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Abstract 

Cyber-Physical Systems (CPS) combine computational, communication, sensory and 

control capabilities to monitor and regulate physical domain processes. CPSs are becoming 

increasingly networked with the cyber world, opening access to communication with 

control rooms, command and control stations, other computer based systems, or even the 

Internet. Examples of cyber-physical systems include transportation networks, Unmanned 

Aerial Vehicle Systems (UAV’s), nuclear power generation, electric power distribution 

networks, water and gas distribution networks, and advanced communication systems. In 

all cases, current technology has introduced the capability of integrating information from 

numerous instrumentation and control systems and transmitting needed information to 

operations personnel in a timely manner. 

 While the application of perimeter security technologies has been utilized to help manage 

the possibility of cyber attackers exploiting highly automated cyber physical systems, the 

rate of successful attacks against critical infrastructures continues to be problematic and 

increasing [1]. Furthermore, the trend in adversarial attacks is moving toward well-formed 

coordinated multi-vector attacks that compromise the system in such a way that detection 

and identification is challenging for perimeter security solutions and human monitoring.  

This research effort constructed a methodology to defend against stealthy, low probability 

of detection, and high impact cyber-attacks on CPS. The goal is to increase the level of 

difficulty to perform a stealthy attack by improving the probability of detection, isolation 

and limiting the impact of an attack. The study uses the example of a UAV navigation system 

comprising of a redundant set of INS and GPS units solving the problem posed by Kwon et al 

[2] that there exist false injection attacks that evade fault detection techniques, allowing the 

adversary to deviate an aircraft.  

The examined architecture is comprised of a diverse sensory architecture within the CPS, 

avoiding supply chain vulnerabilities, and provides several possible trustworthy references. 

Expanding from a system with multiple components, a similarity measurement between 

INSs and GPSs is developed leveraging their unique characteristics and relationship. 

Assuming that an adversary is restricted to attacking a singular navigation component, the 

method is able to detect and isolate persistent cyber-attack for a large enough deviation.  
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An analytic attack model of a UAV navigation system comprising of multiple INS/GPS is 

validated with a complementary simulation, using a combination of a logical decision tree 

and similarity measurement analyses, the method correctly detects an infected component 

with a low false alarm rate(    ) The latency of the attack decreases as the rate of deviation 

increases. The maximum deviation an adversary can deviate an INS without being detected 

is about 30m of a 30min flight, on INSs with 0.05 and 0.07 m/s2 acceleration measurement 

error. The maximum deviation an adversary can deviate an GPS without being detected is 

about 16m of a 30min flight, on GPSs with 3 and 4  m/s2 position measurement error.  
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SECTION 1: INTRODUCTION 

1.1 CYBER PHYSICAL SYSTEMS 

The term Cyber-Physical Systems (CPS) refers to systems with integrated computational 

and physical capabilities that can interact with humans through various modalities. We call 

these interactions with other systems (and humans) the environment or the context of the 

given cyber physical system. CPS is commonly defined as a system with the following three 

capabilities: (i) sensing physical world (e.g., the position of a valve controlling a tank filling 

process), (ii) making decisions (e.g., whether it is necessary to open or close the valve), and 

(iii) performing actions in physical world (e.g. open or close valve to maintain tank fluid 

level)  CPS’s broadly focuses on the control and monitoring of physical processes. 

 

Figure 1: Lists the major characteristics and capabilities of modern CPS. CPS involves a 

network computation of heterogeneous data to control physical processes.   

 

CPSs are prevalent in the civilian (i.e. power grid, public utility services, financial 

infrastructure, etc.) and defense space (i.e. search and rescue missions and command, 

control, and conquer (C3) systems). One significant rising technology within the CPS 

envelop is the Unmanned Vehicle. There is a recent surge in the application and 

•CPS is typically designed as a network of interacting 
elements with physical input and output instead of as 
standalone devices 

Distributed 
Computing 

•CPS are heavily dependent on data from its 
subcomponents (e.g. HMI, Sensor Networks, 
Internetwork information, etc.) 

Cyber Data 

•CPS carries an intense link between the computational 
and physical elements 

Control of 
Physical Proces 
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development of these autonomous vehicles, revolutionizing the commercial and military 

spheres, improving the safety of the individuals and decreasing the cost of human labor 

necessary to operate these systems. 

Commercial examples of autonomous vehicles include: 

1. Amazon.com, Inc.: developing a network of Autonomous Aerial Vehicles to 

deliver small packages to their customers’ doorstep; a developing program 

named Amazon Prime Air.  

2. Google, Inc.: developing the next generation of Driverless Cars in a program 

called Google Chauffer.  

Even with the increasing potential of Autonomous Vehicles in the private space, the 

armed forces continues to dominate the deployment and application of Autonomous 

Vehicles with Unmanned Aerial Vehicles (UAV) taking significant roles in aerial 

reconnaissance and offensive missions.  



14 
 

 

Figure 2: Block diagram of a generalized CPS. 

Figure 2 depicts the border between the CPS and its environment is the called the 

system boundary or cyber system boundary where sensors continuously provide sensor 

data to the controller reflecting the physical state of the plant, and actuators receive control 

commands from the computing machine to effect and control the physical plant. The 

External Physical world consists of all the physical devices external to the computing 

machine. This includes the plant being controlled, as well as the environment in which the 

plant operates. The environment also includes disturbances to the plant from the natural 

world, such as wind, radiated energy, vibrations, etc. The computer based controller 

consists of all of the hardware, control logic and algorithms used generate control actions 

applied to the plant. The computer actions are represented by discrete time state space, 

reflecting the digital nature of the computer.  The service delivered by a cyber-physical 

system is its behavior as it is perceived by its user(s) receiving services from the CPS. The 
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delivered service can be viewed from two perspectives: 1) a sequence of commands, status, 

and requested information between the physical plant and the controller, or 2) the 

commodity flow of the plant (e.g. electric power distribution, oil in a pipeline, etc.). The first 

service type (type 1) is at the boundary of the cyber-physical system, the second (type 2) is 

in the physical world altogether. Examples of type 2 services may be flying an aircraft to a 

destination, supplying power over an electric grid, or regulating the speed of a motor. Note 

that a controller may sequentially or simultaneously be giving and receiving with respect to 

another system, i.e., deliver service to and receive service from that other system.  

Attackers are increasingly aware of the importance and vulnerability of critical 

infrastructures and are targeting physical systems to damage them and harm civilians [3]. 

We are encountering a new wave of cyber-attacks, a new type of infiltration; well-honed, 

massively coordinated, sophisticated attack that encompasses not only stored information 

in computers and information traveling through networks, but also controllers, sensor 

networks and SCADA systems. It is widely speculated that hacking’s latest surge may 

include terrorist cyber strikes against these critical systems [1].  

The prevalence of these critical Cyber Physical Systems in our society coupled with a 

lack of robust security defenses has led to increased concern that cyber-attacks on CPS’s 

that may result  in catastrophic events which could cause significant disruption in energy, 

financial, and infrastructure services. 
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Figure 3: The ubiquity of CPS spans civilian and defense application. Cyber Attacks are 

increasingly involved in the issues of CPS.  Disrupting agents are increasingly capable of 

unauthorized manipulating these CPS upon which civilians and military personnel heavily rely. 

Because of this reliance, malicious cyber adversaries can damage and cause severe harm to the 

broad range of stakeholders of these systems. 

 

Cyber based threats or cyber faults to cyber physical systems manifest in two 

domains; the information universe, and the boundary between the information universe 

and the physical universe – the cyber system boundary. More precisely, information in a 

computer is characterized by symbols, and the interpretation and manipulation of those 

symbols. Symbols are represented by instructions and the data that instructions operate on.  

Cyber faults can corrupt symbols rendering them into different symbols, non-symbols or 

reconstitute the interpretation of symbols. Cyber faults in the information universe are 

usually manifested as modifications to data and instruction symbols. Finally, cyber failures 

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&docid=iHKWUiVEjj-0WM&tbnid=z1h8Yd8Rp2TKTM:&ved=0CAUQjRw&url=http://www.trunews.com/weekend-attacks-arkansas-electric-grid-leave-10000-without-power-expected-u-s/&ei=sehXU-jxNKHgsAS9-ILgBQ&bvm=bv.65177938,d.b2U&psig=AFQjCNGqrDHLeuJgj8FdwXg_im8UCQAz9g&ust=1398356509881097
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are associated with the cyber system boundary, which is where the user of the system 

eventually sees the effects of faults and errors. With cyber failures, a distinction can be 

made between cyber primary failures, cyber secondary failures and cyber performance 

failures.   

 Cyber Primary failures: A primary failure is caused by a cyber-fault (flaw) in 

the software or hardware so that the system output does not meet its 

intended action or specification. A system output could be a command to the 

physical plant or a display of the status of the plant at the HMI.  

 Cyber Secondary failures: A secondary cyber fault occurs when the input to a 

computer does not comply with the specification. This can happen when the 

computer and its software are used in a way it is not designed for, or inputs 

applied to the system are not anticipated or of the wrong type. Inputs can be 

from sensors, other systems, or from operators.  Cyber Secondary failures 

may induce primary failures. 

 Cyber Performance failures: Cyber Performance failures occur at the cyber-

system boundary.  Performance failures can occur in two ways. One way is 

Timeliness.  This is a measure of time from input of data to output of data. 

When there is a sustained increase in this measure, a timeliness 

performance effect has occurred. Timeliness also includes so called real-time 

failures. This occurs when the computer delivers the correct output but at a 

time that is beyond the real-time deadline of the system. This is also called a 

real-time violation or failure. Another performance failure can occur when 

the accuracy or precision of the output is affected. When the output is not 

100% of the expected output, a precision performance effect has occurred. 
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For example, when a process crashes before completing execution, output 

could be less than 100% of the expected.  

 

Because cyber-based threats and intrusions are an artifact of design (a human 

crafted the exploit), all combinations of the above types of cyber-failures can occur, and in 

any order.  

Concerns about the security of CPS’s are not new, as the numerous published 

material on systems fault detection, isolation, and recovery testify [3, 4, 5].  At present, the 

state of the practice for augmenting Cyber Physical Systems security is perimeter based 

security (such as firewalls, intrusion detection mechanisms, anti-viral signature software, 

encryption, and advanced user authentication). While the application of perimeter security 

technologies has been utilized to help manage the possibility of cyber attackers exploiting 

highly automated cyber physical systems, the rate of successful attacks against critical 

infrastructures continues to be increasingly problematic [6]. Furthermore, the trend in 

adversarial attacks is moving toward well-formed coordinated multi-vector attacks that 

compromise the system in such a way that detection and identification is challenging for 

perimeter security solutions and human monitoring. 

From a cyber-war prospective, cyber-attacks provides a non-kinetic means to deny, 

degrade, disrupt or even destroy an adversary’s ability to fight and function  Bytes instead 

of bombs can potentially render an adversary’s command and control, critical infrastructure 

or logistics useless. In the present states of affairs, adversaries have shown they can plan 

their attacks carefully over time and launch the attacks at times of their choosing all with 

modest technical resources and skills. 

Furthermore, an asymmetrical conflict arises where defending is expensive while 

attacking is cheap: an attacker choses the attack vector which gives him the highest 
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probability of success i.e. attackers can chose to target the weakest component of a 

perimeter defense. Moreover, adversaries may take as much time as they seem necessary to 

deceive, obfuscate, and deploy attacks. Any sophisticated security protocol that a defender 

implements can be breached given ample time, resources, and knowledge of the system [7].  

On the other hand, a defender has a minute amount of time to react to an attack 

originating from all sides of the network perimeter. Defenders are forced to invest 

tremendous expenses to secure physical systems from cyber-attacks on the defender’s side  

Recent events [7, 8] maintain that current perimeter defenses are necessary for defending 

from cyber-attacks to prevent the bulk of attacks from entering a physical system, but are 

not sufficient. The Stuxnet virus provides evidence to this assertion [9]. Once the malicious 

virus went beyond the facility’s firewalls and security, it was virtually undetectable until an 

operator noticed irreparable damages to the target physical system. 

 

 

Figure 4: Block diagram depicting the different classes of vulnerabilities. This body of work 

focuses on attacks against the sensor components of the Cyber Physical System. 
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Figure 4 depicts the various classes of vulnerabilities and exploitation that an 

adversary may target [3]. We focus the scope of this study to the defense and detection of 

cyber-attacks targeting sensor components of CPS.  

1.2 AUTONOMOUS AERIAL VEHICLES AND SENSOR VULNERABILITIES 

In the beginning of manned flight, aircrafts were predominantly controlled by trained pilots 

manually keeping the stability of the aircraft and driving the actuation of the aircraft to 

complete a specific mission. UAVs heralded a new generation of aerospace hardware 

replacing conventional manual flight controls with electronic interfaces. Movements of 

flight controls are converted to electronic signals transmitted to a controller to determine 

the movement of the actuators at each control surface to provide the ordered response 

allowing the actuators to perform functions without a pilot’s input to stabilize or direct the 

aircraft  The UAV’s require minimal input from a remote pilot to carry out airspace missions 

that are too mundane or dangerous for manned aircrafts. 

Without the eyes, ears, and instincts of the pilot, a UAV must profoundly depend on 

their on-board sensors to maintain its stability and mission integrity during flight. One of a 

UAV’s dominant sensors is its navigation units  Before GPSs became popular, UAVs carried a 

singular strap-on INS. These types of stand-alone navigation system, however, caused 

imprecise geo-positioning as errors compound in time [10].   

With the low costs of GPS units, embedded GPS/INS units are becoming the 

standard navigation system for UAVs. Figure 5 is a block diagram depicting the navigation 

resolution between INS and GPS measurements. Unlike INS, which calculates position based 

on additive acceloremetric and gyroscopic readings; GPS components receive time signals 

from geo-stationary satellites to estimate the position. Sohne et al [10] presented several 

techniques for fusing INS and GPS data including Update with precise GPS position and 
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Cascade integration. Another way to correct INS and GPS data is to continually fuse INS and 

GPS data using a Kalman filter [11]. 

IMU
Strapdown INS

Arithmetic

GPS Reciever Kalman Filter

Feedback Correcting

Navigation 
Resolution  

Figure 5: Navigation Resolution between a strap-down INS/GPS system. 

The benefits of using GPS with an INS are that the INS may be calibrated by the GPS 

signals and that the INS can provide position and angle updates at a quicker rate than GPS. 

For high dynamic vehicles, such as missiles and aircraft, INS fills in the gaps between GPS 

positions. Additionally, GPS may lose its signal and the INS can continue to compute the 

position and angle during the period of lost GPS signal. The two systems are complementary 

and are often employed together. 

Seeing the significance and prolific use of UAVs in today’s airspace, adversaries are 

looking for ways to tamper with the components essential to the operation and integrity of 

the UAV. A major vulnerability is the adversarial manipulation of navigation sensors [12]. 

Since UAVs are heavily reliant on their on-board navigation equipment (Global Positioning 

System (GPS), Inertial Navigation System (INS), Gyroscopes, etc.) as the principal input to 

regulate the actuators and govern the aircrafts’ flight dynamics, cyber adversaries may take 

control of the aircraft, possibly compromising airspace missions, by injecting false 

information to these navigation components [4, 2] making these types of attack vectors 

attractive. By manipulating one component of the UAV the adversary has total control of the 

flight path of the aircraft.  

False injection attacks against CPS can originate from two methods: 
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1. Spoofing attacks which are disruptive attacks originating from outside the 

development, assembly, and operation of the CPS. 

2. Supply chain attacks which are attacks that infect systems’ components via 

compromising organizations, people, activities, information, and resources 

involved in moving the component from supplier to customer. 

 

Figure 6: Graphic on the navigation impact of stealthy false injection attack against UAV 

navigation systems [2]. 

 

Figure 6 illustrates the impact of a stealthy false injection attack targeting the 

navigation components of a UAV. The severity of cyber-attacks against key military 

apparatus threatens the capabilities of these rising technologies, weakens its applicability 

and diminishes the value they offer to the military and civilian space. The cyber defense of 

these UAV sensors is imperative, then, in the promotion and application of these 

technologies. 
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1.3 PROBLEM STATEMENT 

The security of sensors against adversarial false injection attacks is critical to keep 

the UAV under the control of its proper managers. As demonstrated by the December 2011 

confiscation of an RQ-170 Sentinel by Iranian military forces, cyber adversaries are 

increasingly capable of manipulating UAVs via sensor manipulation through false injection 

attacks. Consider a case where cyber-attacks targeting navigation components originate 

from supply chain attacks and/or GPS sensor carried out by way of stealthy means. 

Adversaries could apply gradual, and persistent false injections, allowing them to furtively 

waver a UAV away from its designated flight path, thus compromising its mission by 

keeping geographic locations inaccessible, and ultimately, concealing intelligence from the 

operators who seek it [13].  The impact of such a cyber-attack, where an aircraft is deviated 

away from the intended flight path, is shown in Figure 7.  

Furthermore, Kwon et al [2] argues that there exists sequences of false injections 

that would go unnoticed using fault detection techniques, meaning that an adversary could 

manipulate a UAV away from its intended flight path without alerting the operators. This is 

a vulnerability that adversaries may pursue. The adversary could have total control of the 

aircraft just by manipulating the navigation sensor of the UAV, making this type of attack an 

attractive option. The work herein presents a solution to increase the difficulty to 

successfully manipulate sensory components of UAVs through the use of System-Aware 

design patterns of diverse redundancy and data consistency checking. 
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Figure 7: Depicts a scenario where the adversary use false injection attacks to deviate a 

UAV to detract its way from its intended flight path, avoiding the area the adversary is 

concealing.  

 

 The study aims to decrease the desirability for an adversary to choose false injection 

attacks against sensor components by accomplishing 3 key objectives: 

1. Objective 1: Detect stealthy false-injection attacks against sensor components 

2. Objective 2: Isolate infected sensor components 

3. Objective 3: Limit impact of such cyber-attacks 

These methods can be generalized to other cyber physical systems with concerns over false 

injection attacks against their sensor components. 
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SECTION 2: REVIEW OF RELEVANT LITERATURE 

Section 2 provides the background and expected contribution of this body of work. Section 

2.1 explains the background behind false injections and the methods developed applied to 

Water SCADA Systems. This section also introduces the work of Kwon et al [2]  stating that 

there exist false injection attacks that evades fault detection techniques. Section 2.2 

introduces a new System-Aware paradigm whose design patterns manage a system’s 

operations before, during, and after a cyber-attack.  

2.1 FALSE INJECTION VULNERABILITIES 

Secure control theory studies the impact, detection, and of cyber-attacks against the control 

components of a physical system. Secure control theory addresses two major attack models. 

The first model, denial of service (DoS) attacks, refers to types of attacks that obstruct the 

communication between network agents [14]. Adversaries carry out these types of attacks 

by jamming communication channels, attacking routing protocols, etc. Examples of defense 

against these types of attacks are addressed in [15, 16, 17]. 

The second type of attack is deception attacks which attackers relay false 

information injections into the automated system allowing adversaries to stealthily 

manipulate the system to attain various objectives. Attackers who employ these attacks 

usually have a great amount of knowledge of the unique system architecture and fault-

detection methods, making the detection of these types of attacks difficult via perimeter 

defenses and fault-tolerant techniques.  

Due to the recent popularity of the topic of cyber defense, there has been a surge in 

methods developed to detect stealthy deception attacks against cyber physical systems. 
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Previous work on this area is the study of false data injection attacks in control systems [18] 

and the intrusion detection models of [3] and [19].  

Amin et al. [8] applied model-based detection systems on Water SCADA Systems 

applied to the supervisory control layer. Cardenas et al [3] introduces a model-based 

method viable for intrusion detection. Their method is applied to intrusion detection of 

Water Treatment SCADA Systems [8] where they develop an attack detection scheme using 

hydrodynamic models [20].  

Kwon et al [2] examines the effects of false injection deception attacks against 

navigation components of a UAV. Known el al. has analytically proven that adversaries can 

furtively manipulate systems, undetected by fault-detection residual tests. Attackers can 

generate attack sequences that gradually deteriorate navigation data of an embedded 

INS/GPS using a Kalman filter to resolve the navigation position between the two 

components. Kwon et al [2] showed that false injection attacks can cause large errors in 

position and all the while maintaining their clandestine operations. The study tested three 

sequences of false injections on the INS, GPS and both INS/GPS that created various error 

rates that do not trigger any alarms using a compound scalar test. Figure 8 compares the 

values of position estimation error due to false injection attacks while Figure 9 shows the 

residual power of the nominal system and the system under three different attacks. This 

demonstrates that the residuals under attack have no significant change in their statistical 

properties which implies the attacks are undetectable via residual tests. 
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Figure 8: Position error between nominal case (no-attack) and three different attack 

scenarios [2]. The figure shows that there is an increase in position error for each attack. 

 

Figure 9: Compound scalar test that demonstrate that residuals caused by attacks do not 

have significant changes in the statistical properties [2]. Shows the undetectability of a false 

injection attack against sensor components based on statistical changes in the residual of the INS 

and GPS. 

 

Kwon [2] also concluded that a deviation solely on the INS is bounded if the adversary is 

avoiding detection; while GPS deviation is unbounded. Thus, GPS deviation is more 

dangerous and impactful than that concerning a deviation of the INS. 
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2.2 SYSTEM-AWARE CYBER SECURITY 

Jones et al [7] introduces new a security paradigm to impede attackers from successfully 

infiltrating components of physical systems. Coined as System-Aware Cyber Security 

Architecture, it combines design techniques from three distinct communities: Cyber 

Security, Fault-Tolerant Systems, and Automatic Control Systems. The central purpose of 

System-Aware Security isn’t merely focused on intrusion detection; instead, its purpose is 

to manage a system’s “pre-attack, trans-attack and restorative methods” in hopes to 

increase the adversarial cost of attack. System-Aware design patterns include 1) diverse 

redundancy, 2) voting, 3) configuration hopping, and 4) data consistency checking. This 

architecture has been conceptually applied to controllers for nuclear power systems [21] 

and shipboard control systems [22] using design patterns under the System-Aware 

umbrella. Unlike the traditional perimeter defense where users are interested in 

authentication, signature defense, information anomalies, etc., System-Aware simplified 

defense to fact-checking and searching for inconsistencies among its critical components. 
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SECTION 3: METHODS 

In order to support the process of defense, it is important to capably describe and judge the 

CPSs current security status [23]. To this extent, this study develops, and validates detection 

methods based on the behavior of residuals between disparate navigation units commonly 

used in UAV navigation.  Section 3.1 argues for the use of a set of diverse, redundant 

navigation components to diminish the chances of adversarial supply chain attacks [7, 21]. 

Building on the benefits of System-Aware defense paradigm, a detection method leveraging 

the use of multiple diverse components and data consistency checking is developed.  

Section 3.2 introduces an analytic attack model of a UAV navigation system 

comprising of multiple independent INS and GPS. Section 3.3 A logical decision tree is 

created by asking three unique questions on the agreements between components in order 

to isolate infected components. Section 3.4 outlines the unique similarity analysis between 

components used by [2]. Each of these analyses uses unique analysis respecting the 

difference in behavior of each component. Section 3.5 develops the detection rule based on 

the arrival times of the disagreement signal. Section 3.6 describes the simulation test 

analyzing the behavior of the method during an INS attack and a GPS. Using the simulation 

model, the study concludes that the method successfully detects and isolates an inconsistent 

component. Aside from a successful detection and isolation, false alarms and latency of 

alarms are presented. 
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Figure 10: Summary of the detection method. This method is distinct from the navigation 

resolution between and embedded INS/GPS. In this case, INS1 is filtered with GPS1 to resolve 

the estimated position of the aircraft. The method tracks the measurement of INS1and is not 

corrected by the Kalman filter. The measurements from these components are then fed through 

their corresponding Similarity analysis which determines if a component is in agreement with 

another. Disagreement signals are then processed to determine the state of the UAV’s security 

using a logical decision tree. 

 

3.1 DIVERSE REDUNDANT SENSORY COMPONENTS 

This work argues that false injections against sensory components can originate from two 

fronts: 1) spoofing attacks, 2) supply chain attacks. Borrowing from ideas of [7] and [24], 

diversity of components solves supply chain infiltrations. Figure 11 summarizes the 

possible effect of carrying sensors from a single vendor. The adversary can infiltrate a single 

supply line and possibly have total control of the CPS. Figure 12 shows how carrying a 

redundant set of sensors from diverse vendors alleviates the problem of a supply chain 

attack. Having multiple sources for vendors allows the CPS to have alternative trusted 

references. Figure 13 shows the increased difficulty required for an adversary to control a 

CPS. Since diverse components are drawn from multiple vendors, adversaries are required 

to infiltrate multiple supply lines, which can be a cumbersome undertaking, possibly 

motivating the adversary to look for other avenues. Additionally, diverse, redundant 
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systems promote redundant information on the navigation to assist with checking data 

consistency. 

 

 

Figure 11: Illustration of a supply chain attack against a component with a single sensor 

vendor. In this case, the adversary infiltrates the operation of a single vendor. If the UAV sensor 

components come from one supply chain, then the UAV is susceptible to supply chain cyber-

attacks. 

 

 

Figure 12: Illustration of a multiple vendor supply chain. In this case, an adversary attacks 

only a single sensor vendor. Because the UAV developer applies diverse, redundant components, 

he has potentially multiple trustworthy references. 
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Figure 13: Illustration of an adversary infecting multiple vendor supply chain. This is a 

successful infiltration of the UAV components. Although this is possible, the cost and effort on 

the adversary side is much greater than that of a single vendor supply chain. The adversary may 

be motivated to look for other avenues to attack a system. 

 

Diverse-redundancy affords the assumption that, excluding a GPS signal spoof 

where all GPSs are deviating together simultaneously, an adversary may only inject false 

information into one on-board navigation sensor. Using diversity, the problem becomes that 

of detection using dissimilarities between the available components.  

3.2 ANALYTIC SYSTEM DESCRIPTION AND ATTACK MODEL 

3.2.1 Singular Embedded INS/GPS Model 

The behavior of physical systems can generally be described by a mathematical dynamical 

system. This study assumes a CPS modelled by a linear time-invariant stochastic system 

with Gaussian noise (which accounts for modeling errors, uncertainties, or external 

perturbations in the system). The navigation system architecture involves an Inertial 

Navigation System (INS), and Global Positioning Systems (GPS) components. INS units are 

navigation components that use accelerometers and gyroscopes to continuously calculate 
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the position, orientation, velocity and speed of a moving object. All inertial navigation 

systems suffer from integration drift which are small cumulative errors in measurement of 

acceleration and angular velocity. INS units while precise in the short-term can cause 

inconsistencies as accumulated errors compound. It is for this reason designers fuse INS 

information with GPS measurements, which are noisy but accurate in the long-run [11]. A 

commonly adopted technique to fuse navigation information is the use of an Extended 

Kalman Filter. This study considers a simplified UAV navigation system neglecting the 

altitude, attitude, and rotational motions of a UAV. The input   of the model denotes the 

directional component of acceleration applied to the UAV in the X- and Y-axis. 

Let   be the state of the aircraft whose states are: 

     x-axis coordinate position 

     x-axis component of the velocity 

     y-axis coordinate position 

     y-axis component of the velocity 

Then the modelled linear discrete-time system is: 

  (   )     ( )    ( )      ( )     ( ) 

  ( )     ( )      ( )   ( ) 

Where   ( )   
 ,  ( )    ,   ( )   

  are the system state, inputs of the INS unit, and 

the measurement of the GPS component, and   ( )    ,   ( )      are process and 

measurement noise. It is assumed that  ( ) and  ( ) are Gaussian white noise of the INS 

and GPS measurements, respectively, with constant covariance matrices   and  . Let 
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  ,    are the attack matrices and   ( ),   ( ) are persistent, linear deception attacks 

against the GPS and INS at time  , respectively. Note that the system matrix pairs ( ,  ) and 

( ,  ) are controllable and observable, respectively. 

The aircraft’s GPS and auxiliary GPSs takes measurements at every time period k, 

denoted by   ( ). 

Suppose that   is the steady state Kalman Gain, then the estimate of the attackable 

system is given by the following steady-state Kalman Filter: 

 ̂ (   )    ̂ ( )     ( )   (z (   )     ̂ ( )      ( )) 

The system inputs is then a function of the estimated state feedback,   ( )  (    ) ̂ , 

i.e. the actuators response is a function of the Kalman state estimate. Since the attackers 

inject attack inputs   ( ), he or she can directly affect the state of the aircraft. 

The true state of the aircraft in any security state is noted as 

  (   )     ( )     ( )     ( ) 

3.2.2 Redundant Components Model 

Now suppose a system with redundant sensory components is applied to the model. The 

system model of   INS units and   GPS units sensory components becomes 

  
( )
(   )     ( )     ( )      ( )     

( )( ) 

  
( )(   )     ( )     ( )      ( )     

( )( ) 

  

  
( )
(   )     ( )     ( )      ( )     

( )( ) 

  
( )( )   ( )  ( )      ( )   

( )( ) 

  
( )( )   ( )  ( )      ( )   

( )( ) 

  

  
( )( )   ( )  ( )      ( )   

( )( ) 
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( )( ) denotes the measurements of the nth GPS unit at time  .   

( )
(   ) denote the mth 

INS estimate at time    .  

To use a specific case, this study uses 2 INS units and 2 GPS units: 

INS1: 

  
( )
(   )     

( )( )     ( )      
( )( )     ( )( ) 

INS2: 

  
( )(   )     

( )( )     ( )      
( )
( )     ( )( ) 

GPS1: 

  
( )( )     ( )      

( )( )   ( )( ) 

GPS2: 

  
( )( )     ( )      

( )( )   ( )( ) 

Where 

   
( )
  x-axis coordinate position of the ith INS 

   
( )   x-axis component of the velocity of the ith INS 

   
( )   y-axis coordinate position of the ith INS 

   
( )
  y-axis component of the velocity of the ith INS 

   
( )
  x-axis coordinate position of the jth GPS 

   
( )
  y-axis coordinate position of the jth GPS 

3.3 FAULT ISOLATION 

The isolation method begins with a Logical Decision Tree which diagnoses which 

component is infected. There are three analyses questioning the agreement between two 

components (See Figure 14). 

1. Analysis 1: Are the INSs in agreement/similar? 
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2. Analysis 2: Are the GPS in agreement/similar? 

3. Analysis 3: Are GPS1 and INS1 in agreement/similar? 

 

 

Figure 14: Diagram depicting the relationship and their corresponding analysis between 

two components. 

 

These three questions are sufficient in the isolation process of an infected 

component. Figure 15 diagrams the logical decision tree that detects and isolates an 

infected component. For example, a normative scenario with no cyber-attacks necessitates 

the condition that all the questions are in the affirmative. However, an attack on GPS1 

necessitates the condition that Question 1 are in the affirmative and Question 2 and 3 are in 

the negative. Table 1 shows the mutually exclusive and exhaustive scenarios, under the 

assumption that an adversary can only infect one supply chain, and their resulting detection 

and isolation diagnosis. 
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Figure 15: Logical Decision Tree that asses the fault given certain conditions. Analysis 1 

checks the INS agreement. Analysis 2 checks the agreement between the GPSs. Analysis 3 

checks the similarity between GPS1 and INS1. Analysis 4 checks the similarity between GPS2 

and INS1. 

 

Table 1: Summary of attack diagnosis  

 

  

1 2 3

0 0 0

1 0 0

1 1 0

0 1 1

0 0 1

0 1 0

RESULTS

INS2 is deviating

No Attack

Agreement Analysis

GPS signal is spoofed

GPS2 is deviating

GPS1 is deviating

INS1 is deviating
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3.4 SIMILARITY ANALYSIS 

To begin the process of checking the consistency of the navigation measurement output, the 

method involves looking at the agreement between 2 distinct sensors. To compare the 

results between Kwon et al [2], the method In Section 3.2, a list of agreement analysis is 

developed to determine a cyber-attack. Since these sensors are disparate in varying levels, 

each similarity analysis requires a unique method of measuring similarity. Section 3.4.1-3 

describes the similarity analyses and their derivation. 

3.4.1 Similarity Analysis 1: INS1-INS2 

This section describes how the method assesses the agreement between two INSs. Since 

INSs suffer from compounding drift, the method looks instead at the velocity and 

acceleration residuals between the two components. Note that the INS discrete time-

invariant linear model introduced in Section 3.1.2 for the ith INS unit: 

  
( )
(   )     

( )( )     ( )      
( )( )     ( )( ) 

For 2 INSs, this similarity method generates the residual of the acceleration measurement of 

the 2 INSs. 

  ( )  (   
( )( )      

( )( )     ( )( ))  (   
( )( )      

( )( )     ( )( ))

  (  
( )( )    

( )( ))    ( ( )( )   ( )( ))    ( ) 

where   ( )   (  
( )( )    

( )( )). Since  ( )( ) is a zero-mean Gaussian, and since 

  
( )( )    

( )( ): 

 ( ,    ( ( )   ( ))  )     ( ( )( )   ( )( )) 
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If    ( )   , then  ( ) loses its non-zero Gaussian characteristics. Thus, a valid test for 

intrusion is to test the non-zero mean normality of the residuals. The compound scalar test 

allows one to do so. Since  ( ) is a bivariate standard normally distributed random variable.  

Let  

  ( )    ( )
 ((      )   

  (     ))   ( ) 

be the sum of squares of the residual with 2 degrees of freedom between the two INS 

acceleration measurements with covariance matrix 

     
( )   ( ) 

The method performs a compound scalar test to test the normality of the residuals [5]. The 

hypothesis test becomes 

    (  ( ))            

    (  ( ))            

where    signifies a non-agreement at time  . Suppose              .  

3.4.2 Similarity Analysis 2:GPS1-GPS2 

This section describes a method to measure the similarity of the two GPS units. The model 

for the GPS measurement is  

  
( )( )     ( )      

( )( )   ( )( ) 

for the ith GPS sensor. The residual for 2 GPS (GPS1 and GPS2) is 

  ( )    
( )( )    

( )( )

 (   ( )      
( )( )   ( )( ))  (   ( )      

( )( )   ( )( ))

 ( ( )( )   ( )( ))    ( ) 

where   ( )    (  
( )( )    

( )( )). Since  ( ) is a zero-mean Gaussian random variable: 

 ( ,  ( )   ( ))   ( ( )( )   ( )( )) 
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If   ( )   , then    loses its non-zero Gaussian characteristics. Thus, a valid test for 

intrusion is the compound scalar test. Let   be the sum of squares of the residual with 2 

degrees of freedom between the two INS acceleration measurements 

  ( )    ( )
 (   

  )  ( ) 

     
( )   ( ) 

The method performs a compound scalar test to test the normality of the residuals [5]. The 

compound scalar hypothesis test becomes 

    (  ( ))            

    (  ( ))            

where    signifies a non-agreement between the GPSs at time  . Suppose              . 

3.4.2 Similarity Analysis 3 and 4: GPS1-INS1 

GPS and INS units are distinct components carrying unique characteristics. Although INSs 

measures acceleration directly, GPS does not measure the direct acceleration of an aircraft. 

Thus, we are forced to perform analysis on the GPS and INS position measurements domain. 

Due to INS drift, the residuals between INS position estimates and GPS positions are non-

zero mean Gaussian. However, modern INSs, calibrated sufficiently, are capable to keep an 

precise position of an aircraft. Assuming the case where the INS are capable enough to track 

the aircraft position, we simplify the similarity measurements assuming that the residuals 

between and INS and GPS have non-zero mean Gaussian characteristics. The model for the 

simultaneous INS1 position and GPS1 position is 

  
( )(   )     ( )    ( )      

( )( )     ( )( ) 

  
( )( )     ( )      

( )( )   ( )( ) 

Then the residual of the INS and GPS position, or  
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  ( )    
( )( )    

( )( )

     
( )(   )     (   )     ( )  [    

( )( )      
( )( )]

 [    ( )(   )   ( )( )] 

 

has non-zero mean Gaussian characteristics. Assume that  

    
( )(   )     (   )     ( ) 

and if there are no cyber-attacks: 

    
( )( )      

( )( )    

then   ( ) is a Gaussian distributed random variable, with covariance 

       
    ( )       ( ) 

And the sum of square is 

  ( )    ( )
    
    ( ) 

Then the compound scalar hypothesis test becomes 

    (  ( ))            

    (  ( ))            

Let           = .99. 

3.5 DETECTION RULE 

Finally, this section constructs a rule for detection. Suppose the disagreement signal is an 

exponential distribution with a fixed arrival rate (false disagreement rate). If    is the time 

of the ith false disagreement, then if    ,        is the time between     false 

disagreement and       false disagreement. If there is a deviation, then disagreement 

signals cluster (i.e.        ) will be short (See Figure 16 and Figure 17). 
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Figure 16: Arrival times for a no-attack normative scenario. We see that the arrival time of 

the disagreement signals are distributed evenly with rate  . 

  

 

Figure 17: Disagreement times for disagreeing components. We see that the times between 

arrivals are decreasing. 

 

For a given probability  , then if           then we declare a disagreement where   is 

the inverse Gamma function: 

          ( , ,    ) 

where  

                                 

                                               

Consider the values  

      

     

                                                   

then      .  

In sum, if 10 disagreement signals occur within       then we raise an alarm. 

3.6 VALIDATION METHODS 
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The validation of this detection method begins with a simulation model of an attack against 

a UAV’s navigation system of four components (INS1, INS2, GPS1, and GPS2). 

StatisticalbasedIntrusionDetection.m Matlab script found in APPENDIX A simulates the 

flight path and the measurement readings for each sensor component. The Matlab script 

simulates outputs from the GPS and INS, given an initial position (de facto = [   ] ) and 

target (de facto = [         ] ). In the simulation, the aircraft carries two INS units, 

labeled INS1 and INS2; and two GPS units, GPS1, and GPS2. 

The study involves a simulation for the component interactions, estimation of 

locations, residual generation. The simulation is simplified to exclude the dynamics and 

actuating control of the aircraft. Also, assume that the linear model is an acceptable 

approximation of the non-linear dynamics of flight behavior (as assumed by [2]). The 

simulation also assumes several constraints: 

1. The speed of the aircraft cannot exceed 15 meter distance per second, and has a 

constant acceleration of 20 m/s2.  

2.      sec, is the sample time (i.e. 10 Hz) 

3. The attack matrix    has such property that    [   ]
  and    [       ]

 , i.e. the 

adversary applies additive false injection in the y-direction. 

4. Uninfected GPSs will measure the true position of the aircraft whose actuators are 

affected by the Kalman estimate between INS1 and GPS1. 

5. Attacks on INS1 and GPS1 occur at 250th second of the simulation. 

6. Table 2 summarizes the noise magnitude of each navigation sensor. GPSs have a 

between 3-4m standard deviation. And INSs typically vary in their accuracy 

(simulation uses .05 and .07m/s2). 
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7. Because of the presence of false disagreements, the method requires 50% 

disagreement signal cluster rate per 10 seconds for each of the 4 analysis to 

conclude that a sensor is deviating from one another. 

Table 2: List of the various component standard deviations tested in the simulation 

 

 

The study involves the analysis of false alarms in the system and an analysis of the latency 

of alarm for various deviation rates. The Section 4 only considers attack on INS1 (Section 

4.2), GPS1 (Section 4.3), and a GPS spoof (Section 4.4).  

INS1 0.05 m/s^2

INS2 0.07 m/s^2

GPS1 3 m

GPS2 4 m

Standard Deviation of each navigation component
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SECTION 4: RESULTS 

Section 4 presents the results and capabilities of the detection method. Section 4.1 analyzes 

the normative case of having no attacks on the system. In this case, false alarms generated 

by the method are measured using multiple trials of the navigation simulation. Section 4.1 

simulates a normative flight scenario with no adversarial manipulation. This section, also 

records 100 flight Section 4.2 simulates the behavior of the detection method during an 

attack of 0.1 m/s2 rate of deviation injected to INS1. Section 4.3 simulates the behavior of 

the detection method during an attack of 0.1 m/s rate of deviation injected to GPS1. Finally, 

an analysis of the detection latency against various deviation rates is presented in Section 

4.4. 

4.1 DEVIATION RATES AGAINST TRADITIONAL GPS AND INS 

Suppose a UAV has only one INS and one GPS. This section establishes the effects of 2 

scenarios: 1) 0.1m/s2 deviation on INS and 2) 0.1m/s deviation on GPS much like that of 

Kwon et al [2] so as to compare the effectiveness of the detection method. Figure 18 shows 

that statistical nature of the residuals between the Kalman Corrected INS and the GPS when 

an adversary applies a 0.1m/s2 deviation on the INS. Notice that residual analysis does not 

strongly detect the false injection. 
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Figure 18: Residual Analysis of a .01m/s
2 
deviation applied to the INS. Notice that the 

residuals are detecting the deviation between INS and GPS. 

 

 

In contrast to a 0.1m/s false injection attack on GPS, Figure 19 shows a few alarms; 

however, they do not strongly detect a false injection; again, aligning with the results of 

Kwon et al [2].  
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Figure 19: Residual Analysis for INS/GPS, attack rate of 1m/s applied to GPS. We see that 

there are a few alarms however the signals do not cluster, concluding that residual analysis does 

not detect attack. 

 

The study chooses deviation rates less than 0.1m/s2, for the INS, and 0.1m/s deviation rate, 

on the GPS to test the responsiveness of the detection method. 

4.2 NORMATIVE NO-ATTACK SCENARIO 

Figure 20 illustrates the simulated position measurements for GPS1 and INS1 for a 

simulated flight duration of 500sec (about 8 min). Notice that the INS (blue line) does not 

escape the error bounds of the GPS (red). The normative scenario examines the behavior of 

the similarity analyses between the components. Figure 21-Figure 23 show that all 

components are in agreement during a no-attack flight simulation trial. 
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Figure 20: Simulated GPS and INS measurements of a no-attack scenario of an aircraft 

flight path. 

 

 

Figure 21: Analysis 1 shows that INSs are in agreement.  

-50 0 50 100 150 200 250 300
-50

0

50

100

150

200

250

300

X-Direction, meters

Y
-D

ir
e
c
ti
o
n
, 
m

e
te

rs

Simulated Flight Path

 

 

GPS1

INS1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Analysis1: Similarity, INS1 and INS2

D
is

a
g
re

e
m

e
n
t 
S

ig
n
a
ls

(0
=

A
g
re

e
, 
1
=

D
is

a
g
re

e
)

time(k), deciseconds



49 
 

 

Figure 22: Analysis 2 shows that GPSs are in agreement. 

 

Figure 23: Analysis 3 shows that INS1 and GPS1 are in agreement. 

 

The results show that there are some disagreements between the sensors; however, notice 

that these disagreement signals do not cluster significantly. Table 1: Summary of attack 

diagnosis lists the average number of disagreements for each analysis for 500sec of 100 

simulated flight trials (or       sample points). The false disagreement rates are about 1%. 
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Table 3:  Lists the false alarm rate of each of the Similarity Analysis (1-3) 

 

4.3 FALSE INJECTION ATTACK ON INS1 

This section simulates a 0.1 m/s2 false injection attack on INS1. Figure 24 depicts the impact 

of such an attack for a 500sec simulated flight. The blue line deviates away from the true 

location of the aircraft (i.e. GPS1 in red). Figure 25 show that there are clustering 

disagreements between INS1 and INS2. Figure 26 show that there are no disagreements 

between GPS1 and GPS2. Figure 27 shows that there are clustering disagreements between 

GPS1 and INS1. Thus, the method correctly detects and isolates the infected INS1 

component. 

 

Analysis

1 50 4.8 0.01

2 49 6.8 0.0098

3 51 7.3 0.0102

Average Number of Disagreement Signals False Disagreement RateStandard Deviation
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Figure 24: Flight path of a 500sec duration with a .1 m/s
2 

deviation applied to INS1. The 

effect of the deviation is about 2km in a 30min flight 

 

 

Figure 25: Analysis 1 shows that INSs are in disagreement. 
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Figure 26: Analysis 2 shows that GPSs are in agreement. 

 

 

Figure 27: Analysis 3 shows that GPS1 and INS1 are in disagreement. 
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This section simulates a .1m/s2 rate of deviation false injection attack on INS1. Figure 24 

depicts the impact of such an attack for a 500sec simulated flight. The GPS1 (red clusters) 

deviates away from the true location of the aircraft (i.e. INS1 in blue). Figure 25 show that 

there are clustering disagreements between INS1 and INS2. Figure 26 show that there are 

disagreements between GPS1 and GPS2. Figure 27 shows that there are clustering 

disagreements between GPS1 and INS1. Thus the method correctly detects and isolates the 

infected GPS1 component. 

 

 

Figure 28:Simulated flight path and false injection attacks against GPS1. The effect of the 

deviation is about 3km in a 30min flight 
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Figure 29: Analysis 1 shows that INSs are in agreement. 

 

 

Figure 30: Analysis 2 shows that GPS1and GPS2 are in disagreement. 
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Figure 31: Analysis 3 shows that GPS1 and INS1 are in disagreement. 

4.5 GPS SPOOFING ATTACK  

This section examines the detection method behavior on a spoofing attack. A spoofing 

attack involves the hi-jacking of a GPS satellite signal. The target GPS receivers receive false 

signals from the adversarial transmitters, allowing the adversary to fool the position of the 

receiver. Consider a GPS spoof that hi-jack the signal of all GPS receivers present in the UAV 

(i.e. GPS1 and GPS2). The attack biases the GPS positions in the y-direction at a rate of 

0.1m/s2.  Flight path of a GPS spoofing attack which hi-jacks GPS1 and GPS2. depicts the 

effect of the position measurements of the GPS spoofing attack. Figure 33 and Figure 34 

conclude that INSs are in agreement and GPSs are in agreement; however, Figure 35 show 

that INS1 and GPS1 are in disagreement. This is enough to conclude that a GPS spoofing 

attack is occuring. 
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Figure 32: Flight path of a GPS spoofing attack which hi-jacks GPS1 and GPS2. The effect 

of the deviation is about 3km in a 30min flight 

 

 

Figure 33: Analysis 1 concludes that INS1 and INS2 are in agreement. 
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Figure 34: Analysis 2 concludes that GPS1 and GPS2 are in agreement. 

 

 

Figure 35: Analysis 3 shows that GPS1 and INS1 are in disagreement. Thus, the method 

concludes that there exists a GPS spoofing attack. 
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4.6 LATENCY ANALYSIS 

This section analyzes the latency, or the detection delay, of the method for various rates of 

deviations. Note that the attacks occur at 250th second of the simulation. We use detection 

rule described in Section 3.4 using an inverse Gamma function with parameters: 

       

     

       (            ) 

Table 4 lists the average detection time of 100 simulation trials of an attack on INS1. As the 

rate of deviation increases linearly the average latency decreases marginally.  

 

Table 4: Describes the latency of various devation applied to GPS1.Notice that as the rate of 

deviation increases the average latency decreases 

 

 

Table 5 lists the average detection time of 100 simulation trials of an attack on GPS1. As the 

rate of deviation increases linearly the average latency decreases marginally. 
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Table 5: Describes the latency of various devation applied to INS1.Notice that as the rate of 

deviation increases the average latency decreases. 

 

 

4.7 PARAMETER DESIGN 

In order to decrease the amount of false alarms, the designer should set the parameter   as 

high as possible and   as low as possible. This section gives a guideline on how to design 

these parameters. 

 

0.03 3.72 6.69

0.02 3.94 4.73

0.05 2.77 8.31

0.04 3.24 7.77

0.07 2.06 8.65

0.06 2.34 8.43

0.09 1.55 8.37

0.08 1.75 8.40

Rate of Deviation(m/s^2) Time until Detection (min) Deviation Impact

0.1 1.34 8.04
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Figure above depicts the contour plot of the detection time of a .02 m/s deviation rate with 

respect to varying values of the   and   values. The red contour shows the highest detection 

time while the dark blue contours depict relatively lower detection times. While it may be 

favorable to attain lower detection times, setting a lower   and higher    increases the false 

alarm rates. 
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SECTION 5: DISCUSSION 

Section 5 discusses the potential impact of applying such a method described in this 

research effort. Section 5.1 addresses the reversal of the conflict asymmetry between 

adversaries and defenders. Section 5.2 argues how the increase in components from the 2 

INS and 2 GPS architecture only increases the benefits of diverse, redundant components; it 

does not improve the latency of the detection methods. Section 5.3 discusses some of the 

parameters in the method that is left for the operators to tweak. Section 5.4 discusses the 

vulnerability within Analysis 1, similarity between INS1 and INS2; however, it also 

discusses the bounded impact of the vulnerability. 

5.1 REVERSING ASYMMETRICAL CONFLICT 

The method proposed in this section reverses the asymmetrical conflict innate 

between the defender and the adversary. In order for an adversary to successfully inject 

false information, she must be able to infect multiple supply chains. An adversary must also 

be able to successfully initiate an attack on the majority of sensors simultaneously which 

creates a Byzantine General problem for the adversary. 

This body of work addresses the problem posed by Kwon et al [2], that is, an 

attacker may apply a sequence of false injections to deviate an aircraft away from its 

planned flight path without alarming fault detection techniques by extending System-Aware 

portfolio of design patterns to defend sensors. Using multiple reference signals via diverse 

redundant components, the method checks the consistency of component outputs and 

isolates a faulty component if the detection method detects disagreements between the 

measurement output between two components. 
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The method developed increases the cost of false injection by meeting the three 

objectives listed in Section 1.3: 

1. Objective 1: Detect stealthy false-injection attacks against sensor components 

2. Objective 2: Isolate infected sensor components 

3. Objective 3: Limit impact of such cyber-attacks 

Section 4.3 and 4.4 shows that the detection method is successful in the detection of 

persistent attacks against navigation system. A logical decision tree concludes that a 

component is deviating allowing us to isolate an infected component. Section 4.6 shows 

detection latency for various deviation rates. Thus, the method increase the difficulty of an 

adversary to successfully attack sensor components of UAVs.  

5.3 INCREASING NUMBER OF COMPONENTS 

Increasing the number of components would improve the defense of the UAV navigation 

system in exchange for a more complex decision tree. If, perhaps, an adversary attacks 2 

components in a 2-INS/2-GPS navigation system (excluding GPS spoofing), then the 

adversary may obfuscate the results of the logical decision tree. Using an additional 

navigation component, the operator must include an additional similarity measurement 

analysis. An additional navigation component forces the adversary to exploit an additional 

component. Although an addition component takes advantage of diverse redundancy, an 

additional component does not shorten the latency of attack. 

5.4 VULNERABILITY 

Choosing a high threshold as the compound scalar testing threshold can be a vulnerability 

for Analysis 1 (INS similarity). Since the method only measures similarity of the 

acceleration component of each INS, the adversary could hide injections under the noise of 
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the INSs applying a minute bias away from the true position of the aircraft. Using the INSs 

noise magnitude of .05 and .07m/s2 and a confidence interval of .99 for the compound scalar 

test for Analysis 1, The maximum deviation an adversary can apply to the INS is 

       (   , ,    )          
  

the effect of which is depicted in Figure 36. The impact of the adversary is thus limited to an 

absolute deviation of about 30m for a flight duration of 2000sec (about 33min).  

 

Figure 36: The impact of a .017 m/s
2
 deviation applied to INS1. The maximum deviation in 

2000sec (about 33min) is 30m. 

 

 

5.5 FUTURE WORK 

The next step in the development of the detection method is to test the method in an 

aircraft environment. 
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Other similarity measurements can also be developed to improve upon the 

capabilities of the current method. Some that could be considered is developing belief 

functions and detection based on Dempster-Shafer Theory [25]. Detection methods based 

on a priori models depicting different types of attacks can also be considered. 
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APPENDIX A: SIMULATION SCRIPT 

StatisticalbasedIntrusionDetection.m 

clear; clc; close all; 

  

  

flightduration = 500; 

dt = .1;                % sampling time 

attack_rate = [0 0 0 0]*dt; 

  

falsealarm1 = []; 

falsealarm2 = []; 

falsealarm3 = []; 

falsealarm4 = []; 

  

for sim = 1:1 

RES1 = []; 

RES2 = []; 

RES3 = []; 

RES4 = []; 

  

%% Define update equations (Coefficent matrices): A physics 

based model for where we expect the Aircraft to be [state 

transition (state + velocity)] + [input control 

(acceleration)] 

A = [1 dt 0 0; 0 1 0 0; 0 0 1 dt; 0 0 0 1] ;% state 

transition matrix:  expected flight of the Aircraft (state 

prediction) 

B = [dt^2/2 0; dt 0; 0 dt^2/2; 0 dt];       % input control 

matrix:  expected effect of the input accceleration on the 

state. 

C = [1 0 0 0; 0 0 1 0];                     % measurement 

matrix: the expected measurement given the predicted state 

(likelihood) 

dT = [(dt^2/2)*randn; dt;  (dt^2/2)*randn; dt]; 

  

  

%% define main variables 

INS1= [0; 0 ; 0; 0];                       %initized state-

-it has two components: [position; velocity] of the 

Aircraft 

INS2 = [0; 0 ; 0; 0]; 

INS1input = []; 

INS2input = []; 

GPS1 = [0; 0]; 
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GPS2 = [0; 0]; 

x_real = [0; 0; 0; 0]; 

INS1GPS1 = [0; 0; 0; 0]; 

  

  

UAVAccel_noise = [.05 .07];              %INS process 

noise(stdv of acceleration: meters/sec^2) 

GPS_noise_mag = [3 4];                     %GPS measurement 

noise 

  

%% Kalman Parameters 

PINS1GPS1 = [0.1628    0.0149         0         0, 

    0.0149    0.0027         0         0, 

         0         0    0.1628    0.0149, 

         0         0    0.0149    0.0027]; 

PINS1GPS2 = [0.2510    0.0198         0         0 

    0.0198    0.0031         0         0 

         0         0    0.2510    0.0198 

         0         0    0.0198    0.0031]; 

      

KINS1GPS1 = PINS1GPS1*C'*inv(C*PINS1GPS1*C'+ 3*eye(2,2)); 

  

Sig_RES1 = 

(UAVAccel_noise(1)^2+UAVAccel_noise(2)^2)*eye(2,2); 

Sig_RES2 = 

(GPS_noise_mag(1)^2+GPS_noise_mag(2)^2)*eye(2,2); 

Sig_RES3 = C*PINS1GPS1*C'+GPS_noise_mag(1)^2*eye(2,2); 

Sig_RES4 = C*PINS1GPS2*C'+GPS_noise_mag(2)^2*eye(2,2); 

%% Calculate Steady-State Parameters 

  

  

  

target = [10000 10000]'; 

time_to_attack = 250; 

i = 0; 

j=0; 

for t = 1  : dt: flightduration 

  

    if (t>=time_to_attack) 

        i=1+i; 

    end 

     

    if (t>=time_to_attack) 

        j=1; 

    end 

    u = 10*[target-INS1GPS1(1:2:3,end)]/... 

        (norm([target-INS1GPS1(1:2:3,end)])); 
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    % Generate true Aircraft data 

    x_real = [x_real A * x_real(:,end) + B * u]; 

    if (x_real(2,end) > 10) 

        x_real(2,end) = 10; 

    end 

    if (x_real(4,end) > 10) 

        x_real(4,end) = 10; 

    end 

    INS1input = [INS1input (B * u + [0 0 attack_rate(1)*j 

0]' +... 

        UAVAccel_noise(1) * [(dt^2/2)*randn; 0;  

(dt^2/2)*randn; 0])]; 

    INS2input = [INS2input (B * u + [0 0 attack_rate(2)*j 

0]' + UAVAccel_noise(2) * ... 

        [(dt^2/2)*randn; 0;  (dt^2/2)*randn; 0])]; 

    INS1 = [INS1 (A * INS1(:,end) + INS1input(:,end))]; 

    INS2 = [INS2 (A * INS2(:,end) + INS2input(:,end))]; 

     

    if (INS1(2,end) > 10) 

        INS1(2,end) = 10; 

    end 

     

    if (INS1(4,end) > 10) 

        INS1(4,end) = 10; 

    end 

     

    if (INS2(2,end) > 10) 

        INS2(2,end) = 10; 

    end 

    if (INS2(4,end) > 10) 

        INS2(4,end) = 10; 

    end 

     

  

    % Filter GPS1 and INS1 

    GPS1 = [GPS1 (C * x_real(:,end) + [0 attack_rate(3)*i]' 

+ [GPS_noise_mag(1)*randn GPS_noise_mag(1)*randn]')]; 

    GPS2 = [GPS2 (C * x_real(:,end) + [0 attack_rate(4)*i]' 

+ [GPS_noise_mag(2)*randn GPS_noise_mag(2)*randn]')]; 

    INS1GPS1 = [INS1GPS1 (INS1(:,end) + KINS1GPS1 * 

(GPS1(:,end) - C * INS1(:,end)))]; 

  

    if (INS1GPS1(2,end) > 10) 

        INS1GPS1(2,end) = 10; 

    end 

    if (INS1GPS1(4,end) > 10) 
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        INS1GPS1(4,end) = 10; 

    end 

%% Generate Array of Standardized Faults 

  

    RES1 = [RES1 (INS1input(1:2:4,end)-

INS2input(1:2:4,end))'*inv(((dt^2/2)*eye(2,2))'*Sig_RES1*(d

t^2/2)*eye(2,2))*(INS1input(1:2:4,end)-

INS2input(1:2:4,end))]; 

    RES2 = [RES2 (GPS1(:,end)-

GPS2(:,end))'*inv(Sig_RES2)*(GPS1(:,end)-GPS2(:,end))]; 

    RES3 = [RES3 (INS1(1:2:4,end)-

GPS1(:,end))'*inv(Sig_RES3)*(INS1(1:2:4,end)-GPS1(:,end))]; 

    RES4 = [RES4 (INS1(1:2:4,end)-

GPS2(:,end))'*inv(Sig_RES4)*(INS1(1:2:4,end)-GPS2(:,end))]; 

     

    

end 

  

figure(1); clf; hold on; 

plot(GPS2(1,:),GPS2(2,:),'k.'); 

plot(GPS1(1,:),GPS1(2,:),'r.'); 

plot(INS1(1,:),INS1(3,:),'b.'); 

% plot(INS1GPS1(1,:),INS1GPS1(3,:),'y.'); 

% plot(INS2(1,:),INS2(3,:),'g.'); 

xlabel('X-Direction, meters','FontSize',16); 

ylabel('Y-Direction, meters','FontSize',16); 

title('Simulated Flight 

Path','FontWeight','bold','FontSize',24); 

legend1 = legend('GPS2','GPS1','INS1'); 

set(legend1,'Position',[0.754221732745963 0.187739463601532 

0.128854625550661 0.0985221674876847],... 

    'FontSize',16); 

  

  

figure(2); clf; hold on; 

plot(RES1,'r-');hold on; 

plot(RES2,'k-');hold on; 

plot(RES3,'b-');hold on; 

plot(RES4,'g-'); 

  

%% Analysis 1: Similarity Measurement between 2 INS 

% Analysis 1 calls for residual analysis of the 2 INS 

inputs 

    A1 = chi2cdf(RES1,2); 

    figure(3); clf; plot(A1); 

  

    countA1 = 0; 
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    attacktimeA1 = zeros(1,length(A1)); 

    allgood1=0; 

    for i=1:length(A1) 

        if A1(i) >= .99 

            countA1 = countA1 + 1; 

            attacktimeA1(i) = 1; 

        end 

        if A1(i) <= .99 

            allgood1=i; 

        end 

    end 

  

    falsealarm1 = [falsealarm1 countA1]; 

%% Analysis 2: Similarity Measurement between 2 GPS 

%Analysis 1 calls for residual analysis of the 2 INS inputs 

    A2 = chi2cdf(RES2,2); 

    figure(4); clf; plot(A2); 

  

    countA2 = 0; 

    attacktimeA2 = zeros(1,length(A2)); 

    allgood2=0; 

    for i=1:length(A2) 

        if A2(i) >= .99 

            countA2 = countA2 + 1; 

            attacktimeA2(i) = 1; 

        end 

        if A2(i) <= .99 

            allgood2=i; 

        end 

    end 

  

    falsealarm2 = [falsealarm2 countA2]; 

  

%% Analysis 3: Similarity Measurement between INS1 and GPS1 

%Analysis 3 calls for spectral analysis between INS1 and 

GPS1 

  

    A3 = chi2cdf(RES3,2); 

    figure(5); clf; plot(A3); 

  

    countA3 = 0; 

    attacktimeA3 = zeros(1,length(A2)); 

    allgood3=0; 

    for i=1:length(A3) 

        if A3(i) >= .99 

            countA3 = countA3 + 1; 

            attacktimeA3(i) = 1; 
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        end 

        if A3(i) <= .99 

            allgood3=i; 

        end 

    end 

  

    falsealarm3 = [falsealarm3 countA3]; 

     

  

end 

  

%mean(falsealarm1) 

mean(falsealarm2) 

% mean(falsealarm3) 

% mean(falsealarm4) 

  

  

figure(7); clf; hold on; 

plot(attacktimeA1,'r.'); 

title('Analysis1: Similarity, INS1 and 

INS2','FontWeight','bold',... 

    'FontSize',24); 

ylabel(['Disagreement Signals',sprintf('\n'),'(0=Agree, 

1=Disagree)'],... 

    'FontSize',16); 

xlabel('time(k), deciseconds','FontSize',16); 

  

figure(8); clf; hold on; 

plot(attacktimeA2,'r.'); 

title('Analysis2: Similarity, GPS1 and 

GPS2','FontWeight','bold',... 

    'FontSize',24); 

ylabel(['Disagreement Signals',sprintf('\n'),'(0=Agree, 

1=Disagree)'],... 

    'FontSize',16); 

xlabel('time(k), deciseconds','FontSize',16); 

  

figure(9); clf; hold on; 

plot(attacktimeA3,'r.'); 

title('Analysis3: Similarity, GPS1 and 

INS1','FontWeight','bold',... 

    'FontSize',24); 

ylabel(['Disagreement Signals',sprintf('\n'),'(0=Agree, 

1=Disagree)'],... 

    'FontSize',16); 

xlabel('time(k), deciseconds','FontSize',16); 
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