,v puπvψu,v

+

∑
u,v puπvψu,v

lnψu,v

∂ν2

∑
u,v puπvψu,v[

lnψu,v

∂ν2
]

(
∑

u,v puπvψu,v)
2
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∂2l

∂σ2∂σ2
= 2

∑
u,v puπvψ

2
u,v(

∂lnψu,v

∂σ2∂σ2 + 2[∂lnψu,v

∂σ2 ][∂lnψu,v

∂σ2 ])∑
u,v puπvψ

2
u,v

− 4

∑
u,v puπvψ

2
u,v

∂lnψu,v

∂σ2

∑
u,v puπvψ

2
u,v[

∂lnψu,v

∂σ2 ]

(
∑

u,v puπvψ
2
u,v)

2

−
∑

u,v puπvψu,v(
∂2lnψu,v

∂σ2∂σ2 + [∂lnψu,v

∂σ2 ][∂lnψu,v

∂σ2 ])∑
u,v puπvψu,v

+

∑
u,v puπvψu,v

lnψu,v

∂σ2

∑
u,v puπvψu,v[

lnψu,v

∂σ2 ]

(
∑

u,v puπvψu,v)
2

∂2l

∂σ2
0∂σ

2
0

= 2

∑
u,v puπvψ

2
u,v(

∂lnψu,v

∂σ2
0∂σ

2
0

+ 2[∂lnψu,v

∂σ2
0

][∂lnψu,v

∂σ2
0

])∑
u,v puπvψ

2
u,v

− 4

∑
u,v puπvψ

2
u,v

∂lnψu,v

∂σ2
0

∑
u,v puπvψ

2
u,v[

∂lnψu,v

∂σ2
0

]

(
∑

u,v puπvψ
2
u,v)

2

−

∑
u,v puπvψu,v(

∂2lnψu,v

∂σ2
0∂σ

2
0

+ [∂lnψu,v

∂σ2
0

][∂lnψu,v

∂σ2
0

])∑
u,v puπvψu,v

+

∑
u,v puπvψu,v

lnψu,v

∂σ2
0

∑
u,v puπvψu,v[

lnψu,v

∂σ2
0

]

(
∑

u,v puπvψu,v)
2

The the off-diagonal blocks will follow similar pattern, we only list three typical

components in matrix, vector, scalar form respectively. The rest of block matrix can

be obtained using symmetry between paramters, and replace a for the corresponding
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variable.

∂2l

∂a∂bᵀ
= 2

∑
u,v puπvψ

2
u,v(

∂lnψu,v

∂a∂bᵀ
+ 2[∂lnψu,v

∂a
][∂lnψu,v

∂b
]ᵀ)∑

u,v puπvψ
2
u,v

− 4

∑
u,v puπvψ

2
u,v

∂lnψu,v

∂a

∑
u,v puπvψ

2
u,v[

∂lnψu,v

∂b
]ᵀ

(
∑

u,v puπvψ
2
u,v)

2

−
∑

u,v puπvψu,v(
∂2lnψu,v

∂a∂bᵀ
+ [∂lnψu,v

∂a
][∂lnψu,v

∂b
]ᵀ)∑

u,v puπvψu,v

+

∑
u,v puπvψu,v

lnψu,v

∂a

∑
u,v puπvψu,v[

lnψu,v

∂b
]ᵀ

(
∑

u,v puπvψu,v)
2

∂2l

∂a∂ν2
= 2

∑
u,v puπvψ

2
u,v(

∂lnψu,v

∂a∂ν2
+ 2[∂lnψu,v

∂a
][∂lnψu,v

∂ν2
])∑

u,v puπvψ
2
u,v

− 4

∑
u,v puπvψ

2
u,v

∂lnψu,v

∂a

∑
u,v puπvψ

2
u,v[

∂lnψu,v

∂ν2
]

(
∑

u,v puπvψ
2
u,v)

2

−
∑

u,v puπvψu,v(
∂2lnψu,v

∂a∂ν2
+ [∂lnψu,v

∂a
][∂lnψu,v

∂ν2
])∑

u,v puπvψu,v

+

∑
u,v puπvψu,v

lnψu,v

∂a

∑
u,v puπvψu,v[

lnψu,v

∂ν2
]

(
∑

u,v puπvψu,v)
2

∂2l

∂σ2∂ν2
= 2

∑
u,v puπvψ

2
u,v(

∂lnψu,v

∂σ2∂ν2
+ 2[∂lnψu,v

∂σ2 ][∂lnψu,v

∂ν2
])∑

u,v puπvψ
2
u,v

− 4

∑
u,v puπvψ

2
u,v

∂lnψu,v

∂σ2

∑
u,v puπvψ

2
u,v[

∂lnψu,v

∂ν2
]

(
∑

u,v puπvψ
2
u,v)

2

−
∑

u,v puπvψu,v(
∂2lnψu,v

∂σ2∂ν2
+ [∂lnψu,v

∂σ2 ][∂lnψu,v

∂ν2
])∑

u,v puπvψu,v

+

∑
u,v puπvψu,v

lnψu,v

∂σ2

∑
u,v puπvψu,v[

lnψu,v

∂ν2
]

(
∑

u,v puπvψu,v)
2

Efron and Hinkley (1978) demonstrate that for estimating scalar parameter θ,
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the conditional variance of θ̂n is better approximated by H̄n(θ̂n)−1 than by F̄n(θ̂n)−1.

For the more general matrix case, there is not yet a solid theoretical validation for

the better choice between F̄n(θ̂n)−1 and H̄n(θ̂n)−1 . In fact, people in practice

tend to choose one or the other, depending on which one is easier to obtain for

their problems (Cao, 2013). Due to the structure introduced by Gaussian mixture,

taking expectation of the Hessian matrix is difficult in the general case. Instead,

the observed Fisher information matrix can be utilized here: H̄n(θ∗)−1. It is the

Hessian matrix evaluated at the MLE θ̂n.
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