

Advancing the Reproducibility of Hydrologic Models: An Extensible Model

Metadata Framework and Cyberinfrastructure for Complex Modeling

A Dissertation

Presented to

The Faculty of the School of Engineering and Applied Sciences

University of Virginia

In Partial Fulfillment

of the requirements for the Degree of

Doctor of Philosophy (Civil Engineering)

By

Iman Maghami

August 3, 2022

Abstract
 A variety of hydrologic computational models are used by domain scientists to address

specific water challenges such as floods, droughts, and water pollution. The number of scientific

studies making use of such diverse and often complex models has been rapidly increasing. Ideally,

the investment in models and approaches used in these past studies could be reproduced,

replicated, and leveraged in future studies. Many researchers in recent years have emphasized

reproducibility as an essential part of scientific research. However, the reproducibility of model-

based scientific studies is still lacking in large part due to the proliferation and complexity of

hydrologic models. In this research, the components of these models are defined as two distinct

concepts: the modeling software referred to as a model program and the model input and output

files referred to as a model instance. The overall goal of the research reported in this dissertation

is to foster the reproducibility of model-based hydrologic studies through (i) creating a metadata

framework to describe model programs and model instances in a more extensible way and (ii)

designing cyberinfrastructure to overcome challenges in reproducing large-scale computational

studies. The first part of this research goal leads to the first two studies in this dissertation. First,

an extensible hydrologic model metadata framework design using a user-defined metadata schema

is presented. To overcome the fact that the properties of a model instance needed for a single

hydrologic model program can vary significantly, I present a standardized way for encoding an

extensible machine-readable model metadata schema that specifies the metadata elements for the

model instances of any model program. Second, I present a methodology for building a model

instance metadata schema for model programs and discuss strategies for how to manage the variety

of metadata schemas that might be developed by the modeling community. The third study focuses

on the second part of the overall goal of this dissertation research and aims to advance the

cyberinfrastructure needed to overcome data management and software architecture challenges to

reproduce large-scale computational studies. The goal is to make computational hydrologic studies

easier to reproduce and reuse. Across the three studies, this research work advances reproducibility

by demonstrating how model agnostic metadata frameworks can advance model sharing and reuse,

how it is possible to create a generic model metadata framework for hydrologic models, how

containerization of the model allows for portability across computing environments, how Globus

can be used for large data transfer between scientific cloud services, and how Jupyter can provide

a gateway to HPC environments. Results of this research provide scientists and engineers new

ways to conduct computing and data-intensive modeling studies using modern cyberinfrastructure

that fosters reproducibility. These results not only impact the hydrologic modeling field, but can

be broadly adopted by environmental and other scientific disciplines that follow a similar practice

of making use of model program and model instance objects in their research.

Table of Contents

1 Introduction ... 1

2 An Extensible Environmental Model Metadata Framework Using a User-defined Metadata

Schema ... 5

2.1 Introduction ... 5

2.2 Methodology ... 8

2.2.1 Metadata framework design .. 8

2.2.2 Experimental use case ... 16

2.3 Results ... 17

2.3.1 Software implementation within HydroShare ... 17

2.3.2 Results from the example use case.. 18

2.4 Discussion ... 27

2.4.1 Key design choices.. 27

2.4.2 Migrating legacy HydroShare model resources to the new model aggregation design 28

2.4.3 Limitations of the new design and its implementation ... 30

2.4.4 Opportunities for future research .. 30

2.5 Conclusions ... 31

Acknowledgments ... 31

Software Availability .. 31

3 A Metadata Schema Design for Instances of Hydrologic Models: SUMMA as a Case Study .. 32

3.1 Introduction ... 32

3.2 Methodology ... 34

3.2.1 General principles for designing the MI metadata schema ... 34

3.2.2 Process of designing metadata schema ... 35

3.2.3 Model Metadata Design Case Study ... 36

3.3 Results ... 38

3.3.1 Developed schema for SUMMA ... 38

3.3.2 Integration into the HydroShare system .. 42

3.4 Discussion ... 46

3.4.1 Categorizing metadata based on their harvestability... 46

3.4.2 Model setup code: a metadata element to consider ... 46

3.4.3 Strategies for managing the MI metadata schemas ... 46

3.5 Conclusions ... 47

4 Cyberinfrastructure for Reproducibility of Complex Hydrologic Modeling Studies 48

4.1 Introduction ... 48

4.2 Methods... 50

4.2.1 Overview of the VB study .. 50

4.2.2 Cyberinfrastructure design and implementation ... 51

4.2.3 Model Workflows ... 55

4.2.4 Performance analysis .. 60

4.3 Results and discussion .. 61

4.3.1 Results of the modeling case study ... 61

4.3.2 Results from performance analysis ... 64

4.3.3 Best-practice for reproducibility ... 67

4.3.4 Opportunities and challenges .. 70

4.4 Conclusions ... 71

Acknowledgments ... 72

Software and Data Availability .. 72

5 Conclusions .. 74

6 References .. 76

Appendix .. 83

Appendix-1 .. 83

List of Figures
Figure 2.1. Key components of the new MP and MI aggregations (current design; right) versus those of obsolete MP

and MI resources (old design by Morsy et al. (2017); left) ... 9

Figure 2.2. Resource-level metadata elements for a composite resource expressed as RDF triples. The # prefix

signifies an attribute that can be populated when creating a composite resource. Each Dublin Core metadata element

is prefixed with “dc”; each metadata element defined by HydroShare is prefixed with “hsterms” 11

Figure 2.3. MP content aggregation metadata elements expressed as RDF triples. The # prefix signifies an attribute

that can be populated when implementing the metadata for a given MP. Each Dublin Core metadata element is

prefixed with “dc”; each metadata element defined by HydroShare is prefixed with “hsterms”. Modified from Morsy

et al. (2017) .. 13

Figure 2.4. MI content aggregation metadata elements expressed as RDF triples. The # prefix signifies an attribute

that can be populated when implementing the metadata for a given MI. Each Dublin Core metadata element is

prefixed with “dc”; each metadata element defined by HydroShare is prefixed with “hsterms” 14

Figure 2.5. Graphical depiction of the SWAT MI metadata schema (SWAT_Schema_ 1.0.0.json) provided as an

example by HydroShare. Modified from Morsy et al. (2017) ... 16

Figure 2.6. SWAT use case implementation: the resource holding five MI and one MP aggregation 17

Figure 2.7: UML class diagram for the MP and MI content type implemented in HydroShare 18

Figure 2.8. Results of populating resource-level metadata for the composite resource of the example use case 19

Figure 2.9. Results of populating aggregation-level metadata for one of the MIs of the example use case 20

Figure 2.10. Results of populating the schema-based metadata using the SWAT MI metadata schema for the

example use case (SWAT_Schema_1.0.0.json) .. 21

Figure 2.11. Activity diagram showing the steps to create MP and MI within HydroShare 22

Figure 2.12. MP metadata and steps to select/upload MI Metadata Schema on a resource landing page within

HydroShare (shown in edit mode) ... 23

Figure 2.13 MI standard and content-specific metadata on a resource landing page within HydroShare (shown in edit

mode) ... 24

Figure 2.14. MI schema-based metadata on a resource landing page within HydroShare (shown in edit mode) 26

Figure 2.15. MI Schema-based metadata (a) validated, (b) NOT validated by the metadata schema in the linked MP

on a resource landing page within HydroShare (shown in edit mode) .. 27

Figure 3.1. Design process of a metadata schema ... 36

Figure 3.2. Key components of the MP and MI content aggregations in a HydroShare resource (source: adapted from

Chapter 3 of this dissertatio) .. 37

Figure 3.3. SUMMA use case: A HydroShare collection resource (Choi, 2020a) referring to seven MI, one MP, and

two workflow resources by Choi et al. (2021d)’s hydrologic study (old design) .. 38

Figure 3.4. Developed MI metadata schema for SUMMA (metadata elements are not populated) 40

Figure 3.5. The developed JSON file for the SUMMA MI metadata schema ... 42

Figure 3.6. Results for SUMMA use case: single HydroShare resource holding seven MI and one MP aggregations

and two workflows created by this study ... 43

Figure 3.7. Model Instance content aggregation generic metadata for MI1_The Impact of Stomatal Resistance

Parameterizations on ET of SUMMA Model in Aspen stand at Reynolds Mountain East ... 44

Figure 3.8. Model Instance content aggregation schema-based metadata for MI1_The Impact of Stomatal Resistance

Parameterizations on ET of SUMMA Model in Aspen stand at Reynolds Mountain East ... 45

Figure 4.1. The general modeling approach presented by Choi et al. (2021) used by this study consisting of three

primary components with seamless data transfers for open and reproducible environmental modeling 52

Figure 4.2. Large data transfer from HPC to CyberGIS-Jupyter for Water Jupyter on HydroShare through 1- the

CyberGIS-Compute, 2- Globus ... 55

Figure 4.3. KGE values using the DEFAULT model runs for each CNST dataset (datasets 2-8; Table A2 in the

Appendix), grouped by SUMMA output variable ... 63

Figure 4.4. Notebook 1 and 3 run-time performance analysis for different model simulations (both notebooks 1 and

3 were run on CJW VM no matter whether the HPC or CJW VM environment was used for the modeling; therefore

we do not distinguish between the environments .. 65

Figure 4.5. Notebook 2 run-time performance analysis for different model simulations using the CJW VM, or HPC

(Expanse with 256 or 128 CPUs) options .. 66

Figure 4.6. Boxplots for Notebook 4 run-time performance analysis for six different simulation years to transfer data

from Expanse HPC to CJW on HydroShare. Each transfer was repeated five times to obtain a range of run-time for

each of the model simulations ... 67

Figure 4.7. The HydroShare landing page for the collection resource developed by this study (2021a) 68

Figure 4.8. The HydroShare landing page for the HPC resource developed by this study (2021b) 69

List of Tables

Table 3.1. Element's attributes and explanation using JSON schema (Implemented in HydroShare) 41

Table 3.2. Metadata elements to be considered when describing a MI metadata schema, proposed to manage the

schemas that will be created by the modeling community .. 47

Table 4.1. Overview of the notebooks 1-4 ... 56

Table 4.2 Hardware specifications of the computational environments .. 57

Table 4.3 Model scenarios for notebooks run-time performance analysis .. 61

Table 4.4. Station descriptions for basin individual analysis ... 62

Chapter 1

1

Chapter 1

1 Introduction

The need for research reproducibility, the ability of a researcher to duplicate and verify the findings

of a prior study, has been emphasized by numerous studies (Choi et al., 2021d; Essawy et al., 2018;

Horsburgh et al., 2016; Nüst et al., 2018; Piccolo and Frampton, 2016; Stodden et al., 2013). Some

studies have assessed the research reproducibility in different scientific disciplines (e.g., Baker,

2016; Obels et al., 2020; Stagge et al., 2019) and found what has been called a “reproducibility

crisis”. Within the field of hydrology and water resources, Stagge et al. (2019) investigated 360

articles in six leading journals to examine their online data availability and reproducibility of study

results. The result of their study indicated that only 5.6% of the articles had data, model code, and

directions for use available online, and only results of 1.1% were completely reproducible while

0.6% were partially reproducible.

 Even the word “reproducible” has different meanings and definitions in the modeling

literature. Essawy et al. (2020) defined a taxonomy for levels of reproducibility for modelling

studies that comprise a progression of increasing time and effort. These levels of model

reproducibility begin with repeatability then runnability, reproducibility and, finally, replicability.

The two lowest levels, repeatability and runnability, are performed by the original researcher while

the highest two levels, reproducibility and replicability, are performed by a new researcher

attempting to reproduce someone else’s work. In this work, I mainly deal with reproducibility and

replicability levels. According to Essawy et al. (2020), the third level, reproducibility, is obtaining

consistent results using the same input data, computational steps, methods, code and conditions of

analysis by a new researcher on a new machine. The fourth level, i.e., replicability, is obtaining

consistent results across studies aimed at answering the same scientific question with new data.

While I acknowledge these levels of reproducibility exist, when using the term “reproducibility”

in this work, I most often mean the two highest levels defined by Essawy et al. (2020), i.e.

“reproducibility” and “replicability.” That said, it is not often necessary to precisely define what

level of reproducibility I am referring to in the work. Therefore, most often the general term

“reproducibility” is used but, when it is necessary, I will use the Essawy et al. (2020) taxonomy to

distinguish between levels of reproducibility.

Although several possible reasons can cause the previously mentioned inability to

reproduce past studies, reviewing recent studies reveals an ongoing need to extend the

cyberinfrastructure for the sharing, discovering, and reuse of data and models build by others by

introducing novel approaches to foster the reproducibility of model-based studies (e.g., Choi et al.,

2021g; Essawy et al., 2020; Morsy et al., 2017; Riddick et al., 2020). The objective of this

dissertation is to improve the reproducibility of model-based hydrologic studies by achieving three

distinct research goals: (1) designing and implementing a general model metadata framework, (2)

implementing general metadata design rules to design a model metadata schema for a specific

environmental model, and (3) presenting cyberinfrastructure for overcoming reproducibility

barriers in data and computationally intensive hydrologic modeling utilizing a strategy and

architecture presented by previous researchers.

 Metadata, defined as “structured data about data” (Duval et al., 2002), is a crucial

component of any digital information system and helps people and machines find, access, and use

Chapter 1

2

information (Greenberg et al., 2013). Without metadata standards, information systems lack the

ability to properly interpret and contextualize the data. This can lead to problems for end users

including an inability to search relevant data, an inability to find related information, and an

inability to operate on data for deriving new information. Adopting standard metadata is a widely

acknowledged way to advance reproducibility (Essawy et al., 2020; Leipzig et al., 2021; Qin et

al., 2016). While there are many well-established metadata for data, fewer studies have started to

adopt, design, and frame agreed-on metadata for models (Morsy et al., 2017).

For numerical models, one example of metadata to describe a model that contains the input

and output data for model scenarios was done by Hill et al. (2001). They provided approximately

165 metadata elements divided into ten sections to help find and reuse models

(http://www.dlib.org/dlib/june01/hill/appendix.html). Lehfeldt (2013) proposed a concept for

metadata-driven architecture to describe computational fluid dynamics simulations as well as a

method to integrate model descriptions into spatial data infrastructures. The Community Surface

Dynamics Modeling System (CSDMS) (Overeem et al., 2013; Peckham, 2014) created a metadata

framework and use it to describe over 420 geoscience models and tools, including over 100

hydrologic models within its portal (http://csdms.colorado.edu). While the CSDMS model

metadata focuses on the software for executing a model, it does not extend to the input/output files

for a specific model simulation as it is primarily a portal for sharing the model software and not

the input/output files associated with running a specific instance of the model software. The

OntoSoft project (Gil et al., 2016, 2015), as part of the National Science Foundation EarthCube

Initiative, frames an ontology and provides a portal to capture metadata for scientific software in

a formal way. The focus of the metadata captured by the OntoSoft ontology is on the knowledge

needed for sharing and reuse of “software”, broadly used by them to refer to scripts as well as more

complex software such as modeling software (Essawy et al., 2017).

 While this past research in model metadata started to set the stage to adopt, design, and

frame agreed-on metadata for models and contributed a useful metadata design relevant to

hydrologic models, perhaps the most related prior work to this project is the work of Morsy et al.

(2017). In this work, models are defined as two distinct concepts, i.e., modeling software (called

the model program, and referred to as “MP” in this research) and the model input file(s), that are

fed to a modeling software (called the model instance, and referred to as “MI” in this research) to

conduct a model simulation (Morsy et al., 2017). A MP includes software developed for running

a model simulation and generating outputs, while a MI is the application of the MP to a specific

study area which includes the input files and, optionally, the output files for a particular simulation.

Morsy et al. (2017), who initially established these two objects, designed a generic metadata

framework for hydrological and environmental models based on the conceptualization of model

components as MP and MI.

The Morsy et al. (2017) approach was to extend the Dublin Core metadata framework to

be applied to a wide range of hydrological and environmental models. They also added an

extension to the generic model program metadata framework for two of the most used hydrological

models: SWAT (Soil and Water Assessment Tool) and MODFLOW (Modular Three-Dimensional

Finite-Difference Groundwater Flow Model). Their model-specific extended metadata helped

users describe the SWAT and MODFLOW MIs with better details using a pre-defined metadata

schema specific to these two models. They implemented their design in the web-based

collaborative system, HydroShare (https://www.hydroshare.org/). HydroShare is designed to

advance sharing, accessing, and discovering hydrologic and environmental data and models

https://www.hydroshare.org/

Chapter 1

3

(Tarboton et al., 2014b, 2014a). In their implementation on HydroShare, the users could upload

their data and/or model files and their corresponding metadata as a “resource”, the basic digital

content unit in HydroShare. They implemented four different model resources (a MP, and generic,

non-model specific MI, a SWAT MI, and a MODFLOW MI) on HydroShare. Their design was

one of the existing best practices for model metadata and inspired future studies (e.g., Riddick et

al., 2020), making a significant step towards a more established metadata framework for

environmental models.

 Despite its success, one challenge with the Morsy et al. (2017) design is that the properties

of a MI for one piece of hydrologic and environmental modeling software (i.e., MP) can vary

significantly from another. This variety necessitates using a customizable metadata schema to

describe MIs for any given MP. To this point, supporting specific MPs and their accompanying

MIs within a hydrologic information system has been laborious, requiring repository developers

to create and maintain individual metadata schemas manually. As a result, only a limited number

of specific MPs (i.e., SWAT and MOFLOW) have been supported by the HydroShare system.

What is needed is a more general and flexible approach for defining model-specific metadata. This

knowledge gap leads to the first two studies reported in this dissertation.

The first study aims to present an extensible environmental model metadata framework

using a user-defined metadata schema. Therefore, a standardized and extensible way for encoding

a machine-readable model metadata schema file that specifies the metadata elements for MIs of a

MP is proposed. This standard metadata schema format enables data repository users, the modelers

themselves, to define the metadata fields for any arbitrary MP. The design, building up on the

previous design by Morsy et al. (2017), is implemented in HydroShare.

The second study, building on the first objective, aims to explore building model instance

metadata schemas for arbitrary model programs and discusses how to manage the variety of

metadata schemas that might be developed by the modeling community. To achieve this, the

metadata elements that need to be standardized across hydrologic and environmental models are

identified and an example metadata schema is built for a particular hydrologic model, i.e., Structure

for Unifying Multiple Modeling Alternative (SUMMA) (Clark et al., 2015b), use case. Then, an

example metadata schema is built for a particular hydrologic model (Structure for SUMMA use

case. Upon creation of a number of different metadata schemas for different models by modelers,

there will be a need to organize the metadata schemas so that they can be easily shared, found and

reused. Therefore, a method for organizing the metadata schemas is discussed to advance the

reportability and transparency.

 Reproducibility goes beyond sharing code and data as open-source and online resources

described by metadata. The code and data must be accompanied by well-documented workflows

with readable and reusable code (Chen et al., 2020). Choi et al. (2021d), described a general

strategy for creating modern cyberinfrastructure to support open and reproducible hydrologic

modeling. This approach integrates three main components: (1) online data repositories; (2)

computational environments leveraging containerization and self-documented computational

notebooks; and (3) Application Programming Interfaces (APIs) that provide programmatic control

of complex computational models. Choi et al. (2021d) focused mainly on the system design and

demonstrated their approach with a fairly simple modeling example. However, reproducibility in

computational hydrology can present some difficult challenges when dealing with large-scale

Chapter 1

4

hydrologic studies (Hutton et al., 2016). These challenges mostly pertain to the use of “big data”

and computationally expensive and time-consuming resources needed for reproducibility of

complex hydrologic modeling studies. Hutton et al. (2016) notes that in these cases, new

techniques are needed to ensure scientific rigor. This knowledge gap leads to the third study

reported in this dissertation.

The third study aims to provide an example of the overall system design outlined by Choi

et al. (2021d) as applied to a large-scale hydrologic study by Van Beusekom et al. (2022). To

ensure reproducibility of large-scale hydrologic studies, the necessary cyberinfrastructure to

reproduce Van Beusekom et al. (2022) study for selected sub-domains are developed and the

embedded challenges and opportunities are discussed. The developed cyberinfrastructure utilizes

software components to enable intuitive and online access to computational environments,

including high performance computing (HPC). Using HydroShare as the data repository and

containerization of the pySUMMA API along with a computational gateway interface of Jupyter

IPython notebooks hosted on the CyberGIS-Jupyter for Water (CJW), it was possible to overcome

data management and software architecture challenges to reproduce large-scale computational

studies. A model workflow run-time performance analysis was conducted to evaluate the

effectiveness of the computational environments to reproduce different-sized model simulations.

The remaining chapters of this dissertation are organized as follows. Chapters 2-4 are

results from the three studies described in this chapter, each written as a standalone study to

facilitation their publication in peer-reviewed journals. Chapter 5 seeks to tie these three studies

together by presenting overall conclusions drawn across the three studies.

This chapter is in preparation for submission to a peer-reviewed journal. Current coauthors of the

study are Iman Maghami, Jonathan L. Goodall, Mohamed M. Morsy, Jeffrey M. Sadler, Jeffery

S. Horsburgh, Pabitra K. Dash, Youngdon Choi, Kevin Chen, Martin Seul, Scott Black, and

David G. Tarboton.

5

Chapter 2

2 An Extensible Environmental Model Metadata

Framework Using a User-defined Metadata

Schema

2.1 Introduction

Domain scientists and engineers use a broad range of hydrologic and environmental models to

address and understand various environmental and water resource issues such as climate change,

floods, droughts, and water pollution (Addor and Melsen, 2019; Tayfur, 2017). The number of

scientific studies making use of such diverse and often complex models has been rapidly

increasing. Ideally, the investment in models and approaches used by existing studies can also be

leveraged by future studies. Many researchers in recent years have studied this idea of

reproducibility as an essential part of scientific research (e.g., Choi et al., 2021; Essawy et al.,

2020, 2018; Horsburgh et al., 2016; Hutton et al., 2017; Morsy et al., 2017; Stagge et al., 2019).

However, the reproducibility of scientific studies still needs to be improved given the recent rapid

development of models.

 Some studies have assessed research reproducibility in different scientific disciplines (e.g.,

Baker, 2016; Obels et al., 2020; Stagge et al., 2019). Baker (2016) surveyed 1576 researchers

across various scientific disciplines and revealed that more than 70% of the surveyed researchers

tried but failed to reproduce studies published by other researchers. In another similar study, but

only focused on the field of hydrology and water resources, Stagge et al. (2019) estimated with

95% confidence that the results of only 0.6% to 6.8% out of a sample of 1989 articles published

in water resources-related journals during the year of 2017 could be reproduced. According to

these studies, methods, codes, and raw data not available from the original studies were among the

main contributing factors to the irreproducibility of scientific studies. Given that, novel approaches

for sharing, discovering, and reusing data and models built by others have been proposed in recent

years to improve the reproducibility of scientific research.

 Adopting standard metadata is a widely accepted way to strengthen the computational

resources for sharing, discovering, and reusability of research (Essawy et al., 2020; Horsburgh et

al., 2016; Leipzig et al., 2021; Morsy et al., 2017). While much effort has been invested in

establishing metadata standards and profiles for scientific data, fewer efforts have been made to

adapt, design, and frame agreed-on metadata for models (e.g., Hill et al. (2001), Wosniok and

Lehfeldt. (2013), the Community Surface Dynamics Modeling System (CSDSM)

(http://csdms.colorado.edu/), and OntoSoft (Gil et al., 2016, 2015)). Yet, such metadata are

Chapter 2

6

necessary for discovering, accessing, and reusing models and are essential for reproducing

scientific studies where models are employed.

 Morsy et al. (2017) designed a generic metadata framework for hydrological and

environmental models. This generic metadata framework extended the Dublin Core metadata

framework (“Dublin Core Metadata Initiative. Dublin core metadata element set, version 1.1.,”

2012) to be applied to a wide range of hydrological and environmental models. They defined

computational model components as two distinct concepts, i.e., model program (referred to as

“MP” in this paper) and model instance (referred to as “MI” in this paper). A MP resource included

software developed for running a model simulation and generating outputs. In contrast, a MI

resource was the application of the MP to a specific spatial and temporal domain. Therefore, a MI

resource included the input files and, optionally, the output files for a particular simulation. They

also added an extension to the generic MP metadata framework for two popular and frequently

used hydrological models, i.e., the Soil and Water Assessment Tool (SWAT) and the Modular

Three-Dimensional Finite-Difference Groundwater Flow Model (MODFLOW). This extended

metadata helped users describe SWAT and MODFLOW MIs with better details using a pre-

defined metadata schema specific to those two models. They implemented their design in the web-

based collaboration and repository system, HydroShare (https://www.hydroshare.org/).

HydroShare was designed to advance sharing, accessing, and discovering hydrologic and

environmental data and models (Tarboton et al., 2014b, 2014c). HydroShare users upload their

data and/or model files and provide their corresponding metadata as a “resource”, the basic digital

content unit in HydroShare, and sharing MPs and MIs as resources in HydroShare enhances

reproducibility because researchers can download and execute the models to verify, reproduce,

and extend results. In Morsy et al.’s (2017) implementation in HydroShare, four different model

resource types were defined, i.e., generic MP, generic MI, SWAT MI, and MODFLOW MI. Their

design presented an outstanding practice for model metadata, has been used by recent studies (e.g.,

Riddick et al., 2020), and took significant steps towards a more established metadata framework

for models.

 However, although their approach highlighted a road toward sharing models developed by

previous research in a reproducible way, their initial MP and MI metadata design assumed that a

new HydroShare resource type would be defined for each new model. Although the metadata

concepts were sound, the implementation approach ultimately lacked sufficient scalability and

flexibility to be easily expanded and implemented for other model types. This was generally true

of HydroShare’s early approach to defining typed resources for different content types. This first

approach only worked for a limited range of modelers, missing the wider range of environmental

models that could easily benefit from it (i.e., the scalability problem), because their work only

provided the specific (or extended) metadata support for two hydrologic models (SWAT, and

MODFLOW) and most modelers lacked the specific skills needed to define a new HydroShare

resource type,.

 The limitations of Morsy et al.’s (2017) work were due to several challenges faced by the

HydroShare team in providing a significant number of existing environmental models with specific

metadata support. Their design was not flexible enough (i.e., the flexibility problem) to give the

Chapter 2

7

modelers complete ownership of model metadata for two main reasons. First, modelers could not

edit which specific metadata elements were defined for the models that had particular metadata

support (i.e., SWAT and MODFLOW). Definition of MP and MI resource types was done by the

HydroShare development team and most modelers lack the web development skills needed to

define a specific HydroShare MP or MI resource type. Second, although modelers could benefit

from “Additional Metadata” as key-value pairs that could be used to add any arbitrary metadata to

MP or MI resources in HydroShare (both models that had specific metadata support, i.e., SWAT,

and MODFLOW, and models that had only generic metadata support, i.e., any model other than

SWAT and MODFLOW), such “Additional Metadata” could only be applied to one MP or MI

resource at a time. For example, if there were many MI resources with the same metadata executed

by one specific MP resource, the modeler needed to repeat adding “Additional Metadata” for each

MI resource, which could make this task overwhelming. Moreover, the “Additional Metadata” for

adding arbitrary metadata being designed as key-value pairs of string type, could not support more

enhanced metadata (e.g., letting the user choose the data type or choose values from a controlled

vocabulary), and there was no guarantee that multiple modelers describing the same MP or MI

resource type would use the same “Additional Metadata” elements.

 Given these limitations and Hydroshare’s shift from multiple typed resources to a single

resource type with typed content within a resource, the objective of this study was to improve and

transfer the ability to provide support for the numerous MPs used by the hydrological and

environmental science community - from HydroShare repository and tool developers to the

modeling community. To achieve this goal, we designed and implemented a flexible and scalable

method for specifying metadata for hydrological and environmental models by expanding on the

previous approach (i.e., Morsy et al., 2017) to address the scalability and flexibility problems. The

new design reported here is scalable in the sense that modelers, who are repository (e.g.,

HydroShare) users who create resources containing hydrologic and environmental models, can

support their own MI with customized metadata defined and supported by themselves, i.e.,

modelers define and update the metadata for their models without any need for further effort from

the repository and tool developers.

 The new design is flexible as it introduces a novel and standardized way for encoding a

machine-readable model metadata schema file that specifies the metadata elements for MIs of a

MP. This metadata schema facilitates sharing and documenting of models and makes valuable

strides towards enhancing reproducibility of hydrologic and environmental research. This is

achieved by giving the ability to the repository users, the modelers themselves, who are expectedly

more knowledgeable and invested in describing MIs than the repository and tool developers (e.g.,

HydroShare developers), to create the metadata schema by specifying the metadata elements that

best describe MIs of a MP. Using schema-based metadata, elements can be defined and new

elements added without additional effort by repository developers compared to Morsy et al.’s

(2017) design. Moreover, the implementation example we demonstrate using HydroShare shows

how using a standardized, machine-readable, model metadata schema file makes this approach

suitable for any arbitrary model. This means that in the new design, only one MI content type and

one MP content type exist in HydroShare, which simplifies HydroShare’s codebase while still

Chapter 2

8

solving the scalability and flexibility problems. The MP and MI content types introduced by this

study can support describing any specific model.

 This paper describes the design of the flexible and scalable metadata schema and

demonstrates its use. Section 2 discusses the design of the model metadata framework (MI content

type aggregation, MP content type aggregation, and MI metadata schema). Later in that section,

we employ a use case of a hydrological modeling study using a hydrological model (SWAT) to

test and validate the implemented design in HydroShare. Section 3 presents the implemented

software in HydroShare and the results from the example use case. Finally, we discuss the

approach we implemented and provide the summary, conclusions, and possible future steps.

2.2 Methodology

2.2.1 Metadata framework design

As mentioned in the introduction section, this study enables transferring the responsibility to

support the numerous MPs used by the hydrological science community - from the repository and

tool developers to the modeling community – user-level responsibility. This was done by

redesigning the metadata framework presented by Morsy et al. (2017) by focusing on addressing

the limitations of their design, i.e., lack of flexibility and scalability through a standardized way of

encoding machine-readable model metadata schema file specifying the metadata elements for MIs

of an MP.

 The core of the design by Morsy et al. (2017) was to consider a computational model as

two distinct components - i.e., a MP resource (i.e., software and engine) and a MI resource (i.e.,

input and optionally output files). This separation was made to: first, let several MIs link to one

specific version of a MP that could execute those MIs; and second, to avoid redundancy (if MI and

MP were combined together in the same resource, the same MP would be stored several times with

each MI executed by that MP (Figure 2.1, left side)). An “ExecutedBy” relation as a many-to-one

to link between any number of instances and the MP used for execution of an MI was used in

Morsy et al. (2017). Consistent with HydroShare’s method for encoding metadata, Morsy et al.

(2017) used Resource Description Framework (RDF) to encode concepts and their associated

metadata formally. RDF uses a subject, predicate, and object structure (http://www.w3.org/RDF).

As a simple example, this basic structure could be used to show that a MI (subject) is executed by

(predicate) a MP (object) (Figure 2.1. Left side). Each resource had core metadata defined by the

Dublin Core metadata framework and extended metadata designed through their research that was

encoded and stored on disk using RDF-XML. Additionally, their design included four different

model resources types: generic MP resource, and generic MI resource, SWAT MI resource, and

MODFLOW MI resource (Figure 2.1, left side).

Chapter 2

9

Figure 2.1. Key components of the new MP and MI aggregations (current design; right) versus

those of obsolete MP and MI resources (old design by Morsy et al. (2017); left)

 In this study, the core of Morsy et al.’s (2017) design was kept for the same reasons

mentioned by their study (Figure 1, right side). The core design includes: (1) considering a

computational model as two distinct concepts (MP and MI); (2) allowing linking of many-to-one

relation between MI and the MP used for executing the MIs via an “ExecutedBy” relation, and (3)

using RDF-XML for storing the encoded Dublin Core metadata and extended metadata introduced

in the previous and current research. However, the necessary changes required to make the design

more scalable and flexible are discussed in the following paragraphs.

 First and foremost, the HydroShare model resource types were converted to model content

aggregation types consistent with HydroShare’s composite resource design. No distinct

“resources” for MI and MP exist in the new implementation. This followed the same transition

that happened for all of HydroShare’s typed resources. Given the difficulty in defining and

implementing specific resource types in the HydroShare code, a single, “composite” resource type

was defined within which content of different types could be uploaded and shared. This redesign

had several benefits that included simplifying HydroShare’s code, enabling content of multiple

different types to be shared within a single resource and receive a single citation, and making it

easier to define and implement typed content. These changes were focused on simplifying

functionality while improving flexibility for storing and organizing contents in HydroShare.

Indeed, we observed that too much complexity may lead to users not adopting the approach

broadly. For example, having separate resource types for models and data in the older versions of

HydroShare (including the versions that used Morsy et al.’s (2017) design) could be a reason for

some users not to utilizing the developed features fully. When exploring the resources shared in

HydroShare, we observed that some users simply shared all of their models and data within a

composite resource instead of using HydroShare’s specific model and data resource types. Given

Chapter 2

10

this and other evidence supporting HydroShare’s composite resource design, only one resource

type now exists in HydroShare that can contain multiple content type aggregations, including data

(i.e., multi-dimensional, geographic feature, geographic raster, time series, referenced time series,

file-set, and single file) and models (MI and MP). Consequently, all existing specialized

HydroShare resource types were converted to content aggregation types in the composite resource

(e.g., the multi-dimensional space-time data aggregation described by Gan et al. (2020)).

 HydroShare’s content type aggregations extend HydroShare’s resource-level Dublin Core

metadata to provide new metadata elements that support functionality specific to common

hydrologic datasets or other content types. Content type aggregations consist of one or more related

content files visualized with a single icon in HydroShare's file browser and may also have content-

level metadata and specialized functionality available within HydroShare’s web user interface or

via HydroShare’s linked web apps. Additionally, in the previous design and implementation,

specifically typed data could not be present in MI resources (e.g., multi-dimensional space-time

data could not be a recognized aggregation inside a MI). In this new design and implementation,

different data types can be present in a MI content aggregation with automatic metadata

recognition. Metadata elements for HydroShare resources holding any content types (for example,

MI and MP content types) are either resource-level or content aggregation-level metadata. Figure

2.2 shows the resource-level metadata elements common to all HydroShare resources describing

a resource's general attributes. They are based on the standard Dublin Core metadata elements

prefixed with “dc” (e.g., title, creator, abstract, keywords) and elements that extended “dc”

prefixed with “hsterms” (e.g., sub-elements of creator: name, organization, creatorOrder, email

that do not exist in the Dublin Core namespace). Content-level metadata for MI and MP are

described in the following subsections.

Chapter 2

11

Figure 2.2. Resource-level metadata elements for a composite resource expressed as RDF triples.

The # prefix signifies an attribute that can be populated when creating a composite resource.

Each Dublin Core metadata element is prefixed with “dc”; each metadata element defined by

HydroShare is prefixed with “hsterms”

 The second change is that the four different model resource types defined by Morsy et al.

(2017) (generic MP, generic MI, SWAT MI, and MODFLOW MI) were replaced by two model

content aggregation types as part of the composite resource: MP content aggregation and MI

content aggregation. In contrast, no specific MIs for SWAT and MOFLOW are provided in the

new design (compare Figure 1, left side against right side). Morsy et al. (2017) could only support

specific MIs with rich metadata for a limited number of models (i.e., SWAT and MODFLOW)

with the ability to support any other type of MIs as generic MI but with little metadata description.

This limitation in the design was due to the fact that such a task requires significant time, effort,

and detailed knowledge of dozens of hydrological models, which is beyond the capabilities of a

limited number of people (i.e., repository developers). Therefore, in the new design, we provided

a more scalable design by enabling the users to support specific metadata for any arbitrary

hydrological and environmental models of their choice.

 Last but not least, to have a more flexible design, a machine-readable, user-owned MI

metadata schema (referred to as “metadata schema” in this paper) was introduced. The MI

metadata can be redefined using the metadata schema by repository users (the modelers

Chapter 2

12

themselves), who are most knowledgeable and invested in describing the MIs of an MP, without

additional effort by HydroShare developers as opposed to Morsy et al. (2017) 's design.

The metadata for MPs and MIs and the MI metadata schema are described in more detail in the

following subsections.

2.2.1.1 Model program aggregation metadata

Similar to Morsy et al. (2017), the MP content aggregation includes the software and files

necessary to identify, install, and run a given environmental and hydrological model. A MP usually

includes the model engine (the core mathematical modeling logic for the model; Morsy et al.,

(2014 and 2017)), and often, but not always, a graphical user interface (GUI) and other utility

software. As an example of the case were different MPs have same or similar model engines,

Morsy et al. (2017) noted there are multiple MPs that has different GUI but same or similar Storm

Water Management Model (SWMM) as their model engine. We followed the basic design by

Morsy et al. (2017) to link a MP with a MI instead of a model engine with an MI. It is possible

that two independent MPs that use the same original model engine do not produce the same model

output; therefore, we followed the old design of the MP.

 Figure 2.3 shows content type metadata elements (or aggregation-level metadata) designed

to describe the MP content aggregation. These metadata elements are similar to those of Morsy et

al. (2017), and only for the sake of completeness, we briefly explain them here. When identifying

metadata for a MP, the goal was to define a specific version of the software, its computer system

compatibility, and its appropriate and intended use. To promote interoperability, this metadata

consists of general elements, which are based on Dublin Core metadata elements (shown in Figure

2.3 using the “dc” prefix), to capture the basic information of any content type (e.g., title,

keywords, and coverage). Then, similar to Morsy et al. (2017), the basic Dublin Core metadata

elements were extended by content type developers with specific metadata (shown in Figure

3 using the “hsterms” prefix) for MP content type (e.g., modelEngine, modelVersion and

modelReleaseDate). The MP content aggregation-level metadata elements can be used for several

purposes, such as enhanced search and discovery across a large number of MPs. Additionally, this

metadata can help improve the reproducibility of research by capturing the exact MP used to

execute a particular MI.

https://www.sciencedirect.com/topics/computer-science/mathematical-modelling
https://www.sciencedirect.com/topics/computer-science/graphical-user-interface
https://www.sciencedirect.com/topics/computer-science/interoperability
https://www.sciencedirect.com/science/article/pii/S1364815216305436#fig2
https://www.sciencedirect.com/science/article/pii/S1364815216305436#fig2
https://www.sciencedirect.com/topics/computer-science/reproducibility

Chapter 2

13

Figure 2.3. MP content aggregation metadata elements expressed as RDF triples. The # prefix

signifies an attribute that can be populated when implementing the metadata for a given MP.

Each Dublin Core metadata element is prefixed with “dc”; each metadata element defined by

HydroShare is prefixed with “hsterms”. Modified from Morsy et al. (2017)

2.2.1.2 Model instance aggregation metadata

The MI content aggregation describes the input files required for applying a hydrological model

to a specific location (Morsy et al., 2017). It may also optionally include the output files resulting

from model execution. The reason for making the inclusion of output files optional was that model

outputs might be massive and can be regenerated using the same MP (for example, output files

generated by 2D models like HEC-RAS and TUFLOW). Many MI content aggregations can be

executed by and linked to a single MP content aggregation in the same way provided by Morsy et

al. (2017). When re-designing the MI metadata, our goal was to define and distinguish between

different MIs across a wide range of environmental and hydrological models. Similar to Morsy et

al. (2017), MI content aggregation metadata includes general elements based on Dublin Core

(shown in Figure 2.4 using the “dc” prefix) to capture the basic information of any content

aggregation (e.g., title, keywords, and coverage). Then, following Morsy et al. (2017), the basic

Dublin Core metadata can be extended by modelers with MI content aggregation-specific metadata

(shown in Figure 2.4 using the “hsterms” prefix; executedByModelProgram and

includesModelOutputs metadata are from the previous design). In addition to the metadata terms

first designed by Morsy et al. (2017), we now allow HydroShare users to extend the design using

https://www.sciencedirect.com/science/article/pii/S1364815216305436#fig2
https://www.sciencedirect.com/science/article/pii/S1364815216305436#fig2

Chapter 2

14

a MI metadata schema that defines model-specific metadata for any MI according to their needs.

A MI metadata schema is a user-definable and machine-readable JSON file that extends metadata

elements by generating specific, extended metadata elements to describe a MI. A wide variety of

environmental and hydrologic models require different metadata to describe them, and there is no

consensus on any given set of metadata that can describe a specific MI. So, using a metadata

schema, modelers can decide which metadata to include according to their knowledge and needs.

Design of the MI metadata schema is discussed in the following subsection.

Figure 2.4. MI content aggregation metadata elements expressed as RDF triples. The # prefix

signifies an attribute that can be populated when implementing the metadata for a given MI.

Each Dublin Core metadata element is prefixed with “dc”; each metadata element defined by

HydroShare is prefixed with “hsterms”

2.2.1.3 Model instance metadata schema

As the main aspect of redesigning the model metadata framework presented by Morsy et al. (2017),

specific extended metadata for MIs of any arbitrary model now can be supported through

introducing a user-definable machine-readable MI metadata schema. The MI metadata schema

generates specific extended metadata elements for the MI (Figure 1, right side).

Chapter 2

15

 Using the MI metadata JSON schema, a modeler can define the metadata elements (i.e.,

properties such as title), semantics of the elements (i.e., descriptions of the elements and acceptable

values), and rules for extended metadata element content (i.e., properties such as data type and

default value; whether the element is mandatory, optional, or conditional; whether the element has

nested elements inside it; whether the element’s value must be chosen from a set of controlled

values; and whether it is a multiple checkbox field). Therefore, the sharing and documenting of

models are facilitated by giving ownership to users/modelers through leveraging the MI metadata

schema, which addresses the flexibility and scalability problems that existed in the previous

design.

 We chose to encode the MI metadata schema using a JavaScript Object Notation (JSON)

Schema document (IETF, 2013). JSON is an open, standard, lightweight text format for serializing

structured data based on the data types of the JavaScript programming language. JSON encodes

data objects consisting of attribute-value pairs and arrays. JSON Schema is a JSON-based format

for defining the structure of JSON data. We chose JSON Schema for the MI metadata schema

because it is widely recognized as fit for this purpose, can be easily understood by both machines

and developers, and is self-describing. There are widely accepted standards available for the JSON

Schema file format (Pezoa et al., 2016), and several packages (for Python and other programming

languages) are available for parsing JSON files. HydroShare users who want to define a metadata

schema for a MI within a HydroShare resource can upload a custom JSON schema file in

HydroShare. To make this easier, we developed two example JSON schemas that are provided by

HydroShare for the SWAT and MODFLOW models. These example JSON schema documents

can be used in the following ways: 1) for SWAT and MODFLOW models with no further changes,

or 2) as examples that can be modified to create a JSON schema for any other hydrologic models

(including SWAT and MODFLOW) as per users' needs. In the following subsection,

SWAT_schema_1.0.0 is explored as an example MI metadata schema provided by HydroShare.

2.2.1.3.1 SWAT_schema_1.0.0.json: An example model instance metadata schema

The SWAT_schema_1.0.0.json is a JSON metadata schema document that can be used to describe

any SWAT MI. This SWAT MI metadata schema is provided as an example in HydroShare and

was designed so that the metadata elements resemble those of the obsolete SWAT MI resource

type previously introduced by Morsy et al. (2017) as close as possible. This guaranteed that the

SWAT JSON schema is compatible with the SWAT MI resources created by HydroShare users

using the previous design. For more details on the reasons for choosing specific metadata

elements, the readers are encouraged to refer to Morsy et al. (2017). The extended metadata

elements for a SWAT MI using SWAT_schema_1.0.0 are shown in Figure 2.4. Despite being

specific and extensive, many of these elements are optional, which keeps the barrier to entry low.

That said, we encourage users to populate as many metadata elements as possible to increase

discovery and reuse of their HydroShare resources.

 The SWAT MI metadata schema introduces controlled vocabularies for the SWAT model

metadata elements of simulationType and simulationTimeStepType. These controlled

vocabularies are compatible with the controlled vocabularies used by SWATShare, an interactive

web platform used to share, run, and visualize SWAT models online (Rajib et al., 2016). The

https://www.sciencedirect.com/science/article/pii/S1364815216305436#fig5

Chapter 2

16

SWATShare webapp, which is linked to HydroShare, lets users to run and visualize SWAT model

instances that are stored in HydroShare. One example of the controlled vocabulary is

simulationTimeStepType which has a controlled vocabulary consisting of four choices: annual,

monthly, daily, and hourly. For modelObjective, the SWAT MI metadata schema allows the user

to select from a list of available model objectives or define new ones.

Figure 2.5. Graphical depiction of the SWAT MI metadata schema (SWAT_Schema_

1.0.0.json) provided as an example by HydroShare. Modified from Morsy et al. (2017)

2.2.2 Experimental use case

To demonstrate our model metadata approach, we published the data used by a previous modeling

study by Ercan et al. (2020) as a HydroShare resource (Maghami, 2021). Their work quantified

possible changes in the water balance of a 1373 km2 watershed in North Carolina, the Upper Neuse

watershed, due to climate change. They first did a sensitivity analysis to find out the most sensitive

model parameters in their study area. Next, they calibrated and validated the SWAT model using

daily streamflow records within the watershed. Then, they used the SWAT model forced with

different climate scenarios for baseline, mid-century, and end-century periods using five different

downscaled General Circulation Models.

 The fact that Ercan et al. (2020) did not formally publish the data or MIs used in their study

made it a good motivation for us to publish their data and MIs as a real example that demonstrates

our design's capabilities and implementation in HydroShare. The HydroShare resource we created

Chapter 2

17

consists of five MIs that are linked to one MP (Figure 2.6). The developed HydroShare resource

also ensures that the MIs and MP used by Ercan et al. (2020) are captured and are available to

other researchers. Other researchers can follow the steps we used in this use case as an established

example to publish their MIs and MPs.

Figure 2.6. SWAT use case implementation: the resource holding five MI and one MP

aggregation

2.3 Results

2.3.1 Software implementation within HydroShare

HydroShare’s resource data model is based on a general design that enables new content types

(aggregations) to be created by inheriting from the abstract content type. We created two new

content types for MP and MI. Figure 2.7 show the UML diagram of the logical design for the MP

and MI content types in HydroShare. Two categories of UML classes exist for each content types:

(1) the abstract classes and (2) the specific content type classes. Abstract classes (i.e., the

AbstractLogiclFile, the AbstractFileMetaData, and the AbstractModelLogicalFile) are inherited

by any content type. The specific content type classes are unique to each content type and define

that content type. The ModelInstanceLogicalFile class, and ModelInstanceFileMetaData class

define the MI content type while the ModelProgramLogicalFile class,

ModelProgramFileMetaData class, and ModelProgramResourceFileType class define the MP

content type aggregation.

Chapter 2

18

Figure 2.7: UML class diagram for the MP and MI content type implemented in HydroShare

2.3.2 Results from the example use case

Figure 2.8 shows the resource-level metadata for the HydroShare resource that contains the five

MIs and one MP. This metadata provides information such as the title, abstract and other metadata

following the Dublin core metadata standard (shown using “dc” prefix). Additionally, extended

metadata (shown with “hsterms” prefix) helps provide a more complete description of the resource

(e.g., hydroShareidentifier).

Chapter 2

19

Figure 2.8. Results of populating resource-level metadata for the composite resource of the

example use case

Figure 2.9 shows generic aggregation-level metadata for one of the SWAT MIs created for the

case study. The title of this MI is “MI_1_SensitivityAnalysis”. In Figure 2.9, the schema based

metadata for this specific MI was generated using the SWAT_Schema_1.0.0.json metadata schema

file (Figure 2.5). Figure 2.10 illustrates the captured metadata for the same MI using the

SWAT_Schema_1.0.0.json (Figure 2.5).

Chapter 2

20

Figure 2.9. Results of populating aggregation-level metadata for one of the MIs of the example

use case

Chapter 2

21

Figure 2.10. Results of populating the schema-based metadata using the SWAT MI metadata

schema for the example use case (SWAT_Schema_1.0.0.json)

 Figure 2.11 shows an activity diagram demonstrating the steps necessary for creating MP

and MI content aggregations in a resource within the HydroShare repository. As stated before, in

this example, one composite resource containing five MP aggregations and one MI content

aggregation were created.

Once the content of the resource is complete, the sharing status of the resource can be

changed to discoverable or public. If the user chooses to permanently publish the resource, a more

formal digital object identifier (DOI) would be assigned to the resource. When resources are

permanently published, the users can no longer edit the content files or the author and title metadata

elements. In contrast, users can still edit some of the less fundamental metadata elements (e.g., the

content-level metadata for a MI content aggregation).

Chapter 2

22

Figure 2.11. Activity diagram showing the steps to create MP and MI within HydroShare

2.3.2.1 Creating the MP aggregations and selecting a MI metadata schema

In this example use case, we created one folder for the MP. This folder is called "MP" and includes

a single content file called “SWAT.exe”. This file is the executable used by Ercan et al. (2020) to

execute the SWAT model for our example use case. After uploading the file, the folder was

converted to a MP content aggregation by right-clicking on it and selecting “Set content type

Model Program”. Figure 2.12 shows the MP content-related metadata in the panel on the right side

of the HydroShare file browser interface where it can be edited. It shows the standard set of

metadata for a MP aggregation that includes general information (title, Keywords) and MP specific

metadata (e.g., modelProgramName, modelVersion) for our use case on the HydroShare website.

Figure 2.12 b shows that users can either select a metadata schema from a dropdown menu

(currently only MODFLOW and SWAT example schemas are provided) or upload a pre-defined

JSON metadata schema file. The selected metadata schema will be used to define the metadata

requirements of any MI content aggregations linked to this MP using the “ExecutedBy” metadata

field of the MI. Figure 2.12 c shows the content of the metadata schema in JSON file format as

displayed in HydroShare.

Chapter 2

23

Figure 2.12. MP metadata and steps to select/upload MI Metadata Schema on a resource landing

page within HydroShare (shown in edit mode)

 Within the same HydroShare resource, we created a folder called

“MI_1_SensitivityAnalysis”, which contains the content files for the first MI of the example use

case. Then, the folder was converted to a MI content aggregation by right-clicking on it and

selecting “Set content type Model Instance”. Figure 2.13 shows the MI content aggregation-

Chapter 2

24

related metadata, which is shown in the panel on the right side of HydroShare’s file browser

interface. It shows the standard set of metadata that includes general information (title, Keywords)

and MI-specific metadata (includesmodelOutput and executedByModelProgram) for our use case

on the HydroShare website.

Figure 2.13 MI standard and content-specific metadata on a resource landing page within

HydroShare (shown in edit mode)

Chapter 2

25

Once the user links the MI content aggregation to the MP content aggretation to which the JSON

metadata schema has been added, they can see and edit the model-specific metadata (schema-

based metadata) for the MI. The JSON schema file that specifies the MI metadata is used to

dynamically build the web form for displaying and editing the MI metadata (Figure 2.14). The

same JSON schema file is used to validate metadata entered by the user (e.g., required and optional

elements, data types, etc.).

2.3.2.2 Updating the MI metadata schema

After schema-based metadata has been added to a MI, if a user changes the JSON metadata schema

used for the linked MP, the existing MI schema-based metadata may or may not be valid against

the new schema. Suppose the schema-based metadata is still valid, after switching to edit mode in

the MI. In that case, the user will notice that a blue button appears, enabling the user to “Update

Metadata Schema from Model Program” (Figure 2.15 a). The blue button copies the updated

metadata schema from the MP over to the MI safely, and no loss of metadata occurs. One example

of where this may occur is when a user edits an existing JSON metadata schema by adding a new

attribute that is NOT set to be required. However, if the linked MP has a schema that invalidates

the existing metadata in a MI, the metadata panel for MI content aggregation will look like Figure

2.15 b (with the option to update/copy schema showing as a red button). The red button to copy

the metadata schema from the MP over to the MI will perform a non-safe update – it will result in

loss of metadata in the MI (as indicated by the message that appears above the update button). One

example of this case is when a user edits an existing JSON schema by removing an attribute that

already has a value in the MI’s metadata.

Chapter 2

26

Figure 2.14. MI schema-based metadata on a resource landing page within HydroShare (shown

in edit mode)

Chapter 2

27

Figure 2.15. MI Schema-based metadata (a) validated, (b) NOT validated by the metadata

schema in the linked MP on a resource landing page within HydroShare (shown in edit mode)

2.4 Discussion

2.4.1 Key design choices

The model metadata approach presented in this study was designed to build on and enhance the

method presented by Morsy et al. (2017) to make it more scalable and flexible. To make that

possible, a few critical design choices for our framework were made. Similar to Morsy et al.

(2017), a MI content aggregation is allowed to be linked to only one MP content aggregation at a

time. It is true that a MI may be executed by multiple MPs (e.g., a case where two MPs are of

different versions but still compatible with the MI). However, using two different MPs that are

compatible with the MI but have different model engines might lead to different results for a study.

Therefore, for the sake of reproducibility, this design choice was made to ensure that a specific MI

execution could be repeated.

 Another critical design choice was that the MI (s) that are linked to a MP must be located

in the same HydroShare resource as the MP. This design choice was made to ensure that the link

between the MI and MP never gets corrupted. In the absence of such enforcement, where the MI

content aggregation and the associated MP content aggregation were stored in different composite

resources, it would be possible for the MP or the MI to be independently deleted or for the access

control to one of the resources to be changed – either of which would corrupt the relationship

between the MP and MI. Additionally, embedding the MI and MP in the same HydroShare

Chapter 2

28

resource makes it convenient to download the MI and the linked MP from HydroShare with one

single action (bag download) in the same zipped folder. This may make execution of a MI easier

in some instances where file specific file paths need to be preserved.

 There is no limit to the number of instances of MI and MP aggregations that can exist in a

single HydroShare resource. Allowing more than one MI content aggregation in a HydroShare

resource allows the user to link multiple MI content aggregations to the same specific MP

aggregation (as was done in our case study demonstrating a prevalent use case for users). The

number of MP aggregations that can be stored in one HydroShare resource is also not restricted so

that if the users need, they can put more than one MP in the resource.

 Another critical design decision was to allow MI/MP aggregations to be based on a folder

in addition to a file or files. This design enables MI/MP content aggregations to contain sub-folders

that are beneficial in organizing the files included in a MP/MI content aggregation as this has

widespread use, especially in the case of MI content aggregations that may require many different

input files or types of input data.

 To keep the design simple and avoid unwanted complexity, unlike Morsy et al.’s (2017)

design, no nesting of MP aggregations within a MI content aggregation is allowed. We understand

that there might be cases where some codes are used to process raw data and prepare the input data

for a model, and users may want to embed that code as a MP aggregation within a MI content

aggregation. However, for our design, MP only refers to established hydrological and

environmental models (e.g., SWAT) rather than any custom preprocessing tools (e.g., codes to

process the raw input data). Therefore, for the example case given, the entire raw input data, any

preprocessing tools, and the processed input data are treated as a single MI. It is important to note

that folder-based MI content aggregations can still contain most other HydroShare content

aggregation types (e.g., geographic feature, geographic raster, multidimensional, time series,

referenced time series), excluding the MP, MI or fileset type aggregations. No other aggregations

(no data aggregation, MP, or MI) can be created inside a folder based MP aggregation.

 Another critical design decision was that after a MI content aggregation is linked to a MP

aggregation via an “ExecutedBy” relationship, if the MP content aggregation has an associated

JSON metadata schema, the JSON schema file from the MP content aggregation is copied into the

MI content aggregation. This is to ensure that the MI will not lose access to the JSON metadata

schema if the MP were deleted. Moreover, by copying the JSON schema file into the MI content

aggregation, we create a snapshot of the JSON schema file associated with the MP when the MI

gets associated with the MP, and the metadata for the MI will be created using this snapshot. The

editing of the JSON schema file is constrained at the MP level. Therefore, the JSON schema copy

stored in the MI content aggregation can only get updated when the JSON schema of the associated

MP gets updated or the MI content aggregation is linked to a new MP aggregation.

2.4.2 Migrating legacy HydroShare model resources to the new model aggregation design

It was necessary to migrate all of the legacy model resources (the resources created by HydroShare

users prior to implementing the new design for model metadata described here) to model

aggregations in a composite resource so that the legacy model resource types could be deprecated.

Chapter 2

29

This was done so that HydroShare does not have to provide unnecessary support for obsolete

model resources and to avoid the embedded complexities for code compatibility reasons, and

second, to encourage modelers to use the new design. When migrating the legacy model resources

to model content aggregations, we encountered some challenges, the most important of which are

briefly described below.

 In the new design, the MP that executes a MI needs to be in the same HydroShare resource

as the MI content aggregation. However, to avoid as many changes as possible in the previously

created resources, we decided not to enforce this rule for them and only keep this rule for the

resources being created after the redesign. Instead, when a MI resource was linked to a MP

resource, a link to the original MP resource was considered as a new metadata element for the MI

content aggregation. Therefore, the following three migration scenarios were considered

depending on the existence of a linkage between a MP resource and a (generic or specific) MI

resource, regardless of their publication status. First, a MP resource, regardless of being linked by

a MI resource, was converted to MP content aggregation within a composite resource. The

resource-level metadata were kept at the resource-level for the migrated resource (i.e., title,

resource id, abstract, authors, and owners) except for those that made sense to be moved to the MP

content aggregation level (i.e., keywords, MP specific metadata such as version). Second, if a MI

resource was not linked to a MP, it was converted to a MI content aggregation within a composite

resource, and the resource-level metadata followed a similar rule as the previous scenario. Third,

if a MI resource was linked to a MP, the MI resource was converted to a MI content aggregation

within a composite resource, the resource-level metadata followed a similar rule as the previous

scenarios, and the link to the original MP resource was considered as a new metadata element for

the MI content aggregation Apart from the four scenarios, we had to store all model-specific

(SWAT/MODFLOW) metadata as JSON data in the newly created MI content aggregation.

 The MP and (generic or specific) MI resource being migrated, regardless of how many

content files they had or whether they had a folder containing content files at the root level, were

converted to composite resources containing the MP/MI content aggregation created based on a

folder. That means the converted composite resource had a folder (which contains all the resource

files) even though the original resource did not have a folder. The corresponding folders for MP

and MI were named model-program and model-instance, respectively. If the resource being

migrated had only one folder at the root level and no files at that level, the MP/MI was created

based on that folder. If the resource being migrated had more than one folder or file at the resource

root level, a new folder was created as part of the migration, and the existing folders/files were put

under this new folder. The MP/MI content aggregation was based on the new folder.

 One challenge was that we had to make sure that in the new design of model aggregation,

the MI content aggregations that were for SWAT are compatible with SWATShare. Unlike Morsy

et al. (2017), no specific SWAT MI is provided in the new design; therefore, we created an optional

metadata element for the MI where the user could specify which web app can be used for that MI.

Then, later, that metadata information can be used to display an option to “open with” a linked

web application. This enables SWAT MIs to remain compatible with SWATShare.

Chapter 2

30

2.4.3 Limitations of the new design and its implementation

Although the redesign of a metadata framework for MI and MP offers several important

improvements, our design still has some limitations. Despite adding more flexibility for users to

define extended metadata schema that better describe MPs and MIs in HydroShare, one drawback

of allowing custom metadata elements defined via a JSON schema is that it makes the indexing

needed for search and discovery capabilities more challenging because the metadata scope is much

broader compared to the case when metadata are pre-defined, hard-coded and defined by a central

group of developers. While it is difficult or impossible to anticipate all of the metadata elements

that might be defined by modelers working on disparate models, the new design still uses standard

Dublin Core elements useful for the discovery use case. We anticipate that patterns and

commonalities in model metadata schemas will emerge through use and that these commonalities

may eventually enable more advanced discovery functionality for MPs and MIs.

 Another current limitation of our work, which is related to the implementation rather than

the design itself, is that HydroShare does not currently allow using MI content aggregation

metadata introduced by this new work for discovering resources. Enabling such discovery

capability in a future release of HydroShare would be of great value. For example, it would be

helpful if HydroShare could find all the MIs linked to a specific metadata schema (e.g.,

SWAT_schema_1.0.0).

2.4.4 Opportunities for future research

Future research to improve model content aggregation metadata should focus on establishing

guidelines for designing a metadata schema from scratch – e.g., for hydrologic and environmental

models that do not already have any metadata schema. This will further lower the barrier for

modelers when identifying the metadata schema for any arbitrary model. Future work may also try

to refine the developed model aggregation metadata and its implementation within HydroShare.

While users can upload their metadata schema to HydroShare as part of the creation of a MP,

currently there is no mechanism to expose the developed metadata schemas in a systematic way

and use metadata to describe them. Therefore, we are considering making a database where users

can upload a metadata schema by themselves. This database may track metadata on the MI

metadata schema itself, such as title, creator, date created and modified, etc. to help describe the

MI metadata schema so that it can be reused more easily. Currently, if users need to use a MI

metadata schema developed by others, they first have to download it and then manually upload it

into their MP. The database would facilitate users' access to metadata schema developed by others,

and users will be able to directly associate their MI to any MI metadata schema present in the

database.

 We are also considering adding the ability to let the user directly copy a MP aggregation

that the user has access to with one single button into their composite resource for convenience.

Additionally, in the current HydroShare deployment, if updating the metadata schema leads to

metadata elements not validating against the updated schema, all the populated metadata is lost,

and the user needs to start over. In future releases, we can make a file difference so that the

metadata elements that are still valid can remain, and the user will only need to deal with the

invalid metadata. Finally, in future work we plan to add functionality such that a user can upload

Chapter 2

31

a code to extract the extended metadata elements automatically from MI configuration files. This

will further lower the barrier for metadata entry through automatically extracting metadata that can

be read from the input files. The user will then only need to populate metadata elements that are

not extractable from input files.

Finally, although data and models can be shared and described using flexible and scalable

metadata schemas to enhance reproducible modeling, other factors need to be taken into account.

Full reproducibility requires three elements: (1) digital documenting and sharing of data and

model, (2) encapsulating computational environments, and (3) encapsulating workflows (Choi et

al., 2021). By sharing data and model using approaches like the one described in this paper along

with encapsulated computational environments and workflows, modelers should expect to

approach reproducible modeling.

2.5 Conclusions
This study presented flexible and scalable methods for describing hydrologic and environmental

models with metadata. The critical redesign choice was that we introduced a standardized way of

encoding user-defined metadata schemas for MIs using machine-readable JSON schema. This

approach gives the capability of providing and maintaining metadata schemas for any arbitrary

MP to the modeling community instead of the web-based repository developers. JSON schema

files can be consumed and utilized in a scalable way, because it provides a standardized way of

encoding user-defined metadata schemas and is machine-readable. This paper described the

metadata schema specification file format, demonstrated its use for a SWAT modeling use case as

an example, and showed how the web-based repository, HydroShare, could support and leverage

this new approach for community-contributed metadata schemas for hydrologic models. In this

way, support can be provided for an indefinite variety of environmental and hydrologic models

with little cost to the repository developers. Extensible model metadata framework is also expected

to advance the reproducibility of model-related research, an intricate issue across all science

disciplines, through facilitating the sharing, discovering, and reusing of data and models built by

others.

Acknowledgments
This work was supported by the National Science Foundation under collaborative grant 1664061.

We greatly thank and acknowledge the work of the larger HydroShare development team.

Software Availability
The software created in this research is free and open source as part of the larger HydroShare

software repository. The HydroShare repository and the model metadata functionality described

in this paper are operational at https://www.hydroshare.org. The HydroShare software source code

repository is managed through GitHub and is available at

https://github.com/hydroshare/hydroshare.

https://www.hydroshare.org/
https://github.com/hydroshare/hydroshare

This chapter is in preparation for submission to a peer-reviewed journal. Current coauthors of the

study are Iman Maghami, Jonathan L. Goodall, Mohamed M. Morsy, Jeffrey M. Sadler, Jeffery

S. Horsburgh, Pabitra K. Dash, and David G. Tarboton

32

Chapter 3

3 A Metadata Schema Design for Instances of

Hydrologic Models: SUMMA as a Case Study

3.1 Introduction
The need for research reproducibility has been argued by numerous recent papers across many

scientific disciplines (e.g., Nüst et al., 2018; Piccolo and Frampton, 2016; Stodden et al., 2013). In

response to this need, researchers have begun to propose cyberinfrastructure designs and practices

to improve computational reproducibility (e.g., Choi et al., 2021g; Essawy et al., 2018; Stodden et

al., 2015). There are a broad range of computational models to address a variety of challenges in

different science disciplines. These models rely on extremely heterogeneous input data, and adopt

a significantly wide spectrum of structure and semantics to store model input and output data.

Metadata, defined as “structured data about data” (Duval et al., 2002), is a crucial component of

inventorying these model objects within an information system by helping people and machines

share, discover, access, and reuse information (Essawy et al., 2020; Greenberg et al., 2013; Leipzig

et al., 2021; Qin et al., 2016).

While it is acknowledged that metadata is a critical component of an information system

and, by extension, computational reproducibility, it is a nearly impossible task to design a model

metadata framework that can accommodate all the diverse needs of every model across all the

science disciplines. Researchers from different scientific disciplines could benefit from designing

flexible model metadata frameworks that are applicable to their specific science discipline and can

accommodate the diverse nature of models within their discipline (Morsy et al., 2017). Reviewing

the flexible metadata frameworks developed in other science disciplines, researchers can find the

common concepts and design their own metadata frameworks based on their applications. In the

field of environmental modeling, there have been efforts towards adopting metadata frameworks

for models. Some examples are Hill et al. (2001), Wosniok and Lehfeldt. (2013), the Community

Surface Dynamics Modeling System (CSDSM) (http://csdms.colorado.edu/), and OntoSoft (Gil et

al., 2016, 2015). Morsy et al. (2017) introduced a generic metadata framework applicable to any

hydrological and environmental models that extended the Dublin Core metadata framework

(“Dublin Core Metadata Initiative. Dublin core metadata element set, version 1.1.,” 2012).

 Morsy et al. (2017) defined computational model components as two distinct concepts, i.e.,

model program (referred to as “MP” in this paper) and model instance (referred to as “MI” in this

paper). An MP resource was defined as software developed for running a model simulation and

generating outputs. In contrast, an MI resource was defined as the application of the MP to a

specific spatial and temporal domain. Additionally, they added an extension to their generic model

metadata framework that could use specific metadata schemas to support two specific model

programs and their accompanying instances for two of the most used hydrological models: Soil

Chapter 3

33

and Water Assessment Tool (SWAT) and Modular Three-Dimensional Finite-Difference

Groundwater Flow Model (MODFLOW). “Metadata schema” as per ISO 23081, and used in the

same way in their research and current research, is “a logical plan showing the relationships

between metadata elements, normally through establishing rules for the use and management of

metadata specifically as regards the semantics, the syntax and the optionality (obligation level) of

values” (“The International Organization for Standardization; ISO 23081.1—s3 Terms and

Definitions,” 2017). Users could describe the SWAT and MODFLOW MIs with better details

using the pre-defined metadata schema specific to these two models.

 In Chapter 2 we argued that a flexible model metadata framework should readlily support

any models, and not only a limited number of them, with the specific metadata. A bottleneck in

reaching this goal was that repository developers were required to create and maintain individual

metadata schemas manually while it is beyond their capabilities to provide such support.

Therefore, in Chapter 2, we proposed a machine-readable file specification used to describe the

metadata schema for the MIs of any MP. This standard metadata schema format enabled repository

users, the modelers themselves, to define the metadata fields for any arbitrary model program. The

schema could be consumed and utilized in a scalable way, because it provided a standardized way

to encode user-defined metadata schemas and was machine-readable. This model metadata

framework was deployed on HydroShare, a web-based collaborative system designed to advance

sharing, accessing, and discovering hydrologic and environmental data and models (Tarboton et

al., 2014b, 2014a). While the use of MI metadata schema allowed for extension of the specific

metadata support to any model, and modelers could accommodates their particular requirements

for their applications, only MI metadata schemas for SWAT and MODFLOW, previously

introduced by Morsy et al. (2017), were provided and we did not delve into the principles needed

to build a schema for any other models.

 Researchers from different backgrounds have tried to provide principles that can be used

when designing metadata for data and models. One of the well-known works is done by Duval et

al. (2002). In their research, they provided metadata design principles, deemed to be common

across all domains of metadata for data or models. Following these principles when designing a

metadata schema for any application assures semantic and machine interoperability regardless of

the chosen metadata standard. In this research, therefore, our goal is to demonstrate an approach

for creating a schema for an arbitrary environmental model based on general principles provided

by literature. In particular, this work builds from prior work that presents a flexible model metadata

schema. It is important to note that, while in this research we focus on model metadata frameworks

designed for one science discipline (i.e., environmental and hydrologic modeling), the gained

insights can be still used by researchers from a wide range of research disciplines.

This chapter describes both the design of a flexible and scalable model metadata schema for

a specific environmental model and demonstrates its use. We first discuss a set of design principles

that need to be taken into account when designing a MI metadata schema. Then the design process

is explored, and the experimental hydrological modeling use case is described. The Results of the

study present the developed MI metadata schema for the case study model and its integration in to

the HydroShare data and model repository system. We discuss the challenges for organizing the

Chapter 3

34

metadata schemas that are expected to be developed by the modeling community are discussed.

Finally, we summarize the main contributions of this research and present possible research tasks

to further improve model metadata needed to advance computational reproducibility and scientific

transparency.

3.2 Methodology
Here we first investigate a set of principles that are used when designing a MI metadata schema

and then the process of designing a metadata schema. Finally, an example use case of a

hydrological modeling study is explained for which a MI metadata schema will be developed.

3.2.1 General principles for designing the MI metadata schema

Duval et al. (2002) lists a set of principles that are deemed to be common to all domains of metadata

and which might inform the design of any metadata schema or application. Among the principles

that they provided, three of them, modularity, extensibility, and refinement, are applicable to our

MI metadata schema.

3.2.1.1 Modularity

Duval et al. (2002) argue that to make metadata modular, metadata elements from different

schemas can be integrated in a syntactically and semantically interoperable manner to form a new

metadata schema. This means a proposed MI metadata schema should be modular so that other

researchers when creating their own MI metadata schema can learn from the existing practices by

others, instead of starting from scratch. Also, if applicable, the notion of namespace, a formal

collection of terms managed according to a policy or algorithm, can boost modularity of the

metadata schema in a more formal way. Here we seek to identify the MI metadata elements that

are common to a variety of hydrologic and environmental models and tries to generalize the

findings so that they can be used for a wide range computational models.

3.2.1.2 Extensibility

As per the Duval et al. (2002) definition, metadata systems must be extensible in a way that they

can take into account the specific needs of a given application. There are some metadata that are

generally common between most metadata schemas (e.g., the concept of owner of an information

resource) while other metadata are only specific to a particular science domain (e.g., watershed

area in hydrology). This emphasizes the need for a base or core schema that captures the common

metadata elements, and allows for extension by adding additional metadata based on the needs of

a specific domain or an application within that domain.

In the case of environmental models, HydroShare has provided a base architecture that

utilizes metadata to describe a resource (e.g., creator, or owner of the resource) and what it might

contain, e.g., MI (e.g., spatial and temporal coverage metadata), or MP (e.g., software version

metadata). The MI metadata schema introduced in Chapter 2 provides the opportunity to extend

the metadata framework for any given hydrologic and environmental model. In this way, a MI

metadata schema can benefit from using the common metadata among most hydrologic and

environmental models while if needed have new elements specific to the model or the specific

application based on the needs.

Chapter 3

35

3.2.1.3 Refinement

The degree of detail needed for metadata can be different across different applications. As per the

Duval et al. (2002) definition, a metadata schema should be designed in a way that it allows the

schema designers to choose a level of detail according to their application and need. In this way,

sufficient detail can be provided and unnecessary metadata will be avoided. One approach to help

achieve refinement is using a controlled vocabulary which only allows for specifying a given

metadata element from a particular set of values. This will enhance semantic interoperability

across applications through relying on a common value set provided by the controlled vocabulary.

Allowing sub-elements (metadata terms being divided into or element/sub-element aka

parent/children sets) also helps the refinement of the metadata schema.

3.2.2 Process of designing metadata schema

In order to design a metadata schema for model instances, the steps shown in Figure 3.1 need to

be taken. These steps are based on previous studies, Coyle and Baker (2008) and Ochiai et al.

(2014), as well as our own experience.

The designer of the metadata schema first needs to define the metadata schema goal (Step

1). For example, in our case, the schema being developed is used to describe the input files or MIs

of a specific hydrologic model. Then, given the application the schema is being developed for and

using the existing practices by other researchers in the fields, the designer needs to specify the

metadata elements and if there are needed sub-elements (Step 2). This requires the designer to

have enough experience with the model for which the schema is begin developed for and detailed

knowledge of the model structure, e.g., where input files are defined in the model. By using

existing practices and standards, the metadata schema designer can use common elements and

terminology across their science domain (“Where to start — advice on creating a metadata

schema,” 2014). In this way, the interoperability between different schemas within a domain

increases.

Once the elements and sub-elements are decided, the designer needs to determine the

attributes and constraints of them. For example, an element will be subject to min/max value

constraints or can be only selected from a controlled vocabulary (Step 3). The next step is to

convert the rough metadata schema developed through steps 1-3 to a metadata structure (e.g.,

JSON format) (Step 4). In this step, the designer needs to follow the syntax required by the schema

format they are using. After converting the schema to metadata structure, the designer needs to

validate the developed structure using online validation tools (e.g.,

https://www.jsonschemavalidator.net/) (Step 5). In this way, the designers of the metadata schema

might discover issues in their metadata schema such as a syntax error or some unsatisfied

requirements. Therefore, they will avoid any errors before integrating the validated structure into

the data repository, HydroShare in our case (Step 6). Once the metadata schema is successfully

integrated into the data repository through uploading, the original designer and other users can

start using the schema to generate metadata elements for a MI of the given MP and populate them.

Finally, if needed, the designer can start over the process (go to Step 1) and refine and improve the

schema.

Chapter 3

36

Figure 3.1. Design process of a metadata schema

3.2.3 Model Metadata Design Case Study

In this section, we first discuss the hydrologic model for which we chose to build a MI metadata

schema. Then, the web-based repository used to deploy the metadata schema is explained. Finally,

we describe a use case that uses the selected hydrologic model and shares it on the web-based

repository.

3.2.3.1 Selected hydrologic model: SUMMA

In this study we chose the Structure for Unifying Multiple Modeling Alternatives (SUMMA)

(Clark et al., 2015b) as the case study model. SUMMA is a general environmental model that can

be used to evaluate multiple model representations of hydrologic processes in a controlled and

systematic way. SUMMA uses six configuration files to manipulate input files, model methods,

and control the output files: (1) File Manager, (2) Decisions, (3) Forcing File List, (4) Model

Output, (5) Param Trial, and (6) Local Attribute files. Model users can find the selected options

for model input files, model methods, and output files in these configuration files.

3.2.3.2 Data repository: HydroShare

Tarboton et al. (2014b, 2014a) defined the design goal of HydroShare as to advance sharing,

accessing, and discovering of hydrologic and environmental data and models. A “resource” in the

context of HydroShare is the basic digital content unit that is being shared, and users can upload

their data and/or model files and provide their corresponding metadata as a “resource”. A

“resource” can contain data as different “aggregation” types. As mentioned in Chapter 2, file

aggregations are specific content types supported by HydroShare, extending Dublin Core metadata

Chapter 3

37

to provide new metadata elements that support functionality specific to common hydrologic

datasets. Aggregations consist of several related files visualized with a single icon in HydroShare's

file browser and may also have content-level metadata and specialized functionality available with

HydroShare web apps.

Model Instance (MI) content aggregation represents the input (and optionally output) files while

Model Program (MP) content aggregation includes the modeling software (Figure 3.2). Model

Instance metadata schema is used to generate metadata fields for the MI based on the schema

(green boxes in Figure 3.2).

Figure 3.2. Key components of the MP and MI content aggregations in a HydroShare resource

(source: adapted from Chapter 3 of this dissertatio)

3.2.3.3 Example model instance

To demonstrate our approach, we use the data and model from Choi et al. (2021d) who shared

their modeling experiments as a HydroShare “collection resource” (Choi, 2020a). In their work,

they used a set of hydrologic modeling experiments in Reynolds Mountain East Area in the

Reynolds Creek Experimental Watershed in Idaho, USA described by Clark et al. (2015c). Choi

et al. (2021d) used these modeling experiments with the purpose of reconstructing them and

sharing them openly to make them easier to reproduce. However, when Choi et al. (2021d) shared

their data and model, the new model metadata design allowing for sharing MI and MP content

aggregations in a single HydroShare resource, and the MI metadata schema were not developed.

Therefore, they used the old design of model resources to share the modeling experiments (Choi

et al., 2021d) which led them to create a collection resource holding multiple resources with

different resources types. Figure 3.3 shows the collection resources developed by Choi et al.

Chapter 3

38

(2021d) that refers to: 1- two resources that each hold modeling workflows (i.e., Jupyter

Notebooks), 2- seven MI resources, and 3- one MP resource.

The old metadata design by Morsy et al. (2017) and its implementation in HydroShare lacked a

MI metadata schema specific to SUMMA; therefore, they were not able to describe their MIs with

metadata specific to SUMMA. The framework introduced in Chapter 2 of this dissertation, which

was implemented in HydroShare, provides a great motivation to use Choi et al. (2021d)’s

HydroShare resources to show how the MI metadata schema capability developed in Chapter 2 as

well as MI metadata schema developed in this study can be utilized. Therefore, in the results

section, we will create a new HydroShare resource that presents Choi et al., (2021d)’s resources

(Choi, 2020a) in an updated form to make use of shareability, accessibility and reusability

facilitated through the MI metadata schema.

Figure 3.3. SUMMA use case: A HydroShare collection resource (Choi, 2020a) referring to

seven MI, one MP, and two workflow resources by Choi et al. (2021d)’s hydrologic study (old

design)

3.3 Results

3.3.1 Developed schema for SUMMA

The metadata schema to describe MIs linked to a SUMMA MP are shown in Figure 3.4. Four

metadata elements, model objective, model input, model method, and simulation type, are selected

to create a modular metadata schema. The reason to choose these four elements was to describe

hydrologic and environmental models in a modular way. This was by exploring existing practices

including the SWAT MI metadata schema, previously developed by Morsy et al. (2017). The terms

were selected to be generic and applicable to other hydrologic models.

Model Objective metadata is used to describe the objectives of conducting a simulation,

e.g., hydrology, climate change, and/or water quality. There are many common model objectives

across different studies, therefore, this metadata element can benefit from a list of pre-defined

Chapter 3

39

objectives from which a user can select their objectives. Also, as there may be model objectives

that are not provided in the list of the pre-defined objectives, a user can still provide their own

objective. Model input seeks to describe the input files used in the simulation. Because there are

different input files, this metadata element will have sub-elements each of which describe a single

input file. Using sub-elements allows for refinement of the model metadata schema. Two examples

of such sub-elements are watershed area and warm-up period metadata elements. Model methods

describe the different methods used in the simulation and have sub-elements. Two examples of

such sub-elements for the SUMMA model are the form of Richard’s equation to be used and

stomatal resistance function. Simulation type specifies whether the simulation is to be used for

sensitivity analysis, or calibration, or for a normal simulation of a calibrated model. Therefore, it

can benefit from a controlled vocabulary that allows the user to choose from the list of the three

simulation types. Also, if the simulation type is calibration, a new metadata element, i.e.,

calibration description, is generated. Calibration description allows the user to describe the

calibration by providing two sub-elements, i.e., Algorithm (e.g., NSGA II) or the objective

function(s) used to perform the calibration. The sub-elements of the model input and model method

are considered as optional, so that the barrier to entry remains low.

Different attributes of an element of a MI metadata schema in a JSON format, including

its definition, whether it is mandatory or optional, and any additional requirements are shown in

Table 3.1. Among these attributes, there are four attributes that are mandatory to be provided by

the designer of the metadata schema (represented by “M”), i.e., Name, Title, Type, and Property

order, while the rest are optional (represented by “O”). The attribute “Name” has additional

requirements required by the HydroShare implementation: it should have only alphanumeric

characters and it must start with an alphabet character. The attribute “Title” is used as the label of

the element in the user interface of the data repository. The attribute “Type” specifies the data type

that is allowed for the metadata field. It can be of either string, number, object, or Boolean type

and additional requirements may apply depending on the data type being used. While the attribute

“Property order” is not a fundamental attribute of a metadata element, it is a number that

determines the order by which an element is shown in the user interface.

If a metadata element needs to have sub-elements, an attribute called “Properties” can be

used to include the sub-elements’ attributes. If a designer needs to make a list of controlled

vocabulary from which a value may be selected for a metadata element, they need to use the

attribute “enum” which also makes the data entry easier compared to typing it out manually. The

metadata attributes “Default”, “minimum”, and “maximum” are also optional and may be

respectively used to specify the default value, minimum (for data type “number”), and maximum

(for data type “number”) acceptable value for a metadata element.

The developed JSON file for the SUMMA MI metadata schema is shown in Figure 3.5. In

Figure 3.5a, the four metadata elements (i.e., model objective, simulation type, model input, and

model output) as well as the calibration description (the conditional metadata field if the simulation

type “calibration” is chosen) are shown. In Figure 3.5b, a snippet of the model input is provided

which shows two of its sub-elements, warm-up period value and precipitation time step type. The

Warm-up period’s value type is number, default and minimum value are both provided as 0.

Chapter 3

40

Figure 3.4. Developed MI metadata schema for SUMMA (metadata elements are not

populated)

Chapter 3

41

Table 3.1. Element's attributes and explanation using JSON schema (Implemented in

HydroShare)

Element’s

Attribute
Definition

Obligatio

n to Use

(M or O)

Additional Requirements

1 Name
The name of the element (used by machine

to tag the element)
M

The following constraints are needed for

XML/RDF encoding of model instance

metadata based on metadata schema:

1. only alphanumeric characters are

allowed

2. must start with an alphabet character

2 Title

The title of the element shown in the user

interface (used as a label for that form field

when the form is generated from the

schema)

M

3 Type
The type of data that the element is, either

of: string, number, object, or Boolean
M

1. Any object type property must have the

attribute ‘additionalProperties’ set to

false. This is needed in order to

prevent users from adding new form

fields when editing metadata for

model instance aggregation

2. To use a checkbox for a Boolean type

field, attribute ‘format’ needs to be set

to checkbox

4 Properties Whether the element has sub-elements O

Nested objects are NOT allowed: A field

of type ‘object’ can’t contain a sub-field

of type ‘object’. This ensures the schema

based form does not get too complicated.

A field/attribute of type ‘object’ can still

contain other fields/attributes that are

NOT of type ‘object’

5 Description

The meaning of the data element (used to

describe the purpose of the field which is

used as help text and displayed below the

form field when the form is generated

based on the JSON schema)

O

6
Property

order

A number that determines the order by

which an element is shown in the user

interface

M

7 Default The default value of the element O

8 Minimum
The minimum acceptable value of the

element (for type number)
O

9 Maximum
The maximum acceptable value of the

element (for type number)
O

10 enum

Make a list of controlled vocabulary from

which a value may be selected for an

attribute

O

11 format Used for checkbox O

12
Additional

properties

Used to control the handling of extra

properties whose names are not listed in

the properties keyword

O

13 required

Users can make a field/attribute “required”

by specifying that at the root level of the

JSON schema.

O

Chapter 3

42

Figure 3.5. The developed JSON file for the SUMMA MI metadata schema

3.3.2 Integration into the HydroShare system

The contents of the HydroShare resource (Maghami, 2022) that we created are shown in Figure

3.6. It contains the MIs, MP, and model workflows in a single resource (Choi, 2022) originally

shared as five MI resources, one MP resource, and two composite resources included in a

HydroShare collection resource (Choi, 2020a). The model workflows that were shared as separate

resources are now shared in the same resources in separate folders to demonstrate the uselessness

of the new framework design and implementation.

Chapter 3

43

Figure 3.6. Results for SUMMA use case: single HydroShare resource holding seven MI

and one MP aggregations and two workflows created by this study

Screenshots of a HydroShare resource that presents the metadata elements used to describe

one of the MIs created in the HydroShare resource (Maghami, 2022) are shown in Figures 3.7 and

3.8. These metadata elements are the generic metadata elements used to describe a MI (Figure 3.7)

or the schema-based metadata which are generated using the MI metadata schema developed

through this study (Figure 3.8). Figure 3.7 shows the title of the MI aggregation, keywords, the

linked MP, etc. It also shows the extended metadata used to include the metadata elements that

were used in the original MI resource created by Choi (2020b), e.g., “Description” referring to the

abstract of that resource, and “Migrated from” to show the original HydroShare resource. Figure

3.8 illustrates the schema-based metadata, including “Model Inputs” (e.g., Watershed Area = 32.7),

“Model Method” (e.g., Albedo Method = varDecay), “Model Objective” (set as Hydrology), and

“Simulation Type” (set as “Normal Simulation”).

Chapter 3

44

Figure 3.7. Model Instance content aggregation generic metadata for MI1_The Impact of

Stomatal Resistance Parameterizations on ET of SUMMA Model in Aspen stand at Reynolds

Mountain East

Chapter 3

45

Figure 3.8. Model Instance content aggregation schema-based metadata for MI1_The Impact of

Stomatal Resistance Parameterizations on ET of SUMMA Model in Aspen stand at Reynolds

Mountain East

Chapter 3

46

3.4 Discussion

3.4.1 Categorizing metadata based on their harvestability

Some metadata are easily harvestable using the input files. For this metadata, an automated code

can easily extract the metadata values from the input files. One example of such metadata is the

DEM resolution. However, other metadata are not recoverable using the input files and the user

needs to specify them. Examples of this metadata are: What was the purpose of this study? Or,

what was the simulation type? Normal simulation, sensitivity analysis, or calibration. The second

type is the metadata that serves as barrier to put the model in (because they cannot be auto extracted

from the input files) but makes the crucial part of a schema providing a high-level description of

the MI while the metadata from the first type help to provide more detailed information on the MI.

3.4.2 Model setup code: a metadata element to consider

This paper focuses on describing the model software itself. Future research could explore metadata

for describing the software used to prepare model instances, i.e. the software used to generate the

SUMMA (or any other hydrologic and environmental model) required model input files (e.g.,

https://github.com/CH-Earth/CWARHM). This metadata could be an extension of the MI

metadata schema or it could be a separate metadata schema. It would be helpful to include the

model setup source code or a link to an external repository as part of the MI metadata schema

because that allows others to not only find out how the model was used, but also how its input data

were generated. This has two main benefits: (1) it tracks the full process and provides a record of

any choices made during the model setup, and (2) in cases where the MI covers a large domain

and sharing all input data may become unwieldy, it shares the code that was used to generate the

input data so that there is a traceable record of what went into the model.

3.4.3 Strategies for managing the MI metadata schemas

By the time the modeling community starts creating their own MI metadata schemas, there will be

a need to manage the MI metadata schemas that might be developed. In this way, designers will

be able to find, reuse, and adapt the existing practices. For this reason, there should be a mechanism

to enable discoverability and promote reuse of the created MI metadata schemas. This mechanism

needs to consider providing some metadata about the schema itself. These metadata, at the very

least, include creators of the schema, the schema version, why the schema was developed, and the

model name (Table 3.2). This ties back to the first common metadata principle mentioned by Duval

et al. (2002), modularity, as it lets other researchers reuse and adapt the developed MI metadata

schemas. Creating a database to manage the MI metadata schema was beyond the scope of this

work, but it can be implemented in future research.

Chapter 3

47

Table 3.2. Metadata elements to be considered when describing a MI metadata schema, proposed

to manage the schemas that will be created by the modeling community

 Element Definition

Obligation

to Use

(M or O)

1
Creator of

Schema
Who created the schema M

2 Schema version The version of the schema M

3
The goal of

schema

For what goal this schema was

developed
O

4 Model

What environmental or hydrologic

model this schema is developed

for

M

3.5 Conclusions
In this research, we designed a MI metadata schema for a SUMMA model and explained the steps

needed for that. This practice can be followed to design MI metadata schema for other hydrologic

and environmental models. Using the MI metadata schema, the user can define the semantics (i.e.,

properties such as title and description of the field), and rules for the extended metadata fields

content (i.e., properties such as data type and default value, whether the field is mandatory, optional

or conditional (implications), whether the field has nested fields inside it, and whether the field

must be chosen from a set of controlled values, whether it is multiple checkbox fields). We tried

to only accommodate a sufficient level of detail in the proposed framework. The focus was on

including high-level metadata used to describe a MI. In this way, we ensured that the MI is

described in a generic way while the barrier to entry still remains low as the very detailed metadata

are kept out of the MI metadata schema. Users are able to include metadata beyond the metadata

proposed by this framework for cases in which a particular set of metadata is important to them

based on their needs and applications.

To select the metadata elements, we used the common metadata principles highlighted by

literature when designing any metadata system and showed how these principles are used. We also

provided the sequential steps needed to design the MI metadata schema so that the key points are

highlighted and the designers of any metadata schemas can understand how to get started. We

integrated the developed schema into HydroShare and presented a use case where the MIs of a

hydrologic model are described using the developed MI metadata schema. The MI metadata

schema is totally generic and independent of HydroShare, so the metadata designers should be

able to use it in their own software.

Upon creation of a number of different metadata schemas for different models by modelers,

there will be a need to organize the metadata schemas so that they can be easily shared, found and

reused. Therefore, a method for organizing the metadata schemas can be the topic of future

research.

This chapter is in preparation for submission to a peer-reviewed journal. Current coauthors of the

study Iman Maghami, Ashley Van Beusekom, Lauren Hay, Zhiyu Li, Andrew Bennett,

YoungDon Choi, Jonathan L. Goodall, Bart Nijssen, David Tarboton

48

Chapter 4

4 Cyberinfrastructure for Reproducibility of

Complex Hydrologic Modeling Studies

4.1 Introduction
Reproducibility, the ability to duplicate and verify previous findings, is a foundational principle in

scientific research (Hutton et al., 2016). In hydrology, Melsen et al. (2017) argue that “conclusion-

reproducibility” (replicating a study’s conclusions) may be more important than “bit-

reproducibility” (exactly replicating an entire study) because hydrological theories need to be

tested for different situations (beyond “bit-reproducibility”) by investigating conditions under

which theories can be confirmed or falsified. Even so, “conclusion-reproducibility” goes beyond

the simple sharing of code and data as open-source and online resources. The code and data must

be accompanied by well-documented workflows with readable and reusable code (Chen et al.,

2020). A further step is to provide open-source computational environments in which these

workflows can be executed. Ensuring this reproducibility is a non-trivial task; it requires not only

new cyberinfrastructure that includes dynamic resource provisioning, computational notebooks

(e.g., Jupyter), and container technology (Hutton et al., 2016; Merkel, 2014), but also careful

software engineering practices including software version-control and documentation.

A general strategy for creating modern cyberinfrastructure to support open and

reproducible hydrologic modeling is described by Choi et al. (2021d). This approach integrates

three main components: (1) online data repositories; (2) computational environments leveraging

containerization and self-documented computational notebooks; and (3) Application Programming

Interfaces (APIs) that provide programmatic control of complex computational models. As an

example of this approach, Choi et al. (2021d) presented an implementation that used (1)

HydroShare (www.hydroshare.org) as the online repository, (2) two different Jupyter instances,

one hosted by the Consortium of Universities for the Advancement of Hydrologic Science, Inc.

(CUAHSI) and a second hosted by CyberGIS-Jupyter for Water, as the computational

environments, and (3) pySUMMA, a Python wrapper for manipulating, running, managing, and

analyzing SUMMA (Structure for Unifying Multiple Modeling Alternatives), as the model API.

Choi et al. (2021d) focused mainly on the system design and demonstrated their approach

with a fairly simple modeling example. Reproducibility in computational hydrology, however, can

present some difficult challenges when dealing with large-scale hydrologic studies (Hutton et al.,

2016). These challenges mostly pertain to the use of “big data” and computationally expensive and

time-consuming resources needed for reproducibility of complex hydrologic modeling studies.

Hutton et al. (2016) notes that in these cases, new techniques are needed to ensure scientific rigor.

In this paper, we provide an example of the overall system design outlined by Choi et al. (2021d)

as applied to a large-scale hydrologic study by Van Beusekom et al. (2022) (hereafter referred to

as the VB study). We develop the necessary cyberinfrastructure to reproduce this study for selected

http://www.hydroshare.org/

Chapter 4

49

sub-domains and discuss the challenges and opportunities in ensuring that large-scale hydrologic

studies are reproducible.

The VB study evaluated the effect of the temporal resolution of surface meteorological

inputs (or forcings) on modeled hydrological fluxes and states for 671 basins across the contiguous

United States (CONUS). It quantified the difference in hydrologic outcomes based on daily or sub-

daily forcings for multiple model configurations and parameter values. Reproducing the entire VB

study based solely on the input data and model code is challenging because it requires the

installation and configuration of the modeling framework SUMMA (Clark et al., 2015b, 2015a),

the data volumes are very large, and the model runs require High Performance Computing (HPC)

resources. The complete VB study consisted of 704 6-year model runs for each of the 671 basins

(or 2.8 million model years). SUMMA was implemented with a single hydrologic response unit

for each basin (lumped model), resulting in a single output time series for each basin for each

model configuration. For every model run, the output consisted of 14 hydrological variables, which

required 6 MB per model simulation, or 2.834 TB for the entire study. While few researchers may

be interested in reproducing the entire VB study, the more common use case may be a desire to

repeat or extend the VB study for a subset of the basins. We want to enable others to reproduce

the VB study for subsets of the original domain as a basis for doing additional research. For such

an approach to be effective, it is not sufficient to provide the open-source SUMMA code and model

input data; one must also provide the additional components described by Choi et al. (2021d), i.e.,

computational environments, models exposed through APIs, and documented model workflows to

create a cyberinfrastructure that lowers the barrier to reproducibility.

To achieve this, we designed and implemented cyberinfrastructure to enable intuitive access

to HPC computational environments and to support data transfers into and out of the HPC

environment. Additionally, we provide a workflow that allows users to replicate parts of the study

within their own computing environments. We also perform a workflow run-time performance

analysis that compares different model scenarios by varying the size of simulations across different

computing environments. This analysis may serve the users as a guide for the selection of the

computing environment depending on the size of their simulations. The cyberinfrastructure

provides a starting point for users to modify the hydrologic model setups, thus going beyond

reproducibility into replication where one modeling methodology can be used with new input data

(Essawy et al., 2020). The cyberinfrastructure may also serve as an educational resource by

providing an intuitive way for students to perform complex hydrologic modeling studies. The data

and cyberinfrastructure are provided through HydroShare to run on any basin with a SUMMA

setup to assist the modeler in analyzing basins individually, making the methodology accessible,

interoperable, reusable, and reproducible.

Previous research has started exploring the use of cyberinfrastructure for hydrologic

modeling. Yang et al. (2010) underlines the importance of using HPC in computationally intensive

geospatial sciences and hydrologic modeling. Essawy et al. (2016) developed server-side

workflows for large-scale hydrologic data processing but they did not make use of HPC in their

application. Lyu et al. (2019) used containerization and combined computational environments

including HPC and high throughput computing (HTC) cyberinfrastructure to directly run the

Chapter 4

50

models using Jupyter notebooks. Gan et al. (2020a) integrated a hydrologic data and modeling web

service with HydroShare as a data sharing system to show how this integration leads to a findable

and reproducible modeling framework. Gichamo et al. (2020) used web-based data services to

prepare input data for hydrologic models. Kurtz et al. (2017) introduced a cloud-based real-time

data assimilation and modeling framework and showed how parallel processing can be used for

complex hydrologic models in the cloud. However, none of Lyu et al. (2019), Gan et al. (2020a),

Gichamo et al. (2020) and Kurtz et al. (2017) applied their methods on a computationally extensive

hydrologic use case unlike the VB study. Therefore, the challenges and opportunities for complex

hydrologic modeling remain unexplored.

The objectives of this paper are to (1) explore how the strategy and architecture presented

by Choi et al. (2021d) can be extended to reproduce a data and computationally intensive

hydrologic study, (2) provide the users with a guide on the selection of the computing environment

depending on the size of their simulations, and (3) to identify and document implementation

challenges and roadblocks.

The remainder of this chapter is organized as follows. In Section 4.2, we provide a brief

overview of the VB study, the cyberinfrastructure, the model workflows, and the model scenarios

used for a science use case subsetted from the VB Study as well as the model workflows run-time

performance analysis. Section 4.3 provides results and discussion. The results focus on the

modeling case study, and an analysis of the workflow run-time performance for different

computing environments. Later in that section we discuss the opportunities and challenges learned

from our development of the cyberinfrastructure to support our modeling workflows. Finally, our

conclusions and recommendations are provided in Section 4.4.

4.2 Methods
The following sections present (1) an overview of the computational setup of the VB study

(Section 4.2.1); (2) the cyberinfrastructure design and implementation to support reproducibility

of the VB study (Section 4.2.2); (3) the model workflows that allow the user to reproduce all or

parts of the VB study in an HPC environment or using CyberGIS-Jupyter for Water (CJW) Virtual

Machine (VM) computing resources (Section 4.2.3); and (4) the model scenarios and run-time

performance analysis (section 4.2.4).

4.2.1 Overview of the VB study

The VB study used 671 basins to study the effects of the temporal resolution of the meteorological

forcings on hydrologic model simulations across the CONUS. The basins are part of the CAMELS

dataset (Catchment Attributes and MEteorology for Large-sample Studies; (Newman et al.,

2015b)), which is a large-sample hydrometeorological dataset across the CONUS consisting of

input forcings, catchment attributes, and relevant historical streamflow records. The VB study used

the Structure for Unifying Multiple Modeling Alternatives (SUMMA) (Clark et al., 2015b) to

configure multiple model instances for each basin, representing eight different model

configurations and 11 different sets of model parameter values. In addition, eight forcing datasets

were constructed. In each of these forcing datasets one of the meteorological inputs was modified

so that the diurnal cycle was replaced by the mean value over that day. Van Beusekom et al. (2022)

performed 704 (8×11×8= 704) 6-year model runs for each CAMELS basin, consisting of one year

Chapter 4

51

of model initialization and five years of actual simulation. Model outputs for 14 simulated

variables were stored to evaluate the sensitivity of the simulations to changes in model forcings,

model configurations, and model parameters (Figure A1 and Table A1 in the Appendix). The VB

study results demonstrated that (1) the effect of each forcing input on each model output varies by

model output and model location, (2) the use of a particular parameter set may not be critical in

determining the most and least influential forcing variables, and (3) the choice of model physics

(i.e., using different model configurations) could change the relative effect of each forcing input

on model outputs.

The VB study was run with scripts on the Cheyenne supercomputer (a 5.34-petaflops, high-

performance computer built for the National Center for Atmospheric Research;

https://www2.cisl.ucar.edu/resources/computational-systems/cheyenne), and it took a few days to

complete the runs. For each basin, the output size for a single 6-year run was 6 MB. Thus,

reproducing the entire study is computationally expensive and also requires large amounts of

storage (704 runs × 671 basins × 6 MB = 2.834 TB). However, the structure of the model allows

individual basins to be run independently. Here, we focus on a use case in which a researcher

wishes to reproduce a subset of the VB study by analyzing one or a few basins within a cloud

cyberinfrastructure environment.

4.2.2 Cyberinfrastructure design and implementation

Following the approach described in Choi et al. (2021d), we designed and implemented

cyberinfrastructure (Figure 4.1) to replicate the VB study by integrating the (1) HydroShare online

data repositories, (2) high-performance and CyberGIS-Jupyter for Water Virtual Machine (CJW

VM) computational environments, and (3) a model API that can be utilized in scripts using Jupyter

notebooks (here the pySUMMA API). The CJW VM computational environment relies on CJW

cloud computing resources hosted on Jetstream cloud (Hancock et al., 2021; Stewart et al., 2015;

Towns et al., 2014) and does not make use of High Performance Computing (HPC). With some

additional work, the ‘CJW VM computational environment’ can also be hosted on other (non CJW)

cloud services. Each of these three components is further explained in the following subsections.

https://www2.cisl.ucar.edu/resources/computational-systems/cheyenne

Chapter 4

52

Figure 4.1. The general modeling approach presented by Choi et al. (2021) used by this study

consisting of three primary components with seamless data transfers for open and reproducible

environmental modeling

4.2.2.1 Online data repositories

We used HydroShare to store and share the data and modeling workflows for this study.

HydroShare (www.hydroshare.org) is an online collaboration environment for sharing data,

models, and code (Essawy et al., 2020; Horsburgh et al., 2016; Tarboton et al., 2014a). A collection

resource in HydroShare, which can be found at Choi et al. (2021a), contains three resources

holding the data, computational environment, and models (Figure 4.1).

The HydroShare resource holding the data (Mizukami and Wood, 2021) contains the

forcing data set for the 671 CAMELS basins. The forcings are based on the hourly NLDAS-2

(North American Land Data Assimilation System; https://ldas.gsfc.nasa.gov/nldas/v2/forcing;

NLDAS-2 is hereafter referred to as NLDAS). The original NLDAS hourly forcing data were

created by NOAA on a 0.125 x 0.125 degree grid. To create hourly SUMMA model forcings,

NLDAS outputs were spatially averaged over each of the 671 CAMELS basins and merged into

one NetCDF file. With this format, an OPeNDAP server

http://www.hydroshare.org/
https://ldas.gsfc.nasa.gov/nldas/v2/forcing

Chapter 4

53

(https://earthdata.nasa.gov/collaborate/open-data-services-and-software/api/opendap/opendap-

user-guide) can extract data for selected basins on the server, so that the user does not have to

download the entire CONUS dataset to a local computer. HydroShare offers this capability via its

THREDDS Data Server (TDS).

4.2.2.2 Computational environments

The developed computational environments were intended to provide a consistent software

environment that was independent of each user’s own operating system and software libraries and

that made it possible to study a computationally expensive research problem. One computational

environment was developed on an HPC resource to reproduce a problem more representative of

challenges posed by the use of big-data in the VB study. A second environment was implemented

on the CJW VM cloud service for studies for a more limited computational demand, e.g. a study

of only a few basins. Reproducibility was facilitated by using containerization of the SUMMA

model and the pySUMMA API with Docker (Merkel, 2014) for the CJW VM environment or

Singularity in the case of the HPC environment (Kurtzer et al., 2017) along with a computational

gateway interface to Jupyter IPython notebooks (pySUMMA and the notebooks are described in a

later section). We avoided the use of Docker in the HPC environment because of security concerns,

since Docker images can provide a means to gain root access to the system on which they are

running (Kurtzer et al., 2017). The containerization and interface are hosted on the CJW scientific

cloud service. An HPC option was added that allows the user to reproduce a problem more

representative of the challenges posed by the use of big-data in the VB study. More importantly,

it allows the user to study a particular basin to a level of detail that can further their own research.

The Conda software package is used to manage the project specific computational environment on

CJW, allowing the user to build a Python environment with the SUMMA model, pySUMMA API,

and other computational dependencies. This is done by providing a kernel version for the project

(CyberGIS Center HydroShare Development Team, 2022). Using this stable kernel, which

captures all the required dependencies with their specific versions, ensures careful software

version-control.

4.2.2.3 Application Programming Interface (API)

The model API pySUMMA was chosen to be part of the interactive tool. The pySUMMA API

(Choi et al., 2021d) wraps the hydrologic modeling framework SUMMA (Clark et al., 2015b) and

allows the user to script the use of the SUMMA model using Python. It facilitates model

configuration and allows for local execution of the model by either using a Docker container or a

locally compiled SUMMA executable (Choi et al., 2021d). With pySUMMA, a user can modify

SUMMA input files and run SUMMA inside a Python script, as well as automatically parallelize

runs and visualize output. In the simplest case the pySUMMA Simulation object wraps a single

instance of a SUMMA simulation. For users who choose to analyze multiple basins at a time in

the CJW VM environment, the notebook automatically will configure a pySUMMA Distributed

object, which provides an interface to spatially distributed simulations and handles parallelism and

job management under the hood. In this study, multiple SUMMA simulations are run in each basin,

so a pySUMMA Ensemble object is used to manage multiple runs with different configurations.

In the HPC computational environment a custom backend was written to handle parallelism using

MPI, reducing the need for users to customize the configuration based on the type of job that they

https://earthdata.nasa.gov/collaborate/open-data-services-and-software/api/opendap/opendap-user-guide
https://earthdata.nasa.gov/collaborate/open-data-services-and-software/api/opendap/opendap-user-guide

Chapter 4

54

are running. A high-level description of pySUMMA is presented in Figure 4.1. The simulation.py

enables the execution of the SUMMA model and along with file_manager.py, decisions.py, force-

file_list, and output_control.py allows for manipulating SUMMA configuration files. The

distributed.py enables the parallel execution of SUMMA.

4.2.2.4 Data management and transfer

The input data for this study consists of the SUMMA configuration files and the forcing data for

the 671 CAMELS basins. The configuration files (e.g., geometries information for the 671

CAMELS basins along with their attributes such as hru_id) are shared within each of the two

HydroShare resources holding the Jupyter notebooks (Choi et al., 2021b, 2021c). The forcing data

are provided in a HydroShare resource (Mizukami and Wood, 2021).

The output files resulting from running the notebooks using the CJW VM and HPC

computational environments are, (1) the NetCDF output files generated by the SUMMA

simulations, (2) a NetCDF file recording the model performance for each basin as measured by

the Kling-Gupta Efficiency (KGE) (Gupta et al., 2009), and (3) additional files created by the

notebooks such as the figures that visualize the model results.

In the case of the CJW VM environment, after running the notebooks, all files are saved in the

CJW platform and are directly accessible to the user. In the case of the HPC environment, the KGE

results and other files created by the notebooks (e.g., figures) are automatically transferred to the

CJW platform, but the NetCDF output files remain within the HPC environment to avoid

transferring large volumes of model output (the size of the model output for the entire VB study

was 2.834 TB).

To enable the user to transfer selected SUMMA NetCDF output files to the CJW environment for

further analysis and long-term storage, the CyberGIS-Compute Service (Li et al., 2022) supports

reliable high-performance large file transfers needed for HPC workflows through the Globus

service (Chard et al., 2016; Foster, 2011). Figure 4.2 shows that data is transferred from HPC to

the CJW using Globus without going through the job submission server. Globus is a software as a

service, enabled by the cloud which provides its users with a secure reliable service for research

data management. It enables the user to transfer datasets of any size between different storage

options (personal computers, HPC, etc.) without users being required to be constantly logged in

and watching (Chard et al., 2016).

Chapter 4

55

Figure 4.2. Large data transfer from HPC to CyberGIS-Jupyter for Water Jupyter on HydroShare

through 1- the CyberGIS-Compute, 2- Globus

4.2.3 Model Workflows

As mentioned earlier, the model workflows allow the user to reproduce all or subsets of the VB

study in an HPC environment or using CJW VM computational resources. The model workflows

are documented in three (CJW VM) or four (HPC) Jupyter notebooks Table 4.1 shows the

summary of the steps taken in each notebook while Figure A2 - A5 in the Appendix show more

detailed information for notebooks 1-4. The first three notebooks for both the CJW VM and HPC

environments focus on (1) preparing the input forcing for the model, and setting study basins and

simulation period, (2) running the SUMMA model, and (3) exploring outputs to analyze the effect

of each forcing variable in each basin. The HPC computational resource uses a fourth notebook to

transfer large unprocessed output data from the HPC to CJW using GLOBUS. Notebooks 1 and 3

are very similar between the two HydroShare resources, and both CJW VM and HPC HydroShare

resources use CJW VM computational resources to run these two notebooks. The second notebook

differs for the two environments, and the difference is explained in section 4.2.3.2. These

notebooks assist a modeler in analyzing CAMELS basins individually, providing information on

forcings and output variables that are the most/least sensitive in their basin.

Chapter 4

56

Table 4.1. Overview of the notebooks 1-4

Notebook Name Goal CJW VM or HPC

1 Preprocessing
Prepares forcings, and sets study

basins and simulation period

Very similar between HPC

and CJW VM environment

2 SUMMA execution Runs the SUMMA model
Different versions for HPC

and CJW VM environment

3 Post-processing

Explores outputs to find out effect

of each forcing variable in each

basin

Very similar between HPC

and CJW VM environment

4
Use Globus to transfer

big data

Transfer raw output from HPC to

CJW using Globus service
Only for HPC environment

To use the HPC computational resource, the user must first obtain access to the HPC server.

To do so, the user issues a request through HydroShare to use CJW. Once this access is granted,

users are automatically given free access to two alternative HPC resources. The first HPC resource

is the Virtual ROGER (Resourcing Open Geospatial Education and Research) HPC administered

by the School of Earth, Society, and Environment at UIUC which is integrated with the Keeling

compute cluster at UIUC (https://cybergis.illinois.edu/infrastructure/hpc-user-guide/). The second

HPC resource is much larger and consists of the Expanse HPC, a NSF XSEDE resource operated

and managed by San Diego Supercomputer Center (SDSC)

(https://www.sdsc.edu/services/hpc/expanse/expanse_architecture.html). In theory, the

CyberGIS-Compute Service has the ability to support other HPCs as well. Users who do not wish

to use HPC computational resources can use CJW VM computational resources directly to run the

models. The CJW VM and HPC HydroShare resources can be found at Choi et al. (2021c) and

Choi et al. (2021b), respectively.

It is necessary to compare the hardware specifications of the CJW VM and the Expanse

HPC (Table 4.2). The CJW VM has only 3 compute nodes (i.e., machines) each of which has six

CPUs with 2.50 GHz Clock Speed and 6 GB DRAM. Each user can only use one compute node

and up to 6 CPUs and the nodes can be shared among users (according to the CJW setup at the

time of writing of this research paper, if the browser is idle for 24 hours, the session gets expired).

This means the maximum degree of parallelism for simulations using this computational resource

can be only 6. Thus, in case of running one basin from the VB study (704 runs) and using all the

6 available CPUs, each CPU will need to run 117.33 simulations (some of them 117 and some

other 118 times). The Expanse HPC has 728 AMD Rome standard compute nodes each of which

is equipped with 256 GB DRAM and 128 2.25 GHz CPUs. The Expanse HPC allows the user to

only use up to 2 nodes at a time, i.e., 256 CPUs or the maximum degree of parallelism for

simulations. Thus, in case of running one basin from the VB study (704 runs) and using all the

available 256 CPUs, each CPU will need to run 2.75 simulations (some of them 2 and some 3).

We only use the Expanse HPC, because it is more powerful than the Keeling HPC. We recommend

the CJW VM HydroShare resource only be used to run 1.5 years of simulation, 0.5 years of

initialization plus one year and for one basin; this does not reproduce the methodology used in the

https://cybergis.illinois.edu/infrastructure/hpc-user-guide/
https://www.sdsc.edu/services/hpc/expanse/expanse_architecture.html

Chapter 4

57

VB study but runs in about two hours. Therefore, the CJW VM resource may mainly be used for

smaller simulations (a basin or two with a short period of simulation) and serve as an instructional

tool. A debug mode can be used in the CJW VM HydroShare resource that runs only one day of

simulation for testing purposes. On the other hand, the HPC HydroShare resource, when using the

highest achievable number of CPUs for parallel simulations, runs six years of simulation, one year

of initialization plus 5 years, as in the VB study, for four basins only in about 40 minutes. This

shows how the HPC resource can scale up the model runs offering a high-performance tool. More

details about the run-time performance of the notebooks are discussed in the results and discussion

section.

Table 4.2 Hardware specifications of the computational environments

Computational

Environment

Node

count

Number of CPU

cores per node (for

parallel runs only)

Clock Speed

(GHz)

DRAM/node

(GB)

CJW VM* 3 6 2.50 6

Expanse HPC** 728 128 2.25 256

*Intel(R) Xeon(R) CPU E5-2680 v3. Each user can only use 1 node (up to 6 CPUs) and the

nodes can be shared among users.

**AMD Rome Standard Compute Nodes. Each user can only use up to 2 nodes, which means

256 CPUs, the maximum number of parallelism for simulations.

The following subsections discuss the general purpose of each notebook. For specific coding

details, refer to the notebooks in the HydroShare resources at Choi et al. (2021c) and Choi et al.

(2021b).

4.2.3.1 Data processing notebook

The first notebook (JN 1: Preprocessing) processes the original CAMELS SUMMA files and the

input forcing datasets (Table A2 in the Appendix). The user can select one or several CAMELS

basins (1-671 basins) but by selecting a higher number of basins the computational time and

expense increases. Notebook 1 subsets the original CAMELS SUMMA files, producing SUMMA

attributes, parameters, initial conditions, and hourly NLDAS forcing files for the selected basin(s).

Then, additional forcing datasets for the hydrologic model sensitivity study are developed from

the NLDAS data files (FORCINGS box in Figure A1 in the Appendix) as discussed below.

For each SUMMA-model setup, variations in 14 SUMMA-generated outputs, described in

Table A1 (in the Appendix), are examined with respect to variations in seven input forcings (air

pressure (prs), air temperature (tmp), long wave radiation (lwr), precipitation rate (ppt), specific

humidity (hum), shortwave radiation (swr), and wind speed (wnd)), under different model

parameterizations and configurations. The SUMMA outputs generated with the one-hour NLDAS

forcing dataset are considered the benchmark (NLDAS dataset 1; FORCINGS box in Figure A1

in the Appendix). The rest of datasets (ppt to prs datasets; FORCINGS box in Figure A1 in the

Chapter 4

58

Appendix) are developed, holding each of the individual forcing variables constant over a 24-hour

period while the other six forcing variables contain the original hourly NLDAS values.

Figure A2 in the Appendix shows the steps taken in the first notebook. As can be seen, this

notebook is the same for the CJW VM and HPC environments except that the simulation time

period and basins to be explored are pre-populated differently. The user still can change these

setups in the third step of this notebook (step 1_3) as they wish. In the last step of this notebook,

users can visualize the individual forcing variables held constant over a 24-hour period against the

original hourly NLDAS values using hourly plots, and cumulative plots to see whether errors are

compounding.

4.2.3.2 SUMMA execution notebook

The second notebook (JN 2: Running SUMMA) executes the SUMMA model using the input data

from the first notebook for four different sets of SUMMA basin runs, outlined in Figure A1 in the

Appendix (RUNS box) and described in detail in Van Beusekom et al. (2022). The first set of basin

runs (DEFAULT; 8 SUMMA runs per basin; RUNS box) uses the eight forcing datasets

(FORCINGS box) combined with default parameters and a default SUMMA configuration. The

SUMMA default configuration is set in the resource model decision file.

The second set of basin runs (LHS; 88 SUMMA runs per basin; RUNS box) uses the eight

forcing datasets combined with 11 parameter sets and a default SUMMA configuration. The 11

parameter sets consist of the default parameter set and 10 additional parameter sets with 15

commonly calibrated parameters (Table A2 in the Appendix). As detailed in Van Beusekom et al.

(2022), the parameters are sampled using Latin Hypercube Sampling (LHS) over their defined

range. The pyDOE LHS function was used (https://pythonhosted.org/pyDOE/randomized.html) to

create unique 10 x 15 LHS sampling matrices for the selected basin. The LHS sets that are created

using this notebook can be different from the ones used by the VB Study and that the choice of a

different seed value will also lead to different LHS sets. The LHS matrices were used to produce

10 parameter files for the basin with random sampling of the 15 parameters while considering the

parameter constraints listed in Table 4.2.

The third set of basin runs (CONFIG; 64 SUMMA runs per basin; RUNS box) uses the

eight forcing datasets combined with the default parameter set and eight SUMMA configurations.

The eight SUMMA configurations, outlined in the CONFIGURATIONS box in Figure A1 in the

Appendix, test three model decisions (stomatal resistance (stomResist), choice of snow

interception parameterization (snowIncept), and choice of canopy wind profile (windPrfile) with

two options for each decision. Note the default configuration for this study is shown in bold in the

CONFIGURATIONS box in Figure A1:BallBerry, lightSnow, and logBelowCanopy.

The fourth set of basin runs (COMPREHENSIVE; 704 SUMMA runs per basin; RUNS

box in Figure A1 in the Appendix) includes the DEFAULT, LHS, and CONFIG basin runs, and is

the only set that needs to be run to replicate a single basin sensitivity study following the VB study

method (six years of simulation must be run for replication). For testing purposes, sets 1-3 can also

be run by themselves. The 10 parameter set files for the basin from the LHS sampling plus the

https://pythonhosted.org/pyDOE/randomized.html

Chapter 4

59

default parameters (11 parameter sets) are run each with eight SUMMA configurations

(CONFIGURATIONS box in Figure A1 in the Appendix).

Figure A3 in the Appendix shows the steps taken in the second notebook. The first two

steps in this notebook are the same for the CJW VM and HPC environments but the rest of the

workflow differs. In the CJW VM notebook, the user can define the simulations, i.e., by selecting

the simulation period or by selecting the model configuration or parameter values. Depending on

which run complexity choice (i.e., DEFAULT, LHS, CONFIG, COMPREHENSIVE in the RUNS

box in Figure A1 in the Appendix) is selected the notebook executes a specific set of code cells

using a conditional statement logic (e.g., if user selects config_prob == 1, step 2_7 is run which

leads to CONFIG runs as shown in the RUNS box in Figure A1 in the Appendix). As mentioned

earlier in section 4.2.3, users need to carefully consider the number of basins and the length of the

simulation period as the CJW VM environment is not powerful enough to run big problems in a

reasonable time. In the HPC notebook, we only provided the user with the option to run the most

complex problem, i.e., lhs_config_prob, as the HPC is powerful enough to run the full problem

quickly making it unnecessary to allow for simpler problems. The user still can change the

simulation period (in step 2-3 of the workflow in Figure A3). The other main difference between

the CJW VM and HPC notebooks is that the codes calculating KGE values for the HPC notebook

are moved over to the HPC and executed on the HPC (Step 2_8 in HPC branch in figure A3) while

for the CJW VM environment, the KGE values are calculated locally on CJW VM (Step 2_9 in

CJW VM branch in Figure A3). In the HPC environment, the KGE values are calculated on the

HPC resource to prevent having to transfer large data volumes from the HPC to the CJW VM with

the sole purpose of calculating performance metrics. Users can use Globus to transfer selected

output files from HPC to the CJW VM for additional analysis. Notebook 4, which exists only in

the HPC environment was developed for this purpose and is discussed in section 4.2.3.4.

A modified and scaled (range between -1 and 1) version of the KGE was used as an

indicator of model output sensitivity to a change in input forcing based on the work of Clark et al.

(2021) and Mathevet (2006) and is described in Van Beusekom et al. (2022). The KGE test

compares hourly model outputs generated with the benchmark forcing dataset (NLDAS dataset 1;

Table A2 in the Appendix) with outputs generated with the forcing datasets with one forcing held

constant (CNST datasets 2-8; Table A2 in the Appendix). KGE values are ranked from low to high

to determine relative order of forcing influence on model outputs with highest rankings associated

with least influence of change to 24-hour constant forcing.

4.2.3.3 Post-processing notebook

The third notebook (JN 3: Post-processing) produces visualizations, utilizing the model outputs

from Notebook 2, of the sensitivity of SUMMA model output to the temporal resolution of the

model forcing. Figure A4 in the Appendix shows the steps taken in the third notebook. The

notebooks for CJW VM and HPC environments are the same. For the selected basin(s), eight plots

are generated with Notebook 3 that follow the analysis in Van Beusekom et al. (2022). The reader

is referred to the supplementary materials and Van Beusekom et al. (2022) for a detailed

explanation of each of the eight plots. In this paper, we only present the first two figures generated

Chapter 4

60

by Notebook 3, i.e., location of the selected CAMELS basin, and KGE values for each output

variable for all 8 DEFAULT model runs.

4.2.3.4 Model output transfer

The fourth notebook (JN 4: Use Globus) is only included in the HPC HydroShare resource (Figure

A5 in Appendix) to transfer SUMMA output files from HPC to CJW on HydroShare. To retrieve

the data from the HPC, this notebook needs a job ID submitted to the HPC, which is created in

Notebook 2. While this notebook is running, users can see the live status of the file transfer

managed by the CyberGIS-Compute Service. Once running of this notebook is successfully

finished, the user will be able to see the location of the transferred file on CJW.

4.2.4 Performance analysis

We tested the performance of the cyberinfrastructure using a number of model scenarios, varying

the number of simulation years and basins for each computational environment, described in Table

4.3. For the CJW VM environment, we tested the performance of notebooks 1-3 for three scenarios

(Table 4.3, rows 1 - 3): (1) four basins and 1.5 years of simulations (a total of six years of

simulations), (2), and (3) one basin (scenario 2 and 3 basins are not the same) and six years of

simulation (a total of six years of simulations). We decided not to test for more simulation years

as the CJW VM notebook to run SUMMA simulations was slow and the HPC resource was

available for larger simulations.

For the HPC environments, we used Expense HPC, and tested the performance of

notebooks 1-3 for 12 scenarios (Table 4.3, rows 4 - 15). In these scenarios, we varied the number

of allocated CPUs (128 or 256) for parallelism and the total number of simulations years ranging

from one basin and six years of simulation (a total of six years of simulations) to 20 basins and six

years of simulation (a total of 120 years of simulations, which equals about three percent of the

total simulation years for the whole VB Study). To test the performance of Notebook 4,

transferring output files from HPC to the CJW, we only used scenarios HPC_256_1 to HPC_

256_6 (rows 4 - 9 in Table 4.3) and repeated each transfer 5 times to obtain a range of run-time

for each of the scenarios.

Chapter 4

61

Table 4.3 Model scenarios for notebooks run-time performance analysis

Row
Model scenario

name

Number of CPU

cores allocated

Number of

basins

Simulation

years

Total simulation

years

1 CJWVM_1 6 4 1.5 6

2 CJWVM_2 6 1 6 6

3 CJWVM_3 6 1 6 6

4 HPC_256_1 256 1 6 6

5 HPC_256_2 256 4 6 24

6 HPC_256_3 256 6 6 36

7 HPC_256_4 256 10 6 60

8 HPC_256_5 256 15 6 90

9 HPC_256_6 256 20 6 120

10 HPC_128_1 128 1 6 6

11 HPC_128_2 128 4 6 24

12 HPC_128_3 128 6 6 36

13 HPC_128_4 128 10 6 60

14 HPC_128_5 128 15 6 90

15 HPC_128_6 128 20 6 120

4.3 Results and discussion
In this section, we first present results of the modeling case study that served as a motivation for

the cyberinfrastructure. Then, we present results of a performance analysis focusing on contrasting

the HPC and CJW VM notebooks using a variety of model setups. Then, we summarize the

resulting resources from this study that are shared on HydroShare. Finally, we discuss

opportunities and challenges identified through this research that can be the focus of future

research.

4.3.1 Results of the modeling case study

The four CAMELS basins with diverse basin attributes (Table 4.4) and a variety of forcing

influences were chosen as individual basin examples below. The diverse attributes, as shown in

Table 4.4 for these four basins, make them ideal to show how this diversity affects the modeling

results. For inter-basin comparison purposes, Figure 4.3 shows the KGE values using the

DEFAULT model runs for each CNST dataset (datasets 2-8; Table A2 in the Appendix), grouped

by SUMMA output variable.

Chapter 4

62

Table 4.4. Station descriptions for basin individual analysis

USGS

Station

ID

Name

CAMELS Attributes

Drainage

area (km2)

Gage

datum

(m)

Mean daily

precipitation

(mm/day)

Fraction of

precipitation

falling as

snow

Aridity

Mean daily

discharge

(mm/day)

Runoff

ratio*

01632900
Smith Creek Near New

Market, VA
242 268 2.91 0.10 0.89 0.80 0.27

02212600 Falling Creek near Juliette, GA 187 1202 3.37 0.01 1.19 0.74 0.22

09378630
Recapture Creek Near

Blanding, UT
10 2195 1.58 0.50 0.50 0.21 0.13

11264500
Merced River at Happy Isles

Bridge near Yosemite, CA
469 1228 2.64 0.91 1.15 1.94 0.73

* Annual runoff / annual precipitation

Chapter 4

63

Figure 4.3. KGE values using the DEFAULT model runs for each CNST dataset (datasets 2-8;

Table A2 in the Appendix), grouped by SUMMA output variable

The example shown in Figure 4.3 uses the DEFAULT simulations (Section 4.2.3.2). The

simulations consist of one reference simulation in which all forcing variables vary on an hourly

basis (NLDAS dataset 1; FORCINGS box in Figure A1 in the Appendix) and seven simulations

Chapter 4

64

in which one forcing variable is held constant at the mean daily value throughout each day. (the

seven datasets ppt to prs; FORCINGS box in Figure A1 in the Appendix). KGE values were

calculated relative to the reference simulation for each of the seven simulations using five years of

hourly model output from 10/1/1991 - 9/30/1996. For the four selected basins, Figure 4.3 shows

the KGE values for each SUMMA output variable using the DEFAULT model runs. In Figure 4.3,

the first three gages (01632900, 02212600, and 09378630) show a strong ppt temporal aggregation

influence using DEFAULT, whereas gage 11264500 is more influenced by tmp, hum, and swr

temporal aggregation. In other words, it is crucial to have a higher temporal resolution for the

aforementioned forcing variables in the given basins and DEFAULT run to reduce the associated

hydrologic model uncertainties. The weaker influence of ppt temporal aggregation on the gage

11264500 compared to other gages can be attributed to its high value of fraction of precipitation

falling as snow, 0.91 as opposed to 0.1, 0.01, 0.5 (Table 4.4). Also in Figure 4.3, we see varying

ranges in KGE values for particular output variables. As an example, SurfaceRunoff is affected by

constant hourly values of: ppt for gages 01632900 and 09378630; ppt and hum for gage 02212600;

and tmp, hum, swr, wnd, ppt, and prs (most to least dominant) for gage 11264500. This shows the

forcing variables in each basin that need to have a higher temporal resolution to reduce the

uncertainties in the SurfaceRunoff output. All in all, the information contained in Figure 4.3

demonstrates the variability in model output sensitivity to the temporal resolution of the forcing

variables in particular when comparing gage 11264500 to other three gates. In this section, we

only presented one figure to make an inter-basin comparison to show how different the results can

be across different basins. Researchers can further explore the differences between individual

basins using other plots that can be made using the interactive IPython notebooks. The notebooks

reproduce the results from the original VB study.

4.3.2 Results from performance analysis

The run-time for the data processing notebook (Notebook 1) and the post-processing notebook

(Notebook 3), the two notebooks that are very similar between CJW VM and HPC computational

environments, for the 15 scenarios in Table 4.3 are presented in Figure 4.4. In this figure, some

data points fully overlap, for example, for the scenarios CJWVM_2, HPC_256_1 and HPC_256_2

the run-time for the Notebook 1 was one minute and 36 seconds. As expected Notebooks 1 and 3

do not take a significant time to run because they are only preprocessing and output analysis

notebook which do not run the simulations. For scenarios with fewer than 30 simulation years,

Notebook 1 takes longer than Notebook 3, but this changes for scenarios with more simulation

years. For example, Notebook 3 requires 3.3 times longer than Notebook 1 for scenarios

HPC_256_6 or HPC_128_6 with 120 simulation years. For the CJW VM environment, the

average time to run Notebooks 1 and 3 across the tested scenarios only takes 0.6% of the entire

time needed to run all Notebooks 1, 2, and 3. This means the time required to run data processing

and post-processing notebooks is not a limiting factor for running the simulations. For the HPC

environment, this ratio increases to 8.5% and 11.3% when using 128 and 256 CPUs, respectively.

This dramatic increase in the ratio is due to the significant decrease in run-time of Notebook 2

when using HPC which is discussed next.

Chapter 4

65

Figure 4.4. Notebook 1 and 3 run-time performance analysis for different model simulations

(both notebooks 1 and 3 were run on CJW VM no matter whether the HPC or CJW VM

environment was used for the modeling; therefore we do not distinguish between the

environments

The run-time for the SUMMA execution notebook (Notebook 2) for the 15 model scenarios

using different computation environments is shown in Figure 4.5. The CJW VM environment took

between 7 hr 33 min to 9 hr 25 min to run Notebook 2 for only six years of simulations. This

emphasizes that, while the CJW VM environment is technically able to simulate smaller models,

it is not efficient to run larger simulations. The HPC, however, performed the simulations much

faster, as expected. In the case of running one basin for six years, the HPC was 42 and 36 times

faster than the CJW VM, when using 256 and 128 CPUs, respectively. HPC with 256 CPUs

(scenario HPC_256_6) could finish the simulations for 120 years (3% percent of the VB study) in

only 2 hr and 10 min while HPC with 128 CPUs (scenario HPC_128_6) could run the same

problem in 3 hr and 12 min (1.48 times of the time need by HPC_256_6). Using the HPC with 256

CPUs, assuming a linear extrapolation, the SUMMA simulations from Notebook 2 are expected

to be done in about 75 hours for the entire VB Study. All in all, it can be easily concluded that

Chapter 4

66

HPCs provide significantly faster simulations making them ideal to run for larger studies. When

using the HPC resource and in the case of 120 years of simulation, dividing the number of the

allocated CPUs by two increased the run-time only by about 50% and not 100% as one might

expect. This non-linear scaling can be mainly attributed to different factors including 1)

communication overhead in the computational resource that reduces scaling, and 2) the fact that

some parts of the codes in Notebook 2 did not utilize parallelism. For example, KGE values were

only calculated after they were exported as NetCDF files instead of being calculated directly from

the raw SUMMA output files.

Figure 4.5. Notebook 2 run-time performance analysis for different model simulations using the

CJW VM, or HPC (Expanse with 256 or 128 CPUs) options

The run-time for transferring the SUMMA output files from Expanse HPC to CJW on

HydroShare using the Globus service integrated by CyberGIS-Compute Service is shown in Figure

4.6. Each transfer was repeated 5 times to obtain a range of run-time for each of the model

simulations with a different total number of simulation years. Figure 4.6 shows that the range of

the transfer time for each total number of simulation years is small indicating a consistent data

transfer. For 120 years of simulation, by average it took about 14.5 min to transfer about 118 GB

of data from HPC to CJW which highlights that the approach used to transfer data from HPC to

CJW is fast and stable. Moreover, a linear relationship between the size of the data transferred (or

number of total simulation years and the run-time (averaged over the five repetitions) can be easily

seen.

Chapter 4

67

Figure 4.6. Boxplots for Notebook 4 run-time performance analysis for six different simulation

years to transfer data from Expanse HPC to CJW on HydroShare. Each transfer was repeated

five times to obtain a range of run-time for each of the model simulations

4.3.3 Best-practice for reproducibility

The cyberinfrastructure presented in this paper made it possible to reproduce a complex research

study, providing interactive codes that can easily be used to test the theories put forth by the

original study. This kind of conclusion-reproducibility is a higher level of transparency in

modeling studies than the usual bit-reproducibility, which often provides code that is not of

practical use to another researcher but is simply runnable. The data for this study was pre-processed

and the output post-processed by using existing software in Python packages. The study here

demonstrated best-practice by using the online repository of HydroShare to not only store data and

modeling code, but to also store computational environment, API version documentation and

container installation. HydroShare, as a hydrology-based repository service, facilitated this by

allowing all the parts of the problem to be stored together as one resource. Furthermore, parts of

the resource can be pulled out and made into a new version (updated, revised, or modified), in

order to promote collaboration.

To this point, a HydroShare collection resource was created that contained three composite

resources. These resources are published and have Digital Object Identifier (DOI) which makes

them immutable and findable. Figure 4.7 shows the landing page for the HydroShare collection

resource. The three composite resources that are contained by this resource are shown in dialogue

box 1, the “Related Resources” in box 2 refers to this paper, and box 3 shows the information on

how to cite this resource. Figure 4.8 shows the landing page for the HydroShare composite

resource holding the HPC notebooks. Box 1 shows the contents of the resource, most importantly

the four Jupyter notebooks, and the readme.md file. The readme.md (box 2) provides the user with

the instruction on how to run the notebooks. Box 3 shows the information on how to cite this

HydroShare resource.

Chapter 4

68

Figure 4.7. The HydroShare landing page for the collection resource developed by this study

(2021a)

Chapter 4

69

Figure 4.8. The HydroShare landing page for the HPC resource developed by this study (2021b)

Chapter 4

70

4.3.4 Opportunities and challenges

The efforts of the conclusion-reproducibility setup presented here can be used to test different

situations where the theories proposed in the VB study and in the individual basins explored in

section 4.3.1 can be confirmed or even new patterns to be detected. With minimal changes to the

notebooks, a user could (1) use different CAMELS basins, (2) use different parameters in the LHS

set, (3) use different time periods, e.g. a drought period, (4) use more than 10 LHS sets, e.g., a

more thorough exploration of the parameter space, and (5) use different or more model

configuration, combining different or more model decisions.

The last two changes, i.e., using a higher number of LHS sets, and using different model

configuration/decisions, bring up the major first challenge that was encountered in reproducing

this big-data problem; it is a big-data problem. Most conclusion-reproducibility setups are used

with toy-problems. Here, the limit on manageable data size was pushed, even with only running a

few basins. HPC computational power was required to run the full 6 years of simulation, and

expanding the parameter exploration space or adding model decisions would compound the size.

The second major challenge that is encountered is implementing version control. What if

users need to run the Jupyter notebooks presented in this study in their own computational

environment (not deployed on CJW), or they need to install a newer version of a model API? How

can they make sure they have a reproducible framework that is robust enough to tackle the version

control problem? Here, we propose a way for future research to tackle the version control by

making the computational environment all documented and installable via a Python environment

file. This means the hydrology modeling code, pySUMMA, has to be installable by Anaconda. In

the future, Python packages updates will break compatibility, but compatibility can be preserved

by installing the older versions (as documented in the environment file), or the user understanding

the updates in order to manually work around the updated package incompatibility. This would be

expected to mostly be an issue with updates of pySUMMA, since it is doing the heavy lifting and

the pre-processing and post-processing Python packages would not be expected to change as much.

If a researcher wants to use a newer (future) version of pySUMMA, they may need to debug some

parts of the Jupyter notebooks that are affected by the changes. While this is not an ideal way to

handle version updates, at least the researcher has options of a working, albeit older, computational

environment, from which to begin reproducing the study.

The specifics of the environment can be placed in a Python environment.yml file that can

be shared as part of the online model and data repositories, and can be installed with an installation

notebook inside the repository. This can use best practice for transparency about what

dependencies the computational gateway interface notebooks need to run. The specifics of each

dependency can be described in the installation notebook, so that if in the future there are issues

with the availability of that dependency, then a suitable substitute can be found. Version control

issues can be thus addressed through this methodology, albeit an imperfect solution depending on

possible user troubleshooting.

In addition to the major challenges explored above, there are two more items: 1)

transferring data from CJW on HydroShare to the user’s local machine, and 2) what if a user

wants/needs to set up their own HPC to reproduce this study or for similar use cases.

Chapter 4

71

For cases when users need to transfer data from CJW on HydroShare to their local machine

(e.g., they need to permanently store all the model outputs), if the data size is small it is easily

doable. However, for big data problems similar to the entire VB study or even the four selected

basins study explored in this paper, this transfer would be slow or unstable. In fact, if a user needs

to have the big output on a local computer, it should be downloaded from HPC directly to the

user's local computer using Globus (without going through CJW). This would need the user's

computer to become a Globus server. This can be considered as a limitation of this work and a

topic of future research.

Finally, if users need to set up their own HPC to work with similar Jupyter notebooks, they

need to set up their own job submission service and configure it to their own account from the

HPC that they have access to. Although the job submission software used in this study is open

source, it is customized for the UIUC HPC so it cannot be directly used for this purpose. One

future work can be that CJW asks users to provide their own credentials and to their own HPC,

rather than using the UIUC HPC service.

4.4 Conclusions
The importance of scientific research reproducibility is broadly recognized across different

scientific disciplines. When it comes to computational hydrology, reproducing large-scale studies,

being computationally expensive and time-consuming, can be significantly challenging. This

research showed how using a basic strategy and architecture integrating the (1) online data

repositories, (2) computational environments, and (3) model API presented by Choi et al. (2021d)

could facilitate reproduction of the components of modern and complex hydrologic studies (first

research objective). For this purpose, we used a recently published large-scale hydrologic research

(VB study) as an example. We designed and developed cyberinfrastructure that utilized software

components to enable intuitive, and online access to computational environments. This approach

was used to remove the potential software inconsistencies from users’ differing personal software

editions, as well as to make implementation easier with pre-compiled software, with the added

complication of a computationally expensive research problem instead of a case study. This

approach gave the user the option to use either the CJW VM or HPC computational environments

depending on how much they need to reproduce a problem more representative of the big-data

problem. Using HydroShare as the data repository, and containerization of the pySUMMA API

(with Docker or Singularity in the case of the HPC environment) along with a computational

gateway interface of Jupyter IPython notebooks both hosted on the CJW made this possible. Three

Jupyter notebooks for the CJW VM environment and four Jupyter notebooks for HPC environment

were developed. Notebooks 1-3 for both CJW VM and HPC environments enable, (1) preparing

the forcing data, simulation period, and study CAMELS basins, (2) executing SUMMA hydrologic

model, and (3) visualization of the results. Notebook 4, only developed for the HPC environment,

enables transferring large data from HPC to the scientific cloud service (i.e., CJW) using Globus

service integrated by CyberGIS-Compute in a reliable, high-performance and fast way.

We analyzed performance of the notebooks focusing on contrasting HPC and CJW VM

notebooks using a variety of model scenarios (second research objective). It was clear how the

Chapter 4

72

HPC environments could perform significantly faster simulations compared to CJW VM, enabling

users to explore a large number of basins and simulation periods. This clearly showed how the use

of HPC could advance the reproducibility of modern and complex hydrologic studies. The run-

time performance analysis for the big data transfer notebook for the HPC environment showed that

the method used was stable, reliable and fast. Therefore, similar studies could easily benefit from

the same approach for transferring large data between scientific cloud services.

With the focus of this research on the conclusion-reproducibility over the bit-

reproducibility of the VB study, it was discussed that users can easily modify the notebooks to test

different situations by varying the study basins and periods, parameterizations, and model

configurations. These variations were shown that can lead to two major challenges (third research

objective). First, adding up to the complexity of the big-data problem which was shown how it

could be tackled by using the HPC computation environment. Second, the challenge of

implementation of a version control system, e.g., when a user needs to install a newer version of a

model API or when a user needs to run these codes on their local machine rather than the used

cloud-based computational environment, was discussed. Sharing the dependencies of the

computational environments as a Python environment yml file and an installation notebook that

installs them was proposed as a future solution to tackle the version control issue despite the fact

that it is an imperfect solution depending on possible user troubleshooting.

Finally, as a broader impact, the VB study methodology replicated with interactive codes

could also serve as a valuable educational resource, allowing educators to present sophisticated

modeling experiments for use within classrooms through online Python notebooks. Likewise, the

basic approach could be extended to enable new water decision-support systems that take

advantage of the SUMMA framework and HPC yet remain easy to interact with through notebooks

to, for example, evaluate forcing sensitivity to a water resources management objective in a

systematic manner.

Acknowledgments

This work was supported by the National Science Foundation under collaborative grants 1664061,

1664119 and 1664018 for the development of HydroShare (http://www.hydroshare.org). Any

opinions, findings, and conclusions or recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the National Science Foundation.

Software and Data Availability
The data and Jupyter notebooks used in this study were shared on HydroShare with persistent

DOIs. A collection resource in Hydroshare (Choi et al., 2021a) holds the resources containing the

data and Jupyter notebooks further described in the following table. A Hydroshare account

(http://hydroshare.org) and access to the CyberGIS-Jupyter for Water platform (accessed through

HydroShare) are required to execute the Jupyter notebooks in the second and third resources.

http://hydroshare.org/

Chapter 4

73

Resource Description Reference

Original NLDAS forcings for the CAMELS

basins can be obtained as a NetCDF file*

Mizukami and Wood (2021)

SUMMA Simulations using CAMELS

Datasets on CyberGIS-Jupyter for Water** Choi et al. (2021c)

SUMMA Simulations using CAMELS

Datasets for HPC use with CyberGIS-Jupyter

for Water**

Choi et al. (2021b)

*The data from the CAMELS dataset (Newman et al., 2015a) was consolidated into one NetCDF

file taking advantage of OPeNDAP data services (Tarboton and Calloway, 2021)

**The SUMMA setup for the CAMELS basins can be obtained from the summa_camels folder

of the HydroShare resources.

List of relevant URLs

CyberGIS-Jupyter for Water: https://go.illinois.edu//cybergis-jupyter-water

Docker: https://www.docker.com

HydroShare REST API: https://github.com/hydroshare/hydroshare/wiki/HydroShare-REST-

API

Numpy: https://www.numpy.org

Pandas: https://pandas.pydata.org

pySUMMA: https://github.com/UW-Hydro/pysumma/releases/tag/v3.0.3

Seaborn: https://seaborn.pydata.org

Singularity: https://sylabs.io

SUMMA: https://github.com/CH-Earth/summa/releases/tag/v3.0.3

xarray: http://xarray.pydata.org

XSEDE: https://www.xsede.org

https://go.illinois.edu/cybergis-jupyter-water
https://www.docker.com/
https://github.com/hydroshare/hydroshare/wiki/HydroShare-REST-API
https://github.com/hydroshare/hydroshare/wiki/HydroShare-REST-API
https://www.numpy.org/
https://pandas.pydata.org/
https://github.com/UW-Hydro/pysumma/releases/tag/v3.0.3
https://seaborn.pydata.org/
https://sylabs.io/
https://github.com/CH-Earth/summa/releases/tag/v3.0.3
http://xarray.pydata.org/
https://www.xsede.org/
https://www.xsede.org/

Chapter 5

74

Chapter 5

5 Conclusions

The overall objective of this dissertation research was to create methods for advancing the

reproducibility of environmental, including hydrological, modelling. As stated in Chapter 1, the

major goals of this research were: (1) to introduce an extensible environmental model metadata

framework using a user-defined metadata schema, (2) to design a model instance metadata schema

for a specific environmental model, and (3) to demonstrate how using a basic strategy and

architecture integrating the online data repositories, computational environments, and model API

presented by Choi et al. (2021d) could facilitate reproduction of the components of modern and

complex hydrologic studies.

A flexible and scalable metadata framework for hydrologic models was introduced using

a novel, user-defined model instance metadata schema. This approach transfers the capability of

providing and maintaining metadata schemas for any arbitrary model program from the web-based

repository developers to the modeling community. Because it is standardized and machine-

readable, the schema can be consumed and utilized in a scalable way. The described model

metadata framework is implemented in the web-based repository, HydroShare, to show how

support can be provided for an indefinite variety of environmental and hydrologic models with

little cost to the repository developers. A SWAT model was used as an example to describe the

metadata schema specification.

This dissertation introduced a design process for creating a model instance metadata

schema with an example of following this process for a specific hydrologic model: SUMMA. The

proposed approach assists in a flexible and scalable model metadata framework. Upon creation of

a number of different metadata schemas for different models by modelers, there will be a need to

organize the metadata schemas so that they can be easily shared, found, and reused. Therefore, a

method for organizing the metadata schemas is presented to advance the reportability and

transparency.

Finally, the research in this dissertation, presents cyberinfrastructure for improving the

reproducibility of complex, big-data hydrologic studies. To achieve this, the basic strategy and

architecture presented by Choi et al. (2021d) was applied to a large-scale hydrologic study

described in Van Beusekom et al. (2022). In this dissertation, cyberinfrastructure that utilized

software components to enable intuitive and online access to computational environments was

designed and developed. Through the lessons learned from this application, the challenges

introduced by data and computational intensive modeling studies were identified and addressed.

Most importantly, users were given the option to choose between non-HPC and HPC

computational environments depending on if they need to reproduce a problem more

representative of the big-data problem. Model APIs and Jupyter notebooks allow for ease of use

and documentation of modeling experiments.

Across these three studies, the major contributions of the research include the following.

(1) A flexible and scalable model agnostic metadata framework was developed which specifies the

metadata elements for the model instances of any model program using a machine-readable model

Chapter 5 | Conclusions

75

metadata schema file. (2) A methodology for building a model instance metadata schema for model

programs was developed and strategies for how to manage the variety of metadata schemas that

might be developed by the modeling community was discussed. (3) Finally, the cyberinfrastructure

required to overcome data management and software architecture challenges to reproduce and

reuse large-scale computational hydrological studies was advanced.

The approaches presented in this dissertation not only impact the discussed hydrologic and

environmental fields, but also are general so that they can be adopted by other scientific disciplines

that follow a similar practice of making use of model programs and model instances in their

research and relying on similar cyberinfrastructure to reproduce and reuse large and complex

studies. Ultimately, these approaches seek to foster a culture improving reproducibility and

replicability among the model-based studies through facilitating the sharing, discovery, and reuse

of data and models built by others.

76

6 References

Addor, N., Melsen, L.A., 2019. Legacy, Rather Than Adequacy, Drives the Selection of

Hydrological Models. Water Resour. Res. 55, 378–390.

https://doi.org/10.1029/2018WR022958

Baker, M., 2016. Is there a reproducibility crisis? Nature 533, 452–454.

https://doi.org/10.1038/533452a

Chard, K., Tuecke, S., Foster, I., 2016. Globus: Recent enhancements and future plans, in:

Proceedings of the XSEDE16 Conference on Diversity, Big Data, and Science at Scale.

https://doi.org/10.1145/2949550.2949554

Chen, M., Voinov, A., Ames, D.P., Kettner, A.J., Goodall, J., Jakeman, A.J., Barton, M.C.,

Harpham, Q., Cuddy, S.M., DeLuca, C., Yue, S., Wang, J., Zhang, F., Wen, Y., Lü, G.,

2020. Position paper: Open web-distributed integrated geographic modelling and simulation

to enable broader participation and applications. Earth-Science Rev.

https://doi.org/10.1016/j.earscirev.2020.103223

Choi, Y.-D., 2022. Migrated: Toward Open and Reproducible Environmental Modeling by

Integrating Online Data Repositories, Computational Environments, and Model Application

Programming Interfaces [WWW Document]. URL

http://www.hydroshare.org/resource/9efc88837a534ebf91ea4e299cba5604

Choi, Y.-D., 2020a. Toward Open and Reproducible Environmental Modeling by Integrating

Online Data Repositories, Computational Environments, and Model Application

Programming Interfaces [WWW Document]. URL

https://www.hydroshare.org/resource/33cfb9622a354442b2b0a869b15ea6b0/

Choi, Y.-D., 2020b. The Impact of Stomatal Resistance Parameterizations on ET of SUMMA

Model in Aspen stand at Reynolds Mountain East [WWW Document]. HydroShare. URL

https://www.hydroshare.org/resource/13d6b84a9553410297a67fa366a56cb2/ (accessed

10.7.22).

Choi, Y.-D., Beusekom, A. Van, Li, Z., Nijssen, B., Hay, L., Bennett, A., Tarboton, D.,

Maghami, I., Goodall, J., Clark, M.P., 2021a. Hydrologic Model Sensitivity to Temporal

Disaggregation of Meteorological Forcing Data across CONUS [WWW Document].

HydroShare. URL

https://www.hydroshare.org/resource/c0e8de47aee744d088db7019d78c2b3f/

Choi, Y.-D., Beusekom, A. Van, Li, Z., Nijssen, B., Hay, L., Bennett, A., Tarboton, D.,

Maghami, I., Goodall, J., Clark, M.P., 2021b. SUMMA Simulations using CAMELS

Datasets for HPC use with CyberGIS-Jupyter for Water [WWW Document]. HydroShare.

URL https://www.hydroshare.org/resource/9d73d61696ee4f6b9c9a11e21cd44e24/

Choi, Y.-D., Beusekom, A. Van, Li, Z., Nijssen, B., Hay, L., Bennett, A., Tarboton, D.,

Maghami, I., Goodall, J., Clark, M.P., 2021c. SUMMA Simulations using CAMELS

Datasets on CyberGIS-Jupyter for Water [WWW Document]. HydroShare. URL

References

77

https://www.hydroshare.org/resource/50e9716922dc487981b71e2e11f3bb5d/

Choi, Y.-D., Goodall, J., Sadler, J.M., Castronova, A.M., Bennett, A., Li, Z., Nijssen, B., Wang,

S., Clark, M.P., Ames, D.P., Horsburgh, J.S., Yi, H., Bandaragoda, C., Seul, M., Hooper,

R., Tarboton, D.G., 2021d. Toward open and reproducible environmental modeling by

integrating online data repositories, computational environments, and model Application

Programming Interfaces. Environ. Model. Softw. 135.

https://doi.org/10.1016/j.envsoft.2020.104888

Clark, M.P., Nijssen, B., Lundquist, J.D., Kavetski, D., Rupp, D.E., Woods, R.A., Freer, J.E.,

Gutmann, E.D., Wood, A.W., Brekke, L.D., Arnold, J.R., 2015a. The structure for unifying

multiple modeling alternatives (SUMMA), Version 1.0: Technical description.

Clark, M.P., Nijssen, B., Lundquist, J.D., Kavetski, D., Rupp, D.E., Woods, R.A., Freer, J.E.,

Gutmann, E.D., Wood, A.W., Brekke, L.D., Arnold, J.R., Gochis, D.J., Rasmussen, R.M.,

2015b. A unified approach for process-based hydrologic modeling: 1. Modeling concept.

Water Resour. Res. 51, 2498–2514. https://doi.org/10.1002/2015WR017198

Clark, M.P., Nijssen, B., Lundquist, J.D., Kavetski, D., Rupp, D.E., Woods, R.A., Freer, J.E.,

Gutmann, E.D., Wood, A.W., Gochis, D.J., Rasmussen, R.M., Tarboton, D.G., Mahat, V.,

Flerchinger, G.N., Marks, D.G., 2015c. A unified approach for process-based hydrologic

modeling: 2. Model implementation and case studies. Water Resour. Res. 51, 2515–2542.

https://doi.org/10.1002/2015WR017200

Clark, M.P., Vogel, R.M., Lamontagne, J.R., Mizukami, N., Knoben, W.J., Tang, G., Gharari, S.,

Freer, J.E., Whitfield, P.H., Shook, K.R., Papalexiou, S.M., 2021. The abuse of popular

performance metrics in hydrologic modeling. Water Resour. Res. 57, p.e2020WR029001.

https://doi.org/https://doi.org/10.1029/2020WR029001

Coyle, K., Baker, T., 2008. Guidelines for Dublin Core Application Profiles [WWW Document].

URL https://www.dublincore.org/specifications/dublin-core/profile-guidelines/ (accessed

5.20.22).

CyberGIS Center HydroShare Development Team, 2022. CyberGIS-Jupyter for Water (CJW)

Announcements [WWW Document]. URL

http://www.hydroshare.org/resource/a901d83a1281404fae58cc41c1cc9889

Dublin Core Metadata Initiative. Dublin core metadata element set, version 1.1. [WWW

Document], 2012. URL https://www.dublincore.org/specifications/dublin-core/dces/

(accessed 5.20.22).

Duval, E., Hodgins, W., Sutton, S., Weibel, S.L., 2002. Metadata principles and practicalities. D-

Lib Mag. 8, 1–10. https://doi.org/10.1045/april2002-weibel

Ercan, M.B., Maghami, I., Bowes, B.D., Morsy, M.M., Goodall, J., 2020. Estimating Potential

Climate Change Effects on the Upper Neuse Watershed Water Balance Using the SWAT

Model. J. Am. Water Resour. Assoc. 56, 53–67. https://doi.org/10.1111/1752-1688.12813

Essawy, B.T., Goodall, J., Voce, D., Morsy, M.M., Sadler, J.M., Choi, Y.-D., Tarboton, D.G.,

Malik, T., 2020. A taxonomy for reproducible and replicable research in environmental

modelling. Environ. Model. Softw. 134. https://doi.org/10.1016/j.envsoft.2020.104753

References

78

Essawy, B.T., Goodall, J., Zell, W., Voce, D., Morsy, M.M., Sadler, J., Yuan, Z., Malik, T.,

2018. Integrating scientific cyberinfrastructures to improve reproducibility in computational

hydrology: Example for HydroShare and GeoTrust. Environ. Model. Softw. 105, 217–229.

https://doi.org/10.1016/j.envsoft.2018.03.025

Essawy, B.T., Goodall, J.L., Xu, H., Gil, Y., 2017. Evaluation of the OntoSoft Ontology for

describing metadata for legacy hydrologic modeling software. Environ. Model. Softw. 92,

317–329. https://doi.org/https://doi.org/10.1016/j.envsoft.2017.01.024

Essawy, B.T., Goodall, J.L., Xu, H., Rajasekar, A., Myers, J.D., Kugler, T.A., Billah, M.M.,

Whitton, M.C., Moore, R.W., 2016. Server‐side workflow execution using data grid

technology for reproducible analyses of data‐intensive hydrologic systems. Earth Sp. Sci. 3,

163–175. https://doi.org/https://doi.org/10.1002/2015EA000139

Foster, I., 2011. Globus Online: Accelerating and democratizing science through cloud-based

services. IEEE Internet Comput. 15, 70–73. https://doi.org/10.1109/MIC.2011.64

Gan, T., Tarboton, D.G., Dash, P., Gichamo, T.Z., Horsburgh, J.S., 2020a. Integrating

hydrologic modeling web services with online data sharing to prepare, store, and execute

hydrologic models. Environ. Model. Softw. 130.

https://doi.org/https://doi.org/10.1016/j.envsoft.2020.104731

Gan, T., Tarboton, D.G., Horsburgh, J.S., Dash, P., Idaszak, R., Yi, H., 2020b. Collaborative

sharing of multidimensional space-time data in a next generation hydrologic information

system. Environ. Model. Softw. 129. https://doi.org/10.1016/j.envsoft.2020.104706

Gichamo, T.Z., Sazib, N.S., Tarboton, D.G., Dash, P., 2020. HydroDS: data services in support

of physically based, distributed hydrological models. Environ. Model. Softw. 125, 104623.

https://doi.org/https://doi.org/10.1016/j.envsoft.2020.104623

Gil, Y., David, C.H., Demir, I., Essawy, B.T., Fulweiler, R.W., Goodall, J., Karlstrom, L., Lee,

H., Mills, H.J., Oh, J., Pierce, S.A., 2016. Toward the Geoscience Paper of the Future: Best

practices for documenting and sharing research from data to software to provenance. Earth

Sp. Sci. 388–415. https://doi.org/10.1002/2015EA000136.Received

Gil, Y., Ratnakar, V., Garijo, D., 2015. OntoSoft: Capturing Scientific Software Metadata 1–4.

https://doi.org/10.1145/2815833.2816955

Greenberg, J., Swauger, S., Feinstein, E.M., 2013. Metadata Capital in a Data Repository.

Metadata Reuse: A Growth Indicator., in: Proc. of the International Conference on Dublin

Core and Metadata Applications. pp. 140–150.

Gupta, H.V., Kling, H., Yilmaz, K.K., Martinez, G.F., 2009. Decomposition of the mean squared

error and NSE performance criteria: Implications for improving hydrological modelling. J.

Hydrol. 377, 80–91. https://doi.org/https://doi.org/10.5194/hess-23-4323-2019.

Hancock, D.Y., Fischer, J., Lowe, J.M., Snapp-Childs, W., Pierce, M., Marru, S., Coulter, J.E.,

Vaughn, M., Beck, B., Merchant, N., Skidmore, E., Jacobs, G., 2021. Jetstream2:

Accelerating cloud computing via Jetstream, in: Practice and Experience in Advanced

Research Computing (PEARC ’21). Association for Computing Machinery, New York, NY,

USA, p. Article 11, 1–8. https://doi.org/https://doi.org/10.1145/3437359.3465565

References

79

Hill, L.L., Crosier, S.J., Smith, T.R., Goodchild, M., 2001. A content standard for computational

models. D-Lib Mag. 7, 1082–9873.

Horsburgh, J.S., Morsy, M.M., Castronova, A.M., Goodall, J., Gan, T., Yi, H., Stealey, M.J.,

Tarboton, D.G., 2016. HydroShare: Sharing Diverse Environmental Data Types and Models

as Social Objects with Application to the Hydrology Domain. J. Am. Water Resour. Assoc.

52. https://doi.org/10.1111/1752-1688.12363

Hutton, C., Wagener, T., Freer, J., Han, D., Duffy, C., Arheimer, B., 2016. Most computational

hydrology is not reproducible, so is it really science? Water Resour. Res. 52, 7548–7555.

https://doi.org/10.1002/2016WR019285

IETF, 2013. JSON Schema: core definitions and terminology draft-zyp-json-schema-04 [WWW

Document]. Internet-Drafts are Work. Doc. Internet Eng. Task Force. URL doc/html/draft-

zyp-json-schema-04 (accessed 11.9.21).

Kurtz, W., Lapin, A., Schilling, O.S., Tang, Q., Schiller, E., Braun, T., Hunkeler, D., Vereecken,

H., Sudicky, E., Kropf, P., Franssen, H.J.H., 2017. Integrating hydrological modelling, data

assimilation and cloud computing for real-time management of water resources. Environ.

Model. Softw. 93, 418–435. https://doi.org/https://doi.org/10.1016/j.envsoft.2017.03.011

Kurtzer, G.M., Sochat, V., Bauer, M.W., 2017. Singularity: Scientific containers for mobility of

compute. PLoS One 12, e0177459. https://doi.org/10.1371/journal.pone.0177459

Leipzig, J., Nüst, D., Hoyt, C.T., Ram, K., Greenberg, J., 2021. The role of metadata in

reproducible computational research. Patterns 2, 100322.

https://doi.org/10.1016/j.patter.2021.100322

Li, Z., Michels, A., Lu, F., Padmanabhan, A., Wang, S., 2022. CyberGIS-Jupyter for Water

[WWW Document]. HydroShare. URL

http://www.hydroshare.org/resource/4cfd280e8eb747169b293aec2862d4f5

Lyu, F., Yin, D., Padmanabhan, A., Choi, Y.-D., Goodall, J.L., Castronova., A.M., Tarboton,

D.G., Wang, S., 2019. Reproducible hydrological modeling with CyberGIS-Jupyter: a case

study on SUMMA, in: Proceedings of the Practice and Experience in Advanced Research

Computing on Rise of the Machines (Learning). pp. 1–6.

https://doi.org/https://doi.org/10.1145/3332186.3333052

Maghami, I., 2022. The revised resources created by Choi (2020) as: “Toward Open and

Reproducible Environmental Modeling by Integrating Online Data Repositories,

Computational Environments, and Model Application Programming Interfaces” [WWW

Document]. HydroShare. URL

https://www.hydroshare.org/resource/8c499dadaa274af488775596212ebf73/ (accessed

10.7.22).

Maghami, I., 2021. Data for Estimating Potential Climate Change Effects on the Upper Neuse

Watershed Water Balance Using the SWAT Model [WWW Document]. URL

https://www.hydroshare.org/resource/1710a6b553da4f70877c2abc69f3a42b/

Mathevet, T., Michel, C., Andréassian, V., Perrin, C., 2006. A bounded version of the Nash-

Sutcliffe criterion for better model assessment on large sets of basins, in: Large Sample

References

80

Basin Experiments for Hydrological Model Parameterization: Results of the Model

Parameter Experiment–MOPEX. IAHS PUBLICATION, Wallingford, UK, pp. 211–219.

Melsen, L.A., Torfs, P.J.J.F., Uijlenhoet, R., Teuling, A.J., 2017. Comment on “Most

computational hydrology is not reproducible, so is it really science?” by Christopher Hutton

et al.: Let hydrologists learn the latest computer science by working with Research Software

Engineers (RSEs) and not reinvent the waterwheel our. Water Resour. Res.

https://doi.org/https://doi.org/10.1002/2016WR020208

Merkel, D., 2014. Docker: lightweight Linux containers for consistent development and

deployment. Linux J.

Mizukami, N., Wood, A., 2021. NLDAS Forcing NetCDF using CAMELS datasets from 1980 to

2018 [WWW Document]. HydroShare. URL

http://www.hydroshare.org/resource/a28685d2dd584fe5885fc368cb76ff2a

Morsy, M.M., Goodall, J., Bandaragoda, C., Castronova, A.M., Greenberg, J., 2014. Metadata

for describing water models. Proc. - 7th Int. Congr. Environ. Model. Softw. Bold Visions

Environ. Model. iEMSs 2014 1, 53–59.

Morsy, M.M., Goodall, J., Castronova, A.M., Dash, P., Merwade, V., Sadler, J.M., Rajib, M.A.,

Horsburgh, J.S., Tarboton, D.G., 2017. Design of a metadata framework for environmental

models with an example hydrologic application in HydroShare. Environ. Model. Softw. 93,

13–28. https://doi.org/10.1016/j.envsoft.2017.02.028

Newman, A.J., Clark, M.P., Craig, J., Nijssen, B., Wood, A.W., Gutmann, E.D., Mizukami, N.,

Brekke, L., Arnold, J.R., 2015a. Gridded ensemble precipitation and temperature estimates

for the contiguous United States. J. Hydrometeorol. 16, 2481–2500.

https://doi.org/https://doi.org/10.1175/JHM-D-15-0026.1

Newman, A.J., Clark, M.P., Sampson, K., Wood, A., Hay, L.E., Bock, A., Viger, R.J., Blodgett,

D., Brekke, L., Arnold, J.R., Hopson, T., Duan, Q., 2015b. Development of a large-sample

watershed-scale hydrometeorological data set for the contiguous USA: Data set

characteristics and assessment of regional variability in hydrologic model performance.

Hydrol. Earth Syst. Sci. 19, 209–223. https://doi.org/https://doi.org/10.5194/hess-19-209-

2015, 2015

Nüst, D., Granell, C., Hofer, B., Konkol, M., Ostermann, F.O., Sileryte, R., Cerutti, V., 2018.

Reproducible research and GIScience: An evaluation using AGILE conference papers.

PeerJ 2018, 1–23. https://doi.org/10.7717/peerj.5072

Obels, P., Lakens, D., Coles, N.A., Gottfried, J., Green, S.A., 2020. Analysis of Open Data and

Computational Reproducibility in Registered Reports in Psychology. Adv. Methods Pract.

Psychol. Sci. 3, 229–237. https://doi.org/10.1177/2515245920918872

Ochiai, K., Nagamori, M., Sugimoto, S., 2014. A metadata schema design model and support

system based on an agile development model, in: IConference 2014 Proceedings.

Overeem, I., Berlin, M.M., Syvitski, J.P.M., 2013. Strategies for integrated modeling: The

community surface dynamics modeling system example. Environ. Model. Softw. 39, 314–

321. https://doi.org/https://doi.org/10.1016/j.envsoft.2012.01.012

References

81

Peckham, S.D., 2014. The CSDMS Standard Names: Cross-Domain Naming Conventions for

Describing Process Models, Data Sets and Their Associated Variables, in: Ames, D.P.,

Quinn, N.W.T., Rizzoli, A.E. (Eds.), 7th Intl. Congress on Env. Modeling and Software.

International Environmental Modelling and Software Society (IEMSs), San Diego,

California, USA.

Pezoa, F., Reutter, J.L., Suarez, F., Ugarte, M., Vrgoč, D., 2016. Foundations of JSON schema,

in: Proceedings of the 25th International Conference on World Wide Web. pp. 263–273.

https://doi.org/10.1145/2872427.2883029

Piccolo, S.R., Frampton, M.B., 2016. Tools and techniques for computational reproducibility.

Gigascience 5, s13742-016. https://doi.org/10.1101/045104.Gronenschild

Qin, J., Dobreski, B., Brown, D., 2016. Metadata and Reproducibility: A Case Study of

Gravitational Wave Research Data Management. Int. J. Digit. Curation 11, 218–231.

https://doi.org/10.2218/ijdc.v11i1.399

Rajib, M.A., Merwade, V., Kim, I.L., Zhao, L., Song, C., Zhe, S., 2016. SWATShare – A web

platform for collaborative research and education through online sharing, simulation and

visualization of SWAT models. Environ. Model. Softw. 75, 498–512.

https://doi.org/https://doi.org/10.1016/j.envsoft.2015.10.032

Riddick, A.T., Heaven, R., Royse, K.R., Singh, A., Hughes, A.G., 2020. A model metadata

schema for environmental hazard models and its implementation in the PURE portal.

Environ. Model. Softw. 124, 1–15. https://doi.org/10.1016/j.envsoft.2019.104597

Stagge, J.H., Rosenberg, D.E., Abdallah, A.M., Akbar, H., Attallah, N.A., James, R., 2019.

Assessing data availability and research reproducibility in hydrology and water resources.

Sci. Data 6, 1–12. https://doi.org/10.1038/sdata.2019.30

Stewart, C.A., Cockerill, T.M., Foster, I., Hancock, D., Merchant, N., Skidmore, E., Stanzione,

D., Taylor, J., Tuecke, S., Turner, G., Vaughn, M., Gaffney, N.I., 2015. Jetstream: a self-

provisioned, scalable science and engineering cloud environment, in: Proceedings of the

2015 XSEDE Conference: Scientific Advancements Enabled by Enhanced

Cyberinfrastructure. St. Louis, Missouri, p. ACM: 2792774. p. 1-8.

https://doi.org/https://dx.doi.org/10.1145/2792745.2792774

Stodden, V., Bailey, D., Borwein, J., 2013. Setting the Default to Reproducible. Comput. Sci.

Res. 46, 4–6.

Stodden, V., Miguez, S., Seiler, J., 2015. Researchcompendia. org: Cyberinfrastructure for

reproducibility and collaboration in computational science. Comput. Sci. Eng. 17, 12–19.

https://doi.org/10.1109/MCSE.2015.18

Tarboton, D., Calloway, C., 2021. THREDDS DAP2 [WWW Document]. URL

http://www.hydroshare.org/resource/70070fa1b382496e85ca44894683b15d

Tarboton, D.G., Idaszak, R., Horsburgh, J.S., Ames, D.P., Goodall, J.L., Band, L.E., Merwade,

V., Couch, A., Hooper, R.P., Maidment, D.R., Dash, P.K., 2014a. HydroShare: Advancing

collaboration through hydrologic data and model sharing, in: Proceedings of the 7th

International Congress on Environmental Modelling and Software. Int. Environ. Modell.

References

82

and Software Soc, San Diego, Calif., pp. 978–988.

Tarboton, D.G., Idaszak, R., Horsburgh, J.S., Heard, J., Ames, D., Goodall, J., Band, L.E.,

Merwade, V., 2014b. A Resource Centric Approach For Advancing Collaboration Through

Hydrologic Data And Model Sharing, in: International Conference on Hydroinformatics.

CUNY Academic Works.

Tarboton, D.G., Idaszak, R., Horsburgh, J.S., Heard, J., Ames, D., Goodall, J.L., Merwade, V.,

Couch, A.L., Arrigo, J., Hooper, R., Valentine, D., Maidment, D., 2014c. HydroShare:

Advancing Hydrology through Collaborative Data and Model Sharing, in: International

Environmental Modelling and Software Society (IEMSs) 7th International Congress on

Environmental Modelling and Software.

Tayfur, G., 2017. Modern Optimization Methods in Water Resources Planning, Engineering and

Management. Water Resour. Manag. 31, 3205–3233. https://doi.org/10.1007/s11269-017-

1694-6

The International Organization for Standardization; ISO 23081.1—s3 Terms and Definitions

[WWW Document], 2017. URL https://www.iso.org/obp/ui/#iso:std:iso:23081:-1:ed-

2:v1:en (accessed 5.20.22).

Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V.,

Lathrop, S., Lifka, D., Peterson, G.D., Roskies, R., Scott, J.R., Wilkins-Diehr, N., 2014.

XSEDE: Accelerating Scientific Discovery. Comput. Sci. Eng. 16, 62–74.

https://doi.org/https://dx.doi.org/10.1109/MCSE.2014.80

Van Beusekom, A.E., Hay, L.E., Bennett, A.R., Choi, Y.-D., Clark, M.P., Goodall, J., Li, Z.,

Maghami, I., Nijssen, B., Wood, A.W., 2022. Hydrologic Model Sensitivity to Temporal

Aggregation of Meteorological Forcing Data: A Case Study for the Contiguous United

States. J. Hydrometeorol. 23, 167–183. https://doi.org/10.1175/JHM-D-21-0111.1

Where to start — advice on creating a metadata schema [WWW Document], 2014. . ISO/TC

46/SC11N800R1. URL

https://committee.iso.org/files/live/sites/tc46sc11/files/documents/N800R1 Where to start-

advice on creating a metadata schema.pdf (accessed 12.7.22).

Wosniok, C., Lehfeldt, R., 2013. A metadata-driven management system for numerical

modeling, in: OCEANS 2013 MTS/IEEE - San Diego: An Ocean in Common. MTS.

Yang, C., Raskin, R., Goodchild, M., Gahegan, M., 2010. Geospatial cyberinfrastructure: past,

present and future. Computers, Environment and Urban Systems. Comput. Environ. Urban

Syst. 34, 264–277. https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2010.04.001

83

Appendix

Appendix-1
This section provides supplemental material to support our methods and results for Chapter 4.

The figures and tables are referred to in the main text.

Figure A1. An overview of the forcing datasets (FORCINGS; yellow box), parameter sets

(PARAMETERS; blue box), and model configurations (CONFIGURATIONS; green box) used

in the 704 SUMMA model runs (RUNS; pink box) performed for each of the 671 CAMELS

basins. Note the pink numbers that follow each forcing, parameter, and configuration refers to

the SUMMA model run set as numbered in the pink RUNS box (e.g., the Default parameter set

in the PARAMETERS box is used with SUMMA model runs 1 and 3 in the RUNS box) (source:

Van Beusekom et al., 2022)

Appendix

84

Figure A2. The preprocessing notebook (JN1) diagram

Appendix

85

Figure A3. Running SUMMA notebook (JN2) diagram

Appendix

86

Figure A4. Post-processing notebook (JN3) diagram

Appendix

87

Figure A5. HPC Data transfer notebook (JN4) diagram

Table A1. SUMMA output variables chosen for analysis (source: Van Beusekom et al., 2022)

Variable Type SUMMA Variable Name Description (units)

1

liquid water fluxes

for the soil domain

SurfaceRunoff surface runoff (m s-1)

2 AquiferBaseflow baseflow from the aquifer (m s-1)

3 Infiltration infiltration of water into the soil profile (m s-1)

4 RainPlusMelt rain plus melt (m s-1)

5 SoilDrainage drainage from the bottom of the soil profile (m s-1)

6
turbulent heat

transfer

LatHeatTotal latent heat from the canopy air space to the atmosphere (W m-2)

7 SenHeatTotal sensible heat from the canopy air space to the atmosphere (W m-2)

8 SnowSublimation snow sublimation/frost (below canopy or non-vegetated) (kg m-2 s-1)

9 snow SWE snow water equivalent (kg m-2)

10 vegetation CanopyWat mass of total water on the vegetation canopy (kg m-2)

11

derived

NetRadiation net radiation (W m-2)

12 TotalET total evapotranspiration (kg m-2 s-1)

13 TotalRunoff total runoff (m s-1)

14 TotalSoilWat total mass of water in the soil (kg m-2)

Appendix

88

Table A2. Parameters chosen for Latin Hypercube Sampling (source: Van Beusekom et al.,

2022)

Parameter Name Minimum Maximum Default Constraints

k_macropore 1.0d-7 0.1 0.0001

k_soil 1.0d-7 1.0d-5 variable

theta_sat 0.3 0.6 variable

> critSoilTranspire; > fieldCapacity;

> theta_res

aquiferBaseflowExp 1 10 2.0

aquiferBaseflowRate 0 0.1 0.1

qSurfScale 1 100 50

summerLAI 0.01 10 3

frozenPrecipMultip 0.5 1.5 1

heightCanopyTop 0.05 100 variable > heightCanopyBottom

heightCanopyBottom 0 5 variable

routingGammaShape 2 3 2.5

routingGammaScale 1 100000 20000

albedoRefresh 1 10 1.0

tempCritRain 272.16 274.16 273.16

windReductionParam 0 1 0.28

 The eight plots generated by Notebook 3 are described as follows:

1. Location of the selected CAMELS basin.

2. KGE values for each CNST forcing dataset (datasets 2-8; Table A2) by output variable

using the DEFAULT model runs. This is a subset of Figure 9A from Van Beusekom et al.

(2022).

3. Boxplots depicting the range in the KGE values for each set of model runs (DEFAULT,

LHS, CONFIG, and COMPREHENSIVE; Table A1) by output variable. Note, boxplots

only appear for the model runs selected in Notebook 2. This is a subset of Figure 9B from

Van Beusekom et al. (2022).

4. Boxplots depicting the range in the KGE values for each set of model runs (DEFAULT,

LHS, CONFIG, COMPREHENSIVE; Table A1) by CNST forcing dataset (datasets 2-8;

Table A2). Note, boxplots only appear for the model runs executed in Notebook 2. This is

a subset of Figure 9C from Van Beusekom et al. (2022).

5. Ranks 1 - 7 stacked barplots depicting the relative basin KGE rank counts by CNST forcing

dataset (datasets 2-8; Table A2) for the 14 SUMMA output variables. Note, bars on this

Appendix

89

plot will only appear if the COMPREHENSIVE basin runs are executed in Notebook 2.

This is a subset of Figure 8 from Van Beusekom et al. (2022).

6. Ranks 1 - 7 stacked barplots depicting the relative basin KGE rank counts by CNST forcing

dataset (datasets 2-8; Table A2) for the eight SUMMA configurations. Note, the complete

figure will only appear if the COMPREHENSIVE basin runs are executed in Notebook 2.

A stacked bar for the default configuration (BlL) will be plotted if the LHS basin runs are

executed in Notebook 2. This is a subset of Figure 8 from Van Beusekom et al. (2022).

7. Boxplots for each output variable depicting the range in the seven-summed KGE values

(from CNST forcing datasets 2-8) for the eight SUMMA configurations, or for the default

configuration if only the default configuration was run (DEFAULT or LHS basin runs in

Notebook 2. This is a subset of Figure 6 from Van Beusekom et al. (2022).

8. Boxplots depicting the range in the summed SUMMA hourly output variables over the

period of record produced using the benchmark (NLDAS) forcing dataset for the eight

SUMMA configuration, or for the default configuration if only the default configuration

was run (DEFAULT or LHS basin runs in Notebook 2). Note, a point will appear instead

of a boxplot if only the default parameter set was run (DEFAULT or CONFIG basin runs

in Notebook 2). This analysis is not in Van Beusekom et al. (2022); it is included in the

interactive tool to supply users with potential SUMMA output variable ranges for their

selected basin.

