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Abstract

This thesis presents the derivation of Lorentz Invariance and Equation of Motion

Relations between theoretical objects that involve the partonic transeverse momen-

tum called Generalized Transverse Momentum Distributions (GTMDs) and collinear

functions known as Generalized Parton Distributions (GPDs) that describe quark

and gluon orbital angular momentum. Although the GTMDs in principle define the

observables for partonic orbital motion, experiments that can unambiguously detect

them appear remote at present. The relations presented here provide a solution by

showing how, for instance, the orbital angular momentum density is connected to

directly measurable twist-three GPDs.

While experimental measurement is the only certain way to access the unknown func-

tions that describe quarks inside a proton such as the Parton Distribution Functions

(PDFs) and GPDs that characterize the nucleon, a great deal of effort has gone into

evaluating these functions using theoretical techniques such as model calculations and

parameterizations. Lattice QCD provides the only first principle calculations of the

Mellin moments of PDFs and GPDs. The work prsented here shows how, using only

a few moments, a large portion of the Fourier transform with respect to Bjorken x of

the PDFs and GPDs can be mapped out. In the case of GPDs, lattice calculations

provide a value for the Compton form factors that allow us to move away from the
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x = ξ ridge which, at present, is the only area of the phase space that has been

explored experimentally. After studying how well known parameterizations of the

PDFs and GPDs reproduce test functions, we demonstrate how PDFs and GPDs can

be reconstructed using the moments calculated by lattice QCD.
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Chapter 1

Introduction

Numerous questions remain unanswered about the matter that surrounds us. The

QCD Lagrangian is expressed using quark and gluon degrees of freedom that can not

be observed directly in experiments. We are yet to understand how the partons come

together to form nucleons and how these in turn combine to form nuclei. Among the

many approaches to unravel this conundrum, one has been to understand the various

pieces of the QCD energy momentum tensor. The diagonal elements of the tensor

describe the momentum density and consequently also play a role in describing the

angular momentum carried by the partons. A longstanding problem has been under-

standing the spin budget of the proton: how is the spin 1
2

distributed between the

spins and orbital angular momenta of the quarks and gluons? Another line of re-

search has been to probe the partonic structure of nuclei. In line with the traditional

picture of neutrons and protons combining to form nuclei, one can ask to what extent

do protons and neutrons retain their identity in a nucleus? What, indeed, do we un-

derstand about partons in a nuclear medium? My research focuses on exploring these

questions and on identifying the experimental observables that can shed light on them.
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Figure 1.1: Collinear quark.

Scattering a beam of particles off a proton target can tell us about its internal struc-

ture. Since the proton is not a point like particle, its interaction with the beam

can not be described from first principles in QCD/QED. As a result, by applying

constraints such as Lorentz covariance and current conservation, the proton current

is parameterized using unknown functions called form factors. By measuring the

scattering cross section in the lab, we can extract what these functions are. In the

earliest experiments that were conducted, the proton remained intact after the in-

teraction and only received a momentum kick ∆. These kinds of experiments are

referred to as elastic scattering. The form factors themselves are connected to the

Fourier transforms of the spatial distribution of charge and current in the proton.

As the beam energy is increased, we are able to probe smaller and smaller distances

inside the proton until at some point we start scattering off point like particles known

as the quarks. The presence of free quarks is signaled by the fact that, above a certain

threshold (≈ 1 GeV2), the structure functions characterizing this process are found

to be independent of the energy of the probe used. In fact, the structure functions

are found to depend only on Bjorken x: the ratio of the virtual photon energy and
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the four vector squared of the photon momentum. This is known as scaling.

The nucleon lepton interaction via the exchange of a photon is understood as a two

level procedure: one called the “hard part” in which the photon hits the quark and

the other called the “soft part” which describes the probability distribution of quarks

inside the proton carrying a certain helicity in a polarized or unpolarized proton

as the case maybe. While the “hard part” is exactly calculable in QCD, the “soft

part” can only be extracted from experiments. Switching from the lab frame to the

proton infinite momentum frame, the “soft part” is parameterized using the Parton

Distribution Functions that give the probability of a quark carrying a fraction x of

the momentum carried by the proton. Since the quark is described traveling along a

straight line, the PDFs portray a “collinear” picture of the proton. The experimental

process used to extract the PDFs is called Deep Inelastic scattering. In this process,

the proton disintegrates after being hit by the beam and is not detected.

The quarks had been postulated, prior to the experimental evidence pointing to their

existence, as an explanation for the large number of particles that interact strongly.

Collectively known as hadrons, the fermionic hadrons that undergo strong interac-

tion are called baryons while the bosonic hadrons are known as mesons. Just as

Mendeleev’s table was the first step towards identifying a unique nuclear structure

for every element, the proliferation of hadrons pointed to the existence of a substruc-

ture. The work of Gell-Mann and others paved the way for identification of quarks:

the baryons are bound states of three quarks while the mesons consist of a quark and

an antiquark. The introduction of a new quantum number called “color” and the

requirement that only the totally antisymmetric wavefunction in color is permitted

by nature restricted the allowed number of quark configurations to that which is ex-
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Figure 1.2: Generalized Parton Distributions

perimentally observed. The color charge in fact determines the strength of the strong

interaction.

To obtain the spatial distribution of quarks inside a proton, we require a process in

which the probe is able to hit the point like quark and also that the proton remains

intact after the interaction. This is achieved in Deeply Virtual Compton Scattering.

In this process, a high energy lepton beam interacts with the proton which then emits

a photon and gets rid of the excess energy that would have caused it to disintegrate.

It only retains a small momentum transfer ∆ which is the Fourier conjugate to the

average spatial position of the quark. The soft part in this process is described by

Generalized Parton Distributions that are a function of both x and ∆. Deeply Virtual

Compton Scattering (DVCS) is an example of an exclusive process because the proton

in the final state is detected in the experiment. It is also “off-forward” because the

proton carries a different momentum from the initial proton.
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The seminal paper by X. Ji in 1997 provided a gauge invariant decomposition of the

proton spin into quark and gluon spin and orbital angular momentum. The GPDs

were used in this paper as a means of accessing the total quark angular momen-

tum. Several experiments have been dedicated to collecting DVCS data such as the

fixed target experiment HERMES, and the collider experiments H1 and ZEUS at

the Deutsches Elektronen Synchrotron (DESY) and experiments from HALL A and

CLAS collaboration at Jefferson Laboratory. Although large parts of the kinematic

phase space still remain unexplored, these experiments have proven the feasibility of

extraction of the GPDs. The first set of data gathered does show scaling and is an

encouraging sign for using GPDs to describe the exclusive processes.

DVCS allows access to Compton Form Factors (CFFs) that are integrals in x of GPDs

weighted by a Wilson coefficient function arising from the quark photon hard scat-

tering that can be expanded order by order using perturbation theory. At variance

with parton distribution functions that describe the deep-inelastic scattering process

at the cross-section level, the GPDs enter the DVCS soft part at the amplitude level.

The ep → epγ reaction that probes DVCS also gets a contribution from the Bethe-

Heitler (BH) process in which the final state photon is radiated by the incoming or

scattered electron and not by the nucleon itself. As a result, the cross-section com-

prises a pure BH contribution, a pure DVCS contribution and a contribution that

is proportional to the interfernce of the BH and DVCS amplitudes. As the BH am-

plitude is described by the form factors, F1 and F2, that have been experimentally

measured to good precision, accessing the DVCS amplitude is a matter of subtract-

ing out the contribution that comes from BH alone and disentangling it from the BH

contribution in the interference term. Because we are probing the process ep → epγ

in a high Q2 regime, where Q2 = −q2 and qµ is a four vector denoting the difference
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in the four momentum of the final and initial electron, the virtual photon propogator

in the DVCS amplitude causes it to be suppressed by a factor of 1√
Q2

in comparison

to the BH amplitude. Hence, although it leads to a more complicated expression for

the cross-section, the presence of the BH process enhances the interference term in

comparison to the pure DVCS term. This is also good because the GPDs enter in a

linear way in the interference term as opposed to the pure DVCS term where they

occur as products of two GPDs.

Thus far, we have only considered quarks with longitudinal momentum. An additional

degree of freedom is the partonic intrinsic transverse momentum kT that allows a 3D

momentum tomography of the nucleon. kT is a unique in the sense that unlike x, it is

not a scaling variable. The transverse momentum of the nucleon is zero however, the

partons form a highly relativistic system inside the nucleon that can have non zero

transverse momentum. In other words, by extracting the kT structure of the nucleon,

we are able to study the fundamental properties of bound states in QCD. To access

the intrinsic kT , at least one particle that is produced by the hadronization of the

quark that is probed by the virtual photon needs to be detected: the momentum of

the detected particle is correlated with the momentum of the quark and allows one

to write the cross section using the quark transverse momentum degree of freedom.

Transverse momentum dependent distributions have been measured in semi-inclusive

processes such as semi-inclusive deep inelastic scattering (ep → hadron(P⊥) + X),

Drell Yan (A + B → µ+µ−(Q⊥) + X) and back to back jet (dihadron) production

e+ + e− → jet1 + jet2 +X.

To access partonic OAM, we look at Generalized Transverse Momentum Distributions

which are the off- forward transverse momentum dependent distributions. These de-
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Figure 1.3: Exclusive electroproduction of a photon through the DVCS and BH pro-
cesses

pend on x, kT and ∆. To access GTMDs, not only is it required to detect a particle

that results from the hadronization of the probed quark to detect kT , but also that

the nucleon remains intact after the interaction and is detected to measure the mo-

mentum transfer ∆. The experimental processes to detect GTMDs are still a topic

of ongoing research. As ∆T is conjugate to the average transverse spatial position

bT of the quarks, GTMDs give us a way to describe longitudinal Orbital Angular

Momentum Lz = (bT × kT)z. The GTMD F14, in the forward limit, gives the den-

sity of unpolarized quarks in a longitudinally polarized proton. As the quarks are

unpolarized, the only source of quark angular momentum is quark orbital angular

momentum. The average quark orbital angular momentum distribution in x is found

by taking the product of (bT × kT)z and the unpolarized quark densityin a longitu-

dinally polarized proton and integrating over kT . In a similar fashion, the GTMD

G11, in the forward limit, gives the density of longitudinally polarized quarks in an

unpolarized proton. This GTMD gives access to the spin orbit coupling (L · S)z of

quarks.

It is interesting to note that the GTMDs F14 and G11 do not correspond to any
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(a) F14 describes longitudinally polarized quarks in an unpolarized proton.

(b) G11 describes unpolarized quarks in a longitudinally polarized proton.

Figure 1.4: In the forward limit, F14 and G11 represent quark densities in a nucleon
and can be interpreted by graphs similar to the ones used for TMDs in [4]. The outer
circle represents the proton while the inner circle represents the quarks. The arrow
shows the direction of polarization, a circle with no arrow means that the entity is
unpolarized.
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transverse momentum distribution in the forward limit nor any generalized parton

distribution when integrated over kT . In other words, although these functions are

non zero in the forward limit and although they are non zero when integrated over

kT , they do not have a TMD or GPD counterpart: they carry completely new in-

formation that is not present in any of the predefined functions. Furthermore, these

GTMDs occur with an explicit kT coefficient in the parameterization that gives them

the unique property that the k2
T weighted integrals of these GTMDs are connected to

higher twist GPDs. F14 and G11 also occur with an explicit ∆T which means that in

the forward limit, in which these functions hold physical meaning for partonic OAM,

even if the functions themselves are non zero, the quark-proton helicity amplitude

structure describing them is zero.

I worked on a few main topics during my PhD. The first was deriving relations between

matrix elements of light-ray operators in QCD for off-forward scattering processes.

The next topic was studying the spatial distributions of partons in nucleons and nu-

clei obtained by taking the Fourier transform with respect to the momentum transfer

to the final proton state. Lastly, I have been working on reconstructing Parton Dis-

tribution Functions taking input from lattice QCD calculations. Some of my work is

published in Refs.[5], [6] and [7].

Quark-gluon interactions get significantly suppressed as the hard processes used to

probe them enter the multi GeV region. These interactions involve the intrinsic

transverse momentum kT of quarks and gluons. My thesis work showed how the k2
T

moments of the kT distributions describing the quark and gluon longitudinal orbital

angular momentum and the spin orbit correlation are related to higher twist collinear

matrix elements of operators by Lorentz Invariance Relations (LIRs). Obtaining the
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Figure 1.5: Generalized Transverse Momentum Distributions and Orbital Angular
Momentum

LIRs involved looking at the substructure of the collinear and transverse momentum

distributions in terms of the completely un-integrated QCD quark-quark correlator

and deriving a parameterization for it. Using the LIRs along with the QCD equation

of motion, we separated the Wandzura-Wilczek or the leading contribution from the

genuine twist three contribution to the higher twist object. This allows us to define a

strategy to directly measure the orbital angular momentum and spin orbit correlation

in an experiment.

The recent prediction using the formalism of Generalized Parton Distributions (GPDs)

that the neutrons core is negatively charged has completely changed our understand-

ing of the internal structure of the neutron. GPDs are defined in the infinite mo-

mentum frame in which the transverse plane remains unaffected under boosts and

allows the unambiguous interpretation of the Fourier transform as the spatial charge

distribution. My work focuses on applying this principle to obtain 3D images of

nuclei such as 4He. We find that the spatial charge distributions for both u and d

quarks at different Bjorken x are indeed altered as compared to those in a free nucleon.

Lattice QCD provides one of the few first principle calculations of the moments of
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Parton Distribution Functions (PDFs). Unlike the PDFs and GPDs that are defined

on the light-cone, the lattice is setup in Euclidean space which prevents the calculation

of the distributions themselves. A recent proposition by X.Ji and A. Radyushkin is to

calculate quasi-PDFs and pseudo-PDFs that are defined off the light-cone. Pseudo-

PDFs converge to PDFs in the limit that z2 goes to zero, where z− is the Fourier

conjugate to the intrinsic quark momentum and is also referred to as Ioffe time. We

conducted a study using a di-quark model parametrization to calculate pseudo PDFs

and studied how far we deviate from the expected PDF as we take it more off the

light-cone. We also explored a way to directly use the lattice QCD moments to map

out the Fourier transforms of PDFs and GPDs in Ioffe time space. The small z

behavior of the Fourier transform is controlled by the moments and is written as

a Taylor expansion. The large z component on the other hand is driven by Regge

behavior. Once we had the z space distributions in place, we reconstructed the PDFs

by performing the inverse Fourier transform. In the case of GPDs, we used the lattice

calculations of the Compton form factors to generate the xξ dependence. As we

increased the number of moments, we saw a marked improvement in how well the

method reproduced a known function. This means that the calculation of higher

moments on the lattice would really be beneficial to this method.
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Chapter 2

The Definition of Twist

In this chapter we look at the different physical interpretations of higher twist and

how they highlight different facets of QCD. The twist expansion gives a framework

that singles out the leading contributions of the unobservable bilocal quark current

operator to various deep inelastic scattering process cross-sections. We begin with

the field theoretic formal definitions and move on to how observables from entirely

different processes are related to one another by the QCD equation of motion which

allows for the different interpretations of the concept of twist.

2.1 Deep Inelastic Scattering and the Light Cone

The kinematics in which deep inelastic scattering occurs is dominated by quarks on

the light cone. We see this by studying the soft part described by the hadronic tensor

in deep inelastic scattering

Wµν =
1

2π

∫
d4zeiq·z〈P | [jµ(z)jν(0)] |P 〉 (2.1)
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where, q is the momentum of the photon, P the momentum of the proton and jµ(z)

describes the quark current at spatial coordinate z. This integral is dominated by

regions where |q · z| is finite (for |q · z| → ∞ the exponent oscillates and the integral

goes to zero).

q · z = q0

(
z0 −

√
1− q2

(q0)2

q.z

|q|

)
(2.2)

In the limit of −q2 → ∞ with x = −q2
2P ·q , which is what we need for deep inelastic

scattering, we can write a Taylor expansion for the square root. It is useful to work

with the variables r = q.z
|q| and ν = P ·q

M
. ν goes to infinity in the deep inelastic limit.

In the lab frame, ν = q0 and we have,

q · z = ν(z0 − r)−Mxr +O(
1

ν
) (2.3)

For q · z to be finite (a is a finite constant in the following),

|z0 − r|ν < a , |r|x < a (2.4)

⇒ z2
0 <

(
r +

a

ν

)2

' r2 + a
r

ν
< z2 +

a

xν
(2.5)

⇒ z2 ≤ a

−q2
(2.6)

Because of causality, the current commutator is zero for z2 < 0. As −q2 → ∞, we

have that z2 ∼ 0 [8]. Thus, quarks that are on the light cone are the main contribu-

tors in deep inelastic scattering.
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2.2 Operator Product Expansion

It is well known that the product of two local operators Â(z) and B(0) is divergent

at short distances (z → 0). The operator product expansion allows one to expand

this product as a series of non singular local operators multiplying c-number singular

functions[9; 10].

Â(z)B̂(0) ∼
∑
[α]

C[α](z)θ̂[α](z) (2.7)

All the singular behavior in the product ÂB̂ is concentrated in the functions C[α]

known as the “Wilson coefficients”. By dimensional analysis one has,

[
Â
]

+
[
B̂
]

=
[
C[α]

]
+
[
θ̂[α]

]
. (2.8)

This means that,

C[α](z) ∼ 1

z[Â]+[B̂]−[θ̂[α]]
. (2.9)

The leading contribution comes from the term that is most singular and looking at

the form above, this is the term with the smallest [θ̂[α]]. Since it is the z2 ∼ 0 limit

that applies to DIS, we can write the current commutator in terms of decreasing

singularity around z2 = 0 [11],

[J(z), J(0)] ∼
∑
[θ]

K[θ](z
2)zµ1 . . . zµnθ θµ1...µnθ (0). (2.10)

where K[θ](z
2) are singular c-number functions that can be ordered according to their

degree of singularity at z2 = 0. The smaller the number tθ = dθ − nθ, the more
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singular the term is. This number tθ which decides at what order the whole term

contributes is known as the twist of the operator.

The product of currents in (2.10) can be simplified to bilocal operators of the form

ψ(z)Γψ(0) involving the quark field ψ and a Dirac structure Γ such as γµ, iσµν , γµγ5

etc.. This form, also known as the quark-quark correlation function, is the one that

is more commonly encountered and which, when sandwiched between hadron states,

is parameterized using parton distribution functions.

When considering the matrix elements of operators between hadron states with spin

(such as polarized targets), the twist is dependent on the Sudakov decomposition of

the spin vector and the component that is entering the description of the process.

This is because the mass dimension occurs in a different way for different components

of the spin vector, changing the twist.

2.3 Good and Bad Components

By using the light-cone quantized form of the QCD equation of motion, one is able

to separate the dynamically independent and the dependent parts of the quark field.

The so called good components are the independent propagating degrees of freedom

while the bad components are constrained by the Dirac equation in terms of the good

components and the transverse gluon field. In fact the bad component is treated as a

quark-gluon composite. The operators that project out the good and bad components

play a central role in understanding the leading order contributions in deep inelastic

processes. Each bad component that enters leads to an increase in the twist [9].
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In general, the quark field can be written as a superposition of good and bad compo-

nents having left and right chirality,

ψ = φLφ̂L + φRφ̂R + χLχ̂L + χRχ̂R (2.11)

where, the φ̂ and χ̂ are the basis vectors denoting good and bad components re-

spectively and the subscripts L and R denote the chirality. Hence, when forming a

product of the form ψ̄Γψ, we get products of the form φ†R/LφR/L, φ†R/LχR/L, χ†R/LχR/L

and their Hermitian conjugates. The first corresponds to twist 2, the second to twist

3 and the third to twist 4.

2.4 Diffrent contributions to Twist 3 observables

2.4.1 Intrinsic Twist 3

The intrinsic twist of a function is decided by the projection operator Γ that enters

the quark-quark correlation function it parameterizes. This is directly related to the

occurrence of bad components as discussed above. These functions are collinear i.e.

only the longitudinal momentum fraction carried by the quarks enters the description

enters the description [9; 12; 13; 14; 15].

2.4.2 Kinematical Twist 3

These functions involve the intrinsic transverse momentum kT of the quark. Although

one is looking at a quark-quark correlator with a Γ that, in the collinear case, only

projects out only the good components, the added degree of freedom kT introduces

functions that enter the parameterization of the correlation function weighted by an
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explicit kT . Upon integration over kT , we obtain the collinear correlator in which,

despite the fact that the Γ that enters the correlator connects to intrinsic twist 2,

the function weighted by kT enters the description of a collinear intrinsic twist 3

function. These functions weighted by an explicit kT , that seemingly enter at leading

twist but upon integration connect to an intrinsic twist 3 function, are referred to

as kinematical twist 3. An example is the famous Sivers function f⊥1T [16; 17] or

the generalized transverse momentum distribution F14 that is pertinent to partonic

orbital angular momentum [12; 18; 19; 14; 20; 21].

2.4.3 Dynamical/ Genuine Twist 3

These functions parameterize a correlator that involves an explicit gluon field. Since

we are now looking at a three particle correlator (quark-gluon-quark), we now have

a dependence on two longitudinal momentum fractions. One obtains intrinsic twist

3 functions on integrating over the gluon momentum fraction [22; 18; 21]. Using the

QCD equation of motion, one can show how these connect to twist 2, kinematical

twist 3 and intrinsic twist 3 as will be shown in chapter 4 [23; 18; 6].

To continue working in the setup of the free parton model, the only way to account

for certain configurations, such as transverse spin in inclusive processes to describe

the parton distribution function gT (x), one needs to involve the gluon field. In the

language of field theory, this amounts to invoking higher twist.
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Chapter 3

Spin, Helicity and Orbital Angular

Momentum

Spin is a quantum mechanical property. Theoretically proposed in an attempt to

explain the splitting of atomic spectral lines and anomalies in the Zeeman effect,

the first suggestions of intrinsic electronic spin were ridiculed considering how fast

a point particle would need to rotate to generate the required angular momentum.

The calculations, however, agreed with the data beautifully once relativity was taken

into account correctly and, as a result, by the late 1920s, the electron had a new

property associated with itself called spin. Quantized angular momentum was not

entirely a new phenomenon considering the theory of electron orbits and space quan-

tization put forward by Neils Bohr, which despite being incorrect, was able to predict

correct results for the Stern-Gerlach experiments within the range of experimental

error. Hence, in some sense, space quantization was reincarnated and included in the

framework in a way that was comprehensive and most importantly correct [24].

In particle physics, we often work in the infinite momentum frame in which asymp-
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totic freedom holds and the principles of QCD apply in a direct way. In this case, a

clear boost axes can be identified and the particle can be described by spinors point-

ing along or opposite to the direction of the boost which form the eigenstates of the

helicity operator. The helicity of a massive particle depends on the frame of refer-

ence while for a massless particle such a boost that changes the helicity can not be

performed as it travels at the speed of light. Both the helicity and chirality operators

can be diagonalized simultaneously and depending on the component of the quark

field spinor that one is looking at, the helicity and chirality of the quark are either

equal or opposite to one another.

Quark orbital angular momentum has been difficult to pin down because one can not

escape the fact that it is intertwined with quark gluon interactions. Historically, there

has been immense debate on the formulation of OAM in a way that is consistent with

QCD. There are two main descriptions, one involves the intrinsic quark transverse

momentum, the other is connected to a higher twist function. While neither one of

the formulations explicitly involves a gluon field, both, in effect, deviate from the

leading twist parton model picture of free quarks because they involve gluon interac-

tions, albeit in an implicit way.
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Chapter 4

Lorentz Invariance Relations

A fundamental way of characterizing the internal structure of the proton is through

sum rules that express how global properties of the proton are composed from cor-

responding quark and gluon quantities. For example, one may ask what portion of

a proton’s momentum is carried by either quarks or gluons; or one may ask how the

spin of the proton is composed from the spins and orbital angular momenta of its

quark and gluon constituents. Elucidating this latter question, the so-called proton

spin puzzle [25], indeed counts among the prime endeavors of hadronic physics in the

last decades. These questions can be cast in field-theoretic language by considering

proton matrix elements of the energy momentum tensor, Tq,g (q and g denote the

quark and gluon sectors),

∫
dx 〈p′ | T 0i

q,g | p〉 = Aq,g P
i U(p′)γoU(p) (4.1)∫

dx εijk〈p′ |
(
xjT 0k − xkT 0j

)
| p〉 = Aq,g P

i U(p′)γoU(p)

+ Bq,g P
i U(p′)

σoα∆α

2M2
U(p) , (4.2)
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where p and p′ describe the incoming and outgoing proton states, and Aq,g(t), Bq,g(t),

(t = ∆2 = (p′− p)2, P = (p′+ p)/2) are the relevant gravitomagnetic form factors pa-

rameterizing the proton matrix elements (Refs.[26; 27], for reviews see Ref.[28; 29]).

These basic constructs of the theory can be accessed experimentally owing to the

connection, through the operator product expansion (OPE), of the gravitomagnetic

form factors to the Mellin moments of specific parton distributions parameterizing

both the forward (p = p′) and off-forward (p 6= p′) quark and gluon correlation func-

tions. One obtains the following sum rules for momentum and angular momentum,

respectively,

Aq,g =

∫ 1

0

dxxHq,g ⇒
∑
i=q,g

Ai = εq + εg = 1 (4.3)

Bq,g =

∫ 1

0

dxx(Hq,g + Eq,g)⇒
∑
i=q,g

(Ai +Bi) = Jq + Jg =
1

2
. (4.4)

Eq.(4.4), the angular momentum sum rule, is also known as the Ji sum rule [27].

All of the distributions entering Eqs.(4.3) and (4.4) are observable in a wide class of

experiments probing the deep inelastic structure of the proton.

Hq,g(x, ξ, t) and Eq,g(x, ξ, t) are the Generalized Parton Distribution (GPD) functions

which depend on the longitudinal momentum transfer between the initial and final

proton, represented through the skewness parameter ξ, and the four-momentum

transfer squared, t, x being the light cone momentum fraction carried by the

parton [30; 31]. In particular, Hq(x, 0, 0) ≡ q(x), Hg(x, 0, 0) ≡ g(x), where q(x) and

g(x) are the unpolarized quark (antiquark) and gluon distributions, or the Parton

Distributions Functions (PDFs).
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PDFs have been measured in decades of Deep Inelastic Scattering (DIS) experiments,

with impressive accuracy and kinematical coverage, confirming to high precision

the momentum sum rule, Eq.(4.3). To verify the angular momentum sum rule it

is necessary to extract the GPDs from experiment, in particular, Eq,g. Sufficiently

accurate values for the GPDs have just fairly recently started to become available

from exclusive deeply virtual scattering experiments, namely Deeply Virtual Comp-

ton Scattering (DVCS), Deeply Virtual Meson Production (DVMP) and related

processes, conducted most recently at Jefferson Lab and COMPASS (see [32] for a

recent review).

DVCS experimental measurements are necessarily more involved than ones for in-

clusive scattering, since they require the simultaneous detection of all products of

reaction. The extraction of observables, the GPDs, from experiment is also more

complex owing to the increased number of kinematical variables on which they de-

pend. An additional hurdle is present for the analysis of angular momentum in both

identifying and giving a physical interpretation to the components of the sum rule

(4.4): while the momentum sum rule has an immediate dynamical interpretation in

terms of the average longitudinal momentum carried by the different parton com-

ponents, to obtain a dynamically transparent expression for the angular momentum

sum rule one has to break it down into its spin and Orbital Angular Momentum

(OAM) components, while simultaneously preserving the gauge invariance of the the-

ory. The decomposition can be performed within two different approaches, by Jaffe

and Manohar (JM) [25],

1

2
∆Σq + LJMq + ∆G+ LJMg =

1

2
(4.5)
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and by Ji [27],

1

2
∆Σq + LJiq + JJig =

1

2
. (4.6)

Longitudinal OAM distributions have been identified with parton Wigner distribu-

tions weighted by the cross product of position and momentum in the transverse

plane, bT × kT [33; 34]. Parton Wigner distributions can be related, through Fourier

transformation, to specific Generalized Transverse Momentum-Dependent Parton

Distributions (GTMDs), which are off-forward TMDs. The correlation defining

OAM corresponds to the GTMD F14 (we follow the naming scheme of Ref.[17]). In

particular, the OAM distribution is described by the x-dependent k2
T moment of F14.

The OAM term differs in the JM and Ji approaches with regard to how the gauge

invariance of the theory intervenes through the gauge link in the relevant parton

correlator [35]. The difference was recently explicated in the quark sector in

Refs.[36; 37], where it was shown that JM OAM, LJMq , can be written as the sum

of Ji’s OAM, LJiq , plus a matrix element including the gluon field. The latter was

interpreted in the semi-classical picture of Ref.[37] as having the physical meaning

of an integrated torque stemming from the chromodynamic force between the struck

quark and the proton remnant interacting in the final state.

To summarize, in both Ji’s and JM’s expressions, OAM is defined through an

imbalance in the distribution of the number density of quarks in longitudinally

polarized proton states, when the quark’s displacement in the transverse plane

is simultaneously orthogonal to its intrinsic transverse motion. JM’s definition

includes a quark re-interaction which could be, in principle, process-dependent. How
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can these two pictures of the proton’s angular momentum coexist, and what are

experimental measurements really probing?

The work presented here [6] was motivated by the question of defining a way

to test these ideas through observables that would enable direct access to OAM

in experimental measurements. While Jq,g measurements through GPDs are in

progress, GTMDs, providing in principle the density distributions for OAM, re-

main experimentally elusive objects, since they require exclusive measurements of

particles in the two distinct hadronic planes disentangling the kT and bT (or ∆T ) di-

rections [38; 39; 40]. GTMDs can, however, be evaluated in ab initio calculations [41].

In a previous publication [7], we showed that the x-dependent k2
T moment of F14

entering Eq. (4.6) can be written in terms of a twist-three GPD, Ẽ2T [17], as

∫
d2kT

k2
T

M2
F14 = −

∫ 1

x

dy
(
Ẽ2T +H + E

)
(4.7)

Here, we present several extensions of this relation, and describe the details of the

derivation comprehensively. In particular, we show that a more general relation holds,

∫
d2kT

k2
T

M2
F14 = −

∫ 1

x

dy
(
Ẽ2T +H + E +AF14

)
(4.8)

where AF14(x) is a term containing the gauge link dependent, or quark-gluon-quark,

components of the correlation function. For a straight gauge link, AF14(x) = 0, thus

recovering the result displayed in Eq. (4.7). These relations are specific generalized

Lorentz Invariance Relations (LIR) connecting the x-dependent k2
T moments of
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GTMDs and GPDs. Just as in the forward case [42; 13; 20], generalized LIR are

based upon the covariant decomposition of the fully unintegrated quark-quark

correlation function in off-forward kinematics: the number of independent functions

parameterizing the correlator is less than the total number of GTMDs and GPDs,

thus inducing relations among the latter. Several LIRs have been found between

forward twist-three PDFs and kT moments of TMDs. The most remarkable example

of an LIR is perhaps the relation between the TMD g1T and the twist-three PDF gT ,

leading to the Wandzura-Wilczek relation between the helicity distribution g1 and

gT = g1 + g2 [15]. In the presence of a gauge link other than the straight one (e.g. a

staple link), LIRs acquire an additional term that cannot be encoded in the available

GTMD and GPD structures. As we show in the present paper, this term produces a

correction to Eq. (4.7), leading eventually to the Qiu-Sterman type term of Ref. [37].

Furthermore, by combining Eqs. (4.7,4.8) with the quark field Equations of Motion

(EoM), we can ascribe the difference between the integrated quark total angular

momentum, Jq, and the spin, Sq ≡ (1/2)∆Σq, in Ji’s description to the integral of the

Wandzura-Wilczek component of the GPD combination Ẽ2T +H +E. We find that,

at the unintegrated level, a quark-gluon-quark term is also present which integrates

to zero consistently with Ji’s sum rule. Our relation, therefore, allows one to connect

the partonic sum rule originating from the dynamical definition of OAM – through

the unintegrated correlation function – and the gravitomagnetic form factors which

define the energy-momentum tensor (Eq. (4.4)). On the other hand, having access

to relations at the unintegrated level allows us to extend the treatment to the JM

case, where we obtain that the quark-gluon-quark contribution does not vanish upon

integration. We show it to reproduce the Qiu-Sterman type term in [37].

In principle, 32 individual EoM relations can be constructed, associated with the 8
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twist-two GTMDs in the vector and axial-vector sectors, which each feature inde-

pendent real and imaginary components; an additional doubling of the number of

relations is given by contracting the EoMs in the transverse plane either with the

transverse momentum kT or with the transverse momentum transfer ∆T . However,

we place a special focus in the present paper on just three further relations besides

Eq. (4.7) [7] that describe spin correlations stemming from a similar operator struc-

ture as for OAM,

∫
d2kT

k2
T

M2
G11 =

∫ 1

x

dy
(

2H̃ ′2T + E ′2T + H̃ −AG11

)
(4.9)

1

2

∫
d2kT

k2
T

M2
G12 = −

∫ 1

x

dy

(
H ′2T −

P 2

4M2
H̃ +AG12

)
(4.10)∫

d2kT
k2
T

M2
F o

12 ≡ −f⊥(1)
1T = −MF12|∆T=0 (4.11)

The three additional relations presented here for the first time involve the k2
T

moments of the following GTMDs: G11, which was observed to provide information

on the longitudinal part of the quark spin-orbit interaction, or the projection of quark

OAM along the quark spin [33]; G12, which corresponds to a transverse proton spin

configuration and generalizes the TMD g1T leading to the original Wandzura-Wilczek

relation [15; 43], and, finally, the naive T-odd part of F12 which corresponds to

the off-forward generalization of the Sivers function, f⊥1T [16], which we relate to

a generalized Qiu-Sterman term represented by MF12 in Eq. (4.11). For G11, in

particular, by using the EoM we find a relation whose integral in x is consistent

with the sum rule found in [44] and revisited in [45]. However, our derivation, valid

for arbitrary gauge link structure, allows for a new term representing final state

interactions. Furthermore, we stress the importance of the term proportional to the

quark mass which appears in this relation as being generated from quark transverse
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spin contributions.

This chapter is organized as follows. In Section 5.1 we define the general framework:

the correlation functions, the gauge link structure, the parameterization of the cor-

relation functions which ensues, and the helicity amplitudes; in Section 4.2 we give a

detailed derivation of the EoM relations, including explicit quark-gluon-quark terms;

in Section 4.3 we derive the LIRs for both OAM and spin-orbit correlations. We

discuss their Mellin moments to order n = 3; in Section 4.4 we discuss the relations

for transverse proton spin configurations and their connection to the forward limit.

4.1 Formal framework and definitions

We base our treatment on the complete parameterization of the quark-quark

correlation functions in the proton up to twist four given in Ref.[17]. By applying

time reversal invariance, charge conjugation, parity and hermiticity one finds that,

at twist two, there are three independent PDFs: f1, g1, in the chiral even sector, and

the chiral odd h1; eight GPDs (four chiral even and four chiral odd); eight TMDs,

and sixteen GTMDs. At twist three, one has many more functions due to both the

presence of additional couplings (scalar, and pseudoscalar), and to the larger number

of kinematical terms in the correlation function parameterizations for the vector,

axial vector and pseudoscalar couplings. Each one of the PDFs, TMDs, and GPDs

corresponds to specific quark-proton helicity amplitude combinations that can be

extracted from various hard inclusive, semi-inclusive and deeply virtual exclusive

processes, respectively, and that represent specific polarization configurations, or

spin correlations, of partons inside the proton.
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It is important to distinguish between different types of twist-three objects that will

be dealt with in this paper. Canonical twist three effects, describing quark-gluon

correlations in the nucleon, appear in the OPE as coefficients of the inverse power

terms in a large characteristic scale of the process, e.g. O(M/Q), M being a

nonperturbative mass scale. A different class of twist three effects, geometrical

twist three, arises from the quark field components which are not dynamically

independent solutions of the equations of motion, and that can be expressed, through

the equations of motion, as composites of the quark and gluon fields. These are

also suppressed by inverse powers of Q (the classification of parton distributions

given above concerns this type of twist three objects). The order of canonical

and geometrical twist does not match beyond order two: contributions with the

same power in M/Q, or same dynamical twist, can be written in terms of matrix

elements of operators with different canonical twist. The Wandzura-Wilczek (WW)

[15] relations between matrix elements of operators of different dynamical and

same canonical twist encode this mismatch, as first exemplified for the polarized

distribution functions g1 and g2.

A complete set of relations between twist two TMDs and twist three PDFs was

presented and discussed for various correlation functions in Refs.[42; 20]. These

relations are based upon the Lorentz invariant decomposition of the fully uninte-

grated correlation function with the two quark fields located at different space-time

positions, and they necessarily involve parton transverse momentum and off-shellness

both through the kT -moments of twist-two TMDs (where kT denotes the quark

transverse momentum), and the twist-three PDFs. The different kinds of twist three

functions were renamed: intrinsic for geometric, dynamic for canonical, i.e., when an

extra gluon field operator is directly involved in the definition, and kinematic which
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are related to kT -moments of TMDs.

These distinctions are useful to keep in mind as we extend both the Lorentz Invari-

ance Relations (LIRs) and the Equation of Motion relations (EoMs) to off-forward

kinematics involving GTMDs and their kinematic twist-three constructs, intrinsic

twist-three GPDs, and off-forward dynamical twist-three terms.

Already the construction of the aforementioned relations between TMDs and PDFs,

once taken beyond a purely formal level, encounters obstacles rooted in divergences

of the kT -integrations connecting TMDs to collinear objects such as the PDFs. These

divergences must be separated off to ultimately contribute to the scale evolution of

the collinear quantities. Our treatment similarly relates GTMDs to GPDs through

kT -integrations, and thus inherits these issues in complete analogy. In the present

paper, we do not present any further developments on this topic beyond what is given

in the literature on the connection between ordinary TMDs and PDFs. In general,

the precise connection of GTMDs to GPDs still requires further specification. The

relations we derive can also be read purely at the GTMD level, before identifying

kT -integrals of GTMDs with GPDs. In that form, all components of our relations can

be regularized on an identical footing, before identifying their collinear limits. To the

extent that our relations derive from symmetries (such as Lorentz invariance), any

regularization that respects these symmetries can be expected to leave the relations we

derive intact. At appropriate places in our treatment, we will indicate points at which

modifications of our results must be countenanced owing to issues of regularization; an

example is the standard deformation of TMD gauge links off the light cone, associated

with the introduction of a Collins-Soper evolution parameter. This procedure applies

likewise to a proper definition of GTMDs. We will also refrain from writing explicitly
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the soft factors that are required [46] to regulate divergences associated with the

gauge connections contained in the bilocal operators defining TMDs and GTMDs.

4.1.1 Kinematics and correlators

The completely unintegrated off forward quark-quark correlation function is defined

as the matrix element between proton states with momenta and helicities p,Λ and

p′,Λ′,

W Γ
Λ′Λ(P, k,∆;U) =

1

2

∫
d4z

(2π)4
eik·z 〈p′,Λ′ | ψ̄

(
−z

2

)
ΓUψ

(z
2

)
| p,Λ〉 , (4.12)

where the gauge link structure U connecting the quark operators at positions

−z/2 and z/2 is discussed in detail in the next section, Γ is a Dirac structure,

Γ = 1, γ5, γµ, γµγ5, iσµν , and the choice of four-momenta is defined with P = (p+p′)/2

along the z-axis, ∆ = p′ − p as in Ref.[17],

P ≡
(
P+,

∆2
T + 4M2

8(1− ξ2)P+
, 0

)
ξ=0
=

(
P+,

∆2
T + 4M2

8P+
, 0

)
(4.13)

∆ ≡
(
−2ξP+,

ξ(∆2
T + 4M2)

4(1− ξ2)P+
,∆T

)
ξ=0
= (0, 0,∆T ) (4.14)

k ≡
(
xP+, k−, kT

)
(4.15)

where the initial and final quark momenta are k−∆/2 and k+∆/2, respectively. Four-

vectors wµ are represented in terms of light-cone components, wµ ≡ (w+, w−, wT );

ξ = −∆+/2P+ is the skewness parameter, ∆T ≡ (∆1,∆2), kT ≡ (k1, k2), and the four-

momentum transfer squared is ∆2 ≡ t; we displayed the kinematics also specifically

for the ξ = 0 case, which is the case on which we will focus in this study.
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4.1.2 Gauge link structures

To ensure gauge invariance, the quark bilocal operator (4.12) requires a gauge link U

along a path connecting the quark operator positions −z/2 and z/2. Two important

choices of path are a direct straight line and a staple-shaped connection characterized

by an additional vector v, cf. Fig. 4.1. These different choices will give rise to different

genuine twist three contributions to the correlators.

−z
2

z
2

−z
2

+ v

z
2

+ v

x−

x+, xT

Figure 4.1: Staple-shaped gauge link path connecting quark operators located at
−z/2 and z/2. The legs of the staple are described by the four-vector v. GTMDs
are defined at separation z+ = 0; the vector z thus deviates from the x− axis by
a transverse component zT , i.e., z = (0, z−, zT ). On the other hand, v in general
is taken to deviate from the x− axis by a plus component v+ in order to regulate
rapidity divergences occurring if v is taken to point purely in the minus direction;
i.e., v = (v+, v−, 0). Note that, in the two-dimensional projection displayed, the x+

and the xT axes fall on top of one another; they are nevertheless of course distinct
axes. The separation z is Fourier conjugate to the quark momentum k. Integrating
over transverse momentum kT sets zT = 0, i.e., the quark operator positions then
fall on the x− axis. Nevertheless, for v+ 6= 0, the path then still retains its staple
shape. Only in the v+ = 0 limit (staple legs become horizontal in figure) does the
staple path collapse onto the x− axis upon kT integration, leading to a bona fide
GPD limit in which all parts of the staple link cancel, except for a residual straight
link directly connecting −z/2 to z/2. One can alternatively define GTMDs with a
straight gauge link from the outset; in terms of the vectors defined in the figure, this
simply corresponds to the limit v = 0.

The appropriate choice of gauge link path depends on the physical context. In the

TMD limit, the staple-shaped gauge link is most relevant, since it encodes final/initial

state interactions in SIDIS/DY processes. On the other hand, GPDs are defined with

a straight gauge link; as discussed in more detail below and displayed in Fig. 4.1,
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only under certain circumstances do GTMDs with a staple-shaped gauge link have

a proper GPD limit, with the staple link collapsing into a straight gauge link. In

general, GTMDs defined from the outset with a straight gauge link play a separate

role, and both the straight and staple-shaped gauge link choices will be treated in

this work. Two specific motivations for doing so are the following:

• In the context of quark orbital angular momentum, as accessed via the GTMD

F14 discussed in detail further below, both the straight and the staple-shaped

gauge connections have a definite, distinct physical meaning [37]. A straight

gauge link enters the definition of Ji quark orbital angular momentum [47],

whereas a staple-shaped gauge link generates Jaffe-Manohar quark orbital an-

gular momentum [35]. Note that F14 is a genuine GTMD quantity, i.e., a

quantity which does not have a TMD or GPD limit.

• A central aspect of the following treatment are Lorentz invariance relations

(LIRs). In the staple link case, these contain twist-three contributions (fre-

quently referred to as “LIR violating terms”, though their role is to maintain

Lorentz invariance) which do not reduce to GTMDs. To ascertain their con-

crete physical content in terms of quark-gluon-quark correlations, it is useful to

combine the staple-link LIR with the straight-link LIR (in which these contri-

butions are absent) as well as the straight and staple-link equations of motion.

The resulting information is not directly available considering the staple link

case alone.

In the most basic definition of GTMDs, a staple-shaped gauge link with a staple

direction vector v on the light cone is chosen [17], such that v has only a minus

component, v = (0, v−, 0, 0). On the other hand, the quark operator separation

z is of the form z = (0, z−, zT ), with a two-dimensional transverse vector zT .
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Note that z is Fourier conjugate to the quark momentum k, and GTMDs are

defined in terms of k−-integrated correlators, setting z+ = 0. Thus, when one

forms the GPD limit of GTMDs by integration over the transverse momentum

kT , one sets zT = 0, and v and z then lie along one common axis. In that case,

the staple legs collapse onto that one common axis, the parts of the staple legs

extending beyond the region in between the quark operators cancel, and one is

left with a straight gauge link connecting those operators, as is appropriate for GPDs.

However, such a light-cone choice of the staple direction v meets with rapidity

divergences, which, in the application to TMDs, are commonly regulated by

taking v off the light cone into the space-like region [48]. Then, v is of the form

v = (v+, v−, 0, 0), and the GPD limit ceases to be straightforward; even after

integration over kT , i.e., setting zT = 0, v and z do not lie on a common axis and

the staple-shaped gauge link does not collapse onto a simple straight link connecting

the quark operators. The kT -integrated quantities formed in this way are not

directly GPDs, but differ from GPDs by contributions which formally vanish in the

v+ → 0 light-cone limit. An alternative possibility of treating this issue arising with

staple links is to modify the GTMD definition such that correlators are not rigidly

defined with z+ = 0, but instead such that the longitudinal part of z is parallel

to v for any chosen v, i.e., zL = (z+, z−) is parallel to v = (v+, v−). In that case,

integration over kT does indeed lead to collapse of the staple link into a straight

gauge link, but this straight gauge link now does not lie on the light cone any-

more. In effect, in this way one generates quasi-GPDs in the sense discussed by Ji [49].

In the present treatment, both GTMDs defined from the beginning with straight

gauge links, as well as GTMDs defined with staple-shaped gauge links will be dis-
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cussed. For the latter case, the discussion will be confined to the v+ = 0 limit; v+ 6= 0

corrections will not be worked out explicitly. However, it should be kept in mind that

these corrections may be important in future applications, and places where they

arise will be pointed out as appropriate below.

4.1.3 Parameterization of unintegrated correlation function

We consider the parameterization of the completely unintegrated off-forward correla-

tor, W Γ
ΛΛ′ above, in terms of Generalized Parton Correlation Functions (GPCFs) for

the vector, γµ, and axial vector, γµγ5, operators. As motivated above, we are also

interested in the case of a straight gauge link; the parameterization given in [17], by

contrast, is constructed for a staple-shaped gauge link, and its form was chosen such

that it is not straightforwardly related to the straight-link case.

In this respect, it should be noted that there is considerable freedom in constructing

GPCF parameterizations. This is due to the fact that not all Lorentz structures

one can write down are independent of one another; they are related by Gordon

identities and other relations, as laid out in detail in [17]. After exhausting these

relations, 16 GPCFs AFi remain to parameterize the staple-link vector correlator, and

also 16 GPCFs AGi remain to parameterize the staple-link axial vector correlator.

In the straight-link case, to be discussed in more detail below, 8 GPCFs remain in

each case. The staple-link parameterizations given in [17] in neither case contain

8 GPCFs relevant for the straight-link case; some of these were instead chosen to

be eliminated in favor of terms intrinsically related to a staple-link structure. The

vector correlator parameterization of [17] contains only 7 GPCFs relevant for the

straight-link case; one additional one therefore has to be reinstated. The axial
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vector correlator parameterization of [17] contains only 3 GPCFs relevant for the

straight-link case, and therefore 5 have to be reinstated. Thus, one cannot simply

delete the Lorentz structures containing the staple direction vector v (denoted N in

[17], up to a rescaling) from the parameterizations given in [17] and already arrive at

a valid straight-link parameterization. Additional terms are needed, as given below.

It would be possible to construct staple-link parameterizations differing from the

ones in [17], each containing a full set of 8 structures relevant for the straight-link

case, and each an additional 8 structures containing the staple direction v, such that

deletion of the latter 8 immediately leads to a valid straight-link parameterization.

We do not pursue this here to the full extent, but only give the straight-link

parameterizations.

In the case of the vector correlator, this is rather simple. The construction of the

staple-link parameterization in [17] can be followed verbatim even in the straight-

link case, merely omitting all structures containing the staple direction vector v,

except for the very last step. In that very last step, the single missing straight-link

structure, namely, iσk∆∆µ, is eliminated in favor of a staple-link related structure. In

the straight-link case, the staple-link related structure is not available, and therefore

the aforementioned straight-link structure must be kept instead. Thus, one has the

straight-link vector correlator parameterization1

W γµ

Λ′Λ = U(p′,Λ′)

[
P µ

M
AF1 +

kµ

M
AF2 +

∆µ

M
AF3 +

iσµk

M
AF5 +

iσµ∆

M
AF6 +

iσk∆

M2

(
P µ

M
AF8 +

kµ

M
AF9 +

∆µ

M
AF17

)]
U(p,Λ) (4.16)

where the first 7 terms are identical to the ones given in [17], and the last one, con-

1We use the notation σµa = σµνaν , and σab = σµνaµbν .



45

taining the additional invariant amplitude AF17, is associated with the aforementioned

missing Lorentz structure.

The case of the axial vector correlator is more involved, and the complete construction

of the straight-link parameterization is given in Section 4.8. We arrive at the form

W γµγ5

Λ′Λ = U(p′,Λ′)

[
iεµPk∆

M3
AG1 +

iσPµγ5

M
AG17 +

iσPkγ5

M2

(
P µ

M
AG18 +

kµ

M
AG19 +

∆µ

M
AG20

)
iσP∆γ5

M2

(
P µ

M
AG21 +

kµ

M
AG22 +

∆µ

M
AG23

)]
U(p,Λ) (4.17)

which in fact has only one term in common with the staple-link parameterization

given in [17], namely, the one associated with the invariant amplitude AG1 ; we make

choices differing from the ones in [17] even within the straight-link sector. All GPCFs

in these straight-link parameterizations are functions of k2, k · P, k ·∆,∆2, P ·∆. In

staple-link parameterizations, such as the ones given in [17], the GPCFs additionally

depend on all scalar products involving the additional vector v characterizing the

staple link.

It is interesting to note that, for both the vector and axial vector operators, 8 GPCFs

enter the parameterization for the straight gauge link case. This is the same as the to-

tal number of GPDs (including twist 2, twist 3 and twist 4). This is expected because

the GPDs are defined with quarks separated only along the light cone. The number

of GTMDs on the other hand is 16. Because the underlying structure functions, the

GPCFs, are fewer in number, we expect the GTMDs to be connected to one another.

These relations between the GTMDs are known as the Lorentz Invariance Relations

and we discuss them in Sec. 4.3.
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4.1.4 Generalized Transverse Momentum-Dependent Parton

Distributions

The unintegrated correlator definining the Generalized Transverse Momentum-

Dependent Parton Distributions (GTMDs) is given by,

W Γ
Λ′Λ(P, x, kT , ξ,∆T ;U) =

∫
dk−W Γ

Λ′Λ(P, k,∆;U)

=
1

2

∫
dz− d2zT

(2π)3
eixP

+z−−ikT ·zT 〈p′,Λ′ | ψ̄
(
−z

2

)
ΓUψ

(z
2

)
| p,Λ〉

∣∣∣
z+=0

. (4.18)

Its parameterization in terms of GTMDs, as defined in Ref.[17], reads as follows.2 For

Γ = γ+, γ+γ5, iσi+γ5, one has,

W γ+

Λ′Λ =
1

2M
U(p′,Λ′)

[
F11 +

iσi+ki

P+
F12 +

iσi+∆i

P+
F13 +

iσijki∆j

M2
F14

]
U(p,Λ)

(4.19)

=

[
F11 +

iΛεijki∆j

M2
F14

]
δΛ′Λ +

[
Λ∆1 + i∆2

2M
(2F13 − F11)

+
Λk1 + ik2

M
F12

]
δ−Λ′Λ (4.20)

2Note that the form of this GTMD parameterization, as well as the GPD parameterization exhib-
ited further below, is independent of the choice of gauge link, contrary to the GPCF parameterization
discussed above. Thus, the relations between GTMDs and GPDs given for staple-shaped gauge links
in [17] remain true for straight gauge links.
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W γ+γ5

Λ′Λ =
1

2M
U(p′,Λ′)

[
−iε

ijki∆j

M2
G11 +

iσi+γ5ki

P+
G12

+
iσi+γ5∆i

P+
G13 + iσ+−γ5G14

]
U(p,Λ) (4.21)

=

[
−i(k

1∆2 − k2∆1)

M2
G11 + ΛG14

]
δΛ′Λ +

[
∆1 + iΛ∆2

M
(G13

+
iΛ(k1∆2 − k2∆1)

2M2
G11

)
+
k1 + iΛk2

M
G12

]
δ−Λ′Λ (4.22)

W iσi+γ5

Λ′Λ =
1

2M
U(p′,Λ′)

[
iεij
(
kj

M
H11 +

∆j

M
H12

)
+
Miσi+γ5

P+
H13

+
kiiσk+γ5kk

MP+
H14 +

∆iiσk+γ5kk

MP+
H15 +

∆i iσk+γ5∆k

MP+
H16

+
kiiσ+−γ5

M
H17 +

∆i iσ+−γ5

M
H18

]
U(p,Λ) (4.23)

=

[
iεij
(
kj

M
H11 +

∆j

M
H12

)
+ Λ

(
ki

M
H17 +

∆i

M
H18

)]
δΛ′Λ

+

[
−iεijΛ∆1 + i∆2

2M

(
kj

M
H11 +

∆j

M
H12

)
+ (δi1 + iΛδi2)H13

+
k1 + iΛk2

M

(
ki

M
H14 +

∆i

M
H15

)
+

(∆1 + iΛ∆2)∆i

M2
H16

]
δ−Λ′Λ (4.24)

For each correlator listed, the second equality follows once P+ is taken to be much

larger than all other mass scales. On the other hand, for γi, γiγ5, one has

W γi

Λ′Λ =
1

2P+
U(p′,Λ′)

[
ki

M
F21 +

∆i

M
F22 +

Miσi+

P+
F23 +

kiiσk+kk

MP+
F24

+
∆iiσk+kk

MP+
F25 +

∆iiσk+∆k

MP+
F26 +

iσjikj

M
F27 +

iσji∆j

M
F28

]
U(p,Λ)

(4.25)

=

[
ki

P+
F21 +

∆i

P+
F22 − iΛεij

(
kj

P+
F27 +

∆j

P+
F28

)]
δΛ′Λ

+
1

P+

[
−i∆

2 + Λ∆1

2M
(kiF21 + ∆iF22) +M(Λδi1 + iδi2)F23

+
Λk1 + ik2

M
(kiF24 + ∆iF25) +

∆i

M
(Λ∆1 + i∆2)F26

]
δ−Λ′Λ (4.26)
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W γiγ5

Λ′Λ =
1

2P+
U(p′,Λ′)

[
−iε

jikj

M
G21 −

iεji∆j

M
G22 +

Miσi+γ5

P+
G23

+
kiiσk+γ5kk

MP+
G24 +

∆iiσk+γ5kk

MP+
G25 +

∆iiσk+γ5∆k

MP+
G26

+
kiiσ+−γ5

M
G27 +

∆iiσ+−γ5

M
G28

]
U(p,Λ) (4.27)

=

[
iεij(

kj

P+
G21 +

∆j

P+
G22) + Λ(

ki

P+
G27 +

∆i

P+
G28)

]
δΛ′Λ

+
1

P+

[
−iεij i∆

2 + Λ∆1

2M
(kjG21 + ∆jG22) +M(δi1 + iΛδi2)G23

+
(k1 + iΛk2)

M
(kiG24 + ∆iG25) +

∆i(∆1 + iΛ∆2)

M
G26

]
δ−Λ′Λ (4.28)

The GTMDs considered here are complex functions of the set of kinematical vari-

ables x, ξ, k2
T , kT · ∆T , t; in the case of a staple-shaped gauge link, they furthermore

depend on the vector v characterizing the staple,

X(x, ξ, k2
T , kT ·∆T , t, v) = Xe(x, ξ, k2

T , kT ·∆T , t, v)+iXo(x, ξ, k2
T , kT ·∆T , t, v) (4.29)

with X = F1j, G1j, H1j, at twist two, and X = F2j, G2j, at twist three. Xe is

symmetric under v → −v (T -even), while Xo reverses its sign for v → −v (T-odd).

Due to Hermiticity and time reversal invariance, we have that the following GTMD

components are odd for ξ → −ξ, kT ·∆T → −kT ·∆T ,

F e
12, F

e
22, F

e
23, F

e
24, F

e
26, F

e
27, G

e
13, G

e
21, G

e
25, G

e
28, H

e
11, H

e
15, H

e
18F

o
11, F

o
13, F

o
14, F

o
21,

F o
25, F

o
28, G

o
11, G

o
12, G

o
14, G

o
22, G

o
23, G

o
24, G

o
26, G

o
27, H

o
12, H

o
13, H

o
14, H

o
16, H

o
17

This influences which kT -moments of these GTMDs can appear in the ξ = 0 case.
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4.1.5 Generalized Parton Distributions

The Generalized Parton Distributions (GPDs) are obtained by formally integrating

Eq.(4.18) over the transverse parton momentum, kT , provided that the gauge link

has the appropriate form, cf. the discussion in Sec. 4.1.2,

F Γ
Λ′Λ(x, ξ, t) =

1

2

∫
dz−

2π
eixP

+z− 〈p′,Λ′ | ψ̄
(
−z

2

)
ΓUψ

(z
2

)
| p,Λ〉

∣∣∣
z+=0,zT=0

. (4.31)

For γ+, γ+γ5, iσi+γ5 one has,

F γ+

Λ′Λ =
1

2P+
U(p′,Λ′)

[
γ+H +

iσ+∆

2M
E

]
U(p,Λ) (4.32)

= HδΛ,Λ′ +
(Λ∆1 + i∆2)

2M
Eδ−Λ,Λ′ (4.33)

F γ+γ5

Λ′Λ =
1

2P+
U(p′,Λ′)

[
γ+γ5H̃ +

∆+γ5

2M
Ẽ

]
U(p,Λ) (4.34)

= ΛH̃δΛ,Λ′ +
(∆1 + iΛ∆2)

2M
ξẼδ−Λ,Λ′ (4.35)

F iσi+γ5

Λ′Λ =
iεij

2P+
U(p′,Λ′)

[
iσ+jHT +

γ+∆j −∆+γj

2M
ET +

P+∆j

M2
H̃T

− P+γj

M
ẼT

]
U(p,Λ) (4.36)

=

[
iεij∆j

2M
(ET + 2H̃T ) +

Λ∆i

2M

(
ẼT − ξET

)]
δΛΛ′ + [(δi1 + iΛδi2)HT

− iεij∆j(Λ∆1 + i∆2)

2M2
H̃T

]
δ−ΛΛ′ (4.37)
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whereas for γi, γiγ5,

F γi

Λ′Λ =
M

2(P+)2
U(p′,Λ′)

[
iσ+iH2T +

γ+∆i −∆+γi

2M
E2T +

P+∆i

M2
H̃2T

− P+γi

M
Ẽ2T

]
U(p,Λ) (4.38)

=

[
∆i

2P+
E2T +

∆i

P+
H̃2T +

iΛεij∆j

2P+

(
Ẽ2T − ξE2T

)]
δΛΛ′

+

[−M(Λδi1 + iδi2)

P+
H2T −

(Λ∆1 + i∆2)∆i

2MP+
H̃2T

]
δΛ−Λ′ (4.39)

F γiγ5

Λ′Λ =
iεijM

2(P+)2
U(p′,Λ′)

[
iσ+jH ′2T +

γ+∆j −∆+γj

2M
E ′2T +

P+∆j

M2
H̃ ′2T

− P+γj

M
Ẽ ′2T

]
U(p,Λ) (4.40)

=

[
iεij∆j

2P+
E ′2T +

iεij∆j

P+
H̃ ′2T −

Λ∆i

2P+

(
Ẽ ′2T − ξE ′2T

)]
δΛΛ′

+

[
M(δi1 + iΛδi2)

P+
H ′2T −

iεij(Λ∆1 + i∆2)∆j

2MP+
H̃ ′2T

]
δΛ−Λ′ (4.41)

The gauge connection for GPDs is a straight link, implying that all GPDs are naive

T-even. We use the GPD parameterization from Ref.[17]. As in the first parameteri-

zation introduced by Ji [27], the letter H signifies that in the forward limit these GPDs

correspond to a PDF, while the ones denoted by E are completely new functions; H,

E, H̃, Ẽ parametrize the chiral-even quark operators. In the chiral-odd sector, HT ,

ET , H̃T , ẼT describe the tensor quark operators, the subscript T signifying that the

quarks flip helicity or are transversely polarized [50]. The matrix structures that en-

ter the twist three vector (γi) and axial vector (γiγ5) cases are identical to the ones

occurring at the twist two level in the chiral-odd tensor sector. Hence, the GPDs have

similar names: the corresponding twist three GPD, occurring with the same matrix

coefficient, is named F2T if parametrizing the vector case γi and F ′2T if parametrizing

the axial vector case γiγ5, with F = H,E, H̃, Ẽ.



51

4.1.6 Helicity Structure

To elucidate the helicity structure, which is needed to connect to phenomenological

applications and which also serves as a heuristic tool in the construction of LIR and

EoM relations below, we introduce the quark-proton helicity amplitudes, [31],

AΛ′λ′,Λλ =

∫
dz− d2zT

(2π)3
eixP

+z−−ikT ·zT 〈p′,Λ′ | Oλ′λ(z) | p,Λ〉|z+=0 , (4.42)

where at twist two the bilocal quark field operators,

O±±(z) =
1

4
ψ̄
(
−z

2

)
γ+(1± γ5)ψ

(z
2

)
≡ φ†±φ± (4.43)

define (non flip) transitions between quark ±,± helicity states. Note that, in this

section only, for the purpose of discussing helicity structure, we drop the gauge link

in the bilocal operators to simplify notation.

The various LIRs and EoM relations that we derive in subsequent sections corre-

spond to different helicity combinations obtained varying the initial and final proton

helicity states. We obtain 8 distinct relations from the following combinations,

(+,+) ± (−,−), and (+,−) ± (−,+), in the vector and axial vector sector, respec-

tively. In what follows we derive all four spin correlations.

The correlation functions in Eqs.(4.20,4.22) can be written in terms of the quark-

proton helicity amplitudes as,

W γ+

Λ′Λ = AΛ′+,Λ+ + AΛ′−,Λ− (4.44)

W γ+γ5

Λ′Λ = AΛ′+,Λ+ − AΛ′−,Λ−. (4.45)
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One finds the following expressions for the proton non flip terms,

F11 =
1

2
(W γ+

++ +W γ+

−−)

=
1

2
(A++,++ + A+−,+− + A−+,−+ + A−−,−−) (4.46a)

i
(kT ×∆T )3

M2
F14 =

1

2
(W γ+

++ −W γ+

−−)

=
1

2
(A++,++ + A+−,+− − A−+,−+ − A−−,−−) (4.46b)

G14 =
1

2
(W γ+γ5

++ −W γ+γ5

−− )

=
1

2
(A++,++ − A+−,+− − A−+,−+ + A−−,−−) (4.46c)

−i(kT ×∆T )3

M2
G11 =

1

2
(W γ+γ5

++ +W γ+γ5

−− )

=
1

2
(A++,++ − A+−,+− + A−+,−+ − A−−,−−), (4.46d)

where, because of the constraints in Eqs.(4.30), the combinations on the rhs of

Eqs.(4.46a, 4.46c) and Eqs.(4.46b,4.46d) are purely real and imaginary, respectively.

The distributions in both transverse coordinate and momentum space corresponding

to these GTMDs were analyzed in detail in Refs.[34; 33]. F11 describes an unpolarized

quark and proton state, and it reduces to the PDF f1 in the forward, kT integrated,

limit; G14 describes the quark helicity distribution, or g1 in the forward, kT integrated,

limit. F14 and G11 do not have GPD or TMD limits. However, in the forward limit,
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their average over kT weighted by k2
T gives [34],

(Lq)3 =

∫
dx

∫
d2kT

1

2

(
kT × i

∂

∂∆T

)
3

(
W γ+

++ −W γ+

−−

)
= −

∫
dx

∫
d2kT

k2
T

M2
F14 (4.47)

2(Lq)3(Sq)3 =

∫
dx

∫
d2kT

1

2

(
kT × i

∂

∂∆T

)
3

(
W γ+γ5

++ +W γ+γ5

−−

)
=

∫
dx

∫
d2kT

k2
T

M2
G11 , (4.48)

where Eq. (4.47) represents the quark OAM along the z axis in a longitudinally

polarized proton, while Eq.(4.48) gives the quark OAM along the z axis for a

longitudinally polarized quark, or a spin-orbit term.

The proton spin flip terms read,

−i(kT ×∆T )3

M
F12 =

1

2
((∆1 − i∆2)W γ+

−+ + (∆1 + i∆2)W γ+

+−)

(4.49a)

kT ·∆T

M
F12 +

∆2
T

2M
(2F13 − F11) =

1

2
((∆1 − i∆2)W γ+

−+ − (∆1 + i∆2)W γ+

+−)

(4.49b)

and,

∆2
T

M
G13 +

kT ·∆T

M
G12 =

1

2
((∆1 − i∆2)W γ+γ5

−+ + (∆1 + i∆2)W γ+γ5

+− )

(4.50a)

i(kT ×∆T )3

M

(
∆2
T

2M2
G11 −G12

)
=

1

2
((∆1 − i∆2)W γ+γ5

−+ − (∆1 + i∆2)W γ+γ5

+− )

(4.50b)

At twist three, the bilocal operators can be written as the overlap of a dynamically
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independent quark field, φ (good component), and a dynamically dependent quark-

gluon composite field, χ (bad component) [9],

Oq−∗+(z) =
1

8
ψ̄
(
−z

2

)
(γ1 − iγ2)(1 + γ5)ψ

(z
2

)
= χ†+φ+ (4.51a)

Oq+−∗(z) =
1

8
ψ̄
(
−z

2

)
(γ1 + iγ2)(1 + γ5)ψ

(z
2

)
= φ†+χ+ (4.51b)

Oq+∗−(z) = −1

8
ψ̄
(
−z

2

)
(γ1 + iγ2)(1− γ5)ψ

(z
2

)
= −χ†−φ− (4.51c)

Oq−+∗(z) = −1

8
ψ̄
(
−z

2

)
(γ1 − iγ2)(1− γ5)ψ

(z
2

)
= −φ†−χ− (4.51d)

Notice that the ∗ on the lhs symbolizes the helicity of the quark within the quark-

gluon composite field, χ (on the rhs), whose helicity is always opposite so that angular

momentum is conserved [51]. As a result, one can form twice as many helicity ampli-

tudes as compared to the twist two case [9],

Atw3
Λ′λ′∗,Λλ =

∫
dz− d2zT

(2π)3
eixP

+z−−ikT ·zT 〈p′,Λ′ | Oλ′∗λ(z) | p,Λ〉|z+=0 , (4.52a)

Atw3
Λ′λ′,Λλ∗ =

∫
dz− d2zT

(2π)3
eixP

+z−−ikT ·zT 〈p′,Λ′ | Oλ′λ∗(z) | p,Λ〉|z+=0 . (4.52b)

Therefore,

Atw3
Λ′−∗,Λ+ = W γ1

Λ′Λ +W γ1γ5

Λ′Λ − iW γ2

Λ′Λ − iW γ2γ5

Λ′Λ (4.53a)

Atw3
Λ′+,Λ−∗ = W γ1

Λ′Λ +W γ1γ5

Λ′Λ + iW γ2

Λ′Λ + iW γ2γ5

Λ′Λ (4.53b)

Atw3
Λ′+∗,Λ− = −W γ1

Λ′Λ +W γ1γ5

Λ′Λ − iW γ2

Λ′Λ + iW γ2γ5

Λ′Λ (4.53c)

Atw3
Λ′−,Λ+∗ = −W γ1

Λ′Λ +W γ1γ5

Λ′Λ + iW γ2

Λ′Λ − iW γ2γ5

Λ′Λ (4.53d)

At the twist-three level, the following are the expressions for the proton helicity non-
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flip terms,

−iε
ijkj

P+
F27 −

iεij∆j

P+
F28 =

1

2

(
W γi

++ −W γi

−−

)
(4.54a)

ki

P+
F21 +

∆i

P+
F22 =

1

2

(
W γi

++ +W γi

−−

)
(4.54b)

ki

P+
G27 +

∆i

P+
G28 =

1

2

(
W γiγ5

++ −W γiγ5

−−

)
(4.54c)

iεijkj

P+
G21 +

iεij∆j

P+
G22 =

1

2

(
W γiγ5

++ +W γiγ5

−−

)
(4.54d)

As we show in subsequent sections, Eqs.(4.54a) and (4.54d) allow us to identify the

twist-three GTMDs that enter the EoM relations for F14 and G11 respectively.

Writing the GTMDs that enter the proton helicity flip case one has,

−iε
ijM∆j

P+
F23 − i

(kT ×∆T )3

MP+
(kiF24 + ∆iF25)

=
1

2

(
(∆1 − i∆2)W γi

−+ + (∆1 + i∆2)W γi

+−

)
(4.55a)

− ∆2
T

2MP+
(kiF21 + ∆iF22) +

M∆i

P+
F23 +

kT ·∆T

MP+
(kiF24 + ∆iF25) +

∆2
T∆i

MP+
F26

=
1

2

(
(∆1 − i∆2)W γi

−+ − (∆1 + i∆2)W γi

+−

)
(4.55b)
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and,

M∆i

P+
G23 +

kT ·∆T

MP+
(kiG24 + ∆iG25) +

∆i∆2
T

M
G26

=
1

2

(
(∆1 − i∆2)W γiγ5

−+ + (∆1 + i∆2)W γiγ5

+−

)
(4.56a)

− iε
ij∆2

T

2MP+
(kjG21 − ∆jG22)− iεij∆j

P+
G23 −

i(kT ×∆T )3

MP+

(
kiG24 + ∆iG25

)
=

1

2

(
(∆1 − i∆2)W γiγ5

−+ − (∆1 + i∆2)W γiγ5

+−

)
(4.56b)

The helicity amplitude structure is preserved when going to either the GPD or the

TMD limit. It plays an important role in defining the observables for the various

quantities. The GTMDs defined so far are related to GPDs by integrating them over

kT and to TMDs by taking the forward limit (∆→ 0).

4.2 Equation of Motion Relations

4.2.1 Construction of Equation of Motion Relations

Equation of motion relations connect different GTMD correlators of the type defined

in Eq. (4.18), in which the quark creation and annihilation operators are located at

positions −z/2 and z/2. To construct them, it is useful to consider initially a some-

what more general correlator in which the quark creation and annihilation operators

are located at more freely variable positions zin and zout, respectively. Central to the

construction is the observation that, taken between physical particle states, matrix

elements of operators that vanish according to the classical field equations of mo-

tion vanish in the quantum theory3 [52]. Thus, in view of the classical quark field

3Note that the argument given in [52] is formulated for local operators; its extension to nonlocal
operators such as considered here calls for further justification, as noted in [48].
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equations of motion

(i /D −m)ψ = (i/∂ + g /A−m)ψ = 0, (4.57a)

ψ̄(i
←−
/D +m) = ψ̄(i

←−
/∂ − g /A+m) = 0 (4.57b)

one has the vanishing correlation function

0 =

∫
dz−in d

2zin,T
(2π)3

∫
dz−out d

2zout,T
(2π)3

eik(zout−zin)+i∆(zout+zin)/2

· 〈p′,Λ′ | ψ̄(zin)
[
(i
←−
/D +m)ΓU ± ΓU(i /D −m)

]
ψ(zout) | p,Λ〉

∣∣∣
z+in=z+out=0

(4.58)

where, specifically, Γ = iσi+γ5 = γ+γiγ5 − γiγ+γ5 with a transverse vector index

i = 1, 2, cf. Sec. 4.1.4. Note that the /D and
←−
/D operators act on the zout and zin

arguments, respectively. Furthermore, no derivatives with respect to z+
in or z+

out

appear in the square bracket; these derivatives are accompanied in the Dirac operator

by a factor γ+, implying that the terms in question vanish once multiplied by the

structure Γ, which contains an additional factor γ+. Thus, introducing the equations

of motion as in (4.58) is consistent with an a priori specification z+
in = z+

out = 0.

Performing an integration by parts with respect to both zout and zin yields

0 =

∫
dz−in d

2zin,T
(2π)3

∫
dz−out d

2zout,T
(2π)3

eik(zout−zin)+i∆(zout+zin)/2

{
〈p′,Λ′ | ψ̄(zin)

[
−i/∂inUΓ∓ iΓ/∂outU − g /A(zin)UΓ± ΓUg /A(zout)

]
ψ(zout) | p,Λ〉

+ 〈p′,Λ′ | ψ̄(zin)

[(
−/k +

/∆

2

)
UΓ∓ ΓU

(
−/k − /∆

2

)
+ (m∓m)ΓU

]
ψ(zout) | p,Λ〉

}∣∣∣∣
z+in=z+out=0

(4.59)

Two types of contributions are generated. The second line of (4.59) contains the terms
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in which the derivatives act on the gauge links; these terms will ultimately result in

quark-gluon-quark correlators. The third line of (4.59) contains the standard terms

in which the derivatives act on the exponential in the Fourier transformation; these

terms result in quark-quark correlators. Proceeding by changing integration variables,

b =
zin + zout

2
, z = zout − zin, (4.60)

and translating the matrix elements by −b, one obtains

0 =

(∫
db− d2bT

(2π)3
eib∆eibpe−ibp

′
)∫

dz− d2zT
(2π)3

eikz
{

〈p′,Λ′ | ψ̄(−z/2)

[
(−i
−→
/∂ − g /A)UΓ

∣∣∣
−z/2
± ΓU(−i

←−
/∂ + g /A)

∣∣∣
z/2

]
ψ(z/2) | p,Λ〉

+ 〈p′,Λ′ | ψ̄(−z/2)

[(
−/k +

/∆

2

)
UΓ∓ ΓU

(
−/k − /∆

2

)
+ (m∓m)ΓU

]
ψ(z/2) | p,Λ〉

}∣∣∣∣
z+=b+=0

(4.61)

having taken into account the phases generated in the proton states by the translation.

Thus, a δ-function which enforces momentum conservation as expected, δ3(p′−p−∆),

is factored out; it follows that the rest of the expression by itself must already vanish.

Proceeding to simplify the Dirac structures (employing, e.g., the identity γµγργν =

gµργν+gνργµ−gµνγρ−iεσµνργσγ5), one can finally identify from the third line of (4.61)

the GTMD correlators defined in Eq. (4.18), and one thus arrives at the equation of
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motion relations

−∆+

2
W γiγ5

Λ′Λ + ik+εijW γj

Λ′Λ +
∆i

2
W γ+γ5

Λ′Λ − iεijkjW γ+

Λ′Λ +Mi,S
Λ′Λ = 0 (4.62a)

−k+W γiγ5

Λ′Λ +
i∆+

2
εijW γj

Λ′Λ + kiW γ+γ5

Λ′Λ − iεij∆j

2
W γ+

Λ′Λ +mW iσi+γ5

Λ′Λ +Mi,A
Λ′Λ = 0,

(4.62b)

which relate the correlation functions for different Dirac structures, γiγ5, γi, γ+γ5, γ+,

iσi+γ5, and in which the genuine/dynamic [20] twist-three terms, copied from the

second line of (4.61), are given by4

Mi,S
Λ′Λ =

i

4

∫
dz−d2zT

(2π)3
eixP

+z−−ikT ·zT 〈p′,Λ′ | ψ
(
−z

2

)[
(
−→
/∂ − ig /A)UΓ

∣∣∣
−z/2

+ ΓU(
←−
/∂ + ig /A)

∣∣∣
z/2

]
ψ
(z

2

)
| p,Λ〉z+=0 (4.63a)

Mi,A
Λ′Λ =

i

4

∫
dz−d2zT

(2π)3
eixP

+z−−ikT ·zT 〈p′,Λ′ | ψ
(
−z

2

)[
−(
−→
/∂ − ig /A)UΓ

∣∣∣
−z/2

+ ΓU(
←−
/∂ + ig /A)

∣∣∣
z/2

]
ψ
(z

2

)
| p,Λ〉z+=0 (4.63b)

with Γ = iσi+γ5. In the following, only the case of vanishing skewness, ∆+ = 0, will

be considered further.

Relations (4.62a) and (4.62b) are generalizations to the off-forward case of the EoM

relations involving the kT -unintegrated correlator first introduced in [14; 18; 42]. In

particular, Eq.(4.62b) leads to the relation between the polarized structure functions

g1 and g2 first obtained in the forward limit using the same method in Refs.[14; 18].

However, notice that, at variance with [14; 18], because of the symmetrization in-

troduced in Eqs. (4.58)-(4.61), the imaginary parts in Eq.(4.62b) appear only for

4Note that the expression for Mi,S
Λ′Λ quoted in [7] is missing an overall factor i.
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Figure 4.2: Kinematical variables for the correlation function describing a GTMD.
The matrix element in the correlator is a function of z = zout − zin where zout = z/2
(zin = −z/2) is the argument of ψ (ψ̄); b = (zin + zout)/2 is the Fourier conjugate of
∆ = p′ − p.

the non forward terms (terms multiplied by ∆). As will be discussed further below,

these relations represent a first step towards deriving a connection between twist-two

GTMDs and twist-three GPDs using a procedure alternative to OPE that highlights

the sensitivity to the quark intrinsic transverse momentum. In our case, they attain

additional significance in that they provide a framework for describing partonic OAM

in the proton in terms of specific distributions, thus helping to clarify possible mech-

anisms that generate it. A prerequisite for understanding what produces OAM in the

proton is that one examines the dynamics encoded in the correlator components at

the unintegrated level.

4.2.2 Gauge Link Structure and Intrinsic Twist Three Term

The form of the intrinsic twist-three terms given in Section 4.2.1 is valid for an

arbitrary choice of gauge link U . The gauge link depends parametrically on the

locations of its endpoints; the derivative operators quantify those dependences.
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More concrete forms are obtained by considering particular gauge link paths. An

important choice is the staple-shaped gauge link path, the geometry of which was

already discussed in detail in Sec. 4.1.2, with the legs of the staple described by a

four-vector v; this contains also the straight gauge link path in the limit v = 0. Given

this concrete choice, a more explicit form of the intrinsic twist-three contributions

can be derived.

To establish notation, consider a staple-shaped gauge link U connecting the space-

time points y and y′ via three straight segments,

U = P exp

(
−ig

∫ y+v

y

dxµAµ(x)

)
P exp

(
−ig

∫ y′+v

y+v

dxµAµ(x)

)

·P exp

(
−ig

∫ y′

y′+v

dxµAµ(x)

)
≡ U1(0, 1)U2(0, 1)U3(0, 1) , (4.64)

which each can be parametrized in terms of a real parameter t as

U1(a, b) = P exp

(
−ig

∫ b

a

dt vµAµ(y + tv)

)
(4.65)

U2(a, b) = P exp

(
−ig

∫ b

a

dt (y′ − y)µAµ(y + v + t(y′ − y))

)
(4.66)

U3(a, b) = P exp

(
−ig

∫ b

a

dt (−vµ)Aµ(y′ + v − tv)

)
(4.67)

As noted above, the four-vector v describes the legs of the staple-shaped path. The

parameterization includes the special case v = 0, in which the staple degenerates

to a straight link between y and y′ given by U2(0, 1), whereas U1 = U3 = 1. In the

following, Ui given without an argument means Ui ≡ Ui(0, 1).

As shown in Section 4.5, with this parameterization, one arrives at the explicit ex-
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pression

(
∂

∂yν
− igAν(y)

)
U =

igU1

∫ 1

0

dsU2(0, s)(y′ − y)µFµν(y + v + s(y′ − y))(1− s)U2(s, 1)U3

+ig

∫ 1

0

dsU1(0, s)vµFµν(y + sv)U1(s, 1)U2U3 (4.68)

in which only field strength terms remain. In complete analogy, one also obtains for

the adjoint term,

U
( ←−

∂

∂y′ν
+ iAν(y

′)

)
=

igU1

∫ 1

0

dsU2(0, s)(y′ − y)µFµν(y + v + s(y′ − y))sU2(s, 1)U3

−U1U2ig

∫ 1

0

dsU3(0, s)vµFµν(y
′ + v − sv)U3(s, 1) , (4.69)

where in each integral, s parametrizes the position of the color field strength insertion

along the gauge link connecting the quark positions. These forms are still completely

general. In the following, in particular the kT -integral of the genuine twist-three

terms will be of interest, in which case, cf. (4.63b,4.63b), the transverse separation

zT is set to zero and z has only a minus component, z = (0, z−, 0, 0). Specializing

furthermore to the case where also v has only a minus component, v = (0, v−, 0, 0),

cf. the discussion in Sec.4.1.2, the staple legs collapse onto a common axis. In this

case we define U(x, x′) to denote a straight Wilson line connecting the locations x
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and x′, and obtain, upon identifying the endpoints y = −z/2 and y′ = z/2,

(
−→
/∂ − ig /A)U

∣∣∣
−z/2

=

igz−
∫ 1

0

ds (1− s)

·U(−z/2,−z/2 + v + sz)γµF
+µ(−z/2 + v + sz)U(−z/2 + v + sz, z/2)

+igv−
∫ 1

0

dsU(−z/2,−z/2 + sv)γµF
+µ(−z/2 + sv)U(−z/2 + sv, z/2) (4.70)

U(
←−
/∂ + ig /A)

∣∣∣
z/2

=

igz−
∫ 1

0

ds s

·U(−z/2,−z/2 + v + sz)γµF
+µ(−z/2 + v + sz)U(−z/2 + v + sz, z/2)

−igv−
∫ 1

0

dsU(−z/2, z/2 + sv)γµF
+µ(z/2 + sv)U(z/2 + sv, z/2) (4.71)

Note that, in both expressions, the first line stems from the variation of the Wilson

line which connects the ends of the staple legs, whereas the second line stems

from the variation of the staple leg attached to the endpoint with respect to which

the derivative is taken. The straight gauge link case is obtained by setting v = 0,

i.e., only the first lines in (4.70) and (4.71) remain. This limit was already given in [7].

Particularly compact expressions are obtained if one further integrates over the lon-

gitudinal momentum fraction x, in which case z = 0 altogether, cf. (4.63b,4.63b). For

z = 0, the first lines in (4.70) and (4.71) vanish, i.e., the genuine twist-three terms in-

tegrate to zero for a straight gauge link. On the other hand, in the general staple link

case, the second lines remain, and give identical contributions up to a relative minus

sign. Combining with the Dirac structure Γ and assembling the complete genuine
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twist-three expressions, one has in the completely integrated limit,

∫
dx

∫
d2kTMi,S

Λ′Λ =

iεijgv−
1

2P+

∫ 1

0

ds 〈p′,Λ′|ψ̄(0)γ+U(0, sv)F+j(sv)U(sv, 0)ψ(0)|p,Λ〉

(4.72)∫
dx

∫
d2kTMi,A

Λ′Λ =

−gv− 1

2P+

∫ 1

0

ds 〈p′,Λ′|ψ̄(0)γ+γ5U(0, sv)F+i(sv)U(sv, 0)ψ(0)|p,Λ〉

(4.73)

Note that the εij in (4.72) can be absorbed into the dual field strength F̃+i = −εijF+j,

useful for the analysis within instanton models [44], in which F̃ = ±F . On the

other hand, compact expressions also for the second Mellin moments result if one

specializes to the straight link case. A weighting by a factor x can be generated by

taking a derivative with respect to z−, cf. (4.63b,4.63b); in the limit z = 0, only the

contributions from the derivative acting on either of the z− prefactors in the first lines

of (4.70) and (4.71) remain. Thus, one arrives at

∫
dx x

∫
d2kTMi,S

Λ′Λ =
ig

4(P+)2
〈p′,Λ′|ψ̄(0)γ+γ5F+i(0)ψ(0)|p,Λ〉 (4.74)∫

dx x

∫
d2kTMi,A

Λ′Λ =
g

4(P+)2
εij〈p′,Λ′|ψ̄(0)γ+F+j(0)ψ(0)|p,Λ〉 (4.75)

for straight gauge links. Note that one can obtain, e.g., the right-hand side of (4.75)

by evaluating the v−-derivative of (4.72) at v− = 0, and multiplying by a factor

−i/(2P+). In other words, we uncover a connection between straight-link quark-

gluon-quark correlators such as (4.75) and v−-derivatives of Qiu-Sterman type terms

such as (4.72), where the latter can be accessed using Lattice QCD TMD data [53],
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such as given in [54; 55; 56].

4.2.3 EoM Relations involving Orbital Angular Momentum

Altogether, Eqs. (4.62a) and (4.62b) generate 32 individual relations between GT-

MDs, obtained by inserting the parameterizations (4.20),(4.22),(4.26),(4.28): each of

the two relations is a two-component equation in the transverse plane; furthermore,

the resulting 4 individual component relations are complex, i.e., each comprises

a relation for the real (T-even) and the imaginary (T-odd) parts of GTMDs.

The resulting 8 relations finally each contain 4 possible helicity combinations, as

discussed in Section 4.1.6, for the proton helicity conserving, Eqs.(4.46), and the

helicity flip, Eqs.(4.49) combinations, respectively. We refrain from quoting all 32

of these relations. They can be specialized to the ∆ = 0 TMD limit and to the

kT -integrated GPD limit. In the TMD limit, a number of known TMD relations [23]

is reproduced, including explicit expressions for the genuine twist-3 parts in terms

of quark-gluon-quark correlators, encoded in the Mi,S
Λ′Λ and Mi,A

Λ′Λ terms. For the

kT -integrated case, we focus on purely transverse momentum transfer, i.e., vanishing

skewness, ξ = 0. In this case, there are potentially 8 relations: Of the original 32, 16

are ξ-odd, and of course only the T-even relations are relevant for the GPD limit.

Among these 8 relations, we discuss in detail three which involve exclusively k2
T

moments of GTMDs and GPDs. These three are moreover singled out by the fact

that they are also accompanied by three corresponding LIRs.

In this section, we present, in particular, the EoM relations describing the quark

OAM and spin-orbit contributions. These involve F14, which is obtained for the

helicity configuration (4.46b) describing an unpolarized quark in a longitudinally po-
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larized proton, and a relation for G11, obtained for the helicity configuration (4.46d),

describing a longitudinally polarized quark in an unpolarized proton. These config-

urations are obtained by taking the helicity combinations (Λ′Λ) = (++) ± (−−), in

Eqs. (4.62a) and (4.62b), respectively. The relations we obtain constitute x-dependent

identities tying the definitions, respectively, of partonic OAM, Lz, and the longitu-

dinal contribution to the spin-orbit coupling L · S, to directly observable twist-three

distributions. We present the third EoM relation, which instead involves transverse

polarization, in Section 4.4. As we show below, after taking ∆+ = 0 (without loss of

generality in the angular momentum sum rule), we obtain the following EoM relations

from Eqs. (4.62a) and (4.62b), respectively,

xẼ2T (x) = −H̃(x) + F
(1)
14 (x)−MF14 (4.76)

x
[
2H̃ ′2T (x) + E ′2T (x)

]
= −H(x) +

m

M
(2H̃T (x) + ET (x))−G(1)

11 (x)−MG11

(4.77)

where we defined

X(1) = 2

∫
d2kT

k2
T

M2

k2
T∆2

T − (kT ·∆T )2

k2
T∆2

T

X(x, 0, k2
T , kT ·∆T ,∆

2
T ) (4.78)

Note that, in the forward limit, this reduces to the standard k2
T -moment,

X(1)
∣∣
∆T=0

=

∫
d2kT

k2
T

M2
X(x, 0, k2

T , 0, 0) (4.79)



67

The genuine twist three contributions are defined as5

MF14(x) =

∫
d2kT

∆i

∆2
T

(
Mi,S

++ −Mi,S
−−

)
(4.80)

MG11(x) =

∫
d2kT iε

ij ∆j

∆2
T

(
Mi,A

++ +Mi,A
−−

)
, (4.81)

where the expressions for Mi,S(A)
ΛΛ′ given in Eqs.(4.63b,4.63b,4.72,4.73), can be

interpreted as quantifying the quark-gluon-quark interaction experienced by a quark

of specific x, in the given helicity configuration.

Eqs.(4.76, 4.77) are the equation of motion relations involving the OAM and the

longitudinal part of the spin-orbit L · S distributions, defined through F14 and G11,

in Eqs. (4.47) and (4.48), respectively. They are particularly important among the

various GTMD EoM relations that we can write because they allow us to define

observables other than the GTMDs to measure the OAM distribution in the proton.

All of the distributions in the EoM relations are defined according to the scheme of

Ref. [17] (see Section 4.2): H and H̃ are twist two GPDs, in the vector and axial

vector sector respectively; Ẽ2T is a twist three GPD in the vector sector, H̃ ′2T and

E ′2T are axial vector twist three GPDs.

Eq. (4.76) relates an intrinsic [20] twist three GPD, Ẽ2T , on the lhs [7], to a twist

two GPD, H̃, the kT -moment of the GTMD, F14, Eq.(4.78), and a genuine twist

three term,MF14 . It is obtained by contracting Eq. (4.62a) with ∆i/∆2
T , forming the

(Λ′Λ) = (++)− (−−) combination of helicity components, and inserting the GTMD

5Note that in [7], the first of these relations was quoted with an erroneous additional normalization
factor 2M .
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parameterizations of the correlators, yielding

0 = −2x

(
kT ·∆T

∆2
T

F27 + F28

)
+G14−2

k2
T∆2

T − (kT ·∆T )2

M2∆2
T

F14+
∆i

∆2
T

(
Mi,S

++ −Mi,S
−−

)
(4.82)

Integrating over kT and identifying the resulting GPDs [17] gives

0 = xẼ2T + H̃ − F (1)
14 +

∫
d2kT

∆i

∆2
T

(
Mi,S

++ −Mi,S
−−

)
, (4.83)

i.e., one obtains Eq. (4.76). Recalling the discussion in Sec. 4.1.2, in the case of a

staple-shaped gauge link, this requires that the legs of the staple properly collapse

upon kT -integration such as to produce GPDs with straight gauge link.

Eq. (4.77) was derived in a similar way. It relates the twist-three GPD combination,

2H̃ ′2T (x)+E ′2T (x), to the GPD H, the kT -moment of the GTMD, G11, which describes

the longitudinal part of the parton spin-orbit distribution, and a genuine twist three

term. Notice the appearance of a quark mass term proportional to the GPD 2H̃T +

ET in the chiral odd sector [57]. Contracting Eq. (4.62b) with iεij∆j/∆2
T , forming

the (Λ′Λ) = (++) + (−−) combination of helicity components, cf. Eq. (4.46d), and

inserting the GTMD parameterizations of the correlators yields

0 = 2x

(
kT ·∆T

∆2
T

G21 +G22

)
+ F11 + 2

k2
T∆2

T − (kT ·∆T )2

M2∆2
T

G11

− 2
m

M

(
kT ·∆T

∆2
T

H11 +H12

)
+ iεij

∆j

∆2
T

(
Mi,A

++ +Mi,A
−−

)
(4.84)
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Integrating over kT and identifying the resulting GPDs gives

0 = x
(

2H̃ ′2T + E ′2T

)
+H +G

(1)
11 −

m

M

(
2H̃T + ET

)
+

∫
d2kT iε

ij ∆j

∆2
T

(
Mi,A

++ +Mi,A
−−

)
(4.85)

i.e., Eq. (4.77).

4.3 Generalized Lorentz Invariance Relations

The underlying Lorentz structure of the unintegrated correlator, Eqs. (4.16,4.17)

allows one to find relations between the x-dependent kT -moments of GTMDs and

GPDs. As stated before, this is due to the fact that, for the straight gauge link case,

the total number of GPCFs is less than the number of GTMDs. Similar relations

connecting the various TMDs, in the forward limit, were derived in Refs.[13; 14].

These equations are a consequence of the covariant definition of the correlation

function, and they are therefore referred to as Lorentz Invariance Relations (LIRs).

The following LIRs, which we derive further below, involve the kT -moments of the

GTMDs respectively describing the OAM and longitudinal spin-orbit terms which

also enter the EoMs derived in Section 4.2, Eqs.(4.76,4.77),

dF
(1)
14

dx
= Ẽ2T +H + E ⇒ F

(1)
14 = −

∫ 1

x

dy
[
Ẽ2T +H + E

]
(4.86)

dG
(1)
11

dx
= −

(
E ′2T + 2H̃ ′2T + H̃

)
⇒ G

(1)
11 =

∫ 1

x

dy
[
2H̃ ′2T + E ′2T + H̃

]
(4.87)

On the left hand side, we have k2
T -moments of twist two GTMDs. These GTMDs
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are unique in that, in the limit t = 0, they carry the physical meaning of parton

longitudinal OAM distribution, F
(1)
14 , and longitudinal parton spin-orbit distribution,

G
(1)
11 . On the right hand side, the integral expressions for the intrinsic twist three

GPDs Ẽ2T + H + E, and 2H̃ ′2T + E ′2T + H̃, allow us to access both OAM and the

longitudinal spin-orbit term directly from deeply virtual exclusive measurements as

these GPDs enter as coefficients of specific azimuthal angular modulations of the

cross section. Note that these x-dependent relations are valid also for ∆T 6= 0.

Note also that, at variance with previous work [58; 44; 36; 49], Eq (4.86) allows

us to obtain directly information on the OAM distribution because its form is not

integrated in x (it occurs at the kT -integrated level). Eq.(4.87) is new: it allows us

to connect the longitudinal spin-orbit x-distribution, G
(1)
11 , to a specific twist three

GPD combination, 2H̃ ′2T + E ′2T that uniquely appears in off-forward processes.

If we were to work with a staple gauge link, the number of GPCFs would increase to

16 for both the vector and the axial vector case. In this scenario, since the number

of GTMDs is the same as the number of GPCFs, we do not expect there to be any

LIRs connecting exclusively GTMDs (or their GPD limits). Indeed, if we do try to

write these relations, we find that extra terms appear that consist of GPCFs that

cannot be combined to form either GPDs or GTMDs. These extra terms, which are

required in order to properly encode Lorentz invariance in the relations, have been

termed LIR breaking terms [43]. For example, (4.86) is modified to read

dF
(1)
14

dx
= Ẽ2T +H + E +AF14 , (4.88)
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with,

AF14 = v−
(2P+)2

M2

∫
d2kT

∫
dk−

[
kT ·∆T

∆2
T

(AF11 + xAF12)

+ AF14 +
k2
T∆2

T − (kT ·∆T )2

∆2
T

(
∂AF8
∂(k · v)

+ x
∂AF9
∂(k · v)

)]
(4.89)

where the 4-vector v = (0, v−, 0, 0) describes the direction of the staple, which here

is taken to extend along the light cone. The amplitudes AFi are the ones appearing

in the parameterization given in [17], appropriate for a staple link structure, up

to a rescaling stemming from the fact that the staple vector v used here and the

analogous vector N used in [17] are related by a rescaling. Note that, if one were to

take v off the light cone, v = (v+, v−, 0, 0), cf. the discussion in Sec. 4.1.2, additional

terms would appear in (4.89) that formally vanish as v+ → 0; examples of such terms

in the case of TMD LIRs have been given in [43]. Of course, the GPCFs themselves

then also depend on v+.

In what follows, we work with straight gauge links, where terms such as (4.89) are

absent; in Sec. 4.3.3, we return to the staple link case and obtain a concrete expression

for (4.89) in terms of quark-gluon-quark correlators, by combining the LIR with the

corresponding EoM.

4.3.1 Construction of Lorentz invariance relations

The general structure of the unintegrated correlation function was written in terms

of all the independent Lorentz structures multiplied by scalar functions, AFi , A
G
i in

Section 4.1.3. The correlation function integrated in k− (and kT dependent) was

parametrized in terms of GTMDs in Ref.[17] (Section 4.1.4). GTMDs can, therefore,

be expressed through k− integrals of the scalar functions AFi , A
G
i . These expressions
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are given in Section 4.7. As was shown in Section 4.1.3, the total number of indepen-

dent functions in the unintegrated corrrelator is 8 for the vector and 8 for the axial

vector sectors. The total number of twist two plus twist three GTMDs is 12 vector

and 12 axial vector [17]. Since this number exceeds the number of AFi , A
G
i functions,

the GTMDs will be related to one another. This type of relation that is just originat-

ing from the parameterization in terms of Lorentz covariant structures is called a LIR.

In the following, we describe the procedure used to derive LIRs between the kT -

moments of the twist two GTMDs listed in Section 4.1.4, Eqs.(4.46b, 4.46d), and the

twist three GPDs listed in Section 4.1.5. It is based on the following integral relation

for amplitudes A depending on the integration variable k via Lorentz invariants as

A ≡ A(k · P, k2, k ·∆),

d

dx

∫
d2kT

∫
dk−

k2
T∆2

T − (kT ·∆T )2

∆2
T

X [A;x] =∫
d2kT

∫
dk−(k · P − xP 2)X [A;x] +

∫
d2kT

∫
dk−

k2
T∆2

T − (kT ·∆T )2

∆2
T

∂X
∂x

[A;x]

(4.90)

where X [A;x] is a linear combination of amplitudes A in which the coefficients, aside

from containing the invariants k ·P , k2 and k ·∆, may have an explicit x-dependence.

This is an off-forward extension of relations used previously in the analysis of TMD

LIRs [43; 14; 59; 18]; here, the presence of the additional invariant k · ∆ must be

properly accounted for. In view of this complication, it is worth laying out the

elements of the derivation of (4.90); this is presented in Section 4.6.
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4.3.2 Relating k2
T moments of GTMDs to GPDs

Since a generic GTMD X can be expressed in the form X =
∫
dk−X [A;x], as given

in Section 4.7, one can use (4.90) to cast the x-derivative of its kT -moment, X(1),

cf. (4.78), in terms of A amplitudes. In particular,

d

dx
F

(1)
14 =

4P+

M2

∫
d2kT

∫
dk−

[
(k · P − xP 2)(AF8 + xAF9 ) +

k2
T∆2

T − (kT ·∆T )2

∆2
T

AF9

]
(4.91)

d

dx
G

(1)
11 =

4P+

M2

∫
d2kT

∫
dk−

[
(k · P − xP 2)

(
AG1 +

AG18 + xAG19

2

)
+
k2
T∆2

T − (kT ·∆T )2

∆2
T

AG19

2

]
(4.92)

To complete the LIRs, one constructs the appropriate combinations of GPDs which

yield the right-hand sides. The relevant combinations, cf. Section 4.7, are6

H + E =

2P+

∫
d2kT

∫
dk− 2

(
kT ·∆T

∆2
T

AF5 + AF6 +
P · k − xP 2

M2
(AF8 + xAF9 )

)
(4.93)

Ẽ2T =

2P+

∫
d2kT

∫
dk− (−2)

(
kT ·∆T

∆2
T

AF5 + AF6 +
(kT ·∆T )2 − k2

T∆2
T

M2∆2
T

AF9

)
(4.94)

6Note that one could equally quote the left-hand sides of (4.93)-(4.96) in terms of kT -integrals
of GTMDs instead of quoting directly their GPD limits, cf. Section 4.7. This would facilitate a
consistent regularization of the obtained LIRs at the level of kT -integrals of GTMDs.
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H̃ =

2P+

∫
d2kT

∫
dk−

(
−AG17 +

xP 2 − k · P
M2

(AG18 + xAG19)

)
(4.95)

E ′2T + 2H̃ ′2T =

2P+

∫
d2kT

∫
dk−

(
2
xP 2 − k · P

M2
AG1 + AG17 +

(kT ·∆T )2 − k2
T∆2

T

M2∆2
T

AG19

)
(4.96)

To construct the appropriate combinations completing the LIRs, we examine the

expression for the proton helicity combination associated with the GTMD appearing

on the left hand side of (4.91), (4.92), and find the twist-three GPDs corresponding

to that same helicity structure. The GPCF substructure of the twist-three GPDs

need not, in general, completely match the GPCF combination of the x-derivative

of the k2
T moment of the GTMD. One may need to add a twist-two GPD with the

appropriate GPCF substructure.

In particular, F14 describes an unpolarized quark in a longitudinally polarized proton,

Eq.(4.46b) for Γ = γ+; the twist-three GPD with a similar proton helicity combination

is Ẽ2T . Comparing their GPCF decompositions, we see that if we add H + E, we

arrive at the LIR,

dF
(1)
14

dx
= Ẽ2T +H + E. (4.97)

Similarly, G11 describes a longitudinally polarized quark in an unpolarized proton,

Eq.(4.46d) with Γ = γ+γ5. The corresponding twist-three combination with the same

proton helicity combination is 2H̃ ′2T+E ′2T , with their GPCF substructure given above.
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By adding the GPD H̃, this gives us,

dG
(1)
11

dx
= −

(
2H̃ ′2T + E ′2T

)
− H̃. (4.98)

As already noted further above, in the case of a staple link, these Lorentz Invariance

Relations acquire LIR violating terms that we introduce as, cf. (4.88),

dF
(1)
14

dx
= Ẽ2T +H + E +AF14 (4.99)

dG
(1)
11

dx
= −

(
2H̃ ′2T + E ′2T

)
− H̃ +AG11 (4.100)

These relations are a central result of our paper: they give a connection valid point

by point in the kinematical variables x and t = −∆2
T among the kT moments of

GTMDs that define dynamically OAM and longitudinal spin-orbit coupling, specific

twist three GPDs, and LIR violating terms that can be expressed in terms of genuine

twist three contributions; the latter connection will be elucidated using the example

of AF14 , cf. (4.99), in the next section.

4.3.3 Intrinsic twist three contributions

Lorentz invariance relations (LIRs) derived in the presence of a staple-shaped gauge

link generally include additional terms beyond those found for straight gauge links,

as exemplified by (4.88),(4.89) in comparison to (4.86). Whereas the staple LIR by

itself does not yield the concrete physical content of these terms, considering it in

the context of the straight-link LIR as well as staple and straight link EoMs provides

more detailed insight into their meaning. To illustrate this, it is useful to pursue

the case of the LIRs (4.86) and (4.88), relevant for the description of quark orbital

angular momentum in the nucleon, further. Subtracting the former LIR from the
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latter yields

AF14(x) ≡ v−
(2P+)2

M2

∫
d2kT

∫
dk−

[
kT ·∆T

∆2
T

(A11 + xA12) + A14

+
k2
T∆2

T − (kT ·∆T )2

∆2
T

(
∂A8

∂(k · v)
+ x

∂A9

∂(k · v)

)]
=

dF
(1)
14

dx
− dF

(1)
14

dx

∣∣∣∣∣
v=0

(4.101)

giving a concrete expression for AF14 in terms of the GTMD F14. Note that, here,

the discussion given in Sec. 4.1.2 should be kept in mind: Formulating the LIRs (as

well as the EoMs below) in terms of GPDs assumes that, in the staple-link case, the

legs of the staples have properly collapsed upon kT -integration such as to produce

GPDs with their straight gauge link structures. This requires the staple link vector

v to lie on the light cone, v = (0, v−, 0, 0). Corrections to the above relation would

arise from several sources if one were to take the staple vector v off the light cone,

v = (v+, v−, 0, 0). On the one hand, the cancellation between the straight and staple

link GTMD precursors of the GPDs in (4.86) and (4.88) would be incomplete; there

would be residual terms corresponding to the difference between the two cases (unless

one opts for the alternative quasi-GPD scheme also mentioned in Sec. 4.1.2). On the

other hand, as already noted in connection with eq. (4.89), additional amplitudes

would enter the GPCF expression.

Now, the difference of GTMD kT -moments in (4.101) can also be extracted from the

EoMs: subject again to the above caveats, the GPD terms in the EoM (4.76) are

identical for a straight link and a staple link, and subtracting an instance of (4.76)
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with a straight link from an instance with a staple link yields

F
(1)
14 − F

(1)
14

∣∣∣
v=0

=MF14 − MF14|v=0 (4.102)

Thus, the additional terms in the staple LIR (4.88) are associated with quark-gluon-

quark correlations,

AF14(x) =
d

dx
(MF14 − MF14|v=0) (4.103)

Therefore, we see that, comparing the genuine twist-three terms entering the staple

link LIR and the staple link EoM, these encode independent information: the EoM

containsMF14 alone, whereas the LIR contains the difference ofMF14 andMF14|v=0.

As was shown in Refs. [35; 37], in the forward limit, and integrated over momentum

fraction x, the quantity −F (1)
14 corresponds to Jaffe-Manohar quark orbital angular

momentum in the staple link case, whereas it corresponds to Ji quark orbital angular

momentum in the v = 0 straight link case. Using (4.72), we obtain a concrete

expression for the difference between the two,

−
∫
dx
(
F

(1)
14 − F

(1)
14

∣∣∣
v=0

)∣∣∣∣
∆T=0

= (4.104)

− ∂

∂∆i
iεijgv−

1

2P+

∫ 1

0

ds 〈p′,+|ψ̄(0)γ+U(0, sv)F+j(sv)U(sv, 0)ψ(0)|p,+〉
∣∣∣∣
∆T=0

,

where it has been used that 2(∆i/∆2
T )f i = (∂/∂∆i)f i in the limit ∆T → 0 for a

vector function f which vanishes at least linearly in that limit (this is clear if one

decomposes f using ∆T , f i = ∆if || + εij∆jf⊥); note that the function on which the

∆T -derivative acts in (4.104) satisfies this requirement since the left-hand side is
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regular at ∆T = 0. In deriving (4.104), it has furthermore been used that, once one

is considering ∆T -derivatives, the (++) and (−−) helicity combinations contribute

equally to quark orbital angular momentum. Eq. (4.104) can be interpreted in

terms of the accumulated torque experienced by the struck quark in a deep inelastic

scattering process as a result of final state interactions [37]. The genuine twist-three

term AF14(x) entering the staple link LIR thus rather directly encodes information

about this torque, via repeated integration in x. Eq. (4.104) reproduces7 the

expression for the torque given in [37].

Analogous considerations apply to the staple link version of the other LIR derived in

section 4.3.2. For the spin-orbit sum rule, one has

AG11 =
d

dx

(
G

(1)
11 − G

(1)
11

∣∣∣
v=0

)
= − d

dx
(MG11 − MG11|v=0) (4.105)

and in the completely integrated, forward limit,

∫
dx
(
G

(1)
11 − G

(1)
11

∣∣∣
v=0

)∣∣∣
∆T=0

= (4.106)

− ∂

∂∆i
iεijgv−

1

2P+

∫ 1

0

ds 〈p′,+|ψ̄(0)γ+γ5U(0, sv)F+j(sv)U(sv, 0)ψ(0)|p,+〉
∣∣∣∣
∆T=0

This term is analogous to Eq. (4.104), the only difference being in γ+ → γ+γ5.

7To see the correspondence, it is useful to reinstate into the expression given in [37] a small
momentum transfer, and to translate the matrix element such that the quark operators are located
at the origin, as they are in (4.104). Taking into account the resulting phases stemming from the

proton states, one can then identify
∫
d3r ri exp(i~∆~r) = i(2π)3δ3(∆)∂/∂∆i. In view of the standard

normalization of states 〈p′ + |p+〉 = 2P+(2π)3δ3(p′ − p), the correspondence becomes evident.
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4.3.4 Eliminating GTMD moments from LIR and EoM rela-

tions

We now merge the information from the LIR, Eqs.(4.99, 4.100), and EoM relations

Eqs. (4.76,4.77) such as to eliminate the GTMD moments. By eliminating F
(1)
14 be-

tween Eqs.(4.99) and (4.76), and G
(1)
11 between Eqs. (4.100) and (4.77), respectively,

we obtain relations involving only twist two and twist three GPDs including their

corresponding genuine twist terms. Considering again separately the vector and axial

vector cases one has,

Ẽ2T =

−
∫ 1

x

dy

y
(H + E)−

[
H̃

x
−
∫ 1

x

dy

y2
H̃

]
−
[

1

x
MF14 −

∫ 1

x

dy

y2
MF14

]
−
∫ 1

x

dy

y
AF14

(4.107)

2H̃ ′2T + E ′2T =

−
∫ 1

x

dy

y
H̃ −

[
H

x
−
∫ 1

x

dy

y2
H

]
+
m

M

[
1

x
(2H̃T + ET )−

∫ 1

x

dy

y2
(2H̃T + ET )

]
−
[

1

x
MG11 −

∫ 1

x

dy

y2
MG11

]
+

∫ 1

x

dy

y
AG11 (4.108)

These relations are valid for either a staple or a straight gauge link structure

(with staple vector v on the light cone in the former case), keeping in mind

that AF14 ≡ 0 and AG11 ≡ 0 in the straight-link case. Since the GPDs in

these relations by definition are identical in the staple and straight link cases,

subtracting a straight-link instance of (4.107) from a staple-link instance again

yields the relation (4.103) between quark-gluon-quark terms (upon differentiation

with respect to x), and one likewise obtains the analogous relation for AG11 . A

converse way of stating this is that the terms containing MF14 and AF14 always

conspire such that only a straight-link quark-gluon-quark contribution remains,
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even if (4.107) is formally written for the staple-link case; the same is true for (4.108).

If one disregards the quark-gluon-quark contributions, and the quark mass term in

Eq. (4.108), one obtains generalizations of the relation derived by Wandzura and

Wilczek (WW) in Ref. [15],

ẼWW
2T = −

∫ 1

x

dy

y
(H + E)−

[
H̃

x
−
∫ 1

x

dy

y2
H̃

]
(4.109)

(2H̃ ′2T + E ′2T )WW = −
∫ 1

x

dy

y
H̃ −

[
H

x
−
∫ 1

x

dy

y2
H

]
(4.110)

isolating the twist-two components of Ẽ2T and (2H̃ ′2T +E ′2T ). We can then re-express

Eqs.(4.107, 4.108) as,

Ẽ2T = ẼWW
2T + Ẽ

(3)
2T + ẼLIR

2T (4.111)

E
′
2T = E

′WW

2T + E
′(3)

2T + E
′LIR
2T + E

′m
2T (4.112)

where we defined

E
′
2T = 2H̃ ′2T + E ′2T .

Here, ẼLIR
2T and E

′LIR
2T are the LIR violating terms containing AF14 and AG11 , respec-

tively, Ẽ
(3)
2T and E

′(3)

2T are the genuine twist three terms containing MF14 and MG11 ,

and E
′m
2T is the quark mass dependent term.

4.3.5 x0, x and x2 Moments

We now consider the x moments for the twist three GPDs entering Eqs.(4.107,4.108).

Integral relations for twist three GPDs were first obtained in Ref.[44; 58] directly
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from the OPE while in this paper we derive them by integrating the x-dependent

expressions found from the LIR and EoM.8 It is therefore important to check how the

two approaches correspond to one another. For the vector case we have,

∫
dxẼ2T = −

∫
dx(H + E) ⇒

∫
dx
(
Ẽ2T +H + E

)
= 0 (4.113a)∫

dxxẼ2T = −1

2

∫
dxx(H + E)− 1

2

∫
dxH̃ (4.113b)∫

dxx2Ẽ2T = −1

3

∫
dxx2(H + E)− 2

3

∫
dxxH̃ − 2

3

∫
dxxMF14

∣∣∣∣
v=0

.(4.113c)

where one can see that the contributions from AF14 and MF14 cancel in the first

two expressions integrating by parts; it is assumed that the integrands are sufficiently

well behaved at the boundaries for all such integrations. Notice that Eq.(4.113a) is an

extension of the Burkhardt-Cottingham sum rule to the off-forward case. Eq.(4.113b),

taken in the forward limit, is a sum rule for Ji quark angular momentum,

JJiq =
1

2
∆Σq + LJiq (4.114)

as can be seen by identifying the terms,

JJiq =
1

2

∫
dx x(H + E), ∆Σq =

∫
dxH̃, LJiq =

∫
dx x(Ẽ2T +H + E) .

(4.115)

Finally, Eq.(4.113c) is the only one containing a genuine twist three contribution. It

should be noticed that this contribution was surmised to be the same for all helicity

configurations in Ref.[44], while here we see that they are distinct terms.

8Notice the notation difference between Refs.[58; 44; 36] and the classification scheme followed

in this paper [17]:
∫
dxxG2 = −

∫
dxx(Ẽ2T +H + E).



82

In order to gauge the size of the OAM component, one can use data on the twist

two GPDs contributing to the WW definition, and simultaneously extract the twist

three GPDs. Detailed comparisons between the two sets of measurements will allow

us to constrain this quantity.

The axial vector moments are given by,

∫
dx
(
E ′2T + 2H̃ ′2T

)
= −

∫
dxH̃ ⇒

∫
dx
(
E ′2T + 2H̃ ′2T + H̃

)
= 0

(4.116a)∫
dxx

(
E ′2T + 2H̃ ′2T

)
= −1

2

∫
dxxH̃ − 1

2

∫
dxH +

m

2M

∫
dx(ET + 2H̃T )

(4.116b)∫
dx x2

(
E ′2T + 2H̃ ′2T

)
= −1

3

∫
dxx2H̃ − 2

3

∫
dxxH +

2m

3M

∫
dxx(ET + 2H̃T )

− 2

3

∫
dxxMG11

∣∣∣∣
v=0

(4.116c)

Eqs.(4.116a,4.116b,4.116c) are also consistent with those found in Ref.[44] and re-

visited in Ref.[60]. In particular, Eq.(4.116a) is an extension of the Burkhardt-

Cottingham sum rule to the off-forward case. Similarly to the vector case, the various

terms in Eq.(4.116b) can be rearranged so as to single out the second moment of a

twist-three GPD, namely the combination 2H̃ ′2T +E ′2T +H̃, which in the forward limit

can be interpreted through the LIR in Eq. (4.87) as the longitudinal contribution to

the parton spin-orbit interaction (LzSz)q, cf. (4.48),

2(LzSz)q =

∫
dxx

(
E ′2T + 2H̃ ′2T + H̃

)
. (4.117)
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One then has, in the forward limit,

1

2

∫
dxxH̃ +

mq

2M
κqT =

∫
dxx(2H̃ ′2T + E ′2T + H̃) +

1

2
eq (4.118)

corresponding to the sum rule

2(JzSz)q = 2(LzSz)q + 2(SzSz)q (4.119)

where the transverse anomalous magnetic moment, κqT , and the quark number, eq,

κqT =

∫
dx (ET + 2H̃T ) , eq =

∫
dxH (4.120)

have been defined.

The quark mass-dependent term which appears in Eq.(4.116b), technically through

the equations of motion, is due to transverse angular momentum components that

are present for non-zero quark mass. Note that this term is chiral even, being given

by the product of two chiral-odd quantities. We thus find the following partitioning

of the terms representing total angular momentum,

2(JzSz)q ≡ 2[(J · S)q − (JT · ST )q] =
1

2

∫
dxxH̃ +

mq

2M
κqT . (4.121)

In the chiral limit, only the longitudinal polarization component is available to the

quarks, and the correlation (JzSz) is then quantified correctly by helicity-weighting

the correlator yielding Jz, cf. (4.115), which converts H +E into H̃. No contribution

from Ẽ appears due to time reversal invariance. In the presence of a non-zero quark

mass, this is modified by the transverse anomalous magnetic moment term, which
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accounts for the fact that also transverse polarization components are available to

massive quarks. Note that one does not have to polarize the proton to observe these

correlations between quark spin and angular momentum.

4.4 LIR and EoM relations involving transverse

spin configurations

The main results of this paper are given by the EoM relations in Eqs.(4.76,4.77), the

LIR relations in Eqs.(4.86,4.87), and the WW relations in Section 4.3, which were

obtained for longitudinal proton polarization at ξ = 0. Most of the LIRs [20], however,

including the original ones [14; 18], were originally derived for the proton helicity flip

case, or for transversely polarized proton configurations. It is therefore interesting

to study the extension to the off-forward case for these helicity configurations. We

obtain the following EoM result for the axial-vector GTMD,

1

2
G

(1)
12 = x

[
H ′2T −

∆2
T

4M2
E ′2T

]
− ∆2

T

4M2
(H+E)− m

M

[
HT −

∆2
T

4M2
ET

]
−MG12 , (4.122)

where the genuine twist-three term

MG12 =

−
∫
d2kT iε

ij ∆j

∆2
T

[
∆1 + i∆2

2M
Mi,A

+− +
−∆1 + i∆2

2M
Mi,A
−+ −

∆2
T

4M2
Mi,A

++ −
∆2
T

4M2
Mi,A
−−

]
(4.123)

has been defined.

Our derivation proceeds in analogy to the steps used in the longitudinally polarized
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case, with a few important differences, as follows. Multiplying the (Λ′Λ) = (+−)

component of (4.62b) with (∆1 + i∆2) and the (Λ′Λ) = (−+) component of (4.62b)

with (∆1 − i∆2), subtracting these two component equations and contracting with

iεij∆j/(2M∆2
T ) yields, upon inserting the parameterizations in terms of GTMDs,

0 =
kT ·∆T

2M2
F12 +

∆2
T

2M2

(
F13 −

F11

2

)
+
k2
T∆2

T − (kT ·∆T )2

M2∆2
T

(
G12 −

∆2
T

2M2
G11

)
−x
(
kT ·∆T

2M2
G21 +

∆2
T

2M2
G22 +G23 +

k2
T∆2

T − (kT ·∆T )2

M2∆2
T

G24

)
+
m

M

(
kT ·∆T

2M2
H11 +

∆2
T

2M2
H12 +H13 +

k2
T∆2

T − (kT ·∆T )2

M2∆2
T

H14

)
− iεij∆j

2M∆2
T

(
(∆1 + i∆2)Mi,A

+− + (−∆1 + i∆2)Mi,A
−+

)
(4.124)

and, upon integration with respect to kT and identifying the corresponding GPDs,

0 =
∆2
T

4M2
E +

1

2
G

(1)
12 −

∆2
T

4M2
G

(1)
11 − x

(
H ′2T +

∆2
T

2M2
H̃ ′2T

)
+
m

M

(
HT +

∆2
T

2M2
H̃T

)
− iεij∆j

2M∆2
T

∫
d2kT

(
(∆1 + i∆2)Mi,A

+− + (−∆1 + i∆2)Mi,A
−+

)
(4.125)

Finally, eliminating G
(1)
11 using Eq. (4.77), we obtain Eq. (4.122).

Eq. (4.122) is a direct, off-forward GPD extension of the well-known relation involving

the polarized twist three PDF gT , the kT -moment of the TMD g1T and transversity,

h1 [14], as can be seen by identifying, in the forward limit, H ′2T → gT , HT → h1, and

G12 → g1T ,

0 =
1

2
g

(1)
1T (x)− xgT (x) +

m

M
h1(x) + xg̃T (x) (4.126)

Note that our definition of the kT -moment X(1) differs from the one in Refs. [43; 14]

by a factor of 2. The intrinsic twist-three contribution can be given explicitly in terms
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of quark-gluon-quark correlators as,

xg̃T (x) =
1

4M

∫
d2kT

(
M1,A

+− + iM2,A
+− +M1,A

−+ − iM2,A
−+

)∣∣∣∣
∆T=0

= MG12|∆T=0

(4.127)

This simplified form for MG12 in the ∆T = 0 limit is obtained from (4.123) by

considering approaches to the ∆T = 0 limit along both the ∆1 and the ∆2 axes.

The EoM relation (4.122) is accompanied by a corresponding LIR, which one obtains

in complete analogy to the treatment in Sec. 4.3.2 by considering the appropriate

decompositions into amplitudes AG, cf. Section 4.7. For straight gauge links, one has

d

dx
G

(1)
12 =

4P+

M2

∫
d2kT

∫
dk−

P 2

M2

[
(k · P − xP 2)(AG18 + xAG19)

+
k2
T∆2

T − (kT ·∆T )2

∆2
T

AG19

]
(4.128)

as well as

H̃ = 2P+

∫
d2kT

∫
dk−

(
−AG17 +

xP 2 − k · P
M2

(AG18 + xAG19)

)
(4.129)

H ′2T −
∆2
T

4M2
E ′2T = 2P+

∫
d2kT

∫
dk−

P 2

M2

(
−AG17 −

(kT ·∆T )2 − k2
T∆2

T

M2∆2
T

AG19

)
(4.130)

leading to the LIR

1

2

dG
(1)
12

dx
= H ′2T −

∆2
T

4M2
E ′2T −

(
1 +

∆2
T

4M2

)
H̃ +AG12 (4.131)

where AG12 ≡ 0 in the straight-link case, but in the presence of a staple link with
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staple direction v on the light cone, cf. the analogous discussion in Sec. 4.3.3, one has

the genuine twist-three contribution

AG12 = − d

dx
(MG12 − MG12|v=0) (4.132)

This LIR is likewise an off-forward generalization of a well-known structure function

relation; setting ∆T = 0 in (4.131) directly yields

1

2

d

dx
g

(1)
1T (x) = gT (x)− g1(x)− ĝT (x) (4.133)

in which the genuine twist-three contribution is given in terms of quark-gluon-quark

correlators as

ĝT (x) =
d

dx
(MG12 − MG12|v=0)

∣∣∣∣
∆T=0

(4.134)

By using the same techniques as in Section 4.3, eliminating the term containing G12,

we obtain the following relation,

H ′2T −
∆2
T

4M2
E ′2T =

(
1 +

∆2
T

4M2

)∫ 1

x

dy

y
H̃ +

m

M

[
1

x

(
HT −

∆2
T

4M2
ET

)
−
∫ 1

x

dy

y2

(
HT −

∆2
T

4M2
ET

)]
+

∆2
T

4M2

[
1

x
(H + E)−

∫ 1

x

dy

y2
(H + E)

]
+

[MG12

x
−
∫ 1

x

dy

y2
MG12

]
−
∫ 1

x

dy

y
AG12 . (4.135)

Notice that this relation reduces in the forward limit to the one for the polarized

structure functions, g1 and gT [43], namely, taking H ′2T → gT = g1 + g2, H̃ → g1, and
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HT → h1, as well as taking into account (4.127), (4.132) and (4.134),

gT =

∫ 1

x

dy

y
g1 +

m

M

(
1

x
h1 −

∫ 1

x

dy

y2
h1

)
+

(
g̃T −

∫ 1

x

dy

y
g̃T

)
+

∫ 1

x

dy

y
ĝT (4.136)

Taking moments of (4.135) in x, one obtains,

∫
dx

(
H ′2T −

∆2
T

4M2
E ′2T

)
=

(
1 +

∆2
T

4M2

)∫
dxH̃

∆T→0⇒
∫
dx
(
H ′2T − H̃

)
≡

∫
dx g2 = 0 (4.137a)∫

dx x

(
H ′2T −

∆2
T

4M2
E ′2T

)
=

1

2

(
1 +

∆2
T

4M2

)∫
dxxH̃ +

∆2
T

8M2

∫
dx(H + E)

+
m

2M

∫
dx

(
HT −

∆2
T

4M2
ET

)
(4.137b)∫

dx x2

(
H ′2T −

∆2
T

4M2
E ′2T

)
=

1

3

(
1 +

∆2
T

4M2

)∫
dxx2H̃ +

∆2
T

6M2

∫
dxx(H + E)

+
2m

3M

∫
dxx

(
HT −

∆2
T

4M2
ET

)
+

2

3

∫
dx xMG12

∣∣∣∣
v=0

.

(4.137c)

Eq.(4.137a) is the off-forward generalization of the original Burkhardt-Cottingham

sum rule; similarly, Eq.(4.137b) is the generalization of the Efremov-Leader-Teryaev

sum rule [61],

∫
dx x

[
gT (x)− 1

2
g1(x)

]
= 0 , (4.138)

which is valid in the chiral limit, m → 0, whereas Eq.(4.137c) in the forward and

chiral limits reduces to9,

∫
dx x2

[
gT (x)− 1

3
g1(x)

]
=

2

3

∫
dx xMG12

∣∣∣∣
v=0,∆T=0

=
1

3
d2 . (4.139)

9Note that definitions of d2 in the literature vary by a factor of 2.



89

d2, which incorporates quark-gluon-quark correlations, is one of the few quantities

where these effects can be obtained unambiguously from inclusive polarized scatter-

ing experiments ([62] and references therein). One can write explicitly the helicity

structure of MG12 as,

d2 =
1

2M

∫
dx x

∫
d2kT

(
M1,A

+− + iM2,A
+− +M1,A

−+ − iM2,A
−+

)∣∣∣∣
v=0,∆T=0

(4.140)

A relation involving the GTMD F12, the imaginary part of which in the forward limit

is (minus) the Sivers function f⊥1T [17], is obtained by considering the combination

(∆1 − i∆2) times the (Λ′Λ) = (−+) helicity component added to (∆1 + i∆2) times

the (Λ′Λ) = (+−) helicity component of Eq. (4.62a) and multiplying by ∆i/M∆2
T ,

− x

(
F23 +

k2
T∆2

T − (kT ·∆T )2

M2∆2
T

F24

)
+

1

2M2

(
∆2
TG13 + kT ·∆TG12

)
+

k2
T∆2

T − (kT ·∆T )2

M2∆2
T

F12 +
∆i

2M∆2
T

(
(∆1 − i∆2)Mi,S

−+ + (∆1 + i∆2)Mi,S
+−

)
= 0.

(4.141)

In the forward limit, Eq. (4.141) is a relation between purely imaginary quantities.

This follows from the fact that, for ∆ = 0, the real parts of all GTMDs entering

Eq. (4.141) except for G12 vanish [17]; on the other hand, G12 is multiplied by ∆T .

As a consequence, also the real part of the genuine twist three term vanishes for

∆ = 0. Turning therefore to the imaginary part, in the forward limit, one has the

TMD identifications F o
23 = f ′T and F o

24 = f⊥T [17]. Integrated over kT , the term in

the first parenthesis thus combines to
∫
d2kTfT = 0 [23]. One is therefore left with

the following kT -integrated relation involving the Sivers function f⊥1T in the forward
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limit,

f
⊥(1)
1T = −F o(1)

12 = MF12|∆T=0 (4.142)

where the quark-gluon-quark term

MF12 = −2i
∆i

2M∆2
T

∫
d2kT

(
(∆1 − i∆2)Mi,S

−+ + (∆1 + i∆2)Mi,S
+−

)
(4.143)

has been introduced. Eq. (4.142) indicates a correspondence of MF12 to the well-

known Qiu-Sterman term Tq(x, x) in the forward limit. Indeed, in analogy to the

discussion surrounding Eq. (4.104), a compact expression for MF12 can be obtained

in the fully integrated case. Approaching the ∆T = 0 limit either along the ∆2 = 0

axis or the ∆1 = 0 axis, one has

MF12|∆T=0 = −i 1

M

∫
d2kT (M1,S

+−+M1,S
−+) =

1

M

∫
d2kT (M2,S

+−−M2,S
−+) (4.144)

Considering, for example, the form given in terms of M1,S
Λ′Λ, and integrating with

respect to x, one can insert (4.72) and obtain the Sivers shift

〈k2〉 = M
1

2

∫
dxf

⊥(1)
1T

= gv−
1

2P+

∫ 1

0

ds〈P, S1|ψ̄(0)γ+U(0, sv)F+2(sv)U(sv, 0)ψ(0)|P, S1〉

(4.145)

after having converted the states from the helicity basis to a spin quantization axis

in 1-direction, and having used a rotation by π in the transverse plane to combine

terms associated with spin in the ±1-directions. The case of spin in the 2-direction

can be treated analogously. One thus obtains the standard Qiu-Sterman form [37] in
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the forward limit. For ∆T 6= 0, M12 is an off-forward/generalized analogue of the

Qiu-Sterman Tq(x, x) term.

The EoM relations presented so far in either the longitudinal or transverse proton

polarization cases allow us to decompose specific twist-three GPDs into a linear com-

bination of a twist-two GPD, a quark-gluon-quark correlation, the k2
T moment of a

twist-two GTMD and a mass term in the axial-vector case. The k2
T moment of the

GTMD can be eliminated using the LIRs. The resulting relations, when integrated

over x, are analogous to the relations provided by Kiptily and Polyakov in [44]. Note,

however, that not all EoM relations are of this form; in general, also other GTMD

moments besides k2
T moments appear in the EoM relations that we have not discussed

in detail in this work. For instance, one finds a relation in which the GTMD G13 con-

tributes to the EoM weighted by (kT ·∆T ). Moreover, that EoM relation cannot have

a LIR counterpart within the twist two and twist three sectors, since G13 is the only

GTMD in those sectors which contains the invariant amplitude AG21, cf. Section 4.7.

4.5 Explicit form of quark-gluon-quark terms

Consider a staple-shaped gauge link U connecting the space-time points y and y′ via

three straight segments,

U = P exp

(
−ig

∫ y+v

y

dxµAµ(x)

)
P exp

(
−ig

∫ y′+v

y+v

dxµAµ(x)

)

· P exp

(
−ig

∫ y′

y′+v

dxµAµ(x)

)
(4.146)

≡ U1(0, 1)U2(0, 1)U3(0, 1) , (4.147)
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which each can be parametrized in terms of a real parameter t as

U1(a, b) = P exp

(
−ig

∫ b

a

dt vµAµ(y + tv)

)
(4.148)

U2(a, b) = P exp

(
−ig

∫ b

a

dt (y′ − y)µAµ(y + v + t(y′ − y))

)
(4.149)

U3(a, b) = P exp

(
−ig

∫ b

a

dt (−vµ)Aµ(y′ + v − tv)

)
(4.150)

The four-vector v describes the legs of the staple-shaped path. The parameterization

includes the special case v = 0, in which the staple degenerates to a straight link

between y and y′ given by U2(0, 1), whereas U1 = U3 = 1. In the following, Ui given

without an argument means Ui ≡ Ui(0, 1).

The goal of the following treatment is to evaluate

(
∂

∂yν
− igAν(y)

)
U =

(
∂U1

∂yν
− igAν(y)U1

)
U2U3 + U1

∂U2

∂yν
U3 (4.151)

(note that U3 is independent of y). Consider first ∂U1/∂y
ν . The derivative of the

path-ordered exponential, cf. (4.148), is

∂U1

∂yν
=

∫ 1

0

dsU1(0, s) [−igvµ∂νAµ(y + sv)]U1(s, 1) (4.152)

This can be recast by the following integration by parts. Noting that

d

ds
U1(0, s) = U1(0, s)(−ig)vµAµ(y + sv) (4.153)

d

ds
U1(s, 1) = igvµAµ(y + sv)U1(s, 1) (4.154)
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it follows that

U1igAν(y + v)− igAν(y)U1

=

∫ 1

0

ds
d

ds
[U1(0, s)igAν(y + sv)U1(s, 1)] (4.155)

=

∫ 1

0

ds [U1(0, s)(−ig)vµAµ(y + sv)igAν(y + sv)U1(s, 1)

+U1(0, s)igAν(y + sv)igvµAµ(y + sv)U1(s, 1)

+U1(0, s)igvµ∂µAν(y + sv)U1(s, 1)]

= igvµ
∫ 1

0

dsU1(0, s) [Fµν(y + sv) + ∂νAµ(y + sv)]U1(s, 1)

having introduced the field strength Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]. Adding the

left- and right-hand sides of (4.152) to the initial and final expressions in (4.155),

respectively, as well as subtracting U1igAν(y + v) from both sides, finally yields

(
∂

∂yν
− igAν(y)

)
U1 = igvµ

∫ 1

0

dsU1(0, s)Fµν(y+sv)U1(s, 1)−U1igAν(y+v) (4.156)

The term ∂U2/∂y
ν can be treated analogously; the resulting expressions are slightly

more involved, since, in this case, also the line element in U2 depends explicitly on y,

cf. (4.149):

∂U2

∂yν
= ∫ 1

0

dsU2(0, s)(−ig) [−Aν(y + v + s(y′ − y))

+(y′ − y)µ∂νAµ(y + v + s(y′ − y))(1− s)]U2(s, 1) (4.157)
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Noting, in analogy to above,

d

ds
U2(0, s) = U2(0, s)(−ig)(y′ − y)µAµ(y + v + s(y′ − y)) (4.158)

d

ds
U2(s, 1) = ig(y′ − y)µAµ(y + v + s(y′ − y))U2(s, 1) (4.159)

one has

−igAν(y + v)U2

=

∫ 1

0

ds
d

ds
[U2(0, s)igAν(y + v + s(y′ − y))(1− s)U2(s, 1)] (4.160)

=

∫ 1

0

ds [U2(0, s)(−ig)(y′ − y)µAµ(y + v + s(y′ − y))

· igAν(y + v + s(y′ − y))(1− s)U2(s, 1)

+ U2(0, s)igAν(y + v + s(y′ − y))(1− s)ig(y′ − y)µAµ(y + v + s(y′ − y))U2(s, 1)

+ U2(0, s)ig(y′ − y)µ∂µAν(y + v + s(y′ − y))(1− s)U2(s, 1)

− U2(0, s)igAν(y + v + s(y′ − y))U2(s, 1)]

= ig

∫ 1

0

dsU2(0, s) [(1− s)(y′ − y)µ (Fµν(y + v + s(y′ − y))

+ ∂νAµ(y + v + s(y′ − y)))− Aν(y + v + s(y′ − y))]U2(s, 1)

Adding the left- and right-hand sides of (4.157) to the initial and final expressions in

(4.160), respectively, as well as adding igAν(y + v)U2 to both sides, finally leaves

∂U2

∂yν
= ig

∫ 1

0

dsU2(0, s)(1−s)(y′−y)µFµν(y+v+s(y′−y))U2(s, 1)+ igAν(y+v)U2

(4.161)

Inserting (4.161) and (4.156) on the right-hand side of (4.151), one finally obtains an
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expression in which only field strength terms remain,

(
∂

∂yν
− igAν(y)

)
U =

igU1

∫ 1

0

dsU2(0, s)(y′ − y)µFµν(y + v + s(y′ − y))(1− s)U2(s, 1)U3

+ ig

∫ 1

0

dsU1(0, s)vµFµν(y + sv)U1(s, 1)U2U3 (4.162)

In complete analogy, one obtains for the adjoint term,

U
(←−−

∂

∂y′ν
+ iAν(y

′)

)
=

igU1

∫ 1

0

dsU2(0, s)(y′ − y)µFµν(y + v + s(y′ − y))sU2(s, 1)U3

−U1U2ig

∫ 1

0

dsU3(0, s)vµFµν(y
′ + v − sv)U3(s, 1) (4.163)

4.6 Integral relation for the construction of LIRs

The construction of LIRs is based on the integral relation (4.90) for amplitudes A

depending on the integration variable k via Lorentz invariants as A ≡ A(k·P, k2, k·∆),

d

dx

∫
d2kT

∫
dk−

k2
T∆2

T − (kT ·∆T )2

∆2
T

X [A;x] =∫
d2kT

∫
dk−(k · P − xP 2)X [A;x] +

∫
d2kT

∫
dk−

k2
T∆2

T − (kT ·∆T )2

∆2
T

∂X
∂x

[A;x]

(4.164)

where X [A;x] is a linear combination of amplitudes A in which the coefficients, aside

from containing the invariants k ·P , k2 and k ·∆, may have an explicit x-dependence.

To see this relation, it is useful to handle the dependences of the amplitudes A on the
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invariants k ·P , k2 and k ·∆ by introducing new variables embodying these invariants,

σ ≡ 2k · P = xP 2 + 2k−P+ ⇒ k− =
1

2P+

(
σ − xP 2

)
(4.165)

τ ≡ k2 = xσ − x2P 2 − k2
T (4.166)

σ′ ≡ k ·∆ = −kT ·∆T = −|kT ||∆T | cosφ (4.167)

Note again that the present treatment is for vanishing skewness, in which case P 2 =

M2 + ∆2
T/4. Examining the two terms on the right-hand side of (4.164), they take

the form

I1 =

∫
d2kT

∫
dk−(k · P − xP 2)X [A(2k · P, k2, k ·∆);x] (4.168)

=
1

8P+

∫
dσdτdσ′

∫ ∞
0

dk2
T

∫ 2π

0

dφ δ(τ − xσ + x2P 2 + k2
T )δ(σ′ + kT ·∆T )

·(σ − 2xP 2)X [A(σ, τ, σ′);x]

=
1

4P+

∫
dσdτdσ′ θ(xσ − τ − x2P 2)θ(∆2

T (xσ − τ − x2P 2)− σ′2).

· σ − 2xP 2√
∆2
T (xσ − τ − x2P 2)− σ′2

X [A(σ, τ, σ′);x]

I2 =

∫
d2kT

∫
dk−

k2
T∆2

T − (kT ·∆T )2

∆2
T

∂X
∂x

[A(2k · P, k2, k ·∆);x] (4.169)

=
1

4P+

∫
dσdτdσ′

∫ ∞
0

dk2
T

∫ 2π

0

dφ δ(τ − xσ + x2P 2 + k2
T )δ(σ′ + kT ·∆T )

·k2
T sin2 φ

∂X
∂x

[A(σ, τ, σ′);x]

=
1

2P+

∫
dσdτdσ′ θ(xσ − τ − x2P 2)θ(∆2

T (xσ − τ − x2P 2)− σ′2)

·
√
xσ − τ − x2P 2

∆2
T

− σ′2

∆4
T

∂X
∂x

[A(σ, τ, σ′);x]

where in each case, in the first step, the integration variable k− has been substituted

by σ according to (4.165), and two representations of unity have been introduced

enforcing the identifications (4.166) and (4.167); also the kT -integration has been
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cast in polar coordinates. In the second step, the angular integrations have been

carried out using

∫ 2π

0

dφ δ(σ′ + kT ·∆T ) sin2 φ =
2

k2
T∆2

T

√
k2
T∆2

T − σ′2 θ(k2
T∆2

T − σ′2) (4.170)∫ 2π

0

dφ δ(σ′ + kT ·∆T ) =
2√

k2
T∆2

T − σ′2
θ(k2

T∆2
T − σ′2) (4.171)

followed by the integration over k2
T . Consider now the left-hand side of (4.164). It is

of the same form as (4.169), except for containing X instead of ∂X/∂x, and for the

overall derivative with respect to x. Thus, in view of the last line of (4.169), it reads

I =
d

dx

1

2P+

∫
dσdτdσ′ θ(xσ − τ − x2P 2)θ(∆2

T (xσ − τ − x2P 2)− σ′2)

·
√
xσ − τ − x2P 2

∆2
T

− σ′2

∆4
T

X [A;x] (4.172)

=
1

2P+

∫
dσdτdσ′ δ(xσ − τ − x2P 2)θ(∆2

T (xσ − τ − x2P 2)− σ′2)

·(σ − 2xP 2)

√
xσ − τ − x2P 2

∆2
T

− σ′2

∆4
T

X [A;x]

+
1

2P+

∫
dσdτdσ′ θ(xσ − τ − x2P 2)δ(∆2

T (xσ − τ − x2P 2)− σ′2)

·(σ − 2xP 2)
√

∆2
T (xσ − τ − x2P 2)− σ′2X [A;x]

+
1

2P+

∫
dσdτdσ′ θ(xσ − τ − x2P 2)θ(∆2

T (xσ − τ − x2P 2)− σ′2)

·
[

1

2

σ − 2xP 2√
∆2
T (xσ − τ − x2P 2)− σ′2

X [A;x] +

√
xσ − τ − x2P 2

∆2
T

− σ′2

∆4
T

∂X
∂x

[A;x]

]
(4.173)

The last term corresponds to I1 + I2; to see (4.164), it thus remains to argue that

the first two lines in (4.173) yield no contribution. In the first term, the δ-function

sets xσ − τ − x2P 2 = 0, and therefore the rest of the integrand is proportional
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to θ(−σ′2)
√
−σ′2, which vanishes for any σ′. In the second line in (4.173), the δ-

function sets the quantity in the square root to zero, ∆2
T (xσ − τ − x2P 2) − σ′2 = 0.

It should be emphasized that these properties hinge on the sin2 φ weighting of the

kT -integral, cf. (4.169). Without this weighting, it is not clear that the two terms

do not contribute, and the LIR could potentially be modified by boundary terms.

The possibility of corrections through boundary terms in LIRs not weighted by sin2 φ

has also been noted in [43]. Note furthermore that no pathology arises in the limit

∆T → 0; this limit merely generates δ(σ′) distributions in the integrands, as is clear

from inspecting (4.170) and (4.171), which are the source of the superficially singular

dependences on ∆2
T . One can retrace the above derivation analogously in the ∆T = 0

limit, with (4.164) continuing to hold.

4.7 GTMDs in terms of A amplitudes

To relate GTMDs to A amplitudes, one equates the k− integrals of the GPCF pa-

rameterizations (4.16) and (4.17), for µ = + and µ = i, a transverse vector index, to

the corresponding GTMD parameterizations (4.19), (4.21), (4.25), (4.27). Complete

correspondence between the structures is achieved by eliminating terms in the GPCF

parameterizations containing σi−. This can be effected using the Gordon identity

0 = U(p′,Λ′)

(
∆µ

2
+ iσµνPν

)
U(p,Λ) . (4.174)

For purely longitudinal P and transverse ∆, this allows one to substitute

U(p′,Λ′)iσi−P+U(p,Λ) = U(p′,Λ′)

(
−iσ

i+P 2

2P+
− ∆i

2

)
U(p,Λ) (4.175)
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and furthermore implies Uσ+−U = 0; moreover, in combination with iσµνγ5 =

−1
2
εµνρσσρσ it also yields

U(p′,Λ′)iσi−γ5P+U(p,Λ) = U(p′,Λ′)

(
iσi+γ5P 2

2P+
− iεij∆j

2

)
U(p,Λ) . (4.176)

In addition, it is useful to contract the twist-three equations, which carry a transverse

vector index, with the two available transverse vectors kT and ∆T in order to extract

the full information from the equations. The following relations result:

For the twist-two vector GTMDs as functions of the AF amplitudes, one obtains:

F11 = 2P+

∫
dk−

[
AF1 + xAF2 −

x∆2
T

2M2
(AF8 + xAF9 )

]
(4.177)

F12 = 2P+

∫
dk−

[
AF5
]

(4.178)

F13 = 2P+

∫
dk−

[
AF6 +

P · k − xP 2

M2
(AF8 + xAF9 )

]
(4.179)

F14 = 2P+

∫
dk−

[
AF8 + xAF9

]
(4.180)
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For the twist-three vector GTMDs as functions of the AF amplitudes:

F21 = 2P+

∫
dk−

[
AF2 −

x∆2
T

2M2
AF9

]
(4.181)

F22 = 2P+

∫
dk−

[
AF3 −

x

2
AF5 −

x∆2
T

2M2
AF17

]
(4.182)

F23 = 2P+

∫
dk−

P · k − xP 2

M2

[
AF5 +

(kT ·∆T )2 − k2
T∆2

T

M2(kT ·∆T )
AF9

]
(4.183)

F24 = 2P+

∫
dk−

P · k − xP 2

M2

∆2
T

kT ·∆T

[
AF9
]

(4.184)

F25 = 2P+

∫
dk−

xP 2 − P · k
M2

[
AF9
]

(4.185)

F26 = 2P+

∫
dk−

P · k − xP 2

M2

[
k2
T

kT ·∆T

AF9 + AF17

]
(4.186)

F27 = 2P+

∫
dk−

[
AF5 +

kT ·∆T

M2
AF9 +

∆2
T

M2
AF17

]
(4.187)

F28 = 2P+

∫
dk−

[
AF6 −

k2
T

M2
AF9 −

kT ·∆T

M2
AF17

]
(4.188)

For the twist-two axial vector GTMDs as functions of the AG amplitudes:

G11 = 2P+

∫
dk−

[
AG1 +

AG18 + xAG19

2

]
(4.189)

G12 = 2P+

∫
dk−

P 2

M2
[AG18 + xAG19] (4.190)

G13 = 2P+

∫
dk−

P 2

M2

[
AG21 + xAG22

]
(4.191)

G14 = 2P+

∫
dk−

[
−AG17 +

xP 2 − k · P
M2

(AG18 + xAG19)

]
(4.192)

(4.193)
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For the twist-three axial vector GTMDs as functions of the AG amplitudes:

G21 = 2P+

∫
dk−

[
kT ·∆T

2M2
AG19 +

∆2
T

2M2
AG20

]
(4.194)

G22 = 2P+

∫
dk−

[
xP 2 − P · k

M2
AG1 +

1

2
AG17 −

k2
T

2M2
AG19 −

kT ·∆T

2M2
AG20

]
(4.195)

G23 = 2P+

∫
dk−

P 2

M2

[
−AG17 +

(kT ·∆T )2 − k2
T∆2

T

M2(kT ·∆T )
AG22

]
(4.196)

G24 = 2P+

∫
dk−

P 2

M2

[
AG19 +

∆2
T

kT ·∆T

AG22

]
(4.197)

G25 = 2P+

∫
dk−

P 2

M2

[
AG20 − AG22

]
(4.198)

G26 = 2P+

∫
dk−

P 2

M2

[
AG23 +

k2
T

kT ·∆T

AG22

]
(4.199)

G27 = 2P+

∫
dk−

xP 2 − P · k
M2

[
AG19

]
(4.200)

G28 = 2P+

∫
dk−

xP 2 − P · k
M2

[
AG20

]
(4.201)

Combining these relations with ones expressing GPDs in terms of kT -integrals over

GTMDs, as given in [17], one can also obtain the GPD combinations relevant for the
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developments in this work in terms of the A amplitudes. In particular,

H + E =

∫
d2kT 2

(
kT ·∆T

∆2
T

F12 + F13

)
(4.202)

= 2P+

∫
d2kT

∫
dk−

· 2
(
kT ·∆T

∆2
T

AF5 + AF6 +
P · k − xP 2

M2
(AF8 + xAF9 )

)
(4.203)

H̃ =

∫
d2kT G14 (4.204)

= 2P+

∫
d2kT

∫
dk−

(
−AG17 +

xP 2 − k · P
M2

(AG18 + xAG19)

)
(4.205)

Ẽ2T =

∫
d2kT (−2)

(
kT ·∆T

∆2
T

F27 + F28

)
(4.206)

= 2P+

∫
d2kT

∫
dk−

· (−2)

(
kT ·∆T

∆2
T

AF5 + AF6 +
(kT ·∆T )2 − k2

T∆2
T

M2∆2
T

AF9

)
(4.207)

E ′2T + 2H̃ ′2T =

∫
d2kT 2

(
kT ·∆T

∆2
T

G21 +G22

)
(4.208)

= 2P+

∫
d2kT

∫
dk−

·
(

2
xP 2 − k · P

M2
AG1 + AG17 +

(kT ·∆T )2 − k2
T∆2

T

M2∆2
T

AG19

)
(4.209)

H ′2T −
∆2
T

4M2
E ′2T =

∫
d2kT

(
G23 −

∆2
T

M2

(kT ·∆T )2 − k2
T∆2

T

(∆2
T )2

G24

)
(4.210)

= 2P+

∫
d2kT

∫
dk−

P 2

M2

(
−AG17 −

(kT ·∆T )2 − k2
T∆2

T

M2∆2
T

AG19

)
(4.211)
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4.8 The axial vector parameterization

We outline here the steps used to obtain the GPCFs that parametrize the completely

unintegrated quark-quark correlation function for a straight-line gauge link in the ax-

ial vector case. They parallel the steps followed in [17]. We use the Gordon identities:

UγµU = U

[
P µ

M
+
iσµ∆

2M

]
U (4.212)

0 = U

[
∆µ

2M
+
iσµP

M

]
U (4.213)

Uγµγ5U = U

[
∆µγ5

2M
+
iσµPγ5

M

]
U (4.214)

0 = U

[
P µγ5

M
+
iσµ∆γ5

2M

]
U (4.215)

The ε identity :

gαβεµνρσ = gµβεανρσ + gνβεµαρσ + gρβεµνασ + gσβεµνρα (4.216)

The σ identity :

iσµνγ5 = −1

2
εµνρσσρσ (4.217)

A complete parameterization of the axial vector Dirac bilinear can be obtained by

treating all possible Dirac currents one after another:

1. Vector current [U(p′,Λ′)γµU(p,Λ)]: Using the Gordon identity in eq.(4.212) all

vector currents can be replaced by scalar and tensor currents.

2. Axial vector current [U(p′,Λ′)γµγ5U(p,Λ)]: Using the Gordon identity in
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eq.(4.214) all axial vector currents can be replaced by pseudoscalar and pseudotensor

currents.

3. Pseudoscalar current [U(p′,Λ′)γ5U(p,Λ)]: Using eq.(4.215) and contracting with

P µ all pseudoscalar currents can be replaced by pseudotensor currents.

4. Tensor current [U(p′,Λ′)σµνU(p,Λ)]: Using the σ identity in eq.(4.217) all tensor

currents can be replaced by pseudotensor currents.

5. Pseudotensor current [U(p′,Λ′)σµνγ5U(p,Λ)]: All possible pseudotensor currents

are of the form

U(p′,Λ′)σµaγ5U(p,Λ), U(p′,Λ′)aµσbcγ5U(p,Λ) (4.218)

where a, b and c can be any of the vectors P, k and ∆.

6. Scalar current [U(p′,Λ′)U(p,Λ)]: There is only one possible scalar current

UU

M3
iεµPk∆ (4.219)

A useful relation that can be derived by multiplying the Gordon identity eq.(4.213)

by the ε identity eq.(4.216) and using eq.(4.217) is

0 = U

[
P µ

M
iσνργ5 +

P ν

M
iσρµγ5 +

P ρ

M
iσµνγ5 − iε

µνρ∆

2M

]
U (4.220)
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Contracting with P νkρ, P ν∆ρ and kν∆ρ :

0 = U

[
P µ

M
iσPkγ5 +

P 2

M
iσkµγ5 +

k · P
M

iσµPγ5 − iε
µPk∆

2M

]
U (4.221)

0 = U

[
P µ

M
iσP∆γ5 +

P 2

M
iσ∆µγ5 +

P ·∆
M

iσµPγ5

]
U (4.222)

0 = U

[
P µ

M
iσk∆γ5 +

P · k
M

iσ∆µγ5 +
P ·∆
M

iσµkγ5

]
U (4.223)

Using these relations, we can eliminate currents σkµγ5, σ∆µγ5 . On the other hand,

contracting with P µkν∆ρ :

0 =
P 2

M
Uiσk∆γ5U +

P · k
M

Uiσ∆Pγ5U +
P ·∆
M

UiσPkγ5U (4.224)

which allows us to eliminate σk∆γ5aµ. The parameterization can thus be written as :

W γµγ5 =
UU

M3
iεµPk∆AG1 +

UiσPµγ5U

M
AG17 +

UiσPkγ5U

M3

(
P µAG18 + kµAG19 + ∆µAG20

)
+
UiσP∆γ5U

M3

(
P µAG21 + kµAG22 + ∆µAG23

)
(4.225)

4.9 The Forward Limit

To derive the decomposition of the distribution functions in terms of GPCFs, we

come across terms like (k1∆2−k2∆1)2

∆2
TM

2 B. We show below how, in the forward limit, this

term transforms into
k2T
M2B. This is also useful for deriving the equation of motion

relations at the kT integrated level in the forward case.

In the off forward case,

∫
d2kTdk

− [ki(k1∆2 − k2∆1)B
] ×εij∆j

T→
∫
d2kTdk

− [(k1∆2 − k2∆1)2B
]

(4.226)
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For the forward case, first we Fourier transform (FT) to bT space,

∫
d2kTdk

− [ki(k1∆2 − k2∆1)B
] FT→ ∫

d2kTdk
−
[
ki
(
k1 ∂

∂b2
− k2 ∂

∂b1

)
B
]

(4.227)

where,

B =

∫
d2∆T

(2π)2
ei∆T ·bTB (4.228)

and multiplying by εijbjT and integrate over bT

∫
d2bT

[
εijbjTk

i
T

(
k1 ∂

∂b2
− k2 ∂

∂b1

)
B
]

= k2
TB (4.229)

The integral in bT is a Fourier transform back into momentum space with ∆T → 0.

This trick is also useful for taking deriving the EOM relations in the forward limit

involving GPDs with an explicit ∆T coefficient. Consider a GPD F. In the off forward

case, the manipulation looks like,

εij∆j
TF → εimεij∆m

T ∆j
TF = ∆2

TF (4.230)

In the forward case, we take the Fourier transform with respect to ∆T , multiply by

εimεijbmT and integrate over bT which is equivalent to an inverse Fourier transform

back to momentum space with ∆T = 0.

εij∆j
TF → εimεijbmT

∂

∂biT
F → F (4.231)
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4.10 The Chiral Odd Sector

The study presented in the previous sections can be extended to the chiral odd sector

as well. Unlike the chiral even case, there are no GTMDs such as F14 or G11 that

contain entirely new information which is not already available in a GPD or TMD.

In other words, all leading twist GTMD either transform to a TMD in the forward

limit or enter the description of a GPD when integrated over kT . The only LIR we

find is an off forward extension of the previously known LIR between h
⊥(1)
1L , h1 and

hL. The parameterization of GPCFs in the straight gauge link case used for deriving

the LIR is as follows,

W
[
iσµνγ

5
]

ΛΛ′ = (δµρδνσ − δνρδµσ)U(p′,Λ′)

[
iερσP∆

M2
AH1 +

iερσPk

M2
AH2 +

iερσk∆

M2
AH3

+ iσρσγ5AH4 +
iσσPγ5

M

(
kρ

M
AH5 +

∆ρ

M
AH6

)
+
iσPkγ5

M2

(
P ρkσ

M2
AH7

+
P ρ∆σ

M2
AH8 +

kρ∆σ

M2
AH9

)
+
iσP∆γ5

M2

(
P ρkσ

M2
AH10 +

P ρ∆σ

M2
AH11

+
kρ∆σ

M2
AH12

)]
U(p,Λ). (4.232)

The possible equations of motion for the chiral odd case that involve a k2
T moment

are,
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−xH̃ ′2 −
∫
d2kT

(kT ×∆T )2

M2∆2
T

H17 +
m

M
H̃ − 1

2M

∫
d2kT

(
Mγ+γ5A

++ −Mγ+γ5A
−−

)
= 0

(4.233)

xH ′2 +

∫
d2kT

(kT ×∆T )2

M2∆2
T

H11 −
1

2M

∫
d2kT

(
Mγ+S

++ +Mγ+S
−−

)
= 0 (4.234)

xE ′2 −
∫
d2kT

(kT ×∆T )2

M2∆2
T

H11

− 1

∆2
T

∫
d2kT

[
(∆1 − i∆2)Mγ+S

−+ − (∆1 + i∆2)Mγ+S
+−

]
= 0. (4.235)

In the above, MΓA,S
ΛΛ′ are defined similar to (4.63a) and (4.63b). In order to obtain

the equations of motion in the chiral odd sector, Γ is taken as γ+ or γ+γ5 unlike the

chiral even case where it was taken as iσi+γ5. In the forward limit, H
(o)
11 is the Boer

Mulders function. Like in the case of the Sivers function, for ξ = 0, H
(e)
11 does not

correspond to an LIR. H17 in the forward limit is h⊥1L for which the LIR between h
⊥(1)
1L

and the PDFs h1 and hL has been derived previously (Mulders and Tangerman)

dh
⊥(1)
1L

dx
= h1 − hL (4.236)

h1 is the chiral odd twist two PDF describing transversely polarized quarks in an

unpolarized proton whereas hL is the chiral odd twist three PDF describing the

quark operator iσ+−γ5 in a longitudinally polarized proton.h⊥1L is a TMD describ-

ing transversely polarized quarks in a longitudinally polarized proton. The LIR in

the off-forward case is

dH
(1)
17

dx
= HT −

∆2
T

4M2
ET − H̃ ′2 (4.237)
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H17
∆→0−→ h⊥1L H̃ ′2

∆→0−→ hL HT
∆→0−→ h1 (4.238)

To derive the LIR, we write the GTMD H17 in terms of GPCFs

H
(1)
17 =

∫
d2kTdk

− (kT ×∆T )2

M2∆2
T

H17

=
2P+

M

∫
d2kTdk

− (kT ×∆T )2

M2∆2
T

(
AH5 +

k · P − xP 2

M2
AH7

)

=

∫
dσdτdσ′

M3∆T

2

√
xσ − τ − x2P 2

M2
−
(
σ′∆T

M

)2(
AH5 − x

P 2

M2
AH7

)
(4.239)

⇒ dH
(1)
17

dx
=

∫
dσdτdσ′

M3∆T

2

√
xσ − τ − x2P 2

M2 −
(
σ′∆T

M

)2

[(
σ

2
− xP 2

M2

)
AH5

+

((
σ

2
− xP 2

M2

)2

−
(
xσ − τ − x2P 2

M2
−
(
σ′∆T

M

)2
)
P 2

M2

)
AH7

]
(4.240)

Writing H̃ ′2 in terms of the GPCFs given in (4.251) using σ, τ and σ′ we have

H̃ ′2 =

∫
dσdτdσ′

M3∆T

2

√
xσ − τ − x2P 2

M2 −
(
σ′∆T

M

)2

[
2AH4 −

σ

2
AH5 −

(
σ

2
− xP 2

M2

)
AH7

]
(4.241)

Comparing equations (4.240) and (4.241), we see we need to cancel out AH4 and add

components to AH5 and AH7 . Looking at equations (4.245) - (4.248) we see that the

combination HT − ∆2
T

4M2ET works. This is obtained by subtracting ∆2
T/4M

2 times
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(4.245) from (4.247). Hence, the LIR is,

dH
(1)
17

dx
= HT −

∆2
T

4M2
ET − H̃ ′2. (4.242)

The GPCF expansion for the twist 2 case is,

W
[
iσi+γ

5
]

ΛΛ′ =
P+

M

[
4iεij

(
∆j
TA

H
1 + kjAH2 + x∆jAH3

)
+
(
2ΛkiT + ixεij∆j

T

)
AH5

+ 2Λ∆i
TA

H
6 −

(
2Λ (xP 2 − k · P )− ikT ×∆T

M2

)(
kiTA

H
7 + ∆i

TA
H
8

+ x∆i
TA

H
9

) ]
δΛΛ′

+
P+

M

[
− 2iεij (Λ∆1 + i∆2)

M2

(
∆j
TA

H
1 + kjTA

H
2 + x∆j

TA
H
3

)
+ 4M(δi1 + iΛδi2)AH4 − x

(
2P 2(δi1 + iΛδi2)

M
+
iεij∆j(Λ∆1 + i∆2)

2M

)
AH5

−
(

2P 2(k1 + iΛk2)

M3
+
ikT ×∆T (Λ∆1 + i∆2)

2M3

)
·
(
kiTA

H
7 + ∆i

TA
H
8 + x∆i

TA
H
9

)
−

(
kiTA

H
10 + ∆i

TA
H
11 + x∆i

TA
H
12

) 2P 2(∆1 + iΛ∆2)

M3

]
δ−ΛΛ′ .

(4.243)

The GPCF expansion for the twist 3 case is,
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W
[
iσ+−γ5

]
ΛΛ′ =

[
− 4ikT ×∆T

M
AH3 + 4ΛMAH4 −

2Λk · P
M

AH5

+
k · P − xP 2

M

(
2Λ (xP 2 − k · P )

M2
− ikT ×∆T

M2

)
AH7

]
δΛΛ′

+

[
2i(Λ∆1 + i∆2)kT ×∆T

M2
AH3 +

(
2P 2(k1 + iΛk2)

M3

+
ikT ×∆T (Λ∆1 + i∆2)

2M4

)
k · P − xP 2

M
AH7 +

2P 2(∆1 + iΛ∆2)

M2
AH10

]
δ−ΛΛ′ .

(4.244)

The twist two GPDs in terms of GPCFs are,

ET + 2H̃T =

2P+

∫
d2kTdk

−4

(
AH1 +

kT ·∆T

∆2
T

AH2 + xAH3

)
+ xAH5 +

(kT ×∆T )2

M2∆2
T

AH7

(4.245)

ẼT =

4P+

∫
d2kTdk

−kT ·∆T

∆2
T

AH5 + AH6 +
k · P − xP 2

M2

(
kT ·∆T

∆2
T

AH7 + AH8 + xAH9

)
(4.246)

HT +
∆2
T

2M2
H̃T =

2P+

∫
d2kTdk

−∆2
T

M2

(
AH1 +

kT ·∆T

∆2
T

AH2 + xAH3

)
+ 2AH4 − xAH5 −

(kT ×∆T )2

M2∆2
T

AH7

(4.247)
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HT =

2P+

∫
d2kTdk

−2AH4 −
xP 2

M2
AH5 −

kT ·∆TP
2

M4

(
AH7 +

kT ·∆T

∆2
T

AH8 + xAH9

)
− P 2

M2

(
AH10 +

kT ·∆T

∆2
T

AH11 + xAH12

)
. (4.248)

The twist three GPDs in terms of GPCFs are,

H ′2 = 2P+

∫
d2kTdk

−xP
2 − k · P
M2

AH2 −
kT ·∆T

∆2
T

AH5 − AH6 +
(kT ×∆T )2

M4
AH9

(4.249)

E ′2 = −4P+

∫
d2kTdk

−xP
2 − k · P
M2

AH2 +
kT ·∆T

∆2
T

AH5 + AH6 −
(kT ×∆T )2

M4
AH9

(4.250)

H̃ ′2 = 2P+

∫
d2kTdk

−2AH4 −
k · P
M2

AH5 −
xP 2 − k · P

M2
AH7 (4.251)

Ẽ ′2 = 4P+

∫
d2kTdk

−P
2(xP 2 − k · P )

M4

(
kT ·∆T

∆2
T

AH7 + AH10

)
. (4.252)

4.11 Equation of Motion relations in the Chiral

Odd Sector

We derive the possible equation of motion relations connecting twist two GTMDs

with twist three GPDs and a genuine twist three term M, all chiral odd (except

the mass term which gets multiplied by a chiral even function). Unlike the chiral

even case where we obtained two possible cases, symmetric and anti-symmetric, by

sandwiching the equation of motion multiplied with Γ = σi+γ5 between the quark

fields, in the chiral odd case, we have two options for the operator we use in the

correlator Γ = γ+γ5 and Γ = γ+ and two options, symmetric and anti-symmetric,
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for each. To obtain the realtions, we start with the template written in terms of

W
[iσ+−γ5]
Λ′Λ ,W

[iσi+γ5]
Λ′Λ ,W

[γ5]
Λ′Λ ,W

[iσ12γ5]
Λ′Λ ,W

[1]
Λ′Λ, the mass term, in the anti symmetric cases,

multiplying W
[γ+γ5]
Λ′Λ or W

[γ+]
Λ′Λ and Mγ+A,S

ΛΛ′ or Mγ+γ5A,S
ΛΛ′ . Next, we take the proton

helicity combinations that lead transverse momentum dependent functions which are

meaningful when integrated over kT , that is they connect to a GPD or are of the form

of a k2
T moment of a twist two GTMD. The combinations that we use are denoted as

1
2
((++)± (−−)) which means we are taking the sum or the difference of the template

equation involving W Γ
ΛΛ′ for (Λ = Λ′ = −) case and the (Λ = Λ′ = +) case. For the

proton helicity flip case, we need to multiply by a factor of the form ∆1± i∆2 before

taking the sum and difference. For instance 1
2

[(∆1 − i∆2)W−+ + (∆1 + i∆2)W+−]

denotes that we take the template equation for the case (Λ = + = −Λ′), multiply it

by ∆1 − i∆2 and add it to the (Λ = − = −Λ′) case multiplied by ∆1 + i∆2. We list

the possible relations below.

4.11.1 γ+γ5 Anti Symmetric

−k+W
[iσ+−γ5]
Λ′Λ − kiTW [iσi+γ5]

Λ′Λ +
∆+

2
W

[γ5]
Λ′Λ +mW

[γ+γ5]
Λ′Λ −Mγ+γ5A

Λ′Λ = 0 (4.253)

Taking the difference of proton helicities 1
2
((++)− (−−))

−xH28 −
k2
T

M2
H17 +

kT ·∆T

∆2
T

H18 +
m

M
G14 −

1

2M

(
Mγ+γ5A

++ −Mγ+γ5A
−−

)
= 0

(4.254)

Integrating over kT ,



114

⇒ −xH̃ ′2 −
∫
d2kT

(kT ×∆T )2

M2∆2
T

H17 +
m

M
H̃

− 1

2M

∫
d2kT

(
Mγ+γ5A

++ −Mγ+γ5A
−−

)
= 0. (4.255)

Proton helicity flip, 1
2

[(∆1 − i∆2)W−+ + (∆1 + i∆2)W+−]

−x(kT ·∆TH26 + ∆2
TH27)− kT ·∆T

(
H13 +

k2
T

M2
H14 +

kT ·∆T

M2
H15 +

∆2
T

M2
H16

)
+
m

M
(∆2

TG13 + kT ·∆TG12) +
1

2

[
(∆1 − i∆2)Mγ+γ5A

−+ + (∆1 + i∆2)Mγ+γ5A
+−

]
= 0

(4.256)

Integrating over kT ,

⇒ xẼ ′2+
m

M
ξẼ+

1

∆2
T

∫
d2kT

[
(∆1 − i∆2)Mγ+γ5A

−+ + (∆1 + i∆2)Mγ+γ5A
+−

]
= 0 (4.257)

4.11.2 γ+ Symmetric

ik+W
[iσ12γ5]
Λ′Λ + iεijkiTW

[iσj+γ5]
Λ′Λ +

∆+

2
W 1

Λ′Λ −Mγ+S
Λ′Λ = 0 (4.258)

Summing proton helicities 1
2
((++) + (−−))

x

(
H21 +

ikT ×∆T

M2
H24

)
+
kT ·∆T

M2

(
kT ·∆T

∆2
T

H11 +H12

)
+
kT ×∆T

M2∆2
T

H11 −
1

2M

(
Mγ+S

++ +Mγ+S
−−

)
= 0 (4.259)
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Integrating over kT ,

xH ′2 +

∫
d2kT

(kT ×∆T )2

M2∆2
T

H11 −
1

2M

∫
d2kT

(
Mγ+S

++ +Mγ+S
−−

)
= 0 (4.260)

Proton helicity flip, 1
2

[(∆1 − i∆2)W−+ − (∆1 + i∆2)W+−]

x

(
−∆2

T

2
H21 + kT ·∆TH22 + ∆2

TH23

)
− ∆2

T

2M2
(k2
TH11 + kT ·∆TH12)

−1

2

[
(∆1 − i∆2)Mγ+S

−+ − (∆1 + i∆2)Mγ+S
+−

]
= 0 (4.261)

xE ′2−
∫
d2kT

(kT ×∆T )2

M2∆2
T

H11−
1

∆2
T

∫
d2kT

[
(∆1 − i∆2)Mγ+S

−+ − (∆1 + i∆2)Mγ+S
+−

]
= 0

(4.262)

4.11.3 γ+γ5 Symmetric

−k+W
[γ5]
Λ′Λ +

∆i
T

2
W

[iσi+γ5]
Λ′Λ −Mγ+γ5S

Λ′Λ = 0 (4.263)

Taking the difference of proton helicities 1
2
((++)− (−−))

−xE28 +
kT ·∆T

2M2
H17

∆2
T

2M2
H18 −

1

2M

(
Mγ+γ5S

++ −Mγ+γ5S
−−

)
= 0 (4.264)
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Integrating over kT

−xH̃2 +
∆2
T

4M2
ẼT −

1

2M

∫
d2kT

(
Mγ+γ5S

++ −Mγ+γ5S
−−

)
= 0 (4.265)

Proton helicity flip, 1
2

[(∆1 − i∆2)W−+ + (∆1 + i∆2)W+−]

−x(kT ·∆TE26 + ∆2
TE27) +

∆2
T

2

(
H13 +

(kT ·∆T )2

M2∆2
T

H14 +
kT ·∆T

M2
H15 +

∆2
T

M2
H16

)
−1

2

[
(∆1 − i∆2)Mγ+γ5S

−+ + (∆1 + i∆2)Mγ+γ5S
+−

]
= 0 (4.266)

Integrating over kT ,

xẼ2 +HT −
1

2∆2
T

∫
d2kT

[
(∆1 − i∆2)Mγ+γ5S

−+ + (∆1 + i∆2)Mγ+γ5S
+−

]
= 0 (4.267)

4.11.4 γ+ Anti symmetric

−k+W
[1]
Λ′Λ − i

∆+
T

2
W

[iσ12γ5]
Λ′Λ − iεij∆i

T

2
W

[iσj+γ5]
Λ′Λ +mW [γ+] −Mγ+A

Λ′Λ = 0 (4.268)

Summing proton helicities 1
2
((++) + (−−))

−xE21 +
1

2

(
kT ·∆T

M2
H11 +

∆2
T

M2
H12

)
+
m

M
F11−

1

2M

(
Mγ+A

++ +Mγ+A
−−

)
= 0 (4.269)
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Integrating over kT ,

−xH2 +
∆2
T

M2

(
H̃T +

ET
2

)
+
m

M
H − 1

2M

∫
d2kT

(
Mγ+A

++ +Mγ+A
−−

)
= 0 (4.270)

Proton helicity flip, 1
2

[(∆1 − i∆2)W−+ − (∆1 + i∆2)W+−]

−x
(
−E21 + 2

(
kT ·∆T

∆2
T

E22 + E23

))
+

1

2M2

(
kT ·∆TH11 + ∆2

TH12

+2
(kT ×∆T )2

∆2
T

H14 + 2M2H13

)
+
m

M

(
−F11 + 2

(
kT ·∆T

∆2
T

F12 + F13

))
− 1

2∆2
T

[
(∆1 − i∆2)Mγ+A

−+ − (∆1 + i∆2)Mγ+A
+−

]
= 0 (4.271)

Integrating over kT ,

−xE2 +
1

2

(
∆2
T

M2
H̃T + 2HT

)
+
m

M
E

− 1

∆2
T

∫
d2kT

[
(∆1 − i∆2)Mγ+A

−+ − (∆1 + i∆2)Mγ+A
+−

]
= 0 (4.272)
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Chapter 5

Reconstructing Parton

Distribution Functions from

Lattice QCD moments

Electromagnetic interactions probe the Fourier transform of the quark-quark cor-

relation function measuring the light cone distance traveled by the struck quark

during the interaction. The small distance behavior of the latter can be determined

by the first few moments calculated on the lattice while the large distance behavior,

exceeding the proton size, is regulated by Regge behavior.We use this characteristic

dependence of the correlation function to extract the x dependence of the u and d

quark distributions functions in the proton.

PDFs and GPDs have, so far, not been computed directly in lattice QCD because

they involve non-local light-cone correlation functions evaluated at real time

(Minkowski time): in a nutshell lattice QCD calculations of PDFs are hampered

by the breaking of rotational symmetry which is introduced when using discretized
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Euclidean space-time.

Local operators giving the Mellin moments of PDFs and GPDs can be evaluated

on the lattice. However, calculations are practically feasible only for the first few

moments. For the higher moments operator mixing with lower dimension operators

occurs which introduces divergences enhancing the errors associated with the renor-

malization procedure [63]. Therefore, a reconstruction of PDFs from its moments

is ridden with uncertainty due to the moments series truncation at n ≈ 2, 3 [1; 64; 65].

An alternative method was proposed by Ji, Large Momentum Effective Theory

(LaMET), where the correlation functions are evaluated at equal-time, or for

space-like intervals [49]. These functions, named quasi-PDFs, can then be computed

directly on the lattice. In the limit of infinite proton momentum (Pz → ∞) the

light-cone PDFs are, in principle, recovered through a matching procedure, where

a matching factor is derived which connects the regularization schemes for the

quasi-PDF obtained on the lattice and the light cone PDF, respectively. The

matching factor is calculated perturbatively. While the calculation of quasi-PDFs

has been addressed by several lattice groups [66; 67; 68] for both the unpolarized and

transversely polarized distributions, various complications have emerged concerning

the treatment of the matching factor (see discussion in [69; 70]), and, more recently,

the possible role in the lattice evaluation, of power divergent operator mixing terms

which would require a specific non-perturbative renormalization [71].

A more recent idea introduces pseudo-PDFs P (x, z2) that generalize the light-front

PDFs onto space-like intervals [72]. Pseudo-PDFs correspond to Fourier transforms of

“Generalized” Ioffe-Time [73] Distributions (GITDs)M((kz), z2), which are obtained
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by taking the original Ioffe-time distributions (ITDs) [74], M((kz), 0) ≡ M(z−, 0)

off the light-cone. The quantity z2 is chosen to be the interval z2
3 < 0, so as

to enable direct lattice evaluations of the GITDs and their connection to PDFs

[75]. Pseudo-PDFs present the advantage that they have the same 1 ≤ x ≤ 1

support as PDFs, and that their z2
3 dependence for small z2

3 obeys standard

renormalization group equations, thus providing a substantial simplification of the

matching procedure. In the hypothesis that the GITD’s (kz) and z2
3 dependence

factorizes, the matching onto observable PDFs, given by the Fourier conjugates of

the ITDs, M((kz), 0)), is then obtained by taking the ratio M((pz), z2
3)/M(0, z2

3).

M(0, z2
3) is the rest frame distribution. A clear connection between the infinite

momentum frame (light-cone) PDFs and rest frame PDFs has been shown in [75] by

numerically displaying the apparent (kz) and z2
3 factorization of available lattice data.

Spurred by both the general question of evaluating the impact of lattice QCD on

global PDF and GPD analyses [76], and by the pivotal new role Ioffe-time might

play, in this paper we present a quantitative analysis of the spatial dependence

of the correlation function merging information from lattice QCD moments and

phenomenology.

ITDs have been introduced and evaluated in Ref.[74]. A proof of principle that

ITDs could be used to evince both nucleon and nuclear PDFs from lattice QCD

moments and other phenomenological information was provided in Refs. [77; 78; 79].

In particular, it was shown that ITDs are characterized by two distinct regimes,

for small and large longitudinal distances, z−, respectively. At small z−, an almost

linear behavior ensues that reflects the PDFs Fourier transform’s behavior, Taylor

expanded around z− = 0, whereas the large z− behavior is dominated by the
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Fourier transform of the low x, power-like, Regge-type behavior of the PDF. These

two distinct behaviors in z− can be smoothly matched onto one another in the

intermediate region of z−. The ITDs characteristic features are even more striking in

the description of the nuclear structure functions, from the low x nuclear shadowing

region to the EMC effect [78; 79].

While at the time of the analysis in Refs.[74; 77] it was only possible to make an

educated guess, although insightful, of the PDFs behavior, it is now possible to

conduct a fully quantitative analysis based on the availability of different sets of

lattice results for both PDFs and GPDs [64; 3; 80; 81; 82]. Similarly the analysis of

Ref.[77] we reconstruct the PDFs using different sets of lattice moments and Regge

behavior. We are, however, able to provide quantitative limits for our analysis given

by error bands that reflect both the error on lattice moments and the theoretical

error due to extrapolations in the intermediate z− regions.

After showing that a quantitative reconstruction of PDFs is feasible, if moments up

to at least n = 3 are known, we extend our Ioffe-time analysis to GPDs. An ITDs

analysis presents several appealing features: most remarkably, it reflects physical

features concerning both the skewness and t dependence of GPDs that can now be

evaluated fully quantitatively, with a controllable error, rather than guessed at.

5.1 Reconstructing PDFs and GPDs

The off forward quark-quark correlation function in momentum space is defined as

the Fourier transform of the quark fields matrix element between proton states with
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(a)

(b)

Figure 5.1: The Fourier transform to z− space of the d valence CT10 PDF. We see
that adding more moments allows us to predict the Fourier transform over a larger
range in z− space.
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Figure 5.2: The large z− behavior of the distributions is determined primarily by the
Regge part of the PDF.

momenta and helicities p,Λ and p′,Λ′,

F Γ
Λ′Λ(x, ζ, t) =

1

2

∫
dz−

2π
eixp

+z−

× 〈p′,Λ′ | ψ̄ (0) ΓU(0, z)ψ (z) | p,Λ〉
∣∣
z+=0,zT=0

,

(5.1)

where, Γ = γ+, γ+γ5, iσ
+i, and the choice of four-momenta is defined with p along

the z = z3 axis, ∆ = p′ − p; the quark light-cone momentum is k+ = xp+, and we

omitted the scale dependence for simplicity (see e.g. Ref.[17]).

We take the gauge link equal to one in light cone gauge, γ+, and the unpolarized

forward case for simplicity. This defines the distribution f1,
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f1(x) =
1

2

∫
dz−

2π
eixp

+z− 〈p | ψ̄ (0) γ+ ψ
(
z−
)
| p〉 ,

=
1

2

∫
dz−

2π
eixp

+z− f̃1(z−) (5.2)

The spatial coordinates take on a physical interpretation once we consider Eq.(5.2)

in the context of the deep inelastic scattering process described in terms of Feynman

diagrams, where the struck quark undergoes a hard scattering.

γ + q → γ′ + q′.

The numerator of the quark propagator in the reaction is described by (/k+ /q), where

q is the large momentum transfer. The struck quark (at an initial distance z = 0),

with large momentum q, travels along the light-cone direction for a distance, z, and

is then reabsorbed in the target proton. The distance between these two events is

what characterizes the deep inelastic scattering process. One has to be precise about

the coordinates, namely there are two longitudinal distances that enter the hadronic

tensor, given by

(qz) = q+z− + q−z+ − qT · zT

In a DIS process, we can choose q− → ∞ large corresponding to the small distance

scale z+ ≈ 0, and simultaneously finite q+ = xP+ and z−.

Figure 5.1 illustrates the various features of the coordinate space sine and cosine

components. As we can see, we get fairly close match with the actual Fourier

transform of the PDF for small z using only a few moments. As shown in Figure5.2,
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(a)

(b)

Figure 5.3: The z− distributions for different (a) upper and (b) lower cut off values
of x.
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(a)

(b)

Figure 5.4: We introduce a 15% error in the z− distributions (left) for (a) 0 < z− < 1
and (b) 1 < z− < 5. The resulting error on the PDF is shown on the right.
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(a)

(b)

Figure 5.6: PDFs using the first three lattice moments calculated by Detmold et al.
(a) and using first four moments (b). Adding more moments brings the reconstructed
curve closer to the actual PDF.
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the large z portion of the Fourier transform is fixed by a function of the form z−α

and is primarily governed by the small x Regge behavior. This type of coordinate

space behavior was first pointed out in the Braun Mankiewicz paper.

To understand more about which range of x impacts which part of the Fourier trans-

form in z we introduced cut-offs in x above or below which the PDF was taken to

be zero and performed the Fourier transform of the cropped function and studied

the behavior in z space. Our results are presented in Fig.5.3. To study the same

concept, we try a slightly different approach in Fig.5.4. By introducing an error in

only certain regions in z, we study how the error propagates in the inverse Fourier

transform where we obtain the PDF. We see that while uncertainity in the transition

region between the small z and large z regions might produce a significant effect, the

error in the large z mainly leads to oscillations.

As a proof of principle, we show in Fig.5.5 the process of reconstructing the PDF

from a known parameterization. The column on the left most side shows the

reconstruction based on no moments and using only the large z behavior. As we

add more and more moments (calculated using the known parameterization), the

reconstruction gets closer and closer to the actual function shown as a black dashed

curve.

Based on this, we are now ready to use Lattice data to reconstruct the PDF. We can

take the first few moments from Lattice QCD calculations and assume Regge behavior

as suggested from the DIS data to obtain the PDF in coordinate space. Fig.5.6

demonstrates one such reconstruction using moments from [1] and also illustrates the

error generated by using just a few of the moments as compared to the actual Fourier
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(a)

(b)

Figure 5.7: In (a) the PDF is reconstructed using the first two lattice moments
calculated by Hagler et al. [3]. In (b) we use the third moment as well, however it is
not extrapolated to the actual pion mass.
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Figure 5.8: A comparison of the two reconstructions using moments from Detmold
et al. and Hagler et al.

transform. Fig.5.7 shows a reconstruction using moments from [3]. We provide a

comparison between the reconstructions using moments from Detmold et al. and

Hagler et al. in Fig.5.8.

Points for the analysis:

– we reconstruct using the first few moments from Lattice and fitting the Regge

behavior to the PDF parameterizations

– the functional form in coordinate space is easier because at low z it is given by the

Taylor expansion terms. This does not exist in momentum space. We are using the

fact that it is easier to reconstruct the PDF in coordinate space knowing the moments

than in momentum space.

5.1.1 Extending to GPDs

The moments of GPDs in x give us polynomials in ξ with coefficients known

as Compton Form Factors. Hence, using the Lattice QCD calculations of the

Compton Form Factors one is able to recreate the z distribution at every ξ. Per-

forming the inverse Fourier transform, one is able to generate the x ξ surface of GPDs.
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Figure 5.10: The GPD H for u valence quarks at t = 0.1GeV 2 using the diquark
model parameterization in [2].

Like in the case of PDFs, we first see how well the reconstruction works using a known

functional form of the GPD H (depicted in Fig.5.10). The reconstruction is shown in

Fig.5.9. Next, we use Compton Form Factor calculations from to reconstruct H. This

result is shown in Fig.5.11.
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Figure 5.11: Reconstruction of the GPD H for the valence u quarks using Hagler’s
moments from [3].
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Chapter 6

Conclusions and Outlook

We presented the derivation of a set of relations connecting k2
T -moments of GTMDs

and twist-two as well as twist-three GPDs, known as Lorentz Invariance Relations

(LIRs) and Equation of Motion (EoM) relations. LIRs stem from the Lorentz struc-

ture of the off-forward correlation function. By examining their gauge link structure,

we find that two different types of relations exist: one obtained by considering a

staple-shaped gauge link, where an explicit quark-gluon-quark contribution appears,

and one for the straight gauge link, where this term is instead absent. On the

other hand, the QCD equations of motion yield complementary relations containing

explicit quark-gluon-quark contributions that have a different structure than the

ones in the LIRs. By inserting the LIRs in the equations of motion we can eliminate

the k2
T -moments of GTMDs, and obtain relations directly between twist-two and

twist-three GPDs. In the absence of genuine twist-three terms, these relations

represent off-forward generalizations of the original Wandzura-Wilzcek relations

connecting twist-two and twist-three PDFs.

Within our general scheme of constructing LIRs, we focus particularly on ones
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involving the k2
T -moments of the GTMDs F14 and G11, which describe the x-density

distributions of the quark OAM, Lz, and longitudinal spin-orbit interaction, LzSz.

Our detailed study of the kT -dependence of these OAM-related observables provides

physical insight that buttresses previous suggestions in the literature, stemming from

OPE-based integral relations, that partonic OAM is described by twist-three GPDs.

Our results, therefore, represent a step forward in comprehending parton OAM in

the proton, on two accounts. On the one hand, the obtained relations are key to

accessing information from experiment on the missing piece in the proton’s angular

momentum budget: we obtain the x-dependent distribution of OAM through the

GPDs Ẽ2T , H and E, which can be readily measured from various azimuthal angular

modulations in DVCS and related processes.

The new x-dependent expressions written in terms of twist-three GPDs including

the genuine quark-gluon-quark terms bring, for the first time, partonic OAM within

experimental grasp.

On the other hand, taking integrals in x, and using the QCD equations of motion,

one recovers the sum rule relating the second Mellin-Barnes moment of a specific

twist-three GPD combination, here called Ẽ2T +H +E, to the moments of twist-two

GPDs yielding the combination Jq − Sq. Our result is therefore not only consistent

with previous findings hinting at a twist-three nature of OAM [58; 44; 36; 47]: it goes

beyond these predictions by providing a physical link, missing from earlier work,

which explains how OAM is described at twist-three through its connection with the

k2
T -moment of a GTMD.

The, perhaps, most distinguishing merit of these new relations lies in that they

provide a handle on the dynamical underpinnings of the parton correlations through
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which OAM is generated. OAM is present because of the transverse motion of

partons when they are displaced from the origin. This is described in QCD by a

twist-three parton correlation; the correlation is generated by the Lorentz invariant

structure of the proton matrix elements appearing in the QCD equations of motion.

The LIRs will allow us to directly connect, on the one hand, twist-three GPD

measurements of OAM and spin-orbit correlations, and on the other hand, Lattice

QCD evaluations of GTMDs. The k2
T -moment of F14 has already been accessed in

a preliminary Lattice QCD calculation [41]: GTMD k2
T -moments can be obtained

by generalizing the proton matrix elements of quark bilocal operators used to

study TMDs, namely, by supplementing the transverse momentum information with

transverse position information through the introduction of an additional nonzero

momentum transfer. The calculation in Ref. [41] also includes the gauge connection

between the quarks in the quark bilocal operators, enabling the evaluation of both

the staple gauge link path used in TMD calculations, characterizing Jaffe-Manohar

(JM) OAM, and the straight path yielding Ji OAM. Although this exploration was

performed at the pion mass mπ = 518 MeV, its results suggest a sizable difference

between the two definitions.

Our findings provide a perspective for accessing experimentally all terms appearing

in both the JM and the Ji definitions: Ji OAM is given by the Wandzura-Wilczek

component of Ẽ2T , which is described in terms of twist-two GPDs, while JM OAM is

given by the sum of these terms and the genuine/intrinsic twist-three contribution,

which we identified as an integral over AF14 , technically a Lorentz invariance relation

violating term. Such a term may be obtained by a careful analysis of DVCS type

experiments (see e.g. an analogous term in the forward case for the axial vector
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components g1(x) and g2(x), [43]).

Our findings extend to other GTMDs: here, we have treated specifically G11,

encoding spin-orbit correlations, and G12, the off-forward extension of g1T , leading

to a direct measurement of the color force between quarks.

Understanding the role of GTMDs and twist-three GPDs in quark OAM has

initiated a fruitful interaction between phenomenology, theory and Lattice QCD

which we intend to pursue further. In particular, the structure of the underlying

QCD matrix element suggests the study of experimental processes containing two

hadronic reaction planes, one associated with the hadron momentum transfer, and

one associated with the transverse momentum of the hadronized ejected quark. We

envisage developing the description of such two-jet processes to underpin future

experimental efforts to access quark OAM directly from GTMDs. Investigations of

experimental hard scattering processes/observables that measure OAM have started,

and the opportunity to measure OAM using deeply virtual multiple coincidence

exclusive processes will be soon within reach at the new Jlab upgrade and, even

more promisingly, at an upcoming Electron Ion Collider (EIC). Having understood

the mechanisms that regulate quark OAM in the proton paves the way for future

studies of the gluon sector which will be crucial to understand the spin of hadrons.

PDFs and GPDs provide the best window to non perturbative QCD dynamics that

can be extracted in a precise and detailed way from experiment. It is important to

therefore start answering the question of whether lattice QCD can provide an accurate

enough determination of PDFs. This includes understanding both the question of

whether the theoretical errors pertaining to the various extraction methods are under
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control, and whether the accuracy that is (or is predicted to soon be) attainable in

lattice calculations can yield results comparable to the experimental errors. It is also

important to have physical insight on the way the various lattice components, whether

Mellin moments or quasi-PDFs, contribute to PDFs. In this work we attempted to use

the existing lattice calculations of PDF moments and GPD moments to reconstruct

these functions. Why it is that we are able to describe the gross properties of the

proton with such few moments is an open question and a topic of future work.
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[45] C. Lorcé, Phys. Lett. B735, 344 (2014), arXiv:1401.7784 [hep-ph] .

[46] M. G. Echevarria, A. Idilbi, K. Kanazawa, C. Lorcé, A. Metz, B. Pasquini, and
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