
Creating a Strong Testing Framework with Google Translate Automation

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science
University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree
Bachelor of Science, School of Engineering

Mehmet Faruk Yaylagul
Fall 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Advisor:
Briana Morrison, Department of Computer Science

 1

Creating a Strong Testing Framework with Google Translate
Automation

CS 4991 Capstone Report, 2023

Mehmet Faruk Yaylagul

Computer Science
The University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia

urj5rb@virginia.edu

ABSTRACT
Daily more than 500 million people use
Google Translate to translate texts to a
different language and many encounter
problems during translation. To address this
challenge, I decided to develop a framework
that tests the functionality and accuracy of
Google Translate. I wrote the framework in
Java with Cucumber and Selenium testing
tools. This testing framework shows the
accuracy and usability of the website,
including quality assurance for combinations
of seven languages (English, Spanish, Dutch,
French, Turkish, German, and Swedish) and
functional buttons on the website. As a result,
the tests, accessing the website, the buttons
available on the website, and 14 language
translation tests all passed with 100%
accuracy with no issues. In the future, this
testing framework will be a good example for
QA testing engineers. It can also be used on
different websites to test the website's
usability, accuracy, and functionality.

1. INTRODUCTION
According to Google, over 600 million
people visit GoogleTranslate.com daily. The
website offers translation capabilities in 133
different languages and people can even
translate their documents, images, or
websites they visit. However, despite its
widespread use and advanced technology,
Google Translate may also not work
functionally without facing errors.

Considering the website’s importance, it is
significant to test the reliability of such
important websites in an easier and faster
way. Therefore, I designed an automation
testing framework for GoogleTranslate.com
based on its common usage and different
functional combinations. This framework
will be a good model for future QA engineers
who want to work in the website automation
field.

The main purpose of the project is to create a
user-friendly, easy-to-implement, fast, and
reliable automation testing framework for
QA engineers working on similar web-based
applications. Writing a good testing
framework is a very important task for
Quality Assurance Engineers. To automate a
website, every QA tester must write a good
testing framework in order to validate the
usability and functionality of websites. I
divided the parts of the framework to make it
more understandable and easier to edit to be
a good example to other QA engineers when
they work on their projects or
GoogleTrasnalte.com. In automation testing,
the hard part is to build the framework so that
developing automated tests will be easier.
This framework will enable anyone using the
framework to test Google Translate and
easily implement their methods based on
already found elements and built functions.

 2

2. RELATED WORKS
Testers have the option of scripting or
recording tests by using an automation tool.
However, integrating this into a structured
framework usually offers extra advantages.
An effectively established test automation
framework assists the testing team by
achieving higher reusability of test
components, developing scripts that are
easily maintainable, and obtaining high-
quality test automation scripts (Umar, 2019).
Utilizing a framework for automated testing
also increases test speed and efficiency,
improves test accuracy, and reduces test
maintenance costs, as well as lowering risks
(Aebersold, 2019). Test automation
frameworks provide a support foundation for
a variety of automated software tests
including Unit testing, Functional testing,
Performance testing, etc. (Smartsheet, 2019).

Using any of the traditional scripting
techniques (linear, data-driven, keyword-
driven, etc.), the tester has to write down test
case steps in detailed and complex sheet
format. In the proposed framework,the
algorithm can determine the appropriate
keyword automatically according to the
HTML input type (Hanna, 2018). A well-
built testing framework helps engineers test
their projects more easily and professionally
because these tools help them track their
testing coverages. A keyword may be
SetText / SelectValue / OpenURL /
ClickButton / etc. This eliminates the need to
manually select the appropriate keyword that
matches the HTML input control (Hanna,
2018).

3. DESIGN
The design Section will dive into the details
of the software side of the project and how it
is developed.

3.1 The Website Under TestThe URL of the
website that I worked on is
(https://translate.google.com) (Figure 1).
This page gets the user input in any
language and translates it to any
requested language. This website is
owned by Google company. All the codes
are written in OpenJDK java version
20.0.1 in IntelliJ IDEA (latest version),
using Junit, Selenium, and Cucumber.

Figure 1: Main Page of
GoogleTranslate.com

Google owns the SUT so I cannot access the
source code. I inspected the website API and
reached its HTML and CSS code so I would
be able to test the website elements. For the
functionality testing, I applied the Input
Space Partition Coverage Criteria to test the
website for the project, which helped me to
test the different combinations of input
variables to identify possible defects.

3.2. General View of the Framework
I stored the HTML of each element under test
in the GoogleTranslatePage file. I created
the testing features in the feature folder by
following the input space partition method
and created my test methods in the
step_definitions folder. All the test
definitions can easily be understood by
checking these .feature files. This folder has
two files: one UserOnGoogleTranslate
which includes the test method if the website
is reachable by the user, and the other one has
ButtonValidate file which has all the other
test methods related to the Google Translate
website. The utilities folder has the helper

 3

functions and utilities that help to write my
test methods (Figure 2).

Figure 2: Files and Features in the

Framework.

3.3. Finding The Right Elements to Test
The source code of the website is not
accessible, so I inspected the HTML of the
website and saved the element IDs, or classes
in the GoogleTranslatePage.java file
(Figure 3) to use them in test methods.

Figure 3: All the Elements Saved in
GoogleTranslatePage.java

Storing the crucial elements in a different
file helps the developer to automate the

website more easily.

The biggest problem in website testing
without a source code is finding the correct
xpath of the element. Some indexes in HTML
and CSS are dynamic and they change when
the page is refreshed. Therefore, choosing the
right class or ID of the element is crucial in
automating a website. There can be a xpath
corresponding to more than a hundred
elements located on the website (Figure 4).

Figure 4: Xpaths, IDs, and Classes of the

Elements in the HTML of the Website

3.4. Testing Coverage Technique and
Implementation
I mainly focused on input space partition
coverage criteria when I developed the
framework. I divided the input domain of a
program into subsets, based on certain
characteristics and properties of the website.
The goal of input space partitioning was to
identify representative test cases that test
different combinations of inputs.

 4

Google Translate gives different outputs
based on the language model the user chooses
so I tested if the website was accessible by the
user and then checked the main buttons on the
website if they were clickable and worked
correctly. These buttons are text, images,
documents, websites, history, saved,
contribute, right language dropdown menu,
and the left language dropdown menu. I
stored their xpaths and classes in the page file
as well (Figure 3).

After I made sure the buttons worked, I tested
if the translation worked correctly by
checking different combinations of 7
languages (English, Spanish, Dutch, French,
German, Turkish, Swedish).

I wrote the test methods for every step in
UserOnGoogleTranslate.java and
ButtonValidate.java files (Figure 5.1, 5.2).
If the assert methods implemented in the Java
files return False, the related step cannot pass
so the test scenario fails.

Figure 5.1 ButtonValidate.java

Figure 5.2: Test Methods Implemented

in UserOnGoogleTranslate.java
and ButtonValidate.java Files

3.4. Testing Scenarios
The good side of writing a framework with
Cucumber is to create scenarios in separate
files. This makes the framework tidier and
easier for the user to understand. When
encountering an error, one can easily see
which method or test case fails
ButtonValidate.java in the scenario. I
developed 22 different automation testing
scenarios, but every scenario checks more
than one functionality of the website. For
example, to test the Swedish-English
translation, we have to ensure that the left and
right language dropdowns work well. The
text field should also pop up correctly to write
the text that we want to translate so we can
compare the original and translated texts
correctly (Figure 6).

Figure 6: Test Scenario for Swedish-

English Translation

4. RESULTS
The framework, I built in Java with
Cucumber and Selenium, and effectively
tested the functionality and accuracy across
seven languages. The testing covered various
aspects of the website, including its user

 5

interface elements and translation accuracy.
Remarkably, all tests, including website
accessibility, button functionality, and
language translation accuracy, passed with
100% success. This outcome demonstrates
the framework's effectiveness in ensuring the
quality and reliability of Google Translates.
The test scenarios are demonstrated for future
documentation. The framework works
accurately and it is ready to be adapted to test
different web-based applications.

5. CONCLUSION
This project demonstrates how a good testing
framework should be implemented. I aimed
to design a professional automation
framework for QA engineers so they can get
a reference from this project when they
design their own frameworks. The structure
of the framework can be easily applied to
different web-based applications just by
changing the element IDs when testing
similar functionalities. Using such a
framework will also make QA engineers’
jobs easier when writing testing reports.

6. FUTURE WORK
This framework can be shown in testing
classes for education purposes in the future.
The main issue that students encounter in
testing classes is how to use selenium and
Junit tests in a professional work
environment when they have to test web-
based applications. Web-based applications
might have a lot of functionalities and trying
to test them without a well-built framework
will be complicated and hard. Showing this
example framework to students, and QA
engineers will be beneficial for their
professional work.

7. ACKNOWLEDGMENTS
I would like to extend my sincere gratitude to
Professor Upsorn Praphamontripong,
Professor Rosanne Vrugtman, and Professor

Briana Morrison for their invaluable support
and guidance throughout this project.

REFERENCES
[1] Umar, M. A., & Zhanfang, C. (2019). A
study of automated software testing:
Automation tools and frameworks.
International Journal of Computer Science
Engineering (IJCSE), 8(6).
[2] Aebersold, K. Test automation
frameworks. SmartBear. Retrieved August
26, 2019, from
https://smartbear.com/learn/automated-
testing/testautomation-frameworks/
[3] Smartsheet. A guide to automation
frameworks. Retrieved August 30, 2019,
from https://www.smartsheet.com/test-
automation-frameworkssoftware
[4] Hanna, M., Aboutabl, A. E., & Mostafa,
M.-S. M. (2018). Automated software testing
framework for web applications.
International Journal of Applied Engineering
Research, 13(11), 9758-9767.

