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Abstract

The Internet of Things (IoT) is growing at an exponential rate, and some estimate that it will

reach 1 trillion devices by 2035. Although IoT devices are functionally diverse, many of them are

designed to sense, process, and transmit information. IoT sensing applications are numerous

and span many sectors of the global economy including healthcare, manufacturing, agriculture,

and infrastructure. The IoT has the potential to produce tremendous amounts of information

that can be used to improve human life, but the proliferation of IoT devices is currently being

hindered by the challenge of large-scale battery recharge and replacement, which increases

the cost of device deployment. In recent years, significant research has focused on lowering the

power consumption of IoT sensing devices so that they can operate from ambient harvested

energy instead of batteries. This eliminates the need for battery recharge and replacement,

and significantly reduces the maintenance costs of large-scale sensor networks. Lower power

consumption improves self-powered device lifetime and reliability, and enables operation with

smaller energy harvesters in more energy-scarce environments. Ultimately, if the cost of

deployment can be reduced below the value of the information being collected, widespread

adoption of IoT sensing devices will occur.

This dissertation presents contributions in integrated circuit and self-powered system design

for reducing the power consumption of IoT sensing devices and accelerating their adoption.

This is accomplished using digital circuits, digital circuit design techniques, and system-level

strategies that reduce the power of wireless Transmitter (TX) and digital processing circuits in

Ultra-Low Power (ULP) System on Chips (SoCs). Wireless TX and digital processing circuits are

both essential components in ULP SoCs, and often dominate the overall system power in many

applications. The design of several ULP SoCs, their applications, and integration into larger

sensing systems is also presented to demonstrate the technology readiness of self-powered
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devices and encourage commercial adoption.

This dissertation presents several research contributions. Chapter 2 presents a lossless

data compression accelerator designed to reduce the amount of sensor data that must be

transmitted, and thus wireless TX power. Test chip measurements show that this accelerator

adds only 4.4 nW processing power overhead, and reduces overall SoC power by 2.9x for

an application that samples Electrocardiogram (ECG) data at 360 Hz. Chapter 3 presents

a RISC-V microprocessor core implemented using a new performance-scalable version of

Dynamic Leakage Suppression (DLS) logic, which enables a continuous power-performance

trade-off at power levels below the leakage floor of conventional static CMOS circuits. DLS logic

is an emerging method for implementing digital circuits that is significantly lower power than

conventional static CMOS, but much slower. This microprocessor core can scale its performance

from 6 nW at 11 Hz to 140 nW at 8.2 kHz at a constant 0.6 V supply voltage, and achieves a

minimum power consumption of 840 pW across the full supply voltage range. Chapter 4

presents a gate-level multi-threshold technique designed to bridge the power-performance

gap between different variants of DLS logic. An array of 8-bit Multiply-Accumulate (MAC)

blocks demonstrate that this technique enables up to 6.5x power reduction, and power savings

throughout the 10 Hz–1.4 kHz range across the 0.2 V–1.0 V supply voltage range. Chapter 5

presents two ULP SoCs, their IoT sensing systems, and applications. The first SoC implements

several health-monitoring applications, and is also integrated into a larger wearable cardiac

monitoring system designed for comfortable long-term use. The wearable system is entirely

powered by body heat, and consumes just 65 µW when wirelessly transmitting ECG data to a

smartphone. The second SoC is part of a wireless wake-up and control system designed to

reduce the electricity usage of miscellaneous electric loads (common household appliances

such as power adapters, televisions, and coffee makers) and consumes just 85 nW for this

application. Together, these contributions in low-power digital circuit and self-powered system

design will help realize the vision of a 1 trillion or more device IoT.
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1

Chapter 1

Introduction

1.1 Motivation

The Internet of Things (IoT) refers to the paradigm of everyday objects becoming connected to

the internet through embedded electrical devices. These devices interact with the world through

either sensors that collect information about the object or its environment, or actuators that

perform some task.1 They also contain some form of wired or wireless link that connects them

to the internet. In a sense, the IoT acts as a bridge between the physical and digital worlds,

and thus has the potential to radically change everyday life, just like the internet did. It will do

this by providing large amounts of information that will create new insights, leading to better

decision making, opportunities for optimization, cost reduction, and improved outcomes.

IoT devices will become prolific when the economic incentive becomes real, and the value

of the information collected by the devices is greater than the cost of their deployment.2 Large-

scale semiconductor companies are predicting that the IoT could reach 1 trillion devices by

2035 due to this macroeconomic principle and expected future cost reduction of IoT system

deployment [1]. However, several technological challenges must still be overcome before the

IoT can become truly pervasive and scale to over 1 trillion devices. One problem is the feasibility

challenge of large-scale battery recharge and replacement. It’s not possible for all IoT devices

to be connected to the power grid, since that would severely limit the places IoT devices could

be deployed. It would also greatly increase the cost of deployment, thus a remote power source

1This dissertation primarily focuses on IoT devices for sensing information, and generically uses the term IoT
device for this.

2Excluding non-economic factors, such as environmental or privacy concerns, which could potentially hinder
future IoT growth.
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Fig. 1.1. IoT applications are diverse and span many sectors of the global economy.

such as batteries must be used. However, even assuming a conservative 10 year battery

lifetime, a 1 trillion device IoT would require approximately 275 million battery replacements or

recharges per day to maintain. A less conservative 1 year battery lifetime would require nearly

3 billion battery replacements or recharges per day to maintain.

1012 devices
✓

1 battery
10 year

◆✓
1 year

365 days

◆
⇡ 275 ⇥ 106 batteries/day (1)

This represents a large time and financial cost, and has lead researchers to propose making IoT

devices self-powered. Self-powered devices rely on harvesting energy from ambient sources

such as light, heat, vibration, or Radio Frequency (RF) signals, eliminating the need for battery

replacement or recharging. The amount of energy that can be harvested from the environment,

however, is often relatively small and can vary greatly depending on the source and ever-

changing conditions. Table 1.1 lists the approximate power available from a 1 cm2 energy

harvester. This creates a strong motivation to lower the power consumption of IoT devices to
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the point where they can operate robustly within the limits of energy harvesting.

Table 1.1. Approximate available power from a 1 cm2 energy harvester.

Source Harvested Power Source

Mechanical
Human movement 1 – 10 µW [2]
Machine vibration 10 – 100 µW [2]

Thermoelectric
Human body heat 9 – 25 µW [3]
Machine heat 1 – 10 mW [2]

Light
Indoor (bright office) 10 µW [2]
Outdoor (direct sunlight) 10 mW [2]

Radio Frequency
GSM900 36 nW [4]
GSM1800 84 nW [4]
3G 12 nW [4]
WiFi 180 pW [4]

Other
Atmospheric moisture 8 µW [5]
Biochemical (glucose/O2) 58 nW [6]

In addition to being self-powered, it is also highly desirable for IoT devices to have a small

form to allow them to be placed anywhere unobtrusively. This imposes strict constraints on both

the size of the energy harvester and the size of the energy storage device that can be used.

For some applications such as wearables and medical implants, devices can be constrained

to just a few cubic millimeters [7,8]. Common energy harvesters are Photovoltaic (PV) cells

for light and Thermoelectric Generators (TEGs) for thermal gradients, and their size is directly

proportional to the amount of energy they can harvest. Common energy storage devices are

batteries and super capacitors, and their capacity to store energy is also directly proportional to

their size. Energy storage devices act as a buffer for fluctuating energy harvesting conditions,

so their capacity must be determined according to the variability of the environment and power

consumption of the device, such that the device can operate reliably without losing power.

These factors further motivate lowering the power consumption of IoT devices, since it permits

further reduction in the size of the energy harvester and storage device, which increases the

number of places and ways the devices can be deployed.

Another challenge that must be overcome to realize a 1 trillion device IoT is the financial
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cost. The cost per device must be low to ensure that the value of the information collected by

the device is greater than the cost of the device and its deployment. The lower the cost of the

device and its deployment, the more places and ways it will make economic sense to use. IoT

devices must therefore be easy to manufacture in large quantities, which motivates integrating

as much as possible onto a single silicon substrate, since the infrastructure to cheaply mass

produce Integrated Circuits (ICs) already exists. ICs that integrate all of the components needed

for a particular system or application are typically referred to as System on Chips (SoCs).

Many Ultra-Low Power (ULP) SoCs have been designed for IoT applications [9–14], and they

typically contain sensor interfaces for collecting information from the outside world, digital

circuits for processing it, memory circuits for storing it, RF circuits for transmitting it, and power

management circuits for harvesting energy and regulating it into usable supply voltages for the

system. Fig. 1.2 shows a block diagram of a typical self-powered SoC targeting IoT sensing

applications. Since SoCs typically integrate all the components needed for a particular system,

a complete self-powered IoT sensing device can be created by combining an SoC with an

energy harvester and energy storage device. A radio antenna or an off-chip sensor may also

be needed depending on the application.

Fig. 1.2. Block diagram of a typical self-powered SoC targeting IoT sensing applications.
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Many IoT sensing applications have low sampling frequency requirements in the range

of mHz to 100s of Hz, as shown in Table 1.2. This permits aggressive optimization for low

power consumption at the expense of performance, as the system clock frequency does not

need to be significantly greater than the sampling frequency in many cases [15]. The power

consumption of state-of-the-art ULP SoCs varies greatly with the application, but it is typically

on the order of 1 to 10s of µWs [9–14].

Table 1.2. Sampling frequency requirements for common IoT sensing applications.

Application Signal Sample Frequency Source

Healthcare
Heart rate variability Electrocardiogram (ECG) 100 – 250 Hz [16]
Blood oxygenation Photoplethysmography (PPG) 30 – 670 Hz [17]
Activity recognition Acceleration 50 – 200 Hz [18,19]

Knee joint health Skin temperature 1 Hz [20]Electrical bio-impedance 22 mHz
Perspiration 17 mHz [21]

Environment
Soil temperature Temperature 1 mHz [22]
Soil humidity Humidity 1 mHz [22]
Landslide early detection Vibration 5 – 200 Hz [23]

Infrastructure

Concrete health Resistivity (moisture) 100 mHz [24]Temperature
Building occupancy Sound 10 Hz [25]

Commercial
Fish spoilage detection Impedance 4 mHz [26]

1.2 Thesis

The lifetime and reliability of self-powered IoT SoCs operating in energy-scarce environments

will be improved by reducing their power consumption. Enabling self-powered operation for

more applications and energy harvesting environments will help address the scaling challenge

of battery recharge and replacement hindering the growth of the IoT. This dissertation presents

digital circuits, digital circuit design techniques, and system-level strategies for reducing the

power consumption of wireless Transmitter (TX) and digital processing circuits in ULP SoCs.

This dissertation also presents two ULP SoCs, their applications, and integration into IoT

sensing systems. The creation of self-powered systems that demonstrate commercially relevant
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IoT applications will accelerate the proliferation of IoT sensing devices by serving as proof of

technology readiness.

1.2.1 Reducing Wireless Transmitter Power

Wireless TX circuits often dominate the power consumption of ULP SoCs, and consume

significantly more power than other components. The wireless TX in [10] consumes 65% of

the 6.45 µW SoC power budget for an application that intermittently samples and transmits

acceleration data from an off-chip sensor. Significant research has been done on the design of

wireless TX circuits to reduce their power [JB6,JB9], but techniques outside of the TX design

itself must also be considered to fully minimize the TX contribution to SoC power. Typically, TXs

only consume high power when actively transmitting data, therefore, reducing the amount of

data that must be transmitted using system-level strategies can significantly reduce TX and

overall SoC power. This approach is agnostic to the TX design itself, and thus widely applicable

to wireless ULP SoCs.

1.2.2 Reducing Digital Circuit Power

Digital circuits are essential for system control and data processing in ULP SoCs, and can be a

significant source of power consumption in many applications. Digital circuits consume 36% of

the overall power budget for the SoC in [14], which is sampling ECG data at 512 Hz and pro-

cessing it to extract the heart rate. Static Complementary Metal-Oxide-Semiconductor (CMOS)

logic has been the dominant method for implementing digital circuits since its inception in the

1960s [27], and a tremendous amount of research has been done to improve its performance

and energy efficiency over the years. High performance isn’t required for low-frequency IoT

sensing applications though, so frequency-dependant dynamic power is less significant, and

static leakage power is dominant in these circuits. This leads to static CMOS circuits such

as microprocessor cores being limited by leakage to 10s to 100s of nWs during active-mode

operation [11,28,29]. Exploring alternative methods for implementing digital circuits (and design
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techniques for those circuits) that can operate below the leakage floor of conventional static

CMOS will expand the number applications and operating environments reachable with ULP

SoCs.

1.2.3 Accelerating Proliferation of Self-Powered IoT Sensing Devices

Although commercial products exist that use self-powered IoT sensing devices [30–32], they’re

not prolific or widely adopted yet. This is partly because the value of self-powered operation

is not widely understood yet, as it only manifests in very large-scale deployments. It is also

partly because reliable self-powered operation in uncertain energy harvesting conditions is

challenging, and many of the technologies that enable it are relatively new. Therefore, the

creation of self-powered and ULP systems that integrate state-of-the-art components and

demonstrate commercially relevant applications will help accelerate the adoption of IoT sensing

devices in the commercial space by acting as a proof of technology readiness.

1.3 Contributions

1.3.1 Ultra-Low Power Sensor Data Compression

Chapter 2 presents the design of a lossless sensor data compression accelerator [JB2] for

power reduction in wireless IoT devices. This design reduces overall SoC power consumption

through the use of on-chip sensor data compression, which reduces the amount of data that

must be transmitted, and thus the TX contribution to system power. Although compression does

incur some processing power overhead, it results in system-level power reduction because the

savings in transmission power is greater than the additional power consumed by compression.

The accelerator is implemented on a health-monitoring SoC [JB3,JB7] fabricated in 130 nm

CMOS, and closely integrated with the TX interface, realizing a custom data-flow architecture

[33] that minimizes the overhead of using compression. The accelerator adds only 4.4 nW

processing power overhead to the SoC when operating at 32 kHz and 0.5 V, and achieves an
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average Compression Ratio (CR) of 2.39, the lowest power and highest average CR reported to

date for lossless on-chip compression of ECG data.1 For an application that samples ECG data

at 360 Hz, the accelerator reduces the required TX duty cycle by 3.7x, the overall system power

by 2.9x, and allows the entire system to consume just 2.62 µW. The overall system power

consumption was 7.7 µW without compression, which is comparable to other state-of-the-art

ULP SoCs [9–14], demonstrating that this approach can effectively stack with other aggressive

power reduction strategies. This chapter also evaluates the performance of the compression

algorithm implemented by the accelerator for biomedical sensor data types (ECG and human

acceleration data) for the first time. The algorithm is shown to be effective for most sensor

data types with significant temporal correlation between consecutive samples, making it widely

applicable to wireless IoT devices.

1.3.2 Ultra-Low Power DVFS RISC-V Microprocessor

Chapter 3 presents the design of a RISC-V microprocessor core implemented using a new

Scalable Dynamic Leakage Suppression (SDLS)2 logic style [JB10], which enables a continuous

power-performance trade-off at power levels below the leakage floor of conventional static

CMOS digital circuits. Because energy harvesting sources can fluctuate unpredictably, self-

powered SoCs can benefit significantly from the capability to dynamically trade-off power and

performance. This allows them to remain operational when harvesting conditions are poor,

and to maximize sensor data throughput when harvesting conditions are good. Furthermore,

if an SoC can scale its power down to the nW-level, it can operate continuously in even

poor energy harvesting conditions with a small energy harvester, and potentially without an

energy storage device. This microprocessor core can continuously scale its performance from

6 nW at 11 Hz operating frequency to 140 nW at 8.2 kHz operating frequency at a constant

VDD of 0.6 V. Across the supply voltage range, the core is capable of delivering a minimum

1At the date of publication. More recent work has further improved the state-of-the-art for CR.
2DLS logic is an emerging method for implementing digital circuits that is significantly lower power than

conventional static CMOS, but much slower. Chapter 3 introduces DLS logic in more detail.
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power of 840 pW, a maximum frequency of 41.5 kHz, and a minimum energy of 13.4 pJ/cycle.

This work effectively addresses the poor power-performance scaling granularity of prior DLS

microprocessor cores [34,35], and unlocks a previously inaccessible area of the IoT application

space, later shown in Fig. 3.8.

1.3.3 Multi-Threshold DLS Logic

Chapter 4 presents a gate-level Multi-Threshold technique for Dynamic Leakage Suppres-

sion logic (MT-DLS) [JB13] that enables further power reduction below the leakage floor of

conventional static CMOS digital circuits. MT-DLS is a static technique that enables a power-

performance trade-off that is fixed at design time, in contrast to SDLS, which enables a dynamic

trade-off that can be adjusted at runtime. An array of 8-bit Multiply-Accumulate (MAC) blocks

implemented in 65 nm CMOS demonstrate that MT-DLS yields power savings of up to 6.5x

compared to single-threshold DLS logic, and power savings in the 10 Hz–1.4 kHz range across

the 0.2 V–1.0 V supply voltage range.

1.3.4 Ultra-Low Power IoT Systems and Applications

Chapter 5 presents two ULP SoCs, their integration into IoT sensing systems, and applications

for the purpose of accelerating the commercial adoption and proliferation of IoT devices. First,

we present a self-powered SoC [JB3,JB7] and use it to implement several health-monitoring

applications, including free fall detection, temperature sensing, and arrhythmia detection using

the on-chip Analog Front End (AFE) [JB4]. Then, we integrate the SoC into a vigilant cardiac

monitoring system that is powered completely by body heat, and tightly integrate the system

into a compact wearable form to enable comfortable long-term use [JB14]. The entire system

consumes 65 µW measured from the energy storage device, and operates in an always-on

mode such that no critical Atrial Fibrillation (AFib) events are missed. We also present an

ULP wireless wake-up and control system, which is designed to reduce the electricity usage

of Miscellaneous Electric Loads (MELs), and includes a fully integrated 802.11ba Wake-Up
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Receiver (WuRX) [JB12] and an 85 nW node-controlling SoC [JB11].
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Chapter 2

Ultra-Low Power Sensor Data Compression

2.1 Introduction

Data compression is the process of encoding information in a way that uses less bits than the

original representation. It is useful because it reduces the memory capacity required to store

information, and also the energy required to transmit it, as shown in Fig. 2.1. It is thus very

relevant to IoT devices, since the primary function of most IoT devices is to sense, store, and

transmit information.

Fig. 2.1. On-chip sensor data compression reduces the amount of data that must be transmitted.

Most IoT devices have very limited memory capacity and energy available to store and transmit

information, so they can potentially benefit a lot from data compression. However, they also

typically have very limited computational resources and energy available to compress the

data. This is exacerbated by the fact that most data compression algorithms are designed for

comparatively high performance desktop or mobile computers, which are either powered by the

grid or large batteries. Most data compression algorithms are therefore optimized to reduce

the size of the data as much as possible, without regards towards computational complexity

The content in this chapter is based on [JB2]. For a list of individual contributions see section 6.3.
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or energy efficiency. For IoT devices though, if the energy required to compress the data is

greater than the energy saved by storing or transmitting less data, then data compression is not

useful and actually detrimental.

There are two types of data compression algorithms: lossless and lossy. Lossless algorithms

preserve all of the data, and work by identifying and eliminating statistical redundancy. When a

lossless algorithm is reversed, the output data is identical to the input data that was compressed.

Lossy algorithms also identify and eliminate statistical redundancy, but they do not preserve all

of the data. When a lossy algorithm is reversed, the output data is not identical to the input data

that was compressed, as data that is considered not necessary or less important is removed.

The performance of compression algorithms is measured by the CR, which is defined as the

ratio between the number of bits in the original representation and the number of bits in the

compressed representation.

CR =
original number of bits

compressed number of bits
(2)

Lossy algorithms typically have much higher CRs than lossless algorithms, but they must

be more carefully applied to ensure important information is not lost. Lossy algorithms are

often designed and highly customized for a single data type [36]. Lossless algorithms are

thus much more widely applicable to multiple data types than lossy algorithms, since all of

the information is always preserved. For both lossless and lossy algorithms though, the CR

can vary significantly with the characteristics of the data being compressed, even within a

particular data type. Thus when assessing the performance of a compression algorithm, it is

important to use a large data set that has a realistic amount of variance, similar to what would

be encountered in real applications. Statistical measures of the CR such as the mean, variance,

minimum, and maximum should be considered. It is also important to use standardized data

sets that are publicly available, so that a fair comparison can be done between compression

algorithms.
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2.2 Motivation

Most IoT devices rely on wireless TXs to communicate with the outside world, as wired com-

munication significantly increases the difficulty and cost of deployment in many environments.

Significant research has been done on the design of wireless TX circuits to reduce their power

consumption [JB6,JB9]. However, wireless TXs still consume relatively high power compared

to other components in ULP SoCs. For the SoC in [10], which performs an application reading

and transmitting acceleration data from an off-chip sensor, the TX consumes 4.18 µW of the

total 6.45 µW system power. Therefore, anything that can be done to reduce the TX power will

significantly reduce the total system power. Techniques outside of the design of the TX itself

must also be considered to fully minimize its power consumption. The benefits of system-level

techniques can stack with improvements in the the TX design itself, yielding a compounded

effect.

One common system-level technique to reduce TX power is aggressive duty-cycling, but that

can severely limit sensor data sampling rates, prohibitively so for many applications. Another

common technique is to perform most of the sensor data processing on-chip and only transmit

important results. The ULP SoC in [37] collects ECG data and processes it on-chip, only

transmitting the data when a critical Atrial Fibrillation (AFib) event occurs. In a sense, this

can be considered an extreme form of lossy data compression, and this is a good strategy for

the most energy-constrained systems. However, the actual sensor data itself is often more

valuable than just the important results for many applications. This is because the processing

capabilities of computers connected to the power grid are orders of magnitude greater than that

of edge devices such as self-powered SoCs, which typically means more valuable information

can be extracted from the data. In addition, having large amounts of unprocessed sensor

data available allows for the algorithms that process the data to be improved over time. Many

machine learning classifiers, for example, require large amounts of training data to produce

good results [38].
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On-chip sensor data compression is therefore an ideal strategy for reducing the power of

wireless TXs, because it reduces the required TX duty cycle, but still maintains the sensor data

sampling rate and allows the unprocessed sensor data to be transmitted. It is also agnostic to

the actual TX design itself, and is thus widely applicable to IoT devices. Lossless algorithms are

preferable for IoT devices that collect data from multiple types of sensors, since lossy algorithms

are typically not applicable to more than one data type. Lossless algorithms are also better for

applications like health monitoring, where important diagnostic information could be lost if a

lossy algorithm is not applied carefully. This dissertation primarily focuses on lossless data

compression for these reasons.

2.3 Prior Art

Several important principles must be considered when evaluating a compression algorithm

used for the purpose of minimizing power consumption in ULP SoCs. First, the algorithm must

be computationally efficient to minimize the processing overhead of compression. Second, the

algorithm must maximize the CR to minimize the amount of data that must be transmitted or

stored. And third, the algorithm must account for the specific sensor data, since the CR of a

compression algorithm is highly dependent on the characteristics of the data being compressed.

There are multiple fundamentally different approaches to lossless data compression. Dic-

tionary based approaches are used by many popular compression algorithms, and work by

searching for matches between the data to be compressed and a set of data contained in a data

structure maintained by the encoder. This data structure is referred to as the dictionary, and

when a match is found, a reference to the position of the data in the dictionary is substituted in

place of the data. One example is the Lempel-Ziv-Welch (LZW) algorithm used in the popular

image format Graphics Interchange Format (GIF) [39]. Sensor Lempel-Ziv-Welch (S-LZW)

is a variant of LZW that was proposed in 2006 specifically for resource-constrained sensor

nodes [40], which adjusts the dictionary size, the size of the data blocks being compressed,

and the protocol followed when the dictionary is full to make the algorithm implementation
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more energy efficient. S-LZW achieved modest CRs of up 3.5 when applied to a range of

environmental sensor data sets.

Dictionary based approaches are inherently resource intensive from a hardware perspective

though, at least in the context of ULP SoCs. The minimum dictionary size of 512 entries

explored in [40] still requires 2618 bytes of Random-Access Memory (RAM) and 1262 bytes

of Read-Only Memory (ROM) to implement. In addition, the operation of comparing the data

being compressed with entries in the dictionary to search for a match requires a large number

of memory transactions. Fortunately, there are alternatives to dictionary based approaches that

only require simple integer-based operations. A large number of such algorithms have been

proposed in recent years [41–45], and they all follow a similar formula: a linear prediction step

followed by and entropy encoding step. The Lossless Entropy Compression (LEC) algorithm [41]

was proposed in 2008, and is one of the first and most well known of such algorithms. In LEC,

the prediction step is implemented as a simple delay stage, meaning the prediction is set as the

previous sample. The difference between the current and predicted sample (previous sample)

is computed, as the differences are much more amenable to entropy encoding than the actual

samples themselves. In the entropy encoding step, the differences are appended with prefix

codes that represent the size of the differences, thus eliminating the need for framing and

allowing the outputs to be variable length.

Fig. 2.2. (a) Data framed into 16b words, and (b) variable length data, without the need for framing.

Prefix codes have the property that no shorter codeword may be the prefix of a longer codeword,

so they are uniquely decipherable, and thus allow the output to be decoded. Thus, the variable

length outputs can be packed together in a continuous bit stream, which is the fundamental

reason why compression is achieved in the entropy encoding step.

The LEC algorithm was tested with several environmental sensor data sets for temperature
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Fig. 2.3. Example binary codes with the prefix property, where no shorter code is the prefix of a longer code.

and relative humidity, and achieved CRs of approximately 3. Using software to execute the

algorithm on a Atmel AVR microcontroller, the compression of one input sample requires an

average of 355 instructions, 42% of the average number of instructions required by S-LZW. If

implemented in hardware though, LEC has the potential to be even more efficient compared to

S-LZW, since it only requires integer-based operations and does not require significant memory

or memory transactions.

Fig. 2.4. Block diagram of the LEC compression algorithm. The input is represented as ri, and the difference
between the current input and the predicted input is represented as di.

The algorithm presented in [42] in 2011 is similar to LEC, but the entropy encoding is

performed in a different way using Golomb-Rice coding. The algorithm was tested on several

types of biomedical data, and produced a CR of 2.38 on ECG data from the MIT-BIH Arrhythmia

Database [46]. However, it is not specified if this CR is an average for all the records in the

database, or if it is just for a particular record, or even a small section of a particular record.

This algorithm was also implemented as a custom hardware accelerator in a 65 nm CMOS

process, with an approximate 54k gate count. The simulated power consumption was 170 µW

when operating at 1 V and 24 MHz.

The algorithm presented in [43] in 2013 (and later in [47]) is also similar to LEC, but explores

using higher order linear predictors and does the entropy encoding step in a slightly different
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way. The average CR achieved for the entire MIT-BIH Arrhythmia Database was 2.25. The

algorithm was implemented as a hardware accelerator in a 0.35 µm CMOS process, with a

2.26k gate count, and the measured power consumption was 2.14 µW at 2.4 V and 32 kHz.

In 2014, the authors of the LEC algorithm proposed several new variants of LEC that add an

additional adaptation step to make the algorithm more robust and improve its performance [48].

The new adaptation step involves rotating the prefix code tables used in the entropy encoding

step to try to ensure that the shortest prefix codes are used to encode the most frequently

occurring differences. This improves the algorithms performance for cases where the mean of

the differences distribution is not centered on zero, improving the robustness to different input

data characteristics. It is also computationally simple to implement, since the adaption step

only requires rotating the prefix code tables. Two methods for managing the prefix code tables

were proposed: a Greedy-Adaptive Lossless Entropy Compression (GA-LEC) approach and a

Frequency-Adaptive Lossless Entropy Compression (FA-LEC) approach. In addition, two further

variants called GAS-LEC and FAS-LEC were proposed that split the prefix encoding tables into

two independently rotating data structures, and were further shown to improve the CR. However,

the performance of these algorithms were only assessed for several environmental sensor

data sets for air temperature and relative humidity, which are phenomena that can change

relatively slowly in time. Therefore it is unclear if such favorable results will occur with other

types of sensor data that may have less temporal correlation between consecutive samples.

Additionally, these algorithms were not implemented in hardware, so the energy efficiency and

overall system-level impact for IoT devices remains unknown.
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2.4 A 4.4 nW Lossless Sensor Data Compression Accelerator for 2.9x

System Power Reduction in Wireless Body Sensors

2.4.1 Contributions

This section extends the state-of-the-art by first evaluating the performance of the data compres-

sion algorithm GAS-LEC on biomedical sensor data, specifically ECG and acceleration data

obtained from humans performing common activities.1 Second, the algorithm is implemented

as a custom hardware accelerator on a health monitoring SoC [JB3,JB7] fabricated in a 130 nm

CMOS process. The accelerator is closely integrated with the wireless TX interface, realizing

a custom data-flow architecture [33] that minimizes its contribution to system power, and re-

duces the software overhead required to use compression. The accelerator adds only 4.4 nW

processing power overhead to the SoC when operating at 32 kHz and 0.5 V, and achieves an

average CR of 2.39, the lowest power and highest average CR reported to date for lossless

on-chip compression of ECG data.2 For an application that samples ECG data at 360 Hz, the

accelerator reduces the required TX duty cycle by 3.7x, reduces the system power by 2.9x, and

allows the entire system to consume just 2.62 µW. The overall system power consumption was

7.7 µW without compression, which is comparable to other state-of-the-art ULP SoCs [9–14],

demonstrating that this approach can effectively stack with other aggressive power reduction

strategies.

2.4.2 Algorithm Definition

The steps of the GAS-LEC algorithm are formally defined here, and shown in Fig. 2.5.

First, the linear prediction step is performed, and the difference di between the current sample

1We chose GAS-LEC over FAS-LEC because the adaptation method is significantly less complex, and therefore
lower power to implement in hardware.

2At the date of publication. More recent work has further improved the state-of-the-art for CR.
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Fig. 2.5. Block diagram of the GAS-LEC compression algorithm.

ri and the previous sample ri–1 is computed.

di = ri – ri–1 (3)

Then in the entropy encoding step, ni, the minimum number of bits needed to represent di is

computed.

ni =

8
>><

>>:

0, if di = 0

log2(|di|) + 1 otherwise
(4)

Once ni has been determined, it is then necessary to calculate ai, which is simply the ni lower

bits of di if di is positive. If di is negative, then the two’s complement of di is used. If di is 0, ai is

not needed.

ai =

8
>>>>>><

>>>>>>:

not needed if di = 0

(di)Lni if di > 0

(di – 1)Lni if di < 0

(5)

The prefix code si can then be determined from ni. Each ni has a corresponding si according to

Tables 2.1 and 2.2.

The final compressed output can then be computed, and is defined as si concatenated with

ai, or si | ai. Next, the adaptation step is performed, which tries to ensure that the shortest prefix

codes are used to encode the most frequently occurring differences. In the greedy adaptive

approach used by GAS-LEC, the tables are rotated after each di is encoded to ensure that the
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Table 2.1. Lower Prefix Table

ni si di

0 00 0
1 010 -1,+1
2 011 -3,-2,+2,+3
3 1110 -7,...,-4,+4,...,+7
4 11110 -15,...,-8,+8,...,+15
5 110 -31,...,-16,+16,...,+31
6 100 -63,...,-32,+32,...,+63
7 101 -127,...,-64,+64,...,+127

Table 2.2. Upper Prefix Table

ni si di

8 111110 -255,...,-128,+128,...,+255
9 11111110 -511,...,-256,+256,...,+511
10 1111111110 -1023,...,-512,+512,...,+1023
11 111111110 -2047,...,-1024,+1024,...,+2047
12 1111110 -4095,...,-2048,+2048,...,+4095

center of each table is on the group belonging to the previous sample. Note that the center of

each prefix table is defined as the location of the shortest prefix code si, and that the length of

the prefix codes increases outwards from the center. This ensures that differences closer to the

center of the table are assigned the shorter prefix codes, which means that differences that are

closer to the previous differences are encoded with shorter prefix codes.

2.4.3 Algorithm Performance

We implemented the algorithm in software and evaluated its performance using the MIT-

BIH Arrhythmia Database [46] for ECG and the UCI Machine Learning Repository [49] for

acceleration. We first evaluated the effectiveness of the linear prediction step by looking at the

range of the differences compared to that of the actual samples, shown in Fig. 2.6. We also

computed the mean and variance of the resulting difference distributions for one ECG data set

and several acceleration data sets for different activities shown in Table 2.3. The mean is not

shown in the table, but was reduced to approximately zero for all of the difference distributions.

We then executed the complete algorithm on numerous ECG and accelerometer sets, shown in
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Fig. 2.7 and 2.8. Because we achieved average compression ratios of 2.4 and 2.0 for ECG

and acceleration, respectively, we conclude that the algorithm effectively compresses such

biomedical sensor data.

Fig. 2.6. The range and variability of the differences is much less than that of the actual ECG signal. The data is
from MIT-BIH record 100 and the DC offset was removed from the ECG waveform to better compare the variability.

Table 2.3. Statistics showing the effectiveness of the linear prediction step on ECG and acceleration data.

Data Set Variance of Samples Variance of Difference Improvement

ECG record 100 1388.8 114.3 12.2x
Working at computer 730.4 109.2 6.7x
Talking while standing 738.3 49 15.1x
Standing 1068.3 103.1 10.4x
Walking 4249.2 1062.0 4.0x
Walking and talking 5464.6 1046.4 5.2x
Going up/down stairs 6766.8 861.9 7.9x
Standing, walking, stairs 6846.8 371.0 18.5x

We also implemented several other compression algorithms in software to compare their

performance against GAS-LEC for biomedical sensor data. The results are shown in Table

2.4, and clearly show that GAS-LEC outperforms the other algorithms across the board for

acceleration and ECG biomedical sensor data.
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Fig. 2.7. The proposed algorithm is effective at compressing 46 ECG records from the MIT-BIH database.
Modified lead II (MLII) data was used.

Fig. 2.8. The proposed algorithm is effective at compressing acceleration data for various activities of daily living
from the UCI repository. Data from participant 1 was used.

2.4.4 Implementation and Measured Results

The accelerator was carefully designed to minimize the processing power increase and user

overhead. The accelerator was integrated into the transmitter interface on a health-monitoring

SoC [JB3], shown in Fig. 2.9, and can be bypassed or enabled with a single configuration bit.

This allows the accelerator to be used without any additional software instructions, except the
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Table 2.4. CR comparison for state-of-the-art compression algorithms for ECG and various acceleration data sets.

Algorithm ECG Walking Standing Working at Computer Standing, Walking, Stairs

LZW (512B dict.) 1.13 1.16 1.88 2.10 1.28
LZW (2048B dict.) 1.20 1.34 1.96 2.37 1.31
LEC 2.63 2.14 3.06 3.12 2.49
GA-LEC 1.82 1.62 2.02 2.04 1.76
GAS-LEC 2.74 2.29 3.22 3.28 2.62

one instruction required to enable it. Without this feature, the overhead of moving data in and

out of the accelerator could significantly increase the system power, since more clock cycles

are required to move the data and more memory capacity is required to store the additional

instructions. The accelerator relies mostly on combinational logic, and processes inputs in

two clock cycles, adding minimal latency to the system. It also has a special operating mode

that allows it to effectively compress multiple sensor data streams concurrently, such as 3-axis

acceleration data.

Fig. 2.9. (a) Block diagram of the SoC, showing the compression accelerator is on the TX interface data path. (b)
Annotated die photograph of the SoC, showing the compression accelerator (part of control logic).

To evaluate the system-level benefits of compression, we measured the system power

consumption with and without compression while transmitting ECG and acceleration sensor

data. The system uses an off-chip Frequency Shift Keying (FSK) modulated TX that works

at 2.4 GHz and is controlled by the SoC through the TX interface. We measured the active
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power of the TX to be 1.05 mW and the sleep power to be 160 nW. For ECG, we used data

from MIT-BIH record 100 and maintained a data rate of 360 Hz. For acceleration, we used data

from UCI participant one for the activity of standing, walking, and going up/down stairs and

maintained a data rate of 52 Hz (per axis with 3-axis data, 156 Hz overall). In software, a CR of

2.5 and 2.0 was achieved for the ECG and acceleration data sets, respectively. In hardware,

the benefits of compression are compounded due to the system architecture being 16b and

the sensor resolutions being 11b and 12b for ECG and acceleration respectively. This is a

common occurrence in many systems, and has the effect of increasing the uncompressed size

of each sample to the system bit-width unless additional data packing techniques are applied.

Therefore, the compression accelerator achieves a TX duty cycle reduction of 3.7x and 2.6x

for ECG and acceleration, respectively. This reduces the power of the TX by 3.5x and 2.4x for

ECG and acceleration, respectively, as shown in Fig. 2.10. Enabling compression increases

the processing power by only 4.4 nW at 0.5 V and 32 kHz for ECG, and compression reduces

switching activity in the SoC TX interface as well, thus the system power is reduced without

even including the savings in the TX itself. The total system power is reduced by 2.9x and

2.0x, allowing the system to consume only 2.62 µW and 1.87 µW while transmitting ECG and

acceleration data respectively. Due to area and pad constraints, the compression accelerator

was synthesized with and shares a supply voltage with other digital blocks. Therefore, we were

unable to obtain the gate count or measure the static part of the power. As shown in Table

2.5, this implementation achieves the lowest power reported to date and provides significant

system-level power savings with minimal overhead.

2.4.5 Conclusion

The contributions presented in this section demonstrate that the lossless compression algorithm

GAS-LEC is effective at compressing both ECG and human acceleration biomedical sensor data.

They also show that it can be implemented with a very low processing power overhead, and that

it can significantly reduce the wireless TX power, and thus system power if implemented carefully.
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Ultimately, the system power reduction in ULP SoCs enabled by sensor data compression will

improve the capabilities of IoT devices to operate reliably from energy harvesting in uncertain

environments, and help further the proliferation of IoT devices.

Fig. 2.10. System-level results, showing the power savings of compression. The SoC power was measured and
the TX power was calculated based on the duty cycle and previous measured results for active and sleep power.

Table 2.5. Comparison with state-of-the-art on-chip lossless data compression accelerators.

This Work TCE’11 JSSC’14
[JB2] [42] [47]

Technology 130 nm 65 nm 0.35 µm
Supply Voltage (V) 0.5 1.0 2.4
Frequency 32 kHz 24 MHz 32 kHz
CR ECG (MIT-BIH) 2.39 2.38 2.25
CR Accel. (UCI) 2.01 – –

Data Types Supported ECG/Accel. ECG/EEG
Most sensors ECG DOT

Power (ECG) 4.40 nW 170 µW 2.14 µW

System Power 2.62 µW ECG – –1.87 µW Accel.

System Power Reduction 2.9x ECG – –2.0x Accel.
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Chapter 3

Ultra-Low Power DVFS RISC-V Microprocessor

3.1 Introduction

The conventional static CMOS logic family was first invented in 1963 by engineers at Fairchild

Semiconductor [27]. It was originally proposed as a low standby power alternative to other logic

families of the time, as the power consumption when no switching operation is occurring is due

only to leakage current. This is in contrast to other competing logic families of the time, such

as NMOS only logic, which has significant active current in the steady state. Today, almost 60

years later, static CMOS is the most widely used logic family for implementing digital circuits.

The total power consumption of a static CMOS digital circuit can be represented as the sum

of the dynamic and static components, shown below.1

Ptotal = Pdynamic + Pstatic = fclkaCeffV
2
DD + IleakVDD (6)

The dynamic part refers to the power dissipated when switching activity occurs, and is propor-

tional to the clock frequency fclk, the activity factor a, the effective switched capacitance Ceff,

and the square of the supply voltage VDD. The static part refers to the power dissipated when

no switching activity occurs, and is proportional to the leakage current Ileak, and the supply

voltage VDD. In high-performance high-frequency (GHz–MHz) circuits, the dynamic power

typically dominates and makes the static power inconsequential. However, the advent of the

IoT has lead to the emergence of many applications for low-frequency (kHz–Hz) circuits, in

The content in this chapter is based on [JB10]. For a list of individual contributions see section 6.3.
1This equation neglects short-circuit current. Power due to short-circuit current can be considered part of

dynamic power consumption, and is typically less than 10% of other sources of dynamic power [50].
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which the static power is significant compared to the dynamic power. Technology scaling also

contributes to making static power more significant, as shrinking device dimensions lead to

reduced parasitics, and thus less dynamic power [51].

There are many techniques for reducing power consumption in static CMOS digital circuits.

Supply voltage scaling is one of the most powerful, since dynamic power is quadratically

proportional to voltage. Frequency scaling is also powerful, since dynamic power is linearly

proportional to clock frequency. The maximum frequency a circuit can achieve depends on the

supply voltage, and lower voltages lead to lower maximum frequencies. Supply voltage and

frequency scaling are thus often used together, in a technique known as Dynamic Voltage and

Frequency Scaling (DVFS), where both are dynamically adjusted at runtime to trade-off power

and performance in response to the required work load of the circuit. In this context, the work

load refers abstractly to the number of operations a circuit must complete in a given period of

time.

The work load is sparse for many IoT applications, meaning the circuits performing them

spend most of their time being idle and not performing useful operations [15]. In these cases,

power can be minimized by introducing multiple modes of operation, such as an active mode

and a standby mode. The overall power consumption thus depends on the time spent in each

mode and the power consumption of each mode.

Ptotal = PactiveTactive + PstandbyTstandby (7)

The active time is defined such that 0  Tactive  1, and the standby time is defined as

1 – Tactive. In cases where the application permits Tstandby � Tactive, the overall power is

determined mostly by the standby power, so it is important to minimize. The dynamic power

can often be reduced or eliminated in the standby mode by clock gating, which disconnects the

circuit from the clock source. Clock gates are typically realized using a combinational gate with

a latch to prevent clock glitching, as shown in Fig. 3.1, and are thus low overhead to implement.

If clock gating is effectively utilized, the standby power is set by the static power.
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Fig. 3.1. Block diagram of a typical clock gate cell.

A number of techniques for reducing static power are available, including the use of high

threshold voltage devices, and cutoff structures. The threshold voltage of a transistor (VTH)

refers to the value of the gate-source voltage VGS where strong inversion occurs, and is a

function of material constants set during the manufacturing process, and the source-bulk voltage

VSB [50]. Most commercial technologies include devices with different VTH, such as low-VTH

(LVT), regular-VTH (RVT), and high-VTH (HVT) devices. HVT devices have significantly larger

delays than RVT devices at the same nominal VDD due to reduced overdrive voltage (VGS -

VTH), but they have exponentially lower IOFF current and thus static power consumption, as

shown in Fig. 3.2. IOFF refers to the drain current IDS when VGS is equal to 0 V. In addition

to using HVT devices that are fixed at design-time, body biasing can also be used to adjust

VTH though VSB and dynamically trade-off delay and leakage current at runtime. Reverse Body

Biasing (RBB) has been shown to significantly reduce static power [52], but has significant

overheads, as it requires a special triple-well process, and additional voltage regulators to

generate the bias voltages.

A cutoff structure can be used to optionally disconnect a circuit from the supply voltage and

reduce its leakage current. They’re often implemented with a PMOS header or NMOS footer

(sleep transistors), as shown in Fig. 3.3, and can be dynamically turned on or off depending on

the operating mode. Cutoff structures can be utilized at different levels of the design hierarchy:

at the gate level where each standard cell has an integrated sleep transistor, at the local level

where each circuit block has a single sleep transistor, or at the global level where multiple

blocks share a sleep transistor [53]. Typically sleep transistors utilize HVT devices to maximize

leakage current reduction. The magnitude of the leakage current reduction depends on the size
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Fig. 3.2. The normalized IDS as a function of VGS for different VTH devices.

of the sleep transistor and its VTH relative to the devices being cutoff. Sleep transistors have

the downside of increasing delay when the circuit is not in standby mode though, since they

act like a resistor and reduce the effective supply voltage seen by the circuit. The magnitude

of the delay increase depends on similar factors as the leakage current reduction. A delay

increase of 10% relative to the case without the sleep transistor is a typical rule-of-thumb used

for sleep transistor sizing [54]. Cutoff structures also have the downside of being non-retentive,

meaning the state of sequential circuits is lost when the standby mode is turned on. This can

be addressed by using some form of retention register that uses the global VDD to hold the

state instead of the virtual VDD, but this can add significant power, area, and design complexity

overhead.

3.2 Motivation

Despite all of the available power reduction techniques, static CMOS circuits are inherently

unable to satisfy all of the requirements of the IoT application space. For the IoT application

space to be fully realized, the size of IoT devices must be reduced as much as possible to

minimize the cost and difficulty of deployment. This leads to smaller energy harvesters and
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Fig. 3.3. Block diagram of typical cutoff structure implemented using a (a) PMOS header and (b) NMOS footer.

lower power budgets. There is also a strong incentive to ensure reliable operation in as many

environments as possible, which necessitates that devices can operate in the worst-case

harvesting conditions for extended periods of time. If the state-of-the-art can be improved so

that a device can actively operate with nW-level power consumption, many new applications

become possible. For example, a 4x4 mm2 solar cell can support a nW-level device even under

extremely low light conditions (11 lx) like moonlight [55].

The minimum power floor for a static CMOS digital circuit is set by the static leakage

current. For example, state-of-the-art microcontroller-class processor cores have a minimum

power consumption in the range of 10s to 100s of nW when they are in an active state due to

leakage [11,28,29]. Although their power consumption can be lowered to sub-nW using standby

modes with cutoff structures [28], this implies intermittent operation. Such duty-cycled operation

requires an energy storage device to act as a buffer, as the active state power is significantly

higher than the harvested power. Energy storage devices increase the physical size of the

system, and if there is an extended period of time when harvesting conditions remain poor, the

stored energy will eventually be depleted and the device will be forced to stay in non-operational

standby mode until conditions improve. This interruption in active operation can be prohibitive

for some applications, and thus to ensure reliable operation, energy storage devices must be

sized very pessimistically to ensure they can sustain the device for the worst-case duration of

poor harvesting conditions.

A state-of-the-art commercially available rechargeable thin film battery has a capacity
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of 5 µAh at 3.8 V in a 1.70x2.25x0.20 mm3 package, or a capacity of 50 µAh at 3.8 V in a

5.70x6.10x0.20 mm3 size [56]. These batteries are similar in size to the die of IoT SoCs [10,11],

so they can be integrated without drastically increasing the device size. However, they are only

rated for 1,000 recharge cycles at 50% depth-of-discharge at 25 �C, after which their capacity

will have degraded to 80%. Thin film batteries are therefore not a viable solution for IoT devices

deployed in environments where the harvested power drops below the active system power

frequently, as they would need to be replaced often due to degraded capacity.

Super-capacitors are an alternative to thin film batteries that can support significantly more

recharge cycles. The thinnest commercially available super-capacitor has a capacitance of

70 mF, a rated voltage of 2.25 V, and is 20x10x0.4 mm3 [57]. Assuming that all of the stored

energy could be extracted without any conversion loss, this could provide 4.92 µW for a 10

hour duration. This particular super-capacitor is rated for 50,000 recharge cycles before a

30% loss of capacitance occurs, so it can support a much longer device lifetime than a thin

film battery. However, it is significantly larger than a typical IoT SoC. The IoT SoC presented

in [11] is 1.94x1.94 mm2, and it is implemented in a 65 nm CMOS technology. This particular

super-capacitor would thus increase the system area by 53x.1 If a more advanced technology

node is used, a super-capacitor would increase the system area by an even larger factor.

Regular ceramic capacitors can also be used as an alternative to super-capacitors, as they

are available in significantly smaller sizes with reduced capacity to store energy. A standard

0402 surface mount capacitor is just 1.00x0.50x0.35 mm3, and is readily available with a

capacitance of up to 22 µF at a rated voltage of 4 V [58]. Assuming that all of the stored

energy could be extracted without any conversion loss, this could provide 2.93 µW for a 1

minute duration. While this is sufficient to enable duty-cycled operation if the average power

consumption stays below the harvested power, if the environmental conditions change for the

worse, the system will quickly deplete the stored energy and be forced to stay in a standby

mode until conditions improve. And microprocessor cores with sub-nW standby modes are

1Super-capacitors exist with smaller areas than the one presented here, but they have similar volumes, so they
still significantly increase the system size.
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realized only using cutoff structures [28], which implies that they are non-operational in the

standby mode, unable to sense or process any information. Transitioning between active and

standby modes also often incurs energy and delay penalties, and depending on the system,

this can limit the duty cycle and thus average power consumption that can be achieved.

With these limitations in energy storage devices, IoT devices can have a significantly

smaller size and longer lifetime if they’re able to operate without them. They can also perform

applications more reliably if they’re able to remain active instead of being forced into a non-

operational standby mode when environmental conditions change, and harvested power drops

to the nW-level. Ideally, they would also be able to adapt to the changing environmental

conditions and trade-off power and performance in a DVFS-like manner, maximizing functionality

while keeping the power consumption below the harvested power.

3.3 Prior Art

In 2007, a new ultra-low leakage CMOS logic style was proposed for low-frequency circuits [59].

This logic style was later named Dynamic Leakage Suppression (DLS) logic [34], and it is

similar to static CMOS, except the logic gates have an additional NMOS header and PMOS

footer transistor. The gates of the DLS header and footer transistors are connected to the

output, and are thus self-biasing. Fig. 3.4 shows the DLS inverter logic gate.

Fig. 3.4. The DLS inverter logic gate.
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The leakage current is reduced though the super-cutoff effect, wherein a negative VGS voltage

occurs for either the transistors in the pull-up or pull-down network, depending on the output

of the gate. Fig. 3.5 shows the DLS inverter logic gate for both steady state conditions. If

the output is logic 0, the pull-up network is leaking and there is a voltage drop of VDD across

the series connected MHN and MPX transistors. The voltage VX can thus be solved for by

equating the currents between MHN and MPX. Neglecting short-channel effects, if the VTH of

the NMOS and PMOS are symmetrical, and the transistors are sized such that the current

at threshold is equivalent (I0p=I0n), then VX settles at VDD/2. Thus VGS,HN = –VDD/2 and

VSG,PX = –VDD/2. A similar analysis can be done for the opposite case, where the output is

logic 1 and the pull-down network is leaking.

Fig. 3.5. The DLS inverter in steady state, (a) with the pull-up logic leaking, and (b) with the pull-down logic
leaking.

The outputs of DLS logic gates exhibit a hysteresis effect, shown in Fig. 3.6, and have

sharp transitions between logic levels. For the case of a rising input, the transition occurs when

the input voltage exceeds VDD/2, and the VGS for transistor MNX increases. This starts to

short VY with VOUT, which quickly increases the VGS of MFP, leading to the sharp transition.

A similar analysis can be done for the opposite case of a falling input transition. The results

presented in [59] show that for a 130 nm technology, a DLS inverter has a leakage current

of just 2.5 pA at 0.5 V compared to 2.6 nA for a static CMOS inverter. The delay of the DLS
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inverter is significantly greater though, at 4.0 µs compared to 0.16 ns for a static CMOS inverter.

The leakage current of a DLS inverter has a minimum at approximately 0.5 V. Although higher

voltages lead to reduced subthreshold leakage current due to the VGS of the leaking devices

becoming more negative, drain-to-body junction leakage becomes greater than subthreshold

leakage around 0.45 V, and limits the achievable minimum leakage current. The supply voltage

where minimum leakage current occurs is thus set where the subthreshold and junction leakage

are approximately equal. In newer technologies, this isn’t the case, as gate leakage becomes

increasingly significant due to aggressive oxide thickness scaling.

Fig. 3.6. The Voltage Transfer Characteristic (VTC) for a DLS inverter logic gate.

In 2015, a Cortex-M0+ microprocessor core was implemented using DLS logic in a 180 nm

technology and achieved 295 pW active state power consumption at 550 mV and 2 Hz operating

frequency [34]. This was the lowest active state power consumption ever realized for a

microprocessor core, and the core could be powered with just a 0.09 mm2 solar cell in dim

indoor light (240 lx). However, the maximum frequency was just 15 Hz, which severely limits

the usefulness of the core, especially for the case where energy harvesting conditions are

good and more energy is available. In addition, the core wasn’t shown performing any actual

computations, which indicates that there was a functionality problem with the implementation.

The only evidence presented of it being operational was several of the bits toggling on the

bus connecting the core with the memory, the minimum necessary to show that the core was
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fetching and executing instructions.

In 2018, a new dual-mode variant of DLS logic was presented with two additional bypass

transistors in the header/footer that allow the gates to be reconfigured at runtime in either a DLS

or static CMOS operating mode [35]. Fig. 3.7 shows the dual-mode DLS inverter logic gate.

When the mode bit is logic 0, transistors MCN and MCP are turned on and bypass the MHN

and MFP transistors, putting the gates in a static CMOS mode. To further improve performance

in this mode, MCN is over-driven by VDD + DV, and MCP by –DV. When the mode bit is

logic 1, transistors MCN and MCP are turned off and the gate operates in DLS mode. A 16-bit

MSP430 compatible microprocessor core was implemented with the dual-mode logic gates, and

shown to achieve a minimum power of 595 pW (0.45 V, 2 Hz) in the DLS mode, and a maximum

frequency of 2.8 MHz (1.1 V) in the static CMOS mode. In the static CMOS mode, the minimum

energy was 14 pJ/cycle at 19 kHz, and the minimum power was 118 nW. This is a significant

improvement over [34], as it has a similarly low active state power floor, but isn’t limited a few Hz

in the cases where ample harvested power is available. The poor scaling granularity is limiting

though, as 118 nW is a 198x increase from 595 pW. If an energy harvester is minimally sized to

provide the system power floor under the worst-case conditions, conditions must substantially

improve to support the CMOS mode of operation. Otherwise, duty cycling must be used to

achieve an overall power consumption that is an average of the two modes, and that requires

an energy storage device, and adds significant overhead to manage to transitions between

modes.

3.4 A 6–140-nW 11-Hz–8.2-kHz DVFS RISC-V Microprocessor Using

Scalable Dynamic Leakage Suppression Logic

3.4.1 Contributions

This section presents a RISC-V microprocessor core implemented using a novel Scalable

Dynamic Leakage Suppression (SDLS) logic style. Together with a custom Adaptive Clock
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Fig. 3.7. The dual-mode DLS inverter logic gate.

Generator (ACG) and Voltage Scaling Controller (VSC), the core realizes a fully integrated

modified DVFS scheme that enables nW-level performance flexibility for self-powered IoT

sensor nodes in energy-scarce environments. The core is implemented in a 65 nm low-power

CMOS process, and at the nominal VDD of 0.6 V, the core can scale its performance from 6 nW

at 11 Hz to 140 nW at 8.2 kHz. Across the supply voltage range, the core realizes a minimum

power of 840 pW, a maximum frequency of 41.2 kHz, and a minimum energy of 13.4 pJ/cycle.

This work effectively addresses the poor scaling granularity of the dual-mode cells [35], and

unlocks a previously inaccessible area of the IoT application space, shown Fig. 3.8. The

achievable Hz-kHz frequency range is ideal for many low-frequency IoT applications.

3.4.2 Scalable Dynamic Leakage Suppression Logic

Fig. 3.9 shows the proposed SDLS logic design, which implements a new voltage-scaling

approach in which complementary bias voltages VCN and VCP are used to transition the

gate across a continuous range between DLS and static CMOS operating regimes, trading-

off leakage power and delay. Compared to traditional DVFS, this constant-VDD approach

eliminates the need for level shifters and avoids regulator efficiency losses caused by varying

supply voltages.
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Fig. 3.8. Measured performance with comparison with the state-of-the-art low-power processors.

Fig. 3.9. (a) The SDLS inverter logic gate schematic, and (b) the SDLS inverter logic gate layout compared to a
standard static CMOS inverter logic gate.

Compared to the dual mode standard cells [35], we also introduce two further design modifi-

cations. First, the body of internal PMOS transistors (MPX) are tied to VDD, rather than node

VX, in order to save area by sharing internal n-wells between adjacent cells with negligible

performance degradation. Second, LVT devices are used for the external transistors MHN, MFP,

MCN, and MCP, allowing increased sensitivity to VCN and VCP for a larger performance tuning

range, while simultaneously decreasing the large transistor sized required in [34,35].

The transient operation of an SDLS inverter is shown in Fig. 3.10, for the case of a falling

input transition for three different control voltage values. The control voltage VC is defined such



3.4 | A 6–140-nW 11-Hz–8.2-kHz DVFS RISC-V Microprocessor Using Scalable Dynamic
Leakage Suppression Logic 38

that VC = VCN and VCP = 1 - VCN.

Fig. 3.10. (a) Transient operation of an SDLS inverter logic gate. (b) The bias voltage effect on steady state
voltages and on/off current.

In the steady state when the input A is high and VC is 0 V, the internal node n1 settles to VDD/2,

and MCN, MHN, and MPX enter super-cutoff mode (negative VGS). When A transitions low,

MPX turns on, and VX converges with the output Y. This creates positive feedback by increasing

VGS of MHN, allowing more current to leak through the pull-up network, further charging Y

until it has fully transitioned. If VC is increased, transistor MCN pulls the steady state voltage

of VX higher than VDD/2. This weakens the super-cutoff effect in the pull-up network causing

increased leakage, and also accelerates the convergence of Y and VX, allowing a quicker

feedback response from MHN that results in a shorter gate delay. In addition to increasing

MHN’s feedback response, MCN provides increased on-current throughout the transition that

further improves speed. A similar analysis can be done for the opposite case of a rising input

transition.
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3.4.3 System Architecture

Fig. 3.11 shows the system architecture. It features a 32 bit BottleRocket RISC-V microcontroller-

class processor core that implements the RV32IMC instruction set [60]. The core interfaces to

a custom 8 kB 6T Static Random-Access Memory (SRAM) macro and an uncore domain that

includes system interconnect, Serial Peripheral Interface (SPI) master and General-Purpose

Input Output (GPIO) peripherals, and a memory-mapped DVFS control register that allows the

core to tune the DVFS mode and clock settings. The core and uncore logic is synthesized from

an SDLS standard cell library using a standard automated place and route methodology, and

uses static CMOS clock buffers to minimize insertion delay and improve slew rate relative to

SDLS inverters. The list of the cells included in the SDLS library is shown in Fig. 3.12(a), and

was kept small to minimize design time overhead. The cells were selected by first synthesizing

the microprocessor core with a commercial standard cell library, and then choosing the cells

that were mostly commonly used in the design. The core, uncore, and SRAM all use a 0.6 V

nominal supply voltage.

The power and timing management subsystem operates at a 1.2 V supply and consists of

a tunable reference current generator, VSC, and an ACG. The VSC generates VCN and VCP,

each up to a maximum voltage of 1.0 V (for the nominal 0.6 V supply voltage) to overdrive VCN

and VCP for a stronger cutoff effect. Fig. 3.12(b) shows the measured VCN and VCP outputs

across VCSEL, which is the memory-mapped register the core uses to control VCN and VCP.

The ACG is also controlled by the core through a memory-mapped register, and is implemented

using SDLS cells with the same VCN and VCP as the core, so that it can track the ripple and

effectively replicate the critical path delay of the SDLS core.1

3.4.4 Measured Results

The SDLS microprocessor test chip was fabricated in a 65 nm low-power CMOS process. This

was chosen to demonstrate that DLS logic is relevant to newer technologies, as previous works

1Further details on the implementation of the VSC and ACG are left to [JB10].
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Fig. 3.11. System architecture of the proposed DVFS RISC-V microprocessor.

Fig. 3.12. (a) The standard cells included in the SDLS library, and (b) the measured output of the VSC.

demonstrating DLS logic were implemented in 180 nm [35,59] and 130 nm technologies [34].

Even newer technologies (i.e. FinFet), were not considered due to the associated cost and

accessibility barriers. Fig. 3.13 shows oscilloscope measurements of VCN, VCP, the adaptive

clock output, and the GPIO bits while the core executes a self-checking Fibonacci sequence

program. While executing the program, the core dithers between two different VCSEL modes,

demonstrating that it can achieve an average power consumption that is between that of two

different modes.

The program calculates all of the numbers in the Fibonacci sequence up to the maximum
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Fig. 3.13. Oscilloscope measurement of runtime DVFS, where the core dithers between two VCSEL modes while
computing the Fibonacci sequence. GPIO output bits indicate when a new Fibonacci number is computed and

when the total sequence (numbers 1–46) are correct.

that can be represented with the 32 bit system architecture, and was designed to demonstrate

that the core logic is fully functional. The last computed value in the sequence is compared with

the correct value that is stored in the memory, and since each Fibonacci number is computed

recursively from the previous number, this validates that all the previous calculations in the

sequence were correct. The GPIO bits are used to indicate the progress of the program as it

executes in a loop. The entire program, including the instructions that allow the core to control

the voltage of VCN, VCP, and the adaptive clock frequency, were written in C and compiled with

a standard open-source tool-chain.

To fully evaluate the SDLS core across supply voltage and DVFS mode, a simpler GPIO

bit toggling program is used to more fairly compare to [34]. Fig. 3.14 shows the measured

power of the core and uncore for each of the DVFS modes while running at the nominal VDD

of 0.6 V. Fig. 3.15 shows the measured maximum frequency and the minimum energy for

each of the DVFS modes. At this 0.6 V VDD, the SDLS core consumes 6 nW total power to

run at 11 Hz in the minimum DVFS mode, and 140 nW total power at 8.2 kHz in the maximum

DVFS mode. The uncore domain power increases from 4.86 nW to 93.9 nW under the same

operating frequency conditions. Fig. 3.16 shows the full power breakdown at these minimum
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and maximum DVFS modes, including measured power of the ACG and simulated power of the

VSC, which consumes 3 nW total power from its 1.2 V supply across all VCSEL modes.

Fig. 3.14. The measured power of the core and uncore across DVFS modes at 0.6 V VDD.

Fig. 3.15. The measured maximum frequency and energy across DVFS modes at 0.6 V VDD.

Fig. 3.17 shows the achievable core power and frequency range from scaling the bias

voltages VCN and VCP at each VDD. The minimum achievable core power is 840 pW, which

occurs in the minimum DVFS mode at 0.3 V VDD while running at 6 Hz. At this point, the

uncore domain consumes 690 pW and the clock generator consumes 130 pW, bringing the

total minimum system power to 4.66 nW after the addition of the 3 nW VSC. While most

processor cores require high operating frequency (and therefore, high power) to reduce energy

consumption, the SDLS core achieves a competitive minimum energy of 13.4 pJ at 0.5 V VDD

while running at 2.07 kHz in the maximum DVFS mode, consuming just 27.9 nW. Increasing



3.4 | A 6–140-nW 11-Hz–8.2-kHz DVFS RISC-V Microprocessor Using Scalable Dynamic
Leakage Suppression Logic 43

Fig. 3.16. The power breakdown for the minimum and maximum DVFS modes at 0.6 V VDD

VDD allows the core to reach higher frequencies of up to 41.5 kHz when VDD = 0.9 V, VCN =

1.1 V, and VCP = 0 V. This results in high dynamic power though, due to the SDLS gates having

a higher intrinsic gate capacitance than static CMOS gates.

3.4.5 Conclusion

This section presented a RISC-V microprocessor core in 65 nm CMOS, implemented with a

SDLS logic family designed to enable constant VDD performance scaling at ultra-low power

levels. The included VSC and ACG enable a fully integrated modified DVFS scheme. At a

constant 0.6 V supply voltage, the core can scale its power-performance from 6 nW at 11 Hz

operating frequency to 140 nW at 8.2 kHz operating frequency. Across VDD, the core achieves

a minimum power of 840 pW, and a minimum energy of 13.4 pJ/cycle. Fig. 3.8 shows a

comparison to state-of-the-art low-power processors, illustrating how this work enables a new

area of the design space for continuous and reliable battery-less IoT sensing nodes. Fig. 3.19

shows a detailed summary of this work in comparison to other low-power microprocessor cores.
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Fig. 3.17. Measured core DVFS tuning range versus VDD

Fig. 3.18. Annotated die photograph of the SDLS RISC-V microprocessor.

TABLE I.PERFORMANCE SUMMARY AND STATE-OF-ART COMPARISON

This Work ISSCC ’18
[8]

ISSCC ’15
[7]

JSSC ’17
[5]

ESSCIRC ‘18
[4]

JSSC ’09
[2]Core System**

Technology 65nm 180nm 180nm 40nm 90nm 130nm
Architecture RISC-V MSP430 ARM Cortex M0+ ARM Cortex M0 ARM Cortex M3 8-bit

Area 0.45mm² 0.87mm² 5.33mm² 2.04mm² 0.16mm² 7.18mm² 0.83 mm²
Operating Voltage 0.3V – 0.9V 0.2V – 1.1V 0.16V – 1.15V 0.2V – 0.5V 0.5V – 1.0V 0.45V – 0.9V

Performance Scaling Modified DVFS Dual-Mode None None DVFS + AVS None
Scaling Granularity 7-point + dithering 2-point None None ~40-point

(12mV step) None

Operating Frequency 6Hz – 41.5kHz 2Hz – 2.8MHz 2Hz – 15Hz 800kHz – 50MHz 1MHz – 20MHz 40kHz – 3MHz
Minimum Active 

Power
840pW @
0.3V, 6Hz

4.66nW @
0.3V, 6Hz

595pW* @ 
0.45V, 2Hz

127.1pW‡ @
0.55V, 2Hz

16.8µW @
0.2V, 800kHz

34nW* @
1.0V, 0Hz†

100nW* @ 
0.45V, 40kHz

Minimum Energy 13.4pJ/cycle @
0.5V, 2.07kHz

38.8pJ/cycle @ 
0.5V, 2.07kHz

14pJ/cycle* @ 
0.45V, 19kHz

44.7pJ/cycle* @ 
0.55V, 7Hz

8.8pJ/cycle @ 
0.37V, 13.7MHz

23pJ/cycle* @
3V, 5MHz

2.8pJ/cycle*
@ 0.35V, 
106kHz

*includes memory, **System=core+uncore+ACG+VSC, †retention mode w/o power gating, ‡extracted from power breakdown 

Fig. 3.19. Measured performance with comparison with the state-of-the-art low-power processors.
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Chapter 4

Multi-Threshold DLS Logic

4.1 Motivation

Many IoT sensing applications have low sampling frequency requirements in the range of mHz

to 100s of Hz, as previously shown in Table 1.2. The sampling frequency sets the lower bound

on the clock frequency for the circuits performing these applications. Unless extensive on-chip

processing of the sensor data is required, the clock frequency does not need to be significantly

greater than the sampling frequency. Thus low-frequency circuits have many practical uses.

In the sub-kHz region, dynamic power consumption is insignificant in static CMOS digital

circuits, and static leakage power dominates. Section 3.1 discusses some common static power

reduction techniques for static CMOS digital circuits, including standby modes, the use of HVT

devices, clock gating, and cutoff structures. As previously discussed in section 3.2, there is

a need for digital circuits that can operate in an always-on mode at power levels below the

leakage floor of conventional static CMOS circuits. Lower power consumption translates to

more reliable operation from smaller energy harvesters, and enables self-powered IoT devices

to operate in more energy-scare environments.

4.2 Prior Art

SDLS logic presented in section 3.4 enables always-on operation at power levels below the

static CMOS leakage floor, but there isn’t always a need to dynamically trade-off power and

performance. SDLS logic also has significant overheads: the control voltages VCN and VCP

The content in this chapter is based on [JB13]. For a list of individual contributions see section 6.3.
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must be generated and routed to all of the standard cells, an adaptive clock source must be

used to track the circuit’s critical path, and some form of control logic must be included to

manage the transitions between power modes. Furthermore, many IoT sensing applications

have fixed sampling frequency requirements, meaning sampling below those requirements is

not useful. Therefore, trading-off power and performance at runtime to ensure that the power

consumed is less than the power harvested is not useful, as reducing performance means

application failure.

The original DLS logic implementation [34,59] avoids the overheads of SDLS logic, but its

performance is limited to only a few Hz. Extending the frequency range up to a few 100s of Hz

or even a kHz would significantly expand the application space, but it must be done without

sacrificing too much power. DLS logic implemented in 65 nm CMOS using all LVT devices was

presented in [61], and Forward Body Biasing (FBBs) the DLS header and footer transistors was

shown to greatly reduce logic gate delay with just a small increase in leakage power. Fig. 4.1

shows the FBB DLS inverter logic gate.

Fig. 4.1. The Forward Body Biased (FBB) DLS inverter logic gate.

For the pull-up logic, FBB lowers the VTH of MHN, which leads to a significant increase in

ION, and thus shorter gate delay. When the pull-up logic is leaking (VIN = VDD), the lower

VTH of MHN increases the voltage VX settles at from VDD/2. This leads to (1) VGS,HN being

further reduced below -VDD/2, which increases leakage due to Gate-Induced Drain Leakage
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(GIDL), and (2) VDS,HN being decreased, which reduces leakage due to Drain-Induced Barrier

Lowering (DIBL). These two effects counteract, and result in a small net increase in IOFF. A

similar analysis can be done for the pull-down logic.

The LVT FBB variant enables circuits to operate at up to a few kHz, but the leakage power

is less than an order of magnitude below the leakage floor of static CMOS implemented with

HVT devices. Another DLS logic variant implemented in 65 nm using all IO devices with FBB

was presented in [JB15]. IO devices utilize a thicker gate oxide than regular devices, so they

have significantly less gate leakage, which limits the leakage power floor of non IO DLS logic

in newer technologies such as 65 nm. This leads to the IO FBB variant being almost three

orders of magnitude lower leakage power than static CMOS, but the maximum clock frequency

is limited to a few Hz like the original DLS logic implementation in 180 nm CMOS [34,59].

4.3 A Multi-Threshold Technique For Up To 6.5x Power Reduction in

Dynamic Leakage Suppression Logic

4.3.1 Contributions

This section presents a gate-level Multi-Threshold technique for DLS logic in 65 nm CMOS

that enables up 6.5x power reduction compared to single-threshold DLS logic. Multi-Threshold

Dynamic Leakage Suppression (MT-DLS) logic utilizes both the LVT FBB and IO FBB DLS

logic gates within the same circuit to bridge the power-performance gap between the two

variants. Fig. 4.2 shows the 34x power gap between IO FBB and LVT FBB DLS logic, the target

application space for MT-DLS, and a comparison to HVT static CMOS. MT-DLS logic yields

power savings in the approximate 10 Hz–200 Hz range for a 0.4 V supply voltage, and in the

10 Hz–1.4 kHz range across the full 0.2 V–1.0 V supply voltage range.
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Fig. 4.2. Simulated power consumption of an 8-bit MAC block implemented with IO FBB DLS, LVT FBB DLS, and
HVT static CMOS at 0.4 V supply voltage.

4.3.2 MT-DLS Logic Implementation

An 8-bit Multiply-Accumulate (MAC) block was chosen to evaluate MT-DLS logic since it is a

simple sequential block used in many Digital Signal Processing (DSP) applications such as

convolution, digital filtering, and Fast Fourier Transform (FFT). Fig. 4.3 shows the block diagram

of the MAC block.

Fig. 4.3. Block diagram of the 8-bit Multiply-Accumulate (MAC) block.

A library of standard cells was created for both the LVT FBB and IO FBB DLS logic variants,

and Fig. 4.4(a) shows the cell list. For fair comparison, an HVT static CMOS library limited

to the same cells was also created from a larger commercial library. Timing libraries were

created for each of the DLS variants, and synthesis scripts were developed to enable their

simultaneous use within the same circuit. The synthesis scripts were designed to prefer IO
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FBB cells to minimize the power consumption, and use only the minimum number of LVT FBB

cells needed to satisfy the clock frequency constraint. Special tap-cells were also created to

body bias the DLS cells, and a standard Automated Place and Route (APR) flow was used to

implement the MAC blocks. Both DLS variants share the same cell footprints, thus MT-DLS

doesn’t significantly impact circuit area. Fig. 4.4(b) shows an area comparison between the

final placed-and-routed DLS and static CMOS MAC blocks.

Fig. 4.4. (a) The DLS standard cell library used in this section. (b) Area comparison between DLS and static
CMOS for the 8-bit MAC block.

4.3.3 Simulated Results

An array of 5 MAC blocks were created with MT-DLS logic, and designed to target different

trade-offs between power and performance. The MAC blocks were tested with an input vector

of 100 randomly generated inputs, and if all 100 outputs were correct, the block was considered

functional for the operating conditions (VDD, frequency, etc.). All simulations were performed

at 27 �C and Typical Typical (TT) process corner unless otherwise noted. Fig. 4.5 shows that

at 0.4 V supply voltage, MT-DLS provides power savings of up to 6.5x, and power savings

throughout the approximate 10 to 200 Hz region. The listed cell percentages are derived from

the gate count, with all logic gates normalized to the area of the 2-input NAND gate. Fig. 4.6

shows the power consumption and max frequency of the MT-DLS MAC block implemented

with 65% LVT FBB cells across the supply voltage range. DLS logic in 65 nm exhibits a power

minimum at approximately 0.4 V due to competing trends in Sub-Threshold (Sub-Vt) leakage
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and gate leakage. Sub-Vt leakage decreases with VDD due to the more negative VGS,HN (or

VSG,FP), but gate leakage increases due to its quadratic relationship with VDG,HN (or VGD,FP),

which is equal to VDD in the steady state.

Fig. 4.5. Simulated power consumption of the MT-DLS 8-bit MAC blocks at 0.4 V supply voltage.

Fig. 4.7(a) shows the relationship between leakage power and the percentage of LVT gates

used in the MAC blocks, which is approximately linear since the IO FBB gates are 2 orders of

magnitude lower leakage than the LVT FBB gates. Fig. 4.7(b) shows the relationship between

the max frequency and the percentage of LVT gates used in the MAC blocks. The shape of this

curve is determined by the timing path length distribution, and is thus highly circuit specific. For

the MAC block in this work, there is one set of critical timings paths from the inputs a/b to the

output register, so the timing path length distribution is relatively narrow. Larger more complex

circuits typically have a wider timing path length distribution, with more non-timing critical paths

where the slower logic gates can be used without effecting the max clock frequency. Therefore,

larger circuits will likely benefit significantly more from MT-DLS than the simple MAC block

presented in this work.

Fig. 4.8 shows the power reduction enabled by MT-DLS across the clock frequency and

supply voltage range. MT-DLS yields power savings of up to 85% at 0.4 V supply voltage
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Fig. 4.6. Simulated power consumption and max clock frequency across the 0.2 V–1.0 V supply voltage range for
the 8-bit MAC block implemented using LVT FBB DLS logic, IO FBB DLS logic, and MT-DLS logic with 65% LVT

FBB logic gates.

compared to LVT FBB logic, and power savings throughout the 10 Hz–1.4 kHz range across the

0.2 V–1.0 V supply voltage range.

4.3.4 Conclusion

This section presented a gate-level Multi-Threshold technique for DLS logic (MT-DLS) in 65 nm

CMOS, which combines LVT FBB and IO FBB DLS logic gates within the same circuit to

bridge the power-performance gap between the two variants, and enables up to 6.5x power

savings. MT-DLS yields power savings throughout the 10 Hz–1.4 kHz range across the 0.2 V–

1.0 V supply voltage range. Ultimately, this improves the state-of-the-art power-performance

trade-off for low-frequency digital circuits that operate below the leakage floor of conventional

static CMOS, and helps enable self-powered IoT devices to operate in more energy-scare

environments.
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Fig. 4.7. Simulated leakage power consumption and maximum clock frequency for the 8-bit MAC blocks
implemented with varying percentages of LVT FBB and IO FBB DLS logic gates.

Fig. 4.8. Simulated power reduction for the 8-bit MAC block enabled by MT-DLS across clock frequency and
supply voltage. Power reduction is determined by comparison to the MAC block implemented with all LVT FBB

logic.
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Chapter 5

Ultra-Low Power IoT Systems and Applications

5.1 Motivation

Commercial products that utilize ULP and self-powered IoT devices exist [30–32], but they’re

not prolific or widely adopted yet. This is partly because the value of self-powered operation is

not widely understood yet, as it only manifests in very large-scale deployments. The overhead

of battery recharge and replacement for a deployment with only a few thousand devices isn’t

significant if batteries last months to years. Another reason is that it’s technically difficult

to achieve reliable self-powered operation with a small device size. Chapters 2-4 of this

dissertation attempt to address this by lowering the power consumption of wireless TXs and

digital processing circuits. But the latest advancements in technology must still be translated into

functional system prototypes, and applications with commercial value must be demonstrated

before widespread adoption will occur.

This chapter presents two systems and their applications for the purpose of accelerating

the commercial adoption and proliferation of IoT devices. First, we present a self-powered SoC

[JB3,JB7] and use it to implement several health-monitoring applications, including free fall

detection, temperature sensing, and arrhythmia detection using the on-chip AFE [JB4]. Then,

we integrate the SoC into a vigilant cardiac monitoring system that is powered completely by

body heat, and tightly integrate the system into a compact wearable form to enable comfortable

long-term use [JB14]. We also present an ULP wireless wake-up and control system, which

is designed to reduce the electricity usage of MELs, and includes a fully integrated 802.11ba

The content in this chapter is based on [JB3, JB4, JB7, JB11, JB12, JB14]. For a list of individual contributions
see section 6.3.
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WuRX [JB12] and an 85 nW node-controlling SoC [JB11].

5.2 IoT SoC for Health-Monitoring Applications

The applications presented in this section are implemented with the health-monitoring SoC

presented in [JB3,JB7]. Fig. 5.1 shows the system architecture. The SoC is implemented in a

130-nm CMOS technology, and features an array of sensing interfaces and DSP accelerators

targeting health-monitoring and general-purpose IoT applications. It includes a custom 16-bit

microprocessor core (LPC), two integrated 2-kB SRAMs for instruction and data memory, and

a crystal-based 32 kHz oscillator for the digital subsystem. There is also an on-chip energy

harvester that can harvest from either a TEG or PV cell, and a Power Management Unit (PMU)

that generates regulated supply voltages for the SoC from an unregulated energy storage

device.

Fig. 5.1. (a) Block diagram of the health-monitoring SoC, and (b) the annotated die photograph.

5.2.1 Free Fall Detection

At rest, objects on the surface of the earth experience a constant acceleration of 9.81 m s−1, or

1 g. A free fall occurs when an object falls through space without significant resistance, and

experiences approximately 0 g of acceleration. Detecting free falls has a number of useful
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applications. It can be used for commercial applications like shipping and handling impact

tracking, where the magnitude and number of falls a package experiences is monitored over

time. If the magnitude or number of falls exceeds some threshold, the customer can then

avoid accepting a damaged shipment that was improperly handled. Such commercial products

already exist [62], but electronic versions are bulky and not self-powered. And non-electronic

versions do not provide detailed information about the exact magnitude or number of falls. Free

fall detection can also be used for detecting falls in humans, a health-monitoring application.

Falls are the leading cause of fatal and nonfatal injuries among persons aged 65 or greater, and

in 2014, 28.7% of older adults reported falling at least once in the preceding 12 months [63].

Often, the most serious consequences of a fall are due to a delay in treatment, as the injuries

sustained during the fall prevent the person from obtaining help. An IoT device could be used

to detect falls and send a signal for help, but it must be self-powered to eliminate the user

burden of battery recharge and replacement. It must also be small enough that it can easily

be integrated into clothing or wearable accessories without significant discomfort, which would

reduce user acceptance.

Micro-Electro-Mechanical System (MEMS) based accelerometers are commercially avail-

able with ultra-low power consumption. The ADXL362 accelerometer from Analog Devices

consumes just 3.6 µW at 2.0 V when sampling acceleration data at 100 Hz [64]. It is just a

MEMS sensor with an Analog to Digital Converter (ADC), and a simple digital interface though.

It cannot perform a complete application like free fall detection on its own.

In this section, we integrate the ADXL362 accelerometer with the health-monitoring SoC

and a wireless TX to form a complete and fully self-powered sensor system that can perform

free fall detection. The application flow diagram is shown in Fig. 5.2. First, the SoC configures

the accelerometer for free fall detection using the SPI. The accelerometer is programmed to

assert one of its interrupt pins when the acceleration falls below 0.6 g for a 200 ms period of

time. We chose this simple threshold-based approach to minimize the system power. Although

more sophisticated methods are available [65] and can give better results by preventing false
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positives, they require more processing of the acceleration data. The interrupt pin of the

accelerometer is connected to one of the SoC GPIO pins, and wakes the SoC up from a stalled

state, in which parts of the memory are switched off to reduce power. When the interrupt is

triggered, the SoC switches on the SPI block and reads the acceleration data surrounding the

free fall that was logged by the accelerometer in its First-In First-Out (FIFO) buffer. The data is

then compressed using the on-chip accelerator [JB2] to minimize the amount of data that must

be transmitted, and thus reduce the wireless TX power. The TX is then switched on, and the

data is sent before the TX is switched off again, and the system resets to detect the next free

fall occurrence.

Fig. 5.2. Flow diagram for the proposed free fall detection application.

Fig. 5.3(a) shows the acceleration data that was captured by the SoC for a free fall event. Fig.

5.3(b) shows the SoC power breakdown for this application. The active state is defined as the

part of the application where the SoC is reading the data from the accelerometer, compressing

it, and transmitting it using the off-chip TX. Compression reduces the active SoC power without

even accounting for the TX power reduction, as less data must be sent through the pads to the

off-chip TX. With a pessimistic assumption of 1 free fall per minute, the SoC power consumption

is 507 nW. The entire system consumes just 20.6 µW when measured from the energy storage

super-capacitor, including the voltage regulation overhead, accelerometer, and wireless TX.
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Fig. 5.3. (a) Acceleration data captured by the SoC for a free fall. (b) Measured SoC power consumption for the
free fall detection application.

5.2.2 Temperature Sensing

The ADXL362 accelerometer also includes a temperature sensor for calibrating the MEMS

sensor as environmental conditions change. To further characterize the SoC’s performance

for IoT applications with varying sampling rate requirements, we created a simple application

where the SoC reads and transmits the ambient temperature from the accelerometer once

every 5 minutes. For this application, the SoC consumes 2.06 µW when actively reading and

transmitting the temperature data, 0.518 µW when waiting between samples, and 0.519 µW

overall. This illustrates that for low sampling frequency applications, the overall SoC power

is set by the standby mode power. The total system consumes 7.61 µW on average when

measured from the energy storage super-capacitor, including the accelerometer and TX.

5.2.3 Arrhythmia Detection

Global health care expenditures are increasing at an alarming rate [66], and cardiovascular

diseases are the leading cause of death globally, accounting for 31% of all deaths in 2016 [67].

Many cardiac conditions are difficult to detect in short periods of time, and thus require long-term

continuous monitoring. Although commercial wearable cardiac monitoring systems exist [68],

they are typically only used for short periods of time on the order of days due to their size

and imposed user burden. Making these systems self-powered reduces the user burden of
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battery recharge and replacement, and thus improves user compliance. And reducing the

power consumption further reduces the required size of the energy harvester and storage

device, making the device smaller and easier to wear for long periods.

This section presents a ECG acquisition and arrhythmia detection application, implemented

with the health-monitoring SoC, its integrated AFE [JB4], and 12-bit Successive Approximation

Register (SAR) ADC. The SoC first configures the ADC to sample data at 100 Hz and to

generate an interrupt when a new sample is available. In the interrupt service routine, the

microprocessor core moves the data from the ADC to the radio interface, where the data is

compressed and buffered until enough is available to fill a packet, and then finally transmitted.

Fig. 2.6(a) shows the ECG signal captured by the SoC. The average power of the SoC is

1.02 µW, and the power breakdown is shown in Fig. 5.4(b). The total system power measured

from the energy storage node is 5.98 µW, including the voltage regulation overhead and wireless

TX.

Fig. 5.4. (a) ECG data captured by the SoC AFE and ADC. (b) Measured SoC power consumption for the ECG
capture application.

To validate that the acquired ECG signal is clinically useful, the data was processed off-

chip using a heart rate extraction and arrhythmia detection algorithm.1 The R-R (heart rate)

extraction algorithm is based on the popular Pan-Tompkins algorithm [69]. The algorithm uses

an initial 4 s time window to estimate the DC baseline, and then uses amplitude thresholds and
1The on-chip block designed to perform this application was non-functional due to a design bug, so the same

algorithms were implemented off-chip to validate the data. I was not involved in the design or implementation of
the on-chip block.
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time windows to extract the R peaks. Fig. 5.5 shows the measured ECG signal, sampled at

200 Hz, with annotations indicating the number of samples between consecutive R peaks. The

arrhythmia detection algorithm uses the number of samples between consecutive R peaks, and

is able to detect AFib in as little as 12 heart beats [70]. Two irregular missed heart beats shown

in Fig. 5.5, and are detected by the algorithm as an AFib event.

Fig. 5.5. The captured ECG signal, showing AFib being detected. The annotations indicate the number of
samples between consecutive R peaks.

5.2.4 Wearable Cardiac Monitoring System Powered by Body Heat

This section presents a vigilant cardiac monitoring system that is completely powered by body

heat, and tightly integrated into a compact wearable form to enable comfortable long-term use.

In this context, vigilant means the system operates in a mode that is always active, and no

critical AFib events are missed due to intermittent operation. Fig. 5.6 shows an overview of

the system, which integrates numerous state-of-the-art components developed by multiple

universities. The system spans three Printed Circuit Boards (PCBs): a primary board with the

health-monitoring SoC, a radio board with a Bluetooth Low Energy (BLE) compliant TX, and an

energy harvesting board with a super-capacitor and DC-DC converter. The boards were all

designed for minimum area, and are integrated vertically into a 3D-printed case.

The case attaches magnetically to the back of a custom e-textile shirt, shown in Fig. 5.7. The

shirt integrates dry ECG electrodes, which operate without gels or adhesives that can irritate

the skin, and thus greatly improve user comfort during long-term use. The shirt is constructed
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Fig. 5.6. Block diagram of the proposed three PCB system, and the PCBs integration into the 3D-printed case.

with multiple fabrics, and uses high compression panels to ensure that the electrodes make

good connection with the skin. The shirt also integrates a panel of flexible TEGs on the front,

which powers the system using the temperature differential between the user’s skin and the air.

The TEGs connect to the DC-DC converter on the energy harvester board, and any excess

energy is stored on an ultra-low leakage 0.92 F super-capacitor. A flexible antenna is also

integrated into the shoulder of the shirt for the BLE TX, and is designed specifically to cope

with the effects of human body loading presented in wearable applications.

Fig. 5.7. The proposed wearable system is integrated into a custom e-textile shirt, and streams ECG data in
real-time using BLE to a smartphone, from which the data is then uploaded to a cloud system.

The SoC samples ECG data at 50 Hz and only uses the 8 most significant bits of the

12-bit ADC to save power, as this was previously shown to be the minimum needed for vigilant
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operation as defined by AFib detection [71]. The TX transmits the ECG data in real-time

to a smartphone, where it is displayed on a custom Android app, shown in Fig. 5.7. From

the smartphone, the data is uploaded to a cloud system where it can be remotely viewed by

healthcare providers. The average power of the entire system is 65 µW at the power neutral

point, which is defined as the super-capacitor voltage where the harvested power from the

TEGs is equal to the power consumed by the system from the super-capacitor. This was

measured with the user standing still indoors, and not moving to generate additional airflow

across the TEGs . Fig. 5.8 shows the system power consumption as a function of the super-

capacitor voltage. The super-capacitor voltage is 2.15 V at the power neutral point, and when

the super-capacitor is fully charged to 3 V, the system can operate for over 9 hours without any

harvesting, as shown in Fig. 5.8(b).

Fig. 5.8. (a) The system power consumption as a function of the super-capacitor voltage, and (b) the super
capacitor voltage as a function of time with no harvesting.

5.3 IoT SoC for MELs Power Management

5.3.1 Motivation

MELs in buildings are electric loads resulting from devices such as power adapters, televisions,

and coffee makers [72]. MELs do not include major appliances such as refrigerators, stoves,

dryers, etc., or other major electronic systems such as those responsible for heating, cooling,
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and lighting. Nonetheless, in 2016 MELs accounted for 30% of electricity usage in residential

buildings, and 36% in commercial buildings according to the U.S. Department of Energy

(DoE) [73]. A significant part of the problem is that many MELs consume power even when

they are switched off, often on the order of magnitude of watts [74]. This is often referred to as

phantom standby energy consumption, and it is becoming an increasingly significant problem

for the future. The number of MELs is rapidly growing, and many devices that have traditionally

consumed zero energy in their off state are being replaced with new smart devices, which

have nonzero standby energy consumption. This energy isn’t entirely wasted though, as it

typically provides some useful function. One example is the Philips Hue smart Light-Emitting

Diode (LED) light bulb, which uses energy in the standby state to allow itself to be controlled

by smartphone via Bluetooth. According to the manufacturer, it has a max standby power of

0.5 W, and a max active power of 17 W [75]. Thus in some instances, these smart LED bulbs

can result in greater total energy use than traditional incandescent or fluorescent bulbs. This

occurs when the smart bulbs are not actively used much, and their total power is dominated by

the standby power, which is zero for traditional non-smart light bulbs.

New strategies must be derived to address the growing power consumption of MELs and

their nonzero standby energy consumption. Although MEL standby energy is typically used

to perform a useful function, the always-connected always-ready standby state employed by

many emerging smart devices isn’t required at all times. For example, if a building is empty, or

its occupants are not near the smart device, it could be switched off completely to eliminate

its standby energy consumption without inconveniencing the occupants. To accomplish this,

information collected from sensors distributed throughout the building and the mobile devices

of its occupants must be aggregated, and new algorithms to process the data must be invented.

Furthermore, new devices must be created to manage the power states of MELs, and optionally

disconnect them from the grid to eliminate their standby energy use. These devices must have

ultra-low power consumption, orders of magnitudes less than the standby power of typical MELs

in order to effectively address MEL standby energy consumption. They must also have wireless
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connectivity that is standards compliant, so that they can be easily deployed and integrated into

existing networks.

Wi-Fi is ubiquitous and found in almost every building, but commercially available Wi-Fi

receivers consume > 100 mW when active [76]. WuRXs are an emerging technology, and are

recently becoming integrated into existing standards [77]. They consume orders of magnitude

less power than traditional receivers, and can be used to duty-cycle and wake up on demand

traditional high-power receivers. They are therefore an ideal choice for enabling wireless

connectivity in an ULP MEL control device. In addition to wireless connectivity, a MEL control

device must also be able to perform basic computations and execute simple algorithms to

control the power states of MELs. Commercially available low-power microcontrollers such as

the popular MSP430 from Texas Instruments consume > 1 mW active power though [78], and

are therefore not a viable option.

5.3.2 Contributions

This section proposes an ULP wireless wake-up and control system, designed to manage the

power states of MELs when they are being used, and also to disconnect them from the electric

grid when they are not being used to eliminate their phantom standby energy consumption.

Fig. 5.9 shows an overview of the system. It includes of a fully integrated 0.2 V 802.11ba

WuRX [JB12] and an 85 nW active power node-controlling SoC [JB11], which is the focus of

this section.

In this system, an external gateway device aggregates inputs from sensors distributed

throughout the building and the occupant’s mobile devices, and forwards the relevant information

for MEL control to the system. The WuRX consumes 578 µW in its active state, and receives

32-bit wake-up codes that are decoded by the 16-channel correlator on the SoC. The SoC’s

multiple channel correlator and 32-bit RISC-V microprocessor core allows the SoC to control

multiple MELs at once, and execute algorithms to control MEL power modes. This is done using

an off-chip relay and de-multiplexer device, which interfaces to the MELs, and can optionally
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disconnect them from the grid to eliminate their phantom energy.

Fig. 5.9. The proposed wireless wake-up and control system for addressing MEL power consumption.

5.3.3 System Architecture

The SoC is implemented in a 65 nm low-power CMOS technology, and the system architecture

and die photograph are shown in Fig. 5.10. The SoC includes a BottleRocket 32-bit RISC-V

microcontroller-class processor core, an integrated 8-kB SRAM, and SPI and GPIO peripherals

for interfacing to the WuRX and MELs. It also includes a correlator that samples the serial data

output from the WuRX, and compares it to 16 different programmable 32-bit wake-up codes

stored on the SoC to look for a match. The correlator is implemented in its own clock domain to

reduce the system power, as it requires a higher frequency to sample the WuRX output than the

rest of the digital subsystem, which operates at just 1 kHz. The digital subsystem was designed

to operate at 0.45 V in the subthreshold region, and uses standard cells with HVT devices

to minimize the leakage and total power consumption. The SoC also includes a digital buck

converter and several Low-Dropout (LDO) regulators, which generate regulated supply voltages

for the digital subsystem and the WuRX. The entire wireless wakeup and control system can

thus be powered with a single supply voltage, generated by a battery or an energy harvester.
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Fig. 5.10. (a) The proposed node-controlling SoC system block diagram, and (b) the SoC die photograph.

5.3.4 Measured Results

To demonstrate the SoC’s capability to control the power states of MELs at ultra-low power

levels, we created an example application, shown in Fig. 5.11. In this application, the SoC

uses GPIO to interface to an off-chip relay that controls the power states of MELs, and also

an off-chip radio transceiver. Essentially, this is a GPIO bit-banging application that follows the

state transition diagram shown in Fig. 5.11. The wake-up signal from the WuRX, software-based

timers, and some GPIO input bits are used to transition the state, which is represented by two

of the GPIO output bits. Fig. 5.12 shows the measured GPIO bits, with annotations indicating

the state transitions.

Fig. 5.11. State diagram for the example application, and flow chart showing the MEL operating mode transitions

For this application, the total SoC power is 85 nW from the 1 V input supply, with the digital

subsystem operating at 0.45 V and 1 kHz. Fig. 5.13 shows the power consumption of the digital
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Fig. 5.12. Measured waveform showing wake-up signal, and the GPIO bits that represent the MEL power mode,
MEL busy status, and the RF transceiver input

subsystem across supply voltage and frequency, excluding the correlator which is on a separate

supply. We also tested the SoC with the WuRX, shown in Fig. 5.14. The SoC generates the

regulated voltage supplies for the WuRX, controls it using the SPI, and is able to received a

wake-up signal.

Fig. 5.13. The SoC digital subsystem power consumption as a function of operating frequency and supply voltage.
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Fig. 5.14. The combined test setup with the SoC and WuRX, and the measured wakeup signal.

5.4 Conclusion

The contributions presented in this chapter demonstrate the technology readiness of ULP and

self-powered systems to perform commercially relevant applications. The health-monitoring

SoC demonstrates free fall detection, temperature sensing, and arrhythmia detection, all at

ultra-low power levels. It also demonstrates vigilant cardiac monitoring powered entirely by

body heat, in a compact wearable form that enables comfortable long-term use. The wireless

wake-up and control system demonstrates MEL power mode management and standby energy

elimination, a new application with high commercial value that is not possible with existing high-

power commercially available circuits. Ultimately, these contributions in system and application

design will help accelerate the proliferation of IoT devices into the commercial space.
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Chapter 6

Conclusion

The IoT has the potential to radically improve human life over the next few decades by producing

tremendous amounts of information. This information will create new insights, leading to better

decision making, opportunities for optimization, cost reduction, and improved outcomes. The

proliferation of IoT sensing devices is currently being hindered by the challenge of large-scale

battery recharge and replacement though, which increases the cost of device deployment.

Ultimately, the contributions presented in this dissertation aim address this and accelerate the

proliferation of IoT sensing devices.

6.1 Summary of Contributions

Chapter 2: Ultra-Low Power Sensor Data Compression

• The performance of the compression algorithm GAS-LEC was evaluated on biomedical

sensor data (prior art only considered environmental sensor data). It achieved an av-

erage CR of 2.4 for ECG data from the MIT-BIH Arrhythmia Database [46], and 2.0 for

acceleration data from the UCI Machine Learning Repository [49].

• GAS-LEC was implemented on a health-monitoring SoC as a hardware accelerator, and

fabricated in a 130 nm CMOS technology.

• The accelerator was integrated with the TX interface, realizing a custom data-flow archi-

tecture [33] where it can be used without active processor intervention, minimizing its

contribution to SoC power.
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• The accelerator adds only 4.4 nW (32 kHz, 0.5 V) processing power overhead, and

achieves a CR of 2.39, the lowest power and highest CR reported at the time of publication

for lossless on-chip ECG data compression.

• The accelerator reduces the required transmitter duty cycle by 3.7x, reducing the system

power by 2.9x, and allows the entire system to consume just 2.62 µW when transmitting

ECG data at a 360 Hz sampling rate.

Chapter 3: Ultra-Low Power DVFS RISC-V Microprocessor

• A RISC-V microprocessor core was implemented using a novel SDLS logic style, and

fabricated in a 65 nm low-power CMOS process.

• Together with the ACG and VSC, the core realizes a fully integrated modified DVFS

scheme that enables nW-level performance flexibility for self-powered IoT sensor nodes

in energy-scarce environments.

• At a constant 0.6 V supply voltage, the core can scale its performance from 6 nW at 11 Hz

to 140 nW at 8.2 kHz.

• Across the supply voltage range, the core realizes a minimum power of 840 pW, a

maximum frequency of 41.2 kHz, and a minimum energy of 13.4 pJ/cycle.

• This work addresses the poor scaling granularity of prior art [35], and unlocks a previously

inaccessible area of the IoT application space, shown Fig. 3.8.

• The achievable Hz-kHz frequency range is ideal for many low-frequency IoT sensing

applications.

Chapter 4: Multi-Threshold DLS Logic

• A gate-level multi-threshold technique for power reduction in DLS logic in 65 nm CMOS

was presented.
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• MT-DLS was shown to effectively bridge the power-performance between the two different

variants of DLS logic gates (LVT FBB and IO FBB).

• An array of 8-bit MAC blocks was implemented using MT-DLS, and designed to target

different trade-offs between power and performance. MAC blocks were also implemented

using HVT static CMOS and single-threshold DLS logic variants for comparison.

• For a 0.4 V supply voltage, MT-DLS enables power savings of up to 6.5x (85%), and

power savings throughout the approximate approximate 10 Hz–200 Hz range.

• MT-DLS yields power savings in the 10 Hz–1.4 kHz range across the full 0.2 V–1.0 V

supply voltage range, as shown in Fig. 4.8.

Chapter 5: Ultra-Low Power IoT Systems and Applications

• A health-monitoring ULP SoC fabricated in 130 nm CMOS was presented, along with its

applications, and integration into a wearable self-powered cardiac monitoring system.

• The SoC consumes 507 nW for the presented free fall detection application, 519 µW for

the temperature sensing, and 1.02 µW for the arrhythmia detection.

• The SoC was integrated with custom components including a BLE compliant TX, an array

of flexible TEGs, a flexible antenna, low-leakage super-capacitor, and an e-textile shirt

with dry electrodes. Together, these components realize a vigilant cardiac monitoring

system for comfortable long-term use.

• The wearable cardiac monitoring system is powered entirely by body heat and consumes

just 65 µW.

• A second ULP SoC was presented as part of a wireless wake-up and control system

for managing the power modes of MELs, and eliminating their phantom standby energy

consumption.
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• The SoC was fabricated in a low-power 65 nm CMOS technology, and consumes 85 nW

for the presented MEL control application.

6.2 Conclusions and Open Problems

This dissertation presents contributions in integrated circuit and self-powered system design

for reducing the power consumption of IoT sensing devices, and accelerating their adoption.

Digital circuits, digital circuit design techniques, and system-level strategies are presented for

reducing the power consumption of wireless TX and digital processing circuits in ULP SoCs.

This dissertation also presents two ULP SoCs, their applications, and integration into IoT

sensing systems for the purpose of serving as proof of technology readiness, and encouraging

commercial adoption. The following sections review some of the key insights presented in each

chapter, and also discuss open problems that could be addressed in future research.

Chapter 2 explores the design space for on-chip sensor data compression used for the

purpose of minimizing wireless TX power in ULP SoCs. The following principles should be

adhered to when selecting a data compression algorithm for this purpose. First, the algorithm

should be computationally efficient to minimize the processing power overhead of compression.

Second, the algorithm should maximize the CR to minimize the amount of data that must be

transmitted or stored. And third, the algorithm should account for the specific sensor data, since

the CR of a compression algorithm is highly dependent on the characteristics of the data being

compressed. System power reduction can be ensured if the following condition is satisfied:

Pcomp +
PTX
CR

 PTX (8)

Pcomp represents the additional power consumed by compression, and PTX is the TX power

when actively transmitting data. Note that this equation makes the assumption that the standby

power consumption of the TX is insignificant compared to the active power.

At this time, algorithms that use only integer-based operations [41–45, 48] offer the best
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trade-off between CR and processing power overhead. If compression is implemented on an

SoC, it should be integrated directly on the TX data path as done in this work. Otherwise,

the microprocessor core must waste clock cycles moving data in and out of the compression

accelerator, which also consumes more instruction memory, and potentially data memory to

store the compressed data. In summary, the results presented in this chapter demonstrate

that on-chip sensor data compression can be implemented with very low processing power

overhead, and therefore that it is an effective strategy for power reduction in wireless SoCs. It is

also widely-applicable, as algorithms such as GAS-LEC are effective for any sensor data type

where there is a significant temporal correlation between consecutive samples. It is useful for

any application where sensor data must be wirelessly transmitted, and most effective for cases

where the TX already dominates the overall system power consumption. It is also completely

agnostic to the TX circuit design itself, and therefore a complementary approach that can stack

with future improvements in TX circuit design.

One open problem in this design space is that algorithms such as GAS-LEC can compound

data loss when there is packet loss between the TX and Receiver (RX). These algorithms rely

on encoding and transmitting the differences between consecutive samples, and an actual

sample must initially be sent to orientate the decoding process. If a packet is lost, the data that

comes after the lost packet cannot be decoded, as shown in Fig. 6.1. One potential solution

to this problem is to periodically transmit an actual sample. The max data loss then becomes

limited by this period, but this adversely effects the CR, so it is important to maximize this period

while accounting for the maximum amount of data loss that can be tolerated by the application.

Future work could investigate this trade-off more for different packet loss rates and application

requirements.

Chapters 3 and 4 explore new methods for implementing and optimizing low-frequency

digital circuits that can operate at lower power levels than those attainable with conventional

static CMOS logic. As the clock frequency is scaled down, static CMOS circuit become limited

by static leakage currents during active-mode operation. Although standby modes realized with
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Fig. 6.1. Packet loss between the TX and RX can prevent the data from being decoded correctly.

cutoff structures can bypass this limit, they imply intermittent operation and introduce overheads

associated with mode transitions and energy storage. Prior art [34,59] introduced DLS logic

for facilitating active-mode operation at power levels below the leakage floor of static CMOS,

but its usefulness was limited by the extremely low clock frequency. Further work [35] added

bypass transistors to the DLS logic gate to enable dual-mode operation, which allows circuits

to be dynamically reconfigured in either a DLS mode of operation, or a static CMOS mode of

operation. The power-performance difference between these two modes of operation is large

though, and inflexible for circuits operating directly from harvested energy without a significant

energy storage buffer.

Chapter 3 of this dissertation demonstrates that by actively biasing the gate voltage of the

bypass transistors (MCN and MCP) in the DLS logic gate, a continuous power-performance

trade-off can be realized. This is shown in Fig. 3.8. This is currently the best method for realizing

a dynamic power-performance trade-off in DLS logic, as conventional voltage scaling does not

provide a significant trade-off, since the on-state current of DLS logic gates is subthreshold

leakage, which is weakly dependant on supply voltage. Compared to static CMOS logic

implemented with HVT devices, SDLS logic consumes significantly more power when operating

in its fastest mode. This is because SDLS logic gates have worse dynamic power consumption

due to increased logic gate output capacitance (due to MHN and MFP). SDLS logic can

reach much lower power levels in its slower operating modes though. It is therefore best

suited for applications where circuits spend most of their time operating at low Hz range

frequencies, but need occasional kHz range performance. It is particularly well suited for size-

constrained applications without significant energy storage, wherein power must be consumed
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as it is harvested. The sub-nW power floor means circuits can actively operate in poor energy

harvesting conditions with a very small energy harvester. SDLS logic unfortunately requires

significantly more area than static CMOS. The SDLS inverter logic gate is approximately

4x larger than the static CMOS inverter, as previously shown in Fig. 3.9. This could hinder

large-scale commercial adoption due to the associated cost increase compared to static CMOS.

Chapter 4 of this dissertation explores a gate-level multi-threshold technique for power

reduction in DLS logic. Prior art [61] [JB15] demonstrated several variants of FBB DLS logic

in 65 nm, which are preferable over SDLS due to their lower implementation overhead for

applications where the capability to dynamically trade-off power and performance isn’t useful.

These variants have vastly different achievable power and performance ranges though, as

previously shown in Fig. 4.2. The results presented in this dissertation demonstrate that these

variants can be effectively combined within the same circuit to realize power savings. The

faster but higher power LVT FBB logic gates can be selectively used on timing critical paths

as necessary to satisfy the application frequency constraints, and the slower but lower power

IO FBB DLS gates can be used otherwise. The magnitude of the power savings depends

significantly on clock frequency constraint required by the application, and also the specific

circuit being implemented. For the 8-bit MAC block studied in this work, power savings are

realized in the approximate 10 Hz–1.4 kHz range. The results also show that the leakage power

consumption of MT-DLS circuits is approximately linear with the percentage of LVT FBB gates,

since they are much higher power than the IO FBB gates. The relationship between the max

frequency and percentage of LVT FBB gates is circuit specific though, and depends on the

timing path distribution. Future work could explore this relationship for other circuits, as larger

circuits with more non timing critical paths could benefit significantly more from MT-DLS than

the 8-bit MAC block studied in this work.

Chapter 5 first presents a self-powered health-monitoring SoC and explores its application

space. Free fall detection, temperature sensing, and arrhythmia detection applications are

developed and implemented, demonstrating the capability of self-powered systems to perform
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commercially relevant applications. The results demonstrate that existing commercial products,

such as those used for impact tracking in shipping and handling [62] could be replaced with a

battery-less solution, reducing their maintenance costs. A fully-wearable cardiac monitoring

system is also presented, demonstrating that reliable self-powered operation from body heat

is achievable in a comfortable form. Future work could easily make this system more like a

commercial product by increasing the levels of integration. The TX and the DC-DC converter

used for the TEGs could be integrated with the SoC onto a single IC, the three PCBs could be

replace with one, and the PCB and its case could be further optimized to minimize their size.

Several bug fixes could also be implemented for power management circuits on the SoC, which

would likely reduce the system power further by 10s of µWs, enabling smaller TEGs to be used.

6.3 Individual Contributions

Many of the projects I’ve worked on in graduate school are large and complex, and thus multiple

people contributed them. This is an explicit list of my contributions for all of the content in this

dissertation.

Chapter 2: Ultra-Low Power Sensor Data Compression

All of the content presented in this section was my own except for the physical RTL-to-GDS

implementation of the accelerator, which was done by Christopher J. Lukas and Farah

Yahya, since the accelerator was integrated into a larger block on the health-monitoring

SoC.

Chapter 3: Ultra-Low Power DVFS RISC-V Microprocessor

My contributions focus on the circuit design with the SDLS logic gates, and include the logic

gate characterization, digital subsystem design, and digital subsystem implementation. The

SDLS logic gates, VSC, and ACG were designed by Daniel S. Truesdell. The SRAM was

designed by Sumanth Kamineni and Ningxi Liu.

Chapter 4: Multi-Threshold DLS Logic

All of the content presented in this section was my own except for the design of the DLS
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logic gates, which were designed by Daniel S. Truesdell.

Chapter 5: Ultra-Low Power IoT Systems and Applications

The health-monitoring SoC was designed by a large team led by Farah Yahya and Christo-

pher J. Lukas. My contributions to the SoC design were the sensor data compression

accelerator, and digital subsystem verification during the design stage. I also designed and

implemented the applications used to demonstrate the SoC, and measured the results. I

co-lead the integration efforts for the self-powered wearable cardiac monitoring system with

Luis Lopez Ruiz. I designed and implemented the digital subsystem for the MEL control

SoC, and the digital back-end for the 802.11ba WuRX.
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