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On almost strong approximation property in
reductive algebraic groups

Abstract

We investigate a slight weakening of the classical property of strong approxima-
tion, which we call almost strong approximation, for connected reductive algebraic
groups over global fields with respect to special sets of valuations. While nonsimply
connected groups (in particular, all algebraic tori) always fail to have strong approx-
imation – and even almost strong approximation – with respect to any finite set of
valuations, we show that under appropriate assumptions they do have almost strong
approximation with respect to (infinite) tractable sets of valuations, i.e. those sets
that contain all archimedean valuations and a generalized arithmetic progression
minus a set having Dirichlet density zero. Almost strong approximation is likely to
have a variety of applications, and as an example we use almost strong approxima-
tion for tori to extend the essential part of the result of Radhika and Raghunathan
(cf. [22, Theorem 5.1]) on the congruence subgroup problem for inner forms of type
An to all absolutely almost simple simply connected groups.
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Introduction

The goal of this thesis is to develop new results on strong approximation property

for reductive algebraic groups and apply them to the congruence subgroup problem.

While strong approximation in semi-simple simply connected groups has been one

of the main tools in the arithmetic theory of algebraic groups since its inception,

here we establish (under appropriate assumptions) a slightly weaker property that

we term almost strong approximation for (connected reductive) nonsimply connected

groups where strong approximation in the classical situation never holds.

More precisely, let G be a connected linear algebraic group defined over a global

field K. Given a nonempty subset S of the set V K of all inequivalent valuations

of K, we let AK(S) denote the ring of S-adeles of K (cf. Definition 1.1.15), and

then let G(AK(S)) denote the group of S-adeles of G, equipped with the S-adelic

topology (cf. Definition 2.1.3). The group of K-rational points G(K) admits a

diagonal embedding G(K) ↪−→ G(AK(S)), the image of which is usually identified

with G(K) and called the group of principal adeles of G. One says that G has strong

approximation with respect to S if the diagonal embedding is dense, in other words,

G(K)
(S)

= G(AK(S)) where −(S) denotes the closure in the S-adelic topology1.
1For the context, we recall that the diagonal embedding K ↪→ AK(S) has discrete image if

S = ∅, and dense image for any nonempty S (cf. Lemma 1.1.13). Thus, no nontrivial linear
algebraic group G can have strong approximation for S empty – which is the reason why we always
assume that S ̸= ∅ here, while the additive group G = Ga does have strong approximation for
every nonempty S.
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Strong approximation in algebraic groups has been studied extensively since 1930s

in the works of M. Eichler, M. Kneser, and other. For finite S, a criterion for

strong approximation in reductive groups was obtained first by V.P. Platonov [13]

in characteristic zero and later by G.A. Margulis [11] and G. Prasad [16] in positive

characteristic (see [14, Theorem 7.12] for the precise statement). The “necessary”

part of this criterion implies that G never has strong approximation for any finite S

unless it is simply connected, and in fact in the nonsimply connected case the index

[G(AK(S)) : G(K)
(S)

] is always infinite.

In this thesis we consider sets S that contain V K
∞ and a generalized arithmetic

progression minus an arbitrary set having Dirichlet density zero – we call such sets

tractable. We then prove that for any connected reductive group G defined over a

number field K and any tractable set S the quotient G(AK(S))/G(K)
(S)

is in fact

finite provided that a certain technical condition holds for the generalized arithmetic

progression involved in the description of S. Since one cannot guarantee in the

general case that this quotient is trivial (which would mean that G has strong

approximation with respect to S in the classical sense), we introduce the following

terminology: we say that an algebraic K-group has almost strong approximation

(ASA) with respect to a subset S ⊂ V K if the index [G(AK(S)) : G(K)
(S)

] is finite.

In order to give precise statements, we need the following definitions.

Definition A Let L/K be a finite Galois extension and let C be a conjugacy class

in the Galois group Gal(L/K). A generalized arithmetic progression P(L/K, C)

is the set of all v ∈ V K
f := V K \ V K

∞ such that v is unramified in L and for

some (equivalently, any) extension w|v the corresponding Frobenius automorphism

FrL/K(w|v) lies in C.

In this thesis, we will not differentiate between (finite) primes of a global field

and the corresponding nonarchimedean valuations. Under this convention, the gen-
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eralized arithmetic progression P(L/Q, Ca), where L = Q(ζm) is the mth cyclotomic

extension of Q and Ca with (a,m) = 1 consists of the automorphism σa ∈ Gal(L/K)

defined by σa(ζm) = ζam coincides with the set Pa(m) of rational primes p satisfying

p ≡ a(modm) (see section 1.2.4 for the detailed argument), hence the terminology.

We also refer the reader to section 1.2.4 for the notion of Dirichlet density dK(P) of

any set P of primes of K and its basic properties. Recall that finite sets of primes

have Dirichlet density zero, however it is easy to construct infinite sets of primes

with density zero for any K, and in fact for a given nontrivial finite extension K/Q

the set of all primes of K that have relative degree > 1 over Q has density zero (see

section 1.2.4). We are now ready for

Definition B A subset S ⊂ V K is tractable if it contains a set of the form V K
∞ ∪

(P(L/K, C) \ P0) where P0 is a subset with dK(P0) = 0.

Here is our main result on almost strong approximation for connected reductive

groups.

Theorem A For a connected reductive algebraic group G defined over a number

field K, we let T = Z(G)◦ (resp., H = [G,G]) denote the maximal central torus

(resp., the maximal semi-simple subgroup) so that G = TH is an almost direct

product. Set E = PM , where P/K is the minimal splitting field of T and M/K

is the minimal Galois extension over which H becomes an inner form of a K-split

group. Then for any tractable set of valuations S containing a set of the form

V K
∞ ∪ (P(L/K, C) \ P0) such that for some σ ∈ C, we have

σ|(E ∩ L) = idE∩L, (1)

the closure G(K)
(S)

is a finite index normal subgroup of G(AK(S)), and thus G has

almost strong approximation with respect to S. Furthermore, the quotient G(AK(S))/G(K)
(S)
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is abelian and its order divides a constant C(ℓ, n, r) that depends only on ℓ = rank

of G, n = [L : K], and r = number of real valuations of K.

We note that if G is a semi-simple K-group which is an inner form of a K-split

group, then the condition (1) in the theorem is trivially satisfied, so we obtain the

following.

Corollary A Let G be a semi-simple K-group which is an inner form of a K-

split group. Then for any tractable set S ⊂ V K, the group G has almost strong

approximation with respect to S.

On the other hand, it is important to point out that the condition (1) cannot

be omitted in the general case. To demonstrate this, in section 3.2.4 we construct

an example of a nonsimply connected semi-simple group that fails to have almost

strong approximation for a tractable set S that does not satisfy (1).

The proof of Theorem A involves several stages that rely on different techniques.

First, using results of class field theory and Chebotarev density theorem, we handle

the case of quasi-split tori (see Theorem 3.1.2). We then present an arbitraryK-torus

T as a quotient of a quasi-split one, and, using some cohomological computations

involving the Nakayama-Tate theorem, prove that provided (1) holds the quotient

T (AK(S))/T (K)
(S)

is finite of order dividing a constant C̃(d, n) that depends only

on d = dimT and n = [L : K], see Theorem 3.1.3 and (3.5).

For an arbitrary reductive K-group G = TH having nontrivial semi-simple part

H, we first consider the special case where H is simply connected – see Proposition

3.2.1, and then reduce the general case to the special case by using constructions

and techniques from the theory of algebraic groups.

Being available for not necessarily simply connected groups, almost strong ap-

proximation is likely to expand the range of applications of the classical property
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of strong approximation, many of which can be found in [14]. As an example of

a new application, we present here a result on the Congruence Subgroup Problem

(CSP). We refer the reader to section 3.3.1 for a discussion of the CSP, specifically

for the notion of the congruence kernel, Serre’s Congruence Subgroup Conjecture

and available results. Among recent developments one can mention a uniform (i.e.,

requiring no case-by-case considerations) proof [20] of the triviality of the congru-

ence kernel CS(G) for an absolutely almost simple simply connected algebraic group

G over a global field K with respect to a set of valuations S ⊂ V K that contains V K
∞

and almost contains a generalized arithmetic progression but does not contain any

nonarchimedean valuation v such that G is Kv-anisotropic – among other things,

this result provides an additional evidence for Serre’s conjecture. Subsequently,

Radhika and Raghunathan [22] showed that the result remains valid for anisotropic

inner forms of type An (i.e., for norm one groups G = SL1,D associated with central

division K-algebras) for a larger class of sets S that basically coincides with our

tractable sets. Using our results on almost strong approximation for tori, we have

been able to extend the result of [22] to all types.

Theorem B Let G be an absolutely almost simple simply connected algebraic group

defined over a global field K, and let M/K be a minimal Galois extension over which

G becomes an inner form. Assume that the Margulis-Platonov conjecture (MP) (cf.

§3.3.1) holds for G(K). Let S ⊂ V K be a tractable set containing a set of the form

V K
∞ ∪ (P(L/K, C) \ P0), where

σ|(M ∩ L) = idM∩L for some σ ∈ C, (2)

and does not contain any nonarchimedean v for which G is Kv-anisotropic. Then

the congruence kernel CS(G) is trivial.
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It should be noted that in the cases where Serre’s congruence subgroup conjec-

ture remains open, this theorem is the best result available at this point. As we

already pointed out, for inner forms of type An, Theorem B is due to Radhika and

Raghunathan, and now we would like to transcribe it for outer forms of this type.

Corollary B Let G be an absolutely almost simple simply connected outer form of

type Aℓ, i.e. G = SUn(D, h), the special unitary group of an n-dimensional non-

degenerate τ -hermitian form h over a division algebra D of degree d whose center

M is a quadratic extension of K and the involution τ of D satisfies M τ = K, with

ℓ = dn − 1. Assume that (MP) holds for G(K). Let S ⊂ V K be a tractable set

containing a set of the form V K
∞ ∪ (P(L/K, C) \ P0) where σ|(M ∩ L) = idM∩L

for some σ ∈ C, and does not contain any nonarchimedean v for which G is Kv-

anisotropic. Then CS(G) = {1}.

Two comments are in order. Since (MP) is known for inner forms of type An (see

[25], [29]), no assumption on the truth of (MP) was needed in [22]. Second, since

[22] deals only with inner forms, (2) holds automatically in their situation, while

in the general case we need to assume (2) in order to apply our results on almost

strong approximation.

The structure of this thesis is as follows. In Chapter 1, we familiarize the reader

with all the necessary background from algebraic number theory. First, in section

1.1 we discuss the ring of adeles and the group of ideles together with their basic

properties. Section 1.2 starts with the statements of two important results from class

field theory (cf. Theorem 1.2.1 and Theorem 1.2.2) and then we discuss the basic

properties of the Hilbert symbol in the context of the Artin map. Next, we state

Dirichlet prime number Theorem, Chebotarev density theorem and define the notion

of a generalized arithmetic progression. Section 1.3 is devoted to the investigation
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of almost strong approximation for the multiplicative group of a field. We first

examine several examples and then show that under some natural assumption, the

multiplicative group satisfies almost strong approximation (cf. Proposition 1.3.7).

Chapter 2 provides an overview of algebraic groups (most importantly algebraic

tori) and group cohomology. In section 2.1, we introduce all the relevant definitions

from the theory of algebraic groups including the notion of the group of adeles of

an algebraic group. Then in section 2.2, we study algebraic tori together with their

groups of characters and co-characters. The most important result of this section is

the equivalence between the category of tori and the category of finitely generated

Galois modules without Z-torsion (cf. Theorem 2.2.20). The purpose of section

2.3 is to provide all the necessary machinery of group cohomology. The two main

results here are: Nakayama-Tate theorem (cf. Theorem 2.3.12) and Hasse local-

global principle (cf. Theorem 2.3.15).

In Chapter 3 we prove the main results of this thesis. The goal of section 3.1 is

to establish almost strong approximation for quasi-split tori over a global field (cf.

Theorem 3.1.2) and then extend it to all tori using group cohomology (cf. Theorem

3.1.3). In section 3.2 we consider arbitrary reductive group G = TH over a number

field written as an almost direct product of its maximal central torus T and its

maximal semi-simple subgroupH. The strategy is to first establish Theorem A in the

case where H is simply connected (cf. Proposition 3.2.1) and then apply the classical

criterion for strong approximation to H (cf. [14, Theorem 7.12]). Combining this

with ASA for tori (Theorem 3.1.3) applied to T , this yields Theorem A in the case of

simply connected H. The case of general semi-simple H is then handled by using its

universal cover (cf. Lemma 3.2.3) together with some cohomological techniques and

Hasse local-global principle (cf. Theorem 2.3.15). Next, we construct an example of

an absolutely simple adjoint group, which is an outer form of a split group, that does
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not have almost strong approximation with respect to a tractable set of valuations

for which the condition (1) fails (cf. Theorem 3.2.6). Finally, in section 3.3 we review

the required material dealing with the congruence subgroup problem, summarize the

approach to proving the triviality of the congruence kernel developed in [20], and

then apply our Theorem 3.1.3 to prove Theorem B.
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Chapter 1

Algebraic number theory

1.1 Adeles and ideles

1.1.1 Valuations and global fields

Let K be a number field, i.e. a finite extension of Q. One of the classical objects of

study in algebraic number theory is the ring of integers of K, which will be denoted

by OK . It is well-known that OK is a free Z-module of rank n = [K : Q]. Moreover,

OK is a Dedekind domain (cf. [2, Ch. I, §2, Proposition 1]) and consequently, one can

show that any nonzero prime ideal in OK has a unique factorization as the product

of powers of prime ideals. This property is a generalization of the fundamental

theorem of arithmetic, which states that any integer has a unique (up to associates)

factorization into a product of powers of prime numbers. It should be noted however,

that unlike in the case of Z, the factorization of elements of OK into irreducibles is

not unique in general. Therefore, OK does not have the same arithmetic as Z. This

difference motivated many problems in number theory and can be measured by the

ideal class group of K, defined as follows. Any OK-submodule a of K such that

xa ⊂ OK for some nonzero x ∈ OK is called a fractional ideal. The product of two



11

fractional ideals a, b ⊂ OK is defined as the OK-submodule in K, generated by all

products xy for x ∈ a, y ∈ b. One shows that the set of fractional ideals of K with

this operation becomes a group, which we denote by IK . The ideals of the form xOK

for some x ∈ K× are called principal fractional ideals, and the set of all such ideals is

a subgroup of IK , which we denote by PK . The quotient group Cl(K) = IK/PK is

called the ideal class group of K. We may now recall the statements of two theorems

from algebraic number theory, which will be later relevant for us:

Theorem 1.1.1 (Finiteness of the class group) The group Cl(K) is finite.

Proof. Cf. [12, Ch. I, §6, Theorem 6.3]. □

The order of the group Cl(K) is called the class number of K denoted by h(K),

therefore Theorem 1.1.1 will often be referred to as the finiteness of the class number.

We will provide an alternative proof of finiteness of class number using the group

of ideles in section 1.1.3. Moreover, the factorization into prime elements in OK is

unique precisely when the class number of K is one.

Theorem 1.1.2 (Dirichlet’s Unit Theorem) The group of units O×
K is finitely

generated of rank r+ s− 1, where r is the number of real embeddings of K and s is

the number of conjugate pairs of complex embeddings of K.

Proof. Cf. [12, Ch. I, §7, Theorem 7.4]. □

Some indications on how to prove Dirichlet’s Unit theorem will be given in section

1.1.3. We may now introduce the notions of absolute value and valuation for a field

K.

Definition 1.1.3 An absolute value on a field K is a map | · | : K → R satisfying

the following conditions for all x, y ∈ K:

(1) |x| = 0 if and only if x = 0,
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(2) |xy| = |x| · |y|,

(3) |x+ y| ≤ |x|+ |y|.

Any absolute value | · | on K endows K with the metric d(x, y) = |x− y|, which

makes K into a topological field. Two absolute values | · |1, | · |2 on K are equivalent

if they induce the same topology on K. One can show that two absolute values

| · |1, | · |2 are equivalent if and only if | · |1 = | · |α2 for some real number α > 0 (cf.

[10, Ch. XII, §1, Proposition 1.1]).

An absolute value |·| is called nonarchimedean if the following ultrametric triangle

inequality holds for all x, y ∈ K:

|x+ y| ≤ max{|x|, |y|}.

Otherwise, | · | is archimedean. Clearly, the ultrametric triangle inequality is stronger

than the usual triangle inequality (3) in Definition 1.1.3. Observe that on every field

K one can define the trivial absolute value by setting |0| = 0 and |x| = 1 for any

x ∈ K×. Clearly, the trivial absolute value induces discrete topology on K. In the

next example we describe the nontrivial absolute values in the case when K = Q.

Example 1.1.4 The usual absolute value on Q, denoted by | · |∞, is archimedean.

For each prime p we can define the p-adic absolute value | · |p as follows. Any rational

number x ∈ Q× can be written as x = pr · a/b with a, b, r ∈ Z, b ̸= 0, and p ∤ a · b.

Then we set

|x|p := p−r.

It is easy to check that | · |p is a nonarchimedean absolute value. The only nontrivial

absolute values on Q (up to equivalence) are | · |∞ and | · |p for each prime p. This

result is known as Ostrowski’s Theorem (cf. [15, Ch. 1, §1.1.2 , Theorem 1.1]).
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Depending on the context we will also use the additive analogs of absolute values

called valuations

Definition 1.1.5 A valuation on a field K is a map v : K → R ∪ {∞} such that

(1) v(x) = ∞ if and only if x = 0,

(2) v(xy) = v(x) + v(y) for all x, y ∈ K,

(3) v(x+ y) ≥ min{v(x), v(y)} for all x, y ∈ K.

A valuation v is called discrete if the value group v(K×) is a discrete subgroup of R,

hence v(K×) ≃ Z. Any valuation v on a field K gives rise to an absolute value | · |v

by setting

|x|v := c−v(x)

for a fixed real number c > 1. It is clear that the induced topology on K is inde-

pendent of the choice of c and that the absolute value associated to a valuation is

non-archimedean. We define the p-adic valuation vp on Q by

vp(x) := r,

where x = pr · a/b with a, b, r ∈ Z, b ̸= 0 and p ∤ a · b. Similarly to absolute values,

one can define the notions of the trivial valuation and equivalence of valuations (cf.

[34, Ch. 12, §12.2]).

Some of the techniques used to understand the arithmetic properties of algebraic

groups involve number theoretic tools associated with valuations such as adeles and

ideles. These notions can be defined over a slightly larger class of fields than number

fields:

Definition 1.1.6 A global field is a field, which is one of the following two types
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(a) Number field: a finite extension of Q (case of characteristic zero),

(b) Global function field: a field of rational functions of an irreducible algebraic

curve over a finite field, or equivalently, a finite extension of Fq(t), where Fq(t)

denotes the field of rational functions in one variable over the finite field Fq

with q elements (case of positive characteristic).

Every global field comes with a natural family of (discrete) valuations. In char-

acteristic zero, these valuations are associated with primes, and in positive charac-

teristic - with closed points of the relative curve. Another special feature of global

fields is that every such field can be realized as the field of fractions of a Dedekind

domain and it satisfies the product formula (see section 1.1.3).

For any valuation v on a field K, we denote by Kv, the completion of K with

respect to the corresponding absolute value | · |v. One constructs Kv as a quotient

of the commutative ring of all Cauchy sequences in K (with respect to the topology

induced by | · |v) by the ideal of all sequences converging to 0. An important conse-

quence of this construction is that Kv is a complete space with respect to | · |v which

contains K as a dense subspace. The reader may want to consult [8, Ch. II, §2]

for more details regarding the construction and properties of completion. If K = Q

then Kv equals either the field of real numbers Q∞ := R if | · |v = | · |∞ or the field

of p-adic numbers Qp (cf. [12, Ch. II, §1]) for some prime p if | · |v = | · |p.

If L is a finite extension of a number field K then any absolute value | · |v on K

may be extended to L. In other words, there exists an absolute value | · |w on L such

that |x|w = |x|v for any x ∈ K. We denote this relation by w|v and we say that w

lies above v. For a detailed procedure of extension of absolute values, we refer the

reader to [12, Ch. II, §8] and [15, Ch. 1, §1.1.2].

If K is any field then we write V K to denote the set of all equivalence classes of

valuations of K. For simplicity, the elements of V K will also be called valuations (or
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places). The set V K is the union of the set of all archimedean valuations V K
∞ and

the set of all nonarchimedean valuations V K
f . Observe that if K is a number field

then V K
∞ is the set of all extensions of | · |∞ to K and V K

f is the set of extensions

of | · |p for all prime numbers p. Furthermore, if K = Q then due to Ostrowski’s

theorem, the set V Q
f may be identified with the set of all rational primes, denoted

by P. The unique archimedean valuation of Q will be denoted by the symbol ∞ so

that V Q will be routinely identified with P ∪ {∞}.

If K is a number field then the archimedean valuations of K correspond to

embeddings of K in R or in C, and are called real or complex valuations, respectively.

The description of completions corresponding to the nonarchimedean valuations of

a number field K is more involved. Any v ∈ V K
f is an extension of some p-adic

valuation vp with Kv/Qp a finite extension. The field Qp is locally compact, so Kv

is also locally compact with respect to the topology induced from | · |v.

A field K is called local if it is complete with respect to a nontrivial discrete

valuation v and has finite residue field (cf. [12, Ch. II, §5]). Topologically, a local

field is a Hausdorff locally compact non-discrete totally disconnected topological

field. The archimedean fields R and C are by convention also considered to be local.

The classification of local fields is given by the following theorem

Theorem 1.1.7 Any local field K is one of the following:

(a) K is archimedean, and K ≃ R or K ≃ C,

(b) K is nonarchimedean with char(K) = 0, and K is a finite extension of Qp for

some prime p,

(c) K is nonarchimedean with char(K) = p, and K is a finite extension of the

field of Laurent series in one variable Fp((t)) for some prime p. In this case,

there is a (non-canonical) isomorphism K ≃ Fq((t)) where q is a power of p.
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Proof. Cf. [12, Ch. II, §5, Proposition 5.2]. □

Given any field K with a discrete valuation v, we define the valuation ring of v

by

Ov =
{
a ∈ Kv

∣∣∣ |a|v ≤ 1
}
.

It is known that Ov is a local principal ideal domain with unique maximal ideal

pv =
{
a ∈ Kv

∣∣∣ |a|v < 1
}
,

called the valuation ideal of v. In particular, Ov is a Discrete Valuation Ring (cf.

[12, Ch. I, §11, Definition 11.3]). Observe that the group of units in Ov equals

O×
v =

{
a ∈ Kv

∣∣∣ |a|v = 1
}
.

The quotient k(v) = Ov/pv is a field called the residue field of v. For example, the

valuation ring of Qp is the ring of p-adic integers Zp (cf. [12, Ch. II, §1]) with the

corresponding valuation ideal pZp and the residue field being the finite field with p

elements, denoted by Fp.

Returning to the general case, if Kv is a field that is complete with respect to

some discrete valuation v, then the ideal pv is principal and any generator π of pv

such that v(π) ≥ 0 is called a uniformizer. It follows from the description of O×
v

that if π is a fixed uniformizer then any element x ∈ K×
v can be written in the form

x = πku for some k ∈ Z and u ∈ O×
v . This furnishes a continuous isomorphism

K×
v ≃ Z×O×

v .
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One can show that O×
v is a compact group and

O×
v ≃ µ(Kv)× Znp ,

where n = [Kv : Qp] and µ(Kv) is the group of all roots of unity in Kv (cf. [15, Ch.

1, §1.1.2]). Therefore,

K×
v ≃ Z× µ(Kv)× Znp .

For example, if p is an odd prime then

Q×
p ≃ Z× F×

p × Zp

(also see [30, Ch. II, §3.2, Theorem 2]).

There are two important notions related to field extensions, called ramification

index and residue degree. Let us first introduce these concepts locally, namely for

fields that are complete with respect to a nonarchimedean valuation. Let Lw/Kv be

a finite extension of degree n and let Γw = w(L×
w), Γv = v(K×

v ) be the corresponding

valuation groups. The index e(w|v) = [Γw : Γv] is finite and we call it the ramification

index of w with respect to v. Let Pw be the valuation ideal of w and l(w) = Ow/Pw

be the corresponding residue field. The index f(w|v) = [l(w) : k(v)] is finite and we

call it the residue degree of w with respect to v. We have the following formula (cf.

[15, Ch. 1, §1.1.2]):

e(w|v) · f(w|v) = n.

The extension Lw/Kv is called unramified if e(w|v) = 1 and ramified otherwise.

Now let L/K be an extension of a global fields with [L : K] = n. Then for any

v ∈ V K
f and any extension w of v to L, we define the ramification index e(w|v) and

the residue degree f(w|v) as the ramification index and residue degree of Lw/Kv,
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respectively. One can show that if w1, . . . , wr are all the extensions of v to L then

we have the following formula (cf. [12, Ch. II, §8, Proposition 8.5] and [15, Ch. 1,

§1.1.2]):
r∑
i=1

e(wi|v) · f(wi|v) = n.

We say that v splits completely in L if we have e(wi|v) = f(wi|v) = 1 for all

i = 1, . . . , r. Another important property is that both ramification indices and

residue degrees are multiplicative in towers (cf. [15, Ch. 1, §1.1.2 and §1.1.3]).

1.1.2 The ring of adeles

The goal of this section is to construct a topological ring AK(S) associated with a

global field K and any nonempty subset S ⊂ V K , which will allow us to formulate

the strong approximation theorem for a global field (cf. Theorem 1.1.16). As a

starting point, let us state a property, called the weak approximation, which holds

for any field K and will be used later in the analysis of the reciprocity map of global

class field theory

Theorem 1.1.8 (Weak Approximation Theorem) Let K be a field and let S

be a finite set of pairwise inequivalent valuations v1, . . . , vr. Set KS :=
∏r

i=1Kvi.

Then the diagonal embedding K ↪→ KS has dense image, where we consider KS with

the product topology. More explicitly, given ε > 0 and x1 ∈ Kv1 , . . . , xr ∈ Kvr , there

exists x ∈ K such that

|x− xi|vi < ε

for all i = 1, . . . , r.

Proof. Cf. [10, Ch. XII, Theorem 1.2.]. □

The ring of adeles of a global field K is a number-theoretic object that takes into

account all valuations of K at once. The usual direct product
∏

v∈V K Kv is not a
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locally compact space. Thus, instead of taking the (full) direct product, we will use

a more general construction called the restricted product

Definition 1.1.9 Let {Xi}i∈I be a family of topological spaces indexed by a set I

and for each i ∈ I, let Ui be an open subset of Xi. The restricted product of {Xi}i∈I

with respect to {Ui}i∈I is defined as:

∏′

i∈I

(Xi, Ui) :=
{
(xi)i∈I ∈

∏
i∈I

Xi

∣∣∣xi ∈ Ui for almost all i ∈ I
}
,

with topology given by the following basis of open sets

B :=
{∏

i∈I

Vi

∣∣∣Vi ⊂ Xi is open for all i ∈ I and Vi = Ui for almost all i ∈ I
}
,

where for almost all means for all but finitely many.

Let us examine how the usual direct product topology and the restricted prod-

uct topology are related. For each i ∈ I there is a natural continuous projection

πi :
∏′

i∈I
(Xi, Ui) → Xi and as sets, we always have the inclusions

∏
i∈I

Ui ⊂
∏′

i∈I

(Xi, Ui).

However, the restricted product topology on
∏′

i∈I
(Xi, Ui) is not the same as the

subspace topology it inherits from the product
∏
i∈I

Xi. In fact, the restricted product

has more open sets. For example, the set
∏
i∈I

Ui is open in
∏′

i∈I
(Xi, Ui), but unless

Ui = Xi for almost all i ∈ I, it is not open in
∏
i∈I

Xi. The restricted product

generalizes the direct product, and the two topologies coincide precisely when Ui =

Xi for almost all i ∈ I. For example, product topology and restricted topology

coincide if the indexing set I is finite. Observe that the restricted product is fully
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determined once we specify the Ui for all but finitely many i ∈ I. In other words, if

Ui = U ′
i for almost all i then

∏′

i∈I

(Xi, Ui) =
∏′

i∈I

(Xi, U
′
i).

For a more detailed exposition of restricted product we refer the reader to [2, Ch.

II, §13].

In this thesis, we are mostly interested in restricted products of locally compact

topological spaces {Xi}i∈I with respect to a family of open subsets {Ui}i∈I such that

Ui is compact for almost all i ∈ I. The key result for restricted product in this case

is the following

Proposition 1.1.10 Let {Xi}i∈I be a family of locally compact topological spaces

and for each i ∈ I, let Ui be an open subset of Xi. Assume that for almost all i ∈ I,

the set Ui is compact. Then the restricted product
∏′

i∈I
(Xi, Ui) is a locally compact

space.

Proof. Let X =
∏′

i∈I
(Xi, Ui) and for any finite subset J ⊂ I, put XJ :=

∏
i∈J

Xi ×∏
i∈I\J

Ui. Since allXi are locally compact, so is the product
∏
i∈J

Xi. On the other hand,

almost all Ui are compact so by Tychonoff’s theorem, their product is compact.

Thus, XJ is a locally compact space. Since the sets XJ with J ⊂ I a finite subset,

form an open cover of X, it follows that X is locally compact. □

The restricted product construction allows us to define the ring of adeles of a

global field

Definition 1.1.11 Let K be a global field. For any v ∈ V K
∞ , we put Ov := Kv.
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The ring of adeles AK of K is defined as the following restricted product

AK =
∏′

v∈V K

(Kv,Ov).

By definition AK is a subring of the product
∏

v∈V K Kv and it comes together with

the topology, given by basic open sets of the form

∏
v∈S′

Wv ×
∏

v∈V K\S′

Ov,

where S ′ ⊂ V K is a finite subset and Wv ⊂ Kv is an open subset for each v ∈ S ′. The

restricted product topology on AK is called adelic topology. An important example

of an open subring of AK is the subring of integral adeles AK,∞ defined by

AK,∞ =
∏
v∈V K

∞

Kv ×
∏
v∈V K

f

Ov.

Note that the restricted product topology on AK,∞ coincides with the usual product

topology. By Proposition 1.1.10, AK is locally compact. Next, we have the following

lemma:

Lemma 1.1.12 There is a diagonal embedding K ↪−→ AK, and it restricts to K× ↪−→

A×
K.

Proof. Here we only show the argument for K = Q but the result holds for any

global field (cf. [2, Ch. II, §14]). Let x ∈ Q and let us write x = m/n with m and

n coprime integers. Let n = pα1
1 · . . . · pαℓ

ℓ be the prime factorization of n. Then for

any prime p outside of the finite set {p1, . . . , pℓ}, we have |x|p ≤ 1, so x ∈ Zp. This

shows that the diagonal map Q −→ AQ is well-defined. It is also injective because

for each prime p we have the embedding Q ↪−→ Qp. By applying the same argument
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to x−1, we see that in fact |x|p = 1 for almost all primes p, so x ∈ Z×
p . Thus, the

diagonal embedding Q ↪−→ AQ induces Q× ↪−→ A×
Q. More generally, for any global

field K, we still have the diagonal embedding K× ↪−→ A×
K (cf. [2, Ch. II, §16]). The

group of units A×
K of AK will be studied in greater detail in the next section. □

The image of any a ∈ K under the diagonal embedding K ↪−→ AK is called

the principal adele corresponding to a and will be denoted by (a) or simply by

a. The image of K under this embedding forms a subring of AK , called the ring

of principal adeles, which we routinely identify with K and it has the following

important property

Lemma 1.1.13 K is discrete in AK.

Proof. Let us first explain the argument for K = Q. Consider the following neigh-

borhood of zero in AQ

W =
(
− 1

2
,
1

2

)
×
∏
p∈P

Zp.

If x ∈ Q ∩ W , then x ∈ Zp for all p, and therefore x ∈ Z. At the same time,

x ∈ (−1
2
, 1
2
), so x = 0. Thus, Q ∩W = {0}, and therefore Q is discrete in AQ. □

Now let K be a number field and let us show that K is discrete in AK . There is

a topological isomorphism ∏
v∈V K

∞

Kv ≃ K ⊗Q R,

(cf. [12, Ch. II, §8, Proposition 8.3] and [14, Ch. 1, §1.1.2]). Since the ring of

integers OK of K is a free Z-module of rank n = [K : Q], we may fix a Z-basis

ω1, . . . , ωn of OK . Then the corresponding vectors ω1 ⊗ 1, . . . , ωn ⊗ 1 are R-linearly

independent in K ⊗Q R. This means that OK becomes a complete Z-lattice (cf. [12,

Ch. I, §4, Definition 4.1]) in K ⊗Q R, hence is discrete in K ⊗Q R. Thus, OK is

discrete in
∏

v∈V K
∞
Kv, so there exists a neighborhood of zero Ω ⊂

∏
v∈V K

∞
Kv such
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that OK ∩ Ω = {0}. Then we consider the following neighborhood of 0 in AK

W = Ω×
∏
v∈V K

f

Ov.

If x ∈ K ∩W then x ∈ Ω ∩ OK , and hence x = 0, proving discreteness. For the

proof in the case of an arbitrary global field see [2, Ch. II, §14, Theorem]. □

We will now examine the behavior of the ring of adeles under the base change.

Let K be a global field. The canonical embedding K ↪−→ AK makes AK into a

K-vector space. For any finite separable extension L/K, we may naturally view

AK ⊗K L as an L-vector space. We have the following:

Proposition 1.1.14 Let L be a finite separable extension of K. There is an iso-

morphism of topological rings

AL ≃ AK ⊗K L

that makes the following diagram commutative

L K ⊗K L

AL AK ⊗K L
≃

≃

where the vertical maps are the natural embeddings.

Proof. Here we only briefly sketch the proof and for more details we refer the

reader to [2, Ch. II, §14, Lemma]. The tensor product AK ⊗K L is isomorphic to

the restricted product
∏′

v∈V K
(Kv ⊗K L,Ov ⊗OK

OL). Explicitly, each element of

AK ⊗K L is a finite sum of elements of the form (av)v ⊗ x, where (av)v ∈ AK and
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x ∈ L and the required isomorphism is given by:

AK ⊗K L −→
∏′

v∈V K

(Kv ⊗K L,Ov ⊗OK
OL)

(av)v ⊗ x 7→ (av ⊗ x)v.

On the other hand, we have AL =
∏′

w∈V L
(Lw,Ow). Since Kv⊗K L ≃

∏
w | v Lw

and Ov ⊗OK
OL ≃

∏
w | vOw (cf. [12, Ch. II, §8, Proposition 8.3] and [12, Ch. II,

§8, Exercise 4]), we obtain the isomorphism of topological rings:

AK ⊗K L ≃
∏′

v∈V K

(Kv ⊗K L,Ov ⊗OK
OL) ≃

∏
w∈V L

(Lw,Ow) ≃ AL.

Observe that the image of x ∈ L in AK ⊗K L via the canonical embedding of L into

AK⊗K L is 1⊗x = (1, 1, 1, ...)⊗x, whose image (x, x, ...) ∈ AL is equal to the image

of x ∈ L under the canonical embedding of L to its adele ring AL. □

The formulation of strong approximation requires the following truncated version

of the ring of adeles

Definition 1.1.15 Let K be a global field and let S ⊂ V K be a nonempty subset.

Then we define the ring of S-adeles AK(S) as the restricted product

AK(S) =
∏′

v∈V K\S

(Kv,Ov).

Alternatively, one can define AK(S) as the projection of AK onto
∏

v∈V K\SKv. By

definition, any basic open set in AK(S) is of the form

∏
v∈S′

Wv ×
∏

v∈V K\(S∪S′)

Ov,
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where S ′ ⊂ V K \S is a finite subset and Wv ⊂ Kv is an open subset for each v ∈ S ′.

The topology defined in this way will be referred to as S-adelic topology. We have

the induced diagonal embedding K ↪→ AK(S) and one may ask if its image is dense

in AK(S) considered with the S-adelic topology. Observe that if S was the empty

set, then AK(S) equals the (full) ring of adeles AK , but the diagonal embedding

K ↪−→ AK has the image which is discrete and closed (cf. Lemma 1.1.13) so it

cannot be dense. However, as we will see, the situation changes completely if S is

nonempty. If the canonical embedding K ↪−→ AK(S) has dense image, we say that

K satisfies strong approximation property with respect to set S (the reader may also

want to compare this with Definition 2.1.6). It turns out that this property holds

for any global field as long as S is nonempty:

Theorem 1.1.16 (Strong approximation theorem) Let K be a global field

and let S ⊂ V K be any nonempty subset. Then K satisfies strong approximation

with respect to S. In other words, the diagonal embedding K ↪→ AK(S) has dense

image.

Before proceeding with the proof, let us make a few remarks about the statement

of the theorem. For any finite S we have AK = AK(S) ×
∏

v∈SKv. Written out

in terms of any basic open set, strong approximation is equivalent to the following.

Given any finite subset S ′ ⊂ V K disjoint from S with elements xv ∈ Kv for each

v ∈ S ′, and ε > 0, there exists x ∈ K such that |x − xv| < ε for all v ∈ S ′ and

x ∈ Ov for all v ∈ V K \ (S ∪ S ′). Therefore, weak approximation follows from

strong approximation by forgetting the S-components and weakly approximating

xv for each v ∈ S ′. For weak approximation, we only require a finite number of

conditions to hold with no control of the valuations v ∈ V K \ S. By contrast, in

strong approximation, we have specified conditions at all v ∈ V K \S: approximation

for v ∈ S ′ together the integrality for the valuations in V K \ (S ∪ S ′).
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Proof of Theorem 1.1.16. We will only sketch the proof of Theorem 1.1.16 in the

case S = V K
∞ , where the result follows from the Chinese Remainder Theorem. In

particular, this shows that strong approximation has arithmetic nature. The reader

may want to see [2, Ch. II, §15, Theorem] for the proof of strong approximation

theorem in the general case.

First, let us show that the image of the embedding OK ↪→
∏

v∈V K
f
Ov is dense.

We need to show that for any finite subset S ′ ⊂ V K
f and any nonempty open sets

Wv ⊂ Ov for v ∈ S ′, the open set

∏
v∈S′

Wv ×
∏

v∈V K
f \S′

Ov

intersects OK . Without loss of generality, we may assume that each Wv is an open

ball, namely it is of the form

Wv =
{
x ∈ Ov |x ≡ av(mod pdvv )

}

for some av ∈ Ov and some integer dv ≥ 1. Then what we need to show is that there

exists a ∈ OK satisfying

a ≡ av(mod pdvv ) for all v ∈ S ′.

Since OK is dense in Ov, we can assume that av ∈ OK , and then the existence of

such a follows from the Chinese Remainder Theorem. Now, given any a ∈ AK(S),

one can find nonzero α ∈ OK such that αa ∈
∏

v∈S′ Ov. This means that αa belongs

to the closure of OK . Then a belongs to the closure of 1
α
OK , and in particular to

the closure of K. Thus, K is dense in AK(S). □

Corollary 1.1.17 We have AK = AK,∞ +K.
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Proof. Indeed, let S = V K
∞ and a ∈ AK(S). Then a+

∏
v∈V K

f
Ov is an open subset of

AK(S), so by Theorem 1.1.16 it must intersect K. Thus, AK(S) =
∏

v∈V K
f
Ov +K.

Taking pullbacks we obtain our claim. □

Proposition 1.1.18 The quotient AK/K is compact.

Proof. As we saw earlier, OK is a complete lattice in
∏

v∈V K
∞
Kv ≃ K ⊗QR, so there

exists a compact subset Ω ⊂
∏

v∈V K
∞
Kv such that

∏
v∈V K

∞
Kv = Ω+OK . Then

AK = AK,∞ +K =
( ∏
v∈V K

∞

Kv ×
∏
v∈V K

f

Ov

)
+K =

(
Ω×

∏
v∈V K

f

Ov

)
+K.

Since Ω×
∏

v∈V K
f
Ov is compact, our claim follows. □

1.1.3 The group of ideles

We shall now examine the group of units of AK , called the group of ideles

Definition 1.1.19 We define the group of ideles IK of K as the restricted product

IK =
∏′

v∈V K

(K×
v ,O×

v ).

For almost all v ∈ V K
f , the groups O×

v are compact, so Proposition 1.1.10 implies

that IK is a locally compact topological group. By definition, IK has a basis of open

sets of the form ∏
v∈S′

Wv ×
∏

v∈V K\S′

O×
v ,

where S ′ ⊂ V K is a finite subset and Wv ⊂ K×
v is an open subset for each v ∈ S ′.

The restricted product topology on IK will be called idelic topology. An important
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example of an open subgroup of IK is the group of integral ideles IK,∞ defined by

IK,∞ =
∏
v∈V K

∞

K×
v ×

∏
v∈V K

f

O×
v .

Note that the restricted product topology on IK,∞ coincides with the usual product

topology. Observe that algebraically, IK coincides with A×
K but the topology on IK

is not the topology induced from AK . In fact, the subspace topology does not make

IK into a topological group. We illustrate this in the following example

Example 1.1.20 LetK = Q and let us consider the sequence x(p) = (x(p)q)q∈P∪{∞}

in AQ defined by

x(p)q =


1 if q ̸= p

p if q = p.

Clearly, x(p) ∈ IQ for all p, and x(p) → 1 in AQ. On the other hand, x(p)−1 does

not converge to 1 in AQ, because given the open neighborhood

W = R×
∏
q∈P

Zq

of 1 in AQ, all terms of the sequence x(p)−1 lie outside of W . This means that the

inversion map x 7→ x−1 is not continuous in the induced topology.

As we saw in the proof of Lemma 1.1.12, we have the diagonal embedding K× ↪→

IK . Since the topology on IK is stronger than the topology induced from AK and K

is discrete in AK , we deduce that K× is a discrete subgroup of IK and we call it the

group of principal ideles. Any element of this subgroup (called the principal idele)

corresponds to some a ∈ K× and will be denoted by (a) or simply by a.

In contrast to the case of adeles where the quotient AK/K is compact, the

analogous quotient IK/K× is noncompact. The group IK/K× will be denoted by
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CK and called the idele class group of K.

Let us sketch the proof of noncompactess of CK for K = Q. Recall that

we denote by | · |∞ the usual (archimedean) absolute value on Q, and for every

rational prime p, we write | · |p for the p-adic absolute value on Q, defined by

|x|p = p−vp(x) where vp(x) = r if x = pr · a/b and p ∤ a · b. Consider the continuous

homomorphism ν : IQ → R>0 given by ν((xp)p) =
∏

p≤∞ |xp|p. First, observe that ν

is well-defined since for almost all primes p, we have |xp|p ≤ 1. For any x ∈ Q× the

following product formula holds

∏
p∈P∪{∞}

|x|p = 1,

(cf. [12, Ch. II, §2, Proposition 2.1]) so ν factors through Q× and induces the

homomorphism ν̃ : IQ/Q× → R>0. Since ν̃ is surjective and R>0 is not compact, we

have that ν̃(IQ/Q×) is not compact and therefore IQ/Q× is not compact either. For

arbitrary global field K, one can also consider normalized valuations (cf. [2, Ch. II,

§7, Definition]) and the homomorphism

ν : IK → R>0 (1.1)

(xv)v 7→
∏
v∈V K

|xv|v,

to prove that IK/K× is not compact (cf. [2, Ch. II, §12, Theorem]).

Let K be a global field. We define the group of ideles of K with content one, I(1)K

as the kernel of the map ν in (1.1). It follows from the product formula that I(1)K

contains K×. The main result of reduction theory for the group of ideles, which is

important for class field theory, is the following

Theorem 1.1.21 Let K be a global field. The quotient I(1)K /K× is compact.
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Proof. Cf. [2, Ch. II, §16, Theorem]. □

One can derive from Theorem 1.1.21, the Dirichlet’s Unit Theorem (see Theorem

1.1.2) and the finiteness of the class number (see Theorem 1.1.1). For the proof of

Dirichlet’s Unit Theorem relying on the compactness of I(1)K /K×, we refer the reader

to [2, Ch. II, §18, Theorem]. Here we will see how compactness of I(1)K /K× implies

the finiteness of the class number. We need the following lemma

Lemma 1.1.22 Let K be a global field. The class group Cl(K) is isomorphic to the

quotient IK/K×IK,∞.

Proof. Recall that we denote by IK the group of all fractional ideals of K. For any

v ∈ V K
f , we denote the prime ideal pv∩OK by p(v). There is a group homomorphism

ρK : IK → IK

(xv)v 7→
∏
v∈V K

f

p(v)v(xv),

where pv denotes the valuation ideal in the valuation ring Ov. According to the

definition of the group of ideles, we have v(xv) = 0 for almost all v ∈ V K
f , so that

the product is actually finite and the map ρK is well-defined. Since any fractional

ideal decomposes uniquely as the product of powers of prime ideals we see that ρK

is surjective. Observe that ker ρK coincides with IK,∞. On the other hand, ρK(K×)

equals the subgroup of principal fractional ideals PK . Thus, ρK induces the claimed

isomorphism

IK/K×IK,∞ ≃ IK/PK = Cl(K).

□

Proof of Theorem 1.1.1. The subgroup IK,∞ ⊂ IK is open, so the product K×IK,∞

is also an open subgroup of IK . Thus, the quotient IK/K×IK,∞ is a discrete group.
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On the other hand, for ν as in (1.1), we have ν(
∏

v∈V K
∞
K×
v ) = R>0 implying

that IK = I(1)K IK,∞. This means that the canonical homomorphism I(1)K /K× →

IK/K×IK,∞ is surjective. Since I(1)K /K× is compact by Theorem 1.1.21, we con-

clude that IK/K×IK,∞ is compact. But a topological group which is simultaneously

discrete and compact must be finite. □

Remark 1.1.23 Conversely, assuming the finiteness of the class number and Dirich-

let’s Unit Theorem one can derive the compactness of I(1)K /K×. Let us first show

this for K = Q. Since the class number of Q is one, we have IQ = Q×IQ,∞. Since

Q× ⊂ I(1)Q , we deduce that

I(1)Q = Q×(IQ,∞ ∩ I(1)Q ).

On the other hand, we have |x|p = 1 for any x ∈ Z×
p , so

IQ,∞ ∩ I(1)Q = {±1} ×
∏
p∈P

Z×
p ,

which is compact, and therefore I(1)Q /Q× is also compact.

Now let K be an arbitrary global field. Since the quotient IK/K×IK,∞ ≃ Cl(K)

is finite, it is enough to prove the compactness of

(I(1)K ∩K×IK,∞)/K× ≃ (I(1)K ∩ IK,∞)/(K× ∩ IK,∞).

It is easy to see that IK,∞ ∩K× = O×
K . Furthermore, since |x|v = 1 for any x ∈ O×

v ,

we deduce that

I(1)K ∩ IK,∞ =

 ∏
v∈V K

∞

K×
v ∩ I(1)K

×

 ∏
v∈V K

f

O×
v

 ,
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and therefore

(I(1)K ∩ IK,∞)/(K× ∩ IK,∞) ≃

(∏
v∈V K

∞
K×
v

)
∩ I(1)K

O×
K

×
∏
v∈V K

f

O×
v .

Thus, the compactness of this quotient is equivalent to the compactness of
(∏

v∈V K
∞
K×
v ∩

I(1)K
)
/O×

K , which is equivalent to the Dirichlet’s Unit Theorem (cf. [2, Ch. II, §18,

Theorem]).

Our next goal is to extend the field norm to the group of ideles. Let L/K be

a finite extension of global fields. As we saw earlier, for a fixed v ∈ V K , we have

L⊗K Kv ≃
∏

w|v Lw, which results in the following formula for the norm

NL/K(x) =
∏
w|v

NLw/Kv(x) (1.2)

(cf. [15, Ch. 1, §1.1.2]). This formula supports the following way of extending

the norm map NL/K : L → K to a map NL/K : AL → AK . Namely, given x =

(xw)w∈V L ∈ AL, we define

NL/K(x) =
(∏
w|v

NLw/Kv(xw)
)
v∈V K

.

It is easy to see that NL/K(AL) ⊂ AK . It also follows from (1.2) that the map

NL/K takes principal adeles in AL to principal adeles in AK , and in fact coincides

on principal adeles with the usual norm map. Since norm of a unit is a unit, we

see that NL/K(IL) ⊂ IK . Consequently, NL/K induces a map on idele class groups

NL/K : CL → CK .

Similarly to the case of adeles one can define truncated ideles and these will be

more relevant for us later
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Definition 1.1.24 Let K be a global field and let S ⊂ V K be a subset. We define

the group of S-ideles IK(S) as the restricted product

IK(S) =
∏′

v∈V K\S

(K×
v ,O×

v ).

It follows from the definition that any basic open set in IK(S) is of the form

∏
v∈S′

Wv ×
∏

v∈V K\(S∪S′)

O×
v ,

where S ′ ⊂ V K \ S is a finite subset and Wv ⊂ K×
v is open for each v ∈ S ′. The

restricted product topology on IK(S) will be called S-idelic topology. We have the

induced diagonal embedding K× ↪−→ IK(S) and one may ask whether it has dense

image. This question will be studied in greater detail in section 1.3.

1.2 Class field theory

1.2.1 Statements of key results from class field theory

In this section we state two fundamental results of global class field theory – the

fundamental isomorphism of class field theory and the existence theorem. Let K be

a global field and let L/K be a finite (not necessarily abelian) Galois extension with

Galois group G = Gal(L/K).

Theorem 1.2.1 (Fundamental Isomorphism of class field theory) There

is a natural isomorphism

ψL/K : IK/K×NL/K(IL) −→ Gab,



34

where Gab denotes the abelianization G/[G,G] of G.

Proof. Cf. [2, Ch. VII, §5.1, Theorem (B)], [2, Ch. VII, §5.4] and [2, Ch. VII,

§11.3, p.197]. □

The isomorphism ψL/K is called the Artin map and some indications on how to

construct it will be given in section 1.2.2. Observe that if L/K is abelian, then ψL/K

implements an isomorphism between IK/K×NL/K(IL) and G. The naturality of the

isomorphism ψL/K means that it behaves well with respect to towers of extensions.

More precisely, if K ⊂ L ⊂ M is a tower of abelian extensions, then the following

diagram commutes

IK/K×NM/K(IM) Gal(M/K)

IK/K×NL/K(IL) Gal(L/K)

ψM/K

iML jML

ψL/K

where iML is the canonical quotient map that exists due to the inclusionNM/K(IM) ⊂

NL/K(IL), and jML is the canonical quotient map from Galois theory given by re-

striction of automorphisms (cf. [2, Ch. VII, §5, Theorem 5.1(C)]).

Observe that for any finite Galois extension L/K we have IK/K×NL/K(IL) =

CK/NL/K(CL). A subgroup D ⊂ CK is called a norm subgroup if there exists a

finite abelian extension L/K such that D = NL/K(CL). It follows from Theorem

1.2.1 that every norm subgroup is of finite index. Furthermore, for every v ∈ V K

and w|v we have that the norm subgroup NLw/Kv(L
×
w) ⊂ K×

v is open. Moreover,

almost all v ∈ V K
f are unramified in L, and then NLw/Kv(O×

w) = O×
v (cf. [32, Ch.

V, §2, Proposition 3]). It follows that NL/K(IL) ⊂ IK is open and consequently

NL/K(CL) ⊂ CK is open. Conversely, we have the following:

Theorem 1.2.2 (Existence Theorem) Every open subgroup N ⊂ CK of finite
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index is a norm subgroup. In fact, there exists a unique abelian extension L/K such

that NL/K(CL) = N .

Proof. Cf. [2, Ch. VII, §5, Theorem 5.1(D)]. □

These results of class field theory imply that the assignment L 7→ NL/K(CL)

yields an inclusion reversing correspondence between all abelian extensions of K

and all finite index open subgroups of CK .

1.2.2 Construction of the Artin map via the reciprocity law

While the construction of the Artin map can be done for any finite Galois extension,

here we are mainly interested in the case of finite abelian extensions. In section 1.2.3

we will specify further to quadratic extensions and provide an alternative description

of the Artin map in this case, using the Hilbert symbol. The main tool we need for

the construction of the Artin map in the general case, is the Artin reciprocity law (see

Theorem 1.2.3). Let K be a global field and let L/K be a finite Galois extension

with G = Gal(L/K). If v ∈ V K
f and w is some extension of v to L, we denote

the corresponding Frobenius automorphism by FrL/K(w|v) or simply by Fr(w|v) if

the underlying field extension L/K is clear from the context. If we consider a

different extension w′|v, then Fr(w|v) and Fr(w′|v) are conjugate in G = Gal(L/K).

Furthermore, if L/K is abelian, we have that Fr(w|v) = Fr(w′|v), in which case the

Frobenius automorphism Fr(w|v) is independent of the choice of the extension w|v,

and therefore will be denoted simply by Fr(v). For the construction and a more

detailed study of the Frobenius automorphism, we refer the reader to [2, Ch. VII,

§2].

Let L be a finite abelian extension of a global field K with Galois group G =

Gal(L/K). Recall that for any v ∈ V K
f , we denote by p(v), the prime ideal pv ∩OK .

Fix a finite subset S ⊂ V K that contains V K
∞ and also all v ∈ V K

f that are ramified
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in L (the set of v ∈ V K
f that ramify in L is always finite – see [2, Ch. I, §5, Corollary

2]). Let ISK be the subgroup of the group of fractional ideals IK generated by the

prime ideals p(v) for v ∈ V K \ S. Note that ISK is a free abelian group on this set.

We can then define the following map

ϕSL/K : ISK → G

p(v) 7→ Fr(v).

For any σ ∈ G there exist infinitely many v ∈ V K \ S such that ϕSL/K(p(v)) = σ,

so the homomorphism ϕSL/K : ISK → G is surjective. There is a natural continuous

homomorphism

ρSK : IK(S) → ISK

(xv)v 7→
∏

v∈V K\S

p(v)v(xv).

Setting ψSL/K := ϕSL/K ◦ ρSK , we obtain a continuous homomorphism ψSL/K : IK(S) →

G. Our goal is to extend it to a continuous homomorphism ψL/K : IK → G. The

extension procedure relies on the reciprocity law, and in fact, if one assumes the lat-

ter, then the extension can be shown to be unique. We will see several formulations

of the reciprocity law, but all of them have to do with the values of ψSL/K on certain

principal ideles.

Theorem 1.2.3 (Reciprocity Law) Let L/K be a finite abelian extension of

global fields and let S ⊂ V K be a finite subset containing V K
∞ and all v ∈ V K

f that

ramify in L. Then there exists ε > 0 such that if a ∈ K× and |a − 1|v < ε for all

v ∈ S, then

ψSL/K((a)
S) = 1
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where (a)S ∈ IK(S) denotes the principal idele corresponding to a.

Proof. Cf. [2, Chapter VII, §3, 3.3]. □

It is worth mentioning that the Artin reciprocity law implies the classical quadratic

reciprocity law (cf. [3, Ch. 5, §3]). For the statement and different proofs of

quadratic reciprocity law, we refer the reader to [30, Ch. I, §3.3, Theorem 6] and

[28, Ch. VI, §6.5].

We will now assume the reciprocity law and show that the continuous homomor-

phism ψSL/K : IK(S) → G can be extended uniquely to a continuous homomorphism

ψL/K : IK → G such that ψL/K(K×) = 1. We start with the obvious decomposition

IK = IK(S)×K×
S ,

where KS =
∏

v∈SKv. Given x ∈ IK , we will write it as x = xSxS with xS ∈ IK(S)

and xS ∈ K×
S . In particular, we will write a principal idele (a) ∈ IK for a ∈ K× as

(a) = (a)S(a)S. We want ψL/K((a)) = 1, so

1 = ψL/K((a)
S(a)S) = ψL/K((a)

S)ψL/K((a)S),

and therefore, we must have

ψL/K((a)S) = ψL/K((a)
S)−1 = ψSL/K((a)

S)−1.

On the other hand, by weak approximation theorem K× is dense in K×
S (cf.

Theorem 1.1.8). So, if ψL/K is continuous, then it is unique. To prove the ex-

istence, suppose x ∈ K×
S . Then again using weak approximation, we have that

there exists a sequence an ∈ K× such that an → x in K×
S . Let ε > 0 be as in

the statement of Theorem 1.2.3. Then there exists a positive integer N such that
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|am/an − 1|v < ε for all m,n > N and all v ∈ S. Then ψSL/K((am/an)
S) = 1,

so ψSL/K((am)
S) = ψSL/K((an)

S). The inverse of this common value is by definition

ψL/K(x), i.e. ψL/K(x) = ψSL/K((an)
S)−1 for n sufficiently large, where an ∈ K× is

any sequence such that an → x in K×
S . It is not difficult to see that ψL/K defined this

way, gives a continuous homomorphism K×
S → G. Indeed, if an → x and bn → y,

then anbn → xy. We can choose N so that for n > N we have

ψL/K(x) = ψSL/K((an)
S)−1, ψL/K(y) = ψSL/K((bn)

S)−1

and ψL/K(xy) = ψSL/K((anbn)
S). But

ψSL/K((anbn)
S) = ψSL/K((an)

S)ψSL/K((bn)
S)

for all n > N , implying that ψL/K(xy) = ψL/K(x)ψL/K(y). Now it is enough to

prove the continuity at 1. In fact, let us consider the following neighborhood of 1 in

K×
S

W =
{
(xv)v ∈

∏
v∈S

K×
v

∣∣∣ |xv − 1|v < ε
}
,

where ε is as in Theorem 1.1.8. We claim that ψL/K(W ) = {1}, which will prove the

continuity. If x ∈ W and an is a sequence in K× with an → x then an ∈ K× ∩W

for sufficiently large n, which in view of the reciprocity law yields ψSL/K((an)
S) = 1.

On the other hand, we have that ψL/K(x) = ψSL/K((an)
S)−1 for all sufficiently large

n. It follows that ψL/K(x) = 1, as required. Thus, ψL/K is continuous on K×
S .

Furthermore, ψSL/K is continuous on IK(S) because it is trivial on
∏

v∈V K\S O×
v .

Thus, ψL/K : IK → G, defined by ψL/K(x) = ψSL/K(x
S)ψL/K(xS) is a continuous

homomorphism satisfying the following two conditions:

(1) ψL/K extends ψSL/K
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(2) ψL/K(K×) = {1}

If we assume the reciprocity law, then such an extension is unique. Furthermore,

one can show that kerψL/K is exactly equal to K×NL/K(IL) (cf. [2, Ch. VII, §5.1,

Theeorem (B)]) which together with the construction of ψL/K yields

Corollary 1.2.4 Let L/K be a finite abelian extension of global fields. Assume

that v ∈ V K
f is unramified in L and K×

v ⊂ K×NL/K(IL), where we routinely identify

K×
v with its image ιv(K×

v ) via the natural embedding ιv : Kv → IK. Then L splits

completely at v, i.e. Lw = Kv for any w|v.

Proof. Our assumption implies that ψL/K(ιv(K×
v )) = {1}. On the other hand, by the

construction of ψL/K , we have ψL/K(ιv(πv)) = Fr(v), for any uniformizer πv ∈ K×
v .

So, Lw = Kv for any w|v. □

1.2.3 The Hilbert symbol and Artin map for quadratic ex-

tensions

In this section we introduce the Hilbert symbol together with its basic properties

in the case of local and global fields. Hilbert symbol will be used to provide an

alternative construction of the Artin map in the case of quadratic extensions. Let

K be a local field.

Definition 1.2.5 For any a, b ∈ K×, we define the Hilbert symbol (a, b)K of a and

b, relative to K by:

(a, b)K =


+1 if x2 − ay2 − bz2 = 0 has a nonzero solution (x, y, z) ∈ K3,

−1 otherwise
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In this section, we will write (a, b) for (a, b)K when the field K is clear from the

context. From the definition, we see that the Hilbert symbol defines a map K×/K×2×

K×/K×2 → {±1}. The basic local properties of the Hilbert symbol are given by the

following two propositions

Proposition 1.2.6 Let a, b ∈ K× and let L = K(
√
b). For (a, b) = 1 it is necessary

and sufficient that a ∈ NL/K(L×).

Proof. Cf. [30, Ch. III, §1, Proposition 1]. □

Proposition 1.2.7 The Hilbert symbol satisfies the following formulas:

(1) (a, b) = (b, a) and (a, c2) = 1,

(2) (a,−a) = 1 and (a, 1− a) = 1,

(3) If (a, b) = 1 then (aa′, b) = (a′, b),

(4) (a, b) = (a,−ab) = (a, (1− a)b).

In all these formulas a, a′, b, c are arbitrary elements of K× but we assume that

a ̸= 1 whenever the formula contains the term 1− a.

Proof. Cf. [30, Ch. III, §1, Proposition 2]. □

Theorem 1.2.8 The Hilbert symbol is a nondegenerate bilinear form on the F2-

vector space K×/K×2.

Proof. Cf. [30, Ch. III, §1, Theorem 2]. □

In order to construct the Artin map for quadratic extensions we will also need

two global properties of the Hilbert symbol, namely the product formula and the

existence of rational numbers with given Hilbert symbols. Let K be a global field.

For any v ∈ V K and any a, b ∈ K×, we write (a, b)v to denote the (local) Hilbert

symbol of a and b, considered as elements of the completion Kv.
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Theorem 1.2.9 (Product Formula for Hilbert symbol) For any a, b ∈

K×, we have ∏
v∈V K

(a, b)v = 1.

Proof. Cf. [30, Ch. III, §2, Theorem 3]. □

Theorem 1.2.10 Let a ∈ K×, and assume we are given εv = ±1 for all v ∈ V K

such that the following three conditions hold:

(1) For almost all v ∈ V K, we have εv = 1,

(2)
∏

v∈V K εv = 1,

(3) For each v ∈ V K, there exists xv ∈ K×
v with (a, xv)v = εv.

Then there exists x ∈ K× such that (a, x)v = εv for all v.

Proof. Cf. [30, Ch. III, §2, Theorem 4]. □

We may now provide another description of the Artin map for quadratic exten-

sions, which will be used later in section 1.3.1. Let K be a global field and let

L = K(
√
d) with d ∈ K× \K×2 . Define a map

ΨL/K : IK → {±1}

(xv)v 7→
∏
v∈V K

(d, xv)v.

We note that d and xv are units for almost all v, which implies that (d, xv)v = 1

for almost all v, so the above product is actually finite and ΨL/K is well-defined.

Moreover, we have the following

Proposition 1.2.11 ΨL/K induces an isomorphism IK/K×NL/K(IL) ≃ {±1}.
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Proof. Since d ∈ K× \ K×2 , there exists v ∈ V K such that d ∈ K×
v \ K×2

v , and

then by the nondegeneracy of (∗, ∗)v, we can find xv ∈ K×
v with (d, xv)v = −1. This

shows that ΨL/K is surjective. The product formula for the Hilbert symbol implies

that K× ⊂ kerΨL/K , so K×NL/K(IL) ⊂ kerΨL/K . Conversely, suppose (xv)v ∈ IK

belongs to kerΨL/K . Set εv = (d, xv)v for v ∈ V K . These numbers satisfy all the

assumptions of Theorem 1.2.10, so there exists x ∈ K× such that

(d, x)v = εv = (d, xv)v

for all v ∈ V K . Since the Hilbert symbol is bilinear we have that

(d, x−1xv)v = (d, x−1)v(d, xv)v = (d, x2x−1)v(d, xv)v = (d, x)v(d, xv)v = ε2v = 1.

By Proposition 1.2.6 we have that x−1xv ∈ NLw/Kv(L
×
w) where w|v. Moreover,

x−1xv ∈ O×
v for almost all v, and then x−1xv ∈ NLw/Kv(Ow). Thus, x−1(xv)v ∈

NL/K(IL), and (xv)v ∈ K×NL/K(IL) as claimed. □

1.2.4 (Generalized) arithmetic progressions and density the-

orems

In this section, we discuss two important density theorems: Dirichlet Prime Number

theorem on primes in arithmetic progression and its generalization to arbitrary global

fields due to Chebotarev, known as Chebotarev Density theorem. Recall that we

denote by P the set of all rational primes. For any two relatively prime positive

integers m and a we denote by Pa(m) the set of all rational primes p such that

p ≡ a(modm), namely Pa(m) consists of primes in arithmetic progression. Dirichlet

showed that the set Pa(m) is infinite by using the following notion of density
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Definition 1.2.12 Let P ⊂ P be an arbitrary subset. The Dirichlet density of P

is defined as the following limit (if it exists)

d(P) = lim
s→1+

∑
p∈P p

−s∑
p∈P p

−s .

It is known that for any s > 1 the series
∑

p∈P p
−s converges and that

∑
p∈P p

−s → ∞

when s → 1+ (cf. [30, Ch. VI, §3.2, Corollary 1] and [30, Ch. VI, §3.2, Corollary

2]). Consequently, every finite set of primes has density zero. Dirichlet established

the precise value of density of Pa(m)

Theorem 1.2.13 (Dirichlet Prime Number Theorem) Let a and m be two

positive relatively prime integers. Then

d(Pa(m)) =
1

φ(m)

where φ denotes the Euler totient function. In particular, the set Pa(m) is infinite.

Proof. Cf. [30, Ch. VI, §4.1, Theorem 2]. □

However, it should be noted that one can construct many examples of infinite

sets with zero Dirichlet density. In fact, let Ω be any set of primes p1 < p2 < . . .

such that
∑∞

i=1 p
−1
i < ∞. For example, one may take pi such that pi > 2i for each

i ≥ 1 so that
∑∞

i=1 p
−1
i <

∑∞
i=1 2

−i = 1 <∞. Then we have

d(Ω) = lim
s→1+

∑
pi∈Ω p

−s
i∑

p∈P p
−s = 0.

Chebotarev proved a vast generalization of Theorem 1.2.13, which applies to

arbitrary global fields; however the statement requires a more general notion of

density, which will also be referred to as Dirichlet density
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Definition 1.2.14 Let K be a global field and let P ⊂ V K
f be a subset. The

Dirichlet Density of P is defined to be the following limit (if it exists)

dK(P) = lim
s→1+

∑
v∈P

N (pv)
−s∑

v∈V K
f

N (pv)−s
,

where N (pv) denotes the norm of the ideal pv, i.e. the cardinality of the residue

field k(v) = Ov/pv.

It is clear that the notion of density in Definition 1.2.14 generalizes the one in

Definition 1.2.12. One can show the following two facts (cf. [12, Ch. VII, §13]):

(1) The series
∑

v∈V K
f
N (pv)

−s (hence also the series
∑

v∈P N (pv)
−s for any subset

P ⊂ V K
f ) converges for s > 1,

(2) We have
∑

v∈V K
f
N (pv)

−s s→1+−−−→ ∞, and consequently every finite set has

Dirichlet density 0.

It should be noted that for arbitrary global fields one can also construct infinite sets

with zero Dirichlet density zero. A very well-known example of such a set is the set

of all primes of any number field K which have relative degree ≥ 2 (cf. [12, Ch.

VII, §13]). For example, let K = Q(i) and consider the set

Ω =
{
w ∈ V K

f

∣∣∣w|vp with p prime such that p ≡ 3(mod 4)
}
.

For any prime p such that p ≡ 3(mod4) there exists a unique valuation w ∈ V K
f such

that w|vp. Then f(w|vp) = 2 and if we denote by p the ideal of OK corresponding

to w then N (p) = |OK/p| = p2. Thus, for s ≥ 1, we have

∑
p∈Ω

N (p)−s =
∑

p≡3(mod 4)

p−2s ≤
∑
n≥1

n−2s <∞.
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Hence dK(Ω) = 0.

Theorem 1.2.15 (Chebotarev Density Theorem) Let K be a global field and

let L/K be a finite Galois extension with G = Gal(L/K). Fix a conjugacy class C

in G. Let P(L/K, C) be the set of all v ∈ V K
f such that v is unramified in L and

for some (equivalently, any) extension w|v the Frobenius automorphism FrL/K(w|v)

lies in C. Then

dK(P(L/K, C)) = |C|
|G|

.

In particular, P(L/K, C) is an infinite set.

Proof. Cf. [12, Ch. VII, §13, Theorem 13.4]. □

Let us now explain the connection between the Dirichlet Prime Number theorem

and the Chebotarev Density theorem. LetK = Q and let L = Q(ζm) be a cyclotomic

extension with ζm a primitive mth root of unity. It is well-known that Gal(L/Q) ≃

(Z/mZ)× and this isomorphism is given by sending the class of any integer a which is

relatively prime tom to the automorphism σa : L→ L, σa(ζm) = ζam (cf. [10, Ch. VI,

§3, Theorem 3.1]). We claim that the set P(L/Q, {σa}) coincides with the arithmetic

progression Pa(m), where we routinely identify V Q
f with P. In fact, by definition

P(L/Q, {σa}) consists of all those p ∈ P which are unramified in L and for some

w|vp, we have FrL/Q(w|vp) = σa. Thus, p ∈ P(L/Q, {σa}) if p ∤ m (cf. [2, Ch. III, §1,

Lemma 6]) and FrL/Q(w|vp)(ζm) = ζam. On the other hand, FrL/Q(w|vp)(ζm) = ζpm (cf.

[2, Ch. VII, §3.4, Proposition]). Thus, ζpm = ζam, which is equivalent to p ≡ a(modm)

because p ∤ m. This shows that P(L/Q, {σa}) = Pa(m). Hence the sets of the form

P(L/K, C) generalize the sets of prime numbers in arithmetic progression Pa(m) and

we recover all the Pa(m) precisely in the case of cyclotomic extensions. The sets of the

form P(L/K, C) are central to this thesis and the observation that they generalize

usual sets of primes in arithmetic progressions motivates the following definition
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Definition 1.2.16 Let K be a global field and let L/K be a finite Galois extension

with G = Gal(L/K). Fix a conjugacy class C in G. A generalized arithmetic

progression P(L/K, C) is the set of all v ∈ V K
f such that v is unramified in L and

for some (equivalently, any) extension w|v the Frobenius automorphism Fr(w|v) lies

in C.

We will derive one important consequence of Theorem 1.2.15. We let Spl(L/K)

denote the set of all nonarchimedean valuations of K that split completely in L. We

will only use this notion when L/K is a finite Galois extension. Then Spl(L/K)

consists precisely of those valuations v ∈ V K
f , which are unramified in L and

FrL/K(w|v) = idL for some (equivalently any) extension w|v. By Chebotarev’s Den-

sity Theorem, Spl(L/K) has Dirichlet density 1/n where n = [L : K]. In particular,

Spl(L/K) is an infinite set. Moreover, for any subset P0 ⊂ Spl(L/K) of density

zero, the set Spl(L/K) \ P0 still has density 1/n.

Given any two subsets A,B ⊂ V K
f , we will write A⊂̇B if A \ P0 ⊂ B for some

subset P0 ⊂ A with dK(P0) = 0 and in that case we say that B almost contains A.

Proposition 1.2.17 Let K be a global field and let L and M be finite Galois ex-

tensions of K. Then the inclusion L ⊂M is equivalent to Spl(M/K)⊂̇Spl(L/K).

Proof. It is clear that L ⊂ M implies the inclusion Spl(M/K) ⊂ Spl(L/K). This

follows from the multiplicativity of the ramification index and the residual degree

(cf. [15, Ch. 1, §1.1.2 and §1.1.3]). In particular, we have Spl(M/K)⊂̇Spl(L/K).

Conversely, suppose that Spl(M/K)⊂̇Spl(L/K), i.e. Spl(M/K) \ P0 ⊂ Spl(L/K)

for some P0 ⊂ V K
f with dK(P0) = 0. Assume that L ̸⊂M , and set E = LM . Then

E/M is a Galois extension and E ̸= M , so we may choose σ ∈ Gal(E/M) \ {idE}.

By Chebotarev’s Density Theorem we can pick v ∈ V K
f \ P0 which is unramified in



47

E and for which FrE/K(w|v) = σ for some extension w|v. Set u := w|M . Then

FrM/K(u|v) = σ|M = idM ,

implying that v ∈ Spl(M/K) \ P0. On the other hand, σ|L is nontrivial, meaning

that v does not split completely in L. This yields a contradiction. □

It should be noted that while we will not use Proposition 1.2.17 directly, a similar

argument used in its proof, will be used in the proof of almost strong approximation

for the multiplicative group of a field (cf. Proposition 1.3.7).

1.3 Almost strong approximation for the multiplica-

tive group of a field

1.3.1 Motivating examples

Let K be a global field and let S ⊂ V K be any nonempty subset. We saw that

the additive group of K satisfies strong approximation property with respect to

S, namely the diagonal embedding K ↪−→ AK(S) has dense image in the S-adelic

topology (cf. Theorem 1.1.16). This is no longer true, however for the multiplicative

group of K. In other words, the induced diagonal embedding K× ↪−→ IK(S) may

not have dense image in the S-idelic topology. In this section we consider several

examples that, on the one hand, motivate the property of strong approximation and,

on the other hand, exhibit some constraints on the situations where this property

can be expected to hold. Recall that the group of S-ideles IK(S) is a locally compact
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topological group and admits a basis of open sets consisting of sets of the form

∏
v∈S′

Wv ×
∏

v/∈S′∪S

O×
v , (1.3)

where S ′ ⊂ V K \ S is an arbitrary finite subset, and Wv ⊂ K×
v are arbitrary

open subsets for v ∈ S ′. In particular, IK(S) has the following distinguished open

subgroup

U(S) :=
∏

v∈V K\S

O×
v .

It follows from Lemma 1.1.22 that for a number field K and S = V K
∞ , the index

[IK(V K
∞ ) : K×U(V K

∞ )] (with K× embedded in IK(S) diagonally) equals the class

number h(K) of K, hence is always finite. Thus, for any S ⊃ V K
∞ the index [IK(S) :

K×U(S)] is finite, and is equal to one if h(K) = 1. The intersection E(S) :=

U(S) ∩ K× will be called the group of S-units, and as U(S) is open in IK(S), we

conclude that the index of the closure [IK(S) : K×(S)
] is finite if and only if the

index [U(S) : E(S)
(S)

] is finite, where ¯̄ (S) always denotes the closure in the S-idelic

topology. Moreover, if K×(S)
= IK(S) then E(S)

(S)
= U(S), and the converse is

true if h(K) = 1. Similar remarks are valid also in the function field case, but we

will not formulate them here since in our examples we will stick to the number field

case.

After these preliminaries, we are ready to test strong approximation for K× when

K = Q. To simplify the notation, for any subset S ⊂ V Q we will write I(S) (resp.

A(S)) rather than IQ(S) (resp. AQ(S)). If S = {v∞}, where v∞ denotes the unique

archimedean valuation of Q, then E(S) = {±1}, and hence the index [U(S) : E(S)
(S)

]

is infinite, so the index [I(S) : Q×(S)
] is also infinite. Now, let S = {v∞}∪{v2} where

v2 is the dyadic valuation of K = Q, in which case E(S) = ⟨−1, 2⟩ is already infinite.

Set Q = P1(8), which is infinite by Dirichlet’s Prime Number Theorem. For every
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q ∈ Q we have E(S) ⊂ Z×
q
2; in other words, E(S) is contained in the kernel of the

canonical continous surjective homomorphism

U(S) −→
∏
q∈Q

Z×
q /Z×

q
2
, (1.4)

implying that the indices [U(S) : E(S)
(S)

], hence also [I(S) : Q×(S)
], are infinite.

It is easy to see that this result extends to any subset S of the form S = {v∞} ∪

{vp1 , . . . , vpr} for any finite collection of primes p1, . . . , pr: one simply needs to take

Q = P1(4p1···pr) in the above argument1. On the other hand, an argument of this

type cannot be implemented whenever S is infinite, which raises the question if K×

always has strong approximation for S infinite. The following example shows that

this is not the case.

Example 1.3.1 For a prime p > 2 and any integer x not divisible by p, we let
(
x

p

)
denote the corresponding Legendre symbol. As above, it is enough to construct two

infinite disjoint subsets P = {p1, p2, . . .} and Q = {q1, q2, . . .} of P1(4) such that

(
p

q

)
= 1 for all p ∈ P, q ∈ Q. (1.5)

Indeed, then for S = {v∞}∪{vp | p ∈ P}, the group E(S), which is generated by −1

and all primes p ∈ P , is contained in the kernel of the map (1.4), making the index

[I(S) : Q×(S)
] infinite.

We construct the required sets P and Q inductively. Pick an arbitrary p1 ∈ P1(4)

(e.g., one can take p1 = 5) and choose q1 ∈ P1(4) so that q1 ≡ 1(mod p1) (e.g., take

1This argument can be extended even further to arbitrary global field K and any finite set
S ⊂ V K using Dirichlet’s Unit Theorem and Chebotarev’s Density Theorem – cf. [26, 2.2] for
details in the number field case.
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q1 = 11). Then using quadratic reciprocity we obtain

(
p1
q1

)
=

(
q1
p1

)
=

(
1

p1

)
= 1.

Suppose that we have already found p1, . . . , pℓ and q1, . . . , qℓ (ℓ ≥ 1) such that

(
pi
qj

)
= 1 for all i, j = 1, . . . , ℓ.

Now, choose pℓ+1 ∈ P1(4) to satisfy pℓ+1 ≡ 1(modq1 · · · qℓ), and qℓ+1 ∈ P1(4) to satisfy

qℓ+1 ≡ 1(mod p1 · · · pℓ+1). Then

(
pℓ+1

qj

)
=

(
1

qj

)
= 1 for j = 1, . . . , ℓ, and

(
pi
qℓ+1

)
=

(
qℓ+1

pi

)
=

(
1

pi

)
= 1 for i = 1, . . . , ℓ+1

by quadratic reciprocity, as required. Observe that from our construction it follows

that pℓ > pℓ−1
1 for all ℓ > 1, which implies that the set of primes P has Dirichlet

density zero.

We will now turn to an example of a special set of primes having positive Dirichlet

density (that comes from an arithmetic progression) for which K× does have strong

approximation.

Example 1.3.2 Let S = {v∞} ∪ {vp | p ∈ P1(4)}. We will now show that multi-

plicative group of K = Q has strong approximation with respect to S. As we noted

above, due to h(Q) = 1, it is enough to show that the subgroup E(S), which is

generated by −1 and all primes p ∈ P1(4), is dense in U(S). Since sets of the form

(1.3) constitute a basis of open sets for the S-idelic topology, it is enough to show
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that every set of the form

U =
r∏
i=1

(ai + pαi
i Zpi) ×

∏
q∈P\(P1(4)∪P )

Z×
q

where P = {p1 = 2, p2, . . . , pr} ⊂ P \ P1(4) is a finite subset, and αi ≥ 1 and ai are

integers with (ai, pi) = 1 for i = 1, . . . , r, intersects E(S). Set ε = 1 if a1 ≡ 1(mod4),

and ε = −1 if a1 ≡ 3(mod4), so that εa1 ≡ 1(mod4) in all cases. Using the Chinese

Remainder Theorem, we can find c ∈ Z satisfying


c ≡ εai(mod pαi

i ) for i = 1, . . . , r,

c ≡ 1(mod 4).

Next, by Dirichlet’s Prime Number Theorem, there exists a prime p ≡ c(mod 4pα1
1 · · · pαr

r ).

Then εp ∈ E(S) ∩ U . This completes the proof of the fact that E(S)
(S)

= U(S).

In the next section we will see that for any relatively prime integers a,m and

S = {v∞}∪Pa(m), the index [I(S) : Q×(S)
] is finite (cf. Proposition 1.3.7). However,

as we will now show, it is not always equal to one.

Example 1.3.3 Let K = Q, let q ∈ P1(4), and set S = {v∞}∪{vp | p ∈ P1(q)}. Then

[I(S) : Q×(S)
] > 1. (1.6)

Our proof will use the Artin map associated with the quadratic extension L =

Q(
√
q), and we would like to point out that a suitable generalization of this ap-

proach will play a crucial role also in the proof of Proposition 1.3.7. We let (∗, ∗)p

(resp., (∗, ∗)∞) denote the Hilbert symbol over Qp (resp., over R). If we identify the

Galois group Gal(L/Q) with {±1}, then as we saw in section 1.2.3 the Artin map
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ΨL/Q : IQ → Gal(L/Q) is given by

(xp)p 7→ (x∞, q)∞ ·
∏
p∈P

(xp, q)p.

Then by class field theory for L/Q, the kernel N := kerΨL/Q ⊂ IQ is an open

subgroup containing Q× and having index two. Let πS : IQ → I(S) be the canonical

projection. Then πS(N) is an open subgroup of I(S) containing Q×, and to prove

(1.6) it is enough to show that N ⊃ kerπS as then πS(N) ̸= I(S). For this we

observe that q ∈ Q×
v
2 for all v ∈ S. This is obvious for v = v∞, and follows from

(
q

p

)
=

(
p

q

)
=

(
1

q

)
= 1

for v = vp with p ∈ P1(q). Let now x = (xp)p ∈ kerπS, i.e. xp = 1 for p ∈ P \ P1(q).

Then

ΨL/Q(x) = (x∞, q)∞ ·
∏

p∈P1(q)

(xp, q)p = 1,

proving that N ⊃ kerπS. Using the cyclotomic extension Q(ζq) in place of L in the

above argument, one can show that the index in (1.6) can be arbitrarily large.

1.3.2 Almost strong approximation for multiplicative group

of a field

The main takeaway from the examples in the previous section is that the property

that can be expected to hold for the multiplicative group of a field with respect to

arithmetic progressions is not strong approximation in the classical sense but rather

its variation (in fact, a slight weakening) of the latter which in this section we define

only for the multiplicative group of a field but we will define it for arbitrary algebraic
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groups in Chapter 2 (cf. Definition 2.1.7).

Definition 1.3.4 Let K be a global field and let S ⊂ V K be a nonempty subset.

We say that K× satisfies almost strong approximation with respect to S if the index

[IK(S) : K×(S)
] is finite.

Examples in section 1.3.1 motivate our next definition

Definition 1.3.5 Let K be a global field. A subset S ⊂ V K is called tractable if it

contains a set of the form V K
∞ ∪ (P(L/K, C) \ P0) for some generalized arithmetic

progression P(L/K, C) and a subset P0 with dK(P0) = 0.

Now let S be any tractable set in K. The main goal of this section is to prove that

if F/K is any finite separable extension then under some technical condition (see

(1.7)) we have that F× has almost strong approximation with respect to S̄, where

S̄ denotes the set of all extensions of valuations v ∈ S to F . We begin with the

following lemma

Lemma 1.3.6 The group IF (S̄)/F×(S̄) is profinite.

Proof. Recall that I(1)F is the kernel of the surjective homomorphism ν : IF → R>0

given by (xw)w 7→
∏

w∈V F |xw|w. On the other hand, for any w ∈ V F the product

F×
w I

(1)
F is a closed subgroup of IF . In fact, if w ∈ V F

∞ then ν(F×
w ) = R>0 and if

w ∈ V F
f then ν(F×

w ) is a discrete subgroup of R>0 so it is of the form {λn}n∈Z for

some λ ∈ R>0 (using multiplicative notation). Thus, ν(F×
w ) is closed for any w ∈ V F

and F×
w I

(1)
F = ν−1(ν(F×

w )) is closed since ν is continuous. By product formula, we

have F× ⊂ I(1)F , so F×
w I

(1)
F also contains the closure of F× in IF . Furthermore,

IF/F×
w I

(1)
F is compact. In fact, if w ∈ V F

∞ then

IF/F×
w I

(1)
F ≃ ν(IF )/ν(F×

w I
(1)
F ) ≃ R>0/R>0
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is trivial. On the other hand, if w ∈ V F
f then

IF/F×
w I

(1)
F ≃ ν(IF )/ν(F×

w I
(1)
F ) ≃ R>0/{λn}n∈Z ≃ R/Z

where the last isomorphism is induced by the homeomorphism log : R>0 → R, which

sends {λn}n∈Z to {n log λ}n∈Z ≃ Z. There is a natural continuous projection IF →

IF (S̄) so the quotient IF (S̄)/F×(S̄) is also compact. Since S̄ ⊃ V F
∞ , we deduce that

IF (S̄)/F×(S̄) is totally disconnected and therefore it is a profinite group. □

Proposition 1.3.7 Let F be a finite separable extension of a global field K, and let

S ⊂ V K be a tractable subset containing a set of the form V K
∞ ∪ (P(L/K, C) \ P0)

where P0 has Dirichlet density zero. Assume that there exists σ ∈ C such that

σ|(F ∩ L) = idF∩L. (1.7)

Then the index [IF (S̄) : F×(S̄)
] is finite and divides n = [L : K].

Proof. By Lemma 1.3.6, we may write

F×(S̄)
=

⋂
B∈B

B,

where B denotes the family of all open subgroups of IF (S̄) that contain F×. Every

such subgroup B is automatically of finite index, and it is enough to show that

for every B ∈ B, the index [IF (S̄) : B] divides m = [FL : F ] (⋆)

as obviously m|n. In fact, consider the map f : B → N defined by f(B) = [IF (S̄) :

B]. The degree m = [FL : F ] is a uniform bound that does not depend on any B,

so if we prove (⋆) then one can choose B0 ∈ B such that f(B0) is maximal. Now,
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if B′ is any other subgroup in B then B′ ∩ B0 ⊂ B0 so f(B0) ≤ f(B′ ∩ B0) but

because f(B0) is maximal, we deduce f(B′ ∩ B0) = f(B0). By iteration, we obtain

f(
⋂
B∈B B) = f(F×(S̄)

) = f(B0).

Let πS̄ : IF → IF (S̄) be the natural projection, and set M := π−1
S̄
(B). Then M

is an open subgroup of IF containing F× and having index [IF : M ] = [IF (S̄) : B].

By the Existence Theorem of class field theory (cf. Theorem 1.2.2) there is an

abelian extension P/F such that M = F×NP/F (IP ). On the other hand, due to

the fundamental isomorphism of class field theory (cf. Theorem 1.2.1), the index

[IF : N ] of the norm subgroup N := F×NFL/F (IFL) divides [FL : F ] = m. Thus, it

is enough to prove the inclusion P ⊂ FL as then N ⊂M .

Suppose that P ̸⊂ FL. Pick σ ∈ C that satisfies (1.7), and using the canonical

isomorphism of Galois groups Gal(FL/F ) ≃ Gal(L/(F ∩ L)), find σ̃ ∈ Gal(FL/F )

such that σ̃|L = σ. Let E be a finite Galois extension of K that contains F , L and

P . We claim that there exists τ ∈ Gal(E/K) such that

τ |FL = σ̃ and τ |P ̸= idP . (1.8)

Indeed, otherwise the set of all τ ∈ Gal(E/K) satisfying τ |FL = σ̃, which is a right

coset of the subgroup Gal(E/FL), would be contained in Gal(E/P ). This would

imply the inclusion Gal(E/FL) ⊂ Gal(E/P ) yielding the inclusion P ⊂ FL that

contradicts our original assumption.

So, fix τ ∈ Gal(E/K) satisfying (1.8). By Chebotarev’s Density Theorem (cf.

Theorem 1.2.15), the set of v ∈ V K
f that are unramified in E and admit an extension

w ∈ V E
f such that FrE/K(w|v) = τ has positive Dirichlet density. Since dK(P0) = 0

by our assumption, such a v can actually be found outside of P0; we then let w

denote the extension of v as above. The fact that τ |L = σ implies that v ∈ S,
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placing u′ := w|F in S̄. Furthermore, since τ generates Gal(Ew/Kv), the facts that

τ |F = idF and τ |P ̸= idP mean that Fu′ = Kv while for u′′ := w|P we have Pu′′ ̸= Fu′

(note that u′′|u′). On the other hand, since u′ ∈ S̄, it follows from the construction

of M that we have the inclusion F×
u′ ⊂ M . But M coincides with the kernel of the

Artin map ψP/F : IF → Gal(P/F ), so the restriction of ψP/F to F×
u′ ⊂ IF is trivial.

Since by construction of the Artin map we have

ψP/F (F
×
u′ ) = ⟨FrP/F (u′′|u′)⟩ = Gal(Pu′′/Fu′),

we obtain that Pu′′ = Fu′ , a contradiction. Thus, P ⊂ FL, completing the argument.

□

Finally, observe that Proposition 1.3.7 establishes Theorem A of the Introduc-

tion in the case of multiplicative group of a global field. It should be noted that

Proposition 1.3.7 also extends [20, Proposition 5.1], where P0 was only allowed to

be a finite subset and not an arbitrary set of density zero.
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Chapter 2

Algebraic groups and cohomology

2.1 Algebraic groups

2.1.1 Definitions and examples

Let F be an algebraically closed field. In this section we introduce some basic

definitions and results on algebraic groups over F . A linear algebraic group G is a

subgroup of some general linear group GLn = GLn(F ), which is closed in the Zariski

topology, i.e. G is defined by some polynomial equations. For a general study of

algebraic varieties, we refer the reader to [7, Ch. I]. Both the general linear group

GLn and the special linear group SLn are examples of algebraic groups. In fact, by

definition,

SLn =
{
X ∈Mn(F )

∣∣∣ detX = 1
}
,

so it is given by a single polynomial equation. It is worth noting that one can realize

GLn as a closed subgroup of SLn+1 by adjoining an additional variable as follows:

GLn =
{
((xij), y) ∈Mn(F )× F

∣∣∣ y det(xij)− 1 = 0
}
.
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An important special case of the general linear group is the multiplicative group of

the field F , denoted Gm := GL1.

Since we will later be working with groups of adeles, it is important to mention

a more abstract definition of an algebraic group. An affine algebraic group G is an

algebraic variety with a group structure such that the multiplication map µ : G×G→

G, (x, y) 7→ xy and the inverse map ι : G→ G, x 7→ x−1 are morphisms of algebraic

varieties. It is well-known that the notions of linear and affine algebraic groups are

equivalent (cf. [1, Ch. I, §1, Proposition 1.10] and [7, Ch. II, §8.6, Theorem]).

In this thesis we will be only interested in linear algebraic groups. For a detailed

treatment of algebraic groups using the affine approach, we refer the reader to [7,

Ch. II] and [1, Ch. I].

A map f : G→ G′ between two algebraic groups G and G′ is called a morphism

of algebraic groups if it is a morphism of algebraic varieties, which is also a group

homomorphism. A morphism of algebraic groups that has an inverse (morphism), is

called an isomorphism of algebraic groups. An important example of a morphism of

algebraic groups is the determinant map det : GLn → Gm. Since in this thesis we will

only work with linear algebraic groups, the word linear will often be omitted. Clearly,

any closed subgroup of an algebraic group is an algebraic group. Another important

example of an algebraic subgroup of GLn (apart from SLn) is the orthogonal group

defined by

On =
{
X ∈Mn(F )

∣∣∣XX t = X tX = In

}
,

where In denotes the n by n identity matrix. The ring of regular functions of GLn

is given by

F [GLn] = F [x11, x12, . . . , xnn, det(xij)
−1].

Furthermore, one defines the ring of regular functions of an algebraic group G ⊂ GLn
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to be F [GLn]/I(G), where I(G) is the ideal of all regular functions in F [GLn] that

vanish on G.

Let K ⊂ F be any subfield. Our main case of interest in this thesis is when K

is either a number field or more generally a global field. We say that an algebraic

group G ⊂ GLn is defined over K (or that G is a K-group) if the ideal I(G) is

generated by

I(G) ∩K[x11, x12, . . . , xnn, det(xij)
−1]

(cf. [15, Ch. 2, §2.1.1]). For any algebraic group G ⊂ GLn, we define the group

of K-points G(K) of G as G(K) = G ∩ GLn(K). Suppose that G is a K-group.

Then for any field extension L/K, we define the group of L-points of G as the set of

points in GLn(L) that satisfy all the equations defining G. For example, the group

of L-points of SLn equals

SLn(L) =
{
X ∈Mn(L)

∣∣∣ det(X) = 1
}
.

If a morphism f : G → G′ of two K-groups G ⊂ GLn and G′ ⊂ GLm, can be

defined by polynomials with coefficients in K then we say that f is defined over K

(or f is a K-morphism). If f : G→ G′ is a K-morphism of algebraic groups then for

any field extension L/K, we have an induced continuous map fL : G(L) → G′(L)

on the level of L-points. For any algebraic group G its irreducible components

are exactly its connected components (for the Zariski topology) (cf. [7, Ch. II,

§7.3, Proposition]). The connected component of the identity in G, denoted by G◦,

is an open and closed normal subgroup of finite index in G (cf. [7, Ch. II,§7.3,

Proposition, (a)]). Most algebraic groups considered in this thesis, are connected, so

that G = G◦.

An algebraic group G is called diagonalizable (over F ) if there exists a faithful
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representation ρ : G→ GLn for which the group ρ(G) is conjugate to a subgroup of

the group of the diagonal n by n matrices. Any connected diagonalizable algebraic

group is called an algebraic torus (see Definition 2.2.1 for an equivalent characteri-

zation). Note that the simplest example of a torus is the multiplicative group Gm.

Tori are among the most important examples of algebraic groups in this thesis and

they will be studied in greater detail in section 2.2.

For any abstract group G one defines the derived series Dn(G) of G for all n ≥ 0

inductively by

D0(G) = G, Dn+1(G) = [Dn(G),Dn(G)],

where [Dn(G),Dn(G)] denotes the commutator subgroup of Dn(G). We say that G

is solvable if Dn(G) = {1} for some n. While the notion of solvable group comes

from abstract group theory, here it will only be considered in the context of algebraic

groups. We refer the reader to [1, Ch. I, §2.4] for a careful study of solvable groups

in the context of algebraic groups.

Until the end of this section let us assume that F has characteristic 0 and K ⊂ F

is any subfield. Let G be an algebraic K-group. A maximal connected solvable sub-

group B of G is called a Borel subgroup. Any two Borel subgroups of G are conjugate

(cf. [33, Ch. 6, §6.2, Theorem 6.2.7(iii)]). The group G does not necessarily have

a K-defined Borel subgroup. A K-group for which there exists a K-defined Borel

subgroup is called K-quasi-split. For example, the group of all invertible upper

triangular matrices in GLn is a Borel subgroup.

An algebraic group G ⊂ GLn is called unipotent if all of its elements are unipo-

tent, i.e. for any g ∈ G there exists a positive integer k such that (g− In)
k = 0. An

example of a unipotent group is the additive group of F , denoted by Ga. This group
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admits the following matrix representation

Ga =
{1 x

0 1

 ∈ GL2(F )
∣∣∣x ∈ F

}
.

More generally the group of upper unitriangular matrices, i.e. upper triangular

matrices which have only ones on the diagonal, is unipotent.

Let G be an algebraic group. The maximal connected solvable normal subgroup

of G is denoted by R(G) and we call it the radical of G. The maximal connected

unipotent normal subgroup of G is called the unipotent radical of G and we denote

it by Ru(G). We say that G is reductive if Ru(G) = {1} and that G is semi-simple if

R(G) = {1}. Observe that any semi-simple group is automatically reductive. The

main example of a reductive (resp. semi-simple) group is GLn (resp. SLn). Clearly,

if G is connected then G/R(G) is semi-simple and G/Ru(G) is reductive. The key

structure result for reductive groups is the following

Theorem 2.1.1 Let G be a reductive group. Then

(1) The radical R(G) is the connected component T = Z(G)◦ of the center and T

is a torus,

(2) The commutator subgroup H = [G,G] is a semi-simple group,

(3) G is an almost direct product TH of T and H, i.e. T ∩H is finite.

Proof. Cf. [15, Ch. 2, §2.1.10, Theorem 2.8]. □

Furthermore, if G is defined over a subfield K ⊂ F then H is also defined over

K. An important instance of Theorem 2.1.1 is that GLn is an almost direct product

of Gm and SLn with Gm ∩ SLn being the group of nth roots of unity, denoted µn.

Any surjective morphism of algebraic groups f : G → G′ with finite kernel is

called an isogeny. For example, the product map Gm × SLn → GLn is surjective
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and has kernel equal to µn, so it is an isogeny. A connected noncommutative alge-

braic group G is called (absolutely almost simple) if it does not have any nontrivial

connected normal subgroups. Any semi-simple group is an almost direct product

of finitely many absolutely almost simple groups (cf. [15, Ch. 2, §2.1.13, Proposi-

tion 2.11]). A connected algebraic group G is called simply connected if any isogeny

f : N → G, with N connected, is an isomorphism. For example, SLn and the special

unitary group SUn(q) associated with a nondegenerate Hermitian form q (cf. [15,

Ch. 2, §2.3.3]) are both simply connected, while GLn is not simply connected. If

any isogeny f : G → N , with N connected, is an isomorphism then we say G is

adjoint. For a more detailed exposition of algebraic groups, we refer the reader to

[7, Ch. II, §7.1 - §7.5] and [15, Ch. 2, §2.1 - §2.3].

2.1.2 The group of adeles

In this section we introduce the adele groups and discuss their basic properties. Adele

groups play a crucial role in the arithmetic theory of algebraic groups. We saw that

standard results of number theory such as finiteness of class number and Dirichlet’s

Unit Theorem can be expressed in terms of ideles. Similarly, some arithmetic results

about algebraic groups can be described using the language of groups of adeles. Let

K be a global field.

Definition 2.1.2 Let G be an algebraic group over K. Fix a K-embedding G ↪−→

GLn. As before, for any v ∈ V K
∞ we set Ov := Kv. Now for each v ∈ V K we set

G(Ov) := G ∩GLn(Ov).

We define the group of adeles G(AK) of G over K to be the following restricted
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product in both set-theoretic and topological sense

G(AK) =
∏′

v∈V K

(G(Kv), G(Ov)).

It follows from the construction that G(AK) is a locally compact topological group

that has the basis of open sets of the form

∏
v∈S′

Ωv ×
∏

v∈V K\S′

G(Ov),

where S ′ ⊂ V K is a finite subset and Ωv ⊂ G(Kv) is an open subset for each v ∈ S ′

(with respect to the topology induced by the valuation v). It follows from Lemma

1.1.12 that the group G(K) admits a diagonal embedding G(K) ↪−→ G(AK), the

image of which is called the subgroup of principal adeles of G. Observe that since K

is discrete in AK (cf. Lemma 1.1.13), the subgroup G(K) is also discrete and closed

in G(AK).

Just as in the case of the ring of adeles, we will be mainly interested in the groups

of truncated adeles, which we define as follows

Definition 2.1.3 Let G be an algebraic group over K and let S ⊂ V K be any

subset. We define the group of S-adeles of G as the restricted product

G(AK(S)) =
∏′

v∈V K\S

(G(Kv), G(Ov))

so it has a basis of open sets of the form

∏
v∈S′

Ωv ×
∏

v∈V K\(S∪S′)

G(Ov),

where S ′ ⊂ V K \S is some finite subset and Ωv ⊂ G(Kv) is an open subset for each
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v ∈ S ′.

For example, if K = Q, S = {v∞} and G = SLn, then

SLn(AK(S)) =
∏′

p∈P

(SLn(Qp), SLn(Zp)).

Let f : G1 → G2 be a K-morphism of two algebraic groups G1 and G2. For each

v ∈ V K , there is an induced continuous map fKv : G1(Kv) → G2(Kv), which gives

rise to the product map

∏
v∈V K

fKv :
∏
v∈V K

G1(Kv) →
∏
v∈V K

G2(Kv).

The restriction of
∏

v∈V K fKv to G(AK) will be denoted by fAK
. In fact, for any

subset S ⊂ V K , one can restrict fAK
further to G(AK(S)) and we will denote this

restriction by fAK(S). The next proposition states that fAK(S) preserves the S-adelic

points of G1

Proposition 2.1.4 Let f : G1 → G2 be a K-morphism of two K-groups G1 and G2.

Then

fAK(S)(G1(AK(S))) ⊂ G2(AK(S))

and the map fAK(S) : G1(AK(S)) → G2(AK(S)) is continuous.

Proof. Cf. [15, Ch. 5, §5.1, Lemma 5.3]. □

The map fAK(S) will be called the adelization of f with respect to S. One of

the most important results on adelization that we will need in proofs in Chapter

3 states that adelization of any surjective morphism of algebraic groups is always

open. More precisely we have the following
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Proposition 2.1.5 Let S ⊂ V K be any subset and let π : G1 → G2 be a surjective

morphism of connected algebraic groups. Assume kerπ is connected. Then

π(G1(Ov)) = G2(Ov)

for almost all v ∈ V K \ S, and thus the corresponding map πAK(S) : G1(AK(S)) →

G2(AK(S)) is open.

Proof. Cf. [14, Ch. 6, §6.2, Proposition 6.5]. □

The classical property of strong approximation for an arbitrary algebraic group

defined over a global field K is defined as follows

Definition 2.1.6 Let G be an algebraic K-group and let S ⊂ V K be any nonempty

subset. We say that G satisfies strong approximation property with respect to S if

the image of G(K) under the diagonal embedding G(K) ↪−→ G(AK(S)) is dense.

Observe that if we denote by G(K)
(S)

the closure of the image of G(K) in G(AK(S))

under the diagonal embedding then strong approximation for G with respect to S

is equivalent to the equality

G(K)
(S)

= G(AK(S)).

In this thesis we are interested in a slightly weaker property than strong approxi-

mation, called almost strong approximation, defined as follows

Definition 2.1.7 Let G be an algebraic K-group and let S ⊂ V K be a nonempty

subset. We say that G has almost strong approximation with respect to S if the

index

[G(AK(S)) : G(K)
(S)

]
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is finite.

For example, multiplicative group Gm has almost strong approximation over K = Q

for any set of the form S = {v∞} ∪ {vp | p ∈ Pa(m)} with a and m relatively prime

integers (cf. Proposition 1.3.7) but it does not have almost strong approximation

with respect to any finite set S – see examples in section 1.3.1. As we observed in

the previous section, the multiplicative group Gm is the simplest example of one of

the most important classes of algebraic groups in this thesis, namely algebraic tori

which will be discussed in greater detail in the next section.

The “necessary” part of the classical criterion for strong approximation implies

that if G is a nonsimply connected group then the index [G(AK(S)) : G(K)
(S)

]

is always infinite, whenever S is finite (cf. [14, Theorem 7.12]). This applies, in

particular, to any nontrivial algebraic K-torus T , where one can actually show that

the quotient T (AK(S))/T (K)
(S)

is a group of infinite exponent for any finite S

(cf. [26, Proposition 2.1]). On the other hand, it was shown in [20, Theorem 5.3]

(see also [18, Theorem 3]) that the exponent of the quotient T (AK(S))/T (K)
(S)

becomes finite if S contains V K
∞ and contains all but finitely many valuations in

a generalized arithmetic progression that satisfies one technical condition (which

cannot be omitted). In this thesis we consider more general sets of valuations S,

namely tractable sets (cf. Definition 1.3.5) and we will prove that for a K-torus T

and any tractable set S the quotient T (AK(S))/T (K)
(S)

is in fact finite provided

that the same technical condition as in [20, Theorem 5.3] holds for the generalized

arithmetic progression involved in the description of S (cf. Theorem 3.1.3).

Remark 2.1.8 Observe that if [G(AK(S)) : G(K)
(S)

] < ∞ then there exists a

finite subset W ⊂ V K \ S such that G(K)
(S∪W )

= G(AK(S ∪ W )), i.e. G has

strong approximation with respect to (S ∪W ). Indeed, as usual we may assume
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that S ⊃ V K
∞ . Since G(K)

(S)
is open in G(AK(S)), we can find a finite subset

W1 ⊂ V K \ S for which

G(K)
(S)

⊃
∏

v∈V K\(S∪W1)

G(Ov).

Now, let {g1G(K)
(S)
, . . . , gtG(K)

(S)
} be a system of coset representatives ofG(AK(S))

by G(K)
(S)

, where gj = (gjv)v ∈ G(AK(S)) for each j = 1, . . . , t. Then there exists

a finite subset W2 ⊂ V K \ S such that

gjv ∈ G(Ov) for all j = 1, . . . , t and all v ∈ V K \ (S ∪W2).

Set W = W1 ∪W2. Then projecting G(AK(S)) =
t⋃

j=1

gjG(K)
(S)

to G(AK(S ∪W )),

we obtain G(AK(S ∪W )) = G(K)
(S∪W )

, as required. This observation justifies the

term “almost strong approximation.”

Finally, it should be noted that the notions of the space of adeles and strong ap-

proximation property can be studied for an arbitrary algebraic variety X over K (cf.

[15, Ch. 5, §5.1]), however in this thesis we will only consider strong approximation

in the context of algebraic groups.

2.2 Algebraic tori

2.2.1 Tori and restriction of scalars

In this section, we introduce algebraic tori and construct an important class of

examples called quasi-split tori, obtained by a general construction called restriction

of scalars. Let F be an algebraically closed field.



68

Definition 2.2.1 An algebraic group T such that T ≃ Gd
m (over F ) for some integer

d ≥ 1, is called algebraic torus.

As we observed earlier tori can be equivalently characterized as exactly those

algebraic groups which are connected and diagonalizable over F (cf. section 2.1.1).

We will now introduce an important functorial construction, which furnishes

a new class of examples of tori. Let K ⊂ F be a subfield and let L/K be any

finite separable extension with [L : K] = r. Let X be an algebraic variety over L.

There is a canonical way to obtain a K-variety from X. If additionally X is a linear

algebraic L-group then the resultingK-variety has a natural structure of an algebraic

K-group. Here we only provide a brief description of this construction but it will be

discussed with all the details in Example 2.2.2 below. Assume that X is an affine

variety in the n-dimensional affine space over L and is given by the zero locus of a

collection of polynomials {fi}i with fi ∈ L[x1, . . . , xn] for each i. We may routinely

identify Ln with an nr-dimensional vector space over K. Choose a basis {α1, . . . , αr}

of L over K. By expressing each of the variables in terms of that basis xj =∑r
ℓ=1 y

j
ℓαℓ, we can view each polynomial equation fi(x1, . . . , xn) with coefficients

in L as r polynomial equations with coefficients in K. The resulting system of

polynomials yields a closed subvariety in Knr, which we denote by RL/K(X) and

we have RL/K(X)(K) ≃ X(L) (cf. [4, A.5]). The construction we just described

is called the restriction of scalars (or the Weil restriction) of X with respect to

L/K and one can show that it does not depend on the choice of basis up to K-

isomorphism. For a more detailed exposition of Weil restriction, we refer the reader

to [14, Ch. 2, §2.1.2] and to [4, A.5]. Our next example explains both the procedure

of restricting scalars and how it produces an important class of tori called quasi-split

tori

Example 2.2.2 Let L = K(
√
d) be a quadratic extension of K and let T = Gm be
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the 1-dimensional split torus over L. Consider the natural basis {1,
√
d} of L over

K and let ρ : L → M2(K) be the left regular representation. By definition, ρ sends

any element l of L to the matrix of left multiplication x 7→ lx. Write l = a + b
√
d

for some a, b ∈ K and observe that the matrix corresponding to l is of the form

t(a, b) :=

a bd

b a

 .

The torus T is defined by a single polynomial equation f(x1, x2) = x1x2 − 1 over

L. Now if we write x1 = t(y1, y2) and x2 = t(y3, y4) with y1, y2, y3, y4 ∈ K and plug

into the original equation defining T then after equating coefficients we obtain the

system of two equations over K


y1y3 + y2y4 = 1

y1y4 + y2y3 = 0

After solving this system we see that the resulting algebraic group RL/K(T ) =

RL/K(Gm) has the following set of K-points

RL/K(Gm)(K) =
{
(y1, y2) ∈ K2

∣∣∣ (y1, y2) ̸= (0, 0)
}
≃ Gm(L) = L×.

Furthermore, RL/K(Gm) is a 2-dimensional K-torus. In fact, if we denote by s the

matrix

 1
2
√
d

1
2

−1
2
√
d

1
2

 then it is easy to see that for any t(a, b) ∈ RL/K(Gm) we have

st(a, b)s−1 =

 1
2
√
d

1
2

−1
2
√
d

1
2


a bd

b a


 1

2
√
d

1
2

−1
2
√
d

1
2


−1

=

a+ b
√
d 0

0 a− b
√
d

 .
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In particular, we see that the torus RL/K(Gm) splits over L but not over K. Al-

ternatively, one can compute the characteristic polynomial of t(a, b) to obtain two

distinct eigenvalues, a+ b
√
d and a− b

√
d.

In our example an explicit computation showed that the group of K-points of

RL/K(Gm) coincides with the group of L-points of Gm. More generally, if E/K

is a finite separable extension and G is any algebraic E-group then G′ := RE/K(G)

is an algebraic K-group such that for any K-algebra A there is a natural group iso-

morphism G′(A) ≃ G(A⊗K E) (cf. [4, A.5] and [14, Ch. 2, §2.1.2])). In particular,

for the 1-dimensional split E-torus Gm and T = RE/K(Gm) we have T (K) = E×.

Observe that for any finite separable extension E/K the group RE/K(Gm) is a K-

torus of dimension [E : K].

Definition 2.2.3 Any finite product of K-tori of the form RE/K(Gm) where E/K

is a finite separable extension is called a quasi-split K-torus.

To every torus T = RL/K(Gm) one can associate a subtorus called the norm torus

constructed as follows. Denote by φ the restriction of the determinant map to T .

In other words, we can view φ as a K-morphism T → Gm. On the level of K-points

φ is precisely the norm map φK = NL/K : L× → K×. We define the norm torus

associate with the extension L/K to be the kernel of φ and denote it by R
(1)
L/K(Gm).

Observe that if L = K(
√
d) is a quadratic extension of K then the group R

(1)
L/K(Gm)

consists precisely of all matrices t(a, b) such that a2 − db2 = 1.

2.2.2 G-modules, characters and co-characters of a torus

Let G be a group. We begin this section by introducing the notion of an abstract

G-module but we will be mostly interested in the special case when G is the Galois

group of some (possibly infinite) Galois extension. Then we consider two important
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examples of G-modules associated with a torus, namely its groups of characters and

co-characters.

Definition 2.2.4 Let G be an abstract group. An abelian group A (written ad-

ditively), is a G-module if G acts on A by automorphisms. This amounts to the

following three properties:

(1) 1G · a = a for all a ∈ A,

(2) g1(g2a) = (g1g2)a for all a ∈ A, g1, g2 ∈ G,

(3) g(a+ b) = ga+ gb for all g ∈ G, a, b ∈ A.

Alternatively, one can say that a G-module is a unital module over the integral

group ring Z[G]. For any two G-modules A and B, we say that a map f : A→ B is

a G-module homomorphism if it is a group homomorphism, which commutes with

the action of G or equivalently, f is a homomorphism of Z[G]-modules.

The most important examples of G-modules for us are the ones where G is a Galois

group; these are called Galois modules.

Example 2.2.5 Let K be any field and let L/K be a finite Galois extension with

Galois group G = Gal(L/K). Then both the additive group L+ and the multi-

plicative group L× are clearly G-modules. Furthermore, it is easy to see that given

a ∈ L, the left multiplication map λa : L
+ → L+, x 7→ ax, is a G-module homo-

morphism if and only if a ∈ K. On the other hand, observe that the squaring map

σ : L× → L×, x 7→ x2, is always a G-module homomorphism.

Let G be a finite (or profinite) group acting on a set A. In the case of profinite

G, we endow A with discrete topology and the action of G on A is called continuous

if the stabilizer of every element of A in G is open. If the action of G on A is
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continuous, then we say that A is a G-set. Furthermore, if A is additionally a group

(possibly nonabelian) and G acts on A by automorphisms then we say that A is

a G-group. Now we will see how Example 2.2.5 can be extended to obtain more

examples of G-sets

Example 2.2.6 Let again L/K be a finite Galois extension with G = Gal(L/K).

Fix a polynomial f ∈ K[x1, . . . , xn], and consider the set of its zeros in the n-

dimensional affine space over L

VL(f) =
{
(a1, . . . , an) ∈ Ln

∣∣∣ f(a1, . . . , an) = 0
}
.

For any σ ∈ G and any (a1, . . . , an) ∈ Ln we have

σ · (f(a1, . . . , an)) = f(σ(a1), . . . , σ(an)),

so G acts on VL(f) by the rule (σ, (a1, . . . , an)) 7→ (σ(a1), . . . , σ(an)), making VL(f)

into a G-set. More generally, if we have a (possibly infinite) family F = {fα}α

of polynomials fα ∈ K[x1, . . . , xn], then the set of their common zeros VL(F) =⋂
fα∈F VL(fα) in Ln is a G-set.

Let us specialize the construction from Example 2.2.6 as follows. Let G =

Gal(L/K) be as above. Consider the nonabelian group GLn(L) and observe that

the rule σ · (aij) = (σ(aij)) for σ ∈ G, (aij) ∈ GLn(L), defines a natural action of

G on GLn(L) by group automorphisms, making GLn(L) into a (noncommutative)

G-group. Now, suppose A ⊂ GLn(L) is a commutative subgroup defined by poly-

nomials with coefficients in K. In other words, suppose that there exists a family
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of polynomials F = {fα}α in K[x11, x12, . . . , xnn] such that

A =
{
(aij) ∈ GLn(L)

∣∣∣ fα((aij)) = 0 for all fα ∈ F
}
.

Combining this with our considerations in Example 2.2.6, we see that A is a G-

module for the natural action described above. To have a more concrete example,

consider the following

Example 2.2.7 Fix d ∈ L× and consider the set M of all matrices of the form

t(a, b) =

a bd

b a

 ∈ GL2(L). The set M is clearly given by polynomial equa-

tions with coefficients in L and one easily checks that it is an abelian subgroup

of GL2(L). This makes M into a G-module. Observe that if d ∈ L× \ L×2

then M = RL(
√
d)/L(Gm)(L) (cf. section 2.2.1). Moreover, the determinant mapa bd

b a

 7→ a2−db2 yields a G-module homomorphism det : M → L×. We also note

that the kernel of this homomorphism given by
{a bd

b a

 ∈ GL2(L)
∣∣∣ a2−db2 = 1

}
yields another example of G-module and if additionally we have d ∈ L× \L×2 , then

this G-module is exactly the norm torus R
(1)

L(
√
d)/L

(Gm)(L) (cf. section 2.2.1).

With any algebraic torus T one can associate an important group, called the

group of characters defined as follows:

Definition 2.2.8 A character of a torus T is a morphism of algebraic groups

χ : T → Gm. The set of all characters of T is an abelian group under the oper-

ation

(χ1 + χ2)(t) := χ1(t) · χ2(t)

and we denote this group by X(T ).
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Note that if T = Gm then any character χ ∈ X(T ) is of the form t 7→ tk for a unique

integer k. More generally, if T = Gd
m then any character χ ∈ X(T ) is of the form

(t1, . . . , td) 7→ tn1
1 · · · tnd

d for unique integers n1, . . . , nd. Thus, for any d-dimensional

torus T there is an isomorphism of abelian groups X(T ) ≃ Zd; in particular, X(T )

is a finitely generated torsion-free Z-module.

Let K̄ be a fixed separable closure of K and let Γ denote the absolute Galois

group Gal(K̄/K). If T is K-torus then there is a natural continuous action of Γ on

X(T ) given by

Γ×X(T ) → X(T )

(σ, χ) 7→ σ · χ,

where

σ · χ(t) = σGm ◦ χ ◦ σ−1
T (t)

for any σ ∈ G, χ ∈ X(T ) and t ∈ T . Here σGm and σT denote the natural maps

induced by σ on K̄-points of algebraic groups Gm and T , respectively. With respect

to this action X(T ) becomes a discrete module over the profinite group Γ.

Definition 2.2.9 An algebraic K-torus T is called K-split if there is an isomor-

phism T ≃ Gd
m defined over K.

It is easy to see that a torus T is K-split if and only if any of the following equivalent

conditions holds

(1) All characters of T are defined over K,

(2) For some (or equivalently any) faithful K-defined representation ρ : T → GLn,

the group ρ(T ) is diagonalizable over K, i.e. it is conjugate to a subgroup of

diagonal (n× n)-matrices by a matrix from GLn(K),
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(3) The absolute Galois group Γ acts trivially on X(T ).

Definition 2.2.10 A K-torus T is called anisotropic if it has no characters defined

over K.

For example, if L/K is a finite separable extension then the corresponding norm

torus R
(1)
L/K(Gm) is anisotropic (cf. [15, Ch. 2, §2.1.7, Example]).

In general, for any K-torus T one can find a finite separable extension P/K such

that T splits over P , namely T is diagonalizable over P and any such extension is

called a splitting field of T . Observe that a field extension P/K is a splitting field

for a K-torus T is and only if the characters of T are defined over P . It turns out

that one can always find a finite Galois splitting field. More precisely, we have the

following

Proposition 2.2.11 Let T be a K-torus. There is a finite Galois extension P/K

such that T splits over P .

Proof. Let T be a K-torus of dimension d and let χ1, . . . , χd be a Z-basis of X(T ).

Denote by Hi the stabilizer of χi in Γ for each i = 1, . . . , d. Set H :=
⋂d
i=1Hi. Since

the action of Γ on X(T ) is continuous, each stablilizer Hi is an open subgroup.

Thus, H is also an open subgroup of Γ. By construction, H acts trivially on X(T )

so it is also a normal subgroup of Γ. Since Γ is profinite and H is open, we have

[Γ : H] < ∞. By Galois theory, the subgroup H corresponds to some finite Galois

extension P/K with P ⊂ K̄ and H = Gal(K̄/P ) acts trivially on X(T ), so P/K

furnishes the required splitting field for T .

□

In particular, we see that any torus T has a minimal splitting field which is a

finite Galois extension of K. An important consequence of this observation is that

any K-torus T admits a decomposition as an almost direct product of a maximal
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anisotropic K-subtorus and a maximal split K-subtorus. More precisely, we have

the following

Theorem 2.2.12 Let T be a K-torus. There exist the largest anisotropic subtorus

Ta ⊂ T defined over K and the largest split subtorus Ts ⊂ T defined over K such

that T is an almost direct product of Ta and Ts, i.e. T = Ta ·Ts and Ta∩Ts is finite.

For the proof of Theorem 2.2.12 in the case of an arbitrary K-torus, we refer the

reader to [1, Ch. III, §8.15, Proposition]. Here we would like to demonstrate how to

find the required decomposition in the special case of a quasi-split torus associated

with a quadratic extension. For this we will need the notion of complete reducibility

from representation theory and Maschke’s theorem

Definition 2.2.13 Let G be an abstract group and let V be a vector space over

a field K. A representation ρ : G → GL(V ) is called completely reducible (or semi-

simple) if for any G-invariant subspace W ⊂ V there exists another G-invariant

subspace W ′ ⊂ V such that

V = W ⊕W ′.

Theorem 2.2.14 (Maschke) Let G be a finite group. Then every representation

ρ : G → GL(V ) on a finite dimensional vector space V over a field K of character-

istic not dividing the order of G, is completely reducible.

Proof. Cf. [10, Ch. XVIII, §1, Theorem 1.2]. □

Example 2.2.15 Let L = K(
√
d) be a quadratic extension of K with the corre-

sponding Galois group G = Gal(L/K) and let T = RL/K(Gm). Recall that any

element of T can be represented by a matrix t(a, b) =

a bd

b a

. First, let us

explicitly describe the group of characters of T . As we saw earlier t(a, b) can be
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diagonalized to

a+ b
√
d 0

0 a− b
√
d

, which yields the natural Z-basis {χ1, χ2} of

X(T ), where χ1 : t(a, b) 7→ a+ b
√
d and χ2 : t(a, b) 7→ a− b

√
d. Set V := X(T )⊗ZQ,

so that V is a Q-vector space with natural Galois action of G via the first component.

Since G is finite, by Theorem 2.2.14, we can write

V = V G ⊕W,

where V G denotes the subspace of G-fixed points of V and W is a G-invariant

complement to V G. Set X1 := V G ∩X(T ) and X2 := W ∩X(T ). It is easy to see

that X1 is spanned by χ1+χ2 and X2 is spanned by χ1−χ2. Set Ta := ker(χ1+χ2).

Then

Ta =
{
t(a, b) ∈ T

∣∣∣ (χ1 + χ2)(t(a, b)) = 1
}

=
{
t(a, b) ∈ T

∣∣∣χ1(t(a, b)) · χ2(t(a, b)) = 1
}

=
{
t(a, b) ∈ T

∣∣∣ a2 − b2d = 1
}

= R
(1)
L/K(Gm)

Clearly, Ta is an anisotropic K-torus. On the other hand, if we set Ts := ker(χ1−χ2)

then

Ts =
{
t(a, b) ∈ T

∣∣∣χ1(t(a, b)) = χ2(t(a, b))
}
=

{a 0

0 a

 ∣∣∣ a ∈ K×
}
,

which is a K-split torus.

Let us now observe that the natural Galois action on the group of characters is

given by the same formula as the standard action of Galois group on polynomials,
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i.e. it is the usual action on coefficients. If L/K is a Galois extension with Galois

group G = Gal(L/K) and L[x1, . . . , xn] is the polynomial ring in n variables with

coefficients in L then the standard action of G on L[x1, . . . , xn] is defined as follows.

Let σ ∈ G and let f(x1, . . . , xn) =
∑

i1,...,in
ci1...inx

i1
1 · · ·xinn ∈ L[x1, . . . , xn]. Then for

any (a1 . . . , an) ∈ Ln the action of σ on f(a1, . . . , an) is given by σ · f(a1 . . . , an) :=

σ(f(σ−1(a1, . . . , an))). Observe that this is the exact same formula as for the Galois

action on the group of characters we defined above. It is often called the natural

action on coefficients because we have

σ · f(a1 . . . , an) = σ
( ∑
i1,...,in

ci1...inσ
−1(a1)

i1 · · ·σ−1(an)
in
)
=

∑
i1,...,in

σ(ci1...in)a
i1
1 · · · ainn .

Definition 2.2.16 Any free finitely generated Z-module which has a basis that is

permuted by the action of the absolute Galois group is called a permutation module.

For example, the group of characters of a quasi-split torus associated with a quadratic

extension is a permutation module. More precisely, let L = K(
√
d) be a quadratic

extension with G = Gal(L/K) = {1, σ} and let T = RL/K(Gm). Recall that X(T )

has a natural Z-basis {χ1, χ2} where χ1(t(a, b)) = a+b
√
d and χ2(t(a, b)) = a−b

√
d.

It is easy to see that σ permutes χ1 with χ2 so X(T ) may be identified with the

permutation module Z[G].

More generally, let L/K be any finite separable extension of degree d ≥ 2 and

let T = RL/K(Gm). Choose a basis χ1, . . . , χd of X(T ). Let P be the normal closure

of L over K, so that P is the minimal splitting field of T . Let G = Gal(P/K) and

H = Gal(P/L). Then G acts transitively on X(T ) and H acts trivially on X(T ).

Choose a system of coset representatives σ1H, . . . , σdH for G/H. Then we have the
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isomorphism of Z[G]-modules

Z[G/H] → X(T ) (2.1)

d∑
i=1

niσiH 7→
d∑
i=1

niσi · χi,

where ni ∈ Z. In fact, this isomorphism extends to a bijective correspondence

between all permutation modules and all quasi-split tori (cf. [15, Ch. 2, §2.1.7]).

Now let G be an arbitrary algebraic group. We will consider tori contained in

G. Since G has finite dimension, it always has maximal tori. Moreover, any two

maximal tori in G are conjugate (cf. [1, Ch. V, §19, Theorem 19.2]). In particular,

the dimension of a maximal torus in G is well-defined and we call it the (absolute)

rank of G and denote it by rkG. If G is defined over K then there is always a

maximal K-torus T in G (cf. [1, Ch. V, §18, Theorem 18.2]). We say that G

is K-split if there exists a maximal torus T ⊂ G which is K-split. Observe that

since any two maximal K-split tori in G are conjugate over K, the dimension of

a maximal K-split torus of G is well-defined and we call it the K-rank of G and

denote it by rkK G. If rkK G > 0 then we say that G is K-isotropic (otherwise G is

K-anisotropic). Clearly, GLn and SLn are both K-isotropic groups. An important

example of anisotropic group is SL1(D) which consists of all those elements of a

finite dimensional central division K-algebra D which have reduced norm one (cf.

[15, Ch. 1, §1.4.1]).

For every torus one can define a notion which is dual to the notion of group of

characters, called the group of co-characters

Definition 2.2.17 Let T be a torus. Any group homomorphism Gm → T is called

a co-character of T . The group of co-characters Hom(Gm, T ) will be denoted by
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X∗(T ).

For any φ ∈ X∗(T ) and χ ∈ X(T ), the composition χ ◦ φ is a map Gm → Gm,

so it must be of the form (χ ◦φ)(z) = zk for a unique integer k, which we denote by

⟨φ, χ⟩. We obtain a well-defined map X∗(T )×X(T ) → Z, given by (φ, χ) 7→ ⟨φ, χ⟩,

which can easily be seen to be nondegenerate. This map, called the natural pairing

(of characters and co-characters) allows to identify X∗(T ) with Hom(X(T ),Z).

We will now compute explicit formulas for the dual bases of co-characters of a

quasi-split torus associated with a quadratic extension and the corresponding norm

torus.

Example 2.2.18 Let L = K(
√
d) be a quadratic extension of K and let T =

RL/K(Gm). Let {χ1, χ2} be the natural basis for X(T ) that we saw earlier. We

construct a dual basis {χ∗
1, χ

∗
2} of co-characters Gm → T . The map χ∗

1 must be of

the form u 7→ t(x(u), y(u)). Using the natural pairing, we see that we must have

χ1 ◦ χ∗
1(u) = u1 = u = x(u) + y(u)

√
d

and

χ2 ◦ χ∗
1(u) = u0 = 1 = x(u)− y(u)

√
d.

This yields two equations with two variables x(u), y(u) and after solving, we obtain

x(u) =
u+ 1

2
, y(u) =

u− 1

2
√
d
.

Hence, χ∗
1 is given by the matrix χ∗

1(u) = t(u+1
2
, u−1
2
√
d
). Similarly, one can verify that

the conditions χ1 ◦ χ∗
2(u) = 1 and χ2 ◦ χ∗

2(u) = u yield the formula for the other

co-character χ∗
2(u) = t(u+1

2
, 1−u
2
√
d
). For completeness, let us also check that χ∗

1 is a
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group homomorphism. For u, v ∈ Gm we compute

χ∗
1(u)χ

∗
1(v) = t

(u+ 1

2
,
u− 1

2
√
d

)
· t
(v + 1

2
,
v − 1

2
√
d

)
= t

(uv + 1

2
,
uv − 1

2
√
d

)
= χ∗

1(uv).

Similarly, χ∗
2 is a group homomorphism.

Example 2.2.19 Let L = K(
√
d) be a quadratic extension of K and let T =

R
(1)
L/K(Gm). Let χ0 : T → Gm be the character of T given by χ0(t(a, b)) = a +

b
√
d, where a2 − b2d = 1. The dual co-character χ∗

0 : Gm → T is of the form

u 7→ t(x(u), y(u)) for some functions x(u), y(u). The natural pairing and norm one

condition yield the following two equations

χ0 ◦ χ∗
0(u) = u = x(u) + y(u)

√
d

x(u)2 − y(u)2d = 1.

After solving for x(u) and y(u), we obtain

x(u) =
u2 + 1

2u
, y(u) =

u2 − 1

2u
√
d
.

Hence the dual co-character χ∗
0 is given by the matrix χ∗

0(u) = t(u
2+1
2u

, u
2−1

2u
√
d
).

Now let T be any K-torus. Similarly to the group of characters, there is a natural

action of the absolute Galois group Γ = Gal(K̄/K) on X∗(T ):

Γ×X∗(T ) → X∗(T ),

(σ, φ) 7→ σ · φ,
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where

(σ · φ)(t) = σT ◦ φ ◦ σ−1
Gm

(t),

for σ ∈ Γ, φ ∈ X∗(T ) and t ∈ T . Finally, the natural pairing is Γ-invariant, i.e.

⟨σ · φ, σ · χ⟩ = ⟨φ, χ⟩,

for any σ ∈ Γ, φ ∈ X∗(T ) and χ ∈ X(T ). In fact, we have

t⟨σ·φ,σ·χ⟩ = (σ · χ) ◦ (σ · φ)(t)

= (σGmχσ
−1
T ) ◦ (σTφσ−1

Gm
)(t)

= σGm(χ ◦ φ)σ−1
Gm

(t)

= σGm ◦ (σ−1
Gm

(t)⟨φ,χ⟩)

= σGm ◦ σ−1
Gm

(t⟨φ,χ⟩)

= t⟨φ,χ⟩.

2.2.3 Equivalence of categories

In this section we state and explore the equivalence between the category of tori and

the category of Z-torsion free finitely generated Galois modules. This fact will be

crucial for proofs of our results about tori in Chapter 3.

Theorem 2.2.20 Let C be the category of K-tori split over a finite Galois extension

P/K with Galois group G = Gal(P/K) considered with K-morphisms and let D

be the category of Z-torsion free finitely generated Z[G]-modules with G-equivariant

homomorphisms. Then Φ: C → D given by T 7→ X(T ) defines a contravariant

equivalence of categories and Ψ: C → D given by T 7→ X∗(T ) yields a covariant

equivalence of categories.
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Proof. Cf. [1, Ch. III, §8.12, Proposition] and [7, Ch. 16, §16.2].

□

Let us begin by showing how the equivalence of categories Φ: C → D can be used

to compute the character module of a norm torus corresponding to a quasi-split torus

RL/K(Gm)

Example 2.2.21 Case 1: L/K quadratic extension

Let L = K(
√
d) be a quadratic extension of K with G = Gal(L/K) and let

T = RL/K(Gm). By definition of the norm torus associated to T , we have the

following short exact sequence of tori

1 −→ R
(1)
L/K(Gm) −→ T

N−→ Gm −→ 1,

where N denotes the restriction of the determinant map to T . Using the contravari-

ant equivalence of categories Φ: C → D, the norm map N: T → Gm corresponds

to a homomorphism of Z[G]-modules, N# : X(Gm) → X(T ). After identifying

X(Gm) ≃ Z and X(T ) ≃ Z[G], we see that the map N# is uniquely determined

by the value on generator 1 ∈ Z. In fact, for any t ∈ T (K) ≃ L×, on the level of

K-points we have

N#(1)(t) = 1 ◦NL/K(t) = χ1(t) · χ2(t) = (χ1 + χ2)(t) = TrL/K(t),

where NL/K is the norm map and TrL/K denotes the trace map.

Case 2: L/K arbitrary separable extension

Let L/K be any finite separable extension of degree ≥ 2 and let T = RL/K(Gm).

Let P be the minimal splitting field of T . There is an isomorphism X(T ) ≃ Z[G/H]

of Z[G]-modules where G = Gal(P/K) and H = Gal(P/L) – see (2.1). Then

the norm map N: T → Gm corresponds to the augmentation map N# : Z →
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Z[G/H], 1 7→
∑

g∈G gH. Hence X(R
(1)
L/K(Gm)) ≃ Z[G/H]/Zξ as Z[G]-modules,

where ξ =
∑

g∈G gH.

Let us now illustrate how the equivalence of categories above allows us to classify

all tori which split over a quadratic extension:

Remark 2.2.22 Let L/K be a quadratic extension with G = Gal(L/K) and let

T be a K-torus which splits over L. Since X(T ) is finitely generated Z[G]-module

which has no Z-torsion, it can be written in the form:

Za × Z[G]b × Ic,

where I is the kernel of the augmentation map Z[G] → Z and a, b, c are uniquely

determined nonnegative integers (cf. [15, Ch. 2, §2.2.4]). Since T splits over L,

using the equivalence of categories (cf. Theorem 2.2.20), we see that T must be

isomorphic to

(Gm)
a × (RL/K(Gm))

b × (R
(1)
L/K(Gm))

c.

In particular, for K = R and L = C this yields full classification of all R-tori.

For the general construction of the inverse functor D → C, we refer the reader

to [1, Ch. III, §8.12, Proposition] and [7, Ch. 16, §16.2]. Here we will show in

an example how one can recover the structure of a torus from its character module

using Hopf algebras. If G is a linear algebraic group then one can reformulate the

group axioms for G as a set of conditions on its affine algebra K[G]. More precisely,

the multiplication map m : G×G→ G corresponds to co-multiplication

∆: K[G] → K[G×G] ≃ K[G]⊗K K[G]
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f 7→
∑
i

gi ⊗ hi

if f(xy) =
∑

i gi(x)hi(y). If we view the identity element 1G of G as a morphism

e : {1G} → G, then the corresponding co-unit is given by

ε : K[G] → K

f 7→ f(1G).

The inverse map ι : G→ G, corresponds to co-inverse map

σ : K[G] → K[G]

f 7→ σ(f),

where (σ(f))(x) = f(ι(x)) = f(x−1). The co-associativity, co-identity and co-inverse

axioms in K[G] can be written in terms of the following three commutative diagrams

K[G]⊗K K[G]⊗K K[G] K[G]⊗K K[G]

K[G]⊗K K[G] K[G]

1⊗∆

∆

∆

∆⊗1
K[G] K[G]⊗K K[G]

K[G]⊗K K[G] K[G]

1⊗e

∆

∆

e⊗1

K[G] K[G]⊗K K[G]

K[G]⊗K K[G] K[G]

∆

∆

1⊗σ

σ⊗1

Any algebraic variety G is uniquely determined by its affine algebra K[G], so in

order to define a structure of an algebraic group on G, we only need to specify maps

ε,∆, σ such that the three diagrams above commute. This makes K[G] into a Hopf

algebra with identity (cf. [1, Ch. 1, §1.5] and [7, Ch. II, §7.6])
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Example 2.2.23 Let G = Gm. Then K[G] = K[t, t−1] and the maps ∆, ε, σ are

given by the formulas ∆(t) = t⊗ t, ε(t) = 1 and σ(t) = t−1. Observe that

(∆⊗ 1) ◦∆(t) = (∆⊗ 1)(t⊗ t) = t⊗ t⊗ t = (1⊗∆) ◦∆(t).

One can similarly verify the commutativity of the other two diagrams. More gen-

erally, if G = GLn then K[G] = K[x11, . . . , xnn, det(xij)
−1] and one can show that

the maps ε(xij) = δij, ∆(xij) =
∑

k xik ⊗ xkj and σ(xij) = (−1)i+j det(xij)
−1 ·

det((xkl)k ̸=j,l ̸=i) endow K[G] with a Hopf algebra structure (cf. [7, Ch. II, §7.6]).

Let us show how one can construct the inverse of the functor Φ: C → D in a

specific example. More precisely, we will illustrate how one can recover the mul-

tiplicative structure on a quasi-split torus T associated with a quadratic extension

entirely from its character module X(T ). The argument uses the Hopf algebra

structure on K[T ] and we show by explicit computation that it is compatible with

multiplication in T .

Example 2.2.24 Let L = K(
√
d) be a quadratic extension with G = Gal(L/K)

and let T = RL/K(Gm). Recall that any element of T can be represented by a matrix

t(a, b) and one easily checks that multiplication in T is given by

t(a1, b1) · t(a2, b2) = t(a1a2 + b1b2d, a2b1 + a1b2). (2.2)

Let {χ1, χ2} be the usual basis of X(T ). Since G acts in a natural way on both L

and X(T ), there is a natural action of G on the group algebra L[X(T )]. We will see

that the subalgebra of G-fixed points L[X(T )]G is the required algebra, namely its

Hopf algebra structure allows us to recover the multiplicative structure on T given

in (2.2).
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First, let us show that L[X(T )]G = K[α, β] where α = χ1+χ2

2
and β = χ1−χ2

2
√
d

.

Clearly, α, β ∈ L[X(T )]G. Any element in L[X(T )] is a finite sum of the form

u =
∑

i,j≥0(aij + bij
√
d)χi1χ

j
2 with aij, bij ∈ K. We may regroup the terms of

u according to the rule that we put together all the terms with the same sum

of indices i + j. Let us show by only considering the linear terms, i.e. the case

i + j ≤ 1 that any u ∈ L[X(T )]G belongs to K[α, β]. It will be clear from our

computation that the argument generalizes to higher order terms. In fact, let u =

(a00+ b00
√
d)+ (a10+ b10

√
d)χ1+(a01+ b01

√
d)χ2 be an element of L[X(T )]G. Then

σ(u) = u. By equating the coefficients we obtain the system of equations


a00 − b00

√
d = a00 + b00

√
d

a10 − b10
√
d = a01 + b01

√
d

a01 − b01
√
d = a10 + b10

√
d

which yields b00 = 0, a10 = a01, b10 = −b01. Thus, u = a00+a10(χ1+χ2)+b10
√
d(χ1−

χ2) = a00 + 2a10α + 2db10β which is an element of K[α, β].

Now

α(t(a, b)) =
1

2
χ1(t(a, b)) +

1

2
χ2(t(a, b)) =

1

2
(a+ b

√
d) +

1

2
(a− b

√
d) = a

and similarly β(t(a, b)) = b. Observe that for any character χ on T we have ∆(χ) =

χ⊗ χ. In fact,

∆(χ)(g, h) = χ(m(g, h)) = χ(gh) = χ(g)χ(h) = (χ⊗ χ)(g, h).

Thus, from the Hopf algebra structure on L[X(T )]G, we obtain that ∆(α) = χ1⊗χ1

2
+

χ2⊗χ2

2
and ∆(β) = χ1⊗χ1

2
√
d
−χ2⊗χ2

2
√
d

. On the other hand, from the Hopf algebra structure
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on K[T ] that comes from multiplication in T , we must have ∆(α) = α⊗α+ dβ⊗ β

and ∆(β) = α ⊗ β + β ⊗ α (cf. Example 2.2.23). It remains to check that we have

indeed an equality. In fact,

∆(α) =
χ1 ⊗ χ1

2
+
χ2 ⊗ χ2

2

=
1

4
(χ1 ⊗ χ1 + χ1 ⊗ χ2 + χ2 ⊗ χ1 + χ2 ⊗ χ2) +

1

4
(χ1 ⊗ χ1 − χ1 ⊗ χ2 − χ2 ⊗ χ1 + χ2 ⊗ χ2)

=
χ1 + χ2

2
⊗ χ1 + χ2

2
+ d · χ1 − χ2

2
√
d

⊗ χ1 − χ2

2
√
d

= α⊗ α + dβ ⊗ β

Similarly, we obtain ∆(β) = χ1⊗χ1

2
√
d

− χ2⊗χ2

2
√
d

= α⊗β+β⊗α. Thus, we recovered the

multiplicative structure on the torus T from the Hopf algebra structure on L[X(T )]G,

as claimed.

We will end this section with one more application of our equivalence of cate-

gories. The functor Ψ in Theorem 2.2.20 can be used to show that any torus may be

covered by a quasi-split torus in the sense of certain exact sequence of tori. While

the existence of this sequence is well-known, here we establish an explicit upper

bound on the dimension of the tori appearing in that sequence. We will need the

following definition

Definition 2.2.25 Any integral-valued function ψ(d) defined on integers d ≥ 1 is

called super-increasing if for any 1 ≤ d1 ≤ d2 we have that ψ(d1)|ψ(d2), i.e. ψ(d1)

divides ψ(d2).

The equivalence of categories Ψ can be used to obtain the following

Proposition 2.2.26 Let T be a torus of dimension d defined over an arbitrary field

K, and let P be the minimal splitting field of T . Then there is an exact sequence of
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K-tori and K-defined morphisms

1 → T1 −→ T0
π−→ T → 1,

where T0 is a product of d copies of RP/K(Gm) (hence quasi-split), and dimT1 ≤

λ(d), with λ being an explicit increasing function on integers d ≥ 1.

Proof. Let G = Gal(P/K). Being a free abelian group of rank d, the group of co-

characters X∗(T ) = Hom(X(T ),Z) can be generated by d elements as Z[G]-module,

and therefore there exists an exact sequence of Z[G]-modules of the form

0 → Y −→ Z[G]d −→ X∗(T ) → 0.

Using the functor Ψ from Theorem 2.2.20 we obtain the corresponding exact se-

quence of K-tori and K-morphisms

1 → T1 −→ T0 −→ T → 1,

with X∗(T1) = Y and X∗(T0) = Z[G]d. Then T0 ≃ RP/K(Gm)
d, and it remains to

estimate dimT1 in terms of d. We have X(T ) ≃ Zd as abelian groups, and hence

the action of G on X(T ) gives rise to a representation G → GLd(Z). Furthermore,

the fact that P is the minimal splitting field of T implies that this representation is

faithful, i.e. G is isomorphic to a subgroup of GLd(Z). It follows from the reduction

theory for arithmetic groups (cf. [15, Theorem 4.9]) that GLd(Z) has finitely many

conjugacy classes of finite subgroups, so there is an integer γ(d) depending only on

d such that the order of every finite subgroup of GLd(Z) divides γ(d). In fact, one

can give an explicit bound γ(d) by using Minkowski’s Lemma (cf. [15, Ch. 4, §4.8,

Lemma 4.63]), according to which for any prime p > 2, the kernel of the reduction
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map ρp : GLd(Z) → GLd(Z/pZ) (in other words, the congruence subgroup of level

p) is torsion-free, and consequently, the order of every finite subgroup of GLd(Z)

divides |GLd(Z/pZ)|. Using p = 3, we see that one can take

γ(d) := |GLd(Z/3Z)| =
d−1∏
i=0

(3d − 3i) (2.3)

(obviously, this function is super-increasing). Since the order of G divides γ(d) we

have that

dimT1 = dimT0 − dimT = (|G| − 1)d,

so one can take λ(d) := d(γ(d)− 1). □

Similarly one can use the contravariant functor Φ in Theorem 2.2.20 to show

that any torus T may be embedded into a quasi-split torus. In other words, we have

the following

Proposition 2.2.27 Let T be a torus defined over an arbitrary field K, and let P

be the minimal splitting field of T . Then there is an exact sequence of K-tori and

K-defined morphisms

1 → T → T0 → T ′ → 1,

where T0 is a quasi-split torus, and both tori T ′ and T0 split over P .

Proof. Cf. [15, Ch. 2, §2.1.7, Proposition 2.2]. □

2.3 Cohomology

2.3.1 Cohomology groups in lower dimensions

We start this section by introducing cohomology groups in dimensions 0 and 1.

Next, we prove a few finiteness results for H1. These facts will be used in proofs in
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Chapter 3. Let G be an abstract group and let A be a G-module. We let AG denote

the subgroup of G-fixed points in A, i.e. AG = {a ∈ A | ga = a for all g ∈ G} and set

H0(G,A) := AG. It is clear that for any G-module homomorphism f : A → B we

have f(AG) ⊂ BG. In other words, the correspondence A 7→ H0(G,A) = AG defines

a functor, called the functor of G-fixed points from the category of G-modules to

the category of abelian groups. The introduction of higher cohomology groups is

motivated by the analysis of exactness properties of this functor. More precisely, let

0 → A
α−→ B

β−→ C → 0

be an exact sequence of G-modules and G-homomorphisms. Then the induced

sequence

0 → AG
α−→ BG β−→ CG

is also exact. We express this by saying that the fixed point functor is left-exact.

However, the sequence 0 → AG
α−→ BG β−→ CG −→ 0 is not necessarily exact, namely

the fixed point functor is not right-exact in general. In fact, consider the following

example

Example 2.3.1 Let G = Gal(C/R). We then have the following exact sequence of

G-modules and G-module homomorphisms

1 −→ µ2 −→ C× [2]−→ C× −→ 1,

where µ2 = {±1} and [2] denotes the squaring map. After passing to G-fixed points,

we obtain the sequence

1 −→ µ2 −→ R× [2]−→ R× −→ 1,
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which is not exact because the image of R× in the squaring map [2] equals R×2
=

R>0 ̸= R×.

The cohomology groupsH1(G, ·) are introduced precisely to fix the non-exactness

of the functor H0(G, ·). Let G be a group and A a G-module. A function f : G→ A

is called a 1-cocycle if it satisfies the following condition

f(g1g2) = f(g1) + g1f(g2), for all g1, g2 ∈ G.

The set of all 1-cocycles is denoted by Z1(G,A). A function f : G → A is called

a 1-coboundary if there exists a ∈ A such that f(g) = ga − a for all g ∈ G. The

set of all 1-coboundaries is denoted by B1(G,A). Observe that both Z1(G,A) and

B1(G,A) are subgroups of the abelian group F 1(G,A) of all functions f : G → A

with the standard operation given by

(f1 + f2)(g) = f1(g) + f2(g),

where f1, f2 ∈ F 1(G,A). It is easy to check that there is an inclusion B1(G,A) ⊂

Z1(G,A). We define H1(G,A) to be the quotient group Z1(G,A)/B1(G,A). For

example, if G acts trivially on A then Z1(G,A) = Hom(G,A) and B1(G,A) = {0},

so H1(G,A) = Hom(G,A).

Next, let us discuss functoriality of cohomology. Let G be any group. Then any

map α : A → B gives rise to the post-composition map α1 : F 1(G,A) → F 1(G,B),

namely α1(f) = α ◦ f for any f ∈ F 1(G,A). Furthermore, if A and B are both

G-modules and α is a homomorphism of G-modules, then one easily checks that

α1(Z1(G,A)) ⊂ Z1(G,B) and α1(B1(G,A)) ⊂ B1(G,B).

As was mentioned earlier, one motivation for introducing cohomology groups is

to fix the problem of nonexactness of the functor of fixed points. More precisely, we
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have the following:

Proposition 2.3.2 Let 0 −→ A
α−→ B

β−→ C −→ 0 be a short exact sequence of G-

modules and G-homomorphisms. Then there exists a homomorphism δ : CG →

H1(G,A) of abelian groups such that the sequence

0 −→ AG
α−→ BG β−→ CG δ−→ H1(G,A)

α1

−→ H1(G,B)
β1

−→ H1(G,C)

is exact.

Proof. Here we will only construct δ and check the exactness at H1(G,A). Let

c ∈ CG. Since β is surjective, there exists b ∈ B such that β(b) = c. Define

f̃ : G→ B by f̃(g) = gb− b. Then

β(f̃(g)) = β(gb− b) = g(β(b))− β(g) = gc− c = 0.

Since α is injective, for each g ∈ G there exists a unique f(g) ∈ A such that

α(f(g)) = f̃(g). We claim that the resulting function f : G → A belongs to

Z1(G,A). Indeed, for any g, h ∈ G, we have

α(f(gh)) = f̃(gh) = (gh)b− b = f̃(g) + gf̃(h) = α(f(g) + gf(h)).

So, α(f(gh) − (f(g) + gf(h))) = 0, and therefore f(gh) = f(g) + gf(h), since α is

injective. Thus, f ∈ Z1(G,A). We define δ(c) = f + B1(G,A) ∈ H1(G,A). Note

that b ∈ B such that β(b) = c is not unique, so we need to make sure that the

cohomology class δ(c) is well-defined, i.e. does not depend on the choice of b. Let

b′ ∈ B be another element such that β(b′) = c. Then β(b′ − b) = 0, so there exists
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a ∈ A such that b′ = b+ α(a). Then for the corresponding function f̃ ′, we have

f̃ ′(g) = gb′ − b′ = (gb− b) + α(ga− a) = f̃(g) + α(ga− a).

Then f ′(g) = f(g)+(ga−a) for all g ∈ G. This means that f and f ′ define the same

class in H1(G,A). It remains to verify the exactness at H1(G,A). By construction,

for c ∈ CG, the image δ(c) is the cohomology class given by f ∈ Z1(G,A) such that

α(f(g)) = f̃(g) = gb − b. Thus, α1(δ(c)) = 0, proving the inclusion im δ ⊂ kerα1.

Conversely, suppose that for f ∈ Z1(G,A), we have f̃ := α1(f) = α ◦ f ∈ B1(G,B),

i.e. there exists b ∈ B such that f̃(g) = α(f(g)) = gb − b, for all g ∈ G. Put

c = β(b) ∈ C. Observe that for any g ∈ G, we have

gc = gβ(b) = β(gb) = β(b+ α(f(g))) = β(b) = c,

so c ∈ CG. Thus, δ(c) = f +B1(G,A) and kerα1 ⊂ im δ.

□

The homomorphism δ in Proposition 2.3.2 is called the connecting homomor-

phism or the coboundary map. It should be noted that the long exact sequence in

Proposition 2.3.2 can be further extended to higher cohomology groupsH i(G,A), H i(G,B)

and H i(G,C) for all i ≥ 2 (cf. [14, Ch. 1, §1.3.1]) and [6, Ch. 17, §17.2, Theorem

21]. The following example illustrates an explicit computation of the coboundary

map:

Example 2.3.3 Let G = Gal(C/R) = {1, σ}, where σ is the nontrivial automor-

phism and consider the exact sequence from Example 2.3.1

1 −→ µ2 −→ C× [2]−→ C× −→ 1.
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After taking G-fixed points, we obtain the sequence

1 −→ µ2 −→ R× [2]−→ R× δ−→ H1(G, µ2) −→ H1(G,C×) −→ H1(G,C×).

Note that we may identify H1(G, µ2) ≃ µ2 via f 7→ f(σ). Let c ∈ R× and let

b =
√
c. It follows from the construction of δ that δ(g) = g(

√
c)/

√
c for any g ∈ G,

so f(σ) = σ(
√
c)/

√
c ∈ {±1} and δ can be viewed as the sign homomorphism.

Now let G be an abstract group and let A be a G-module. There are some

situations when elementary group theory properties allow us to say more about

H1(G,A). For example, we have the following result:

Proposition 2.3.4 Let G be a finite group of order n. Then n annihilates H1(G,A).

Proof. Let f ∈ Z1(G,A). Then for any g, h ∈ G we have f(gh) = f(g) + gf(h).

Taking the sum over all h ∈ G on both sides yields

∑
h∈G

f(gh) = nf(g) + g
∑
h∈G

f(h).

Set a =
∑

h∈G f(gh). Then a = nf(g) + ga, so nf(g) = g(−a) − (−a) and nf ∈

B1(G,A). Thus, n annihilates H1(G,A) as claimed. □

Corollary 2.3.5 Let G be a finite group of order s and let A be a G-module which

can be generated by r elements as an abelian group. Then H1(G,A) is finite of order

dividing sr(s−1).

Proof. The finiteness of H1(G,A) is well-known (cf. [27, Ch. 10, Theorem 10.29]),

but since no explicit estimate for the order has been recorded, we will redo the

entire argument. The group H1(G,A) is a quotient of the group of 1-cocycles
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Z1(G,A) which in turn is a subgroup of the group F 1(G,A) of functions satisfy-

ing f(1) = 0. Clearly, F 1(G,A) ≃ As−1 can be generated by ≤ r(s − 1) elements

as an abelian group, and hence the same is true for Z1(G,A). On the other hand,

s = |G| annihilates H1(G,A) by Proposition 2.3.4, making the latter a quotient

of Z1(G,A)/sZ1(G,A). The above estimate on the number of generators yields

that Z1(G,A)/sZ1(G,A) is finite of order dividing |(Z/sZ)r(s−1)| = sr(s−1), and the

required fact follows. □

As a very important special case of Corollary 2.3.5, we obtain an explicit estimate

on the order of H1(G, X(T )), where T is any d-dimensional K-torus with minimal

splitting field P and G = Gal(P/K) that only depends on d. More precisely, we

have the following

Corollary 2.3.6 There exists an explicit integral-valued super-increasing function

ψ(d) defined on integers d ≥ 1 such that for any d-dimensional torus T , the group

H1(G, X(T )) is finite of order dividing ψ(d).

Proof. Let γ(d) be as in (2.3). The character group X(T ) can be generated by d

elements as Z[G]-module and as we saw in the proof of Proposition 2.2.26, the order

of G divides γ(d), which is a super-increasing function. Thus, applying Corollary

2.3.5, we see that the function

ψ(d) := γ(d)d(γ(d)−1)

meets our requirements. □

Corollary 2.3.7 Let ψ(d) be as in the Corollary 2.3.6. Then for every d-dimensional

K-torus T and any finite Galois extension F/K that splits T , with Galois group

G = Gal(F/K), the order of H1(G,X(T )) divides ψ(d).
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Proof. Indeed, since P is the minimal splitting field of T , we have the inclusion

P ⊂ F , and then G = G/H where H := Gal(F/P ); in fact, H is the kernel of the

natural action of G on X(T ). The inflation-restriction sequence (cf. [2, Ch. 4, §5])

yields the following exact sequence

0 −→ H1(G, X(T ))
Inf−→ H1(G,X(T ))

Res−−→ H1(H,X(T )).

Since X(T ) is torsion-free, we see that H1(H,X(T )) = Hom(H,X(T )) is trivial, so

the inflation map yields is an isomorphism, and our claim follows from Corollary

2.3.6. □

In the proofs in Chapter 3 we will need different variants of Hilbert’s Theorem

90, which in its original form only treats the case of multiplicative group of a field

but it can be generalized to several other groups, including quasi-split tori.

Theorem 2.3.8 (Hilbert’s Theorem 90, classical form) Let L/K be a cyclic

extension. Then any element a ∈ L× such that NL/K(a) = 1, is of the form σ(b)/b

for some b ∈ L×.

Proof. [6, Ch. 14, §14.2, Exercise 23]. □

Theorem 2.3.9 (Hilbert’s Theorem 90, cohomological form) Let L/K

be any (possibly infinite) Galois extension with Galois group G. Then H1(G,L×) is

trivial.

Proof. [15, Ch. 2, §2.2.2, Lemma 2.17]. □

Let K be any field and let K̄ denote some fixed separable closure of K. For

any Gal(K̄/K)-module A we will simply write H1(K,A) to denote the cohomology

group H1(Gal(K̄/K), A).
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Theorem 2.3.10 (Hilbert’s Theorem 90, form for quasi-split tori) Let

K be any field and let T be a quasi-split K-torus. Then H1(K,T ) is trivial.

Proof. Cf. [15, Ch. 2, §2.2.3, Lemma 2.21]. Since cohomology is functorial, we

may assume that T = RE/K(Gm) for some finite separable extension E/K. By

Shapiro’s Lemma (cf. [6, Ch. 17, §17.2, Proposition 23]) there is an isomorphism

H1(K,T ) ≃ H1(E,Gm). On the other hand, H1(E,Gm) is trivial by Theorem 2.3.9.

□

2.3.2 One consequence of Nakayama-Tate theorem

In this section we will combine Corollary 2.3.6 with the Nakayama-Tate theorem

(cf. Theorem 2.3.12) to derive an arithmetic result that we will need for proofs in

Chapter 3 (cf. Corollary 2.3.13). Let T be a torus defined over a global field K,

let F/K be a finite Galois extension that splits T , and let G = Gal(F/K) be the

corresponding Galois group. We let K[T ] (resp., F [T ]) denote the coordinate ring

of T over K (resp., over F ); recall that F [T ] is naturally identified with the group

algebra F [X(T )] and that this identification is compatible with Galois action. For

any F -algebra B we have

T (B) = HomK-alg(K[T ], B) ≃ HomF -alg(F [T ], B) ≃ Hom(X(T ), B×).

Moreover, if G acts on B by semi-linear transformations, then the identification

T (B) ≃ Hom(X(T ), B×) is compatible with the action of G. We recall that the adele

ring AF is equipped with a semi-linear G-action via the identification AF ≃ AK⊗KF

(cf. Proposition 1.1.14). Then the natural map of G-modules T (F ) → T (AF ) gets

identified with the map Hom(X(T ), F×) → Hom(X(T ), IF ) induced by the diagonal

embedding F× → IF . Now, we let CF = IF/F× be the idele class group of F and
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set CF (T ) := Hom(X(T ), CF ) with the standard G-action. Since X(T ) is a free

abelian group, the exact sequence

1 → F× −→ IF −→ CF → 1

induces an exact sequence of G-modules

1 → T (F ) −→ T (AF ) −→ CF (T ) → 1. (2.4)

The corresponding cohomological exact sequence contains the following fragment

H1(G, T (F ))
θ−→ H1(G, T (AF )) −→ H1(G,CF (T )). (2.5)

Proposition 2.3.11 In the exact sequence (2.5), the cokernel coker θ is finite of

order dividing ψ(d) (the function from Corollary 2.3.6).

The necessary tool to prove Proposition 2.3.11, is the Nakayama-Tate Theorem (cf.

Theorem 2.3.12). In order to state this theorem, we need to introduce the notion of

Tate cohomology.

Let G be a finite group, and let A be a G-module. We define the trace map

TrG : A → A by TrG(a) =
∑

g∈G ga. It is easy to see that TrG(A) ⊂ AG and

ωG ⊂ kerTrG, where ωG is the submodule of A generated by elements of the form

ga − a for all g ∈ G and a ∈ A. Then the ith Tate cohomology group Ĥ i(G,A) is

defined as follows.

Ĥ i(G,A) := H i(G,A) for all i ≥ 1,

Ĥ0(G,A) := AG/TrG(A),

Ĥ−1(G,A) := (kerTrG)/ωG,
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Ĥ−i(G,A) := Hi−1(G,A) for all i ≥ 2,

where Hi(G,A) denotes the ith homology group (cf. [27, Ch. 1, p. 20]). It turns out

that Tate cohomology retains all the basic properties of the usual cohomology. In

particular, any short exact sequence of G-modules and G-module homomorphisms

0 → A→ B → C → 0 induces the following long exact sequence of groups which is

infinite in both directions:

. . .→ Ĥ i(G,A) → Ĥ i(G,B) → Ĥ i(G,C) → Ĥ i+1(G,A) → . . .

([14, Ch. 6, §6.3]).

The long (Tate) cohomology sequence induced from (2.4) contains the Tate co-

homology groups Ĥ i(G, CP (T )), which can be further described via the following

theorem

Theorem 2.3.12 (Nakayama-Tate) Let K be a global field. Then for any integer

i and any K-torus T with a splitting field P and Galois group G = Gal(P/K), there

is an isomorphism

Ĥ i(G, CP (T )) ≃ Ĥ2−i(G, X(T )).

Proof. Cf. [35, Ch. 4, §11.3 , Theorem 6] and [14, Ch. 6, §6.1]. □

Proof of Proposition 2.3.11. Due to the exact sequence (2.5), the cokernel coker θ

embeds into H1(G,CF (T )). On the other hand, the Nakayama-Tate theorem (with

i = 1) furnishes an isomorphism

H1(G,CF (T )) ≃ H1(G,X(T )).

Our claim now follows from Corollary 2.3.7. □

We conclude this section with one consequence of Proposition 2.3.11. Let S ⊂
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V K be an arbitrary subset, and let S̄ be the set of all extensions of v ∈ S to F . Then

G acts on AF (S̄) ≃ AK(S)⊗K F through the second factor, making T (AK(S̄)) into

a G-module, with the diagonal embedding F ↪→ AF (S̄) yielding a homomorphism

of cohomology groups

θS̄ : H
1(G, T (F )) −→ H1(G, T (AF (S̄))).

Furthermore, the projection T (AF ) → T (AF (S̄)) defines the top arrow in the fol-

lowing commutative diagram

H1(G, T (AF )) H1(G, T (AF (S̄)))

H1(G, T (F )) H1(G, T (F ))

ν

θ

=

θS̄

Since T (AF (S̄)) is a direct product factor of T (AF ) as G-module, ν is surjective.

So, Proposition 2.3.11 yields the following.

Corollary 2.3.13 For any subset S ⊂ V K, the cokernel coker θS̄ is finite of order

dividing ψ(d).

2.3.3 Nonabelian cohomology

In the proof of one of our results in Chapter 3, we use the Hasse principle for semi-

simple simply connected algebraic groups. For this, we need to introduce all the

relevant definitions and properties of nonabelian cohomology.

Let G be a finite or profinite group acting on some group A. Assume that G acts

on A by automorphisms, i.e. g(ab) = (ga)(gb) for all g ∈ G and all a, b ∈ A so that

A is a G-group. Then we define H0(G,A) to be the subgroup of G-fixed points AG.

A continuous map f : G → A is called a 1-cocycle if for any g, h ∈ G we have
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f(gh) = f(g)(gf(h)). The set of 1-cocycles will be denoted by Z1(G,A). Note that

Z1(G,A) is never empty as it always contains the trivial cocycle e : G → A given

by e(g) = 1A for all g ∈ G. Two cocycles f and f ′ are equivalent and we write

f ∼ f ′ if there exists an element a ∈ A such that f ′(g) = a−1f(g)(ga) for all g ∈ G.

It is easy to verify that ∼ is an equivalence relation on Z1(G,A). We define the

first cohomology set H1(G,A) as the quotient H1(G,A) = Z1(G,A)/ ∼. Observe

that if A is abelian then this definition coincides with the definition of H1(G,A) in

section 2.3.1 and then H1(G,A) is an abelian group. In general, H1(G,A) is only a

set without any natural group structure. The group H1(G,A) always contains the

equivalence class of the trivial cocycle e : G → A, which we call the distinguished

element of H1(G,A).

If α : A→ B is a homomorphism of two G-groups compatible with the G-action,

i.e. α(ga) = gα(a) for all g ∈ G, a ∈ A, then we may define Z1(G,A) → Z1(G,B)

sending f(g) to α(f(g)), which induces a morphism of sets with distinguished ele-

ment H1(G,A) → H1(G,B). We say that a sequence of cohomology sets is exact if

the preimage of each distinguished element is equal to the image of the preceding

map. Note that the distinguished element in the zero cohomology set H0(G,A) is

the identity element 1A.

Let A be a G-group and let B be a subgroup of A that is invariant under the G-

action. There is a natural action of G on A/B, which makes A/B into a G-module.

Thus, we obtain the cohomology set H0(G,A/B) = (A/B)G with distinguished

element being the class B. We have the following analog of Proposition 2.3.2 in the

nonabelian setting

Proposition 2.3.14 There is a coboundary map δ : H0(G,A/B) → H1(G,B) such

that the following sequence is an exact sequence of cohomology sets with a distin-



103

guished element

1 −→ H0(G,B) −→ H0(G,A) −→ H0(G,A/B)
δ−→ H1(G,B) −→ H1(G,A). (2.6)

Proof. Cf. [15, Ch. 1, §1.3.2, (1.11)]. □

Now let K be a number field and let G be a simply connected algebraic K-

group. The main example of a cohomology set which will appear in this thesis is

H1(Gal(K̄/K), G), where Gal(K̄/K) is the absolute Galois group of K. For sim-

plicity, we will always denote the cohomology set H1(Gal(K̄/K), G) by H1(K,G).

There is a canonical local-global map for G (cf. [14, Ch. 6, §6.1]):

θG : H
1(K,G) →

∏
v∈V K

∞

H1(Kv, G).

We may now state the main result from nonabelian cohomology we need for proofs

in Chapter 3

Theorem 2.3.15 (Hasse Principle) Let K be a number field and let G be a

semi-simple simply connected algebraic K-group. Then the map θG is bijective.

Proof. Cf. [14, Ch. 6, §6.1 , Theorem 6.6]. □

For a more detailed exposition of nonabelian cohomology, we refer the reader to

[15, Ch. 1, §1.3.2].
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Chapter 3

Almost strong approximation in

algebraic groups

3.1 Almost strong approximation in tori

Let K be a global field. Recall that if S ⊂ V K is any finite subset, then the torus Gm

does not have almost strong approximation with respect to S (cf. section 1.3.1) but

it does have this property with respect to tractable sets S of valuations provided

that the technical condition (1.7) holds (cf. Proposition 1.3.7). The goal of this

section is to extend Proposition 1.3.7 to arbitrary tori, namely we prove that any

K-torus T satisfies almost strong approximation with respect to any tractable set

S under a similar assumption (see (3.4)) that relates the minimal splitting field of

T and the generalized arithmetic progression almost contained in S (cf. Theorem

3.1.3). The proof consists of the following two parts:

(1) First, we prove our theorem for quasi-split tori (cf. Theorem 3.1.2). This

follows from Proposition 1.3.7;

(2) Then we prove the theorem for arbitrary tori by reducing the general case to
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the case of quasi-split tori using Proposition 2.2.26 (cf. Theorem 3.1.3).

Let us now illustrate by example that condition (3.4) cannot be omitted in gen-

eral. More precisely, we show that a torus may not satisfy almost strong approxi-

mation with respect to a tractable set of valuations if (3.4) does not hold

Example 3.1.1 Let K = Q and let S = {v∞} ∪ {vp | p ∈ P3(4)}. We consider the

norm torus T = R
(1)
L/Q(Gm) associated with the extension L = Q(i), i2 = −1. Then

[T (A(S)) : T (Q)
(S)

] = ∞. (3.1)

To prove this, we adapt the strategy used in section 1.3.1, viz. we consider the open

subgroup

UT (S) :=
∏

p∈P\P3(4)

T (Zp)

and set ET (S) := UT (S) ∩ T (Q). It is enough to show that ET (S) is finite, as then

[UT (S) : ET (S)
(S)

] = ∞, and (3.1) will follow.

Now, let x ∈ ET (S). By the classical form of Hilbert’s Theorem 90 (cf. Theorem

2.3.8), we can write x = σ(y)/y for some y ∈ L×, where σ ∈ Gal(L/Q) is the

nontrivial automorphism. For p /∈ P1(4), the valuation vp has a unique extension wp

to L, and we set αp = wp(y). For p ∈ P1(4), however, vp has two extensions w′
p, w

′′
p

(swapped by σ), but since x ∈ T (Zp) we have w′
p(y) = w′′

p(y) =: αp. Set

a :=
∏
p ̸=2

pαp and z := y/a.

Then x = σ(z)/z and by construction w(z) = 0 for all w ∈ V L
f \ {w2}. Since the

prime element of Z[i] lying above 2 is (1 + i), we conclude that z = ε · (1 + i)ℓ with

ε ∈ E := {±1,±i} (the unit group of Z[i]) and ℓ ∈ Z. Then x = σ(z)/z ∈ E, so

ET (S) = E is finite, as required.
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3.1.1 The case of quasi-split tori

In this section we establish almost strong approximation for quasi-split tori with

respect to tractable subsets S ⊂ V K . More precisely, we have the following

Theorem 3.1.2 Let K be a global field and let S ⊂ V K be a tractable subset con-

taining a set of the form V K
∞ ∪ (P(L/K, C)\P0) where P0 has Dirichlet density zero.

Let T = RF1/K(Gm)× . . .×RFr/K(Gm), where F1, . . . , Fr are finite separable exten-

sions of K, be a quasi-split K-torus having dimension d and the minimal splitting

field P . Assume that there exists σ ∈ C such that

σ|(P ∩ L) = idP∩L. (3.2)

Then the index [T (AK(S)) : T (K)
(S)

] is finite and divides nr, hence also nd where

n = [L : K].

Proof. Let Ti = RFi/K(Gm) so that T = T1 × · · · × Tr. We obviously have an

isomorphism

T (AK(S))/T (K)
(S)

≃ T1(AK(S))/T1(K)
(S)

× · · · × Tr(AK(S))/Tr(K)
(S)
. (3.3)

For each i = 1, . . . , r, the (minimal) splitting field Pi of Ti coincides with the normal

closure of Fi, and then P is the compositum of P1, . . . , Pr. Thus, our assumption

(3.2) for σ ∈ C implies that the assumption (1.7) in Proposition 1.3.7 holds true

for F = Fi and all i = 1, . . . , r. As we explained above, the proposition implies

that each of the indices [Ti(AK(S)) : Ti(K)
(S)

] divides n. In view of (3.3), the index

[T (AK(S)) : T (K)
(S)

] divides nr, and hence also nd as clearly r ≤ d. □
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3.1.2 The case of arbitrary tori

The goal of this section is to establish almost strong approximation for arbitrary

tori with respect to tractable subsets S ⊂ V K . More precisely, we want to prove the

following

Theorem 3.1.3 Let K be a global field, and let T be a K-torus with the minimal

splitting field P/K. If S is a tractable set of valuations containing a set of the form

V K
∞ ∪ (P(L/K, C) \ P0), where P(L/K, C) is a generalized arithmetic progression

associated with a finite Galois extension L/K and a conjugacy class C ⊂ Gal(L/K),

and P0 has Dirichlet density zero, such that

σ|(P ∩ L) = idP∩L for some σ ∈ C, (3.4)

the torus T has almost strong approximation with respect to S, with the index

[T (AK(S)) : T (K)
(S)

] dividing a constant C̃(d, n) that depends only on d = dimT

and n = [L : K].

Proof. We will show that the function

C̃(d, n) := nd · ψ(λ(d)), (3.5)

where ψ and λ are the functions constructed in Corollary 2.3.6 and Proposition

2.2.26, satisfies the requirements of the theorem. So, let T be a d-dimensional torus

defined over a global field K with the minimal splitting field P , let G = Gal(P/K),

and let S ⊂ V K be a tractable set as in the statement of the theorem. We then let

S̄ denote the set of all extensions of valuations v ∈ S to P .
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We now consider the exact sequence sequence of K-tori

1 → T1 −→ T0
π−→ T → 1,

constructed in Proposition 2.2.26 (so, in particular, dimT1 ⩽ λ(d)). The image

of the embedding of abelian groups π∗ : X(T ) → X(T0) has a complement (since

coker π∗ ≃ X(T1) is torsion-free), which gives rise to a P -defined section T → T0 for

π. It follows that for any P -algebra B, the group homomorphism πB : T0(B) → T (B)

is surjective. Thus, we obtain the following commutative diagram of G-modules with

exact rows:

1 T1(AP (S̄)) T0(AP (S̄)) T (AP (S̄)) 1

1 T1(P ) T0(P ) T (P ) 1

(3.6)

where the vertical maps are the natural diagonal embeddings. Since G acts on

AP (S̄) ≃ AK(S) ⊗K P through the second factor, and hence AP (S̄)
G = AK(S), by

passing to cohomology we obtain the following commutative diagram with exact

rows:
T0(AK(S)) T (AK(S)) H1(G, T1(AP (S̄)))

T0(K) T (K) H1(G, T1(P ))

π β

α

θS̄
(3.7)

Since T0 = (RP/K(Gm))
d, it follows from Theorem 3.1.2 that the index [T0(AK(S)) :

T0(K)
(S)

] is finite and divides nd; in particular, T0(K)
(S)

is an open subgroup of

T0(AK(S)). On the other hand, by Proposition 2.1.5, the group homomorphism

π : T0(AK(S)) → T (AK(S)) is open. So, π(T0(K)
(S)

) is an open subgroup of



109

T (AK(S)) contained in T (K)
(S)

, and therefore

T (K)
(S)

= T (K) · π(T0(K)
(S)

).

To estimate the index [T (AK(S)) : T (K)
(S)

], we set

Ω := T (K) · π(T0(AK(S))).

Then [Ω : T (K)
(S)

] divides nd, and it is enough to show that [T (AK(S)) : Ω] divides

ψ(λ(d)). Using the exactness of the top row in (3.7), we see that

[T (AK(S)) : Ω] = [β(T (AK(S))) : β(Ω)],

hence divides [H1(G, T1(AP (S̄))) : β(T (K))]. But since T0 is quasi-split, we have

H1(G, T0(P )) is trivial by Hilbert’s 90 for quasi-split tori (cf. Theorem 2.3.10), and

consequently α is surjective. Thus, the latter index equals |coker θS̄|, which divides

ψ(λ(d)) according to Corollary 2.3.13 applied to T1 (recall that dimT1 = λ(d) and

ψ is super-increasing). □

3.2 Almost strong approximation in reductive groups

Let G be a reductive algebraic group defined over a number field K, and suppose

that G = TH, an almost direct product of a K-torus T and a semi-simple K-

group H. We first prove Theorem A in the special case where H is assumed to be

simply connected (cf. Proposition 3.2.1). The argument in this case has two major

ingredients: the classical criterion for strong approximation (cf. [14, Ch. 7, §7.4,

Theorem 7.12]) and our Theorem 3.1.3. The general case is then reduced to the
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special case by means of a result stating that any reductive K-group is a quotient of

a reductive K-group as in the special case by a quasi-split torus, see Lemma 3.2.3.

3.2.1 Special case: H is simply connected.

In this case, we have the following more streamlined statement that does not depend

on the rank of H and the minimal Galois extension M of K over which H becomes

an inner form of the split group (cf. [33, Ch. 12, §12.3.7] and [21, §4, Lemma 4.1]).

Proposition 3.2.1 Let G be a reductive group over a number field K, and suppose

that G = TH, an almost direct product of a K-torus T and a semi-simple simply

connected K-group H. Furthermore, let S ⊂ V K be a tractable set of valuations

containing a set of the form V K
∞ ∪ (P(L/K, C) \ P0), where P0 is a set of valuations

having Dirichlet density zero. Assume that there exists σ ∈ C such that

σ|(P ∩ L) = idP∩L, (3.8)

where P is the minimal splitting field of T . Then G(K)
(S)

is a normal subgroup of

G(AK(S)) for which the index [G(AK(S)) : G(K)
(S)

] is finite and divides 2dr ·C̃(d, n)

where d = dimT , n = [L : K], r is number of real valuations of K, and C̃(d, n) is

the function from Theorem 3.1.3.

For the proof, we consider the exact sequence of K-groups

1 → H −→ G
π−→ T ′ → 1,

where T ′ = G/H and π is the quotient map. We have H = H1×· · ·×Hℓ, the direct

product of K-simple groups Hi. Since S is infinite, for each i = 1, . . . , ℓ there exists

vi ∈ S such that Hi is Kvi-isotropic (cf. [14, Ch. 6, §6.2, Theorem 6.7]). Using the
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criterion for strong approximation (cf. [14, Ch. 7, §7.4, Theorem 7.12]), we conclude

that H has strong approximation with respect to S, i.e. H(K)
(S)

= H(AK(S)).

Then

[G(AK(S)), G(AK(S))] ⊂ H(AK(S)) ⊂ G(K)
(S)
,

implying that G(K)
(S)

is a normal subgroup of G(AK(S)). Furthermore,

G(AK(S))/G(K)
(S)

≃ π(G(AK(S)))/π(G(K)
(S)

) ↪→ T ′(AK(S))/π(G(K)
(S)

),

and we have

[T ′(AK(S)) : π(G(K)
(S)

)] = [T ′(AK(S)) : T ′(K)
(S)

] · [T ′(K)
(S)

: π(G(K)
(S)

)]. (3.9)

Lemma 3.2.2 The index [T ′(K) : π(G(K))] is finite and divides 2dr.

Proof. Let V K
r be the set of all real valuations of K, and let v ∈ V K

r . It follows from

the Implicit Function Theorem that the subgroup π(G(Kv)) ⊂ T ′(Kv) is open (cf.

[15, Ch. 3, §3.1, Corollary 3.7]), hence contains the topological connected component

T ′(Kv)
◦. On the other hand, it is well-known that T ′ is isomorphic over Kv = R to

a torus of the form

(Gm)
a × (RC/R(Gm))

b × (R
(1)
C/R(Gm))

c

for some nonnegative integers a, b and c (cf. Remark 2.2.22), and then [T ′(Kv) :

T ′(Kv)
◦] = 2a divides 2d. It follows that for the subgroup

N :=
⋂
v∈V K

r

(T ′(K) ∩ T ′(Kv)
◦),

the index [T ′(K) : N ] divides 2dr, and it remains to show that N ⊂ π(G(K)).
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For any field extension E/K, we have an exact sequence

G(E)
π−→ T ′(E)

δE−→ H1(E,H).

Now, let x ∈ N . Due to the exactness of the above sequence for E = Kv, we need

to show that the cohomology class ξ := δK(x) is trivial. However, for each v ∈ V K
r ,

due to the inclusion T ′(Kv)
◦ ⊂ π(G(Kv)) and the definition of N , we have that the

class ξv := δKv(x) is trivial. Thus, ξ lies in the kernel of the map

H1(K,H)
θH−→

∏
v∈V K

r

H1(Kv, H).

But according to the Hasse principle for simply connected groups (cf. Theorem

2.3.15), θH is injective, and hence ξ is trivial, as required. □

Since π : G(AK(S)) → T ′(AK(S)) is open (cf. Proposition 2.1.5) and G(K)
(S)

contains its kernel H(AK(S)), the image π(G(K)
(S)

) is closed, hence coincides with

π(G(K))
(S)

. So, it follows from Lemma 3.2.2 that the index [T ′(K)
(S)

: π(G(K)
(S)

)]

divides 2dr. On the other hand, due to (3.8), the index [T ′(AK(S)) : T ′(K)
(S)

]

divides C̃(d, n). Now, Proposition 3.2.1 follows from (3.9).

3.2.2 Existence of special covers.

To consider the general case in Theorem A, we will first establish the existence of

special covers of arbitrary reductive groups that enable one to realize every reductive

group as a quotient of a reductive group with simply connected semi-simple part (=

commutator subgroup) by a quasi-split torus.

Lemma 3.2.3 Let G be a reductive algebraic group over a field K of characteristic

zero, and suppose that G = TH, an almost direct product of a K-torus T and a
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semi-simple K-group H. Let ℓ be the rank of G, and let M be the minimal Galois

extension of K over which H becomes an inner form of the split group. Then there

exists an exact sequence of K-groups

1 −→ T0 −→ G̃
ν−→ G→ 1 (3.10)

such that

(1) T0 is a quasi-split K-torus that becomes split over M ;

(2) G̃ = T̃ H̃ is an almost direct product of a K-torus T̃ which is isogenous to

T0 × T, with dim T̃ = ℓ, and a semi-simple simply connected K-group H̃.

Proof. Choose a K-defined universal cover α : H̃ → H (cf. [15, Proposition 2.27]),

set D = T × H̃, and consider the K-isogeny θ : D → G obtained by composing

D
idT×α−→ T ×H with the product morphism T ×H → G. Let Φ = ker θ, and observe

that since the restriction θ|T is injective, the projection to H̃ identifies Φ with its

image. Now, let H̃0 be the K-quasi-split inner form of H̃, and let T0 be a maximal

K-torus of H̃0 contained in a K-defined Borel subgroup. Then T0 is quasi-split over

K (cf. [5, Exposé XXIV, §3, Proposition 3.13]), becomes split over M (since H̃0 is

a quasi-split inner form over M , hence M -split), and Φ admits a K-embedding into

T0. Set

Φ̃ = {(x, x−1) ∈ T0 ×D |x ∈ Φ} and G̃ = (T0 ×D)/Φ̃.

The composite morphism H̃ → D → G̃ is a K-embedding, and we identify H̃ with

the image of this embedding. Furthermore, G̃ is an almost direct product T̃ H̃,

where T̃ is the image of T0 × T ⊂ T0 × D in G̃, and we note that dim T̃ = ℓ. By

construction, the composite morphism T0 × D
pr−→ D

θ−→ G vanishes on Φ̃, hence

gives rise to a morphism ν : G̃→ G. Finally, ker ν coincides with the image of T0×Φ
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in G̃, which is isomorphic to T0. □

Remark 3.2.4 One can choose an embedding of Φ into an M -split K-quasi-split

torus T0 in a variety of ways, and for some choices dimT0 may be < rankH. This

will result in choices for G̃ = T̃ H̃ with dim T̃ < ℓ.

3.2.3 General case.

Let G = TH be a (connected) reductive algebraic group defined over a number field

K, let P (resp., M) be the minimal Galois extension of K over which T splits (resp.,

H becomes an inner form of the split group), and set E = PM . Furthermore, let S ⊂

V K be a tractable set of valuations containing a set of the form V K
∞ ∪(P(L/K, C)\P0),

and assume that there exists σ ∈ C such that (1) holds. Set

C(ℓ, n, r) := 2ℓr · C̃(ℓ, n),

where ℓ is the rank of G, n = [L : K], and r is the number of real valuations of K.

Our goal is to show that G(K)
(S)

is a finite index normal subgroup of G(AK(S)),

with the abelian quotient G(AK(S))/G(K)
(S)

of order dividing C(ℓ, n, r).

For this, let us consider the exact sequence (3.10) constructed in Lemma 3.2.3.

Since T0 is K-quasi-split, it follows from Hilbert’s Theorem 90 that ν(G̃(F )) = G(F )

for every field extension F/K (cf. Theorem 2.3.10), and in particular, ν(G̃(Kv)) =

G(Kv) for all v ∈ V K \ S. On the other hand, since T0 is connected, we have

ν(G̃(Ov)) = G(Ov) for almost all v ∈ V K \S (cf. Proposition 2.1.5). It follows that

ν(G̃(AK(S))) = G(AK(S)). (3.11)

Now, G̃ = T̃ H̃ where T̃ is a K-torus of dimension ℓ (= rank of G) which is
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isogenous to T0 × T , hence has E = PM as its (minimal) splitting field, and H̃

is a semi-simple simply connected K-group. Since the condition (1) holds, we can

apply Proposition 3.2.1 to conclude that G̃(K)
(S)

is a finite index normal subgroup of

G̃(AK(S)), with the abelian quotient G̃(AK(S))/G̃(K)
(S)

of order dividing C(ℓ, n, r).

On the other hand, we have the inclusions

[G(AK(S)), G(AK(S))] = ν([G̃(AK(S)), G̃(AK(S))]) ⊂ ν(G̃(K)
(S)

) ⊂ G(K)
(S)
,

which imply that G(K)
(S)

is a normal subgroup of G(AK(S)) with abelian quotient.

Furthermore, it follows from (3.11) that ν induces a surjective homomorphism of

abelian groups

G̃(AK(S))/G̃(K)
(S)

−→ G(AK(S))/G(K)
(S)
,

and consequently the order of G(AK(S))/G(K)
(S)

divides C(ℓ, n, r), completing the

proof of Theorem A. □

Remark 3.2.5 The above argument actually shows that for any (connected) reduc-

tive K-group G and any infinite subset S ⊂ V K , the closure G(K)
(S)

is a normal

subgroup of G(AK(S)) with abelian quotient G(AK(S))/G(K)
(S)

.

3.2.4 A counter-example to almost strong approximation

Let now G be a semi-simple algebraic group defined over a number field K, and let

M be the minimal Galois extension of K over which G becomes an inner twist of

a split group, and let S be a tractable set of valuations of K that contains a set of

the form V K
∞ ∪ (P(L/K, C) \ P0) in our standard notations. According to Theorem

A, the condition that guarantees almost strong approximation in G is

σ|(M ∩ L) = idM∩L for some σ ∈ C. (3.12)
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In particular, an inner form of a split group (i.e. when M = K) always has almost

strong approximation for any tractable set S (cf. Corollary A).

The goal of this section is to show that condition (3.12) cannot be omitted in the

general case. More precisely, we will construct an example of an absolutely simple

adjoint1 outer form that fails to have almost strong approximation for a suitable

tractable set of valuations (for which (3.12) fails to hold).

Let K = Q, L = Q(i) with i2 = −1 and let σ be the nontrivial automorphism

in Gal(L/Q). For a set S of valuations of K, the corresponding ring of S-adeles

of K will be denoted simply by A(S). Now, fix an odd integer n ≥ 3, and let q

denote an arbitrary nondegenerate σ-Hermitian form on Ln. Then the algebraic

group G̃ = SUn(q) associated with the special unitary group of q (cf. [15, Ch. 2,

§2.3.3]) is an absolutely almost simple simply-connected algebraic Q-group that is

an outer form of type An−1 (cf. [15, Ch. 2, §2.1.14] and [33, Ch. 12, §12.3.8]) with

L being the minimal Galois extension of Q over which G̃ becomes an inner form of

the split group. We will be working with the corresponding adjoint group G and

its central Q-isogeny π : G̃ → G. Note that F := ker π coincides with R
(1)
L/Q(µn),

where µn is the group of n-th roots of unity, and will be identified with the n-torsion

subgroup of the norm torus T := R
(1)
L/Q(Gm). Set

S := {v∞} ∪ {vp | p ∈ P3(4)} ∪ {v2}.

Observe that the primes p ≡ 3(mod 4) correspond precisely to the valuations in the

generalized arithmetic progression P(L/Q, {σ}), so S is a tractable set containing

{v∞} ∪ P(L/Q, {σ}), for which (3.12) obviously does not hold.
1As we already noted, it follows from the classical criterion for strong approximation that a

simply connected semi-simple group always has strong approximation with respect to any infinite
set S.
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Our goal is to prove the following.

Theorem 3.2.6 We have [G(A(S)) : G(Q)
(S)

] = ∞, and thus G does not have

almost strong approximation with respect to S.

The proof is based on the observation that for every open subgroup U ofG(A(S)),

we have the inclusion:

G(Q) · U ⊃ G(Q)
(S)
,

So, to prove the theorem it suffices to find a sequence of open subgroups U1, U2, . . .

such that the products G(Q) · Uℓ are all subgroups of G(A(S)) with the indices

[G(A(S)) : G(Q) · Uℓ] −→ ∞ as ℓ −→ ∞. (3.13)

The implementation of this idea requires some preparation.

First, it is known that the quasi-split torus T0 := RL/Q(Gm) fails to have strong

approximation with respect to S, and in fact the quotient T0(A(S))/T0(Q)
(S)

has

infinite exponent (cf. [18, Proposition 4]). For our purposes, we need a statement

along these lines for the norm torus T = R
(1)
L/Q(Gm). We have already seen in

Example 3.1.1 that T does not have almost strong approximation with respect to S

but here we will prove a somewhat stronger statement. To formulate it, for every

integer ℓ ≥ 1, we pick a subset Πℓ ⊂ P1(4n) of size ℓ, and then consider the following

subgroups of T (A(S)):

Γ(Πℓ) :=
∏
p∈Πℓ

T (Zp)×
∏

p∈P1(4)\Πl

{1},

∆(Πℓ) :=
∏
p∈Πℓ

T (Zp)n ×
∏

p∈P1(4)\Πℓ

T (Zp),
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where T (Zp)n denotes the subgroup of nth powers in T (Zp). We note that Γ(Πℓ) ∩

∆(Πℓ) = Γ(Πℓ)
n and that the product Γ(Πℓ)·∆(Πℓ) coincides with ∆ :=

∏
p∈P1(4)

T (Zp).

Lemma 3.2.7 We have

i(Πℓ) := [T (A(S)) : T (Q) ·∆(Πℓ) · T (A(S))n] −→ ∞ as ℓ −→ ∞

for any choice of Πℓ.

Proof. Since the class number of L is one, we have

T0(A(S)) = T0(Q) ·∆0 where ∆0 =
∏

p∈P1(4)

T0(Zp) (3.14)

(cf. [14, §5.1 and 8.1]). For each p ∈ P1(4), there exists a Zp-defined isomorphism

T0 ≃ GmGm, with σ acting by switching the components, and then T ≃ {(t, t−1) | t ∈

Gm}. It follows that every t ∈ T (Qp) (resp., ∈ T (Zp)) can be written in the form

t = σ(s)s−1 for some s ∈ T0(Qp) (resp., ∈ T0(Zp)), and therefore all elements

t ∈ T (A(S)) are of the form σ(s)s−1 for some s ∈ T0(A(S)). In conjunction with

(3.14), this yields

T (A(S)) = T (Q) ·∆. (3.15)

In particular, T (A(S))n = T (Q)n ·∆n, and since ∆(Πℓ) ⊃ ∆n, we obtain

i(Πℓ) = [T (Q) ·∆ : T (Q) ·∆(Πℓ)] = [∆ : ∆(Πℓ) · (T (Q) ∩∆)].

We now observe that since T (Qp) = T (Zp) for all p ∈ P \ P1(4), we have

Γ := T (Q) ∩∆ = T (Q) ∩
∏
p∈P

T (Zp) = T (Z) = {±1,±i}.
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As ∆ = Γ(Πℓ) ·∆(Πℓ), we now obtain that

i(Πℓ) = [Γ(Πℓ) : Γ(Πℓ) ∩ (Γ ·∆(Πℓ))] =
[Γ(Πℓ) : Γ(Πℓ) ∩∆(Πℓ)]

[Γ(Πℓ) ∩ (Γ ·∆(Πℓ)) : Γ(Πℓ) ∩∆(Πℓ)]]

≥ [Γ(Πℓ) : Γ(Πℓ)
n]/4.

But for any p ∈ P1(4n), using a Zp-isomorphism T ≃ Gm, we have

[T (Zp) : T (Zp)n] = [Z×
p : Z×

p
n
] = [F×

p : F×
p
n
] = n

Thus, we get the estimate

i(Πℓ) ≥ nℓ/4,

and our assertion follows. □

To prove Theorem 3.2.6, we will apply a variation of techniques developed in [14,

Ch. 8, §8.2] to compute class numbers of semi-simple groups of noncompact type.

We start with the exact sequence of Q-groups and Q-morphisms

1 −→ F −→ G̃
π−→ G −→ 1, (3.16)

which for every extension P/Q gives rise to the coboundary map ψP : G(P ) →

H1(P, F ) (cf. Proposition 2.3.2). Applying this to P = Qp and taking the product

over all p ∈ P1(4), we obtain an exact sequence

∏
p∈P1(4)

G̃(Qp)
Π=

∏
p πQp−−−−−−→

∏
p∈P1(4)

G(Qp)
Ψ=

∏
p ψQp−−−−−−→

∏
p∈P1(4)

H1(Qp, F ). (3.17)

We let πA(S) and ψA(S) denote the restrictions of Π and Ψ to G̃(A(S)) and G(A(S)),
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respectively. Arguing as in the proof of [14, Proposition 8.8], one shows that

( ∏
p∈P1(4)

πQp(G̃(Qp))
)
∩G(A(S)) = πA(S)(G̃(A(S))),

which implies the exactness of the following sequence of groups and group homo-

morphisms

G̃(A(S))
πA(S)−−−→ G(A(S))

ψA(S)−−−→
∏

p∈P1(4)

H1(Qp, F ). (3.18)

Lemma 3.2.8 For every open subgroup U of G(A(S)),

(i) The product G(Q) · U is a normal subgroup of G(A(S));

(ii) The map ψA(S) induces a group isomorphism of quotients

G(A(S))/(G(Q) · U) ≃ ψA(S)(G(A(S)))/ψA(S)(G(Q) · U).

Proof. We argue as in the proof of [14, Proposition 8.8]. First, as we already

mentioned, since S is infinite, G̃ has strong approximation with respect S, and

therefore G̃(A(S)) = G̃(Q) · π−1
A(S)(U) as πA(S) is continuous (cf. Proposition 2.1.4).

Combined with the exactness of (3.18), this yields

kerψA(S) = πA(S)(G̃(A(S))) ⊂ G(Q) · U. (3.19)

Since ψA(S) is a group homomorphism of G(A(S)) to a commutative group, its ker-

nel contains the commutator subgroup [G(A(S)), G(A(S))]. On the other hand, if

the product of two subgroups of an abstract group contains the commutator sub-

group of the group, the product is actually a normal subgroup. In conjunction with

(3.19), these observations imply (i), and then (ii) follows from the third isomorphism

theorem. □
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Next, we will apply a similar argument to the Kummer sequence for T :

1 → F −→ T
[n]−→ T → 1, (3.20)

where [n] denotes the morphism of raising to the nth power. Again, for any field

extension P/Q, we have the coboundary map δP : T (P ) → H1(P, F ) noting that

ker δP = T (P )n. Taking the product over all p ∈ P1(4), and restricting the maps to

T (A(S)), we obtain an exact sequence similar to (3.15):

T (A(S)) [n]−→ T (A(S))
δA(S)−−−→

∏
p∈P1(4)

H1(Qp, F ). (3.21)

Lemma 3.2.9 (i) For any field extension P/Q, the coboundary map δP : T (P ) →

H1(P, F ) is surjective.

(ii) There exists a finite set of primes Ω such that for all p ∈ P \ Ω we have

ψQp(G(Zp)) = δQp(T (Zp)).

(iii) ψA(S)(G(A(S))) = δA(S)(T (A(S))).

Proof. (i) In view of the exact sequence

T (P )
δP−→ H1(P, F )

ω−→ H1(P, T )

that comes from (3.20), it is enough to show that im ω is trivial. By [14, Ch. 2,

Lemma 2.22], the group H1(P, T ) is isomorphic to P×/NLP/P ((LP )
×), hence has

exponent ≤ 2. On the other hand, F is a cyclic group of order n, so H1(P, F ) is

annihilated by n. Since by our assumption n is odd, the triviality im ω follows.
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(ii) Let Qur
p be the maximal unramified extension of Qp. It follows from [14, Ch.

6, Proposition 6.4] that there exists a finite subset Ω ⊂ P such that for p ∈ P \Ω we

have F (Q̄) = F (Qur
p ) and

ψQp(G(Zp)) = H1(Qur
p /Qp, F ) = δQp(T (Zp)).

(iii) For every prime p, we have the exact sequence

G(Qp)
ψQp−→ H1(Qp, F ) −→ H1(Qp, G̃).

Since G̃ is semi-simple and simply connected, we have H1(Qp, G̃) = 1 (cf. [14, Ch.

6, Theorem 6.4]), so

ψQp(G(Qp)) = H1(Qp, F ) = δQp(T (Qp))

in view of part (i). In conjunction with part (ii), this yields our claim. □

Proof of Theorem 3.2.6. Let Ω be the exceptional set of primes in Lemma 3.2.9(ii).

For ℓ ≥ 1, pick a subset Πℓ ⊂ P1(4n) \Ω of size ℓ and set Π∗
ℓ := Πℓ∪Ω. We will show

that the open subgroups

Uℓ :=
∏
p∈Π∗

ℓ

πQp(G̃(Qp))×
∏

p∈P1(4)\Π∗
ℓ

G(Zp)

satisfy (3.13). Indeed, by construction we have the inclusion ψA(S)(Uℓ) ⊂ δA(S)(∆(Πℓ)),

and it follows from Lemma 3.2.9(i) that ψQ(G(Q)) ⊂ δQ(T (Q)). According to

Lemma 3.2.8, the product G(Q) · Uℓ is a normal subgroup of G(A(S), with the

quotient isomorphic to ψA(S)(G(A(S)))/ψA(S)(G(Q) · Uℓ). The latter admits an epi-
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morphism on

δA(S)(T (A(S)))/δA(S)(T (Q) ·∆(Πℓ)) ≃ T (A(S))/T (Q) ·∆(Πℓ) · T (A(S))n

(the isomorphism follows from the exact sequence (3.21)). Thus,

[G(A(S)) : G(Q) · Uℓ] ≥ i(Πℓ),

and then (3.13) follows from Lemma 3.2.7.

3.3 Application to congruence subgroup problem

3.3.1 Overview of the congruence subgroup problem.

Let G be a linear algebraic group defined over a global field K. Given a subset

S ⊂ V K containing V K
∞ , we let OK(S) denote the corresponding ring of S-integers.

First, we fix a faithful K-defined representation ι : G ↪→ GLn, which enables us

to speak unambiguously about the group of OK(S)-points ΓS = G(OK(S)) and

its congruence subgroups ΓS(a) = G(OK(S), a) for (nonzero) ideals a ⊂ OK(S) –

these are defined respectively as ι−1(ι(G(K)) ∩ GLn(OK(S))) and ι−1(ι(G(K)) ∩

GLn(OK(S), a)), where

GLn(OK(S), a) =
{
X ∈ GLn(OK(S)) |X ≡ In(mod a)

}
.

Then ΓS(a) is a finite index normal subgroup of ΓS for any nonzero ideal a, and

the Congruence Subgroup Problem (CSP) for ΓS in its classical formulation is the

question of whether every finite index normal subgroup of ΓS contains a suitable

congruence subgroup ΓS(a). We refer the reader to the surveys [19] and [24] for
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a discussion of various approaches developed to attack the CSP, and of the results

obtained using these techniques. Here we only recall the reformulation of the CSP

suggested by J.-P. Serre [31].

Let N S
a (resp., N S

c ) be the family of all finite index normal subgroups N ⊂ ΓS

(resp., of all congruence subgroups ΓS(a) for nonzero ideals a ⊂ O(S)). Then there

are topologies τSa and τSc (called the S-arithmetic and S-congruence topologies) on

the group G(K) that are compatible with the group structure and have N S
a and N S

c

respectively as fundamental systems of neighborhoods of the identity. Furthermore,

G(K) admits completions with respect to the uniform structures associated with

τSa and τSc that will be denoted ĜS and G
S. Since τSa is apriori stronger than τSc ,

there exists a continuous group homomorphism π : ĜS → G
S, which turns out to

be surjective. Its kernel CS(G) := ker π is a profinite group called the S-congruence

kernel. Thus, we have the following exact sequence of locally compact topological

groups

1 → CS(G) −→ ĜS π−→ G
S → 1. (CSP)

It is easy to see that the affirmative answer to the classical congruence subgroup

problem for Γ amounts to fact that the topologies τSa and τSc coincide, which turns

out to be equivalent to CS(G) = {1}. In the general case, CS(G) measures the

difference between the two topologies. So, Serre proposed to reinterpet the CSP

as the problem of computation of CS(G) (it should be noted that the latter does

not depend on the initial choice of the faithful representation ι). Furthermore, he

formulated the following conjecture that qualitatively describes CS(G) in the main

case where G is absolutely almost simple and simply connected and S is finite: if

rkS G :=
∑

v∈S rkKv G ≥ 2 and rkKv G > 0 for all v ∈ S \ V K
∞ then CS(G) should be

finite, and if rkS G = 1 then it should be infinite. In fact, if the Margulis-Platonov

conjecture concerning the normal subgroup structure of G(K) holds - see below, the
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finiteness of CS(G) is equivalent to its centrality (i.e., to the fact that (CSP) is a

central extension), in which case it is isomorphic to the metaplectic kernel M(S,G)

that was computed in [17] in all cases relevant to the CSP.

In this thesis, we are interested only in the higher rank part of Serre’s conjecture

which has been confirmed in a number of cases (see [19], [24]). Nevertheless, it

remains completely open for anisotropic groups of types An (both inner and outer

forms) and E6, triality forms of type 3,6D4, and some other situations. Some evidence

for Serre’s conjecture in these cases has been generated through the investigation

of CSP for infinite S. More precisely, the truth of Serre’s conjecture combined

with computations of the metaplectic kernel in [17] would imply that CS(G) = {1}

for any infinite S such that rkKv G > 0 for all v ∈ S \ V K
∞ , so efforts have been

made to prove this for certain infinite S. In particular, in [20] this was proved

for absolutely almost simple simply connected groups of all types when S contains

all but finitely many valuations in a generalized arithmetic progression, with an

argument not requiring any case-by-case considerations. Subsequently, Radhika and

Raghunathan [22] focused on anisotropic inner forms of type An (which are all of

the form SL1,D for some central division K-algebra D) and extended the result of

[20] to a class of sets S which basically coincides with our tractable sets. We will

use our results on almost strong approximation for tori to prove that CS(G) = {1}

for all tractable sets S – see Theorem B for the precise formulation. We note that

this formulation includes the Margulis-Platonov conjecture (MP) - see [14, §9.1] for

a discussion, which we now recall for the reader’s convenience:

Let G be an absolutely almost simple simply connected algebraic group over a global

field K. Set A = {v ∈ V K
f | rkKv G = 0}, and let δ : G(K) → GA :=

∏
v∈AG(Kv)

be the diagonal map. Then for every noncentral normal subgroup N ⊂ G(K) there

exists an open normal subgroup W ⊂ GA such that N = δ−1(W ). In particular, if
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A = ∅ (which is always the case if the type of G is different from An), the group

G(K) does not have any proper noncentral normal subgroups.

For results on (MP) obtained prior to 1990 – see [14, Ch. IX]. Subsequently,

(MP) was proved also for all anisotropic inner forms of type An – see [25], [29],

which explains why no assumption on the truth of (MP) is made in [22].

3.3.2 Proof of Theorem B

Our argument will be an adaptation of the proof of Theorem B in [20]. We will

freely use the notations introduced in the statement of Theorem B. In particular,

G will denote an absolutely almost simple simply connected algebraic group defined

over a global field K, and S ⊂ V K be a tractable set of valuations that contains a set

of the form V K
∞ ∪ (P(L/K, C) \ P0) in our standard notations. Furthermore, we let

A = {v ∈ V K
f | rkKv G = 0} denote the (finite) set of nonarchimedean places where

G is anisotropic as in the statement of the Margulis-Platonov conjecture above. We

will prove Theorem B by analyzing the exact sequence (CSP) written for another

set of valuations S̃ such that V K
∞ ⊂ S̃ ⊂ S and S \ S̃ is finite. First, let S̃ be any

such set, and let

1 → C S̃(G) −→ ĜS̃ π̃−→ G
S̃ → 1 (3.22)

be the congruence subgroup sequence (CSP) for the set S̃. It easily follows from the

definitions that the S̃-congruence topology τ S̃c on G(K) coincides with the S̃-adelic

topology induced by the embedding G(K) ↪→ G(AK(S̃)). Now, since S̃ is infinite, G

has strong approximation with respect to S̃, implying that the completion G
S̃ can

be identified with G(AK(S̃)). Next, it is enough to prove that (3.22) is a central

extension for some S̃ as above. Indeed, using the truth of (MP) and the assumption
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that

A ∩ S = ∅, (3.23)

one shows that the congruence kernel C S̃(G) is isomorphic to (the dual of) the

metaplectic kernel M(S̃, G) (cf. [24]). Again, since S̃ is infinite, the results of [17]

imply that M(S̃, G) = {1}, hence C S̃(G) = {1}. Since S ⊃ S̃ ⊃ V K
∞ , there is a

natural homomorphism C S̃(G) → CS(G), which because of (3.23) is surjective (cf.

[23, Lemma 6.2]). So, CS(G) = {1}, as required.

In order to choose S̃ and establish the centrality of the corresponding sequence

(3.22), we will use two statements from [20]. To formulate these, we need to intro-

duce some additional notations. Let v ∈ V K , and let T be a maximal Kv-torus of

G. We let T reg denote the Zariski-open subset of T consisting of regular semi-simple

elements (cf. [15, §2.1.11]), and consider the map

φv,T : G(Kv)× T reg(Kv) → G(Kv)

(g, t) 7→ gtg−1

It follows from the Implicit Function Theorem (cf. [15, Ch. III]) that φv,T is an open

map, and in particular U(v, T ) := φv,T (G(Kv)×T reg(Kv)) is open in G(Kv). We also

note that by construction there are natural maps G(K) → ĜS̃ and G(K) → G
S̃ (in

other words, the exact sequence (3.22) splits over G(K)). In particular, if t ∈ G(K)

is a regular semi-simple element and T = ZG(t) is the corresponding torus2, we can

consider t as an element of both ĜS̃ and GS̃, and then

π̃(ZĜS̃(t)) ⊂ Z
G

S̃(t) = T (AK(S̃))

2We note that the centralizer ZG(t) is automatically connected since G is simply connected.
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(under the identification of GS̃ with G(AK(S̃))). We can now formulate a sufficient

condition (in fact, a criterion) for the centrality of (3.22).

Theorem 3.3.1 ([20, Theorem 3.1(ii)]) Assume that G(K) satisfies (MP) and that

A ∩ S̃ = ∅, and suppose that there is an integer m > 1, a finite subset V ⊂

V K \ S̃, and a maximal Kv-torus Tv of G for each v ∈ V such that for any element

t ∈ G(K) ∩
∏

v∈V U(v, Tv) (which is automatically regular semi-simple) and the

corresponding torus T = ZG(t), the following inclusion holds:

T (AK(S̃))
m ⊂ π̃(ZĜS̃(t)). (3.24)

Then (3.22) is a central extension.

In order to be able to verify condition (3.24) using our results on almost strong

approximation, we will need to choose S̃ appropriately. This is done using the

following statement.

Lemma 3.3.2 ([20, Lemma 5.5]) Let G be an absolutely almost simple simply con-

nected algebraic group defined over a global field K, and let M be the minimal Galois

extension of K over which G is an inner form. Furthermore, suppose we are given

a finite subset S ⊂ V K and a finite Galois extension L/K. Then there exists a finite

subset V ⊂ V K \ S and maximal Kv-tori Tv of G for each v ∈ V such that for any

t ∈ G(K)∩
∏

v∈V U(v, Tv), the minimal splitting field PT of the corresponding torus

T = ZG(t) satisfies

PT ∩ L =M ∩ L.

We are now in a position to complete the proof of Theorem B. Let L/K be the

Galois extension involved in the description of the generalized arithmetic progression

in the statement of the theorem, and let M/K be the minimal Galois extension over
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which G becomes an inner form. Applying Lemma 3.3.2 with S = A ∪ V K
∞ , we find

a finite subset V ⊂ V K \ S and maximal Kv-tori Tv of G for v ∈ V so that for any

t ∈ G(K) ∩ U , where U =
∏

v∈V U(v, Tv), and the torus T = ZG(t) we have

P ∩ L =M ∩ L, (3.25)

where P is the minimal splitting field of T . Set S̃ = S \ V (which is obviously

tractable), and let m = C̃(d, n) (the constant from Theorem 3.1.3) with d = rk G

and n = [L : K]. We will now show that the assumptions of Theorem 3.3.1 hold

true for this S̃, so the theorem will yield the centrality of (3.22), completing the

argument. Let t ∈ G(K) ∩ U and T = ZG(t). Then (3.25) for the splitting field P

of T , and therefore σ|(P ∩L) = idP∩L for some σ ∈ C. Applying Theorem 3.1.3, we

conclude that the index [T (AK(S̃)) : T (K)
(S̃)

] divides m, and consequently,

T (AK(S̃))
m ⊂ T (K)

(S̃)
. (3.26)

On the other hand, since C S̃(G) is compact, the map π̃ is proper, so the image

π̃(ZĜS̃(t)) is closed in G
S̃. In view of the obvious inclusion ZĜS̃(t) ⊃ T (K), we get

the inclusion T (K)
(S̃)

⊂ π̃(ZĜS̃(t)), which in conjunction with (3.26) verifies (3.24)

and completes the argument.
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List of symbols

∅ empty set
Z ring of integers
Q field of rational numbers
Zp ring of p-adic integers
Qp field of p-adic integers
Qur
p maximal unramified extension of Qp

R field of real numbers
R>0 set of all positive real numbers
C field of complex numbers
Fq finite field with q elements
k(t) field of rational functions in one variable t over a field k
k((t)) field of Laurent series in one variable t over a field k
K field
char(K) characteristic of K
K̄ separable closure of K
K+ additive group of K
K× multiplicative group of K
K×n subgroup of nth powers of K×

µn group of nth root of unity in a given field K
OK ring of integers of K
OK(S) ring of S-integers of K
N (a) norm of an ideal a of OK

IK group of fractional ideals of K
PK group of principal fractional ideals of K
Cl(K) ideal class group of K
h(K) class number of K
| · |p p-adic absolute value on Q
| · |∞ archimedean absolute value on Q
vp p-adic valuation on Q
v∞ archimedean valuation on Q
V K set of all valuations of K
V K
∞ set of all archimedean valuations of K
V ∞
f set of all nonarchimedean valuations of K
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V K
r set of all real valuations of K
S subset of V K

| · |v v-adic absolute value associated with valuation v
Kv completion of K with respect to a valuation v
Ov valuation ring of v in Kv

pv valuation ideal of v in Ov

k(v) residue field of v ∈ V K
f

p(v) prime ideal pv ∩ OK

[L : K] degree of field extension L/K
e(w|v) ramification index of w with respect to v
f(w|v) residue degree of w with respect to v∏′

i∈I
(Xi, Ui) restricted product of {Xi}i∈I with respect to {Ui}i∈I

AK ring of adeles of a field K
AK,∞ ring of integral adeles of field K
AK(S) ring of S-adeles of field K
A(S) ring of S-adeles of Q
IK group of ideles of field K
IK(S) group of S-ideles of field K
I(S) group of S-ideles of Q
CK idele class group of K
IK,∞ group of integral ideles of K
I(1)K group of ideles of K with content 1
U(S) distinguished open subgroup

∏
v∈V K\S O×

v in IK(S)
E(S) group of S-units in K, i.e. U(S) ∩K×

Gal(L/K) Galois group of field extension L/K
NL/K norm associated with field extension L/K
TrL/K trace associated with field extension L/K
w|v valuation w lies above valuation v
FrL/K(w|v) Frobenius automorphism for v ∈ V K

f unramified in L and w|v
ψL/K Artin map associated with a finite Galois extension L/K
(a, b)K Hilbert symbol of a and b relative to K
P set of all rational primes
(a, b) greatest common divisor of integers a and b
a ∤ b a does not divide b
a ≡ b(modm) a is congruent to b modulo m
Pa(m) arithmetic progression of all prime numbers p such that p ≡ a(modm)
P(L/K, C) generalized arithmetic progression defined by a Galois extension L/K
and a conjugacy class C ⊂ Gal(L/K)
d(P) Dirichlet density of any subset of rational primes P ⊂ P
dK(P) Dirichlet density of any subset of valuations P ⊂ V K

f

φ Euler totient function
Spl(L/K) set of all v ∈ V K

f that split completely in L for a field extension L/K
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A⊂̇B set of valuations B almost contains a subset A ⊂ B
[G,G] commutator subgroup of group G
Gab abelianization of group G
Z(G) center of group G
ZG(t) centralizer of an element t of group G
Mn(K) algebra of n by n matrices over a field K
In identity n by n matrix
X t transpose of a matrix X
G◦ connected component of linear algebraic group G
GLn general linear group
SLn special linear group
Gm multiplicative group of a field
On orthogonal group
SUn special unitary group
Ga additive group of a field
SL1,D group of elements of a finite dimensional central division K-algebra D with
reduced norm one
T algebraic torus
RL/K(G) restriction of scalars of L-group G with respect to field extension L/K
RL/K(Gm) quasi-split torus associated with field extension L/K
R

(1)
L/K(Gm) norm torus associated with field extension L/K

R(G) radical of G
Ru(G) unipotent radical of G
[G,G] commutator subgroup of G
G(AK(S)) group of S-adeles of G
fK map induced on K-points by a morphism f of K-varieties
fAK(S) adelization of a morphism f with respect to subset S ⊂ V K

G(K)
(S)

closure of the group G(K) diagonally embedded into G(AK(S))
X(T ) group of characters of T
X∗(T ) group of co-characters of T
Z[G] group ring of G over Z
K[G] affine algebra of regular functions of G over K
K[X(T )] group algebra corresponding to character group X(T ) of a K-torus
CK(T ) abelian group Hom(X(T ), CK)
AG group of G-fixed points of G-module A
F 1(G,A) abelian group of all functions from group G to a G-module A
Z1(G,A) set of all 1-cocycles from G to A
B1(G,A) set of all 1-coboundaries of G with values in A
Hom(G,A) set of all group homomorphisms of G with values in A
H i(G,A) ith cohomology group of G with values in A
Hi(G,A) ith homology group of G with values in A
Ĥ i(G,A) ith Tate cohomology group of G with values in A



133

A set of all valuations v in V K
f such that G is Kv-anisotropic

ΓS group G(OK(S)) of S-integral points of G
ΓS(a) principal S-congruence subgroup of level a
N S
a family of all finite index normal subgroups in ΓS

N S
c family of all principal S-congruence subgroups in ΓS

τSa S-arithmetic topology
τSc S-congruence topology
ĜS S-arithmetic completion of G
G
S

S-congruence completion of G
CS(G) S-congruence kernel of G with respect to S
M(S,G) S-metaplectic kernel of G
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