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Empirical Model Relating Chloride Loading Density and Conductance

for Prediction of Galvanic Corrosion

EXECUTIVE SUMMARY

The research presented investigates and develops a correlation model in which chloride 
loading density (LD) may be determined from relative humidity (RH) and conductance (G) 
data in the context of galvanic corrosion in outdoor environments. In real applications, the 
water layer created by the deliquescence of salt on a metal surface at high RH may have non-
uniform distribution and thickness, causing significant variability in G for a given LD. In 
order to create a model that reflects realistic water layer geometries, laboratory data of 
conductance as a function of relative humidity at 30oC was examined for known LD values. 

Hysteresis-like loops were observed in the graph of G(RH) as RH increased and decreased 
periodically. The wetting (increasing RH) and drying (decreasing RH) halves of these loops 
were split. For low LD values, a logistic function was fit to each half and the coefficients 
corresponding to the best fit were noted. For high LD values, the linear region of the drying 
curves were fit to a line and the x-intercept was recorded. For each case, the parameters were 
then correlated to the known LD value. Finally, experiments were conducted in an outdoor 
environment by applying a known LD to the same sensors as those from the laboratory tests 
and measuring G, RH, and temperature. These experiments showed that temperature also 
plays a significant role in this system by changing the activity of salt in the water layer, 
resulting in different conductance values than those predicted by our model created from 
isothermal conditions. 

The technical project concluded with a successful model predicting LD using the x-intercept 
from the linear-fit method. However, the isothermal conditions presented by the lab data 
proved insufficient for fully predicting LD from conductance and relative humidity data in a 
complex real environment. By using our procedure for the outdoor experiment to collect 
more data, the modeling approach used here could be used to more accurately quantify LD 
from temperature, conductance, and relative humidity data.
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Empirical Model Relating Chloride Loading Density and Conductance

for Prediction of Galvanic Corrosion

INTRODUCTION

Modern engineered systems have optimized cost, efficiency, and mechanical properties through 
the use of multi-material systems. In the aerospace industry, aluminum alloys and carbon fiber 
reinforced polymers are often used for structural components on an aircraft due to their high 
strength-to-weight ratio. Aircraft components which are subject to higher stresses are often made
from high strength materials such as steels and titanium alloys [1]. When these unlike materials 
are in electrical contact, galvanic corrosion can occur. 

To better study galvanic corrosion, Luna Labs developed the Acuity LS Sensor. This device 
measures both environmental parameters and galvanic corrosion rates during laboratory and 
outdoor exposure tests. Corrosion measurements taken by the Acuity Sensor can be used to 
directly estimate the corrosion magnitude of a system, while environmental parameters can be 
used to further understand and predict corrosion distributions. Currently, there have been studies 
conducted which used thermodynamic models to determine an equilibrium molarity and 
conductivity of salt water as a function of the relative humidity [2]. However, not all correlations
between the parameters that the Acuity measures exist.

The problem being explored in this project is the fact that only a preliminary analysis has been 
conducted to quantify the correlation between conductance and chloride loading density. The 
objective of this project then became to analyze previously collected Acuity and chloride loading
density data to find empirical and quantitative correlations. The benefits of finding this relation 
would be far reaching. The most obvious benefit would be the creation of a finite element 
method model which could be used to predict corrosion rates through deployments of the Acuity 
LS Sensor in a wide range of environments. Better material performance testing and material 
selection as well as condition monitoring would all be possible with this model. Marine 
infrastructure, offshore energy, automotive, aerospace and other industries would all benefit from
such a development. The benefits do not extend just to industry; with this relation, it would be 
possible to better correlate accelerated laboratory corrosion tests and outdoor exposure tests. 

There are a few key known concepts we used to aid our project. The first is known as a 
deliquescence point, where there is enough humidity for salts on a surface to form droplets by 
absorbing the moisture in the air [3]. Humidity cycles were used in laboratory experiments to 
gain the most information from critical points such as these. This is also why conductance 
increases with relative humidity [4]. It is also important to know that conductance increases with 
temperature [5]. As a result, the laboratory environment was held at a constant temperature 
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(30oC). Lastly, it is important to define our two key terms: conductance and chloride loading 
density. Conductance is the degree of ease of electric flow [6], and chloride loading density is the
mass of salt per unit area [7]. 

Problem Statement

The design challenge given by Luna Labs is to create an empirical model that can predict the 
instantaneous chloride loading density of a surface in an outdoor environment from the 
conductance of the solution on said surface. Conductance is similar to conductivity, but it is 
scaled by a geometric factor that is composed of the area of the surface solution divided by the 
characteristic depth of the water layer. By analyzing data collected by the sensor, we should be 
able to predict the chloride loading density independent of the wetting geometry of the corroding
surface. The supplied data is in the form of Acuity sensor data in both laboratory and in situ tests.
Following model creation, experiments of our own design were conducted in order to verify the 
accuracy of the model we have created, alongside attempting to identify a temperature 
dependence. 

RESEARCH

Conductance and Relative Humidity vs. Time

The first model the group attempted to create was based on previous work conducted by Luna 
Labs. Luna Labs had looked into constructing a model which could relate conductance and 
relative humidity with time. Using this previous work, we looked at correlating conductance and 
relative humidity by analyzing the slope of the conductance data between 76% and 85% relative 
humidity. Figure 1 below shows the typical pattern for the laboratory data with the relative 
humidity alternating between 30% and 90% and the conductance increasing at 76% relative 
humidity, which is the deliquescence point of sodium chloride. 
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Figure 1. Two charts of conductance and relative humidity versus time for two different
loading densities. 

Our hope with this model was to determine if any differences in slope could be attributed to 
different chloride loading densities. For instance, we hypothesized that a higher chloride loading 
density might result in steeper conductance slope when compared to lower loading densities. 
From this, we hoped to find that unique slopes could be paired with the different loading 
densities. From the given laboratory data, we would be able to extrapolate slopes for loading 
densities which were not within the laboratory data set giving us slopes for all possible loading 
densities. A model could then be constructed to return a predicted chloride loading density based 
on the slope of the conductance data between certain relative humidity values. 

Upon analyzing the laboratory data, it became clear that the slope of the conductance values 
between 76% and 85% relative humidity were similar regardless of the loading density. From 
this discovery, we were able to conclusively say that conductance and relative humidity have 
little time dependence and that there was no use developing this model any further. 

Conductance vs. Relative Humidity

Initial Graphical Investigation

The principal relationship within the data that we decided to use in our model was the 
relationship between the conductance (G) data and the relative humidity (RH) data. This choice 
had quasi-theoretical backing, and there were promising trends in the data that indicated a 
relationship to chloride loading density (LD). Since conductance values for a given area (the area
of our sensor surface) changes with changing ion concentration in a solution, we hypothesized 
that the conductance would be related to the relative humidity, the source of liquid on the sensor 
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surface, and chloride loading density, the source of ions in the solution. Since the sensor outputs 
conductance data and relative humidity data, we hoped to use the change in relationship between 
these two variables to model a change in the loading density.

We began by graphing G vs. RH for a single cycle of relative humidity (30% → 90% → 30%) at
a single loading density from sensor 588. We noticed that the curve resembled a hysteresis loop, 
and further discussion with Luna labs revealed the physical meaning of the graph shown in 
Figure 2:

Figure 2. Conductance versus relative humidity for a single wetting and drying cycle

The minimum values at low RH are explained by the minimum recordable conductance value of 
5 μS. At the deliquescence point of NaCl, 76% RH, we saw conductance increase as the 
humidity became high enough to create a solution on the surface. G asymptotically increases to 
the maximum RH value, and continues to increase in the early stages of drying. This increase is 
due to the evaporation of the water while the amount of salt in solution stays the same, increasing
the concentration of the solution and its conductance. Once RH decreases back to the 
deliquescence point, G begins to sharply decrease to below the sensor minimum as NaCl 
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precipitates out of solution. Seeing this relationship was instrumental in choosing how we would 
go about modeling the data as accurately as possible within our design constraints of accuracy, 
simplicity, and ease of use.

Next, we graphed G versus RH for a single sensor, color-coding each separate LD:

Figure 3. Conductance vs. relative humidity for all wetting and drying cycles of a collected by
one sensor, color coded by loading density

Through visual analysis, we noticed a few things. Firstly, for the four loading densities tested on 
each of the six sensors, only the lowest LD showed the full hysteresis loop of data; the other LDs
had a maximum G value above the sensor maximum of 10,000 μS.  Based on the data collected 
by the sensor, it was reasonable to assume that the other loading densities followed the same 
hysteresis loop, but much of this shape was not recordable by the range of the sensor. This would
make it difficult to develop a comprehensive model that portrayed the full relationship. We also 
noticed that the decreasing portion of the graph seemed to happen at lower RH values for higher 
LDs. We hypothesized that this was a result of a larger maximum G value creating a wider 
hysteresis loop, but without the maximum values recorded, this could not be confirmed. Still, this
relationship did reflect the change in loading density, as we had predicted, and we would be able 
to quantify the change for use in a predictive model. With this in mind, we decided to focus on 
the drying portion of the data.
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Data Analysis Methods Investigation: Curve Fitting

Our next task was to investigate the best method for modeling the relationship we had identified; 
we began with the low LD data, since we had the full loop of values. After testing a few different
mathematical functions, we found that using two logistic functions (one for the “wetting portion”
of increasing RH, one for the “drying portion” of decreasing RH) modeled the data quite well 
and took into account the initial increase of the drying portion. Once we fit the data to a logistic 
curve, we would be able to use the coefficients of the fitted function to predict the loading 
density.

The higher LD data with incomplete loops posed some issues with our methods. The inherent 
noisiness of the data and the lack of a full shape of the graph made it very difficult to 
automatically fit the data with a curve fit program; the noise seemed to confuse the fit and would 
result in clearly poor fits. We made several attempts to address this issue.

Our first attempt was to transform the data to be linear. Our reasoning was that if the data was 
linear, then there would be no missing features of the graph and our curve fit program would 
have less trouble recognizing the shape. There is no algebraic way to linearize a logistic curve, 
but there is a method called Hubbert linearization, which plots logistic data against the ratio of 
the data to its derivative to yield a linear graph whose intercepts are the coefficients of the 
logistic curve:

While we did not have data corresponding to the derivative of instantaneous conductance, we 
developed a method to find the coefficients. First, we generated a column of data by inputting G 
and RH data into the derivative function of a logistic curve, dG/dRH of our logistic equation. 
Then, we adjusted the coefficients of the new function until our Hubbert graph exhibited 
maximum linearity (highest R2 with linear regression). Plugging these coefficients into our 
original logistic function gave a very good fit for the data (Appendix A). Unfortunately, the lack 
of a complete loop still interfered with this method, and we were not satisfied with the additional 
increase in complexity that our model’s input would need.

Our chosen method to model the high LD data was a simple linear fit to the middle of the logistic
curve. Unlike the low LD curves, the high LD data exhibited a steep enough increase and 
decrease that a linear fit could be used to model that portion of the data. We developed a way to 
crop the data to achieve a realistic fit. The upper portion was sufficiently linear to not need a 
cutoff. The lower cutoff was determined by finding the lowest value of G before the correlation 
coefficient of a linear fit began to decrease, which was at approximately 1000 μS (Appendix B). 
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The relationship to loading density was found by looking at trends in the parameters of the linear
fits. Although this model yields less information about the data as a whole, we determined it to 
be easy to use and understand, while still providing information about the loading density.

Code for Implementing Solutions Description

The code used to analyze the laboratory data was composed of several Python modules. All lab 
data was stored in an SQLite3 database called AcuityLabData.db. Several important Python 
packages were used, including pandas for data management, scipy for statistical analysis, and 
numpy for numerical operations. The datahandler.py module contains several functions for pre-
processing the data before applying any statistical methods. First, load_test() takes in a sensor ID
as an argument and simply reads in all data from one sensor contained in the SQL database and 
transforms it into a pandas dataframe object. The wet_dry_split() function takes in this dataframe
and a specified LD value for which to split the data into its wetting and drying halves. This is 
accomplished by using a Savitzky-Golay filter on the RH vs. time data to smooth the data, then 
calculating the slope of this RH(time) curve at each point. Where the slope is positive, the data 
associated with that slope is added to a dataframe containing only wetting cycle data; where the 
slope is negative, the associated data is added to a dataframe containing only drying data. Next, 
cycle_split() is able to split the data frames containing only wetting or drying data into their 
individual cycles so that each one can be analyzed. This is done by measuring the time change 
between two data points and splitting the data where this time change is larger than 2 hours and 
putting that cycle's data into its own dataframe. The function then returns a list of dataframes 
containing the data of each cycle. Finally, clean_data() performs a variety of data cleanup tasks, 
such as removing data that is outside of the conductance sensor's range.

The actual analysis was primarily done in either logmod_single.py, which is capable of fitting 
low LD data to a logistic curve and returning the fitting parameters using scipy's curvefit(), as 
well as performing the linear approximation for higher LD data using scipy's linregress(). These 
fits are done on each cycle of each loading density for each test and returns four CSVs 
containing by-cycle data: files for linear model fitting parameters for the wetting data and the 
drying data and files for the logistic model fitting parameters for the wetting data and the drying 
data. Another module, logmod_combined.py, does the same analysis as logmod_single.py, but 
does curve fitting on the aggregate of all cycles for a given loading density. Finally, mlmod.py 
contains some work performed with machine learning applied to the aggregate of all drying cycle
data, such as a multiple layer perceptron neural network and a random forest regression, but this 
module was not developed as extensively as the other two analysis modules. Further 
documentation on the workings of all modules can be found in the code that will be supplied to 
Luna Labs.
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Error Analysis Method

One of our principal design factors was a reported range of confidence for our predicted loading 
density as a means to express the variability we observed in the data. We decided to include a 
95% confidence interval in our final model to accomplish this goal. First, we needed to confirm 
that the spread of linear fit parameter values for each loading density were normally distributed 
in order to use the standard confidence interval calculations. We verified the normality 
assumption by creating Q-Q plots for our fit parameters, as well as performing the Kolmogorov–
Smirnov test for normality. The Q-Q plots showed a linear trend, which indicates normally 
distributed data (Appendix C). Assuming normal distribution, we would be able to easily 
calculate the 95% confidence interval to include in our model.

Experimental Data Collection

Luna Labs Real Environment Data

Luna Labs provided us with Acuity data with three locations. Two were on opposite sides of the 
Battelle Memorial Institute in Melbourne, FL. Representative data for one of the Battelle tests is 
shown in Figure 4. The third location was in El Segundo, CA. A final goal of Luna Labs is to be 
able to use a computer model to predict loading density in the real environment. As a result, we 
had some aspirations to verify our model with this data.

Unfortunately, environmental data has much more variability and has more confounding 
variables than the lab data, which is illustrated in Figure 4. Additionally, weather does not cycle 
through different humidities neatly unlike a controlled environment. Therefore, although it was 
never quantitatively tabulated, it is clear our confidence interval would have been even larger 
than in our lab data.
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Figure 4. Conductance vs. RH for Acuity data at Battelle Ocean Site. This data shows much
more variability and has fewer apparent trends than the lab experiments.

Capstone Experiment: Goals

The goal of this experiment is to conduct Acuity deployments in an outdoor environment with 
known loading densities. From the deployment, information about how relative humidity and 
temperature impact conductance for a known loading density can be discovered. This 
information can be compared to laboratory experiments to get a better picture of how 
environmental factors impact conductance. 

Capstone Experiment: Acuity Sensor Preparation 

The three Acuity devices used during our experimentation were labeled 00460, 00462, and 
00463. Before electrolyte application, the Acuity devices had new batteries installed, the sensor 
surfaces were cleaned using isopropyl alcohol on a Scotch-Brite pad, and the data logging was 
started at approximately 1:45 p.m. on Friday March 31st, 2023. 

Capstone Experiment: Electrolyte Application

The electrolyte was applied to the sensor surface using the HVLP gravity feed air spray gun 
located at Luna Labs. The spray gun has a nozzle size of 0.8mm, the air pressure was set to 40 
psi, and the adjustment for spray pattern was turned fully clockwise to create a circular pattern 
for uniform distribution. During application, the spray gun was located between four feet (1.2m) 
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and five feet (1.5m) away from the Acuity devices depending on the test. Similarly, the spray 
application time was between 2 and 4 seconds, depending on the test, with the goal of achieving 
a loading density of 500 mg/m². The electrolyte being applied was a 0.6 M sodium chloride 
solution. A glass witness slide was mounted beside each Acuity device to measure the amount of
deposited solution during each test. The glass witness slides were weighed before application to 
get a baseline measurement to compare to after application.

Capstone Experiment: First Application

The first electrolyte application occurred on March 31st at approximately 2:30 PM. Each Acuity 
device was sprayed for 2 seconds at a distance of five feet. Promptly after electrolyte application,
the three witness slides corresponding to each Acuity device were removed and placed in the 
Thermotron 8200 at a humidity of 20% and a temperature of 40°C and allowed to dry. The mass 
of these slides was then taken to compare to the mass before salt application. The difference in 
masses gave us the total amount of salt deposited and we could then calculate the loading density
of the sensor based on a given area. The results of the first application are given in Table 1 
below. 

Table 1: Slide Masses using Five Feet Two Second Method

Slide Number Averaged Slide Mass
Before Spray (g)

Averaged Slide Mass
After Spray (g) Mass Difference (g)

00460 10.1213 10.1215 0.0002
00462 10.0900 10.0903 0.0003
00463 10.0765 10.0769 0.0004

Control 10.1027 10.1027 0.0000

The first attempt using the five feet two second method did not yield enough deposited salt to be 
statistically significant and therefore no loading density was calculated from this data. Given the 
time constraints, the sensors were not resprayed that day and we returned at a later date with new
methods 

Capstone Experiment: Second Application and Deployment

Prior to the second application attempt, the sensor faces were cleaned using isopropyl alcohol 
and the Scotch-Brite pads to ensure no residual salt was left on the sensors. For our second 
attempt, we changed the spray time to four seconds and the spray distance to four feet. The 
results are displayed in Table 2 below.
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Table 2: Slide Masses and Loading Densities using Four Feet Four Second Method

Slide Number
Averaged Slide
Mass Pre Spray

(g)

Averaged Slide
Mass Post Spray

(g)

Mass Difference
(g)

Calculated
Loading
Density
(mg/m²)

00460 10.1213 10.1218 0.0005 362
00462 10.0900 10.0907 0.0007 517
00463 10.0765 10.0782 0.0017 1292

Control 10.1027 10.1028 0.0001 62

After salt application and loading density measurement, the sensors were deployed in an outdoor 
environment under a covered patio. This covering ensured the sensors were exposed to varying 
humidity and temperature levels while minimizing the impacts of other environmental factors 
such as wind and rain. The tests ran for one week before the measurements were checked. Upon 
looking at the measurements, we decided to leave the sensors out for another week due to the 
low humidity levels experienced during the first week. After the second week, we returned to 
Luna Labs after discovering Acuity 00460 was not collecting any data. Device 00460 had the 
previous data removed and logging was restarted before respraying. While at Luna Labs, we 
cleaned the sensor surface using isopropyl alcohol and the Scotch-Brite pad at 9:27 a.m. on April
20th. We resprayed 00460 while leaving the other two Acuity devices running.

Capstone Experiment: Respraying 00460 and Final Deployment

Acuity device 00460 was resprayed using a four foot and two second spray method to ensure the 
loading density would be similar to our first attempt. The results of this respray combined with 
the other two devices is displayed in Table 3 below.

Table 3: Final Slide Masses and Loading Densities using Mixed 4 and 2 Second Methods

Slide
Number

Averaged
Slide Mass

Before Spray
(g)

Averaged
Slide Mass
After Spray

(g)

Mass
Difference

(g)

Calculated
Loading
Density
(mg/m²)

Spray
Time

(s)

Spray
Distance

(ft)

00460 10.1190 10.1194 0.0004 310 2 4
00462 10.0900 10.0907 0.0007 517 4 4
00463 10.0765 10.0782 0.0017 1292 4 4

Control 10.1017 10.1018 0.0001 52 0 0

The devices were then redeployed under the covered patio and data was collected for an 
additional week from April 20th to April 27th before the results were analyzed.
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RESULTS AND DISCUSSION

Low Loading Density Model: Logistic Curve  

Among the low LD data, where full drying curves were available, there was large variability in 
the data. Not only was there variability between the drying curves associated with different LDs, 
but there was large variability in the characteristic parameters of the drying curves for individual 
cycles of the same LD. Within each cycle, the logistic curves fit to the data fairly well for most 
of the tests. However, the parameters of these logistic curve fits did not show to be a reliable 
predictor for chloride loading density at low LDs.

A graph for the relationship between LD and the average curve steepness of the logistic curve is 
shown below in Figure 5 (the same graphs for curve maximum and midpoint are in Appendix D).
It is clear to see graphically and from the very low R2 for each correlation drawn between LD 
and the parameters that this model does not work well, at least when applied to only low LD 
data. If the full drying curves for intermediate and high loading density conditions and more 
drying cycles for low LDs were available, this model may show better performance.

Figure 5. Relationship between logistic curve steepness and LD
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High Loading Density Model: Linear Approximation

In contrast to the logistic curve model, the x-intercept (x0) of the line fitting the steep linear 
portion of the high LD drying curves did prove to be a good predictor for chloride loading 
density. When plotting x0 against the natural logarithm of the corresponding LD, a linear graph 
was realized with R2 = 0.86 after performing a simple linear regression. By solving the equation 
of this linear regression line for x0, the equation predicting LD as a function of x0 was found to 
be:

. 

The graph of ln(LD) vs. x0, which shows this relationship can be found in Appendix E. Figure 6 
shows the same relationship with the axes flipped (xo vs. ln(LD)) to demonstrate a more detailed 
error analysis of the x0 calculation. Error bars on each data point correspond to the 95% 
confidence interval in x0 for each corresponding LD. While two of the data points show very 
large error bars, it should be noted that these x0 values were created from the average of two x-
intercepts observed for the corresponding LDs. The drying cycles for these LDs often featured 
large tails in their G(RH) curves that broke the linear fits or contained few data points in the 
linear region of interest. Thus, those cycles were not useful for this analysis. 

Figure 6. Relationship between x0 and ln(LD) with best fit line and confidence interval
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In this form, our model for predicting chloride loading density satisfies all of our primary design 
goals, which will now be described in detail. Judging by the high R2 value, we can reasonably 
conclude that our model is accurate. While there are larger error margins that we had hoped for 
due to the two variable data points, we believe this can easily be rectified with generating more 
data at the loading densities with the largest confidence intervals. Our model is also quite simple,
being a simple exponential equation with an input (x0) that can be determined easily with a 
simple linear fit to one region of a drying cycle. This allows the model to be easily incorporated 
into more extensive analysis software in the future. While the model does not include 
temperature effects, performing lab experiments at different temperatures would allow for a 
temperature dependence to be added into the current model. We have also concluded that time 
was not a major factor in the current model as long as the wetting and drying halves are divided. 
Finally, our model is based on relationships found in the drying data for G(RH) relationships, 
which contains curves with characteristics that we believe correspond to the evolution of the 
water layer. Thus, our model includes latent information about the water layer.

A negative linear relationship of moderate strength was found between the slopes of the linear 
fits and LD, shown in Figure 7 below. While we initially did not expect the relationship to be 
negative, further inspection reveals that this observation lends evidence to our hypothesis that the
hysteresis-like behavior of G(RH) also extends to high LDs. High LDs result in the real 
conductance values increasing past the maximum possible observation of the conductance sensor
(10,000 µS). We hypothesize that as LD continues to rise in the high LD regime, the logistic 
curves corresponding to the drying cycles grow in scale by some factor. When these curves 
grow, the portion of the logistic curves under the 10,000 µS sensor maximum (the portion from 
which we can draw relationships) exhibit a lower slope. This is because, as the logistic curve is 
scaled in size, the conductance corresponding to the curve's inflection point also continues to 
rise. As a result, the portion of the total curve that is able to be observed resides in an "earlier" 
stage of the logistic curve where the instantaneous slope is lower. This is illustrated in Appendix 
F. We therefore consider the relationship between slope of the linear region and LD to be an 
artifact of the sensor's limitations and not the result of any physical phenomenon. 
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Figure 7. Relationship between slope of linear fit of high LD drying cycles and LD

Results of Verification Experiment 

Due to our experiment depending on outdoor conditions, it was difficult to get enough usable 
data to compare to the laboratory data. Namely, the experiment depended on the relative 
humidity being above the deliquescence point of 76% to ensure that conductance occurred. Over 
the course of the three week outdoor exposure there were only a few instances where the relative 
humidity was above the deliquescence point. As a result, there were not enough data points with 
which to make a conclusive argument for the impact of environmental data. Figure 8 below gives
a representation of the data we were able to collect over the course of three weeks. It can be seen 
from this chart that there are few instances when the relative humidity was high enough to cause 
conductance. 
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Figure 8. Conductance and relative humidity for an outdoor exposure with a loading density of
517 mg/m²

CONCLUSIONS

Laboratory data from the Luna Labs Acuity sensor was analyzed in an effort to determine and 
quantify a correlation between surface solution conductance and chloride loading density. A 
curve fit model based on changes in the relationship between conductance and relative humidity 
was used to develop a predictive model for chloride loading density at a constant temperature. 
Additionally, an outdoor experiment was performed with a known loading density at varied 
temperatures to gather more information about the effect of temperature on the conductance-
relative humidity relationship. Based on this research, several major conclusions may be made 
and are shown below:

•  The logistic model appears to fit the data for cycles individually, but the parameters of 
the fit do not correlate well to LD.

•  The x-intercepts of the linear portion of high LD drying curves show a strong 
quantifiable relationship to LD based on the R2 value of the model (0.86)

•  The outdoor experiments showed possible evidence for temperature dependence of 
conductance, though many factors could result in the observed discrepancies.
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These conclusions support the design goals, as we have developed a statistically accurate model 
that may be made more precise with further experiments as described in the recommendations 
for future work. Further, our model takes into account latent information about the water layer 
through the use of G(RH) data divided by wetting and drying cycles, and it is also time 
independent. Finally, our model is a relatively simple one that can be translated in many ways for
implementation in more complex corrosion analysis software. 

RECOMMENDATIONS

From our investigation, we have several recommendations for future work, which can be 
organized as recommendations for future data collection and recommendations for future 
analysis.

Recommendations: Future Data Collection

The two main issues that we ran into related to data collection were that the data from the tests 
often reached the maximum of the sensor and made it very difficult to deploy a consistent 
loading density for our own experiments. Firstly, we recommend that the sensor maximum be 
taken into consideration for future data collection, whether that be through altering the sensitivity
of the sensor itself, a much more involved process, or by choosing known loading densities that 
should not exceed the sensor maximum. The choice between these two proposals relies entirely 
on how the sensor is to be used. If the sensor will be used in lower loading density environments,
then changing the sensor range is counterproductive, and the experimental methods should be 
changed to reflect its intended use case. However, if the sensor needs to operate at higher loading
densities, it may be worthwhile to investigate an appropriate conductance sensitivity range. We 
hope that the results of our investigation help to determine in which direction is the best to 
proceed. Additionally from our investigation, we recommend that data points be taken more 
often at areas of rapid change, such as the increasing and decreasing portions of the G vs. RH 
curves. We had to omit several relative humidity cycles from our High LD linear fit because 
there were two or less data points for the entire curve between the sensor maximum and 
minimum, so having more data points would have been useful in developing a more robust 
model. Finally, as a third alternative, we hypothesize that using a lower temperature for 
laboratory tests would also lower the maximum observed conductance value, giving a more 
complete curve for the same loading density.

When we were conducting our own experiment, the most difficult step in the setup was getting a 
consistent loading density across our repeat tests. We found that even slightly altering the 
position of the sprayer could drastically change the amount of solution deposited on the sensor. 
From our experience, we recommend a more automated spray method for future experiments to 
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eliminate the variation due to human interference. Towards the end of the project, we 
investigated automated sprayers for reptile enclosures as a possible solution or basis for design. 
With a more automated spray method, the spray time, distance, and direction can be much more 
consistent among repeat samples, increasing the amount of data available for given loading 
density to use in analysis.

Recommendations: Future Analysis

There are several directions of analysis that we thought of but were unable to investigate, mainly 
due to having the idea late in the course of the project. Our first recommendation is to try other 
mathematical functions to fit the data. From our investigation, we found the logistic model to be 
the best choice: it had high correlation and was the simplest to understand, as each coefficient 
adjusted a specific feature of the graph (height, midpoint, and steepness). However, we had the 
idea later on to try a hyperbolic tangent function or a differential function. We did not have time 
to investigate these choices and thought them to be less simplistic, but future analysis could 
investigate whether they are a more accurate representation of the data.

We were unable to successfully implement Hubbert linearization in our model for high loading 
densities. However, it did work quite well for lower loading densities. Data transformation 
methods such as Hubbert linearization could be a useful tool for simplifying a curve fit model to 
be easier to use, or as a means to work around some artifacts or missing sections of the data.

One area of great interest that we came across too late in our project was the source of increasing
conductance at the beginning of the drying portion, immediately after the relative humidity 
began to decrease from its maximum. In a talk with Dr. Charles-Granville, a postdoctoral 
researcher at UVA, we hypothesized that the increase is most likely caused by the decrease in 
solvent as water evaporates while the amount of solute remains the same. We thought that further
investigation could give us more information about the water layer present on the sensor surface. 
With enough information about the water layer, analysis can take a completely different 
approach by determining conductivity from conductance and water layer information, which is 
directly related to loading density.

In addition to the completed model provided to Luna Labs, we have provided materials that can 
be used as a framework for future analysis. We built the program used for automatically curve 
fitting the data in such a way that the function used for fitting can be easily changed, in case 
future analysis required us to try different functions to fit the data. The program can also look at 
the wetting data, which did not prove to be the most valuable direction for us but is available to 
anyone who wishes to use it in the future. We worked to make our program easy to understand, 
change, and translate to other platforms so that the tools we developed could be used in the 
future.

21



REFERENCES

[1]

Prasad, N. E., & Wanhill, R. J. H. (Eds.). (2017). Aerospace Materials and Material 
Technologies; Volume 1: Aerospace Materials(Vol. 1). Springer.  

[2]

Bryan, C. R., Knight, A. W., Katona, R. M., Sanchez, A. C., Schindelholz, E. J., & Schaller, R. 
F. (2022).Science of The Total Environment, 824, 154462. 

[3]

Yao, W., Yu, X., Lee, J. W., Yuan, X., & Schmidt, S. J. (2011). Measuring the deliquescence 
point of crystalline sucrose as a function of temperature using a new automatic isotherm 
generator. International journal of food properties, 14(4), 882-893.

[4]

Maddox Sayler, F., Bakker, M. G., Smått, J. H., & Linden, M. (2010). Correlation between 
electrical conductivity, relative humidity, and pore connectivity in mesoporous silica monoliths. 
The Journal of Physical Chemistry C, 114(19), 8710-8716.

[5]

“Temperature Effects on Conductivity Measurement.” colepalmer.com. https://www.
coleparmer.com/tech-article/temperature-effects-on-conductivity-measurement.

[6]

M. Williams, “What is conductance?.” universetoday.com. 
https://www.universetoday.com/82339/conductance/ 

[7]

Nava, V., Patelli, M., Bonomi, T., Stefania, G. A., Zanotti, C., Fumagalli, L., ... & Leoni, B. 
(2020). Chloride balance in freshwater system of a highly anthropized subalpine area: load and 
source quantification through a watershed approach. Water Resources Research, 56(1), 
e2019WR026024.

22



APPENDIX

APPENDIX A: Example Graph of Hubbert Linearization Method for Curve Fitting

APPENDIX B: Graph of R2 values for Linear Fit vs. Conductance Cutoff Value for High 
LD data

APPENDIX C: Example Q-Q plot Showing Normal Distribution for Linear Fit Parameters
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APPENDIX D: Low LD Logistic Curve Parameters vs. LD
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APPENDIX E: Graphical Representation of Final Linear Fit Model for High LD Data

APPENDIX F: Demonstration of Sampling Range Effect on Slope of Linear Fit
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