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Microresonator-based optical frequency combs for microwave
and millimeter-Wave applications

Beichen Wang

(ABSTRACT)

Optical frequency comb is a powerful technology that coherently links the optical

frequency and microwave frequency, and it has revolutionized metrology, time keep-

ing, spectroscopy, and ranging. In the past decade, the microresonator-based soliton

frequency combs, or soliton microcombs, have been extensively studied due to their

small footprint, wide optical span, and high coherence. One major advantage of these

microcombs is their high repetition-rate, ranging from GHz to 1 THz, which makes

them ideal candidates for a range of applications, including wavelength multiplexing,

self-referencing, and photonics-based high-speed RF oscillators. In this thesis, the

soliton microcombs are used to build coherent links between optical, mmWave, and

microwave frequencies. High-frequency millimeter-Waves are demonstrated with high

power and high coherence by directly photodetecting the microcombs on a ultrahigh-

speed photodiode. Significantly, the low noise of optical references can be coherently

divided down to the generated mmWaves using integrated optical frequency divi-

sion. On the other hand, the high repetition-rate can also bring challenges in its

accurate detection when the frequency is above the bandwidths of photodiodes and

electronics. In the later chapter of this thesis, an optical Vernier frequency division

approach based on dual-comb coherent sampling is developed to coherently divide

down the mmWave frequency to microwave frequency, which is used to count and
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stabilize the microcomb sub-THz rep-rate using GHz bandwidth optoelectronics. Ad-

ditionally, the microresonator dual-comb technique also enables the full electrical

spectrum control including its amplitudes, phases, and the corresponding temporal

waveforms. And an integrated photonics-based microwave arbitrary waveform gen-

erator was demonstrated with the potential to achieve high analog bandwidths and

large effective number of bits thanks to the high repetition-rates of microcombs.
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Chapter 1

Introduction

Millimetre-wave (mmWave; 30 GHz to 300 GHz) and sub-Terahertz wave (sub-THz;

0.1 THz to 1 THz) technology continue to draw great interest due to its broad applica-

tions in wireless communications, radar, spectroscopy, and imaging (Kleine-Ostmann

and Nagatsuma 2011; Koenig et al. 2013; Ghelfi et al. 2014; Schmalz et al. 2017).

Compared with existing microwave systems operating at lower frequencies, the high

carrier frequencies of mmWaves and sub-THz waves are advantageous to expand the

bandwidth and data capacity of wireless communications (Nagatsuma, Ducournau,

and Renaud 2016). For applications including radar, spectroscopy, and imaging

(Cooper et al. 2008; De Lucia, Petkie, and Everitt 2008), the shorter wavelengths of

mmWaves and sub-THz waves can also provide higher resolution. However, for pure

electronic solutions, the generation of higher carrier frequencies requires smaller oscil-

lator structures which leads to higher noise and lower output power. Consequently,

the high noise will reduce the effective data rate for wireless communications, and

limit the sensitivity in radar, spectroscopy, and imaging. Besides the carrier gener-

ation, modulation, filtering and multiplexing beyond 100 GHz are still challenging

for existing electronic solutions. In contrast, photonic oscillators operate at frequen-

cies of hundreds of THz and the frequency of the electrical signal produced by, e.g.,

the heterodyne detection of two lasers, is limited only by the photodiode bandwidth.

Together with their low power dissipation and low-loss fiber remoting, microwave
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photonics technologies have gained tremendous interest for the generation, process-

ing and distribution of microwave and mmWave signals in the past decades (Capmany

and Novak 2007; Yao 2009; Marpaung et al. 2013).

In a parallel research line, the optical frequency combs have been extensively studied

since it was introduced twenty years ago (Jones et al. 2000; Udem, Ronald Holzwarth,

and Hänsch 2002; Cundiff and J. Ye 2003; S. Diddams, Bergquist, et al. 2004; Scott

A Diddams 2010; Nathan R Newbury 2011). An optical frequency comb typically

consists of hundreds to thousands of equally spaced laser lines in the frequency do-

main. The frequency of each comb line can be expressed in terms of offset frequency

and repetition frequency, where the latter usually ranges from tens of MHz to tens

of GHz (Minoshima and Matsumoto 2000; Holzwarth et al. 2000; Fortier, Bartels,

and Scott A Diddams 2006; Steinmetz et al. 2008; Bartels, Heinecke, and Scott A

Diddams 2009; Carlson et al. 2018). Therefore, the optical frequency comb technol-

ogy coherently connects radio frequencies to optical frequencies, and has found its

tremendous applications including but not limited to, optical clocks (S. Diddams,

Udem, et al. 2001; S. Diddams, Bergquist, et al. 2004), optical frequency division

(OFD) (Fortier, Kirchner, et al. 2011), optical frequency synthesis (Holzwarth et al.

2000; Jones et al. 2000; Ma et al. 2004), optical arbitrary waveform generation (Z.

Jiang, Seo, et al. 2005; Cundiff and Weiner 2010), spectroscopy (Scott A Diddams,

Hollberg, and Mbele 2007; Ian Coddington, William C Swann, and Nathan R New-

bury 2008; Cingöz et al. 2012), and ranging (Coddington, William C Swann, et al.

2009). However, the repetition rate of conventional combs is limited by their size

and structural complexity, and does not extend to mmWave frequency. To date, 30

GHz is the highest repetition rate reported (Carlson et al. 2018). For high-frequency

mmWave or sub-THz technology, conventional combs usually require post-spectral
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filtering to remove unnecessary comb lines (Kuo et al. 2010; Wun et al. 2014), to

effectively achieve high comb repetition frequency, or Nyquist bandwidth (half of the

comb repetition frequency). This will nonetheless increase the complexity and costs

of the system.

The microresonator-based frequency combs (Del’Haye et al. 2007; Tobias J Kippen-

berg, Ronald Holzwarth, and S. Diddams 2011), also called as microcombs, are the op-

tical frequency combs recently demonstrated in ultra-high-Q microresonators (Kerry

J Vahala 2003). The typical microresonator diameters range from 10’s µm to several

mm, and the corresponding cavity free-spectral-range (FSR) /comb repetition rate

(rep-rate) ranges from 2 GHz to 1 THz (Suh and Kerry Vahala 2018; Q. Li et al. 2017;

M. H. P. Pfeiffer et al. 2017). In 2014, the dissipated Kerr soliton was discovered in

the microresonator (Herr, Brasch, et al. 2014). These solitary wave packets leverage

Kerr nonlinearity to compensate for cavity loss and to balance chromatic dispersion

(Akhmediev and Ankiewicz 2008; Leo et al. 2010; Herr, Brasch, et al. 2014). In fre-

quency domain, the soliton microcombs are equally distant and exhibit a sech2 shaped

smooth spectral envelope. The reduction of resonator mode volume increases the in-

tracavity Kerr nonlinearity, lowers the operation pump power and, extends the comb

spectrum span. This has enabled demonstrations of battery-operated soliton combs

at 194 GHz repetition rate (Stern et al. 2018), and octave-spanning soliton generation

for self-referencing in a resonator with 1 THz free-spectral-range (FSR) (Spencer et al.

2018). High repetition rates (rep-rates) are also desired in many comb-based applica-

tions. For instance, the maximum acquisition speed in dual-comb spectroscopy (Suh,

Q.-F. Yang, et al. 2016; Pavlov et al. 2017; Dutt et al. 2018), ranging (Trocha et al.

2018; Suh and Kerry J Vahala 2018), and imaging (Bao, Suh, and Kerry Vahala 2019;

Yi, Q.-F. Yang, K. Y. Yang, and Kerry Vahala 2018), all increase linearly with the
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comb repetition rate. In terms of microwave/mmWave generation, photodetecting the

soliton microcombs will convert the highly coherent optical solitons into mmWaves or

sub-THz oscillators at the frequency of the comb repetition frequency (Liang et al.

2015; J. Liu, Lucas, et al. 2020). In addition, the soliton microcombs oscillator can

also reduce the phase noise from its pump laser as a result of its unique noise transfer

mechanism (Yi, Q.-F. Yang, Xueyue Zhang, et al. 2017; Lucas et al. 2020).

In this thesis, several microwave and mmWave applications using integrated microres-

onator soliton frequency combs are explored. Here is an overview of the thesis chap-

ters:

Chapter 2 introduces the basics of optical microresonators, including free-spectral-

range, quality-factor, coupling regimes, cavity dispersion and nonlinearity. An exper-

imental characterization method of the microresonators is also briefly discussed.

Chapter 3 provides the theoretical background of the soliton microcombs, including

the analysis in both frequency domain and time domain. A simulation method is

included at the end of the chapter.

Chapter 4 describes the experimental demonstration of 100 GHz mmWave genera-

tion using soliton microcombs and high-speed MUTC-PD. The soliton provides 6 dB

higher power and two orders better coherence compared to the conventional hetero-

dyne detection approach. This work provides a viable path to chip-scale, high-power,

low-noise, high-frequency sources for integrated photonic mmWave applications.

Chapter 5 presents an integrated solution of optical frequency division to reduce

the phase noise of soliton repetition rate for low-noise mmWave generation. Both

reference cavity and soliton microresonator are integrated on Si3N4 platform. Our

preliminary results are given and discussed.
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Chapter 6 provides an integrated solution of sub-THz soliton microcombs repetition

rate detection using a dual-comb technique. A Vernier frequency division method

is developed to count and stabilize a 200 GHz signal using electronics with GHz

bandwidth.

Chapter 7 explores the power of the microresonator dual-comb coherent sampling.

A radio-frequency arbitrary waveform generator was realized by spectral line-by-line

shaping one of the optical soliton microcombs. Different arbitrary waveforms are

demonstrated. An analysis of the effective number of bits using the dual-comb ap-

proach is discussed.
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Chapter 2

Background of optical

microresonators

2.1 Introduction

Optical microresonator, or microcavity (Kerry J Vahala 2003), is a small photonic

device that can trap the light within its micro-scale circular structure through total

internal reflection. At certain optical frequencies, the light can keep circulating inside

the microresonator until it dissipates.

The dimension of a microresonator is typically at the scale of micrometers to mil-

limeters, which provides a small mode volume to accommodate the optical field. As

a result, the optical field will not only just stay inside the microresonator, but also a

portion of the optical field can overlap with anything placed near the optical mode.

Therefore, the effective refractive index of the optical field is relatively sensitive to

changes to its confinement structure.

On the other hand, low-loss is usually desired in optical microresonators to enhance

the light-matter interaction that can find applications such as cavity quantum elec-

trodynamics, biological/chemical sensing, and optomechanics (Kerry J Vahala 2003;

Hofer, Schliesser, and Tobias J Kippenberg 2010; Ward and Benson 2011). What else,
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the light energy can build up inside the low-loss microcavity by a few magnitudes of

order, and the high intracavity power can usually lead to strong nonlinear optical

effects.

In this chapter, I will introduce the key properties of microresonators including cavity

free-spectral-range, cavity loss and quality factor, dispersion, nonlinearity, and cou-

pling schemes. Experimental methods of characterizing these properties will also be

discussed.

2.2 Types of microresonators

There are several types of microresonators, including whispering-gallery mode (WGM)

resonators (A. Matsko et al. 2005), micro-ring resonators (Rabus 2007), photonic

crystal resonator (Altug and Vučković 2004), Fabry–Pérot microresonator (Obrzud,

Lecomte, and Tobias Herr 2016), etc.

Whispering-gallery mode (WGM) resonators include micro-toroids [SiO2 (Del’Haye

et al. 2007)], micro-disks [SiO2 (Yi, Q.-F. Yang, K. Y. Yang, Suh, et al. 2015)], micro-

spheres [SiO2 (Mikhail L Gorodetsky, Savchenkov, and Vladimir S Ilchenko 1996)],

micro-rods [MgF2 (Herr, Brasch, et al. 2014), SiO2 (S. Zhang, Silver, Del Bino, et al.

2019)]. The light can be coupled into this type of resonator via an optical tapered

fiber. Typically, the WGM resonators have very low material losses, which will give

a very high quality factor over 108 (the concept of Q-factor will be introduced in a

later section).

Micro-ring resonators are closed-loop waveguides, and the light can be coupled in and

out through bus-waveguides that are integrated near the ring-resonator. With that
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being said, the microring resonators can have different geometrical shapes including

ring (Gondarenko, Levy, and Lipson 2009), racetrack (Long Zhang et al. 2020), etc.

Due to its compatibility with integration, the micro-ring resonators have been studied

at different material platforms including Si3N4 (Brasch et al. 2016), Si (Griffith et al.

2015), AlN (Gong et al. 2018), AlGaAs (Chang et al. 2019), LiNbO3 (He et al. 2019).

The qualify factor of micro-ring resonators is usually at the order of 106.

2.3 Cavity free-spectral-range (FSR)

Light can circulate inside the microresonator if its frequency is on cavity resonance

frequency. This can be satisfied when the optical path of a cavity roundtrip equals

an integer times the light wavelength:

2πnr = mλm (2.1)

where n is the refractive index, r is the radius of the microresonator, and λm is the m-

th resonance wavelength in the vacuum. Using light frequency-wavelength conversion

ν = c/λ where c is the speed of light, the resonant frequency is given by

νm = m
c

2πnr
(2.2)

The free-spectral-range (FSR), known as the frequency spacing between two neigh-

bouring resonant modes, is

FSR =
c

2πnr
(2.3)
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At first sight, FSR looks like a constant value. However, the refractive index in most

materials changes with wavelength due to the dispersion effect. As a result, FSR also

changes with the optical wavelength.

The cavity roundtrip time is equal to the inverse of the FSR,

tR =
2πnr

c
=

1

FSR
. (2.4)

2.4 Cavity loss, Q-factor, and finesse

Cavity loss

There are a variety of losses happening inside the optical microresonators when light

is traveling inside them, such as

• Material absorption (material intrinsic loss, fabrication impurities...),

• Scattering (sidewall, fabrication imperfections...),

• Radiation (small radius),

• Coupling to other optical modes,

• Coupling to other waveguides.

· · ·

It is conventional to consider the first four sources as cavity intrinsic loss, and the

last term as coupling loss. Because of these losses, the energy of the optical field will

decay exponentially inside the microresonator at a rate of κ (in radian),
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dEstored
dt

= −κEstored (2.5)

Assuming there is no pump source feeding into the cavity, an analytical solution of

the stored energy can be expressed over time,

Estored(t) = Estored(0)e
−κt (2.6)

The lifetime of the light inside the cavity can be defined when its energy decayed to

1/e of the initial energy at t = 0,

tL = 1/κ (2.7)

which is the inverse of the dissipation rate κ.

Q-factor

An important factor of microresonators to characterize cavity loss is called the quality

factor (Q-factor). There are two common definitions for Q, and we will see they are

equivalent to each other. The first one is using the ratio between the optical angular

frequency (ω = 2πν) and the energy dissipation rate,

Q =
ω

κ
=

ν

κ/2π
(2.8)

The second definition uses the ratio between the initial stored energy inside the cavity

and the energy dissipation within one optical cycle period (T = 2π/ω),
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Q = 2π
Estored(0)
dEstored

dt
× T

=
ω

κ
(2.9)

which gives the same result as Equation 2.8.

Finesse

Another important parameter of the resonator, finesse F, is defined with 2π times

the ratio between FSR and the resonance linewidth (which is equivalent to κ, this

will be explained in a later section),

F = 2π
FSR

κ
= 2π

tL
tR

(2.10)

which relates to how many roundtrips the light can travel inside the cavity within

its lifetime. In an ideal cavity with no loss κ = 0, the light can circulate infinitely

(F = ∞).

2.5 Coupling light to microresonator

To study the optical phenomenon inside the cavity, one needs to couple the light into

the microresonator. Different coupling approaches have been realized including prism

coupling (M. Gorodetsky and V. Ilchenko 1994), tapered fiber coupling (Spillane et

al. 2003), and bus waveguide coupling (M. H. Pfeiffer, J. Liu, et al. 2017).
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Figure 2.1: Diagram of coupling between waveguide and microresonator.

2.5.1 Modelling of the light propagation inside the microres-

onator

Here, a diagram of waveguide coupling to microring resonator is shown in Fig. 2.1:

i) For waveguide coupling, the pump light needs to be first coupled to the input port

of the bus waveguide through a lensed fiber or a grating coupler. An efficient fiber-

to-waveguide coupling is typically considered with an insertion loss of 2 dB or below

per facet.

ii) Then, the light is coupled in the micro-ring resonator from the bus waveguide

through evanescent coupling. The coupling rate is described as κext, which is deter-

mined by the overlapping between the optical modes between two waveguides. In the

experiment, one can vary κext by adjusting the waveguide width, coupling interaction

length, and the gap distance between resonator waveguide and bus waveguide.

iii) The light circulates inside the microresonator when its frequency is on cavity
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resonance. Its energy decays due to intrinsic loss κ0, which is caused by material

absorption, scattering, or radiation loss.

iv) The light is coupled out from the micro-ring resonator to the bus waveguide

through evanescent coupling with the same coupling rate κext.

v) Finally, the light can be coupled out from the output port of the bus waveguide

and collected by another lensed fiber or grating coupler.

2.5.2 Theoretical analysis of spectral transmission and reso-

nance linewidth

The optical field inside the microresonator experiences intrinsic loss κ0 and coupling

loss κext, as well as a driving field from the pump light. Its propagation equation can

be described as

dA(t)

dt
= −κ0 + κext

2
A(t) +

√
κextSine

−i(ω−ω0)t. (2.11)

It is worth noting that this equation is normalized by single photon energy h̄ω0 (ω0

is the cavity resonant frequency), so that |A(t)|2 is in the unit of the photon number

and A(t) represents the normalized field amplitude inside the cavity. |Sin|2 = Pin/h̄ω0

is in the unit of the pump laser photon number per second in the bus waveguide by

normalizing the input pump power Pin by h̄ω0. The pump field is coupled to the

cavity through a rate of √κext. By writing κ = κ0 + κext and switching the field into

a relative frequency frame by a(t) = A(t)ei(ω−ω0)t, Equation 2.11 can be written as
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da(t)

dt
= −i(ω0 − ω)a− κ

2
a+

√
κextSin. (2.12)

The steady-state solution (da(t)/dt = 0) of the intracavity field is given by,

a =

√
κext

i(ω0 − ω) + κ/2
Sin (2.13)

and the photon number inside the cavity is

|a|2 = κext
(ω0 − ω)2 + κ2/4

|Sin|2 =
κextPin/h̄ω0

(ω0 − ω)2 + κ2/4
. (2.14)

The intracavity power can be calculated by the ratio between the intracavity energy

and the cavity roundtrip time h̄ω0|a|2/tR, and the power enhancement G from the

input pump power to the intracavity built-up power is given by

G =
h̄ω0|a|2/tR

Pin
=

κext/tR
(ω0 − ω)2 + κ2/4

. (2.15)

For the special case of κ0 = κext = κ/2 (critical coupling) and ω = ω0 (pump laser is

on resonance) the power enhancement is

G = 2
1

tRκ
=

2FSR

κ
= F/π. (2.16)

The normalized output field is given by

sout = sin −
√
κexta, (2.17)
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and the power transmission results in

T (ω) =
|sout|2

|sin|2
= 1− κ0κext

(ω0 − ω)2 + (κ0 + κext)2/4
. (2.18)

Therefore, the transmission of the cavity resonance has a Lorentzian lineshape in the

frequency domain, as shown in Fig. 2.2. The full width at half minimum of the

resonance dip equals to the total loss κ = κ0 + κext.

Figure 2.2: Cavity resonance transmission. κ0 = κext = 2π× 1 MHz is set as an
example.

2.5.3 Different coupling regimes

It is conventional to describe the coupling strength using the ratio between the cou-

pling loss κext and the total loss κ = κ0 + κext,

η =
κext
κ

(2.19)

and depending on the coupling strength, the coupling condition can be divided into
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three regimes:

Under-coupling κext < κ0

In the under-coupling regime, coupling strength η < 0.5. The coupling rate is slower

than the cavity intrinsic loss rate. The transmission T > 0 happens when laser is on

resonance (ω = ω0).

Critical-coupling κext = κ0

In the critical-coupling regime, coupling strength η = 0.5. The coupling rate is equal

to the cavity intrinsic loss rate. The transmission T = 0 happens when laser is on res-

onance (ω = ω0), which means the transmission from the waveguide output vanishes

as a result of the interference between the transmitted pump field and the cavity field

coupled to the waveguide. Due to the energy conservation law, the intracavity power

will be the highest in the critical-coupling regime.

Over-coupling κext > κ0

In the over-coupling regime, coupling strength η > 0.5. The coupling rate is faster

than the cavity intrinsic loss rate. The transmission T > 0 happens when laser is on

resonance (ω = ω0).

For WGM resonators, the coupling rate κext can be conveniently controlled in the

experiment by adjusting the distance between the tapered fiber and the microres-

onator. However, for micro-ring resonators, the gap distance is fixed after the fabri-

cation process. To reach different coupling regimes, one usually needs to design an

array of micro-ring resonators with scanning gap distances to the bus waveguides if

the intrinsic loss rate is unknown or not predictable in certain fabrication processes.
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2.5.4 Drop-port configuration

Figure 2.3: Diagram of coupling between waveguide and microresonator
with drop-port.

The model described above applies to the case that the microresonator is coupled to

a single bus-waveguide or a tapered fiber, which is called a through-port geometry.

Sometimes, a drop-port can be added for purposes of optical filters. In this case, the

light can escape the cavity from both through-port κext1 and drop-port κext2. To reach

the critical coupling condition on the through-port, the condition κext1 = κ0 + κext2

needs to be satisfied.

2.6 Cavity dispersion and resonance spectrum

In a microresonator, the cavity can usually accommodate different transverse mode

families depending on the dimensions and shapes of the microresonator. It is also
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possible to design a single-mode waveguide for micro-ring resonators that can only

support fundamental modes, such as TE00 and TM00.

For each mode family, it consists of a series of longitudinal modes whose frequencies

are separated by one FSR in the frequency domain. However, as a result of the

dispersion, the refractive index is changing with the optical frequency. And the

cavity FSR is not a constant in the frequency domain. To describe the resonant

frequencies of a certain transverse mode family, one can first select one arbitrary

resonance frequency ω0 as the center frequency, and express its neighboring resonant

frequencies ωµ using Taylor expansion,

ωµ = ω0 +D1µ+
D2

2
µ2 +

∞∑
j=3

Dj

j!
µj (2.20)

where µ = 0,±1,±2, ... is the relative mode number to the center mode, and Dj

is the j-th order dispersion. D1/2π is the cavity FSR of the 0-th mode. D2 is the

cavity group velocity dispersion and can be connected to the second-order dispersion

β2 of optical waveguides using D2 = −(c/n)β2D
2
1. It is conventional to say the cavity

dispersion is anomalous when D2 > 0 (β2 < 0, and the cavity dispersion is normal

when D2 < 0 (β2 > 0). Sometimes, all the dispersion terms except for the FSR term

can be expressed as a summation called integrated dispersion,

Dint =
∞∑
j=2

Dj

j!
µj (2.21)

and one can tailor the dispersion (dispersion-engineering) by adjusting the geometry

of the microresonator.
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2.7 Cavity nonlinearity

When light propagates in the cavity, the light electrical field can affect the cavity

material dielectric polarization density, which can be expressed in Taylor expansion,

P = ϵ0(χ
(1)E + χ(2) : EE + χ(3)...EEE + · · · ) (2.22)

where �0 is the vacuum permittivity and χ(n) is an (n+ 1)-th rank tensor that repre-

sents the n-th order of the electric susceptibility.

When the light intensity is low inside the cavity, the first term χ(1) dominates and

provides a linear polarization response to the material. χ(1) is equal to ϵr − 1 where

ϵr is the relative permittivity of the dielectric materials.

When the light intensity is high, the higher-order terms χ(2), χ(3), ... can be dominat-

ing. Microresonator is an ideal platform to study the nonlinear optics as the optical

power can build up easily with high cavity FSR and low loss. The second term χ(2)

provides a second-order nonlinear polarization that quadratically changes with light

electrical field. And the frequency component of the polarization is the sum of the

frequencies of two interacting light electrical fields. As a result, new frequencies can

be generated through three-wave-mixing process such as frequency doubling, sum and

difference frequency generation, optical parametric oscillation, etc. However, χ(2) is a

non-zero value only when the material crystal is non-centrosymmetric. Such materials

are not very common, including LiNbO3 and AlN.

The third term χ(3) provides a third-order nonlinear polarization that changes with

the cubic of light electrical field. Most materials in nature has non-zero χ(3). The

frequency components of the third-order polarization is the sum of the frequencies of
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three interacting light electrical fields. As a result, new frequencies can be generated

through four-wave-mixing process.

2.8 Experimental characterization of microresonators

Characterizing microresonators is the first step before using them in the experiment.

The most important cavity parameters include Q-factor, free-spectral-range, and dis-

persion. They can be characterized by different experimental approaches. Here, a

widely used method using calibrated fiber Mach-Zehnder interferometer (MZI) will

be introduced. It serves as a frequency reference and can measure all the parameters

mentioned above.

The MZI used in our experiment is a fiber-based interferometer with two unbalanced

arms. One can easily construct it by combining two 50/50 fiber couplers and adding a

fiber delay ∆L in one of the arms. When sending laser into it, the laser gets split into

two optical paths by the first 50/50 coupler, and one of them accumulates more phase

due to the fiber delay. Then they are combined by the second 50/50 coupler, and

their interference output is sent to a photodetector (PD). The PD signal is recorded

on an oscilloscope. When sweeping the laser frequency, the MZI interference pattern

will be present on oscilloscope due to the relative phase changes between two arms.

The free-spectral-range of the interferometer (the frequency separation between two

interference peaks) can be approximately expressed by FSRMZI = c/n∆L. Similar to

cavity FSR, the interferometer FSR is not a constant value due to the fiber dispersion.

Therefore, a proper dispersion calibration is necessary. For a 2-meter fiber delay,

FSRMZI is around 100 MHz.
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Figure 2.4: Experimental characterization of cavity Q-factor. (a) Experimen-
tal setup. (b) Example of the measured transmission of a 7 million Q microresonator.

To characterize the quality factor of the microresonator, the laser can be split by

a 90/10 fiber coupler, where 90% goes to the microresonator then a photodetector,

and 10% goes to the fiber MZI (Fig. 2.4). With knowing the interferometer FSR,

one can monitor the laser frequency change in real time, and use it as a reference to

calibrate the microcavity resonance linewidth and calculate the quality factor using

Equation 2.8.

To characterize the resonance spectrum within a wide laser frequency scanning range,

it is also convenient to use fiber MZI to calibrate the frequency separation between

neighbouring resonances. The dispersion can be also obtained using the data retrieved

from the resonance spectrum measurement. In most cases, the integrated dispersion

is dominated by group velocity dispersion D2 as higher-order dispersion coefficients

are small. Therefore, the integrated dispersion will exhibit a parabolic shape by
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extracting the D1 term from the resonance frequency data,

Dint = ωµ − ω0 −D1µ =
D2

2
µ2 +

∞∑
j=3

Dj

j!
µj ∼ D2

2
µ2 (2.23)

and D2 can be calculated with a proper parabolic fitting. An example is given in Fig.

2.5
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Figure 2.5: Mode spectrum measurement using laser wide range scanning
method. A 100 GHz FSR SiN microresonator is characterized with a dispersion
D2/2π = 0.75 MHz.
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Chapter 3

Background of microresonator

soliton frequency combs

3.1 Introduction

The microresonator frequency comb (microcombs) was first demonstrated in 2007

(Del’Haye et al. 2007). The high quality-factor and small mode volume of microres-

onators make it an ideal platform for studying cavity nonlinear optics such as fre-

quency comb generation. On the other hand, due to the small size of the microres-

onators, the optical frequency comb technology became possible to be integrated on

a photonic chip (Herr, Brasch, et al. 2014; Brasch et al. 2016; Xiang, J. Liu, et al.

2021; W. Jin et al. 2021).

The microcombs can be formed using cavity Kerr effect. The Kerr effect can induce

four-wave-mixing process, which converts the photons from the pump laser to new

photons in other cavity longitudinal modes through four-wave-mixing process. In

addition to the pump gain and cavity nonlinearity, the microcombs also experience

cavity dispersion and cavity loss. The soliton microcomb is a special type of micro-

combs as a result of the double balance of cavity dispersion with cavity nonlinearity

and cavity loss with Kerr-induced nonlinear gain (Herr, Brasch, et al. 2014; Brasch

et al. 2016; Tobias J Kippenberg, Gaeta, et al. 2018). In time domain, it is in the
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form of a train of optical wavepackets that maintain its pulse shape when circulating

inside the cavity. In frequency domain, the soliton microcombs feature a hyberbolic

secant shaped spectral envelope and its frequency lines are equally spaced by roughly

one cavity FSR. To date, soliton microcombs have been used in many applications,

including spectroscopy (Suh, Q.-F. Yang, et al. 2016; Pavlov et al. 2017; Dutt et al.

2018), ranging (Trocha et al. 2018; Suh and Kerry J Vahala 2018), and imaging (Bao,

Suh, and Kerry Vahala 2019; Yi, Q.-F. Yang, K. Y. Yang, and Kerry Vahala 2018).

In this chapter, the dynamics of microcombs will be introduced in both frequency

domain and time domain theoretically, and the numerical simulation method is then

given.

3.2 Four-wave-mixing through Kerr nonlinearity

A single frequency continuous-wave (c.w.) pump laser can be used to generate mi-

croresonator frequency comb with hundreds of frequency lines. The principle be-

hind the comb generation is based on four-wave-mixing (FWM), which relies on

the third-order nonlinear effect (Kerr effect) in the cavity. FWM describes that

three light waves with same or different frequencies f1, f2, f3 can interact with each

other through nonlinear effect, and generate a fourth light wave with new frequencies

f4 = |f1 ± f2 ± f3|. The energy conservation is met in this process.

Comb generation based on FWM process can be intuitively understood if we look at

the laser in the quantum picture of photons. When the pump laser is coupled into

the resonator, two pump photons with same frequency ωp) can interact with a signal

photon (rising from quantum noise) with frequency ωs, and generate an idler photon

with frequency ωi = 2ωp−ωs. Vice versa, the two pump photons can also interact with
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an idler photon and generate a signal photon with frequency ωs = 2ωp − ωi. This

process involving two pump photons with the same frequency is called degenerate

FWM, which happens at the early stage of comb generation.

Then, the non-degenerate FWM process can happen when the pump photon, signal

photon, and idler photon interact with each other and generate another new photon

whose frequency is ωp + ωs − ωi or ωp + ωi − ωs. Such effects can also cascaded and

more and more photons with new frequencies can be generated through degenerate

FWM and non-degenerate FWM. A nice illustration and explaination can be found in

(Herr, Hartinger, et al. 2012), and more complex FWM situations can be found there.

In general, the four-wave-mixing process can occur for any interacting three waves.

However, the phase matching condition k4 = k1 + k2 − k3 has to be satisfied for the

efficient generation of the fourth wave, where the dispersion needs to be considered.

Note that only those photons whose frequencies are on cavity resonances can stay

inside the microresonator, while the rest will dissipate due to the high loss. Therefore,

one will see the laser lines exhibiting a comb structure in the frequency domain, so

called microresonator frequency comb.

3.3 Coupled mode equations

Coupled mode equations can be used to analytically describe the microresonator

comb formation in the frequency domain. The equations of motion for the field of

µ-th mode Aµ can be written as (T. J. A. Kippenberg 2004; Chembo and N. Yu 2010;

Herr, Hartinger, et al. 2012),
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dAµ
dt

= −(iωµ + κ/2)Aµ + δ0,µ

√
κextPin
h̄ω0

e−iωpt + ig
∑

µ1,µ2,µ3

Aµ1Aµ2A
∗
µ3
, (3.1)

where ωµ is the angular frequency of Aµ, κ = κ0 + κext is the total dissipation rate

equal to the sum of intrinsic loss rate and external coupling rate. Pin is the power of

the pump laser on chip. ω0 and ωp are the angular frequencies of the pumped cavity

resonance and the pump laser, and δ0,µ means only the field A0 gains from the pump

laser directly. Note that the equation is normalized by single photon energy h̄ω0 so

that |Aµ|2 is in the unit of photon number. g = h̄ω2
0cn2/n

2
0Veff is the equivalent

Kerr nonlinear coefficient in the microresonator where c, n2, n0, Veff are the speed of

light in vacuum, Kerr nonlinear refractive index, refractive index, and effective cavity

mode volume, respectively. The last term represents the four-wave-mixing nonlinear

process.

The fast oscillation ωµ term in this equation can be eliminated by choosing a relative

frequency frame of aµ = Aµe
−i(ωp+D1µ)t (D1/2π is the cavity FSR at pumped mode

frequency),

daµ
dt

= −(iωµ − iωp − iD1µ+ κ/2)aµ + δ0,µf + ig
∑

µ1,µ2,µ3

aµ1aµ2a
∗
µ3
e−iD1(µ1+µ2−µ3−µ)t,

(3.2)

where f =
√
κextPin/h̄ω0 is the normalized pump power. In microresonators, the

dissipation rate is usually much smaller than FSR κ ≪ D1. Therefore, the four-

wave-mixing term oscillates fast compared to the field evolution rate κ. Only when

µ = µ1 + µ2 − µ3, the four-wave-mixing term has non-zero contribution. Therefore,

Equation 3.2 can be further reduced to,
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daµ
dt

= −(iωµ − iωp − iD1µ+ κ/2)aµ + δ0,µf + ig
∑
µ1,µ2

aµ1aµ2a
∗
µ1+µ2−µ, (3.3)

Although there is no exact solution known to the equation, it can provide some

important information of the comb formation. For example, the threshold of the

parametric oscillation can be derived from Equation 3.3 when only considering the

pump mode µ = 0 and a pair of the primary sidebands (signal and idler) µ = ±m (T.

Kippenberg, Spillane, and Vahala 2004; Chembo and N. Yu 2010; Herr, Hartinger,

et al. 2012)

Pth =
πn0ω0Seff
4ηn2D1Q2

(3.4)

where the pump power is inversely proportional to the FSR = D1/2π, and follows

inverse-square law with the qualify factor Q = ω0/κ. At the same time, the mode

number of the primary sidebands can be derived as a result of the dispersion, loss

rate, and the ratio between pump power and threshold (Herr, Hartinger, et al. 2012),

m =

√
κ

D2

(

√
Pin
Pth

− 1 + 1) (3.5)

3.4 Lugiato-Lefever equation

While coupled mode equations are used to describe the microcombs dynamics in the

frequency domain, it is also natural to consider the microcomb evolution in the time

domain by applying discrete Fourier transform,
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A(ϕ, t) =
∑
µ

aµ(t)e
iµϕ (3.6)

where A(ϕ, t) is the overall optical amplitude at the azimuthal angle ϕ in the mi-

croresonator. Its evolution over time can be obtained by substituting Equation 3.6

into Equation 3.3 (Chembo and Menyuk 2013),

dA(ϕ, t)

dt
= i

D2

2

∂2A

∂ϕ2
+ ig|A|2A− iδωA− κ

2
A+ f (3.7)

where δω is the resonance-pump detuning and D2 is the cavity dispersion. This is the

same form as the Lugiato-Lefever equation (LLE) (Lugiato and Lefever 1987).

3.5 Approximated solutions of soliton microresonator

frequency combs

No exact solutions are known to Equation 3.7. However, an analytical stationary

solution (dA/dt = 0) can be derived in the absence of loss and pump gain (κ, f = 0),

dA(ϕ, t)

dt
− i

D2

2

∂2A

∂ϕ2
− ig|A|2A+ iδωA = 0 (3.8)

with a soliton solution in the hyperbolic secant form,

A = Bsech( ϕ
ϕτ

) (3.9)

whereB is the soliton amplitude and ϕτ is the pulse width in the azimuthal coordinate.
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In real time frame, the pulse width is τs = ϕτ/D1 Although the pump and loss

are not considered, it is still beneficial to plugging the unperturbed soliton solution

Equation 3.9 into Equation 3.8 and understand how the dispersion, nonlinearity, and

detuning affects the soliton properties,

(
D2

2ϕ2
τ

− δω) + (gB2 − D2

ϕ2
τ

)sech2(ϕ/ϕτ ) = 0 (3.10)

which gives relations of,

D2

2ϕ2
τ

= δω (3.11)

gB2 =
D2

ϕ2
τ

(3.12)

It can understood that in a stationary soliton state, a portion of the cavity dispersion

can be compensated by the cavity detuning, and the rest of dispersion can be balanced

by the cavity Kerr nonlinearity. Also, Equation 3.12 and Equation 3.11 indicate that

an anomalous cavity dispersion D2 > 0 and red-detuned regime δω = ω0 − ωp > 0

are required for bright soliton existence in the cavity.

For the case including the cavity loss and pump gain, one can treat them as a pertur-

bation and calculate approximated analytical solutions using Lagrangian variation

method (Andrey B Matsko and Maleki 2013; Herr, Brasch, et al. 2014; Yi, Q.-F.

Yang, K. Y. Yang, and Kerry Vahala 2016). The ansatz of Equation 3.7 is,

A(ϕ, t) = Bsech(ϕ/ϕτ )eiφ (3.13)
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where φ is the phase of soliton envelope relative to the pump. The Lagrangian method

gives relation of

B =

√
2δω

g
(3.14)

ϕτ =

√
D2

2δω
(3.15)

cosφ =
κB

πf
=

√
2δω

g

κ

πf
(3.16)

It can be seen that the soliton amplitude and pulse width is a function of detuning

that can be controlled in experiment, but their product Bϕτ =
√

D2

g
is a fixed value

that is determined by the cavity dispersion and nonlinear coefficients. While the

first two relations are equivalent to the Equation 3.11 and Equation 3.12 that are

calculated under no pump and loss assumption, the Lagrangian method gives the

third relation which sets a maximum detuning of (considering |cosφ| ≤ 1),

δω ≤ gπ2f 2

2κ2
(3.17)

The maximum detuning range is a function of the normalized pump field f . In

experiment, when the detuning is larger than the maximum value δωmax = gπ2f 2/2κ2,

the soliton is no longer a solution to the LLE equation and cannot maintain in the

cavity.
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3.6 Numerical simulation methods

The numerical simulations of the microcombs dynamics can be done with either

coupled mode equations using fourth-order Runge–Kutta method (Chembo and N.

Yu 2010; Hansson, Modotto, and Wabnitz 2014)n, or LLE equation with split-step

Fourier method (G. P. Agrawal 2007; Chembo and Menyuk 2013). Both methods

can be equally efficient when considering the nonlinear (Kerr nonlinearity) evolution

in time domain and linear evolution (dispersion, loss) in frequency domain. In this

section, the split-step Fourier method is provided.

Usually, it is preferred to normalized the LLE equation to simulate a class of cases

with different parameters. Here, it can be done by taking t = 2τ/κ, ϕ =
√

2D2/κθ

and A =
√
κ/2gψ, where τ , θ and ψ are the normalized time, azimuthal angle and

optical field (Herr, Brasch, et al. 2014),

dψ(θ, τ )

dτ
=
i

2

∂2ψ

∂θ2
+ i|ψ|2ψ − (iζ + 1)ψ + f̃ (3.18)

where ζ = 2δω/κ and f̃ =
√

8g/κ3f are the normalized detuning and pump field.

|f̃ |2 corresponds to the threshold power of parametric oscillation in Equation 3.4.

Considering a small time step ∆τ , the field evolution from ψ(θ, τ ) to ψ(θ, τ +∆) can

be divided into three steps:

Step 1: Calculate the Kerr nonlinearity in time domain by ∆τ by using equation

dψ(τ)

dτ
= i|ψ|2ψ (3.19)

which gives
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ψN(τ +∆τ) = ei|ψ|
2∆τψ(τ) (3.20)

Step 2: Calculate the dispersion, damping (loss), and detuning in frequency domain

using the Fourier transform of Equation 3.18

dψ̃(τ)

dτ
= −iµ

2

2
ψ̃ − (iζ + 1)ψ̃ (3.21)

where we have used the property of the discrete Fourier transform FFT ( i
2
∂2ψ
∂θ2

) =

−iµ2
2
FFT [ψ(θ, τ )]. Then it gives

ψD(τ + δτ) = IFFT [e−(1+iζ+iµ
2

2
)∆τFFT [ψN(τ +∆τ)]] (3.22)

Step 3: Calculate the pump term in time domain

ψ(τ +∆τ) = ψD(τ + δτ) + f̃∆τ (3.23)

Repeating the steps above, one can simulate the comb dynamics over time based

on LLE equation. Note that proper seeding is required to initiate the modulation

instability. For example, one can set half photon in each mode as the seeding to

mimic the quantum noise in the cavity. Depending on the number of optical modes

and the number of time steps, the simulation take from a minute to a few hours.

For example, 200 modes with 1 million time steps can take about one minute on a

personal computer.
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Chapter 4

High-power, high-coherence

100GHz mmWave generation using

integrated microcombs and

high-speed photodiodes

4.1 Introduction

The millimeter-waves (mmWaves) technology has gained tremendous interest in recent

years thanks to the increasing demand in wireless communications, radar, sensing,

and imaging. (Cooper et al. 2008; Kleine-Ostmann and Nagatsuma 2011; Koenig

et al. 2013). Photonic microwave technology provides an attractive solution thanks

to its wide bandwidth, low power dissipation, and remoting through low-loss fiber.

However, the performance of power and coherence for photonic mmWave systems,

e.g. heterodyne detection of two lasers, are being held back fundamentally at high

frequencies by (1) the power roll-off of photodiodes associated with the photodiode’s

bandwidth, and (2) the inability to stabilize laser beat note due to the high frequency.

The recent development of dissipated Kerr solitons in microresonators(Herr, Brasch,
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et al. 2014; Yi, Q.-F. Yang, K. Y. Yang, Suh, et al. 2015; Brasch et al. 2016; Gong

et al. 2018; Gaeta, Lipson, and Tobias J Kippenberg 2019; He et al. 2019) provides an

integrated solution to address the challenges of photonic-generated mmWaves in both

power and coherence. These solitary wave packets achieve mode-locking by leverag-

ing Kerr nonlinearity to compensate cavity loss and to balance chromatic dispersion

(Herr, Brasch, et al. 2014; Tobias J Kippenberg, Gaeta, et al. 2018). Microresonator

solitons have been applied to metrology (Spencer et al. 2018), optical communications

(Marin-Palomo et al. 2017) and spectroscopy(Suh, Q.-F. Yang, et al. 2016; Dutt et al.

2018) in the form of microresonator-based frequency combs (microcombs)(Del’Haye et

al. 2007). Due to the miniaturized dimension, the repetition rate of microresonator

solitons ranges from a few GHz to THz (Suh and Kerry Vahala 2018; Q. Li et al.

2017). Direct detection of the solitons with a fast photodiode produces mmWave at

the repetition frequency of the solitons. When compared with the conventional two

laser heterodyne detection method, the soliton mode-locking provides up to 6 dB gain

in mmWave output due to the constructive interference among beatnotes created by

different pairs of neighboring comb lines (Kuo et al. 2010). This additional gain is of

great importance at high frequencies, since it can relax the bandwidth requirements

in the photodiode. In terms of signal coherence, recent studies have shown that the

phase noise of the soliton repetition frequency at 10’s of GHz can be orders of mag-

nitude smaller than that of its pump laser (Liang et al. 2015; Yi, Q.-F. Yang, K. Y.

Yang, Suh, et al. 2015; Yi, Q.-F. Yang, Xueyue Zhang, et al. 2017; J. Liu, Lucas,

et al. 2020). When microresonator solitons are married with integrated lasers (Stern

et al. 2018; Xiang, W. Jin, et al. 2020), amplifiers (Beeck et al. 2020), and high-speed

photodiodes (Q. Yu et al. 2020) through heterogeneous or hybrid integration, a fully

integrated mmWave platform can be created with high power, high coherence perfor-

mance and the potential for large scale deployment through mass production (Fig.
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4.1).
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Figure 4.1: Artistic conceptual view of fully integrated mmWave platform
based on microresonator solitons. The microresonator solitons are generated by
pumping a high-Q Kerr microresonator with a continuous-wave (cw) laser. Photode-
tecting the solitons generates the mmWave signal at the soliton repetition frequency
(comb spacing). Soliton mode-locking can provide up to 6 dB more power than that
of conventional two laser heterodyne detection, and it is also capable of reducing
the mmWave linewidth. By leveraging advances in photonic heterogeneous integra-
tion, all critical components, including pump laser, semiconductor optical amplifiers
(SOAs) and ultrafast photodiodes (PDs), can potentially be integrated with the Kerr
microresonators on the same chip. The integration will enable arrays of coherent
mmWave sources, which can generate mmWave signals over a broad range of fre-
quencies. Such a mmWave platform can advance applications in high-speed wireless
communication, sub-THz imaging and spectroscopy, and high resolution ranging.

In this chapter, we demonstrated high power, high coherence photonic mmWave gen-

eration at 100 GHz frequency through the combination of integrated microresonator

solitons and a modified uni-traveling carrier photodiode (MUTC PD). A 5.8 dB in-

crease of mmWave power is obtained by using microresonator solitons when comparing

to the output power of conventional heterodyne detection. Importantly, the power

level we achieve with microresonator solitons is approaching the theoretical limit of

heterodyne detection, which assumes an ideal photodiode with zero power roll-off

in its frequency response. The system also achieves a maximum mmWave power of

7 dBm, one of the highest powers ever reported at 100 GHz (K. Sun and Andreas

Beling 2019). For our free-running system, the 100 GHz signal has Lorentzian and
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Gaussian linewidth of 0.2 kHz and 4.0 kHz, respectively, which is two orders of mag-

nitude smaller than that of the pump laser. The dependence of output power on the

number of comb lines and chromatic dispersion is carefully studied both theoretically

and experimentally. Our demonstration paves the way for a fully integrated photonic

microwave system with soliton microcombs and high-speed photodiodes.

4.2 100 GHz soliton generation

The dissipated Kerr solitons used in this work are generated in an integrated, bus-

waveguide coupled Si3N4 micro-ring resonator. The resonator has a free spectral range

(FSR) of ∼100 GHz, and an instrinsic quality factor of 2.6× 106 and loaded quality

factor of 2.2×106. The SiN resonator has a cross-section, width×height, of 1.65×0.8

µm2, and is coupled to a bus-waveguide of the same cross-section. The resonator

radius is 0.24 mm, and the soliton-generation mode has anomalous dispersion of ∼ 1

MHz/FSR. A thermoelectric cooler (TEC) is placed beneath the microresonator to

coarsely overcome the environmental temperature fluctuations. To generate a single

soliton state, a rapid pump laser frequency scanning method (J. R. Stone et al. 2018)

is applied to overcome the thermal complexity when accessing the red-detuned soliton

existence regime. The detailed experimental setup is shown in Fig. 4.2. The pump

laser is derived from the first phase modulated sideband of a continuous wave laser,

and the sideband frequency can be rapidly tuned by a voltage controlled oscillator

(VCO). The pump laser scans its frequency at the speed of ∼20 GHz/µs, and the

scan is stopped immediately once the pump laser frequency reaches the red-detuned

regime of the resonator. The pump power in the waveguide is 1 Watt, which could be

reduced in the future by 2 orders of magnitude through improving the quality factor
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and minimizing the thermal effect (J. Liu, Raja, et al. 2018) The single soliton state

with a 35.4 fs pulse width is generated and its squared hyperbolic secant spectral

envelope is characterized by an optical spectrum analyzer (Fig. 4.3a).The optical

spectrum has a 3-dB bandwidth of 5.4 THz, which contains a sufficient number of

comb lines for photodetection.

EDFA WS VOA RF PM
Photodiode

Probe

Bias-tee

SM

EDFA

CW laser

PC

Cavity

PC
TEC

AmpVCO 

f

P fL

f

P fL+fVCO

f

P

EDFA BPFBPFPM FBG
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Figure 4.2: Experimental setup. The microresonator solitons are generated in
a SiN resonator which is coarsely temperature controlled by thermoelectric cooler
(TEC). The pump laser is the first modulation sideband of a phase modulated (PM)
continuous wave (cw) laser, and the sideband frequency can be rapidly tuned by
a voltage controlled oscillator (VCO). The frequencies of the cw laser and phase
modulation are fL and fVCO1, respectively. The pump laser is then amplified by
an erbium-doped fiber amplifier (EDFA), and the amplified spontaneous emission
noise is filtered out by a bandpass filter (BPF). At the output of the resonator, a
fiber-Bragg grating filter is used to suppress the pump. The microresonator solitons
are then amplified, dispersion compensated by a waveshaper (WS), and sent to the
photodiode. The configuration also includes polarization controllers (PC), variable
optical attenuator (VOA), source meter (SM), and RF power meter (RF PM).

4.3 Photodetection of soliton microcombs using MUTC-

PD

The solitons are coupled from the SiN on-chip bus waveguide into a lensed fiber.

Before reaching the MUTC-PD, the soltion comb is amplified to > 200 mW by an

erbium-doped fiber amplifier (EDFA), and a variable optical attenuator is used to

precisely control the illumination power. An optical programmable waveshaper (WS)

is used to compensate the group velocity dispersion and to suppress spontaneous
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emission (ASE) noise from the EDFA. The inset of Fig. 4.3a shows the optical

spectrum after the amplification and dispersion compensation. Finally, the solitons

are coupled to the surface normal modified uni-traveling carrier photodiode (MUTC

PD) through a 8 µm collimated fiber. Pictures of the microresonator and a PD die

are shown in Fig. 4.3b and Fig. 4.3c, respectively. The MUTC PDs used in this

work are from Andreas Beling’s group at UVA.

4.4 Power measurements

In this section, the mmWave power generated using soliton/heterodyne detection is

investigated, including the power enhancement from the soliton combs, the power

dependence on the number of comb lines/dispersion/comb spectral envelope, and the

maximum power obtained from soliton detection.

4.4.1 6dB power enhancement

In conventional heterodyne detection, mmWaves are generated when two laser lines

mix with each other on a photodiode and create one beat note. However, when using

an optical frequency comb, each comb line will beat with its two adjacent neighbour

lines to create beatnotes at the comb repetition frequency. For a comb that consists

of N comb lines, (N − 1) beat notes will be created at the comb repetition frequency.

Therefore, for the same average optical power, the comb can produce up to twice the

number of beatnotes per laser line than heterodyne detection, and thus generate twice

the AC photocurrent. The output power from the photodiode at the comb repetition

frequency can be described as Urick, Williams, and McKinney 2015; Kuo et al. 2010:
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PPD =
I2DCRL

2

[
2(N − 1)

N

]2
× Γ, (4.1)

where IDC is the average photocurrent, RL (50 Ω) is the load resistor, and N ≥ 2 is

the number of comb lines. Γ is the measured relative mmWave power roll-off for the

photodiode, and is ∼ 5.5 dB for the 7 µm and ∼ 6 dB for the 8 µm diameter PDs

used in this work at 100 GHz. Clearly, the power at the limit of N → ∞ is 4 times

(6 dB) higher than the power of heterodyne detection, where N = 2.

To characterize the 6 dB power increase from the microresonator solitons, the PD out-

put powers are measured for both microresonator soliton detection and heterodyne

detection on four of our PDs with 7, 8, 10, and 11 µm diameters. The heterodyne

measurements are performed using two continuous-wave lasers with the same optical

power and polarization. A variable optical attenuator is used to control the optical

power illuminating on the PD. In the linear region of PD operation, the 100 GHz

mmWave powers at different photocurrents are shown in Fig. 4.3d for the 7-µm de-

vice. The DC photocurrent is a direct measurement of the optical power illuminating

on the PD. In the experiment, the coupling distance from fiber to PD is increased

for a uniform illumination, resulting in 1 mA photocurrent for 11 mW optical input

power. The mmWave power generated from the microresonator solitons is measured

to be 5.8 dB higher than that of heterodyne detection. This power increase is ap-

proaching the 6 dB theoretical limit, and is verified on all four PDs with different

diameters (shown in the inset of Fig. 4.3d). As a result of the 6 dB power increase,

the mmWave power generated using microresonator solitons is within 1 dB of the

theoretical power limit of heterodyne detection (solid black line in Fig. 4.3d), where
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the detector is assumed to be ideal and has no power roll-off at mmWave frequency.

It shall be noted that no optical spectrum flattening is applied in our measurement.

For 5.8 dB power improvement, a 3 dB bandwidth of 7 comb lines is required for the

Sech2 or Gaussian spectral envelope.

4.4.2 Power dependence on the number of comb lines

Next, we verify the dependence of mmWave power increase on the number of comb

lines, which is described in Equation 4.1. A line-by-line waveshaping filter is used

to select the number of comb lines that pass to the MUTC PD. We test the number

of comb lines from 2 to 22 at four different photocurrent levels (optical power), and

the result is shown in Fig. 4.4a. Three representative optical spectra for 2, 12, and

22 comb lines are shown in Fig. 4.4b. The measured mmWave power follows the

calculated curves. Interestingly, a 3 or 5 dB increase of power only requires 4 or 9

comb lines. This relatively small demand for comb lines relaxes the microresonator

soliton requirement in terms of its optical bandwidth.

4.4.3 Dispersion effect on power

The increase of mmWave power only happens when the beatnotes generated by dif-

ferent pairs of comb lines are in constructive interference. This is not always the

case if there is dispersion between the microresonator and the PD. This effect is

studied by applying programmable dispersion using a waveshaper. The measurement

of mmWave power versus waveshaper dispersion is shown in Fig. 4.4c. The effect

can be calculated analytically by adding phase to each comb line, and will modify

Equation 4.1 to:
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PPD =
I2DCRL

2

[
2 sin

[
(N − 1)πcdf 2

r /f
2
p

]
N sin

[
πcdf 2

r /f
2
p

] ]2
× Γ, (4.2)

where c is the speed of light, and d = d0 + dc is the accumulated group velocity dis-

persion between the microresonator and PD. d0 denotes the offset dispersion in the

system introduced by fibers and amplifiers, and dc represents the dispersion compen-

sation added by the waveshaper. The derivation of Equation 4.2 is shown at the end

of this subsection. The measurement and theory prediction agree very well when an

offset dispersion of d0 = 1.95 ps/nm is included. The offset dispersion exists in our

system because of the 70 meter fiber used to connect the microcomb lab and pho-

todetector lab (contributing 1.26 ps/nm), with the rest of the dispersion coming from

the fibers in the EDFA. N is used as a free parameter for fitting the experimental

curve, and N = 15 is used for the dashed line in Fig. 4.4c. The fitted N should be

interpreted as the effective number of comb lines to account for the spectral envelope

shape. When the entire system is fully integrated, the overall length of waveguides

will be well below a meter, and the dispersion will not impact the mmWave power.

Here, the derivation of Equation 4.2 is given. Consider optical pulses propagating

in an optical fiber will acquire additional phase due to group velocity dispersion in

the fiber. If we suppose the center frequency of the pulse is ωp, then the component

at frequency ω will acquire a relative phase after propagation of distance z (G. P.

Agrawal 2007):

E(z, ω) = E(0, ω) exp[−iDλλ
2

4πc
(ω − ωp)

2z] + c.c., (4.3)

where E(0, ω) = E0/
√
2N exp(−iωt) is the electrical field of light at frequency ω

and position z = 0, normalized to the photon number per unit time. Here we have
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assumed a flat spectrum for the comb, and N as the total number of comb lines. Dλ

is the group velocity dispersion parameter, and Dλ ≈ 18 ps/nm/km for SMF-28 fiber

at 1550 nm. For soliton frequency combs, (ω − ωp)/2π = n × fr for the n-th comb

line from the spectral envelope center, where fr is the comb repetition frequency.

Therefore, the photocurrent generated in the photodiode is

I ≡ IDC + IAC = |E|2 = |
N0∑
−N0

E(0, ω) exp[−iπcf
2
r

f 2
p

n2Dλz] + c.c.|2

= |E0|2 + |E0|2
2 sin

[
(N − 1)πcDλzf

2
r /f

2
p

]
N sin

[
πcDλzf 2

r /f
2
p

] cos (2πfrt) + ...,

(4.4)

where we have used the
∑n

k=m ar
k = a(rm − rn+1)/(1 − r) to derive the term of

cos (2πfrt), and we have set 2N0 + 1 = N . Higher harmonics of the repetition

frequency are neglected as they are beyond the detection limit of our photodiode.

Considering IDC as the average photocurrent flowing through the load resistor RL,

the detected mmWave power at frequency fr is yielded as:

Pfr =
I2DCRLΓ

2

[
2 sin

[
(N − 1)πcdf 2

r /f
2
p

]
N sin

[
πcdf 2

r /f
2
p

] ]2
, (4.5)

where we have defined d = Dλz as accumulated dispersion, and Γ is the PD power roll-

off at the repetition frequency. This equation is the same as equation Equation 4.2.

When dispersion is very small (d → 0), the detected mmWave power approximates

to

Pfr =
I2DCRLΓ

2

[
2(N − 1)

N

]2
, (4.6)

which is Equation 4.1.
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4.4.4 Power versus optical spectral envelope

In this subsection, we calculate the impact of the optical spectral envelope on the

mmWave power. For simplicity, we assume that the optical envelope is symmetric

along the envelope center, and we assume no accumulated dispersion. For the n-th

comb line, we have:

E(ωn) = f(n)
E0√
2N

e−iωnt + c.c., (4.7)

where function f(n) is real and it describes the spectral envelope. We focus on the

case where the number of comb lines is large, so that we can assume the envelope is

smooth, and |f(n+ 1)− f(n)| ≪ f(n). The photocurrent is then expressed as:

I = |E|2 = |
N0∑
−N0

f(n)
E0√
2N

e−iωnt + c.c.|2 = |E0|2

N

N0∑
−N0

f 2(n)

+
2|E0|2

N
cos (2πfrt)×

N0−1∑
n=−N0

f(n)f(n+ 1) + ...,

(4.8)

where we have neglected higher harmonics of the repetition frequency again. The

sum can be simplified by using the symmetric envelope condition, f(−n) = f(n), and

we can substitute f(n+1) = f(n)+∆f(n+1/2), where ∆f(n+1/2) is the difference

between f(n+ 1) and f(n), and ∆f(x) is an odd function. Therefore, we have:
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N0−1∑
n=−N0

f(n)f(n+ 1) =

N0∑
n=−N0

f(n)f(n+ 1)− f(N0)f(N0 + 1)

=

N0∑
n=−N0

f(n) [f(n) + ∆f(n+ 1/2)]− f(N0)f(N0 + 1)

=

N0∑
n=−N0

f 2(n) +

N0∑
n=−N0

f(n)∆f(n+ 1/2)− f(N0)f(N0 + 1)

≈
N0∑

n=−N0

f 2(n)− f(N0)f(N0 + 1),

(4.9)

where we have used f(n)∆f(n + 1/2) approximated to an odd function when the

spectrum is broad, and thus |f(n+1)− f(n)| ≪ f(n), and ∆f(n+1/2) ≈ ∆f(n). It

is clear that when N and N0 are very large, the sum is dominated by the total optical

power,
∑N0

n=−N0
f 2(n), and is almost irrelevant to the function of the envelope. The

mmWave power can be expressed as:

Pfr =
I2DCRL

2

[
2− 2f(N0)f(N0 + 1)∑N0

−N0
f 2(n)

]2
. (4.10)

When N0 → ∞, f(N0)f(N0 + 1) ≪
∑N0

−N0
f 2(n), and the power gain relative to the

heterodyne detection approaches 6 dB regardless of the spectral envelope f(n). It

shall be noted that this result only applies to the case where the spectral envelope is

symmetric and smooth, otherwise the approximation used in Equation 4.9 will fail.

4.4.5 Measuring maximum mmWave power

We obtain a maximum output power of 7 dBm at 22.5 mA for the 8 µm device shown

in Fig. 4.5a, due to the optimized light coupling from the size match of the 8 µm
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spot-size collimated fiber and diameter of the PD’s absorber. Using equation (1) we

find that the ideal heterodyne response for this 8 µm device would need 26.7 mA

to achieve 7 dBm, which means we can produce the same power at lower average

photocurrent using soliton excitation. The 7 dBm saturation power is recorded at

-3.6 V bias. Increasing the reverse bias can improve the saturation power, however,

ultimately this can cause PD thermal failure (X. Xie et al. 2015), which is due to

the raise in junction temperature from the dissipated power in the PD (reverse bias

× average photocurrent). One advantage of using solitons is that they can generate

the same RF output power at a lower photocurrent than the two-laser heterodyne

method, and thus can reduce the dissipated power and allow the PD to be operated

further below the point of thermal failure.

4.5 Coherence measurements

In this section, the mmWave coherence performance is investigated with measure-

ments including linewidth, phase noise, and Allan deviation.

4.5.1 Linewidth reduction

The electrical spectrum of the 100 GHz mmWave signal is measured and shown in

Fig. 4.3e. Limited by the available bandwidth of our electrical spectrum analyzer,

we down convert the 100 GHz mmWave by sending it to an RF mixer to mix it with

the fifth harmonic of a 20.2 GHz local oscillator. The mixer generates a difference

frequency at ∆f = 5fLO − fr. ∆f is measured to be 1.2410 GHz, and we can derive

the mmWave frequency as fr = 99.7590 GHz. A low-noise, narrow signal is clearly
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observed at 3 kHz resolution bandwidth (RBW) in Fig. 4.3e (red trace). The signal is

fitted with a Lorentzian, and the 3-dB bandwidth is 0.2 kHz (zoomed-in panel in Fig.

4.3e). Note that the soliton repetition rate is subject to fluctuations (laser frequency

drift, temperature, etc.), and the central part of the signal is Gaussian with 3-dB

linewidth of 4 kHz. This narrow linewidth at 100 GHz frequency is obtained for a

free-running microcavity soliton, which is driven by a pump laser with significantly

broader linewidth (∼ 200 kHz, New Focus 6700 series specification). We note that

there are a few bumps around 50 kHz offset frequency, which are likely to be derived

from the technical noise of the pump laser. To compare the signal coherence between

conventional heterodyne method and the soliton method, the heterodyne signal of

beating the pump laser and another 6700 series New Focus laser is also measured and

shown in Fig. 4.3e (blue trace). At the same RBW, the heterodyne signal has poor

coherence and its frequency is drifting > 5 MHz. Our measurements show that using

free-running microcavity solitons can reduce the linewidth of mmWave signals by 2

orders of magnitude, giving the microresonator soliton platform a key advantage over

conventional heterodyne detection. No RF reference is used to stabilize the mmWave;

in fact, the only controls used are the coarse temperature controls of the laser and

the microresonator, used to offset the change in environmental temperature.

Our observation of linewidth reduction is in agreement with previous reports of mi-

croresonator solitons at X- and K-band repetition frequencies Yi, Q.-F. Yang, Xueyue

Zhang, et al. 2017; J. Liu, Lucas, et al. 2020. The soliton repetition frequency equals

to the cavity free-spectral range (FSR) at the wavelength of soliton spectral envelope

center. Both Raman self-frequency shift Maxim Karpov et al. 2016 and dispersive

wave recoils can affect the soliton envelope center wavelength Brasch et al. 2016;

Yi, Q.-F. Yang, Xueyue Zhang, et al. 2017, and they are functions of laser-cavity
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frequency detuning. This can be clearly seen in Fig. ??a, as our soliton’s envelope

center is to the red side of the pump laser. Because of the chromatic dispersion, the

FSR at different wavelengths is different, and thus the variation of the pump laser

frequency, fp, will alter the soliton spectral envelope center, and change the soliton

repetition rate, fr. To the first order, the transfer of frequency variation from the

pump (δfp) to the repetition rate (δfr) can be described as δfr = ∂fr
∂fp

× δfp, where δ

denotes the variation. For both silica and silicon nitride resonators Yi, Q.-F. Yang,

Xueyue Zhang, et al. 2017; Bao, Xuan, et al. 2017, this transfer coefficient ∂fr
∂fp

has

been measured to be on the level of 10−2, and thus the soliton repetition rate linewidth

is much smaller than that of the pump laser.

4.5.2 Phase noise reduction

We further characterize the phase noise of the mmWaves generated from the free-

running microcavity solitons, and compare it to the phase noise from the heterodyne

method. Similar to the linewidth measurement, the 100 GHz mmWave signal is

down converted in an RF mixer where it is mixed with the fifth harmonic of a 20.2

GHz local oscillator. To minimize the effect of frequency drifting in the phase noise

measurement, the frequency of the down-converted signal is further divided down

electrically by a factor of 14 and 100 for the soliton and heterodyne, respectively.

The phase noise is then measured in the electrical spectrum analyzer with direct

detection technique, and the result (at 100 GHz) is shown in Fig. 4.5b. Due to

the large frequency drift, the heterodyne phase noise below 20 kHz offset frequency

cannot be accurately characterized and thus is not presented. The soliton phase noise

beyond 100 kHz is potentially limited by the measurement sensitivity, which is set by

the noise floor of the spectrum analyzer (dash green), and the phase noise of the local
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oscillator (Keysight, PSG E8257D) used to down-convert the mmWave (dash black).

The measurement shows that the free-running solitons can reduce the mmWave phase

noise by > 25 dB from the heterodyne method. The reduction of phase noise from

the pump laser frequency to the soliton repetition rate is a result of the noise transfer

mechanism in microresonator solitons (Yi, Q.-F. Yang, Xueyue Zhang, et al. 2017).

Our observation is in agreement with the previous reports of X-band and K-band

microwave generation with microresonator solitons (Yi, Q.-F. Yang, Xueyue Zhang,

et al. 2017; J. Liu, Lucas, et al. 2020; Weng et al. 2020). The phase noise of soliton-

based mmWaves can be further reduced in the future by using a pump laser with

higher stability(Lucas et al. 2020), tuning the soliton into quiet operation point (Yi,

Q.-F. Yang, Xueyue Zhang, et al. 2017), and implementing better temperature control

of the entire system. For instance, a compact external-cavity diode laser has achieved

Lorentzian linewidth of 62 Hz recently(Volet et al. 2018). Using this laser to drive

the soliton could further reduce the free-running mmWave phase noise.

4.5.3 Allan deviation reduction

Finally, the Allan deviations of the mmWave generated from the soliton and the

heterodyne detection are measured by counting the frequency of the down-converted

signal on a zero dead-time counter (Fig. 4.5c). At 1 ms gate time, the Allan deviation

of the soliton-based mmWave reaches the minimum of < 0.7 kHz, which is more than

two orders of magnitude better than that of the heterodyne detection. Above 1 ms

gate time, the Allan deviation of the soliton-based mmWave increases due to the drift

of pump laser frequency and temperature fluctuation. Stabilizing the mmWave signal

to a low frequency reference could provide long term stability, which will increase

the system complexity, but is possible through the electro-optics modulation method
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(Tetsumoto, Ayano, et al. 2020), or dual microcavity soliton methods (Spencer et al.

2018; B. Wang, Z. Yang, Xiaobao Zhang, et al. 2020).

4.6 Summary

In this chapter, we demonstrated high-power, high-coherence mmWave generation at

100 GHz by using integrated microresonator solitons and MUTC PDs. Extending

the frequency to several hundred GHz is possible. For the microresonator solitons,

the highest repetition rate reported is 1 THz (Q. Li et al. 2017), while demonstrated

MUTC PDs have detection capabilities of at least 300 GHz (A. Beling et al. 2019;

Dülme et al. 2019). As the microresonator solitons consume very little pump power,

and most of the pump transmits through the waveguide (Yi, Q.-F. Yang, K. Y. Yang,

Suh, et al. 2015), it is possible to recycle the pump laser power to drive the next

microresonator solitons (Fig. 4.1). Two tandem microresonator solitons driven by

the same pump laser have been reported previously (Dutt et al. 2018). The proposed

platform has the potential to be fully integrated on a single chip which can enable

large-scale mmWave arrays. The four critical components: laser, Kerr microresonator,

amplifier, and ultrafast photodiode, have all been shown to be compatible with Si3N4

photonic platforms through heterogeneous integration. Once all components are fully

integrated, we expect that the platform can deliver a new paradigm regarding scalable,

integrated photonics technologies for applications at very high frequencies, and thus

provide a path to compact, low-noise high-frequency sources for spectroscopy, ranging,

and wireless communications.
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Figure 4.3: Summary of featured experimental data of 100 GHz mmWave
generation. (a) Optical spectrum of single soliton state from the microresonator.
The spectrum has sech2 spectral envelope (fitting shown in dashed red line). The
pump laser is suppressed by a fiber Bragg grating filter. Inset shows the optical
spectrum of soliton frequency comb after amplification and dispersion compensation.
(b) Microscopic image of integrated Si3N4 microresonator with 100 GHz free spectral
range (FSR). (c) Microscopic images: front of photodiode die zoomed in on single
7µm device (left), and back of photodiode die flip-chip bonded to aluminum nitride
submount (right). (d) 100 GHz mmWave output power measured for microresonator
solitons (red) and optical heterodyne detection of two cw-lasers (blue). The mmWave
output power from the soliton is ∼ 5.8 dB more than that of the heterodyne detec-
tion at the same photocurrent. Theoretical calculated powers from equation (1) are
shown in dashed lines. Particularly, ideal output power from heterodyne detection
is illustrated with black solid line, which serves as a theoretical limit of heterodyne
detection assuming no PD power roll-off at 100 GHz frequency. The inset shows
the power increase by using solitons over optical heterodyne on four devices with
different diameters. (e) Down-converted electrical spectrum of 100 GHz signal gen-
erated with free-running microresonator solitons (red). Inset shows the fitting with
Lorentzian (black) and Gaussian (dashed green) lineshapes and the corresponding
3-dB linewidths are 0.2 kHz and 4 kHz respectively. As a comparison, the signal
generated from heterodyne method is shown in blue trace. The PD diameter and
bias voltage are indicated in each panel.
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Figure 4.5: Measurement of mmWave power, mmWave phase noise and
Allan deviation. (a) Maximum power of 7 dBm is reached at 22.5 mA and −3.6
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oscillator phase noise (dash black). (c) Allan deviation of the free-running soliton-
based mmWave (red) and the heterodyne mmWave (blue).
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Chapter 5

Integrated optical frequency

division for low noise mmWave

synthesis

5.1 Introduction

Optical frequency combs provide a way to coherently link radio/microwave-rate elec-

trical signals with optical-rate signals, and they have numerous applications in metrol-

ogy, time-keeping, and microwave synthesis (Udem, Ronald Holzwarth, and Hänsch

2002; Nathan R Newbury 2011). An important application of optical frequency combs

is the optical frequency division (OFD) (Fortier, Kirchner, et al. 2011), where the fre-

quency and phase of optical lasers are coherently divided down by frequency combs

to generate microwaves with record-low phase noise (Fortier, Kirchner, et al. 2011;

Tetsumoto, Nagatsuma, et al. 2021; Jiang Li and Kerry Vahala 2023). Two of the

most critical elements in OFD are (1) reference-cavity stabilized lasers that exhibit

excellent fractional frequency stability and (2) optical frequency combs that coher-

ently transfer the phase stability of stabilized lasers to the repetition rate in a laser

pulse train. Recent development in ultra-low loss integrated photonics has made both

elements possible on a chip(Blumenthal et al. 2018; J. Guo et al. 2022; K. Liu et al.
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2022; Tobias J Kippenberg, Gaeta, et al. 2018). This creates a possibility to demon-

strate integrated optical frequency division for low-noise microwave and mmWave

generation.

In this chapter, we present a demonstration of integrated optical frequency division.

The reference lasers with a frequency noise of 0.5 Hz2/Hz are generated using an

integrated high-Q 4-meter coil reference cavity (from Dan Blumenthal’s group at

UCSB), and the microcombs with 100 GHz rep-rate are generated on an integrated

micro-ring resonator. Both are demonstrated on Si3N4 platforms.

5.2 Method of integrated optical frequency divi-

sion

In our approach, the optical frequency division is realized with a ”two-point locking”

approach (William C Swann et al. 2011). Two reference laser lines with excellent

frequency stability serve as the two locking points. A frequency comb is generated

and two of the comb lines are then phase-locked to the reference lasers. As a result,

the relative frequency fluctuations between the two locked comb lines are set by the

reference lasers. On the other hand, the frequency difference between these two comb

lines is equal to the comb rep-rate frep multiplied by their comb line number difference

N. Therefore, the comb rep-rate stability is equal to 1/N of the two reference lasers. In

another word, the relative frequency stability of two lasers can be coherently divided

by the number of comb lines within the two-point locking span. Importantly, a low-

noise RF or mmWave signal can be generated by photodetecting the rep-rate of the

microcomb on a photodiode using this division method. Assuming a perfect division,
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the frequency stability and phase noise of the synthesized mmWave is only determined

by the reference lasers.
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Figure 5.1: Schematic of integrated optical frequency division. (a) Simplified
experimental setup. (b) Image of the integrated 4-meter coil resonator. (c) Image
of the integrated micro-ring resonator with 100 GHz FSR. (d) Optical spectra of the
soliton microcomb and two reference lasers.

A schematic of our integrated optical frequency division is shown in Fig. 5.1a. The

two low-noise reference lasers are stabilized to a single high-Q reference cavity. A

frequency comb is generated in a micro-ring resonator, and a portion of the comb is

used to illustrate the two-point locking optical frequency division, while the rest is

sent to the photodiode for producing a mmWave. The details of implementation are
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provided in the following sections.

5.3 Low-noise reference lasers using an integrated

4-meter coil resonator

In our experiment, the reference lasers are provided by PDH locking two tunable

ECDL (NewFocus Velocity TLB-6700) to a single 4-meter-long coil resonator (Fig.

5.1b). The wavelengths of reference lasers are 1550 nm and 1600 nm, respectively.

The 4-meter coil resonator is fabricated on Si3N4 waveguide with a cross-section area

of 6 µm × 80 nm. The FSR of the coil resonator is ∼ 50 MHz. The intrinsic quality

factors of the coil resonator are measured to be ∼ 40 ×106 at both C-band and L-band.

The PDH locking technique is used to lock the two reference laser frequencies to the

resonator mode frequencies by servo control of the cw-laser frequency through laser

current modulation. This is implemented by phase-modulating the referenece lasers

with electro-optic phase modulators. The modulated reference lasers are then com-

bined using a 50/50 fiber coupler and sent to the coil resonator. After the resonator,

the two lasers are separated using a FBG and sent to two photodiodes.

The frequency division ratio N is determined by the ratio between the frequency

difference of two reference lasers (fA−fB = 6 THz) and the frequency comb repetition

rate (100 GHz), which givesN = 60. Assuming a perfect frequency division, the phase

noise reduction through frequency division is 602 ∼ 35.6 dB.
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5.4 100GHz soliton microcomb generation and OFD

implementation

To divide the 6 THz reference laser frequency difference to a 100 GHz mmWave, we

generated a 100 GHz soliton microcomb on an integrated, bus-waveguide coupled

Si3N4 micro-ring resonator (Fig. 5.1c) with a free-spectral range (FSR) of �100 GHz.

The intrinsic quality factor of the micro-ring resonator is 4.3 × 106. An extended

distributed Bragg reflector (E-DBR) laser from Morton Photonics is used to provide

high stability to the laser carrier frequency. Then a single-sideband suppressed-carrier

modulator is used to derive a rapid scanning pump laser using a voltage-controlled

oscillator (J. R. Stone et al. 2018; B. Wang, Z. Yang, S. Sun, et al. 2022). The

fast-scanned pump laser can overcome the thermal complexity in the microresonator

and generate the single soliton with a power of hundreds of mW after amplification.

The optical spectra of the soliton as well as the two reference lasers are shown in Fig.

5.1d.

To implement the optical frequency division, two comb lines (m−th and n−th) are

selected using optical filters, and beat with the two reference lasers (f1 and f2) on

the photodiodes (NewFocus 1811-FC). A L-band EDFA is used to amplify the comb

line power at 1600nm, so that it can provides enough electrical power to the beatnote

generated from the photodiode. The beatnote frequencies are ∆1 = f1 − (fp+mfrep)

and ∆2 = f2 − (fp + nfrep). The two beatnotes are then mixed on an electrical

frequency mixer with an output frequency of ∆ = ∆1 −∆2 = f1 − f2 + (n−m)frep.

It can be seen that the pump laser frequency noise is canceled out in the mixer

output signal. Then the signal ∆ is phase-locked to a stable reference frequency local

oscillator (Keysight E8257D) through the servo control of the VCO (which controls
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the pump laser frequency and then translates to the comb rep-rate). Assuming a

perfect phase-locking, the phase of comb rep-rate is given by ϕrep = (ϕ1 − ϕ2 −

ϕLO)/(m − n), and its phase noise (power spectral density) is given by Srepϕ (f) =

(S1
ϕ − S2

ϕ − SLOϕ )/(m− n)2 ∼ (S1
ϕ − S2

ϕ)/(m− n)2 considering the phase noise of the

local oscillator SLOϕ is much lower than that of the ref laser noises S1,2
ϕ .

5.5 Preliminary results of phase noise reduction

To characterize the out-of-loop comb rep-rate phase noise, we employed a self-heterodyne

method based on an AOM-modified unbalanced MZI interferometer. First, a wave-

shaper is used to select two comb lines (k−th line and l−th line). These two comb

lines are then sent to an acoustic-optic modulator (AOM), and both of them get

split into a 55MHz-frequency-shifted (1st order output) path and an unshifted (0-th

order output) path. A fiber polarization controller and a 200-m fiber delay are also

inserted into the frequency-shifted path, and two paths are then combined using a

50/50 coupler. This forms the AOM-modified unbalanced MZI interferometer with

an FSR of 1.031 MHz. The MZI output is then sent to an FBG to separate the two

comb lines with different frequencies of fk = fp+kfrep and fl = fp+ lfrep. Each of the

comb lines is sent to a photodiode for self-heterodyne detection, and a signal with a

55 MHz carrier frequency (resulting from the AOM frequency shift) can be measured

on an oscilloscope. More details of this method can be found in (Yuan et al. 2022).

The instantaneous phase fluctuation of each comb line (ϕk(t) = ϕp(t)+kϕrep(t),ϕl(t) =

ϕp(t) + lϕrep(t)) can be acquired during the data post-processing by applying the

Hilbert Transform to the signal measured on the oscilloscope. The 200-m fiber delay

in MZI provides both high sensitivity to the phase fluctuations and broad noise mea-



58

surement bandwidth (∼1 MHz). The phase of comb rep-rate can be calculated by

subtracting the phase of two comb lines, ϕrep(t) = (ϕl(t)− ϕk(t))/(l− k)), where the

phase of the common pump laser is canceled. The phase noise of the comb rep-rate

can be obtained by calculating the power spectral density of ϕrep(t) using Fourier

transform. As shown in Fig. 5.2, the phase noise of the comb rep-rate is plotted

when the comb is free-running and OFD locked. A locking bandwidth of 300 kHz is

observed, and the phase noise of locked comb rep-rate reaches -115 dBc/Hz.
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Figure 5.2: Preliminary results of integrated OFD. Phase noise measurement of
reference lasers (red), rep-rate of free running soliton (grey), and OFD soliton (blue).

5.6 Disucssion

In this chapter, the initial demonstration of the integrated OFD is presented. The

phase noise of the comb rep-rate reaches -115 dBc/Hz using two reference lasers with

their relative phase noise of -81 dBc/Hz at 10 kHz offset frequency. Ultimately, the
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rep-rate phase is limited by 1) the reference cavity thermo-refractive noise (TRN) and

2) the division ratio. A longer reference cavity can be used to further reduce cavity

TRN, and an octave-spanning comb (M. H. Pfeiffer, Herkommer, et al. 2017) can be

used to provide more comb lines (or division ratio) for optical frequency division.

In the experiment, another limiting factor to the locking performance is the in-loop

noise. We want the in-loop noise (when locking) to be lower than the divided reference

laser noise, otherwise, the comb rep-rate phase noise will be limited by the in-loop

noise. The in-loop noise can be optimized by increasing the SNR of the OFD signals

(∆ = ∆1 −∆2).

More importantly, a 100 GHz low-noise mmWave can be synthesized by sending the

OFD-implemented microcomb to an ultrahigh-speed photodiode. Its phase noise can

be characterized by down-converting the signal using a local oscillator (LO) through

a harmonics mixer (B. Wang, J. S. Morgan, et al. 2021). However, if the LO phase

noise is higher than the microcomb noise, the measurement floor will be set by local

oscillator. To accurately characterize the microcomb noise, one can lock the n-th

harmonics of LO to the microcomb through a phase-locked-loop (Jiang Li, Yi, et al.

2014; Tetsumoto, Ayano, et al. 2020). Then the microcomb noise can be acquired by

directly measuring the LO noise multipled by N2.
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Chapter 6

Dual-comb Vernier frequency

division to detect and stabilize

sub-THz comb rep-rate

6.1 Introduction

The recent development of microresonator-based soliton frequency combs (soliton

microcombs) (Del’Haye et al. 2007; Tobias J Kippenberg, Ronald Holzwarth, and S.

Diddams 2011; Tobias J Kippenberg, Gaeta, et al. 2018; Gaeta, Lipson, and Tobias J

Kippenberg 2019) has miniaturized optical frequency comb technology and has the

potential to revolutionize metrology, time keeping and spectroscopy (Udem, Ronald

Holzwarth, and Hänsch 2002; S. Diddams, Bergquist, et al. 2004; Nathan R Newbury

2011). These solitary wave packets leverage Kerr nonlinearity to compensate cavity

loss and to balance chromatic dispersion (Akhmediev and Ankiewicz 2008; Leo et al.

2010; Herr, Brasch, et al. 2014). They output a repetitive pulse stream at a rate

set by the resonator roundtrip time, which can range from GHz to THz (Suh and

Kerry Vahala 2018; Q. Li et al. 2017; M. H. Pfeiffer, Herkommer, et al. 2017). The

reduction of resonator mode volume increases the intracavity Kerr nonlinearity, lowers

the operation pump power and extends the comb spectrum span. This has enabled
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demonstrations of battery-operated soliton combs at 194 GHz repetition rate(Stern

et al. 2018), and octave-spanning soliton generation for self-referencing in a resonator

with 1 THz free-spectral-range (FSR)(Spencer et al. 2018). High repetition rates (rep-

rates) are also desired in many comb-based applications. For instance, the maximum

acquisition speed in dual-comb spectroscopy(Suh, Q.-F. Yang, et al. 2016; Pavlov

et al. 2017; Dutt et al. 2018), ranging (Trocha et al. 2018; Suh and Kerry J Vahala

2018), and imaging (Bao, Suh, and Kerry Vahala 2019; Yi, Q.-F. Yang, K. Y. Yang,

and Kerry Vahala 2018), all increase linearly with the comb repetition rate.

However, to detect the high repetition rate, a microresonator-based frequency comb

(microcomb) system has to include an auxiliary frequency comb whose repetition rate

can be directly detected by a photodiode (PD). The detectable repetition frequency

is then multiplied up optically through the equally-spaced comb lines to track the

microcombs in action (Del’Haye et al. 2007; Spencer et al. 2018). This limits the

miniaturization of microcomb system as the area occupied by the resonator scales

inverse quadratically with the repetition rate. For the popular electrical K-band, the

auxiliary resonator diameter has to exceed several millimeters (H. Lee et al. 2012;

Yi, Q.-F. Yang, K. Y. Yang, Suh, et al. 2015; K. Y. Yang et al. 2018; Lucas et al.

2020). An approach to divide and detect microcomb repetition frequency beyond

photodiode’s bandwidth will be critical to eliminate this restriction, and will advance

the frequency comb technology in terms of miniaturization, power consumption and

ease of integration.

In this chapter, a Vernier frequency division method is developed to detect soliton

microcomb repetition rate well above the electrical bandwidth in use. In contrast to

the conventional approaches, the Vernier frequency division does not require low-rate

frequency combs. Instead, the rate of the auxiliary combs, fr2, can be higher than
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that of the main combs, fr1, and it can be free-running and stay unknown.

6.2 Methods of rep-rate detection

The repetition-rates of soliton microcombs can be from GHz to THz. Depending on

its frequency, three methods are introduced in this section for rep-rate detection.

6.2.1 Direct photodetection

The simplest method is the direct photodetection of microcombs whose rep-rate fre-

quency is detectable within the bandwidth of photodiodes and electronics (Herr,

Brasch, et al. 2014; Yi, Q.-F. Yang, K. Y. Yang, Suh, et al. 2015; Suh and Kerry

Vahala 2018; J. Liu, Lucas, et al. 2020). However, to detect rep-rates higher than

100 GHz, it will be more challenging since it goes beyond the commercial electronics

bandwidth. In this case, ultrahigh-speed photodiodes and a method of frequency

down-conversion are needed (S. Zhang, Silver, Shang, et al. 2019; Zang et al. 2020;

Tetsumoto, Ayano, et al. 2020; B. Wang, J. S. Morgan, et al. 2021).

6.2.2 Low-rate comb calibration method

A conventional method uses low-rate combs to detect high rep-rate combs without

the need of a ultrahigh-speed photodiode and electronics (Brasch et al. 2016). The

concept is shown in Fig. 6.1 (c). By beating the low-rate combs and high-rate combs,

the rep-rate of high-rate combs can be calibrated with the beatnote frequencies and

the rep-rate of low-rate combs times an integer M .
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Figure 6.1: Concept of Vernier dual-comb repetition rate division. (a) To
divide and detect the main soliton (red) repetition rate, a free-running higher rate
microcomb (Vernier, blue) is generated to sample and divide down the main soliton
rep-rate. Two pairs of low frequency dual-comb beat notes are selected by optical
bandpass filters (BPFs) and detected on photodiodes (PDs) to extract the high repe-
tition frequency. (b) The zoomed-in optical spectra to illustrate the Vernier division
principle. When the Vernier soliton rep-rate is slightly higher than the main soli-
ton rep-rate, the frequency of the N -th Vernier comb line can coarsely align with
the (N + 1)-th main soliton comb line. The corresponding beat frequency contains
information of the absolute repetition rate (fr1) and the repetition rate difference
(fr2 −fr1). The main soliton repetition rate can be divided down by N by electrically
dividing ∆N by N , and then adding it with ∆1. (c) In comparison, conventional
repetition rate detection methods require a low rep-rate comb to optically multiply
a low frequency reference to a high frequency, which is then compared to the high
repetition rate through heterodyne detection.

An alternative approach is based on the electro-optics modulation (EOM comb)

(Jiang Li, Yi, et al. 2014). The EOM configuration is shown in the purple panel

in Fig. 6.2. An optical bandpass filter is used to select two adjacent comb lines from

the main soliton, which are then amplified by an EDFA. They are then sent into

an electro-optic phase modulator which is driven by VCO2 at a frequency of fVCO2.

Modulation sidebands are created for both comb lines, and when the modulation is
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strong enough, a pair of sidebands will meet in the midpoint of the two comb lines

(Jiang Li, Yi, et al. 2014). This pair of sidebands is then optically filtered by a

Bragg-grating filter, and is detected on a photodiode.

6.2.3 Vernier frequency division method

Small diameter resonators and high repetition rates are critical when pursuing low

power consumption, massive integration, and octave-spanning for self-referencing.

However, the low-rate comb calibration method would require a much larger auxiliary

resonator compared to the soliton microresonator we want to detect. For example,

the popular electrical K-band comb need an auxiliary resonator with a diameter

exceeding several millimeters (H. Lee et al. 2012; Yi, Q.-F. Yang, K. Y. Yang, Suh,

et al. 2015; K. Y. Yang et al. 2018; Lucas et al. 2020). Therefore, an approach that

can eliminate the need for large diameter calibrate comb is important in terms of

miniaturization, power consumption and ease of integration. The vernier frequency

division is developed to address the issue.

The concept is illustrated in Fig. 6.1. The main and Vernier soliton comb lines create

two free-running graduation markings on the optical frequency domain, and similar

to a Vernier caliper, these markings coarsely align periodically. Detectable frequency

beat notes can be created when the frequency of the N -th higher-rate comb line

catches up with that of the (N + 1)-th lower-rate comb line. These beat notes can

be utilized to divide the soliton repetition frequency through an electrical frequency

division followed by the subtraction of dual-comb repetition rate difference. Figure

6.1 presents one conceptual example, where the main soliton repetition rate divided

by N can be obtained from the sum of the first beat frequency ∆1, and the N -th
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beat frequency ∆N divided by N . ∆N denotes the beat frequency between the N -th

Vernier comb line and its nearest main soliton comb line.

Vernier frequency division method can use two pairs of comb lines in the overtaking

regime, where the frequency of the N -th higher-rate comb line catches up with that

of the (N +1)-th lower-rate comb line. Here, we use the N -th pair and the M -th pair

of comb lines as an example, and ∆fN,M denotes the frequency difference between

the N(M)-th Vernier soliton comb line and its nearest main soliton comb line:

∆fN = Nfr2 − (N + 1)fr1 = N(fr2 − fr1)− fr1, (6.1)

∆fM =Mfr2 − (M + 1)fr1 =M(fr2 − fr1)− fr1. (6.2)

fr1 and fr2 are the rep-rates of the main solitons and Vernier solitons, respectively.

Eq. (6.1)/N subtracted by Eq. (6.2)/M will yield

(
1

M
− 1

N
)fr1 =

∆fN
N

− ∆fM
M

, (6.3)

where the repetition rate of the main solitons, fr1, is now expressed by two measurable

quantities. In the experiment, photodetecting the corresponding pair of comb lines

produces RF signals at the frequency of ∆M,N , where ∆M,N = |∆fM,N |. The ”±”

ambiguity in ∆fM,N = ±∆M,N can be resolved by measuring the optical spectral of

the main and Vernier solitons.
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Figure 6.2: Experimental setup. The main solitons and Vernier solitons are gener-
ated in two SiN resonators which are temperature controlled by thermoelectric coolers
(TECs). The pump laser is the first modulation sideband of a phase modulated (PM)
continuous wave (cw) laser, and the sideband frequency can be rapidly tuned by a
voltage controlled oscillator (VCO) (J. R. Stone et al. 2018). The frequencies of the
cw laser and phase modulation are fL and fVCO1, respectively. The main and Vernier
solitons are combined and then split to two paths, and two optical bandpass filters
(BPFs) are used to select the 9-th and the 11-th pairs of comb lines in each path, re-
spectively. Beat notes ∆9 and ∆11 are generated by photodiodes (PDs) and they are
electronically divided by 36 and 44, respectively. The sum of the two signals is created
by a frequency mixer, and its frequency fv is recorded on a counter. For stabilizing
the rep-rate of main solitons, fv is mixed with a rubidium-referenced local oscillator
(LO) to servo control a voltage controlled optical attenuator (VCOA) for repetition
rate tuning. For out-of-loop verification, electro-optics modulation (EOM) method
is used and shown in the purple panel. Erbium-doped fiber amplifiers (EDFAs), po-
larization controllers (PCs), electrical amplifiers (Amps), low pass filters (LPFs) and
rubidium (Rb) clock are also used in the experiment.

6.3 Dual-microresonator soliton generation

The dual-microresonator soliton generation is the first step of Vernier frequency divi-

sion. The complete experimental setup is shown in Fig. 6.2. In our experiment, the

main and Vernier solitons are generated in bus-waveguide coupled Si3N4 microres-
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onators M. H. Pfeiffer, Kordts, et al. 2016, which have FSRs of 197 GHz and 216

GHz, intrinsic quality factors of 1.5 × 106 and 2.2 × 106, and loaded quality factors

of 1.3× 106 and 1.8× 106, respectively. To overcome the thermal complexity in soli-

ton generation process, the first phase-modulated sideband from a continous wave

(CW) laser is used as a rapid-tuning pump laser. The phase modulator is driven by a

voltage-controlled oscillator (VCO). The first sideband from the phase modulation is

selected by an optical tunable bandpass filter (BPF). With the fast ramp voltage on

the VCO, the pump laser scans at a speed of ∼ 20 GHz/µs. A 50/50 splitter after the

BPF splits the pump laser equally into two erbium-doped fiber amplifiers (EDFAs).

The polarization is carefully adjusted by a polarization controller after each EDFA.

The pump laser is coupled into the bus waveguide by a lensed fiber. Single solitons

are generated simultaneously in both microresonators by rapidly scanning the pump

laser from the blue-detuned regime to the red-detuned regime. The single soliton

existence detuning ranges of both microresonators are thermally tuned to overlap.

Each microresonator has a temperature controller with 0.01◦C resolution. The reso-

nant frequencies are tuned ∼ 2.5 GHz/◦C. The optical spectra of single soliton states

for main (red) and Vernier (blue) resonators are shown in Fig. 6.3a. A zoomed-in

panel shows the optical spectra where the frequency of the N -th Vernier soliton comb

line coarsely aligns with that of the (N + 1)-th main soliton comb line. An electri-

cal spectrum of the beat frequencies between the two combs is shown in Fig. 6.3b.

Within the 26 GHz cut-off frequency of our electrical spectrum analyzer (ESA), four

beat frequencies are observed: ∆1 = 19.3639 GHz, ∆9 = 22.6815 GHz, ∆10 = 3.3157

GHz and ∆11 = 16.0449 GHz. The strong VCO1 beat note near 14 GHz is derived

from the modulation of the cw laser, and can be removed by an optical or electrical

filter.
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6.4 Detecting sub-THz comb rep-rate
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Figure 6.3: Summary of experimental data. (a) Optical spectra of main solitons
(red) and Vernier solitons (blue) with sech2 envelopes (dashed lines). The 9-th and
11-th pairs of comb lines are shown in the zoomed-in panel. The pump laser is
suppressed by Bragg-grating filters. (b) ESA spectra of dual-comb beat notes. ∆1,
∆9, ∆10, and ∆11 are apparent. The strong VCO1 beat note is derived from the
pump laser unit, and can be filtered out optically or electronically. ESA spectrum
of: (c) ∆9 divided by 36, (d) ∆11 divided by 44, (e) fv = fr1/198 as the sum of
∆9/36 and ∆11/44, and (f) beat note fe from out-of-loop EOM method. (g) Phase
noise measurement of fv (red) and fe (blue). The phase noise of fv multiplied by 1982

matches that of fr1 measured by out-of-loop EOM method. (h) Rep-rate of the main
solitons measured by Vernier method (orange) and EOM method (blue). Both main
and Vernier solitons are free-running. The gate time is 10 ms. (i) The frequency
difference between rep-rate measured with Vernier and EOM methods in panel (h).
Mean value is concluded with a 95% confidence interval under normal distribution.
(j) Allan Deviation of the frequency difference. The frequency difference agrees with
the counter resolution limit for the Vernier method.
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Beat frequencies ∆9 and ∆11 are selected for the main soliton rep-rate division.

∆9(∆11) is the beat frequency between the 9 (11)-th Vernier soliton comb line and the

10 (12)-th main soliton comb line, where ∆9 = 10fr1 − 9fr2, and ∆11 = 11fr2 − 12fr1.

In the measurement, after combining the main and Vernier solitons with a fiber cou-

pler, a bandpass filter is used to pass the comb lines associated with ∆9, ∆10, and ∆11

for optical amplification. Then a second fiber coupler splits the power into two optical

paths, where in each path a bandpass filter is used to select the comb lines of ∆9 or

∆11, and the corresponding beat note is created on a photodiode. To divide the main

soliton rep-rate, ∆9 and ∆11 are divided by 36 and 44 in frequency, respectively, and

sent to a RF mixer to produce their sum frequency, fv = ∆9/36 +∆11/44 = fr1/198,

which is the main soliton repetition rate divided by 198. The electrical spectra of

∆9/36, ∆11/44 and their sum fv are shown in Fig. 6.3c,d,e. The complete exper-

imental setup is shown in Fig. 6.2. In principle, one can use the configuration in

Fig. 6.1, where ∆1 is mixed with ∆N/N to generate fr1/N . However, limited by

the selection of electrical mixers in our lab, we do not have the capability to mix ∆1

(∼ 20 GHz) and ∆N/N (∼ 2 GHz for N = 9, 11), and thus we select ∆9 and ∆11

instead.

To validate the Vernier method, a conventional method by using electro-optics mod-

ulation (EOM) frequency comb is implemented as an out-of-loop verification. In the

conventional EOM method, two adjacent comb lines from the main solitons are phase

modulated at the frequency of a VCO to produce modulation sidebands. The strong

modulation results in a pair of sidebands near the midpoint of the two comb lines,

and they can be optically filtered and detected (Brasch et al. 2016; Jiang Li, Yi,

et al. 2014) (see Fig. 6.2). The detected EOM beat note (Fig. 6.3f) has frequency of

fe = fr1 −M × fVCO2, where M is the number of modulation sidebands, and fVCO2
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is the modulation frequency. M and fVCO2 are set to 11 and 17.897 GHz in this

experiment, respectively. It is worth noting that the Vernier beat note fv has much

narrower linewidth than the EOM beat note fe, which implies that the rep-rate of

the main solitons is coherently divided down from 196.974 GHz to 994.82 MHz.

To show the coherent division in the Vernier dual-comb method, the phase noise of the

Vernier beat note, fv, and the out-of-loop EOM beat note, fe, are measured with an

ESA through direct detection technique (Fig. 6.3g). For coherent frequency division,

the phase noise of fv (red trace) should be 1982 lower than the phase noise of the

undivided rep-rate, which is measured through the EOM method (blue trace). This

is verified in our measurement, as the phase noise of fv multiplied by 1982 (orange

dash trace) agrees very well with the phase noise of fe at offset frequency up to 30

kHz. Beyond 30 kHz offset frequency, the phase noise of fv is comparable to the

ESA sensitivity limit (black dash trace). At high offset frequency, our phase noise

measurement might be affected by relative intensity noise (RIN). This is common for

direct detection technique, as the RIN cannot be separated from the phase noise in

the measurement.

The rep-rate of the main solitons can be derived by multiplying the Vernier beat note,

fv, by 198. A zero-dead-time frequency counter is used to record fv. The main soliton

rep-rate, fr1 = 198× fv, is shown in Fig. 6.3h (orange trace). The free-running main

solitons have repetition rate around 196.9740 GHz, and the rate is drifting due to

temperature and pump laser frequency fluctuations. This rep-rate measurement is

compared to the rep-rate measured with out-of-loop EOM method. The frequency

of the EOM beat note fe is recorded on a second zero-dead-time counter, and the

rep-rate is derived as fr1 = fe +M × fVCO2. The EOM-measured rep-rate is shown in

Fig. 6.3h (blue trace), and it overlaps with the rep-rate measured by Vernier method
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perfectly. The frequency difference between the Vernier-measured rep-rate and EOM-

measured rep-rate is calculated and shown in Fig. 6.3i, and it has a mean value of (19

± 37) Hz with a 95% confidence interval under normal distribution. Figure 6.3j shows

the Allan deviation of this frequency difference at various gate times, and it agrees

with the counter resolution limit at the frequency of fv (dash black trace) multiplied

by 198 (green dash trace), which is the counter limit for fr1 = 198×fv. This indicates

that no frequency difference between the Vernier method and the EOM method can

be detected within the sensitivity of our instruments. In all frequency measurements,

the counters and VCOs are synchronized to a rubidium clock.

6.5 Locking sub-THz comb rep-rate
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locking loop has ∼ kHz servo bandwidth. Within the servo bandwidth, the Allan
deviation goes down as 1/τ . Beyond the servo bandwidth, the Allan deviation is
similar to that of the free-running unlock rep-rate. The error in the rubidium clock
has been corrected for the Allan deviation of the locked rep-rate. This is done by
synchronizing the EOM and the soliton rep-rate to the same rubidium reference. In
the entire measurement, the repetition rate of the Vernier solitons is not stabilized,
and there is no feedback control of the laser-cavity detuning for the Vernier solitons.
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The main soliton repetition rate can be stabilized by locking the Vernier beat note

fv to a radio-frequency reference. In this demonstration, fv is locked to a rubidium-

stabilized local oscillator through servo control of the pump power using an voltage-

controlled optical attenuator (VCOA) to vary the main soliton repetition rate (see

Fig. 6.2). Rep-rate measurement with the EOM method is utilized to verify the

locking and the result is shown in Fig. 6.4a. To eliminate the relative frequency

drifts of the electronic components, fVCO1, fVCO2, counter 1 and counter 2 are all

synchronized to the same rubidium clock. Therefore, the error in the rubidium clock

has been corrected, and the absolute stability of the reference will not affect our

frequency readouts. This allows us to evaluate the servo locking loop without us-

ing high performance atomic clock reference. The locking is turned on at the time

near 50 s, and the soliton rep-rate immediately stops drifting and is stabilized to

196,962,681,959 Hz (see Fig. 6.4a). The Allan deviations of the free-running (red)

and stabilized (green) rep-rate are calculated from the EOM-based rep-rate measure-

ments and are presented in Fig. 6.4b. Above 0.3 ms gate time, the Allan deviation of

the locked rep-rate scales as 1/τ , where τ is the gate time. Below 0.3 ms gate time,

the Allan deviation of the rep-rate follows that of the free-running rep-rate. This

behavior of the Allan deviation is expected for a phase-locked oscillator with ∼ kHz

locking bandwidth. Ultimately, the absolute stability of the rep-rate is limited by

the atomic clock reference. It is worth noting that the repetition rate of the Vernier

solitons is not stabilized in the entire measurement.
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6.6 Summary

In this chapter, we demonstrated the Vernier frequency division method to detect

and stabilize soliton repetition rate at 197 GHz with 20s GHz bandwidth photodi-

odes and electronics. The Vernier method shall be applicable for a wide range of

repetition frequencies. It also applies to the case where the two frequency combs do

not share the same pump frequency/center frequency. In this situation, one more

pair of beat frequency should be detected. As this additional beat note and the two

Vernier beat notes share the same offset frequency between the two pump lasers, the

offset frequency can be eliminated by frequency subtraction. This will enable the

Vernier method to be applied to other types of high-rate combs, such as mode-locked

semiconductor lasers (Rafailov, Cataluna, and Sibbett 2007). The concept of Vernier

dual combs could also be modified to assist carrier-envelope offset frequency (fCEO)

detection for self-referencing an octave-spanning microcomb. At 1 THz rep-rate, the

fCEO given by the f -2f signal can range from 0 to 500 GHz, and it is challenging to

keep this frequency in a detectable range as it is subject to small fabrication varia-

tions. However, if a Vernier comb is frequency doubled and beat against the main

comb, a series of f -2f beat frequencies can be created. Their spacing equals to the

dual-comb rep-rate difference, and this can bring the f -2f signal to a detectable fre-

quency. Finally, the Vernier method has the potential to revolutionize optical and

electrical frequency conversion by eliminating the need for a detectable repetition

rate frequency comb, and it will have direct applications in optical clock (Newman

et al. 2019), optical frequency division (Fortier, Kirchner, et al. 2011), and microwave

frequency synthesis (Lucas et al. 2020).
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Chapter 7

Line-by-line Fourier synthesis of

radio-frequency arbitrary

waveforms using optical dual-comb

7.1 Introduction

Fourier synthesis leverages precise line-by-line amplitudes and phases control of in-

dividual spectral components for waveform construction. It has been widely imple-

mented in optical frequency and audio frequency domains for applications in arbitrary

waveform generation, ultrafast optics, and coherent quantum interaction with atoms

and molecules (Z. Jiang, Huang, et al. 2007; Cundiff and Weiner 2010) (AWG), coher-

ent control of quantum processes (Goswami 2003; Stowe et al. 2006; Barmes, Witte,

and Eikema 2013), and optical communications (Geisler et al. 2009). The broad op-

tical bandwidth provides femtosecond temporal resolution in the Fourier synthesis

(Chan et al. 2011) that is not attainable by conventional electronics.

Fourier synthesis in optical domain can be down-converted to microwave and mmWave

frequencies (Durán, Tainta, et al. 2015; Durán, Andrekson, et al. 2016; Ferdous,

Leaird, et al. 2009; Zhou et al. 2013; Yin et al. 2021; Ataie et al. 2015) through co-
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herent dual-comb sampling method (Coddington, W. Swann, and N. Newbury 2009),

and it could have wide applications in wireless communications, radar systems, and

electronic testing (J.-W. Lin et al. 2012; Ghelfi et al. 2014; I. S. Lin, McKinney, and

Weiner 2005). When photomixing two optical frequency combs with different repe-

tition rates on a photodiode, an RF frequency comb will be created, with its comb

lines deriving their amplitudes and phases from the dual optical combs. Line-by-line

amplitude and phase control on optical frequency combs (Ferdous, Miao, et al. 2011)

can then be coherently mapped to the RF frequency comb for waveform synthesis,

which has been shown recently with electro-optic frequency combs (Durán, Tainta,

et al. 2015; Durán, Andrekson, et al. 2016; Ferdous, Leaird, et al. 2009; Zhou et al.

2013; Yin et al. 2021; Ataie et al. 2015). Compared with other existing photonic

methods for RF waveform generation (Khan et al. 2010; Rashidinejad and Weiner

2014; Rashidinejad, Leaird, and Weiner 2015; Rashidinejad, Y. Li, and Weiner 2015;

Jian Wang et al. 2015; Tan et al. 2020), which rely on optical delay structures to

either provide enough dispersion for far-field frequency-to-time mapping, or route

different replicas of a low repetition rate optical pulse to different arrival times on a

photodiode, the Fourier synthesis method eliminates the need for long tunable optical

delay lines and low repetition rate mode-locked lasers, and thus creates the potential

for mass-scale integration on a photonic chip.

In this chapter, we demonstrated RF spectral line-by-line waveshaping and Fourier

synthesis of RF waveforms by using optical dual-microresonator solitons (Herr, Brasch,

et al. 2014; Brasch et al. 2016; Suh, Q.-F. Yang, et al. 2016; Tobias J Kippenberg,

Gaeta, et al. 2018). The high repetition rate of soliton microresonator-based frequency

combs (microcombs) (Tobias J Kippenberg, Gaeta, et al. 2018) enables line-by-line

amplitude and phase control of individual optical comb lines (Ferdous, Miao, et al.
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2011). Dual-comb coherent sampling is then used to coherently down-convert the

waveshaped optical microcomb to RF frequencies by beating it with another soliton

microcomb on a fast photodiode. A complete discrete Fourier series can be con-

structed for waveform synthesis by nullifying the carrier envelope offset frequency in

the down-converted RF frequency comb. A series of temporal waveforms, including:

tunable Gaussian, triangle, square, and ”UVA”-like logo, are demonstrated to illus-

trate arbitrary waveform synthesis. All critical components in the dual-microcomb

method, including soliton microcombs (Tobias J Kippenberg, Gaeta, et al. 2018),

wavelength multiplexer/demultiplexer (Rahim et al. 2019), intensity and phase mod-

ulators (C. Wang et al. 2018), optical amplifier (Beeck et al. 2020), and ultrafast

photodiodes (Q. Yu et al. 2020), are compatible with photonic integration. A discus-

sion of waveform quality and a comparison of the effective number of bits (ENOB)

with electronic AWG are presented at the end of the section.

7.2 Concept of line-by-line Fourier synthesis

The concept of dual-microcomb RF line-by-line waveshaping is illustrated in Fig.

7.1. Signal solitons with a repetition rate of fr, and local solitons with a repetition

rate of fr + ∆fr, are generated in two Kerr microresonators pumped by the same

laser (Dutt et al. 2018; B. Wang, Z. Yang, Xiaobao Zhang, et al. 2020). A radio-

frequency (RF) comb with zero offset frequency and a comb spacing of ∆fr can be

created by beating the signal and local solitons on a fast photodiode. The RF comb

forms a Fourier series, with V (t) =
∑∞

n=0An cos (2πn∆frt+ φn), where V (t) is the

voltage output of the photodiode, n is the comb line number, An and φn are the

amplitude and phase of n-th comb line, respectively. As the amplitude and phase of
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Figure 7.1: Concept of RF line-by-line Fourier synthesis with dual-
microresonator solitons. A radio-frequency (RF) comb that is composed of a
series of equidistant RF lines is created by photomixing two soliton microcombs with
slightly different repetition frequencies on a photodiode (PD). The RF comb spacing
is set by the repetition rate difference of the two soliton microcombs, and the RF
comb offset frequency is nullified by using a common pump laser to drive both opti-
cal solitons. To implement line-by-line amplitude (An) and phase (φn) control of the
RF comb lines, one of the optical microcomb (signal solitons) goes through optical
line-by-line waveshaping, and optical amplitude modulations (AMs) and phase modu-
lations (PMs) are down-converted to the RF frequency comb through dual-microcomb
coherent sampling. As the RF frequency comb forms a complete Fourier series, arbi-
trary temporal waveforms can be synthesized.

the RF comb lines are fully derived from the amplitude and phase of the corresponding

optical comb lines, the line-by-line optical waveshaping on the signal solitons can fully

control the amplitude and phase of the RF comb. In principle, dynamic waveform

synthesis is possible by using time varying modulations of An and φn through the use

of electro-optic modulators. Here, an off-the-shelf optical waveshaper is used instead

to demonstrate static, repetitive waveform synthesis.

7.3 Arbitrary waveform generation using Fourier

synthesis

In our experiment, the signal and local solitons are generated in SiN micro-ring res-

onators (M. H. Pfeiffer, Kordts, et al. 2016) with intrinsic quality factors of 7.7×106

and 4.3×106, respectively. The radii of the signal and local soliton resonators are
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set to 228.65 µm and 228.30 µm, respectively, which introduces a 150 MHz repeti-

tion rate offset (∆fr) between the two solitons. To create an RF comb with zero

offset frequency, both optical solitons are generated using the same pump laser (Dutt

et al. 2018; B. Wang, Z. Yang, Xiaobao Zhang, et al. 2020). Thermoelectric coolers

(TECs) are placed beneath microresonators to coarsely align the resonance frequen-

cies of the two resonators at the pump laser wavelength. The thermal tuning of the

resonant frequency is ∼2.5 GHz/◦C, and the TEC has a resolution of 0.01◦C. A rapid

laser frequency scanning method that leverages the single-sideband suppressed-carrier

(SSB-SC) modulator (J. R. Stone et al. 2018) is used to generate single soliton states

in both resonators simultaneously (B. Wang, Z. Yang, Xiaobao Zhang, et al. 2020).

The pump frequency is controlled by the voltage-controlled oscillator (VCO) that

drives the SSB-SC modulator, which scans over ∼3 GHz in 150 ns from shorter to

longer wavelength. Fig. 7.2a illustrates the simplified experimental setup. The opti-

cal spectra of signal (red) and local (blue) solitons are shown in Fig. 7.2b. No active

locking technique is used in our experiments for stabilization.

An optical line-by-line waveshaper (Ferdous, Miao, et al. 2011) is used to control the

phase of each comb line in the signal solitons (φSn). The signal and local solitons are

then combined in a 50/50 fiber coupler, and a second waveshaper is followed to control

the amplitudes of each comb line pair (ASn, ALn). An erbium-doped fiber amplifier

(EDFA) is used to amplify the solitons, and a high-speed, high-power photodiode

converts the optical dual solitons into a zero offset RF frequency comb. The dual-

comb optical spectrum after EDFA is measured on an optical spectrum analyzer,

and an oscilloscope with 4 GHz bandwidth is used to characterize the RF temporal

waveform, the spectrum of the RF comb, and the phase of the RF comb. Fig. 7.2c

presents the measurements when no phase or power adjustments are added by the
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waveshapers, except compensating the dispersion introduced by optical fibers. This

can serve as a reference point for line-by-line waveshaping in the RF domain. In our

experiment, we purposely select a small RF comb spacing, ∆fr = 150 MHz, such

that the analog bandwidth of the RF comb will not exceed the 4 GHz bandwidth

limit of our oscilloscope. The analog bandwidth in our experiment is limited by the

oscilloscope, not by the Nyquist frequency of coherent dual-comb sampling method

(Coddington, W. Swann, and N. Newbury 2009) or the speed of the photodiode.

To illustrate line-by-line waveshaping in the RF domain, four types of Gaussian based

temporal waveforms are demonstrated in Fig.7.2d to Fig.7.2g. The fundamental

Gaussian waveform is shown in Fig.7.2d, which has a Gaussian envelope with flat

phase in both frequency and temporal domains. The power and phase of the generated

RF comb match the designed ones very well, which are shown in red circles. The

corresponding temporal waveform is a Gaussian pulse train with a time period of

6.71 ns, peak voltage of 0.94 Volt, and pulse width of 235 ps. No electrical amplifier

after the photodiode is used in this work. The number of pulses in one period can

be doubled by knocking out half of the RF comb lines (Fig.7.2e). This is equivalent

to adding an equidistant Gaussian pulse with the same amplitude in one temporal

period. The amplitude of the added Gaussian pulse can be adjusted by changing the

amplitude of the RF comb (Fig.7.2f). Finally, the temporal position of the added

Gaussian pulse can be shifted by modifying both the amplitude and the phase of the

RF comb lines (Fig. 7.2g). The demonstration of these four Gaussian waveforms

illustrates the full control of amplitude and phase in our RF line-by-line shaping

method.

One direct application of line-by-line waveshaping is arbitrary waveform generation.

Three representative waveforms, including triangle, square, and ”UVA”-like wave-
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Figure 7.2: Line-by-line waveshaping of RF Gaussian waveforms. (a) Simpli-
fied experimental setup. The pump laser frequency is derived from the frequency of
a continuous-wave (cw) laser, fL, and the voltage-controlled oscillator (VCO), fVCO.
(b) Optical spectra of the signal (red) and local (blue) microresonator solitons. Sech2

envelope fittings are shown in dash lines. The waveform synthesis is shown in panel
(c) to (g) to illustrate the line-by-line control of amplitude and phase of the RF
comb. (c) The reference dual-microcomb waveforms with only dispersion compensa-
tion. (d) Amplitude control of the RF comb lines to shape temporal waveforms into
Gaussian pulses with 235 ps pulse width. (e) Further amplitude control to add an
equidistant Gaussian pulse and double the RF comb repetition frequency. (f) Adjust
the relative Gaussian amplitudes through comb line amplitude control. (g) Com-
bined amplitude and phase control of the RF comb to tune the relative position of
the two Gaussian pulses. From the top to bottom rows are: (i) the optical spectra of
soliton dual-microcomb after waveshaping, (ii) the down-converted RF spectra, (iii)
the phase of RF comb lines, and (iv) the temporal waveforms. Designed comb line
powers and phases are shown in red circles, and the designed temporal waveforms are
shown in dashed blue lines.

forms, are demonstrated here. For each temporal waveform, the corresponding am-

plitude and phase of each comb line can be derived by discrete Fourier transform of
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Figure 7.3: Arbitrary waveform generation by using dual-microcomb RF
Fourier synthesis. (a) Triangle waveform. (b) Square waveform. (c) ”UVA”-like
waveform. The corresponding (i) optical spectra, (ii) RF spectra, (iii) comb line
phases, and (iv) temporal waveforms are shown from top to bottom in each panel.
Designed comb line powers and phases are shown in red circles, and the designed
temporal waveforms are shown in dashed blue lines.

the temporal waveform. The Fourier transform of the triangle waveform is xtr(t) =∑∞
j=1 n

−2 cos (2πn∆frt+ (−1)jπ/2), where j is integer number, and n = 2j+1. The

triangle waveform only has comb lines with odd number n, where the phase of the

comb line alternates between −π/2 and π/2, and the amplitude decays quadratically

with the line number n. These features are well reproduced in the power and phase

spectra (Fig.7.3a), and a triangle wave with period of 6.84 ns and 2.4 V peak to

peak voltage is generated. Similarly, the square waveform is composed of comb lines

with odd number: xsq(t) =
∑∞

j=1 n
−1 cos (2πn∆frt− π/2). Fig.7.3b shows the mea-

surements of the square waveform. Finally, a “UVA”-shaped waveform is shown in

Fig.7.3c to illustrate that the waveform construction in our method is arbitrary. All
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three demonstrated waveforms agree very well with the designed waveforms.

7.4 Tuning of arbitrary waveform rep-rates
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Figure 7.4: Tuning the repetition frequency of the RF comb and temporal
waveforms. (a) The RF comb repetition frequency is tuned by adjusting the rep-
rate of local solitons. Small range tuning is realized by tuning the temperature of the
local soliton microresonator with a thermoelectric cooler (TEC). Large range tuning is
accomplished by generating local solitons in a microresonator with a slightly different
radius. Soliton repetition rates are indicated in the figure legend. Panel (b) and
panel (c) show the electrical spectra and corresponding temporal waveforms at three
different operating points indicated in panel (a). (d) Allan deviation of RF comb
repetition rate at point I in panel (a).

As the RF waveform repetition period is set by the repetition rate difference between

the signal and local solitons, it can be tuned directly by adjusting the repetition rate

of one of the solitons. Small range tuning of repetition period can be achieved by

adjusting the temperature of the local soliton microresonator. Fig.7.4a presents the

RF comb repetition rate versus the temperature of the local soliton microresonator

and a tuning rate of ∼ 30 MHz/◦C is measured. The spectra and temporal profiles

of two Gaussian waveforms at (I) 21.95 ◦C and (II) 22.15 ◦C are shown in Fig.7.4b

and Fig.7.4c, where a difference of 0.29 ns in the waveform repetition periods can be

seen. Large change of waveform period can be achieved by generating local solitons

in a microresonator with slightly different radius. The RF comb rep-rate changes

from ∼ 150 MHz to ∼ 85 MHz when the radius of local soliton microresonator is
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varied from 228.30 µm to 228.53 µm. Finally, Fig.7.4d presents the Allan deviation

of the RF-comb repetition rate, which is subject to the pump laser frequency drift

and environment temperature fluctuation in our free running system.

7.5 Figure of merits

7.5.1 Analog bandwidth

The ultrahigh analog bandwidth has been the key advantage of photonic AWG sys-

tems. 60 GHz analog bandwidth has been achieved previously using frequency-to-time

mapping (Khan et al. 2010) and direct time-domain synthesis (Jian Wang et al. 2015).

The analog bandwidth of the dual-comb Fourier synthesis method is ultimately lim-

ited by the Nyquist frequency of optical coherent sampling (Coddington, W. Swann,

and N. Newbury 2009), i.e., half of the optical frequency comb repetition rate, and the

bandwidth of the photodiode. The Nyquist frequency of dual-microcomb can range

from a few GHz up to a few hundred GHz (Suh and Kerry Vahala 2018; Q. Li et al.

2017). The high Nyquist frequency has been applied to increase the bandwidth or

sampling rate in dual-microcomb spectroscopy (Suh, Q.-F. Yang, et al. 2016; Dutt et

al. 2018), Lidar (Suh and Kerry J Vahala 2018; Trocha et al. 2018) and imaging (Yi,

Q.-F. Yang, K. Y. Yang, and Kerry Vahala 2018; Bao, Suh, and Kerry Vahala 2019).

In terms of photodiodes, bandwidth exceeding 100s GHz has been demonstrated, and

has been combined with soliton microcombs to generate RF signals with exceptional

performance in power (B. Wang, J. S. Morgan, et al. 2021), phase noise (S. Zhang,

Silver, Shang, et al. 2019; Tetsumoto, Ayano, et al. 2020) and time jitter (Jeong et al.

2020). It is thus possible to extend the analog bandwidth of dual-microcomb AWG
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beyond 100 GHz. In addition, all the critical components in dual-microcomb Fourier

synthesis, including laser, Kerr microresonators, multiplexers/demultiplexers, modu-

lators, amplifiers, and ultrafast photodiodes, have all been shown to be compatible

with silicon photonics integration. Also, it eliminates the need of low-rate mode-

locked lasers and long tunable delay lines required by the previous proposed on-chip

solutions (Khan et al. 2010; Jian Wang et al. 2015; Tan et al. 2020), and has the

potential of mass-production on a photonic chip.

7.5.2 Effective number of bits

An important figure of merit for RF arbitrary waveform generation is the effective

number of bits (ENOB) (Kester 2009), which can be used to evaluate the waveform

quality or the effective resolution of the waveforms. For our dual-comb AWG method,

the fundamental limit of its ENOB is set by the optical power of the frequency combs.

The fundamental limit of the ENOB in the dual-comb AWG method can be calculated

using the ratio of signal voltage to the root-mean-square noise voltage fluctuations,

and it is defined as: 2ENOB = Vp/
√
2Vσ, where Vp is the time domain peak voltage,

and V 2
σ is the voltage noise variance. As harmonic distortion is not observed in our

experiments, it is not included in our ENOB calculation. The digital quantization

noise is not included either for our analog system. It should be noted that the

widely used ENOB expression for sinusoidal waveforms (Kester 2009) agrees with our

definition when excluding harmonic distortion and digital quantization noise. For the

sinc-shaped waveform, where all comb lines are shaped into equal power, the ENOB

can be expressed as the following when the noise variance is dominated by shot noise
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(σ2
S) and thermal noise (σ2

T ):

ENOB =
1

2
log2

[
V 2
p

2R2
load(σ

2
S + σ2

T )

]
=

1

2
log2

[
2R2 ·N2P 2

0

(4e ·R ·NP0 + kBT/Rload) · fBW

]
,

(7.1)

where we have used Vp = 2Rload · R · NP0, σ2
S = 4e · R · NP0 · fBW, and σ2

T =

kBT/Rload ·fBW. Rload is the load resistor of the photodiode, R is the the responsivity

of the photodiode, N is the number of comb lines, P0 is the optical power per comb

line, e is electron charge, kB is Boltzmann constant, T is the temperature, and fBW

is the total bandwidth. It can be seen that the ENOB increases with the total comb

power (NP0), but decreases with total bandwidth.
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Figure 7.5: Theoretical analysis of effective number of bits (ENOB). (a) The
theoretical limit of dual-comb AWG ENOB versus the comb line power for 50 GHz
analog bandwidth. The minimum pump power required to achieve such comb line
power in the single soliton microcomb state is also shown. In this calculation, we
assume 3 dB loss between the microresonators and the photodiode, and 4 dB noise
figure for the optical post-amplifier. (b) ENOB comparison of dual-comb AWG and
state-of-the-art commercial electronic AWG.

For Kerr soliton microcombs, the comb line power at the envelope center (Pc) can be

expressed as (Yi, Q.-F. Yang, K. Y. Yang, Suh, et al. 2015) Pc = (0.8814η/N)2×Pmin
p ,
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where Pmin
p is the minimum pump power required for soliton existence, N is the

number of one-sided comb lines in 3-dB spectrum bandwidth, and η = Q/Qe is the

waveguide to resonator loading factor. Qe is the external or coupling Q-factor and

Q = (Q−1
0 + Q−1

e )−1 is the total Q-factor (Q0 is the intrinsic Q-factor). We can plot

the fundamental limit of ENOB versus center comb line power (Pc) and the minimum

pump power (Pmin
p ) for the sinc-shaped waveform, where the optical power per comb

line is shaped to half of the center comb line power (P0 = Pc/2). In fig. 7.5(a),

the blue trace is obtained with the parameters of η = 0.91, N = 20, fBF = 50 GHz,

Rload = 50 Ω, responsivity (Q. Yu et al. 2020) R = 0.8 A/W, and 3 dB insertion loss (1

dB from phase and intensity modulators (C. Wang et al. 2018), 2dB from wavelength

demultiplexer and multiplexer (Bauters et al. 2014)) between the resonators and the

photodiode. It can be seen that for comb line power below -10 dBm, the ENOB is

affected by photodiode thermal noise, which can be addressed by using an optical

post-amplifier to amplify the dual-comb power (red trace). A noise figure of 4 dB is

assumed for the post-amplifier in the calculation of the ENOB. The ENOB of Keysight

M8199A at 50 GHz is indicated with dash line in Fig. 7.5(a). It should be noted

that ENOB for electronic AWG is typically measured for the sinusoidal waveform

instead of the sinc waveform, and thus here it only serves as a rough reference for our

photonic AWG analysis. The ENOB versus analog bandwidth is shown in Fig. 7.5(b)

for center comb line power of 0 dBm (dashed) and -10 dBm (solid). The ENOB of

our experiment (≈ 4) is much lower than the theoretical limit, because of the high

loss in our optical path and the transmitted ASE noise from the pump EDFAs before

microresonators. Both of these can be addressed in a fully integrated system.

ENOB analysis
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The optical field of an N -pair dual-comb can be expressed as:

E =
N∑
n=1

√
P S
n exp[−i(wSn t− φSn)] +

N∑
n=1

√
PL
n exp[−i(wLn t− φLn)], (7.2)

where ωS,Ln , P S,L
n and φS,Ln are the n-th comb line’s frequency, power, and phase of

the signal (S) and local (L) combs. The photocurrent generated at the photodiode

can be expressed as:

Iph = R|E|2 +∆IS +∆IT

= R
N∑
n=1

(P S
n + PL

n ) + 2R
N∑
n=1

√
P S
n P

L
n cos[2πn∆frt+ (φSn − φLn)] + ∆IS +∆IT + · · · ,

(7.3)

where R is the responsivity of the photodiode, and 2πn∆fr = ωLn − ωSn are the

frequency differences of n-th lines of signal combs and local combs. ∆IS and ∆IT

are the current fluctuations caused by the shot noise and thermal noise, respectively.

In our experiments, the dark current noise can be neglected (10 nA for our PD,

Finisar VPDV2120). The first term in the second line of Eq. (7.3) corresponds to the

DC photocurrent, and the second term corresponds to the AC photocurrent for the

down-converted RF comb. Higher frequency terms beyond the Nyquist bandwidth

(Coddington, W. Swann, and N. Newbury 2009), such as harmonics of comb repetition

frequencies, are neglected. For the analysis of signal-to-noise ratio (SNR) and effective

number of bits (ENOB) (Kester 2009), we assume a flat spectrum for the dual-comb

for simplicity, i.e., P S
n = PL

n = P0. The AC voltage output is then given by:

VAC = 2Rload ·RP0

N∑
n=1

cos[2πn∆frt+ (φSn − φLn)], (7.4)
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where Rload (50 Ω) is the load resistor. For the sinc-shaped waveform, we will have

φSn = φLn , and the peak voltage will occur when t = M/∆fr, where M is an integer

number. The peak voltage can be expressed as:

Vp = 2Rload ·R ·NP0. (7.5)

The variances from shot noise and thermal noise, and their total variance are given

by:

σ2
S = 2e · IDC · fBW, (7.6)

σ2
T = kBT/Rload · fBW, (7.7)

σ2 = σ2
S + σ2

T , (7.8)

where e is the charge of an electron, IDC = 2R ·NP0 is DC photocurrent, fBW is the

bandwidth of photodiode (or the total bandwidth, assuming photodiode bandwidth

is equal to or larger than the Nyquist bandwidth), kB is the Boltzmann constant, and

T is the temperature (300 K in the lab environment).

The ENOB of the demonstrated waveform can be calculated using the ratio of the

signal peak voltage to the root-mean-square noise voltage fluctuations (Kester 2009):

Vp/
√
2

Vσ
= 2ENOB ⇔ ENOB = log2

(
Vp/

√
2

Rload · σ

)
, (7.9)

where we have used Vσ = Rload · σ. By plugging Eqs. (7.5 - 7.8) into Eq. (7.9), the

expression of ENOB is given by:

ENOB =
1

2
log2

[
2R2 ·N2P 2

0

σ2

]
=

1

2
log2

[
2R2 ·N2P 2

0

(4e ·R ·NP0 + kBT/Rload) · fBW

]
. (7.10)
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The ENOB increases with the number of comb pairs N and comb line power P0, and

decreases with the electrical bandwidth.

Our definition of ENOB agrees with the common ENOB definition in electronic AWG

for sinusoidal waveform, which is given by (Kester 2009):

ENOB =
SINAD − 1.76

6.02
, (7.11)

where SINAD = Psignal/(Pnoise+Pdistortion) is the signal-to-noise and distortion ratio,

and 1.76/6.02 ≈ 0.29 comes from the quantization error in an ideal digital-to-analog

converter (DAC)/analog-to-digital converter (ADC). When excluding the effect of

harmonics distortion and digital quantization error, Eq. (7.11) becomes:

ENOB =
SNR
6.02

=
10 log10(Vsig−rms/Vσ)2

20 log10 2
= log2(Vsig−rms/Vσ) = log2(Vp/

√
2Vσ),

(7.12)

which is the same as our ENOB definition in Eq. (7.12).

ENOB and soliton microcomb power

For bright dissipative Kerr cavity solitons, the center comb line power can be expressed

(Herr, Brasch, et al. 2014; Yi, Q.-F. Yang, K. Y. Yang, Suh, et al. 2015) as a function

of cavity second-order dispersion D2 and external coupling rate κext:

Pc =
h̄ω0

4g
κextD2 =

πn0Seff
2ω0n2D1

κextD2, (7.13)

where g = h̄ω2
0cn2/n

2
0Veff is the Kerr nonlinear coefficient and Veff = 2πcSeff/n0D1

is the effective cavity mode volume. h̄, ω0, c, n0, n2, Seff , D1 are the plank constant,
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cavity mode angular frequency, speed of light, refractive index, Kerr nonlinear re-

fractive index, effective mode area and free spectral range, respectively. Pc increases

with the product of κext and D2. For a given soliton pulse width τs, the minimum

pump power for the soliton state is given by (Yi, Q.-F. Yang, K. Y. Yang, Suh, et al.

2015):

Pmin
pump = −2c

π

Seffβ2
ω0n2D1

κ2

κext

1

τ 2s
=

2

π

n0Seff
ω0n2

D2

D3
1

(κ0 + κext)
2

κext

1

τ 2s
, (7.14)

where β2 = −n0D2/cD
2
1 is the group velocity dispersion, and κ0 is the cavity intrinsic

loss rate. Combining Eq. (7.13) and Eq. (7.14), the center comb line power can be

expressed as a function of the minimum pump power:

Pc =

(
ηπD1τs

2

)2

Pmin
pump, (7.15)

where we have used resonator-waveguide coupling strength coefficient η = κext/(κ0 +

κext). For the sech2-shaped soliton microcomb, its comb power spectral envelope is

given by:

P (∆ω) = Pc · sech2
(πτs

2
∆ω
)
, (7.16)

where ∆ω is the comb tooth frequency relative to the comb center frequency. As-

suming that within 3-dB spectral bandwidth there are N single-sided comb lines, we

can then obtain:

sech2
(πτs

2
ND1

)
=

1

2
⇔ πD1τs

2
=

0.8814

N
. (7.17)

Therefore, Eq. (7.15) can be expressed as:

Pc =

(
0.8814η

N

)2

Pmin
pump, (7.18)

In our experiment, these N comb lines can be used for line-by-line Fourier synthesis.
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For sinc-shaped waveform, the power of each comb line is set to the weakest comb line

power, i.e., 3 dB lower than that of the center comb line. Also, considering the total

insertion loss of optical components (such as wavelength demultiplexer/multiplexer,

phase/intensity modulators) between microresonators and photodiodes, the actual

comb line power received by the photodiode can be expressed as:

P0 = α× Pc
2
, (7.19)

where α is the efficiency from resonators to detectors. By plugging Eqs. (7.18)-(7.19)

into Eq. (7.10), ENOB can be expressed as:

ENOB =
1

2
log2

[
R2 · α2N2P 2

c

2(2e ·R · αNPc + kBT/Rload) · fBW

]
=

1

2
log2

[
(0.8814η)4 ·R2 · α2Pmin

pump
2

2[2(0.8814η)2 · e ·R · αPmin
pump/N + kBT/Rload]N2 · fBW

]
.

(7.20)

Eq. (7.20) is used for plotting ENOB without amplifier in Fig. 5a and Fig. 5b.

ENOB after optical amplification

If an optical amplifier, i.e. erbium-doped fiber amplifier (EDFA), is placed before the

photodiode for amplifying the comb line power, the output optical power per comb

line P0A is given by:

P0A = P0G, (7.21)

where G is the gain of the amplifier and we assume it is constant over the entire

amplifier bandwidth. The spectral density of amplified spontaneous emission (ASE)

noise is given by (Heffner 1962; Kogelnik and Yariv 1964; G. Agrawal 2001; Becker,
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Olsson, and Simpson 1999):

SASE =
1

2
(FnG− 1)hν, (7.22)

where Fn is the amplifier noise figure, h is the Planck constant, and ν is the frequency

of input signal. Given that the amplifier bandwidth (∆ν) is much smaller than the

frequency of light (∆ν ≪ ν), the spectral density of ASE noise can be treated as a

constant, i.e., SASE = 1/2 × (FnG − 1)hν0, where ν0 is the center frequency of the

amplifier operating band. The total power of ASE noise over the entire amplifier

bandwidth ∆ν is given by:

PASE = 2× SASE ×∆ν = (FnG− 1)hν0 ×∆ν, (7.23)

where the factor of 2 includes both orthogonal polarization modes supported in a

single-mode fiber. When dividing the ASE bandwidth ∆ν into K bins (G. P. Agrawal

2005; Desurvire and M. N. Zervas 1995; Becker, Olsson, and Simpson 1999) and each

bin has a bandwidth of δν = ∆ν/K, we can express the optical field of the ASE noise

as:

EASE = (SASEδν)
1/2

K∑
k=1

exp[−i(ωkt− φk)]. (7.24)

The photocurrent generated at the photodiode can be modified as:

Iph = R|
√
GE + EASE|2 +∆IS +∆IT . (7.25)

While the thermal noise variance σ2
T remains the same as before, the shot noise
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variance of the amplified light now becomes:

σ2
S = σ2

Scomb
+ σ2

SASE
= 2e ·R(2NP0G+ PASE) · fBW, (7.26)

which has optical power contributed from both the amplified comb signals and the

ASE noise. Besides the shot noise, from Eq. (7.25), the ASE noise field can also

induce extra noise current IASE, which includes the ASE field photomixing with the

amplified signal (Isig−sp), and ASE field photomixing with itself (Isp−sp):

IASE = Isig−sp + Isp−sp, (7.27)

Isig−sp = R(
√
GEE∗

ASE +
√
GE∗EASE)

= 2R
√
G(SASEδν)

1/2

K∑
k=1

(
N∑
n=1

ASn cos[(ωSn − ωk)t+ φk − φSn] +
N∑
n=1

ALn cos[(ωLn − ωk)t+ φk − φLn ]

)

= 2R
√
GA0(SASEδν)

1/2

K∑
k=1

(
N∑
n=1

cos[(ωSn − ωk)t+ φk − φSn] +
N∑
n=1

cos[(ωLn − ωk)t+ φk − φLn ]

)
,

(7.28)

Isp−sp = R · EASEE∗
ASE · 2

= 2RSASEδν
K∑
k=1

exp[−i(ωkt− φk)]
K∑
l=1

exp[i(ωlt− φl)]

= 2RSASEδν
K∑
k=1

K∑
l=1

cos[(ωk − ωl)t+ φl − φk],

(7.29)

where the factor of 2 in Isp−sp includes both two orthogonal polarization modes. Note

that only terms with their frequencies within the photodiode bandwidth should be

kept in the calculation, i.e., |ωS(L)n − ωk| ≤ fBW and |ωk − ωl| ≤ fBW. To derive the
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variances, we can first calculate the average values of Isig−sp and Isp−sp:

< Isig−sp >= 0, (7.30)

< Isp−sp >= 2RSASEδνK = 2RSASE∆ν = R · PASE, (7.31)

where we have considered the phase of ASE noise φk(l) fluctuates with time. The

expected values of I2sig−sp, I2sp−sp are given by:

< I2sig−sp >= 4R2P0GSASEδν

[
K∑
k=1

(
N∑
n=1

cos[(ωSn − ωk)t+ φk − φSn] +
N∑
n=1

cos[(ωLn − ωk)t+ φk − φLn ]

)]2
= 4R2P0GSASEδν × (

2fBW

δν
· 2N · 1

2
) = 4R2 · (2NP0G)SASE · fBW,

(7.32)

< I2sp−sp >= 4R2S2
ASEδν

2

(
K∑
k=1

K∑
l=1

cos[(ωk − ωl)t+ φl − φk]

)2

= 4R2S2
ASEδν

2 ×
[
K · 2fBW

δν
− fBW

δν
(
fBW

δν
− 1)

]
× 1

2
+ 4R2S2

ASEδν
2 ×K2

≈ 4R2S2
ASEδν

2 ×
[
2K · fBW

δν
− (

fBW

δν
)2
]
× 1

2
+ 4R2S2

ASEδν
2 ×K2

= 4R2S2
ASE · fBW(∆ν − fBW/2) + 4R2S2

ASE∆ν
2,

(7.33)

where fBW/δν represents the number of frequency bins within PD bandwidth. 2fBW/δν·

2N is the number of terms whose frequencies fall within PD bandwidth for I2sig−sp.

K · 2fBW/δν − (fBW/δν)(fBW/δν + 1) and K2 are the numbers of terms whose fre-

quencies fall within PD bandwidth for I2sp−sp when k ̸= l and when k = l, respectively.

As a result, the variances can be expressed as (G. P. Agrawal 2005; Desurvire and
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M. N. Zervas 1995; Becker, Olsson, and Simpson 1999):

σ2
sig−sp =< I2sig−sp > − < Isig−sp >

2= 8R2NP0GSASE · fBW, (7.34)

σ2
sp−sp =< I2sp−sp > − < Isp−sp >

2= 4R2S2
ASE · fBW(∆ν − fBW/2). (7.35)

The total noise variance after optical amplification is:

σ2
A = σ2

S + σ2
sig−sp + σ2

sp−sp + σ2
T . (7.36)

The ENOB after amplification can be expressed as:

ENOBA =
1

2
log2

[
2R2 ·N2P 2

0G
2

σ2
A

]
=

1

2
log2

[
2R2 ·N2P 2

0G
2

[4eRNP0G+R(FnG− 1)hν0(2e∆ν + 4RNP0G+R(FnG− 1)hν0(∆ν − fBW/2)) + kBT/Rload] · fBW

]
.

(7.37)

To simply this expression, three noise terms can be neglected with confidence. The

first is the shot noise of ASE, since the optical power of ASE is usually much smaller

than the optical power of amplified comb lines. The second is the photomixing of

ASE field with itself, which can be significantly suppressed using optical filters. The

last term is the shot noise of amplified comb lines, as it is found to be always much

smaller than the noise contributed from the photomixing of the ASE field and the

amplified signal field:

σ2
S,comb = 4eRNP0G · fBW ≪ 4ηpd · eRNP0G(FnG− 1) · fBW = σ2

sig−sp, (7.38)

where we have used amplifier gain G ≫ 1, and the expression of responsivity R =
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ηpd · e/hν, ηpd is the quantum efficiency of the photodiode. The amplifier noise figure

Fn is usually bigger than 2 (3 dB in log scale). Then the remaining noise sources only

include the thermal noise, and the noise from the photomixing between the ASE field

and the amplified signal field. Eq. (7.37) can be reduced to:

ENOBA ≈ 1

2
log2

[
2R2 ·N2P 2

0G
2

[4ηpd · eR(FnG− 1)NP0G+ kBT/Rload] · fBW

]
≈ 1

2
log2

[
2R2 ·N2P 2

0G
2

[4ηpd · eRFnG2NP0 + kBT/Rload] · fBW

]
.

(7.39)

Plugging Eqs. (7.18,7.19,7.21) into Eq. (7.39), ENOB after amplification can be

expressed as:

ENOBA =
1

2
log2

[
R2 · α2N2P 2

cG
2

2[2ηpd · eRFnG2αNPc + kBT/Rload] · fBW

]
=

1

2
log2

[
(0.8814η)4 ·R2 · α2Pmin

pump
2G2

2[2(0.8814η)2ηpd · eR · FnG2 · αPmin
pump/N + kBT/Rload]N2 · fBW

]
.

(7.40)

Eq. (7.40) is used for plotting ENOB with amplifier in Fig. 5a and Fig. 5b.

7.5.3 Time-bandwidth product

Finally, the time-bandwidth product (TBWP) of our current static arbitrary wave-

form demonstration is limited by the number of comb lines, which gives a maxi-

mum TBWP of 20. In contrast, a TBWP of 600 has been demonstrated by combin-

ing frequency-to-time mapping and optical interferometry (Rashidinejad and Weiner

2014). In the future, the TBWP of our method can be increased dramatically by

replacing the static waveshaper with phase and amplitude modulators for dynamic

line-by-line phase and amplitude control (C. Wang et al. 2018; Geisler et al. 2009;

Yin et al. 2021), and the time aperture of the waveforms will be directly set by the
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time aperture of modulation signals.

7.6 Summary

In summary, we demonstrated arbitrary RF waveform generation through spectral

line-by-line shaping with optical dual-microresonator solitons. In our experiment,

the analog bandwidth of the waveform is 3 GHz, which is set purposely such that

the waveform bandwidth will not exceed our oscilloscope bandwidth. The waveform

analog bandwidth in our dual-microcomb method can be conveniently increased by

adjusting the FSR difference between the two soliton microresonators, which can

be precisely controlled in microfabrication. In addition, although the demonstrated

waveform generation is periodic and static, dynamic waveform generation can be

implemented by using time varying amplitude and phase modulation of the optical

comb lines through integrated photonic modulators (C. Wang et al. 2018; Geisler

et al. 2009; Yin et al. 2021).
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