
Experimental Studies in Pursuit of 

Experiential Robot Learning 
 

 

Author:                                                Advisor: 

Ahmed A. Aly       Joanne Bechta Dugan 

A Dissertation 

Presented to 

The Faculty of the School of Engineering and Applied Science 

University of Virginia 

In partial fulfillment 

of the requirements for the Degree 

Doctor of Philosophy 

in the 

Computer Engineering Program 

December 2019 

 



Approval Sheet 

 

 

 

2 

APPROVAL SHEET 

This Dissertation is submitted in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in the Computer Engineering Program 

Author Signature: Ahmed A. Aly 

This Dissertation has been read and approved by the examining committee:  

Advisor: Joanne B. Dugan, Ph. D.                      _ 

 Committee Chair: Zongli Lin, Ph. D.                  _ 

  Committee Member: Gabriel Robins, Ph. D.       _ 

Committee Member: Gianluca Guadagni, Ph. D. _  

Committee Member: Michael E. Gorman, Ph. D._ 

Accepted for the School of Engineering and Applied Science: 

 

Craig H. Benson 

School of Engineering and Applied Science 

December 2019 

  



Abstract 

 

 

 

3 

  December 2019 

ABSTRACT 
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Doctor of Philosophy 

Experimental Studies in Pursuit of Experiential Robot Learning 

by Ahmed Aly 

Robots are currently not mature enough to be used in unconstrained environments (i.e. in 

the wild) because they cannot learn and thus cannot respond to new situations. Our 

hypothesis therefore is that the development of a methodology that permits experiential 

learning could allow robots to learn and therefore to succeed in novel situations. We 

developed a method called Experiential Robot Learning (ERL) that outlines how robots 

should be developed. Neural Networks (NN) provide a promising path towards ERL and 

this dissertation evaluates this promise. Experimental studies illuminated a problem with 

using NN for ERL: the need for a differentiable loss functions and architectures can’t 

always be satisfied, and the exploitative-nature of gradient-descent is not suitable to solve 

problems that require exploration. To address these shortcomings, we developed Local 

Search, a NN training approach that provides good results in the absence of a differentiable 

loss functions, or a loss function entirely, and on problems that require exploration. Our 

work paves the way for more advanced robot implementations adhering to ERL method.   
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CHAPTER 1: ROBOT LEARNING 

INTRODUCTION 

In today’s world robots are markedly absent from everyday life. Robots are generally 

limited to industrial settings and such environments where there are strong restrictions on 

the degrees of freedom of both the robot and the environment. For example, consider a 

robot on an assembly line where it would be assigned one job on a conveyor belt, say to 

grab unidentified objects. That robot wouldn’t be expected to perform tasks or jobs outside 

this particular one, at least without reprogramming. Other agents, e.g. humans, wouldn’t 

interfere with the conveyor belt or the robot’s sensory inputs. In addition, the type and size 

of “unidentified objects” is also restricted. The robot cannot expect to encounter an airplane 

for instance on its belt, or an explosive device. Thus, in this simple example, the robot 

would conditionally operate in a highly structured environment where there are strong 

restrictions on its degrees of freedom, as well as the environment’s degrees of freedom. 

This condition can be traced back to the unique challenges of operating in unstructured 

environments, especially one as chaotic and complex as humans’. One cannot enforce such 

strong restrictions on the living environment of a typical human being, however. 

We perceive a future where robots can become ubiquitous in commercial and residential 

settings. Self-driving cars are examples of such a future. The robot is the car acting in an 

unstructured and probably chaotic environment, making decisions constantly. Despite 

imposing strong restrictions on what drivers cannot and should not do, it is impossible to 

prevent unexpected and chaotic behaviors. There are many agents within the environment 
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outside of drivers, for instance pedestrians and the weather. The robot thus has to adapt to 

unforeseen situations and operate in this unstructured environment. 

Our vision for the future features robots that will be able to not just co-exist in the real-

world natural environment, but to manipulate it and themselves as well. A housekeeping 

robot should be able to grab dishes, fold laundry and open doors. All these actions involve 

an interaction with an unstructured environment. The shape of dishes, laundry and 

doorknobs is not predetermined. The robot needs to manipulate these objects, either with 

or without guidance from a human. Furthermore, the housekeeping robot must navigate 

indoor environments which can feature different flooring, e.g. tiles and carpets, and 

lighting. Object manipulation, Perception and Planning thus must be acquired in some 

capacity rather than exclusively pre-programmed. The Roomba robot (autonomous 

vacuum) is a primitive example of such robot. It is able to navigate the indoor environment 

using pre-programmed behaviors and clean the floor. These are not always the best 

behaviors. For example, bumping into objects and backing off is poor behavior if said 

object is expensive, fragile and prone to toppling. However, it can also learn the indoor 

floor maps in order to be able to cover the area effectively and wholly. The Roomba is 

primitive in both its scale of operation and its capacity to learn. A more advanced Roomba 

should be able to analyze the environment and adapt its behaviors accordingly. If a 

behavior is poor, e.g. it leads to a breaking of an object, it should be able to stop it and 

acquire a new behavior. In this simple example, the Roomba should realize which objects 

it can safely “bump into” and which it should “go around”. 
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There are several challenges to this vision. First and foremost is the ability to learn, or lack 

thereof. We define learning as the ability to improve one’s performance on a given task. 

Without learning, robots will only be able to handle situations for which they have been 

programmed. If a self-driving car is programmed to self-drive only on highways, it will not 

be able to drive on a typical road. If a housekeeping robot is programmed only to fold 

laundry, it has no chance of opening doors. Furthermore, it will only be able to fold the sort 

of laundry it was programmed to. If it was programmed for towels, then bed sheets are out 

of question. Another challenge to our vision is the lack of supporting hardware. It is true 

that robots have come a long way, hardware-wise as well as the embedded systems within. 

However, there is still a lack of sensors as complex as a human’s eye for example. The data 

streams, e.g. video from a camera, provided by typical sensors can be regarded as primitive. 

Thus, even if we had a learning robot, it may have a hard time learning from the given data 

due to its low quality, low (or absence) of information density. 

Despite these challenges, robots can still accomplish much. Automated factories are one 

such example where robots can be invaluable to humans. Tesla, a US automaker, recently 

opened the Gigafactory where its Model 3 cars are produced. Originally, the Gigafactory 

was supposed to be entirely automated. There were many challenges to this scenario, Elon 

Musk, Tesla CEO, famously coined it as “production hell”. The company had 

underestimated the difficulty of the task and overestimated the capabilities of robots. 

Things like tightening bolts, applying glue and fitting parts together are rather difficult for 

robots to perform accurately and quite easy for humans [1], [2]. Due to such challenges, 

the company resigned to including humans in its assembly line and reducing automation. 
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FIGURE 1 ROBOTS MAKING ROBOTS, A PHOTOGRAPH FROM TESLA GIGAFACTORY 

ASSEMBLY LINE [1] 

Thus, even while not entirely independent, robots can still become a powerful aid to 

humans. In addition, robots can improve the quality of life for humans through alleviating 

hardship of special needs and disabilities. Housekeeping robots can help people who are 

mobility-challenged. Self-driving cars can help those who are vision-challenged. There are 

many such examples of the transformative nature and impact autonomous robots can have. 

Our vision for the future is not just robots that will take actions, but robots that will learn 

from the actions it takes. Robots that will face a unique and new problem and will work 

“creatively” to find a solution. If a house robot drops a cup of water, the next time it holds 

water it should have figured a better grasp. If an outdoor robot slips on black ice, the next 

time it encounters black ice it should adjust its gait or move slower. These autonomous 

robots should mimic a human’s ability to improve performance through experience, i.e. to 

learn.  
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MOTIVATION 

It is important to note the reasons for focusing on Robot Learning as opposed to other sects 

of scholastic inquiry in the area of Robotics. Before the inquiry set forth in this thesis, our 

focus was on Human-Robot Interaction (HRI). This is a sprouting field that concerns itself 

with the design of interaction between humans and robots. Upon investing time in that 

domain, it was clear to us how meaningless the interactions were between humans and 

robots. Often the robot, though with physical form, had no capacity in the environment. It 

could not manipulate objects, nor operate in real-world open environments. Furthermore, 

without proper perception the robot (any robot) could not appreciably perceive the person 

with whom it interacts with as well as the manner of their interaction. For example, the 

robot could not yet shake the hand of a human in an unstructured setting. With 

advancements in Computer Vision, much of these challenges will be mediated. However, 

as it stood, the status quo of HRI revealed a certain lack in robot autonomy and capacity. 

There can be two distinct approaches to address this limitation. The first is to improve 

Perception, Planning and Control algorithms. This has been the traditional approach. With 

each improvement, some aspect or problem is tackled and overcome. Incrementally, the 

robot equipped with such algorithms would build capacity and improve its ability to act 

independently. We call this approach hand-coding, hand-programming or manual-

programming because solutions are developed to specific instances. The second approach 

is to equip the robot not with state-of-the-art algorithms but with some capacity to develop 

them. Robots that learn (or the computers underneath) would autonomously develop their 
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own Perception, Planning and Control capabilities. Consider the case of humans as an 

example. Children, generally, have a similar capacity to acquire visuomotor skills but end 

up developing differently based on many factors including personal experience. The 

second approach would resemble this but in robots instead of children, or in “child robots”. 

We call it Experiential Learning. 

Let us examine a case where such Experiential Learning would be a valuable inclusion. 

Annually, a robot soccer competition called RoboCup is organized. Teams of researchers 

from many universities and labs around the world participate in this prestigious 

competition with their team of NAO humanoid robots. The goal is simple. To win, the team 

must defeat other teams by co-operating to defend their goal and score goals of their own. 

In each iteration of RoboCup, the competition gets tougher. Playing conditions are adjusted 

to be more like those in real soccer games. Thus, organizers give the researchers more 

challenges to their teams. For example, in RoboCup 2016 the playing field flat carpet was 

substituted with a rugged carpet that mimics trimmed grass. The color-coded ball, which 

is easier to perceive, was substituted with a regular soccer ball. In such ways, researchers 

are forced to deal with these environmental changes. 

Through my participation in RoboCup with a team from Taiwan, it was clear why hand-

coding is a limited as an approach to realize robots that will perceive and interact with their 

environments. The difficulty posed by a rugged carpet as opposed to a flat one should not 

be understated. The mobility of the NAO robot was significantly hindered, and even 

blocked, as a result. The robot would trip and fall often when making sharp turns. The 
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research team had to re-tune and update parts of their control algorithms. Even more 

troublesome was the change from a color-coded ball to a normal black-and-white one. The 

Computer Vision algorithms had to be discarded because the new ball would many a time 

blend in with the white field lines, leading to the robot losing “sight” of the ball. Again, the 

team needed to develop new algorithms that would work with this new situation, a time-

consuming process. Here the limitation of the hand-coding approach was apparent. 

The mission statement of RoboCup is to advance state-of-the-art in Robot Perception, 

Planning and Control, and to one day face a team of the best human soccer players; and 

perhaps defeat them. The reasoning is simple, keep increasing the challenge of the 

environment until robots play in actual real-world conditions. The organizers expect to 

reach that level by 2050, in 30 years. 
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FIGURE 2 NAO HUMANOIDS PLAYING SOCCER AT ROBOCUP 2016, LEIPZIG, GERMANY. 

I TOOK THIS PHOTOGRAPH WHILE ATTENDING ONE OF THE SEMI-FINAL MATCHES. 

MY TEAM WAS ELIMINATED IN THE LEAGUE STAGES OF THE COMPETITION. 

Other examples that defined our motivation to work on Robot Learning were the 2015 

DARPA Challenge, and the Fukushima Nuclear accident. In the DARPA Challenge, 

humanoid robots were expected to accomplish several tasks in a structured, yet 

challenging, environment. Those tasks included getting out of a car, opening a door, 

climbing stairs and operating a valve. Needless to say, the robots failed in many ridiculous, 

and sometimes hilarious, ways. Though these robots were prepared by world-class labs, 

tested and programmed. None of those robots was learning, however. All were “set”, fixed, 

rigid, pre-programmed. 
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FIGURE 3 HONDA'S ASIMO ROBOT DANCING IN DISNEYLAND. [3] 

In the aftermath of the Fukushima nuclear accident, some questioned why the popularized 

Honda robot ASIMO wouldn’t contribute to cleaning the rubble or search-and-rescue 

efforts. The company responded that despite its appearance of “intelligence”, ASIMO was 

not prepared to operate in that environment [4]. The robot would shake hands, approach 

people, and seem to comprehend simple conversation. However, it was limited by what it 

was programmed to do. In other words, by how “we” programmed it. 

For all those reasons, in this inquiry we want to pursue a different approach. We want 

robots to learn autonomously from experience. We want robots to be able to self-improve 

so that “our programming” is not the explicit constraint to their learning, but the quality of 

the learning algorithms themselves. Whatever learning algorithm(s) we will come up with 
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it will also have limitations, it will not be able to learn everything. As such, we will need 

to constantly develop and improve those learning algorithms. Therefore, our reasoning in 

following the second approach is not to eliminate research, allow the robots to learn 

everything, raise our hands and dub our “job” complete. Our reasoning follows that of Deep 

Learning (DL), which we will outline in the following paragraph. 

Deep Learning was popularized by the ability of a Deep Neural Network (DNN) to win the 

ImageNet image classification competition. The DNN outperformed all the competitors by 

a relatively strong margin. The approach of DL was simple. The features of the images 

were not “hand-coded” into the classifier. Rather, the classifier “learned” the image 

features automatically. In hindsight, we conclude that the amount of “feature engineering” 

that can be put into a classifier by humans does not compare at all to what the classifier can 

learn on its own through DL. Instead of engineering the classifier, DL researchers focused 

on engineering the learning algorithm and the neural network. To summarize, autonomous 

learning from the image dataset far surpassed what humans can put into the classifier. 

Our reasoning behind adopting the second approach, i.e. Robot Learning, follows a similar 

path. We reason that what the robot can learn on its own will far exceed what we can 

“program” into it. Even if at the moment the best learning algorithm cannot match the 

performance of a mediocre “hand-engineered” algorithm on a specific task, in the long run 

this would not be the case. Again, we appeal to the case of Deep Learning vs. feature-

engineered Computer Vision approaches. 
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PROBLEM STATEMENT 

PROBLEM DEFINITION 

Typically, robots have been designed following a task-oriented approach. The system 

fulfills a specific, usually narrow purpose. If any unforeseen changes occur to its operating 

environment or conditions, the system usually fails to achieve its goal.  

In addition, following task-oriented approaches usually yields systems that are incapable 

of learning and adapting. The solutions do not extend to other domains. For example, the 

robotic assembly line in industry has been around for decades. These robots did not 

contribute to more advanced robotic solutions directly, as their implementations are 

application-specific.  

Finally, when designing robots to operate in civilian environment that is incredibly 

complex and dynamic, hand-coded solutions can be a limiting factor. The limitation is 

latent within the environment. We illustrated the example of self-driving cars earlier. If 

those cars were incapable of learning and adapting to different circumstances, they would 

unquestionably fail to drive on roads. The reason is simple, the engineer cannot foresee 

every single possible scenario that the environment would inflict upon the system.  

Summary: Hand-engineering approaches limit the generalizability and scalability of 

robotic solutions. We see it as a limiting factor to the prevalence of useful robots providing 

services in civilian life. 

  



Chapter 1: Robot Learning 

 

 

 

21 

ELEMENTS AND SCOPE 

Considering the previous discourses on the nature of the research problem, we use this 

section to elaborately identify its elements and scope, culminating in a formal problem 

statement. It is important to identify what lies in the scope of this inquiry and what does 

not, due to the subtle and engulfing character of the problem. 

We begin with an outline of the elements of the problem. The first element is the fact that 

a Robot is involved. The robot should take a physical form, yet there are also “virtual” 

robots that exist in simulation. In fact, there is no cutting clear definition of what a robot is 

and is not. We define a robot to be an embodied entity with ability to directly affect its 

immediate environment. Being “embodied” distinguishes it from a cloud computing 

intelligence, i.e. a robot has to exist in a bounded mobile form not as part of an abstract 

entity. The latter part of the definition distinguishes a robot from a computer. The latter 

cannot move and affect the environment directly, e.g. push an object, despite being 

contained. An excellent discourse with more detail on this subject can be found in [5]. Our 

definition also brings forth the notion of Agency. The robot has agency within its 

environment. It also has varying levels of autonomy. We shall not define the different 

levels of autonomy and how they are distinguished from one another. However, it will 

suffice to state that in our study, we are only concerned with autonomous learning. That is, 

the robot should be able to do the act of learning independently of human participation. 

However, this does not mean that we should not avail ourselves of human expertise. Indeed, 

the robot learner can still make use of human “instruction” or “participation” whilst 
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operating independently. If a robot asks for a humans’ evaluation or judgement, it does not 

entail that the robot lost its autonomy. 

Having thus defined what a robot is for our purposes, we turn our attention to learning. The 

robot must learn. We follow the same definition of Learning as in [6]. Learning is defined 

as an improvement of some performance measure P over a task T with experience E. 

Whatever constitutes “experience”, “improvement” and “task” we don’t attempt to define 

explicitly. Rather we use the intuitive and apparent meaning of those terms. It should be 

noted that in this context, however, learning is not the task. The task is not the learning 

process itself, but rather some external assignment/problem that the robot tries to do/solve. 

Thus, if we want the robot to walk then walking itself is the task, not learning how to walk. 

With those two elements defined, we now presume to define their interaction. How does 

being a robot affect the process of learning? And how does learning affect the behavior of 

a robot? First, recall that a robot as we defined must feature embodiment. This embodiment 

allows a robot to gather data from interactions with its environment. The gathered data 

provides the learning algorithm with a constant supply of information that can possibly be 

utilized in the learning process. In other words, being embodied potentially allows the robot 

to be an active data “gatherer” for the learning algorithm. 

Second, being a learning entity means that the robot should not abandon a task just because 

it is presently unsolvable. The robot should realize that it still can solve the task or improve 

its present solution. Whether the robot’s persistence continues indefinitely or not should 

depend on the nature of the task and the purpose of the robot. Some tasks by nature are 
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transient and will force a limit on how much the robot will spend solving them. Other tasks 

are open-ended and may consume the robot’s time/energy resources entirely. 

This of course cannot continue indefinitely, thus a cap on how long the robot will persist 

is required. This is not a cap on learning, i.e. the robot should still learn. Rather it is a cap 

on how much the robot will spend attempting to solve a task or improve its solution. 

Summary: Robots are embodied agents that can demonstrate improvement at performing 

a task by attempting different things over time, i.e. learn. Learning and Embodiment affect 

each other in different ways. Therefore, care should be taken when designing a system that 

facilitates robot learning. 

CONCLUSION 

We presented on how hand-engineering approaches to providing robotic solutions are 

unscalable and limit the prevalence of useful robots in civilian life. We discussed the core 

motivations of this thesis, and why robot learning should be the main line of focus. This 

helped give some perspective and define a scope around the problem. 

A solution to the hand-engineering approach would be a method to develop robots that are 

capable of learning. This method should be focused on learning in the real world, and be 

platform-agnostic so that it’s not for a particular type of robots. I hypothesize that such a 

method with these characteristics will contribute to eliminating the need for hand-coding 

approaches by unlocking robot learning. This method should be validated via experimental 

studies, which should generate new insights and pave a path for advanced implementations.  



Chapter 2: Experiential Robot Learning Method 

 

 

 

24 

CHAPTER 2: EXPERIENTIAL ROBOT LEARNING METHOD 

Following the discourse in the previous chapter there is a clear definition of what the 

problem is, as well as the characteristics of a potential solution. To address the limitations 

of hand-coding approaches, an alternative method should be proposed. This method would 

outline how to develop robots, according to what principles and using which techniques. 

Through a series of observations and deductions, we propose a method inspired by human-

learning for creating developmental robots. This method, which we call Experiential 

Robot Learning (ERL), has two component an Approach and an Implementation. We 

draw reference from the literature in [7]–[9]. The ERL method addresses the issue of robot 

learning on two levels, a high level and a lower level (of abstraction). The ERL method 

outlines goals which we aspire our robotic solutions to resemble, such as being Scalable. 

The Approach component addresses the higher level. It outlines the principles according 

to which robotic solutions should be developed. These principles create a general frame of 

reference. If need be, perhaps due to the available technology, one may deviate from them. 

The ERL Approach should be adhered to as closely as possible, regardless, in order to 

produce the desired effect of addressing the limitations of hand-coding approaches. 

The Implementation component addresses the lower level. It prescribes the use of Deep 

Neural Networks and how they can be implemented. Neural Networks (NNs) of themselves 

don’t have bearing on ERL. If there is an alternative that retains the desirable characteristics 

of NNs, there is no prohibition to use that instead. We, however, have not found such an 

alternative. The experimental studies that will follow evaluate the use of NNs for ERL. 
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ERL APPROACH 

Instead of articulating a rather lengthy and possibly confusing discussion, we elected to 

define the ERL Approach through a series of bullet-points. The bullet-point format is 

chosen to allow the reader to survey the different items with speed. Under each bullet-point 

a brief discussion is presented so as to capture its essence concisely. We do not assign a 

significance to the order of appearance of these bullet-points. Again, the items listed below 

constitute principles to which robot developers should adhere as closely as possible. There 

are no hard requirements on what must be followed, and what can be good-to-have. The 

scope of the problem we are addressing prohibits imposing such restrictions. 

PRINCIPLES 

1. ERL is Open-ended Learning 

Open-ended learning means we are not targeting a specific skill for the robot to learn. Nor 

is there a problem the robot can solve. Furthermore, it means there is no beginning or end 

to learning. It is a continuous and gradual process. We aim from this that the robot can 

maximize its potential to learn through experiences. It means, as well, that a robot 

immersed in a certain environment can acquire different skills than an identical twin, 

immersed in a different environment. 

2. ERL is horizontally and vertically Scalable  

Scalability is a key component to our approach as we believe it is a fundamental limitation 

in hand-engineering approaches such as those used in the RoboCup competition. The 
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solutions yielded by task-oriented paradigms are usually too-domain specific. That is, 

solving one problem does not lead to solving another. On the other hand, if the approach 

is scalable then it could potentially solve a myriad of problems.  

To tie this back to robotics, consider the following. If a walking algorithm can only function 

for smooth terrain, it means that another algorithm needs to be found to traverse rough 

terrain. In contrast, if there is a general walking algorithm, like the one human beings 

possess (in general), then it can solve traversing smooth, rough and any other terrain 

traversable by humans. This is what we attempt, finding a general rather than a domain-

specific solution. If our endeavor is successful, we do not solve the problems of Robotic 

Vision singly, or Robotic Motion singly. We would have solved much more than single 

problems.  

We identify two dimensions to scalability:  

a. Horizontally Scalable 

By this we mean that the same approach is applicable across-domains. We define 

domains here as learning different modalities such as Vision, Speech and Motion. 

Ideally, we want the same approach to be applicable when learning natural language 

as when learning to perceive different objects. 

In addition, we also want the method to be applicable across problem/application-

spaces. That is, to use the same approach when the robot is learning to navigate a 

human indoor environment as when it is learning to grasp objects. This saves the 

engineering effort of trying to solve every single problem separately. 
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b. Vertically Scalable 

The robot/agent needs to be able to improve with time its functions/skills. That is, 

if at first it learns how to walk a wobbly walk, it must learn to walk better and better 

with further experience of Walking. Ideally, it can then learn to walk on uneven 

surfaces and learn to regain balance if tripped or pushed. 

Again, there are prime examples of this problem being solved very well using a 

hand-engineered method such as Google’s Atlas [10]. That system did not learn 

how to walk or perform functions autonomously. It has been designed to do many 

tasks such as carrying objects, and designed to do them very robustly. However, 

again, due to this approach, it cannot learn new concepts or skills. It is an ingenious 

application of bleeding-edge control theory.  

3. ERL is Platform Agnostic  

The developed solutions should be applicable to robots of different shapes and capabilities. 

In this way, we are not again just hand-engineering a solution for a specific platform.  

4. ERL is Hierarchical/Accumulative  

The learning is accumulative in a similar manner to a child. The child must first learn about 

obvious concepts as discussed earlier, and then through those be able to learn more 

complicated concepts and abstractions. The method also defines that learning can be 

hierarchical in the sense that the more abstract concepts may require fusion of learnings 

across modalities. Learning to grasp an object requires first learning to recognize objects 

and learning the grasping motion, separately.  
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Being hierarchical/accumulative should not be confounded with a hard requirement on 

accumulation of learnings in a linear manner. Learning a new task may possibly degrade 

performance on an older task. The robot may need to re-learn the older task. Being 

hierarchical/accumulative means that in order to unlock the potential learning of “more 

advanced” tasks, the robot may first need to learn its constituents.  

5. ERL is Physically-Experiential 

Learning is stimulated and induced by physical experiences. That is, the robot/agent must 

be immersed in the physical environment and learn through this immersion. Some 

experiences will be more stimulating than others. For example, a robot’s perception would 

benefit from exposure to different environments rather than being confined to a single 

room. In this context, interaction with a human, or other elements in the environment, is 

also an experience; possibly the most important one. The range of experiences will always 

be subjective as some experiences the robot/agent may not be able to learn from. For 

example, a visually-perceptive robot will not benefit from auditory experiences. 

LIMITATIONS 

We also anticipate the following limitations to developing learning robots. These items 

should be pondered and regarded before and during the development process. They directly 

affect the type of problems that can be solved with ERL, and the manner in which they’re 

solved (through experiential learning). 

1. Computational Resources limit ERL 
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The computational requirements to perform the function of learning may surpass the 

capacity of current embedded systems. It means that the computations may need to be 

executed remotely on a server. This is an emergent approach called Cloud Robotics. 

Otherwise, the scale of the learning system would need to be reduced. These considerations 

also include the battery capacity and power requirements of the robotic solution. 

2. Offline Learning limits ERL, but may sometimes be necessary 

Online learning means that the learning process is happening as the experience is 

unfolding. For example, when a child attempts to touch a hot object, the learning is 

happening as the hand approaches the object and after it, i.e. throughout the experience. 

Offline learning means that the learning happens after the experience has finished. An 

example would be if a robot explores a space, then returns to a human-coach and attempts 

to label objects it did not recognize. The learning of the new objects in this sense occurs 

after the robot had encountered them. To clarify: humans, for example, learn online during 

their waking hours and offline during sleep. The type of “learning”, i.e. the expected result 

of learning, depends largely on whether it occurs online or offline. A human may learn 

online to play Tennis and adjust their grip. Yet it may be that only during sleeping does the 

mind reflect on the events of the day to generate insights; the events “sink in” as one may 

colloquially say. 

Robots that learn from experience should do most of their learning On-Line/On-site/On-

the-job. This is learning-while-doing. The amount of Offline learning, as described above, 

should be eliminated because it reduces the ability of the robot to learn throughout the 
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experience. It may be necessary though. Some tasks, as we’ve presented, may be 

unsolvable without offline learning. 

3. Lack of Responsiveness limits ERL 

This subtle limitation pertains to online learning. We use responsiveness according to the 

application at hand. For example, we interact with our mobile devices in real-time. Even 

though all the events are discrete and take calculable time to occur, we perceive a swipe on 

the screen as a generally responsive experience. It responded quickly to the human gesture. 

A robot learning online, can still be unresponsive. For example, due to computational 

demands, learning may take minutes to perform the necessary computations. This would 

be perceived by a human as an off-line learning process, even if it is not. If the goal 

involved conversing with the robot, such lack of responsiveness would render this goal 

impractical. Another case would be if the robot was required to interact with non-stationary 

objects. If the robot’s learning systems can’t respond quickly enough, the task (and 

consequently the potential for the robot to learn) would fail.  

Therefore, in such a way, the ability to respond timely must be considered as a limitation 

to what the robot can learn. Whether the robot’s learning process occurs “responsively” or 

not is what we mean here, depending on the application. 

4. Supervision limits Scalability of ERL, but may sometimes be necessary  

The presence of a teacher, a guide or a coach for the robot is a major obstacle to its self-

propelling potential. Effectively, the robot becomes bound by what the human can/will 
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teach it rather than being an independent entity. The robot also has to be capable of 

receiving these teachings from the human, and use them effectively. To counter this, there 

are approaches of unsupervised and semi-supervised learning. Those topics of research are 

less mature than supervised techniques [11]. 

The notion of robot schooling has been introduced before [7]. This notion assumes that 

robots with little to no learning will require more supervision from human teachers. As the 

robot matures and gains knowledge about the environment, the amount of supervision 

needed decreases. This appeals to the aforementioned characteristic of ERL being 

hierarchical. The robot would maintain a generally-increasing trajectory of self-

sufficiency.  

5. Unpredictability limits ERL and makes it less robust 

Another limitation to the ERL Approach is the unpredictability of the outcome. It is 

unknown what the robot can or can’t learn. It is unknown how long learning would take. It 

is unknown what the interaction will be when attempting to fuse different modalities or 

skills. It is unknown how much, if at all, learning at the early stages of the robot’s 

development affects learning afterwards. Being experimental by definition, we don’t 

provide theoretical guarantees on convergence. 

ADDITIONAL LIMITATIONS 

From the use of neural networks, and training techniques such as Deep Learning, arises 

four additional limitations to ERL, as outlined below. 
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6. ERL is limited by the lack of Knowledge Transfer 

It is unclear whether learnings can be transferred or not. In one way, it may be possible, 

perhaps by importing the weights and network structure of the network that has learned 

certain skills in different environments.  

In another way, it may be impractical because the imported network has adapted to the 

particular agent/environment.  

This argument is similar to the topic of Sim2Real, where a network (controlling an agent) 

first experiences a simulated environment, then it is imported to a different situation 

(arguably a physical agent in a physical environment). There is typically a “reality gap” 

that would need to be bridged. To be clear, we’re not advocating Sim2Real. It’s only 

mentioned here in attempt to illustrate an example of how Knowledge Transfer may work. 

If importing the network’s weights/architecture is successful cross-domain and cross-

environment then this may potentially save a lot of time/effort. We need only one agent to 

know how to walk successfully, for example, and then it would mean that all our robots 

can walk. Else, all our robots would need to learn how to walk individually. In this way, 

ERL is limited by the lack of Knowledge-Transfer. 

7. ERL can be limited by the available Data 

Deep Learning and similar techniques are known to be bound by the amount of and entropy 

in the data. If data is limited, learning also becomes limited. In a sense, data resembles 

experiences, or rather data encodes experiences. Entropy in the data refer to what the data 
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encodes in relation to the representation capacity of the neural network. If the 

representation capacity is high and the data itself is quite correlated, then there is great 

potential for overfitting. The network simply memorizes sequences and patterns rather than 

learning the features needed to generalize to new experiences. This of course depends on 

whether Data is needed at all for learning how to solve the task 

8. ERL can be limited by insufficient Pre-training 

As mentioned earlier, the network may need to be pre-trained so as to cognitively bootstrap 

the agent. The amount of pre-training, depending on the task, may be insufficient for the 

robot to learn from experience. For example, in a face detection task, if the network is not 

sufficiently pre-trained, then the robot would not be able to find a solution. In such a way, 

pre-training or lack thereof may become a limitation to ERL. 

9. ERL is limited by the absence of Reasoning 

We do not believe nor claim that training neural networks with state-of-the-art techniques 

is currently able to deliver any measure of reasoning. Therefore, we do not target cognitive 

reasoning as one of the goals/skills for our robots to achieve/learn. In addition, to counter 

the effect of lack of reasoning, we can build state-machines to transport the robot through 

the different phases of learning. The robot/agent decides the transitions autonomously, 

according to the pre-defined behavioral rules. 

This constitutes a significant obstacle to learning from experience, because the robot would 

arguably be able to learn much more effectively should it be able to “reason”. Engineering 
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clever systems/state-machines instead to anticipate possible outcomes and direct the robot 

accordingly is also a limitation to ERL scalability. 

ERL IMPLEMENTATION  

In the previous section we have defined the ERL Approach through a series of bullet-points 

of principles and limitations. What remains is to define how it would be implemented. The 

ERL method leverages Deep Neural Networks to realize the learning behavior. DNNs have 

attractive properties that are conducive to the ERL approach. The robot becomes a 

cognitive agent, an embodiment or physical manifestation, by which the neural network 

improves. The improvement takes place by autonomously having the network modify its 

architecture and/or weights in response to learning signals.  

For example, if a Convolutional Neural Network (CNN) learns a new class of objects, it 

expands the last Fully Connected (FC) layer and retrains itself to recognize members of the 

new class. Such is the autonomous learning behavior we are targeting; and believe can be 

realized with neural nets. This flexibility is indispensable to our method. In a way, it is not 

unlike the brain reinforcing/creating connections between neurons to solidify new 

learnings. 

The use of Neural Networks is not particular to ERL in the sense that should another 

learning structure prove itself more attractive, we can readily use it instead. That alternative 

structure needs to be conducive to the Approach of ERL at least as well as NNs. The key 

characteristics of NNs are its malleability and tractability.  
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It is theoretically proven that neural networks are universal function approximators [12]. 

This means that they can be used to compute any function whatsoever. Neural Networks 

are also simple enough in structure to be simulated by today’s hardware with up to 109 

parameters. This computational tractability is crucial to performing experimental studies. 

NEURAL NETWORKS INTRODUCTION  

The concept of computational neural networks was devised many decades ago. However, 

from the 2011 ImageNet competition submission by Alex Krizhevsky, commonly called 

AlexNet, they received newfound attention [13]. Perhaps one of the earliest and most 

interesting works in the domain was that of Yann LeCun on handwritten digit recognition 

[14]. He presented an architecture of a type of Neural Networks called Convolutional 

Neural Networks (CNNs), or ConvNets for short. It is based on the operation of convolving 

input images with “filters”.  

Each filter is typically a few pixels in size, and is comprised of random distributions. As 

the filter is convolved with the image, patterns either emerge or are suppressed. This 

depends on the shape/distribution of the filter and the image. In this way, the first few 

layers produce abstract ‘maps’ of curves and edges. Those maps are then combined to form 

different shapes, resembling the first steps to recognizing entities. Eventually, the 

distinguishing features of the entity in question start emerging after a few convolutional 

layers.  

Figure 4 provides an example of those maps. Most prominently notice the map on the upper 

right corner. It clearly is activating with the body shape of the horse. The map on the upper 
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left corner is reacting to the background foliage. Other maps seem illegible. Note also that 

there is a map that is entirely black. This means that the image of the horse does not 

correspond with whatever feature it is responsible to detect, if anything at all. Some 

maps/neurons/nodes in the ConvNet are redundant. 

 
FIGURE 4 ACTIVATION MAPS’ SAMPLE FROM A HORSE-RECOGNITION CNN. THE MAPS 

SHOW HOW NODES/NEURONS FIRE UPON DETECTING DIFFERENT FEATURES SUCH AS 

THE HORSE’S BODY ON THE UPPER RIGHT. 

NEURAL NETWORK TRAINING  

Training a network means adjusting the weights of the connections between the 

nodes/neurons to enable a function. The function of the network is implicitly encoded in 

what is called a loss function. It thus becomes an optimization problem in an extremely 

high-dimensional space to find global minima.  
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When training a neural network, one can start with a random set of weights or import 

weights from a pre-trained network. The values of those weights lead the network to 

produce an output when given an input. In a supervised learning context, the output is then 

judged either correct or incorrect. In an unsupervised learning context, it is simply accepted 

as is. However, a loss function is still computed for unsupervised paradigms such as Auto-

encoders. The loss function there, is not a label on the correctness of the output. It is the 

distance between the produced output and the input. The criteria by which the network is 

trained, i.e. the loss function, is different for each type of neural net. Yet, the goal remains 

the same, i.e. optimizing the weights (and biases).  

Data is commonly split between training and validation sets, and less commonly there is 

also a test set. The training set is what the network is exposed to during training. An epoch 

is one single pass over all the data in the training set. 

For the solution to generalize, the validation set is used to evaluate the model. After each 

epoch, the loss is calculated for both the validation set and the training set. Both values 

reflect different meanings. Training loss is what is used to train the network. Validation 

loss reflects how well the solution generalizes to instances beyond the training data. The 

fear is that overfitting might occur, given the usually substantial entropic capacity of 

modern neural networks. It would manifest with the network’s performance being 

exceedingly well for the training set, while stagnating for the validation set. Stagnation 

occurs when the accuracy stops increasing, or similarly when the loss stops decreasing, 

after each epoch. Overfitting usually implies that the network failed to learn the core 
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features of the data. It could have different meanings, though, such as indicating a problem 

with the data itself. The test set may be used as an extra step to evaluate the generalization 

capability of the trained network. The test set is generally exposed to the trained model 

only once after training is complete. It can act as a final assessment of generalizability. 

BACKPROPAGATION  

Training is traditionally done by error backpropagation. The basic algorithm for this is 

called Stochastic Gradient Descent (SGD) [15]. By computing the gradient, the direction 

in which the weights are adjusted is known. Recall that the solution space is extremely 

high-dimensional. The solver is minimizing the loss function, computed after each epoch. 

Loss is the distance between the current output and the desired output. SGD is thus used to 

determine in which direction the solver moves. This is not the only technique for training, 

but we discuss it here since it is the most prevalent. 

There are more complex algorithms than SGD, such as ADADELTA [16] and ADAM [17]. 

They incorporate concepts such as Momentum and Learning Rate adjustment. In short, 

there are more features to reaching the solution than merely computing the gradients.  

Note that the output is a nonlinear function computed over the entire network. That is, 

output is the nonlinear sum of the weights (and biases) in the network with respect to the 

input. Nonlinearity is essential, otherwise the solution space collapses. Nonlinearity is 

introduced using Activation Functions. At each layer in the network, an activation function 

on the output is used, i.e. multiplied. Thus, the neural network constitutes an affine 

transformation between the input and the output. 
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Rectifier Linear Units (ReLUs) are commonly used in modern CNNs. They have been 

shown to work best as the depth of the network increased. Weights that are less than zero 

are set to zero and positive weights maintain their value. There are explanations for this. 

Also, there are other concepts pertaining neural nets such as Vanishing and Exploding 

Gradients [6]. For the sake of succinctness and focus, however, this will conclude the 

exposition on the details of neural networks. 

NEURAL ARCHITECTURE 

There are many types of neural networks. We believe we can leverage different types for 

different kinds of learning. For example, for learning to recognize objects usually CNNs 

are used. To learn motion sequences, we believe Recurrent Neural Networks (RNNs) can 

be used. In this way, to learn each modality engineering a certain solution is necessary.  

Though seemingly similar, it is different from the hand-engineering approach of learning 

features. In our method, we engineer the solution. In the hand-coding approach, the 

problem is engineered to extract features which could then be used to produce a solution. 

The affordance of techniques such as Deep Learning is that features are autonomously 

learned [6]. 

The network, if pre-trained, would initially act as a cognitive bootstrap for the agent. This 

means that it needs to reflect some level of knowledge of the world before it is ready to 

experience it. Otherwise, the solution space will likely be too wide for any convergence on 

a skill or knowledge. In addition, the cognitive bootstrap acts as evidence that the network 

is indeed capable of learning the desired modality. 
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Modern neural architectures typically feature a large number of parameters, which can go 

up to 109 parameters. This creates a valuable opportunity for the robot to learn given the 

immense representational capacity. It is also alerting because such networks take longer to 

train, and constitute a large search space for optimization algorithms. 

 

FIGURE 5 CHARACTERISTICS AND LIMITATIONS OF ERL 
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FIGURE 6 EXPERIENTIAL ROBOT LEARNING IS COMPOSED OF ITS APPROACH AND 

IMPLEMENTATION 

 

Summary: We propose Experiential Robot Learning to create developmental robots 

leveraging Deep Neural Networks. The method is designed to work around the 

shortcomings of hand-design approaches. ERL consists of an Approach component, to 

set the design principles and define a vision, and an Implementation component, to use 

modern DNN architectures and training techniques. We presented the 5 Characteristics and 

9 Limitations that define the ERL Approach, as summarized in Figure 5. An overview of 

ERL is depicted in Figure 6. 

Thesis statement: Neural Networks trained according to the Experiential Robot Learning 

(ERL) methodology provide a viable path to the solution of robot rigidity resulting from 

hand-coding approach. 
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SUCCESS CRITERIA 

We are undertaking existential, investigative cross-domain research. The primary concern 

is whether our propositions lead to learning or not. That is, do the experiences improve the 

robots’ knowledge or not. How we define learning/improvement is specific to each 

experiment. Due to the outlined nature of our work, we constructed a proxy metric to assess 

the attractiveness of implementations following our method (ERL). We call it the 

Attractiveness Score (AS). There are multiple criteria against which to evaluate the 

attractiveness of robots developed following our method, outlined below. We combine 

these criteria in the AS to give a measure of how well the implementation generally meets 

the principles of ERL. Next to each criterion is an AS ‘weight’, assigned according to its 

importance. 

1) Demonstrating the capacity to learn or acquire a new skill (AS: 5) 

This is the overarching measure of success. Therefore, it has the most weight in the 

Attractiveness Score. The robot needs to demonstrate some capacity of learning 

experientially. 

TABLE 1 ATTRACTIVENESS SCORE FOR LEARNING 

Achievement Mark 

Robot demonstrates learning capacity 5 

Robot fails to demonstrate learning capacity 0 

 

2) Time taken to achieve a new learning (AS: 2) 

It takes significant time for Reinforcement Learning approaches to converge on a 

policy[18]. In simulation, it means little and less because the program can run 
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indefinitely and arbitrarily fast. However, in a real-world environment, it would be 

folly to expect an agent to undergo an experience or try an action tens or hundreds 

of times before learning. Therefore, an important measure of attractiveness is how 

fast an agent can learn. 

TABLE 2 ATTRACTIVENESS SCORE FOR CONVERGENCE 

Achievement Mark 

Robot learns in first trial 2 

Robot learns in 2-10 trials 1 

Robot learns in more than 10 trials 0 

 

3) Time taken to pre-train/bootstrap the agent (AS: 1) 

From our previous discussion, we know that Neural Networks require pre-training 

to perform functions such as classification. If it takes a day or more to train a 

network so that it can support the agent, this will eventually become a constraint as 

the network expands and the agent becomes more intelligent. 

TABLE 3 ATTRACTIVENESS SCORE FOR PRE-TRAINING 

Achievement Mark 

Pre-training takes less than 24 hours 1 

Pre-training takes more than 24 hours 0 

 

4) Effort taken to gather data/bootstrap the agent (AS:1) 

If the datasets required to train the neural networks must be built from scratch then 

the time taken to do so, and effort, will become a limitation. For example, consider 

if the network needed 30 minutes of motion-logging data. That would not become 

as large of a hindrance as if it needed 30 hours’ worth of data. There are tasks for 
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which there are datasets available online, most notably Image Recognition. In 

contrast, learning a concept as Object Reachability, as we conceive it, would require 

compiling a labelled dataset. 

It is not always clear how to measure the time required to compile a dataset. For 

example, consider a dataset of online cultivated images. One may get those images 

through an API in seconds, or get them through manual download one at a time. 

Each method has its advantages, and one may be required for the task at hand. It 

would be difficult, however, to accurately measure the time it took to download and 

curate those images by hand. For most practical purposes, we will assume that if 

the task of compiling a dataset spanned more than a day, then it took more than 24 

hours regardless of the actual time consumed. 

TABLE 4 ATTRACTIVENESS SCORE FOR DATASET COMPILATION 

Achievement Mark 

Dataset takes less than 24 hours to compile 1 

Dataset takes more than 24 hours to compile 0 

 

5) Practicality of model being deployed on an embedded system (AS:1) 

We are well-aware that deploying neural networks is computationally demanding 

on even the most advanced embedded systems. Practicality of the implementation 

refers to how plausible it would be to deploy the systems fully on the embedded 

boards, without a backend. This is a measure of attractiveness because the goal, 

ultimately, is to have local intelligence, without relying on external resources. 
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The constraints imposed by embedded systems on software sometimes require the 

designer to rethink the design. This measure gives an incentive to the designer to 

optimize his/her design to run as efficiently as possible. 

TABLE 5 ATTRACTIVENESS SCORE FOR DEPLOYABILITY 

Achievement Mark 

Model deployable on embedded platform 1 

Model not deployable on embedded platform 0 

 

In addition, since our work is concerned with developmental robotics, it is conceivable that 

a measure of lifetime learning is included in the attractiveness score. It would address the 

concern of whether learning stagnates after a period. However, the nature of that concern 

presumes there is an already-functioning system. That is not true, of course, least of all for 

this work. We therefore do not include such measure.  

Success thusly is defined as obtaining an attractiveness score of more than 5. The weights 

have been designed so that this is not possible unless the robot achieves learning. That is, 

the sum of all the criteria besides learning is 5.  

Summary: We present a proxy-metric to capture how ‘good’ an implementation following 

our method is, it is called Attractiveness Score (AS). The implementation must score more 

than 5 points to be considered a success. To achieve a passing score, the agent must 

demonstrate learning through experience. Thus, the AS scale captures the essence of ERL 

of learning from physical experiences.  



Chapter 2: Experiential Robot Learning Method 

 

 

 

46 

LITERATURE REVIEW 

We turn our attention to what others have done with regards to the problem, as stated in 

the earlier sections. By consulting the literature, it is apparent that so much attention has 

been devoted in the past few years to neural networks as a vehicle for learning. The term 

“Deep Learning” describes the field/technique of applying deep neural networks to 

machine learning tasks, mostly in a supervised manner using gradient-based optimization 

algorithms and error backpropagation. The attractiveness of neural networks arises from 

its ability to learn features in data automatically. This is also called representation 

learning, i.e. finding representative features in data. The representation capacity of neural 

networks refers to the volume of features that the network is capable of learning. A network 

with a higher representation capacity can learn more features, and vice versa. Thus, data 

with complex features requires networks with a sufficiently high representation capacity 

for learning to occur. 

There are other implementations of learning besides neural networks such as Support 

Vector Machines (SVMs), Random Trees and linear regressors. Each of those 

implementations has its advantages and disadvantages. However, none match the 

representation capacity of neural networks. We know this from the field of Computer 

Vision (CV), where many techniques (e.g. SVMs) were used before neural networks. 

However, when the potential of neural networks was tapped, it became apparent that all 

were subpar in comparison. Thus, nowadays in CV neural networks are the primary 

research focus. For those reasons, we shall only focus on neural network implementations 
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of learning. There is a vast literature on robot learning, and learning in general, preceding 

the use of modern neural networks. It would be a daunting task, well beyond the scope of 

this section, to cover it all. 

This section will hopefully clearly convey the novelty of our approach and how it compares 

to similar or related works. The section is divided into two subsections each conveying a 

different aspect about the research.  

We define 2 dimensions of uniqueness to our method. Some works will overlap with our 

Implementation but not the Approach, and vice versa. No other work features a method or 

proposition as Experiential Robot Learning, to the best of our knowledge. A presentation 

on what the dimensions of uniqueness are, is given below.  

DIMENSIONS OF UNIQUENESS 

APPROACH  

1) Motivation and Purpose  

We spent a large amount of effort outlining the vision, problem and intention for 

our method. Our motivations guide and shape the solutions we build. In this sense, 

other works that have followed the same recipe but had different motivations would 

more than likely produce solutions quite different to ours. ERL is rooted in the 

motivations and purpose we outline and cannot exist without them. 

 

2) Scope and Context 
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We defined a broad scope for ERL. We don’t intend to apply it to have robots learn 

a skill or modality, grasping for instance. This is a critical dimension. The scope 

for which the method is proposed deliberately puts it at a certain high level of 

abstraction. In addition, we specify the context within which we perceive ERL can 

be applied and the expected outcomes. For example, we target developing methods 

that can be applied to different robot morphologies i.e. being platform-agnostic. 

Again, this is an important dimension of uniqueness. Other works may target 

certain contexts/scopes such as human-centric robots would likely produce 

solutions that are distinct from ours at a high-level. It is more challenging to develop 

general solutions than specific ones. Being platform-specific one can neglect 

challenges typically faced by other platforms. Large degrees-of-freedom, for 

instance, are an issue for anthropomorphic robots but not quad-copters. I borrow a 

quote from my Mentor and professor at UVA, “Everything becomes ‘obvious’ after 

it’s done”. 

IMPLEMENTATION 

1) Modern Training Techniques 

It appears that modern training techniques such as Deep Learning and 

Neuroevolution could facilitate ERL in a way that earlier approaches could not. The 

training dynamics and advanced practices, such as fine-tuning, specific to those 

techniques are crucial. Without those advanced practices, learning would not be 

online or autonomous. The training procedure can be supervised or un/semi-

supervised; depending on the application. How to define modernity is not trivial. 
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Use of Neural Networks have been in study since decades ago [16]. An indicator 

of modernity is the ability to handle training of large networks with 106 parameters. 

Deep Learning and other modern techniques facilitate this. Thus, they allow for 

networks with larger representation capacities to be trained to solve more complex 

and significant tasks. We build upon and contribute to modern training techniques. 

Advances in those areas directly affect our implementations. That is, if there was a 

recent development (by us or others) that may improve the learning behavior of the 

robot, it may unlock a branch of learning we did not consider. 

 

2) Custom Architectures 

This is the most obvious element of uniqueness but perhaps the one we assign the 

least significance to. It is the way we use Deep Neural Networks. For example, in 

the first experimental study, we follow a certain procedure and implemented a CNN 

architecture based on VGG16 in a unique way. This adds to the distinctness of our 

work, which already stemmed from the other elements defined above. That is 

perhaps why it’s the least important; it is an extension of our way of thinking and 

solving the problem, the final ‘brick’. 

We give all credit (through citations) and acknowledge, with respect, the work of 

researchers who tackled similar problems, and every source of inspiration to us. We did 

not conceive Experiential Robot Learning without other work to build upon and draw 

inspiration from. For instance, all the modern practices in Deep Learning (e.g. Fine-

Tuning) were already published research before we thought about leveraging them. 
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Similarly, the literary work in developmental robotics abound. However, we hope that 

through the following discussions it becomes apparent how our propositions are distinct, 

novel and potentially of great impact and value to the research community. 

RELATED APPROACHES  

This section talks about the general approach of developmental robotics, particularly 

online, cumulative learning. We present work of comparable motivations and scope to ours.  

First is the position paper in [5], which paved our way for thinking about the integration of 

robotics and DNNs. The paper clearly discusses the importance of using Deep Learning 

techniques to implement developmental robotics. It begins by discussing the importance of 

learning representations without hand-coding. After a brief introduction to different DL 

approaches, it swiftly goes over how DL can overcome challenges of building 

developmental robots. Finally, it touches upon the concept of learning through experience 

and artificial intelligent curiosity. As expected from a position paper, there is no 

implementation or experiment proposed, nor is a method outlined. We didn’t find such 

items from the authors in later publications as well. 

As a tangent to that paper, let us consider Curiosity, because can be an important enabler 

of autonomy in learning. Our work is just not yet ripe to incorporate high-level constructs 

such as curiosity into it. It would contribute enormously, however, to the autonomy of the 

agent. Especially, when combined with unsupervised Deep Learning techniques. If there 

was a successful implementation of Curiosity, it would perfectly fit within our vision for 

robotics. 



Chapter 2: Experiential Robot Learning Method 

 

 

 

51 

These textbooks and papers in [7], [19]–[21] elaborate on the notion of intrinsic 

motivations for a robot. This overlaps with curiosity, or artificial curiosity as it is 

commonly referred to. Roughly speaking, it is about developing internal conflicting 

mechanisms of self-interest, i.e. motivation, and attention. These notions stem from 

developmental psychology literature [22].  

We see curiosity differently. We see it as a behavior (in action space) implemented within 

the method we propose. For example, if the robot becomes proficient at scene parsing, it 

can detect and describe objects for which it has no label. The curiosity behavior would 

follow: The robot could autonomously build a new class label, i.e. unsupervised learning, 

and refine it. Alternatively, the robot could ask a human for the label and train itself to 

recognize the new object by walking in the environment and viewing it from different 

angles. This behavior can be implemented in a Finite State Machine manner, rather than 

using intrinsic motivations as proposed by other authors.  

We leave the tangent of curiosity to return to work that followed similar approaches to 

ours. The outline of our method is generally mentioned in developmental robotics 

textbooks but without the scope and implementation. The nature of a textbook, however, 

meant that no practical implementation is presented; nor is a methodology advocated for 

any single purpose.  

In textbook [8], there are discussions about creating human, not humanoid, robots with 

culture, law and religion. It is not our purpose since we only want to enhance robots so that 

they can aid humans, but it is related. In the course of [8], a discussion on how to bring 
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about such robots ensues. The authors detail the importance of learning and the use of 

neural networks. However, given the context of the book, propositions are broad and lack 

any practical implementation methodology or detail. Highly-abstract experimental results 

are given in simulation, such as navigating open environments to search for ‘food’, i.e. 

rewards.  

In textbook [7], a narrative is given in the first chapter on the principles of developmental 

robots. Their characteristics, especially online and autonomous learning are outlined. To 

quote, they say “Thus a truly online, cross-modal, cumulative, open-ended developmental 

robotics model remains a fundamental challenge to the field”. The use of rudimentary 

neural networks, but not deep learning, is also introduced as ideas for implementations but 

no actual work is presented.  

The previous two discussions were from relatively recent literature (2014 and 2015, 

respectively). To illustrate how dated these concepts are, we turn our attention to [23]. This 

textbook dating to 1987 discusses the principles of intelligent robots. It outlines the then-

latest approaches in solving Perceptual and Reasoning problems. Without specifically 

referring to developmental robotics, the author introduces the notion of cognitive models 

and architectures.  

In summary, autonomous, online learning is not an entirely novel concept in the domain of 

developmental robotics. The ‘infant’ field is rich with the works and proposals of many 

notable researchers. Namely, Cangelosi, Parisi and Di Nouvo. It has been rather consumed, 

however, with putting forth different cognitive models and architectures instead of 
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focusing on implementations. That is, most of the work in this sense is engaged in the 

formalism of cognition and cognitive development rather than producing cognitive robots.  

Though incredibly important, we do not aim to formalize cognition. Neither do we propose 

cognitive models or architectures. The method we propose is more practical. Whether we 

are trying to ‘run’ before we ‘walk’ is a matter of question left to the reader. To develop 

ERL, we reason from the bottom-up, i.e. build implementations before proposing models, 

rather than from the top-down.  

Our work borrows from several fields and sources inspiration. We present a clear 

methodology that relies on cutting-edge Deep Learning and/or other training techniques. 

There is a clearly defined scope, motivation and detail on applicability and implementation 

to guide the researcher/roboticist. We have a distinct target of building open-ended robots 

capable of autonomous learning through experience. 

PARADIGMS OF LEARNING 

We now refer our attention to the nature of learning for robots. There are different sorts of 

learning according to the manner in which learning occurs, and also the objective of 

learning. For a detailed discourse on this matter, refer to [9]. We shall present on some 

interesting learning paradigms, and how they relate to our course of study. 

Lifelong Learning (LL) entails that the robot is able to learn throughout its “life”, and that 

the learnings will accumulate without Catastrophic Forgetting. That is, learning one task 

(i.e. learning how to solve it) should not be extinguished after learning another. The 

learning must be accumulative. This approach though assumes that first the robot is able to 
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learn. With the capacity of learning secured, the robot does not learn to perform just one 

task, but rather an unbounded number of tasks. Thus, in Lifelong Learning, it is required 

that the robot is not only proficient at one task, but at several tasks at the same time. The 

tasks may or may not be related in structure, there is no clearly defined boundary on task 

similarity. 

Transfer Learning concerns itself with the agent’s ability to learn one task and use that 

knowledge to aid it in solving another task T2, where T1 and T2 are related. The robot 

should attempt to solve one task (or set thereof) at any given time. There is no requirement 

that solving one task in the robot’s “lifetime” will help in solving another at a later stage. 

Multi-task learning (MTL) refers to the type of learning where the robot’s performance 

is not evaluated over one task T1, but over several tasks as a collective such that T = {T1, 

T2, T3, …, Tn}. If the collective of the smaller tasks is regarded as one bigger task, 

however, then the paradigm is not different from regular learning. The distinction of MTL 

is made to outline the usefulness of learning several joint tasks at once. It can lead to a 

better generalizability from the learning agent by preventing over-fitting to solving a 

specific task. MTL is different from LL in the sense that MTL does not incorporate the 

aspect of learning new tasks outside the pre-determined set. 

Online Learning (OL) is an important and under-investigated paradigm of learning, 

especially as pertains this study. OL refers to the ability and act of learning a task on-the-

fly, on-the-job, in-action, i.e. learning while doing. This is different from offline learning 

where data is first gathered, then learning ensues. Being “online” means that with every 
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incoming piece of data (or “experience”) the agent updates itself somehow in attempt to 

improve. We don’t adhere to OL strictly as a requirement of ERL but consider it as an 

aspiration when technologies and research are more mature and permitting. 

The ability to learn on-the-fly, especially for robots, is invaluable because of the nature of 

robot interactions with the environment. Robots have the ability to act in an environment 

and affect it. The tasks given to robots typically are solved by affecting the environment in 

some respect. The process of robot learning thus is to find out increasingly better ways to 

accomplish those assigned tasks. With online learning, the robot can immediately leverage 

its current experience of the environment dynamics to come up with better solutions. This 

is not always possible. Furthermore, it is not always a “better option” than offline learning. 

For example, it can be inefficient to re-train an agent entirely every time there is new data. 

Thus, the online learning paradigm needs to be pondered with some reserve. 

Let us discuss how these interesting paradigms of learning relate to our course of study. 

While they all are related with learning, not all are relevant to our motivation as outlined 

earlier. First, Lifelong Learning seems like an unreasonably high bar for robots to achieve 

at this stage. With the core piece, i.e. learning, still posing an incredible major challenge 

for robotics, it seems unreasonable to ask for more with current state-of-the-art. For 

example, how would one assess whether Catastrophic Forgetting has occurred or not? 

Would the robot be required to re-do all its previously-solved tasks in order to verify it is 

still able to do them proficiently? This is definitely an interesting paradigm to study, but 

we deem it impractical at this point. To work alongside humans in increasingly complex 
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scenarios, LL may be necessary. From our perspective, it is unrealistic to study this 

paradigm (especially experimentally) when the robot thus far can’t even learn from 

experiences. Thus, we are not concerned with LL (and consequently Catastrophic 

Forgetting), but rather with the “ability” to learn autonomously. 

Regarding Transfer Learning, it is not clear why learning one task would actually aid in 

learning a second task if the learning method, i.e. underlying algorithm, is the same. TL 

also assumes some similarity in the structure of the tasks, but there is no one universal way 

to evaluate task similarity. One can possibly evaluate this on several dimensions/metrics. 

Furthermore, in our motivation we underline robots capable of learning multiple tasks, but 

we did not assume that learning one task would actually lead to a faster learning of another. 

If that was the case it is certainly welcome, but we don’t make it our primary arc of study. 

For those reasons, TL is also outside the scope of investigation.  

Multi-task Learning poses an interesting paradigm, but it follows a similar line of reasoning 

to TL. That learning a group of tasks simultaneously is beneficial. It should be noted, that 

learning a group of tasks at the same time does not mean that they are performed in unison, 

i.e. simultaneously. That is, Multi-task Learning is not Multi-tasking. To learn a group of 

tasks, the robot performs each task separately then the performance measures are 

aggregated. The robot’s overall performance is assessed over this aggregated measure. In 

our motivation, we don’t outline any examples of robots performing multiple tasks (and 

learning from them). This may even be unfeasible to practically deploy on a real robot due 

to the amount of resources (time, energy) it would consumer. Imagine if learning a single 
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task was difficult, how much more difficult would it be to learn a group of tasks 

simultaneously? It seems unreasonable since we are still struggling with a single task. This 

line will not be pursued in this study. 

Finally, and most importantly, is Online Learning. Unlike the other paradigms, OL is 

primarily concerned with learning one task which is in line with our stated motivation. OL 

however poses a strict limitation on the way of learning, it has to be online. While we 

would want this to happen, ideally, it may be infeasible or impractical. Learning may be 

more efficient if done in batches. Indeed, this is the typical scenario in most Deep Learning 

applications. Again, while desirable, we can’t adhere to OL as a principle in ERL at this 

stage, but consider it as an aspiration. 

To this point, we have addressed some learning paradigms and how they relate to this study. 

From this exposition, we outline that what really matters to this study is the problem of 

learning itself. Learning to do just one (but undefined) task, in any manner of learning. 

In this thesis we aim to engage in the challenge of developing a robot that is capable of 

learning autonomously from experiences in its environment, to solve a single tractable task 

at any given moment. The learning can benefit from human expertise or instruction. The 

learning can be online or offline. We are not concerned with Catastrophic Forgetting. We 

engage in this research as means to address the aforementioned limitations in 

generalization and scalability imposed by the hand-engineering of robotic solutions. This 

stems from our viewpoint that the prevalence of competent developmental robots can 

provide useful services in civilian life. 
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RELATED IMPLEMENTATIONS  

In this section, we present research that is comparable to ours in implementation but not in 

the approach. There are many papers discussing the use of neural networks in different 

domains of robotic learning and skill acquisition [24]–[26]. However, they don’t present 

an overarching approach or methodology to extend their work to other domains. The scope 

of the work is limited, with varying degrees, to the application/subject in question. In 

developmental robotics, the application is usually broader in scope than other robotics 

contexts. Common applications are symbol grounding [27], sensorimotor fusion [28] and 

learning numbers [29]. This contrasts the usual robotics research paradigm of focused on 

Perception [30], Planning [31] and Control [32] separately.  

First, we address the work in [33]. Their purpose is like the experiment we performed, i.e. 

open-set object recognition. They make use of RGB-D sensors to create a 3D point cloud 

plot of a scene. The data is then parsed through a feature-extracting procedure. They don’t 

provide an accuracy metric which we can compare our performance against. In addition, 

the system is open-loop. That is, the robot is not “corrected” by a human if it makes a 

mistake. Neural networks are not used. The approach is task- specific, namely to recognize 

objects.  

There are many works which do not use neural networks. They are in various domains such 

as Computer Vision [34], Learning numbers [35], Speech Recognition [36], Robotic 

Motion [37] and Knowledge Transfer [38]. Though these works are recent they do not 
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make use of either neural networks or deep learning. It shows that the richness in literature 

where a single problem can be tackled in many ways.  

Similarly, there are many papers utilizing Deep Learning for various tasks. Those include 

Object Recognition [39], Object Detection [40], Generating Speech [41], Robotic Motion 

[42] and Navigation [43]. Most notable, however, is research using deep learning in the 

field of developmental robotics [44]. These researchers tackle a host of problems such as 

learning body representations [45] and equipping robots with the ‘sense’ of agency. The 

methods are mostly ad-hoc, since the field is yet in its infancy.  

We turn our attention to some works of notable importance and relevance. The work by Di 

Nuovo [46] tackles the acquisition and manipulation of symbols and numbers. In [47] Luo 

addresses the problem of determining which direction a robotic arm moves in, and 

generates motion sequences for the arm to move in a defined direction. The robot thus 

learns the concept of direction in some capacity.  

In the field of Reinforcement Learning (RL), Li [48] presents an approach to create open-

ended intelligent robots. The authors advocate combining actor-critic models and reward-

policy mapping. Their results are for a rudimentary navigation task, and only in simulation. 

The work in [49] also uses RL to have a physical humanoid acquire skills such as standing, 

leaning and walking. The humanoid, though, needs to experience a virtual environment in 

simulation until it acquires a reasonable policy. Meola [50] discuss using RL to generate 

different motions in robots, inspired by motor development in children.  
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The authors in [51] use two robots to classify 12 objects. Machine Learning Classifiers 

acquire features for object they classify. The paper stipulates that transferring feature 

representations is feasible and accelerates learning for other robots. Therefore, if one robot 

learns those features, other robots can use them and learn even faster. The two robots have 

different cameras and hardware, but they are the same class (mobile vehicle). This paper 

shows that learned low-level features are transferable across robots. This is not unlike what 

we already know about ConvNets. The low-level features, e.g. edges, acquired from 

learning one object help the network learn other objects faster.  

In this paper [50], the authors discuss two kinds of motion, Rhythmic and Discrete. The 

former is where oscillatory neural signals, such as walking or waving, are generated and 

sent to the peripherals. The latter is where the signals are discretized/unique from origin to 

goal such as grabbing an object or pressing a button. During a child’s early stages of 

development rhythmic movements are practiced first. An explanation for this is that 

rhythmic motion is controlled by an open-loop mechanism, with almost no feedback. The 

child would repeat the same motions as in a reinforcement learning policy. The paper 

proposes a model to explore the interplay between these different movements and carries 

an experiment involving a robot to verify it. The robot’s human-like hand is used, with 

only the thumb and index fingers allowed to move. They implemented an efficient 

Reinforcement Learning algorithm and a reward function to help the robot learn to perform 

simple tasks such as rotating a dial. The paper is an excellent example of how child 

development can affect and inspire research in the field of developmental robotics.  
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This paper [52] presents an approach for learning the reward function from human 

demonstration. The demonstrations are sub-optimal and made by non-experts, which 

distinguishes this paper from others. Two simple experiments are presented. First a surgical 

robot called DaVinci is used to pick-up an object from an origin to a destination while 

avoiding an obstacle. The robot performs this successfully. It learns by computing an 

average path over the training dataset (compiled from 7 demonstrations). This becomes the 

policy for the robot (reward function). Paths are then generated based on this. The error is 

computed, which is the distance-to/deviation-from the learned policy. Therefore, without 

prior knowledge of the environment, the robot can pick up the object and reach the 

destination while maneuvering around an obstacle on the path. The second experiment is a 

sweeping task. A robotic arm (like the Baxter robot) is required to sweep a Green cube into 

a dustpan while avoiding two obstacles on the path. Again, from several demonstrations a 

training dataset is built. Paths are generated based on this reward function encoding the 

desired behavior, and an error signal is calculated for validation. It is shown that this 

approach can extend a step further. The robot is presented with a different setting of the 

environment (object, obstacles and goal locations), and it successfully maneuvers the cube 

around the obstacles to the goal dustpan. This paper is an excellent exposition on the 

learning from demonstration concept. Knowledge in this context is not acquired through 

direct, task-specific, rule-based approaches. It is acquired through experiencing the 

environment. The robot had learned that its policy was to avoid obstacles while reaching 

its goal destination.  
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On the topic of sensorimotor fusion, this paper [53] presents sensory fusion as a 

mathematical function of the sensory inputs. The concept is used to mimic human-

balancing by a mechatronic robot. The control model is based on the Double Inverted 

Pendulum (DIP) model. There are two categories of signals, namely vestibular and 

proprioceptive. These signals are algebraically manipulated (fused) to produce composite 

signals/estimates. These estimates are used in the control loop to produce a balancing 

action on a tilting horizontal plane. Basically, the experiment consisted of gathering data 

from human subjects balancing on the tilting plane (4° variation) and contrasting it to that 

of a robot performing the same function. The robot and humans exhibit similar responses 

to the variation in the plane. This is taken as evidence that sensory fusion captures an 

essential component of human biomechanics. The robot features mechatronic limb systems 

(artificial muscles connected with springs) that allow it to be controlled by a model that is 

anthropocentric. We are shown here how sensorimotor fusion can capture some essential 

qualities in how humans perform physical skills such as walking or balancing.  

Finally, in the Perception domain, this paper [54] presents the authors’ work on porting a 

Convolutional Neural Network (CNN) to the Raspberry Pi 2 for Face Recognition. 

Training is done on a desktop computer with Nvidia GPU. Afterwards, the network is 

transferred to the Pi for Classification. As a benchmark, OpenCV algorithms were used to 

compare against the presented work. It is mentioned that the network outperforms all 

OpenCV algorithms (of which only Fisherbank was chosen for direct comparison) in terms 

of accuracy. In addition, the performance is similar at worst, and much better on average. 
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It shows that it is not impossible to deploy Deep Learning on embedded systems. This will 

be even more plausible in the next coming years as those systems develop and mature. 

Throughout this section, we have attempted to present a survey of the works which relate 

to ours. The research overlaps many fields and areas hence the wide spectrum of papers. 

Specifically, however, we presented the papers under two distinct sections. The first was 

the Approach section where the authors adopted or proposed a similar approach or 

methodology to ours. Second was the Implementation section where the papers featured 

implementations like ours in some respect. 
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BROADER IMPACTS 

We leave the domain of fact and roam in the wilderness of speculation. The robots we 

create will be living, breathing entities in our world, if the ERL method is largely 

successful. Living and breathing in the sense that they could maneuver skillfully, they 

could see well and interact elaborately without being capable of reasoning. If the research 

proves fruitful and the method scales well, the robots can have the appearance of 

intelligence. They would be able to: 

- Perceive the world, including us, as well as themselves 

- Expand their perceptual knowledge 

- Move about and navigate the environment  

- Understand human speech and converse, without comprehension 

We are likely thinking from an anthropo-centric point of view. These robots may as well 

develop skills beyond our expectations. This is outlined as one of ERL limitations. As 

rudimentary as those skills are, developing them can affect society in unexpected ways. It, 

most notably, can spur research in this domain, potentially leading to increasingly 

sophisticated robots. Even without comprehension, understanding or reasoning, non-

experts will associate intelligence with such robots.  

From the notion of the uncanny valley [55], we know that humans can and do perceive 

robots as a threat. Even in mere likeness, humans would rather not have artificial agents 

resemble them. A robot that moves about skillfully, perceives the world and, most 

importantly, learns and adapts will without a doubt be perceived as an introduction to the 
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Singularity [56]. It is a concept that there is a point after which AI will be self-sufficient, 

self-propelling without relying on humans. Cognitive Robots are the embodiment of AI. 

To most people, AI is mostly software, like Siri on their phones or Alexa in their homes. 

However, a robot that even seems intelligent, adds a whole new dimension to the mix. 

Being physically capable and able to interact socially, will have repercussions on society.  

In addition, it has been well-known that AI can and will replace many jobs, resulting in a 

definite and broad impact on the US and global economy [57]. Human-dexterity has always 

constituted a barrier to deploying AI on agents, i.e. robots [58]. Many tasks require human-

level motion [59], thus those tasks are currently only performed by humans. 

An intelligent agent capable of operating in a real-world environment skillfully can replace 

human workers and farmers. There are jobs such as Power-line Maintenance which even 

affect the health of those performing it [60]. Consider also, for sake of argument, harvesting 

crops such as Blueberries. If robots can recognize the fruit, pick it and proceed to the next 

bush, it would mean that the task is not exclusive to humans (assuming this is presently the 

case). It creates a new threat to farmers’ job security and could disrupt presently-stable 

sectors of the economy. The discussion becomes even more significant with the sort of 

general learning and skill-acquisition we target in this work. 

On the other hand, it has been known that technological revolutions do spur growth. Some 

argue that we are living in the most prosperous age as humans [61]. As some jobs will be 

lost, new jobs will be created. However, it is without a doubt that those will be focused 

more and more on the strengths of humans, i.e. creativity and high-level cognition. 
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Education in this context becomes crucial, more than ever before. There could be jobs 

where humans work alongside capable robots, leveraging the strengths of both. In this 

regard, the case of the revised Tesla Gigafactory automation is an excellent example. By 

including more humans, not less, Tesla was able to ramp-up the production of the Model 3 

car (and with it secure its economic survivability). 

Furthermore, robots that are skillful and interactive can have many application domains to 

serve humans. Service robots, Therapeutic robots, Companion robots and Search & Rescue 

robots are but limited examples [62]–[65]. I believe that the full-spectrum of uses for 

smartphones was not conceived before the advent of the System-On-Chip (SOC) chips. 

That is, of course, it was conceived that having phones like powerful small computers 

would be nice, cool, useful and beneficial. After all, there were attempts at it in the 90s 

yielding products such as the Palm handheld devices. It was not until the iPhone, however, 

that the storm has been unleashed through the App Store. The iPhone itself was not the 

revolution, it was the apps built to run on it.  

In this way, the robots we propose to build are not made for a specific purpose or 

application. In a sense, we are laying foundation for technologies that could replicate the 

role of the iPhone in robotics; a general platform capable of serving the multiple purposes 

and needs of its users. The potential impact it could have on society is significant. There is 

no doubt, either our method or others’ will in time be successful. Robots will be a reality 

of our world, helping us with our everyday lives. 
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CONCLUSION 

The method of Experiential Robot Learning was presented to work around the challenges 

of hand-coding as illustrated in the previous chapter. The Approach and Implementation 

components of the ERL method were provided in detail. We constructed a scale called 

Attractiveness Score to assess if an implementation meets our success criteria or not. 

Related works were examined in the Literature Review section. We attempted to define 

our dimensions of uniqueness within the vast body of related work. Finally, a discourse on 

the broader impacts was presented.  

The method of ERL needs to be validated experimentally through experimental studies. 

We perform such studies in the coming chapters. The studies will investigate the different 

aspects of using neural networks in the context of ERL, such as new training techniques 

and unique hybrid neural architectures. While these studies are not expected to solve 

completely the problem of robot learning, they should generate new insights and 

knowledge to pave the way and contribute towards a solution.   
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CHAPTER 3: TRAINING DNNS WITH DEEP LEARNING 

EXPERIMENTAL STUDY 1: INTERACTIVE ACQUISITION OF VISUAL OBJECT 

DICTIONARY 

INTRODUCTION 

To demonstrate the applicability and scalability of ERL, we show that a robot can expand 

its knowledgebase of identifiable objects by combining human-coaching and fine-tuning, 

a well-known practice in training deep convolutional networks [6]. The top convolutional 

layers of a CNN encode the higher-level features specific to a class. Those layers can be 

re-trained, along with the Fully Connected layer(s) to refine classifications. For example, 

it is common practice to import a network pre-trained on ImageNet dataset such as 

GoogLeNet [66], modifying the top layers and tuning the network for a specific 

classification task.  

 

FIGURE 7 NAO ROBOT 
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SYSTEM DESIGN 

The system we use is as follows. A desktop computer, with an Nvidia TitanX GPU is used 

as a back-end. The computationally-demanding nature of Deep Learning imposes this 

constraint. The computations cannot be performed locally, on-board. As the field advances, 

resulting in more efficient development tools and as embedded hardware advance, perhaps 

this can be alleviated. The robotic platform of choice is a humanoid type called NAO. It is 

equipped with two cameras, one facing downwards and another facing forward. It also 

comes with a proprietary software package of Speech Recognition. This allows it to interact 

with a human coach in natural language.  

The interaction occurs in the manner of a Finite State Machine (FSM), as shown in Figure 

8. The robot transitions between the following states: Rest, Observe Object, Inspect Object, 

Generate Predictions, Inquire the correct label and Fine-tune network. The transitions 

occur in co-operation and communication with the human coach. For instance, if the robot 

is about to inspect the object, it first informs the accompanying human in speech. Similarly, 

when it generates a prediction for an object, i.e. classification, it informs the human in 

speech and inquires whether it was correct or not.  
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FIGURE 8 EXPERIMENT’S SYSTEM FLOWCHART. RECTANGLES REPRESENT 

PROCESSES. DIAMONDS REPRESENT DECISIONS. THE FIRST DECISION IS WHETHER 

TO USE OBSERVATION OR INSPECTION MODE. IN OBSERVATION MODE, THE HUMAN 

COACH PRESENTS THE OBJECT TO THE ROBOT’S CAMERA. IN INSPECTION MODE, 

THE ROBOT AUTONOMOUSLY INSPECTS THE OBJECT BY WALKING AROUND IT. THE 

SECOND DECISION IS WHETHER THE OBJECT WAS CORRECTLY IDENTIFIED OR NOT, 

DEPENDING ON WHICH THE SYSTEM EITHER LOOPS IN A RETRAINING PROCESS OR 

NOT. 

NETWORK ARCHITECTURE 

The neural network is written and trained using Keras, an API to Google’s TensorFlow 

[67]. We first import a standard VGG16 [68] network, without the fully connected (FC) 

layers. Instead of the standard 4096 nodes in the last two layers, we use 64 and 32 
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respectively. The reason is that VGG16 is originally trained to recognize 1000 classes. It 

means that it has a quite large entropic capacity. If we used the network as is, it would be 

strongly capable of over-fitting due to the limited amount of data we train on, and the 

number of classes, 6, we are initially interested in. Therefore, the model needed to be 

constrained in such a way as to prevent over-fitting and still maintain an appropriate 

entropic capacity. 

CLASSES 

There is a noise class among the 6 classes the network is trained to recognize. It is inspired 

by the work of Bendale et al. [69]. We train it using images that do not belong to the other 

5 classes we originally train the robot to identify. Care is taken that the size of the dataset 

in this noise class does not go beyond the size of the other classes. Otherwise, it would 

create an imbalance in the training. The reason we need a class of this kind is that since our 

objective is to create open-ended robotics, the agent must not only identify objects it is 

trained on, but also objects it isn’t. There are other proposals and ideas to implement a 

noise/unknown class [69], [70].  

The entire dataset is about 1000 images. The number of images is deliberately chosen to 

be low. This stems from the idea of open-learning. If the robot needs to learn a new class, 

it must do so with very little data, around 100 images or less. This is because we are 

concerned with local experiences shaping the learning behavior. For example, if the robot 

is introduced to the concept of desktop computer, i.e. a new class for this object is created, 

it is unlikely it will have many, many instances of such object to learn from. It will need to 
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internalize the concept, i.e. class, only with the available instance(s) of the object. As it 

experiences more instances of the same class, desktop computers in this example, it can 

refine its ability to identify them by engaging in the process we present.  

However, we attempt to address this matter in two ways. The first is that the trainer in 

Keras can generate new training images based on the ones in the training dataset. These 

undergo random alterations such as rotation, zoom and flip. In that way, the model rarely 

sees the same image twice.  

The other way we address the limited dataset is to increase the entropy in the set as much 

as possible. We do so in two ways. First, we can put the object directly in front of the 

robot’s camera and rotate it. The camera takes many snapshots of the object. The idea of 

rotation comes from the desire to capture the different aspects of the object. For example, 

a stapler is not a symmetrical object, i.e. it looks different from the side or the top than it 

does from the front. Each view presents different features by which the object can be 

classified. Contrastingly, a ball is symmetrical all around, at least in shape.  

The second way to increase entropy in the data set is to have the robot autonomously walk 

around the object and take snapshots, we call this inspection. The movements are pre- 

determined, however. We envision that as the robots get better in motion, possibly through 

future work applying ERL, the robot will generate its own motion sequences for this task. 

In those two ways, the agent accumulates rich data on which to train itself to recognize a 

(new) class. The motivation, again, is gradual, and continuous self-improvement. 

TRAINING AND FINE-TUNING 
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The network is instantiated with VGG16 ImageNet weights. All the convolutional blocks 

are set to non-trainable, i.e. fixed weights, except for the last one. The hierarchical nature 

of Deep Learning means that the lower convolutional blocks detect abstract features such 

as Edges and Curves. Therefore, we are only interested in training the last convolutional 

block. Adadelta [16] optimizer is used, with a learning rate decay of 0.004. Again, it is just 

a design choice for our system. In building Neural Networks, there are many design 

decisions to be taken, depending on the performance constraints required for the model.  

The fine-tuning process is as follows. If the robot is presented with an object it cannot label 

correctly, it asks the human coach whether to label it or not. If the human chooses to label 

the object, the robot will inquire for the correct label and either create a new class for the 

object or add it to an existing class. Immediately afterwards, the last convolutional block 

and the FC layers of the network are automatically re-trained on the new dataset. The robot 

then attempts to generate a label for the object, if correct, then the process ceases. If still 

incorrect, the robot gathers additional data and the network is retrained. The coach thus 

only provides a label, not training examples/data. 

When generating a label, i.e. making a classification, the robot does not use one image. 

This is perhaps a significant divergence from traditional Image Classification tasks. Since 

the robot can navigate the environment, we can gather multiple images of the same object, 

from different angles. In doing so, we generate an aggregate label over 25 images in total. 

In such a way, if the classification is incorrect over multiple images, it still will not sway 

the judgement over the entire classification set. This is in contrast with producing 
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confidence scores in predictions for single images [70]. We can afford to use this approach 

because our implementation does not require a constraint on making a correct label for 

every single image.  

We define an early-stopping mechanism to terminate fine- tuning. When the validation loss 

stops decreasing for 10 consecutive epochs, the training halts. The system then transitions 

to the second decision in Figure 8. It generates a new label and communicates it to the 

human, to test if it has learned the object or not. 

RELATED WORKS 

In this section, we present some works which are relevant to our context and highlight their 

intersections and differences.  

Some works employ deep neural networks in developmental, physical robotic 

implementations [71]–[73]. However, the authors are more concerned with the respective 

implementation domain rather than a certain general methodology.  

Perhaps the closest to tread a similar approach to ours is the work by Di Nuovo et al. [46]. 

Their research though mainly tackles the acquisition and manipulation of symbols and 

numbers; in a way that is also inspired by child development.  

Furthermore, the work in [47] by Luo et al., adopts a similar mindset to ours. Their 

implementation addresses a different scope and problem to ours: that of determining which 

direction a robotic arm moves in using joint angles. They similarly address how to generate 
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motion sequences for the arm to move in a defined direction. They employ a variation of 

deep auto-encoders.  

In the field of Reinforcement Learning (RL), Li et al. [48] present an approach to create 

open-ended intelligent robots. The authors advocate combining actor-critic models and 

reward-policy mapping. Their results are for a rudimentary navigation task, and only in 

simulation. The work in [49] also uses RL to have a physical humanoid acquire motor skills 

such as standing, leaning and walking. The humanoid, though, needs to experience a virtual 

environment in simulation first until it converges on a semi-reasonable policy. This is 

followed by a period of motor-babbling, until the humanoid refines its policy. Meola et al. 

[50] discuss using RL to generate different motion types in robots such as Rhythmic 

motion, inspired as well by motor development in children.  

Sigaud et al. [5] present different DL techniques and discuss their applicability on 

developmental robotics. It is a primary foundation on which we build upon this experiment. 

The authors’ presentation is only theoretical however, and no physical implementation is 

given. 

RESULTS AND DISCUSSION 

In this section, we present the results of our implementation of the Experiential Robot 

Learning method. We choose to apply ERL to robot visual perception using deep 

Convolutional Neural Networks (CNNs). The classes and datasets are as outlined in the 

previous section. The system FSM handles the transition between states, communicating 

each step to the coach and receiving feedback, in speech.  
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There are two experiment sets. In the first set the human presents an object to the robot’s 

camera. During a period of a few seconds, the robot takes snapshots while the human 

rotates the objects to present it from all angles. In this way, a classification batch is 

constructed. The robot then communicates the aggregate label generated for the batch. The 

human then coaches the robot, either by affirming its predictions or by engaging with it in 

the fine-tuning process as described earlier. We call these Observation trials. There are 3 

trials, as shown in Table 6.  

The second experiment set we call Inspection trials. Those are the first steps towards 

autonomous robot exploration. The robot leverages its physical body to move around and 

inspect an object. Somewhat like children when something captures their attention; they 

inspect it from different angles because they know they are looking at the same object. 

Similarly, the robot captures snapshots as it is moving and they all are aggregated to 

generate one label, i.e. they all belong to the object in question. The images are then run 

through the CNN and the coaching process continues as described earlier. The results are 

presented in Table 7. 

TABLE 6 IN THIS TABLE, THE RESULTS OF THE OBSERVATION EXPERIMENTS ARE 

GIVEN. A HUMAN PRESENTS THE OBJECT TO NAO’S CAMERA. THE HUMAN COACH 

ROTATES THE OBJECT AS THE ROBOT IS TAKING SNAPSHOTS TO SEE IT FROM ALL 

ANGLES. 

Trial 1 2 3 

Object Presented Ball NAO robot Paper plate 

Previously Known/Unknown Known Unknown Unknown 

Correct classification Yes No No 

Fine-tuning required No Yes Yes 

Correct classification after fine-tuning N/A Yes Yes 
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TABLE 7 IN THIS TABLE, THE RESULTS OF THE INSPECTION EXPERIMENTS ARE 

GIVEN. THE ROBOT AUTONOMOUSLY WALKS AROUND THE OBJECT WHILE TAKING 

SNAPSHOTS, TO SEE IT FROM ALL ANGLES. 

Trial 1 2 3 

Object Presented Ball Wallet Bottle 

Previously Known/Unknown Known Unknown Unknown 

Correct classification Yes Yes No 

Fine-tuning required No No Yes 

Correct classification after fine-tuning N/A N/A Yes 

 

Since our work addresses partially the open set recognition problem, we need to use objects 

that the robot, i.e. CNN, is not trained on. This is what is conveyed in the Known/Unknown 

row, whether the robot was trained to recognize the outlined object or not. In this way, we 

test the noise class presented in the previous section. From Table 6 and Table 7, it can be 

inferred that the noise class performs satisfactorily and can be enhanced through the 

coaching process.  

Through our trials, we have tested every possible branch in the system. First, we test if the 

robot can classify objects on which it was trained. That is seen in trial 1, in both tables. The 

robot is presented with a ball and it classifies correctly so there’s no need for fine-tuning.  

Afterwards, we test if the robot can recognize that the presented object is not part of its 

Known classes; this is a test of the quality of the noise class. If the robot misidentifies an 

object, then there are two procedures. The first procedure is to create a new class for the 

object and re-train the network to classify instances of that new class. This is the case in 

observation trial number 2. An alternative procedure is to enhance an existing class by 

adding the classification batch to the training data and fine-tuning the network. This is the 
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case for observation trial number 3 and inspection trial number 3. This fine-tuning 

procedure occurs in a loop until the robot correctly assigns the object to its class.  

The retraining process takes relatively little time, under 4 minutes and 50 epochs. It means 

that the robot can engage its human coach and provide & receive feedback in a timely 

manner; especially since they interact in natural language. 

ATTRACTIVENESS SCORE ASSESSMENT 

In this section we assess the robot’s performance through the Attractiveness Score measure. 

The assessment is provided in Table 8. 

TABLE 8 THE ATTRACTIVENESS SCORE MEASURE FOR THE EXPERIMENT 

Criterion Assessment Score 

Learning Robot demonstrates learning 5 

Convergence Robot learns in 1-2 trials 1 

Pre-training Pre-training takes less than 24 hours 1 

Dataset Compilation Dataset takes more than 24 hours to compile 0 

Portability Model not deployable on embedded systems 0 

 

The total score of the robot is 7/10. According to the AS measure, this experiment has 

passed our success criteria. 

EXPERIMENT CONCLUSIONS 

In the preceding sections, we have presented a development method for open-ended, 

developmental robotics based on Deep Learning techniques called Experiential Robot 

Learning (ERL). It is inspired by observations on how children learn and enabled by 

learning directly from sensory input, through DL. To the best of our knowledge, we are the 

first to propose this method in the scope & context defined herein.  
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To evaluate our method, we applied it to the problem of open-world robot visual perception 

using deep convolutional networks. The resulting network architecture featured a robust 

noise class, since we are addressing open-set classification. We hope other researchers can 

benefit from the detailing of our architecture, as well as the training procedure.  

The results indicate that the robot is capable, through experience and coaching, to expand 

its visual vocabulary of identifiable objects.  

The aim is to create robots capable of learning from raw sensory input by being immersed 

in the real-world environment. This eliminates the need to engineer features, and gives the 

robot potential to be a self-improving, self-propelling entity. Ultimately this is our vision 

for robots. The application of human coaching in this experiment is only periphery. We 

also recognize the limitation in scalability a coach poses for this system. As Deep Learning 

practices advance, particularly Unsupervised Learning, we should aim to develop systems 

following ERL approach to leverage them.  
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LIMITATIONS OF DEEP LEARNING 

The previous experiment was a success. It has met our success criteria, and the system 

design adhered to the ERL method. The learning would go on autonomously but would 

require human-coaching should we want the robot to know the common English names for 

the objects. Should we alleviate this requirement, it is quite easy for the robot to create its 

own names, i.e. labels, for the objects it encounters. Though, of course, such names as it 

will create will not conform to the English names. 

Despite not being concerned with catastrophic forgetting, as we mentioned in an earlier 

section, the representational capacity of the model can be an issue. The robot would 

compile larger and larger datasets, requiring re-training. As the dataset becomes larger, the 

ability of the model to distinguish all those data points (belonging to different classes) will 

diminish because its representational capacity has remained constant. It is possible 

however to engineer the learning system to autonomously increase its own model’s 

parameters, and consequently increase the representational capacity. 

Despite these successes, we found that this approach had several limitations. First, the type 

of task that the robot can be trained to perform (or be able to learn) must be a 

“differentiable” task. Or more specifically, the task has to have a representative loss 

function that is differentiable. 

Let’s dive a little into what a loss function is, and what it is supposed to accomplish and 

how it is supposed to behave. A loss function is a function that computes a value given the 

neural network’s output. By optimizing the loss function, i.e. find its optimum, the 
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optimizer is supposed to “train” the neural network. The optimizer thus accomplishes the 

task at hand by optimizing the loss function. The loss function should give high value if 

the network’s output does not solve or aid in solving the task. Conversely, if the network’s 

output solves the task or is helpful, then the loss function should compute a low value. In 

that way, the loss function reflects the overall quality of the network’s outputs in relation 

with the task being accomplished. High loss indicates optimizer failure and low success. 

In this context, a loss function represents the task. If the loss function is unrepresentative 

of the task, then optimizing the neural network according to it will not aid in accomplishing 

the task. Unrepresentative means that getting a low loss value from the loss function 

doesn’t actually translate to successfully performing the task at hand. One can easily 

conceive many scenarios/tasks where success is not easily measured through a loss 

function. Learning any task with Deep Learning requires a loss function. Note that a loss 

function can incorporate labels, such as in cross-entropy, or it can be label-free such as in 

mean-squared error for autoencoders. 

In addition to the loss function being representative of the task, it also needs to be 

differentiable. The loss function cannot be non-smooth or have discontinuities. By 

extension, the network architecture must also be end-to-end differentiable. Moreover, it is 

assumed that the hypersurface created by the loss function in the space of network weights 

is convex. If the loss hypersurface is not convex then the optimizer will not converge on a 

proper solution. Recall that gradient-based optimization algorithms are used to train the 

neural network, which are part of the stochastic convex optimization family. The gradient-
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following behavior of those algorithms will not be useful if the function being optimized 

is non-convex. There are many functions whose topologies are not convex. The gradients 

of those functions are thus “uninformative”, i.e. it does not lead to a global optimum. Those 

are some of the challenges associated with derivative-based optimization, aka. Deep 

Learning, based on the use of loss functions. 

These challenges may not be prominent in the field of Computer Vision tasks. For robotic 

tasks, however, those challenges are pronounced. The field of Deep Reinforcement 

Learning (DRL) tackles many tasks of similar structure to what we would assign our robot. 

The tasks are usually performed in a non-stationary environment, where the agent’s actions 

carry some effect on the subsequent possible state spaces. In the field of DRL, it has been 

noted that gradients are not always informative. This remark has been cited by OpenAI 

researchers in [74]. We highlight a quote from their paper “…a large source of difficulty in 

RL stems from the lack of informative gradients of policy performance”. The authors 

introduce the use of Evolution Strategies instead of gradient-based methods to solve RL 

tasks. Similarly, Uber AI researchers in [75] propose using Genetic Algorithms to solve 

RL tasks. Both have been found competitive to gradient-based methods. 

In our experiences, while the previous experiment has been a relative success the 

subsequent attempts to design systems according to ERL have failed. These failures, we 

hypothesize, stemmed from our use of gradient-based optimization. The distinct lack of 

exploration of the action space can be associated with the greedy nature of gradient-based 

algorithms that are primarily geared towards gradient-following behaviors, i.e. 
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exploitative. The challenges associated with designing a proper loss function, as we just 

discussed, for the tasks we wanted the robot to perform may also stem from the use of 

gradient-based optimization. For those reasons, we switched directions and veered into the 

realm of derivative-free optimization algorithms to train our neural networks. Limitations 

are summarized in Table 9. 

In doing so, we expanded our definition of ERL implementation. It is thus not about 

modern “Deep Learning” architectures. ERL implementation is about malleable structures 

that are capable of representation such as deep neural networks, and the ability to train said 

structures. Conventional deep neural networks are but one example of malleable 

representational structure, there are others such as Extreme Learning Machines. We choose 

deep nets for their relevance to today’s technology, academic and industrial applications 

and interests. However, the black box optimization methods developed henceforth should 

be usable with minor adjustments for other learning structures. 

This switch from derivative-based to derivative-free optimization provides other 

affordances. Training in low-precision can be easier than with gradient-based methods. 

Training itself is simpler, in general, since only weight updates are performed through 

perturbation and backpropagation is eliminated. Non-differentiable elements in the 

network architecture can now be incorporated. Even the reward policies can be simpler to 

define, as we shall see in the coming chapters. 
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CONCLUSION 

Let’s review this chapter. Starting off with the principles of the ERL method, we applied 

them to design a robotic system capable of autonomous learning. The learning was in the 

form of updating and improving upon a visual dictionary of real-world objects in real-time 

from real-world data gathered through interaction with the real-world physical 

environment. The robot was successful and achieved a high score on the AS scale 

introduced in the previous chapter. 

TABLE 9 SUMMARY OF DEEP LEARNING LIMITATIONS 

Item Limitation 

Loss Function Representative, Differentiable, Convex 

Natural Behavior Greedy, exploitative 

Gradients Must be informative 

Precision High-precision required 

Neural Architecture End-to-end differentiable 

 

However, further attempts to extend this style of learning were not successful. Many 

challenges were encountered and chief among them was the non-exploratory behavior of 

the robot and the design of a proper loss function. Since we need to adhere to the ERL 

method, it was deemed that the derivative-based optimization approach was the culprit and 

will be exchanged for derivative-free optimization. The switch to DFO allows previously 

inaccessible behaviors and designs for the system. We summarized the limitations posed 

by Deep Learning in Table 9 for easy reference.  
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CHAPTER 4: TRAINING DNNS WITH EVOLUTIONARY 

ALGORITHMS 

EXPERIMENTAL STUDY 2: FROM PLAYING FLAPPY BIRD TO ROBOT 

LEARNING THROUGH ACCELERATED NEUROEVOLUTION 

INTRODUCTION 

The algorithms of Stochastic Gradient Descent (SGD) and Backpropagation (BP) were 

invented decades ago [76], [77] [78]. There have been many variants that improve the 

performance of SGD such as the widely adopted ADAM algorithm [17]. Those algorithms 

gave rise to what is now dubbed Deep Learning. In effect, Deep Learning can generally be 

considered as gradient-based optimization of deep neural networks. 

Gradient-based methods, however, pose constraints such as end-to-end differentiability of 

the model. When dealing with some tasks, for example Hard Attention [79], this 

differentiability requirement can become a limitation. In addition, when one explores the 

field of Reinforcement Learning, the constraints are more pronounced. Agents suffer from 

lack of exploration and stagnation due to the natural behavior of SGD and uninformative 

gradient signals [80]. There has been many techniques to get around those limitations in 

Computer Vision [81] and Reinforcement Learning [82]. 

In this experiment, we propose accumulations to the Experiential Robot Learning method 

based on the observations concerning gradient-based optimization. Primarily, we propose 

the usage of Deep Neuroevolution as an alternative optimization technique.  
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Evolutionary algorithms have been notoriously known for their convergence problem (they 

usually take a relatively long time to converge on a solution). There are multiple attempts 

to combat this, most notably is the NEAT algorithm [83], and its variants such as FS-NEAT 

[84]. However, those approaches rely on mutating the network structure alongside weights. 

In addition, due to the large number of generations and populations within each generation, 

the number of physical implementations of Evolutionary Algorithms has thus far been 

limited [85]. This is especially pronounced when considering that ERL requires online 

learning, though it does allow a bootstrapping process to precede. In this context, we 

propose an Accelerated Neuroevolution, or ANv1, algorithm that improves upon a baseline 

algorithm in the game Flappy Bird. Our algorithm is engineered to display several desirable 

behaviors such as faster convergence, stability and adaptive exploration. We deemed ANv1 

suited for physical implementation and tested it on a NAO robot in a visuomotor learning 

task. The goal is to center an object in the robot’s field of vision. A visual reference of the 

task is given in Figure 10. 

In addition, we introduce a gradient-trained CNN that classifies the location of an object. 

The CNN is seamlessly integrated with an evolved network, to create a hybrid system of 

gradient and gradient-free trained networks. ANv1 performs remarkably well in a physical, 

although simplified, environment. 
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EXPERIMENTAL SETUP 

We chose the algorithm in [86] as a baseline for our experiments. Briefly, the Batchu 

algorithm exposes a neural network to an evolutionary process through favorable breeding 

of higher-ranking populations according to a fitness metric. In the Flappy Bird game, the 

fitness metric is the performance of the agent playing the game, i.e. avoiding obstacles. 

The Batchu algorithm features a coarse notion of crossover, the offspring’s networks are 

composed of entirely swapped layers of weights. That is, a layer’s weights, incoming or 

outgoing, are entirely inherited from one of the parents. A random mutation is then applied 

to the weights, with a selection probability of 0.15. The self-reported performance in of the 

algorithm is about 1 hour, i.e. hundreds of generations, of training for convergence on a 

capable agent [86]. This result corresponds to a fully-connected network with a hidden 

layer of 7 neurons, and a population size of 100 agents for each generation. 

ACCELERATED NEUROEVOLUTION V1 (ANV1) 

The proposed algorithm, Accelerated Neuroevolution v1 or ANv1, needs to be much more 

efficient if it will be used for physical implementation. This may come at a cost of reduced 

exploration behavior. We modified a few behaviors of the baseline algorithm as such. The 

algorithm outline is given in Table 10. 
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TABLE 10 OUTLINE OF THE ACCELERATED NEUROEVOLUTION (ANV1) ALGORITHM 

Stage Description 

Assemble new 

generation 
- Assemble generations of N populations 

Perform the task 
- Perform the assigned task, the populations experience the 

environment either simultaneously or separately 

Evaluate Performance 

- Evaluate the performance of each population according to the 

fitness metric 

- Determine the Winner as the population with the highest score 

- Determine the Mutation Resistance rate based on the calculated 

fitness metric of the Winner (either reset to the original value of 95 

or lower by 0.05) 

Selective Breeding 

- Preserve the Winner 

- Perform Crossover for the Royal Family 

- Perform Crossover for the rest of the populations 

Random Mutations 

- Preserve the Winner 

- Perform mutation for all other populations using the newly-

determined Mutation Resistance rate 

 

First, in Crossover instead of taking an entire weights layer from a parent, the weights of 

the offspring are taken in a crisscross, i.e. checkered, pattern from both parents. There are 

two offspring from this process, depending on which parent we start with. Thus, if the first 

weight belongs to parent 1 then the second weight will belong to parent 2, and so on. Our 

intuition was that this equal participation allows the inheritance of both good and bad genes 

from the parents. In addition, it may encourage sparsity in the model.  

Second, we designed an adaptive mutation scheme to balance perturbation, i.e. exploration, 

and stability. The scheme randomly mutates weights with a 5% selection probability. We 

call the inverse of this selection probability, i.e. 95%, Mutation Resistance rate. The rate is 

dynamically adjusted by comparing generational entropy of the fitness metric. For each 

generation after the first, the fitness metric is examined and compared with its predecessor. 



Chapter 4: Training DNNs With Evolutionary Algorithms 

 

 

 

89 

If the score is found to lie within a pre-defined interval, e.g. -5-10%, then it is dubbed 

stagnant. If there is a stagnant generation, the Mutation Resistance is accumulatively 

lowered by 5% for the upcoming generation. Each stagnant generation thus experiences a 

higher probability of mutations. If finally, one generation’s fitness metric is sufficiently 

higher or lower than the stagnation interval, then the Mutation Resistance is reset to 95%. 

We wanted to balance exploration and convergence. The algorithm needed to be able to 

get out of local minima, and our intuition was that this behavior can help with that. Note 

that the magnitude of the mutation is constant, it is the mutation selection probability that 

changes adaptively.  

Third, we made amendments to help increase convergence rates. In our experience the 

baseline algorithm did not exploit breakthroughs greedily enough. If for example one of 

the populations was able to demonstrate a better behavior than the others, its good genes 

are usually lost in the crossover and mutation process. Therefore, we introduced a Winner 

and Royal Family concept (Elitism and Elite population). 

In the iterative search of evolutionary algorithms, some populations (aka. samples) perform 

better than others. Using the mechanisms of mutation and crossover, the parameter vector 

is altered to create a pool of new, unique samples. This pool is then re-evaluated, and the 

fitness (aka. Score) of each sample is The Winner of each generation is the best-performing 

agent. This Winner is preserved to the following generation, without experiencing 

mutation. This preserves the best-performing agent in hope to retain its attractive 

properties. The Royal Family is the winner breeding (performing crossover) with other 
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previous winners (or itself if in the first generation), and undergoing mutations. The size 

of the Royal Family is predefined at the start of the algorithm. We typically choose a low 

number such as 4. Finally, the rest of the populations breeds with the Winner and undergoes 

mutations as normal. In this way, the Winner’s good genes are dissipated to the entire 

upcoming generation, with various concentrations. The preservation of the Winner agent 

ensures this unique parameter vector endures without mutation. The Royal Family 

population aims to improve the Winner’s parameter vector by exposing it to mutations. 

Breeding the rest of the population with the Winner rather than amongst themselves aims 

to create radically new parameter vectors based on the Winner’s while allowing the 

inheritance of bad genes. We view bad genes as necessary to create new behaviors and 

encourage entropy within the genetic pool. In essence, with those choices we attempt to 

maximally capitalize on the good performance of any particular agent. 

LOCATION NET (LOCNET) 

We developed our algorithm described in the previous section to perform in the physical 

environment. The Flappy Bird game is simply a demonstration of its behavior in a 

simulated environment. The task we chose for the first implementation is the centering of 

a static object in the robot’s field of vision. It is a steppingstone for more complex physical 

learning tasks such as real-time moving object tracking. 
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FIGURE 9 TRAINING SAMPLES FOR DIFFERENT CLASSES OF THE LOCATION NET CNN. 

NOTE THAT (A) AND (C) SHOW THE SAME OBJECT BUT IN DIFFERENT LOCATIONS, WE 

CALL THIS AN ADVERSARIAL SAMPLE. THE TRAINING SET CONTAINS MANY SUCH 

SAMPLES. THE INTUITION IN DOING THIS, IS THAT IT ENCOURAGES THE NETWORK 

TO FOCUS ON THE LOCATIONS OF THE OBJECT RATHER THAN THE OBJECT ITSELF. 

 

We trained a CNN to classify an object’s location in the robot’s field of view. The network 

divides the visual field into a 3x3 grid, a class for each section. In addition, there’s a Null 

class if there’s no object detected in the image. Namely, the 10 classes are: Top Left, Top 

Center, Top Right, Left, Center, Right, Bottom Left, Bottom Center, Bottom Right and No 

Image. Location Net is designed to center any object regardless of what it is. The choice of 

using a sign, as shown in Figure 10, is only for convenience. The sign can be replaced with 

any other object. The network is based on a modified VGG16 architecture. Specifically, 

the fully-connected layers are shrunk to accommodate the relatively simple classification 

task. It is trained on a manually-assembled dataset of objects against a plain background in 

various locations in the 3x3 grid.  

In total, the training and validation sets contain over 1,500 images. The training and 

validation sets feature adversarial examples by having the exact same object and the exact 

same background but in different locations. Intuitively this encourages the classifier to 
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recognize the locations rather than the objects in an image. Samples of the training and 

validation sets are given in Figure 9. Location Net, or LocNet for short, was trained with 

the ADAM optimizer and written in Keras with a TensorFlow backend. It is a gradient-

trained network. Training takes less than 10 minutes on an Nvidia Titan Xp GPU. The 

network achieves over 90% accuracy for both the training and validation sets after 35 

epochs. We deem this sufficient accuracy for the given task. Our task is neither time-

sensitive nor action-critical, hence we can tolerate this error. The network can correct 

misclassifications through the redundancy of a video stream. 

OBJECT-CENTERING TASK 

In this task, the robot centers a static object in its field of vision by moving its head left or 

right. The robot’s head is controlled by an evolved neural net. This network is seamlessly 

stacked under the Location Net CNN, described in the previous section. That is, the evolved 

net takes as input the output vector of the CNN and maps that to a command. The control 

net issues one of three commands: Move Left, No Movement and Move Right. Hence, we 

have a discrete control scheme, with a single Degree-of-Freedom, DOF. 
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FIGURE 10 THE NAO ROBOT LEARNS TO VISUALLY CENTER THE OBJECT (THE PAPER 

SIGN) BY MOVING ITS HEAD. 

 

Over the generations, the evolved control net has to figure the mapping of the classification 

to the correct control action. For example, if the CNN classifies the object to be on the 

’Left’, then the net has to issue a ’Move Left’ command. The robot then moves shifts its 

Head Yaw angle to the Left by a fixed amount. Once the object is classified as ’Center’, 

the net has to issue ’No Movement’ commands to ensure stability. This mapping is 

reflected by reward assignment. For every correct action the network’s total reward is 

incremented by 100. At the end of the 5 episodes, the total reward reflects the network’s 

performance. This total reward is our ’fitness metric’, through which the network is 

evolved. Intuitively, this reward assignment is what guides the ANv1 algorithm, i.e. 

Robot’s, behavior. If we want a different behavior, all we need is to change the reward 

assignment scheme. 

COMBINED SETUP 
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In the following section we outline the experimental setup used to produce the presented 

results. In the first set of experiments two algorithms play the game of Flappy Bird on a 

desktop workstation. We use an Nvidia Titan Xp GPU to calculate and implement the 

populations, i.e. neural networks. The networks are written in Keras and implemented in 

TensorFlow.  

For the second set of experiments, we use a NAO robot to center a physical static object. 

The algorithm runs on a desktop workstation with an Nvidia Titan Xp GPU. The robot 

captures its current view using its front camera and sends it to the workstation over a 

wireless local network. The CNN accepts the image as input then each control network, 

i.e. population, gets to control the robot for 5 steps. The goal is to center the object within 

those 5 steps and ensure stable convergence. Each ’Move’ command increments the current 

position of the Head Yaw joint angle by a fixed amount. This amount is small enough to 

allow fine control, and limit overshooting. It is empirically chosen, based on observation. 

Incrementation is implemented by querying the robot for the current joint angle, and 

adjusting it based on the neural network’s choice. Finally, the new position is sent to the 

robot as a command over a wireless local network. 

RESULTS 

FLAPPY BIRD VIDEO GAME 

In this section we present the results of playing the Flappy Bird video game both with the 

baseline algorithm and our own algorithm. Note that the game has no end. That is, an agent 

capable of playing the game, can potentially go on indefinitely. This means there is no 
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definite metric for convergence. For that reason, we qualitatively pronounce whether an 

agent can play the game based on our own observations.  

However, we understand that qualitative assessment is not a robust benchmark to compare 

performance. Thus, we report the generational score, normalized for population size, over 

the number of generations as a means to compare the algorithms. Normalized generational 

score is the aggregate score for the entire generation divided by the number of populations. 

This gives us an idea of how the entire generation performs rather than an individual outlier. 

In addition, we chose the number of generations, i.e. rollouts, as measure instead of time, 

because time may vary across tasks and domains. The number of rollouts, on the other 

hand, reflects the performance of the algorithm. 

As a reminder, one of the motivations of creating our own algorithm is that evolutionary 

algorithms are generally known to be unfit for implementation on physical agents. This is 

due to their slow convergence and impracticality considering the typical population size.  

The baseline neuroevolution algorithm by Batchu, described in the previous section, is 

reported to train agents capable of playing the game after roughly an hour of training, i.e. 

over a thousand generations. The algorithm operates on a single-hidden layer network of 7 

neurons. It takes as input a tuple of 3 numbers representing the distance to the nearest pipe, 

the gap height and the height of the agent. 
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FIGURE 11 DIFFERENT, INDIVIDUAL ROLLOUTS OF VARYING LENGTHS OF THE 

BASELINE ALGORITHM PLAYING FLAPPY BIRD. THE CHART REFLECTS POOR 

PERFORMANCE DUE TO THE LARGE NUMBER OF GENERATIONS NECESSARY TO 

ACHIEVE LEARNING AS REFLECTED BY A HIGHER SCORE. THE ALGORITHM FAILS TO 

CAPITALIZE ON BREAKTHROUGH GENERATIONS BY RELAPSING TO A POOR 

PERFORMANCE. 

 

The self-reported results as well as those reported in Figure 11 for the baseline algorithm 

are for a population size of 50. That is, the algorithm is training 50 populations every 
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generation. As the number of agents increase the chance that a population has good genes 

increases. This in turn leads to quicker convergence, intuitively. However, requiring a large 

number of populations for convergence renders an algorithm infeasible for physical 

implementation.  

In Figure 11 we present the results of using the Batchu algorithm over rollouts of varied 

lengths. It performed rather poorly. Notably, convergence is extremely slow, and the 

algorithm fails to capitalize on breakthrough generations. Ideally, we want learnings to 

compound over generations for quick convergence. In addition, we also see how sensitive 

it is to initialization. Each plot in the figure is a separate run. Performance varies drastically 

between (a) and (b) for example. From Run 2 in (c) we highlight how performance 

regresses eventually despite a promising start. 

The ANv1 algorithm we presented and described in the previous section, operates in this 

experiment on a single-hidden layer network of 50 neurons. We increase the number of 

neurons by 7X from the baseline algorithm. In practical implementations, problems are not 

going to be as simple as Flappy Bird. We wanted to test how our algorithm responds to a 

larger network. We use the same population size of 50. 
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FIGURE 12 PERFORMANCE OF THE ANV1 ALGORITHM. THE ALGORITHM PERFORMS 

AT LEAST 1.7X BETTER THAN BASELINE (PRESENTED IN THE PREVIOUS FIGURE), 

OVER A MUCH LOWER NUMBER OF GENERATIONS, WHILE EVOLVING A NETWORK 

THAT IS 7X LARGER. THE ALGORITHM GENERALLY CAPITALIZES ON 

BREAKTHROUGH GENERATIONS, EVEN IF SUBSEQUENT GENERATIONS ARE NOT AS 

WELL-PERFORMING. 

 

The performance of the ANv1 algorithm is presented in Figure 12. The algorithm is 

reported over only 75 generations. As the agents get better at playing the game, it takes 

longer for them to commit a mistake. Training thus becomes a diminishing returns factor 

of improvement. As we can see, the algorithm performs much better than baseline on 

average, an improvement of between 1.7X and 7.1X. Of course, those improvements arrive 

in a much shorter span of generations. 
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We can see behaviors in Figure 12 such as getting out of local minima by the accelerated 

compounding of score in the early stages. The dynamism of ANv1 is also highlighted by 

how the score doesn’t plateau for more than a handful of generations. This behavior was 

engineered into the algorithm in order to achieve higher scores through exploration. We 

also note how the algorithm almost always performs better after a breakthrough generation, 

than pre-breakthrough. It shows that the algorithm capitalizes on breakthrough generations. 

This also an intended behavior that has been engineered. Stability and robustness can be 

highlighted by how the algorithm does not regress or backtrack to poor, initial performance. 

This is subtly different from capitalization on breakthrough generations. 

ROBOT OBJECT-CENTERING TASK 

This is arguably the most important section of the experiment. We deemed the ANv1 

algorithm ready for implementation on a physical system. After all, it was our main 

motivation in pursuing this thread of inquiry. We decided to shrink the population size to 

only 15 in each generation. This number lowers the exploration potential of the algorithm 

but makes it far more practical. The network is still a single-hidden layer network, but of 

10 neurons. This width is lower than the 50 neurons used in the earlier section. We chose 

this as the task is relatively simple and shouldn’t require a network of larger 

representational capacity.  

The task is described in the previous section. To reiterate, the robot is required to ’center’ 

a static object by moving its head left and right. For each generation, i.e. optimization 

iteration, there are 15 populations. Each population controls the robot for 5 episodes. To 
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ensure robustness, we start the robot in 3 different locations. Specifically, we place the 

robot to the Left, Center and Right, of the object. For each location we carry our experiment 

3 times. This is a total of 9 experiments.  

 

FIGURE 13 PERFORMANCE OF THE ANV1 ALGORITHM IN THE STATIC OBJECT 

CENTERING TASK. WE RAN 9 EXPERIMENTS, THREE FOR EACH POSSIBLE STARTING 

LOCATION, LEFT, RIGHT AND CENTER. THE ALGORITHM TERMINATES WHEN 7 OUT 

OF THE 15 POPULATIONS COLLECT MAXIMUM REWARDS. THE ALGORIITHM 

CONVERGES IN LESS THAN 5 GENERATIONS, WITH ONE EXCEPTION. 

 

The algorithm stops when 7 of the 15 populations have received maximum rewards. That 

is, 7 or more populations successfully map the CNN classifications to the correct 

commands for all the 5 episodes, i.e. optimal agents. Once this threshold is achieved or 

passed, the algorithm terminates.  



Chapter 4: Training DNNs With Evolutionary Algorithms 

 

 

 

101 

We have found that the ANv1 algorithm successfully navigates the task 9 out of 9 times. 

Each experiment generally took 10 minutes or less, with one exception. The results are 

shown in Figure 13. Experiment 4 in Figure 13 took 14 generations to convergence while 

the other two experiments in its class, 5 and 6, took 5 and 3 generations respectively. We 

assign this behavior to sensitivity to initialization. To a lesser extent, conservative 

mutations may also be a contributor. In ANv1, the initial mutation resistance rate, as 

outlined in Table 10, is 95%; and it decreases only in 5% decrements per generation. In 

general, we are satisfied that our choice of running 3 experiments per location has been 

rewarded in revealing this behavior. 

ATTRACTIVENESS SCORE ASSESSMENT 

In this subsection we assess the performance of the robot on the ERL Attractiveness Score 

(AS) scale. The results are given below. 

TABLE 11 ASSESSMENT OF EXPERIMENT ON AS SCALE 

Criterion Assessment Score 

Learning Robot demonstrates learning 5 

Convergence Robot takes more than 10 trials 0 

Pre-training Pre-training takes less than 24 hours 1 

Dataset Compilation Dataset takes less than 24 hours to compile 1 

Portability Model not deployable on embedded systems 0 

 

The robot thus achieves a score of 7/10. This score surpasses our criteria for success, and 

thus we consider this experiment a successful demonstration of ERL. 
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CONCLUSIONS 

Motivated and guided by the Experiential Robot Learning, ERL for short, method, we 

proposed the Accelerated Neuroevolution v1, ANv1 for short, algorithm. We tested the 

algorithm in two scenarios. The first experimental set is in a simulated environment, 

playing the game of Flappy Bird. We found that the algorithm performs much better, 1.7-

7X, than a baseline algorithm, while controlling a network that is 7X larger. We observed 

encouraging behavior such as capitalization on breakthrough generations, ability to get out 

of local minima, high dynamism while maintaining robustness and stability. 

The second experimental set took place in the physical environment on a NAO robot. The 

goal was to center an object in the robot’s field of vision. We developed a CNN called 

Location Net to classify where the object is. We found that the algorithm generally 

converges in a relatively low number of generations, 5 or less. We did observe, however, 

that the algorithm is sensitive to initialization. This is noted in the case of experiment 4 in 

Figure 13 where the initialization was likely adversarial. 

While not reported here, we also observed how the algorithm makes heavy use of the 

adaptive mutation resistance rate. Whenever it was ’stuck’ or plateauing, the algorithm 

would decrease the resistance rate until it got out of the flat region. We observed this for 

both the simulated and the physical experimental sets.  

We recognize the limitations of our work, as well. The algorithm needs to be benchmarked 

on larger, more complex tasks. In addition, more realistic tasks will require evolving neural 

networks of greater representational capacities, i.e. deeper, wider and more varied. 
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However, a single DOF task is not unheard of in the domains of Robotics and 

Reinforcement Learning. Furthermore, given that this is an initial step, we believe it is a 

significant proposition and validation.  

For future iterations, we aim to implement adaptive mutation magnitudes. While the 

mutation resistance rate is adaptive, the magnitude of the mutations is static. We think this 

will become useful when evolving more complex networks, whose behavior needs to be 

fine-tuned. 

In conclusion, we presented a first foray into Accelerated Neuroevolution with a simulated 

and a physical learning experiment. The algorithm performed well in the assigned tasks 

and demonstrated encouraging behaviors. We like how a gradient-trained network, i.e. 

LocNet, was seamlessly integrated with an evolved network, i.e. the control net. We see 

this sort of integration proliferating into more applications that prove that a hybrid approach 

is needed. 
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EXPERIMENTAL STUDY 3: MULTIPLE SEARCH NEUROEVOLUTION 

INTRODUCTION 

In recent years, deep neural networks have been employed for tasks in various domains 

like Object Detection [87] , Robotic Grasping [88] and Machine Translation [89]. They are 

quite popular and powerful given their representational capacity and automatic feature 

extraction. To train those networks the standard algorithms used are Gradient Descent [90] 

variations such as Stochastic Gradient Descent (SGD) [76] and ADAM [17], all employing 

Backpropagation [78] [77]. Remarkably, Gradient Descent, SGD and Backpropagation 

were reported in 1847, 1951 and 1974 respectively. Since then, many techniques and 

variations have been reported over the years such as ADAM and Batch Normalization [91] 

in 2015.  

In general, gradient-based algorithms are preferred when training neural networks because 

of their ability to handle complexities introduced by networks with millions of weights. 

However, there are also limitations when using a gradient-based optimization algorithm 

such as SGD. The neural network architecture and the loss function must be end-to-end 

differentiable. Consequently, there are several problems that cannot be directly modeled or 

addressed without some alterations such as Formal Logic, Discrete Action and Hard 

Attention [81], [92]. Another limitation is the lack of exploration due to the greedy nature 

of the algorithm, i.e. gradient-following. This makes the algorithm somewhat linear in the 

discovered solutions due to little exploration of the search space. For tasks that require 

exploration, this can make the training process challenging. Furthermore, the algorithm is 
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prone to getting stuck in local minima and saddle points. While there are remedies to such 

challenges, e.g. using Dropout, they may not always produce the desired effect. 

For those reasons, we ventured to investigate derivative-free optimization algorithms that 

can potentially train deep neural networks. Optimization algorithms generally are divided 

into two categories, exact and heuristic [93]. Due to the combinatorial complexities of 

training neural networks, heuristics are almost always used. They are neither guaranteed to 

converge nor reach an optimal solution. Heuristics can further be divided into two 

categories, single-solution and population-based. Otherwise, there are many more lines to 

distinguish different families of algorithms by. Single-solution heuristics, also called 

trajectory methods, attempt to iteratively improve upon a single candidate solution. Single-

solution heuristics are generally exploitation-based algorithms [94]. On the other hand, 

population-based heuristics attempt to improve a “population” (set) of solutions based on 

their “fitness” (performance) according to an objective function, over generations 

(optimization steps). Population-based heuristics are generally exploration-based. For 

those algorithms to achieve a solution, there must be some differentiator between the 

populations throughout the optimization process. 

Specially designed for neural networks are Neuroevolution algorithms, a derivative of 

evolutionary computation algorithms. In 1994 Ronald and Schoenauer first reported using 

genetic algorithms to optimize a simple neural network for a toy task [95]. Since then there 

were many implementations and variations on Neuroevolution, such as NEAT in 2002 

[83]. In general, Neuroevolution algorithms can be split into two categories. The first, such 
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as in NEAT, attempts to evolve the topology along with the weights of the network. The 

second attempts to evolve only the weights, such as in [75]. Since evolving the topology 

would add another aspect of complexity, we are only concerned with evolving the weights 

of the network. In addition, evolving the network topology does not allow a somewhat 

direct comparison with SGD. 

To that end, this experiment reports a metaheuristic called Multiple Search Neuroevolution 

(MSN). A metaheuristic is a “strategy” that guides the search process, not an algorithm for 

a particular problem [94]. We report the MSN metaheuristic as a set of principles that shape 

an overall guide strategy. It tries to search multiple regions of the search space, while 

maintaining a certain distance between those regions to ensure diversity. Despite searching 

multiple regions simultaneously, it is a serial algorithm where populations (or samples as 

we will later call them) are generated and evaluated one at a time. Throughout this 

experiment the abbreviation MSN and the terms Our Algorithm & Metaheuristic will be 

used interchangeably, depending on context, to refer to the proposed metaheuristic. 

BACKGROUND AND RELATED WORK 

A PROBLEM OF SPACES 

Training neural networks is essentially an iterative optimization process. The optimization 

parameters and objective function are the network’s weights and loss function respectively. 

The optimization process aims to find a desirable set of weights given target input/output 

pairs such as in [96]–[98]. Through the weights, a mapping between the given input and 

the desired output is created. The weights are adjusted in order to approximate a function 
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that achieves said mapping. The larger or deeper the network, generally, the greater its 

capacity to approximate more complex functions. This is referred to as Representational 

Capacity in [6]. Increasing representational capacity allows the creation of more complex 

mappings, i.e. approximation of higher-order functions. In turn, the network can be used 

to address more challenging tasks.  

In this context, it is important to examine the abstract concepts of Spaces. The search space 

is the space (set) of all possible weight configurations. The wider and deeper the network, 

the larger the search space. The type of neuron itself also affects search space. In a recurrent 

neural network, for instance, there is an additional recurrent parameter to learn. Besides 

architecture, another important factor is the range of the weights. That is, binary weights 

would lead to a considerably smaller search space than 32-bit representations (FP32). 

Weights in a neural network are independent. Each weight is a free-valued parameter, 

constrained only by the range of representation.  

The observation space is the space (set) of all possible observations. Consider the case of 

the MNIST image dataset. The input size is a 28x28x1 full-precision (FP32) image 

(matrix). The entire dataset consists of 70,000 such images. The observation space, 

however, is made of all possible 28x28x1full-precision images (matrices). Thus the 70,000 

images are not the entire observation space. They are simply a small fraction of it. The 

solution space can be defined as the space (set) of all possible outcomes of the network. If 

the network only has one binary output neuron, for example, then the entire solutions pace 

consists only of two members [0, 1]. Another example would be Generative Adversarial 
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Networks that generate images. The solution space is the set of all possible images 

(matrices). The larger the image to be generated, the larger the solution space, and generally 

the more difficult it is to find a high-quality solution.  

Finally, there is loss space or gradient space. This is the space (set) of all possible error/cost 

values of the objective (loss) function. This is the space that the solver must traverse, in 

order to look for better solution candidate(s) in the search space. The topography of this 

space can sometimes be quite challenging to navigate. It may not be smooth, continuous, 

convex or even information-bearing. Salimans, Ho, Chen, Sido and Sutskever from 

OpenAI report this in [74] when they refer to cases where the gradients are 

“uninformative”. Furthermore, the loss landscape can be riddled with local minima, wide 

valleys and other anomalies. Generally, the more challenging the loss space, the more 

difficult it is to improve upon a given solution. 

THE SEARCH PROCESS 

Given all those spaces, it is perhaps now clearer how the search process is not simply a 

matter of architecture or size of the neural network. Each of the items mentioned above, 

e.g. network architecture, different spaces, etc. has a direct impact on the possibility and 

speed of attaining an acceptable solution. Towards that end, SGD uses information from 

first-order partial derivatives (gradients) of the loss function to aid it in the search process 

[99], i.e. gradient-following. Despite being computationally costly, gradients can be 

extremely informative. Over the decades since SGD was first invented, techniques such as 

Momentum [77] were introduced to improve the efficiency of the search process. In 
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addition, by using Backpropagation, and in turn the chain-rule, SGD can update an 

arbitrary number of weights in a neural network. It may sometimes suffer from 

complications e.g. vanishing and exploding gradients. There are of course techniques to 

tackle those, for instance residual connections [100]. 

Neuroevolution, on the other hand, does not use derivative information in its search 

process. Though computationally less-costly, not using derivatives can lead to the 

optimizer being inefficient and taking more optimization steps than SGD. Moreover, 

Neuroevolution requires the evaluation of a population of solutions (by performing the task 

and measuring performance) before taking a single optimization step. This makes it 

inherently penalized if one was to compare it directly with single-solution methods on 

number of evaluations. Without Backpropagation, Neuroevolution suffers when the trained 

network is relatively large. Each weight in the network becomes an additional dimension 

in the search space that can take any value within the representation bounds. Without clue 

or information on how to update each parameter, it essentially becomes a matter of 

educated guess. 

Despite these apparent challenges, a simple genetic algorithm was able to solve 

Reinforcement Learning tasks using additive Gaussian noise, elitism and no crossover [75]. 

Note that a population size of 1000 was used. The evolved networks had 4M+ parameters, 

possibly amongst the largest networks ever evolved. Another result of that work was that 

Random Search performed surprisingly well, which may perhaps suggest something about 

the domain itself. In [74] smaller networks are also evolved for Reinforcement Learning 
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tasks, using Evolution Strategies [101]. Between 720-1440 workers, i.e. populations, were 

used. 

Notably, Neuroevolution algorithms employed thus far are somewhat linear, as in [102]. 

There is no explicit notion of searching multiple regions in the search space. Instead, search 

would generally be concentrated on one region in hope to transition to more lucrative 

regions using the perturbation mechanisms. We sought to first address this aspect in the 

context of Global Optimization problems. The advantage of using Global Optimization 

functions is that the topology of the solution domain is known. It is possible to visualize 

optimizer behavior in the solution space, generate insights and determine how best to 

influence it. Following this line of thought, we describe the MSN metaheuristic in the next 

section. 

PROPOSED ALGORITHM 

A metaheuristic is a strategy that guides the search process [94]. It is not a singular 

algorithm for a singular problem. We introduce the MSN metaheuristic as a strategy to 

search multiple regions of the search space effectively. It consists of a set of smaller, 

locally-aware mechanisms and functions all operating to create a global aggregate 

behavior. Each of those mechanisms is described in this section, highlighting its function 

and import. In addition, many new terms and concepts are introduced and utilized. 

Equivalent terms, where relevant, are mentioned in order to maintain consistency with 

existing literature and norms. Since the mechanisms are numerous, they are divided into 

two groups. The primary group contains the core mechanisms without which the MSN 
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scheme can’t function. The secondary group contains supplementary mechanisms that are 

introduced in effort to improve search efficiency under certain conditions. 

PRIMARY MECHANISMS 

1) Pool Composition: The sample pool is the set of candidate samples, i.e. populations. 

The pool size, i.e. number of samples, is always constant. It is extremely important 

to utilize the allocated pool as efficiently as possible. This is a major motivation in 

our introduction of MSN. In the case of MSN, samples in the pool are the neural 

networks’ parameter vectors. They are initialized according to a weight 

initialization scheme, e.g. Xavier Normal [103]. After the first optimization step, 

i.e. generation, the pool will consist of the following components: Elite, Anchors, 

Probes and Blends. Let us introduce each of those in order.  

 

First, the Elite is the sample that collected the greatest reward since the optimization 

process began. Anchors are the highest-rewarded N samples in the current 

generation. They also need to be at least separated by a certain distance in the search 

space. This separation mechanism shall be introduced in a coming segment. From 

each anchor M probes are spawned. Probes begin as exact clones of their respective 

anchor after which each is randomly perturbed.  

 

It is possible that at any arbitrary generation the number of samples sufficiently 

apart is less than the allotted number of anchors, N. In such cases, the remaining 
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slots are filled with blends, i.e. crossovers, which will be described in a coming 

segment. 

 

To summarize, the pool is composed of the Elite, N Anchors, M Probes, and 

Blends, should there are be any open slots. The size of the pool thus must be at 

least (N*M) + 1. The choice of the pool size enables, emphasizes or even disables 

the Blend mechanism. 

 

2) Perturbation and Adaptive Integrity: Perturbation is the primary searching 

mechanism. It is the equivalent of genetic mutation, principally referring to the 

injection of noise into the makeup of the network. The magnitude and scope of that 

noise are determined according to (1) and (2). Equation (1) describes the Search 

Radius, i.e. the magnitude of perturbation. We call it Search Radius because it can 

be thought of as defining the radius of a virtual circle around each anchor, within 

which probes will be cast in random directions. Generally, as the search radius 

increases, probes will be casted farther away from an anchor. In the same way that 

Search Radius defines the magnitude of perturbations, the scope of perturbations is 

defined by the Number of Selections in (2). It determines how many of the weights 

shall be prone to noise, and how many will be preserved as is. 

 

By examining (1) and (2), it will be noted that they are functions of a variable called 

𝒊𝒏𝒕𝒆𝒈𝒓𝒊𝒕𝒚. It is a single real number in the range [0, 1], and the two equations are 
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designed to have attractive properties in that range. Thus, 𝒊𝒏𝒕𝒆𝒈𝒓𝒊𝒕𝒚 governs the 

search radius and number of selections. It determines the exploration vs. 

exploitation aspect on a local scale. Each generation, the algorithm needs to decide 

on integrity. Increasing 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦  makes the search more exploitative and less 

exploratory, and vice versa. Perhaps determining the value of 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦  is the 

single most important decision the algorithm must take. 

 

The value of 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 is reduced, by a fixed amount, when the current generation 

of samples does not yield a score that is sufficiently better than the previous best 

score. A parameter in the algorithm defines the minimum accepted percentage of 

improvement in the generational top reward/score, we call it 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐸𝑛𝑡𝑟𝑜𝑝𝑦. 

For example, in the global optimization task, 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 is set to 1%. If 

the current generation does not improve upon the previous generation’s reward by 

at least 1%, 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 is reduced by a fixed step size. If it does improve by at least 

1%then the current 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 value is maintained. The 𝑆𝑒𝑎𝑟𝑐ℎ 𝑅𝑎𝑑𝑖𝑢𝑠, a function 

of integrity, is calculated as 

 (1) 𝑺𝑹(𝒑) = (𝒕𝒂𝒏𝒉((𝝀𝒑) − 𝟐. 𝟓) + 𝟏) ∗ 𝒍𝒓 

where 𝑝 = (1 − 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦), 𝜆 and 𝑙𝑟 are scalar constants. The learning rate, 𝑙𝑟, 

scales the function, controlling the bounds of the search radius. The shifted, scaled 

hyperbolic tangent function has attractive properties in the range [0, 1]. These 

properties are an almost-flat slope near 0 and an almost-flat slope near 1. This 

allows the algorithm to spend more time searching low-energy configurations even 
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as 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 is reduced, where we estimate rewards are more likely. By flattening 

the slope near 1, it also prevents the algorithm from searching exceedingly high-

energy configurations where it is unlikely to find rewards. 

The 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 is calculated as 

(2) 𝑺𝒆𝒍𝒆𝒄𝒕𝒊𝒐𝒏𝒔 (𝒑) =  
𝜶

𝟏+
𝜷

𝒑⁄
 

where 𝑝 = (1 − 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦), and 𝛼 and 𝛽 are scalar constants. In the range [0, 1], 

this function starts at the origin and progressively becomes flatter as 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 is 

reduced. This saturation limits the number of modifications in the network. 

Intuitively, making too many adjustments to a neural network in one step is usually 

unrewarding, especially when the configuration at hand is highly refined. It is 

unlikely that changing 70%, for instance, of a model’s weights in one single 

generation will lead to a higher reward. This is especially the case when searching 

high-energy configurations, i.e. low 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 . The function is designed to 

saturate, in order to limit a situation where many cycles are wasted searching 

unprofitable regions. 

To summarize, the perturbation mechanism is introduced with its two aspects called 

𝑠𝑒𝑎𝑟𝑐ℎ 𝑟𝑎𝑑𝑖𝑢𝑠  and 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛𝑠 . The value of 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦  controls 

perturbation in order to balance exploration and exploitation locally. Six 

hyperparameters are defined. Namely they are 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒, 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐸𝑛𝑡𝑟𝑜𝑝𝑦, 𝑙𝑟, 

𝜆, 𝛼 and 𝛽. All values of those are determined empirically. 
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3) Anchors, Minimum Distance and Probes: Anchors are the N best-performing 

samples that are also separated in search space by a certain 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒. 

For example, if there are 5 anchors, those will be the 5 best-performing samples 

that meet the Minimum Distance criterion. Anchors are updated each generation.  

 

The parameter 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 defines the minimum separation requirement 

for a sample to become a candidate anchor. This assures searching different regions 

in search space. Let us walk through the anchor selection process. After sorting, the 

best-performing sample is picked as the first anchor. In an ordered reductive 

process, each sample is admitted as an anchor if it is separated from the other 

anchor(s) by at least 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒. 

 

There are many possible distance metrics to choose from such as Euclidean 

distance. However, we wanted to use a metric that accounts for differences in both 

magnitude and position (of the weights), between the samples. Thus, Canberra 

distance was chosen, and it is calculated as 

(3) 𝒅(𝒙, 𝒚) = ∑
|𝒙𝒊−𝒚𝒊|

|𝒙𝒊|+|𝒚𝒊|
𝒏
𝒊=𝟏  

where 𝑥, 𝑦 represent the two parameter vectors, i.e. samples, under examination 

and 𝑖 is each element in the vectors. 

Finally, from each anchor M exact clones are created, called Probes. Each probe is 

perturbed, i.e. mutated, to produce a different version of the anchor. Thus, probes 
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search the local neighborhoods of the anchors. By having multiple anchors, 

multiple regions are searched in tandem. And by having multiple probes per anchor, 

multiple local neighborhoods are searched within those regions. 

In summary, the processes of choosing anchors and probes are introduced. For 

anchors, the distance metric is chosen as Canberra distance, given by (3) to account 

for both magnitude and positional differences in the parameter vector. One 

hyperparameter is introduced called 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 . It defines the least 

acceptable distance between anchors, and its value is determined empirically. 

4) Blends: Blending, called Crossover in other literature, mechanism combines 

randomly-chosen weights from two components (i.e. parameter vectors) to yield a 

blend (an offspring parameter vector). The first component is always one of the 

anchors, picked at random. The second component can be any sample in the pool. 

The first component is cloned to form the basis. A number of weights from the 

second component replace their counterparts in the basis. This number is calculated 

by (2), introduced in the previous section. This is not dissimilar from human 

genomics where a child’s genetic makeup is acquired from parent 1 and parent 2. 

Blending potentially allows the exploration of regions out-side the main mechanism 

of perturbation and its constraints. By being based on anchors, blends attempt to 

extend the actively searched area in the search space. This exploration behavior can 

be emphasized or discouraged by increasing or reducing the number of slots allotted 

to blends in the pool.  
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In addition, it is possible that not enough samples are sufficiently apart in the search 

space to fill the N spots allotted to anchors. This would also mean that not enough 

probes would be made, and thus many slots in the pool would remain unfilled. 

Blends fill all those slots, helping to reintroduce diversity into the pool. With 

diversity, distance between samples increases. In consequence, the allotted slots for 

anchors can be filled again. 

 

In summary, this segment introduced blends and how they are picked. Blends 

attempt to explore regions beyond the constraints of perturbation. Also, they are 

important to fill open slots in the pool and maintain diversity. A visual overview of 

the system is given in Figure 14. 

 

FIGURE 14 VISUAL OUTLINE OF PRIMARY SEARCH MECHANISMS OF MULTIPLE 

SEARCH NEUROEVOLUTION IN SEARCH SPACE 
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5) Elitism: This technique is well-known throughout; we mention it for completeness. 

There are two sorts of elites, a generational elite, and a historical elite. The 

generational elite is the best-performing, i.e. highest-rewarded, sample of the 

current generation. The historical elite is the best-performing sample across all 

generations.  

 

In MSN, the generational elite is always picked as the first of the Anchors. The 

historical elite is simply called the Elite. It is preserved as-is, without being subject 

to perturbation or blends, across generations unless another better-performing 

sample replaces it. The Elite is called upon whenever the mechanism of 

Backtracking is invoked, which will be presented in the coming segment. 

SECONDARY MECHANISMS 

6) Backtracking: Without enough improvement in the reward signal, 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦  is 

reduced. This makes perturbations and blends more potent, searching higher-

energy configurations and encouraging exploration. This is a unidirectional 

behavior, and MSN will keep reducing 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦  (to its limit of 0) until an 

improvement is achieved. This has a couple of disadvantages, however. First, it 

may just be the case that the lucrative areas are in low-energy configurations. Due 

to the probabilistic nature of the algorithm, it is quite possible the algorithm 

“missed”. Second, with low 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 the samples become “hot” from applying 

high-magnitude perturbations on a large scope, and the weights start exploding.  
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Backtracking is a mechanism that resets 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 . It is triggered when MSN 

reduces 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 for X consecutive generations, where X is a parameter called 

𝑃𝑎𝑡𝑖𝑒𝑛𝑐𝑒. When it is triggered, backtracking resets the 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 value back to 

maximum, and inserts the Elite as an Anchor in the pool. This accomplishes two 

things. First, by resetting 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦, the algorithm will search low-energy regions 

once more. Second, inserting the elite as an anchor, and spawning its probes with 

maximum 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦 , helps “cool down” the entire pool. This is because the 

weights of the elite were not subject to perturbations. Thus, the search returns to 

low-energy configurations.  

 

In summary, if 𝑖𝑛𝑡𝑒𝑔𝑟𝑖𝑡𝑦  is consistently decreased without improvement, the 

search process may need to be reset. Backtracking is mechanism to accomplish this. 

One hyperparameter is introduced, called 𝑃𝑎𝑡𝑖𝑒𝑛𝑐𝑒 . It determines how many 

generations the algorithm should wait before backtracking, and its value is 

determined empirically. 

 

7) Radial Expansion: Radial expansion increases the learning rate 𝑙𝑟 and 𝛼 from  (1) 

and (2) by a fixed percentage called 𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 . Let us explain the 

reasoning behind this. Even at lowest integrity, there is a limit to how far a probe 

can be cast from its anchor, as defined by those equations. If that limit is too 

constrictive for the task, search efficiency will suffer for two reasons. The first: it 

can lead to the full number of anchors not being utilized, as the samples are not far 
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enough from each other. The second: it can increase the number of exploratory 

search iterations since the algorithm is too conservative. Radial expansion is 

triggered whenever the number of anchors becomes less than the allotted number, 

N.  

 

In summary, the mechanism of Radial Expansion decreases the constrictions of 

local search. It is an attempt to utilize the complete number of anchors. One 

hyperparameter is introduced, called 𝐸𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 , and its value is 

determined empirically. 

IMPLEMENTATION 

For all experiments in this experimental study, a pool size of 50 samples is used. This is a 

remarkably low number, compared to other works using evolutionary algorithms on neural 

networks such as [75] and [74] using more samples by one or two orders of magnitude. 

This choice, we believe, emphasizes efficiency. Thus, with a relatively small pool, the goal 

is to converge in the upcoming tests in as little iterations as possible. The algorithm is 

implemented using the PyTorch framework [104]. The information contained in this study 

should be enough for any developer to implement the algorithm. 

The training process with MSN can be described as follows. Since MSN is population-

based, a pool of networks is being evolved simultaneously. At the beginning, each network 

is initialized according to a weight initialization scheme, we use Xavier Normal. In each 

iteration, i.e. optimization step, a query of the environment is conducted by each network. 
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The networks each take the same input and produce their own output. Then the 

loss/reward/cost signal is computed and fed to the algorithm. It informs the algorithm about 

the quality of each network’s output. Finally, MSN adjusts the weights of the networks and 

the process is repeated.  

The experiments run on an Nvidia DG-X desktop computer, featuring four Nvidia Titan V 

GPUs. In the Global Optimization task, the experiments run on CPU and a single GPU. In 

the MNIST hand-written digit classification task, the experiments run on CPU and the four 

GPUs for data parallelization. The models are copied into each GPU and inference is 

conducted by dividing the training set/batch into four chunks, computing loss and 

aggregating the result. This is only to speed wall-clock time and does not affect the 

performance of the algorithm or the results of inference. For all experiments a pool size of 

50, with 4 anchors, and 8 probes per anchor are used. 

TASK 1: GLOBAL OPTIMIZATION FUNCTIONS 

We test MSN on two sets of Global Optimization functions. The first is a standard group 

and part of the BBOB challenge suite [105], a measure introduced in 2016. Those functions 

are also commonly implemented in different Python libraries, and thus allow us to compare 

MSN to other evolutionary algorithms. The second set is a special group of functions that 

are less common, and neither a part of the BBOB nor implemented in evolutionary 

libraries. Thus, a comparison with other algorithms on that set was not possible. 

Nonetheless, the challenges they pose are unique due to their irregular topographies. We 

thought it could be helpful to measure the performance of the algorithm against them. 
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The optimization task is straightforward and simple. Starting from a random location (x, 

y) in the search space, the algorithm needs to find the global optimum of the 2-dimensional 

function or approximate it. If the algorithm is within 0.06 of the global optimum value, the 

search terminates as a success. For example, if the global optimum is 0, then as soon as the 

algorithm reaches 0.06 or less it terminates. The number of optimization steps taken until 

termination is recorded and it is the measure of performance in the experiments. The lower 

the number of optimization steps needed to converge, the better the algorithm performs. 

The algorithms also terminate automatically if the number of steps taken exceed 5000. It 

is unlikely that the algorithm would converge beyond that point, and for reasons of 

comparison, it would not mean much if it did either. 

In Task 1, MSN optimizes a neural network model with a single hidden-layer of size 128. 

The network takes two real numbers (x, y) as the origin, picked uniformly from the 

observation space and remain constant throughout that experiment. The uniform 

distribution’s limits differ for each function. The network outputs two real numbers, its 

prediction of the coordinates of the global optimum. Other evolutionary algorithms don’t 

optimize neural networks, they operate directly on the problem. The implementations of 

those algorithms are found in the Inspyre and PyBrain evolutionary libraries [106], [107]. 

The default parameters are used. Generally, parameters in standard library implementations 

are either directly copied from the algorithm’s paper or picked to suite a wide set of 

problems. They are certainly not adversarial. For a fair comparison, however, we did not 

tune our algorithm, MSN, parameters either. We determine suitable values, empirically, 

and then use that exact same set across all experiments. 
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For every function, the optimization experiment is repeated five times per algorithm. The 

average number of optimization steps, i.e. generations, until termination is recorded. Limits 

for the functions are given as a single pair for symmetrical limits, and in the form (x-start, 

x-limit, y-start, y-limit) for asymmetrical limits. They are: [-5, 5] for Ackley, [-5.2, 5.2] for 

Rastrigin, [-2, 2] for Rosenbrock, [-500, 500] for Schwefel, [-15, -5, -3, 3] for Bukin N. 6, 

[-20, 20] for Easom and [-512, 512] for Eggholder. The same limits are used in all 

experiments. The definitions of the functions can be found in [108]. The first group of 

consisted of the Ackley, Rastrigin, Rosenbrock and Schwefel optimization functions. The 

tested algorithms are Evolution Strategies (ES) [101], Particle Swarm Optimization (PSO) 

[109], Differential Evolution (DE) [110], Simulated Annealing [111], Fitness-

Maximization Expectation (FEM) [112], Policy Gradients with Parameter Exploration 

(PGPE) [113] and Random Search. For some of those algorithms, not all the functions were 

available in their libraries for testing. However, at least two functions were tested in each 

case. 
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FIGURE 15 3D PLOTS OF THE SPECIAL GROUP OF GLOBAL OPTIMIZATION FUNCTIONS. 

CREDIT [114]–[116] 

The mode of comparison for the algorithms is the number of optimization steps performed. 

All of them had a population/swarm of size 50. It remained to be seen how well each will 

use the available resources to guide the optimization process. 

The special group of functions is composed of the Bukin N. 6, Easom and Eggholder 

functions. Let us examine each in turn. The Bukin N. 6 function has a unique feature of an 

extremely narrow valley where the global optimum lies. This poses a challenge for the 

exploitation aspect of an optimization algorithm. If an algorithm takes too large 

optimization steps, it is unlikely to find that lucrative strip. The Easom function is 

practically flat everywhere except a thin spike, where the global optimum lies. The 

(a) (b) 

(c) 
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algorithm needs to explore as fast as possible the search space, and then once it finds the 

spike, to being exploitation and travel towards the global optimum. It showcases a balance 

between strong exploration and exploitation. Finally, the Eggholder function is extremely 

irregular and adversarial in its shape. Its global optimum is literally in a corner. The 

optimizing algorithm needs to overcome the large number of deep local minima and 

maintain the search for the global optimum. Of all the functions, it has the largest solution 

space. A visual representation of the functions’ landscape is given in Figure 15. 

TASK 2: IMAGE CLASSIFICATION 

For Task 2, a convolutional neural network (CNN) is trained to solve the MNIST hand-

written digit classification problem. It is a standard entry-level problem where the goal is 

to correctly classify 28x28 greyscale images according to the number they feature. The 

CNN model consists of four convolutional layers of size 32, 64, 128 and 128 respectively 

with stride 2 and max-pooling in between, followed by a single fully-connected layer of 

size 512. Parametric ReLU non-linearity in PyTorch was used. The model has 4.7M 

parameters. 

The following set of conditions were imposed during the experiments. Since MSN is 

population-based, a pool of networks is being evolved simultaneously. This stretches 

inference time linearly. To speed up computations, and leveraging NVIDIA GPU Tensor 

Cores, half-precision floats (FP16) are used. Furthermore, only a subset of 2000 randomly-

picked images (3.33%) of the MNIST training set is used. However, the entire validation 

set is used. We set the termination condition to be a loss of 0.15. Given only a subset of the 
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training set, demanding further improvement is likely to introduce a cycle of diminishing 

returns. All this comes at a cost of not reaching the best possible performance on the task, 

but that is not the concern of this work. The goal from this task is to assess the suitability 

of MSN to optimize relatively large neural networks with 106 parameters. 

As a baseline, the same CNN model is trained under the same conditions with SGD. Note 

that SGD uses mini-batch training. It updates the weights after inference on every mini-

batch. By comparison, MSN does not use mini-batch training. It performs a weight update 

after inference on the entire training set (2000 images). For that reason, comparing SGD to 

MSN on the number of absolute inferences would be inherently flawed. Moreover, recall 

that these two belong to different families of optimization algorithms, one is a single 

solution while the other is population-based. The experiment is repeated five times and the 

mean is reported. 
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RESULTS 

TASK 1: GLOBAL OPTIMIZATION FUNCTIONS 

TABLE 12 EXPERIMENTAL RESULTS OF OPTIMIZATION ALGORITHMS ON TYPICAL 

GLOBAL OPTIMIZATION FUNCTIONS. A FEW ENTRIES ARE MISSING BECAUSE THE 

CORRESPONDING LIBRARY IMPLEMENTATIONS ARE UNAVAILABLE. THE SPEEDUP 

COLUMN SHOWS THE IMPROVEMENT IN OPTIMIZATION STEPS WHEN USING MSN 

METAHEURISTIC AGAINST ALL OTHER ALGORITHMS, DISCOUNTING THOSE THAT 

DID NOT CONVERGE. 

Function 
Number of optimization steps 

MSN ES PSO DE SA FEM PGPE RS Speedup 

Ackley 17 36 117 659 5000+ 287 152 4149 2.1-244X 

Rastrigin 49 2020 418 632 2368 2389 421 3074 8.5-63X 

Rosenbrock 20 67 730 2415 2398 - - - 3.3-120X 

Schwefel 113 2019 492 2310 5000+ - - - 4.3-20X 

 

Table 12 presents the results of the experiments from the first group. The results warrant 

some analysis. Some methods fared well on some functions but struggled on others, such 

as Evolution Strategies. Some methods struggled consistently, such as Simulated 

Annealing which failed to converge on two occasions. Unlike the findings in [75], Random 

Search performed poorly. As expected, it may be a subject of the extremely limited pool 

size we use, as well as the problem domain. The strongest competitors were Evolution 

Strategies, PSO and PGPE. The consistent best-performer, however, was MSN. 

The improvement to using MSN compared to the other algorithms is calculated and 

presented in the Speedup column. At least, MSN reduced the optimization steps by 2X, 

and at best by 244X. As expected, the Schwefel function took the longest for MSN to solve. 
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TABLE 13 EXPERIMENTAL RESULTS OF RUNNING MSN METAHEURISTIC ON 

OPTIMIZATION FUNCTIONS WITH SPECIAL PROPERTIES. 

Function Number of optimization steps 

Bukin N. 6 28 

Easom 9 

Eggholder 170 

 

The results of the experiments on the group of special optimization functions is given in 

Table 13. In all cases, MSN converged in a relatively low number of iterations. Particularly 

in the case of the Easom function. By searching multiple regions separated by a distance 

metric, the algorithm is naturally exploration-oriented. The task of traversing a smooth-

but-flat surface did not strain the algorithm. Similarly, by using the Probe mechanism, it is 

also naturally exploitative. Thus, finding and exploiting the extremely narrow valley in the 

Bukin N. 6 function was not taxing. The most challenging function was, as expected, 

Eggholder. Its highly irregular landscape and having its global optimum in a corner proved 

challenging. Recall also that its solution space is the largest. 

TASK 2: IMAGE CLASSIFICATION 

TABLE 14 EXPERIMENTAL RESULTS OF RUNNING OPTIMIZATION ALGORITHMS ON 

MNIST DATASET, USING 3.33% OF ITS TRAINING DATA. 

Algorithm MSN SGD Speedup 

Number of optimization steps 2333 320 -7.3X 

Validation Accuracy (%) 90 90 - 

 

From Table 14, MSN takes 2333 generations to converge to the target training loss. This 

corresponds to 90% validation accuracy. In general, MSN can train the relatively large 

network, using a pool of only 50 samples. Compared to Task 1, the observation space is 
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larger by two orders of magnitude. The search space also is larger by four orders of 

magnitude. 

Despite this, MSN takes only an order of magnitude more steps to converge for MNIST 

than the Eggholder function. 

On the other hand, SGD can reach the target training loss taking only 320 steps. The 

speedup factor is -7X, since instead of being faster, our algorithm is slower than the 

baseline. That MSN would be slower than SGD is not surprising. Recall that SGD utilizes 

first-order partial derivatives (gradients) to guide its search process. On the other hand, 

MSN does not have access to such information, being derivative-free. Remarkably, 

however, it is still within an order of magnitude of baseline. 
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FIGURE 16 TRAINING PROGRESS OVER OPTIMIZATION STEPS FROM A SAMPLE OF 

THE EXPERIMENTS PERFORMED ON TASK 2. EXPERIMENTS TERMINATE ONCE 

TRAINING LOSS OF 0.1 IS ACHIEVED. AS THE TRAINING PROGRESSES, THE GAP 

BETWEEN MSN AND SGD NOTABLY WIDENS. THE BLACK TRACE IS MSN AND BLUE IS 

SGD. 

Figure 16 shows sample of training progress over optimization steps. It is drawn using 

experimental data from one of the five trials performed. In that experiment, the target 

training loss was achieved at step 320 for SGD, shown in Blue, and 2161 for MSN, shown 

in Black. Our algorithm was 6.75X slower than baseline in that case. The figure also 

showcases how swiftly training loss decreases in the early stages, for both algorithms. 

However, after going below a training loss of 1, SGD continued to improve at a slightly 

slower rate while MSN started to plateau. This perhaps indicates a limitation in the 

exploitative nature of MSN for large search spaces. 
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The figure also suggests that SGD has not fully converged. If allowed more steps, it would 

have likely reduced the loss further. For MSN, the algorithm seemingly started to plateau 

at step 1,500 and every further step achieved diminished returns. 

As such, the gap between MSN and SGD widens as training loss is reduced. 

Using only 50 populations, the CNN trained in Task 2 is by far the largest trained using 

derivative-free methods. While not state-of-the-art, the performance of the network meets 

the predefined target. To the best of our knowledge no other work managed to train 

relatively large neural networks under such constrained conditions. In comparison to recent 

publications [75] and [74] that attempt to use derivative-free methods to train neural 

networks, we use fewer populations by 14-28X. The task domains were different, however. 

CONCLUSION 

Drawing upon the limitations of derivative-based single solution optimization methods, 

this experimental study introduced a new metaheuristic called Multiple Search 

Neuroevolution (MSN). It is a derivative-free population-based strategy that guides the 

optimization process of deep neural networks. Its ensemble of mechanisms is presented in 

detail, divided into two groups. An implementation of the MSN metaheuristic is tested on 

two tasks. In both, MSN optimizes a pool of neural networks to solve the task. The first 

task was to find the global optimum for groups of common and special global optimization 

functions. In solving the problems, MSN reduced the number of optimization steps by 2-

244 X, compared to baseline evolutionary algorithms. Featuring nine empirically-derived 
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hyperparameters, however, MSN is certainly not as simple as the baseline. Thus, there is a 

clear trade-off between speedup and complexity. 

The second task was to reach the target training loss on the MNIST hand-written digit 

classification dataset. Using 3.33% of the training set, MSN required 7X more optimization 

steps then the baseline algorithm (SGD) to reach the termination condition. This was 

anticipated since SGD utilizes gradient information to guide the search process, while MSN 

is derivative-free. The results further suggest a limitation in the exploitative mechanisms. 

No doubt under such a constrained pool size, it is challenging to balance exploration and 

exploitation. However, perhaps more attention is due towards the exploitative aspect. 

The study has some limitations. First, only two-dimensional functions were used. In future 

work, testing higher dimensional functions would be helpful. Second, only algorithms 

available in standard evolutionary libraries were used as baseline. In future 

implementations, it would be helpful to compare MSN to more competitive evolutionary 

algorithms. Finally, since MSN is presented as a collective, and the role of each mechanism 

separately is not quantifiable. Performing an ablation study would be helpful to investigate 

the individual effect of each search mechanism, for different types of problems. 

Nonetheless, the results show that there is credence to the mechanisms introduced. 

Consistently outperforming the other evolutionary algorithms in Task 1 is a significant 

indicator. The model in Task 2 featured 4.7M parameters, which is a significant search 

space for evolutionary methods. In addition, only 50 populations were used. Yet, MSN was 

able to train to 90% validation accuracy using 3.33% of the available training set.  
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CONCLUSION 

Multi-candidate derivative-free optimization methods were used in attempt to overcome 

the limitations of Deep Learning, i.e. single-candidate derivative-based optimization 

methods. This decision follows from the previous chapter where Deep Learning was found 

to be fundamentally limited in some respects, e.g. exploration. First, we investigated simple 

evolutionary algorithms in the form of the Batchu algorithm on simple problems. The 

chosen simple task at first was the flappy bird video game. By developing Accelerated 

Neuroevolution, we substantially improved upon the performance of the Batch algorithm 

in that task. 

Accelerated Neuroevolution was then used to test ERL on a real robot setting. The robot 

learned to perform the correct head movements in the object-centering task experientially. 

The experiment was a successful demonstration of ERL since the robot achieved a score 

of 7 on our AS scale. 

The AN algorithm has limited mechanisms to ensure diversity, however. It requires manual 

tuning of some parameters, however. If an algorithm was going to be used to make robots 

learn experientially, it first needs to demonstrate strong effectiveness to solve high-

dimensional problems using neural networks. 

For those reasons the Multiple Search Neuroevolution algorithm was developed. The goal 

was to overcome some of the limitations on AN. Tests on Global Optimization functions 

revealed the strengths of MSN. It performed remarkably well on complex functions using 
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a limited number of populations. This revealed how well the mechanisms in MSN are 

performing. 

The MNIST task also revealed the weaknesses of MSN. Namely that it is slow to converge 

and requires high sample-complexity. In scenarios where obtaining a sample is costly, i.e. 

real robots in the physical environment, these weaknesses are critical. We do not see this 

as a shortcoming of just MSN, but of multi-candidate methods in general. For this reason, 

it is important to investigate and improve upon single-candidate methods.  
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CHAPTER 5: TRAINING DNNS WITH LOCAL SEARCH 

INTRODUCTION 

Following the experiments of the previous chapter, we discovered that multi-candidate 

methods are not feasible in general for robot problems due to their inherent high sample-

complexity. In this chapter, we investigate single-candidate methods in order to improve 

upon sample-complexity. It is imperative to test any new algorithm on benchmark 

problems first, before physical experiments. 

EXPERIMENTAL STUDY 4: TRAINING NEURAL NETWORKS USING LOCAL 

SEARCH 

INTRODUCTION 

Deep neural networks have found many applications over the past few years. From 

Computer Vision [81] to Robotics [88], neural networks were used by experts and 

successfully demonstrated their wonderful potential. Deep models perhaps earned their 

attractiveness from their immense representation capacity and the automatic learning of 

features from data [6]. Stemming from such undeniable interest, this study aims to 

introduce an optimization algorithm to train neural networks. The goal is to simplify the 

training process, and perhaps complement existing optimization algorithms by offering 

yet- another-tool for the researcher or practitioner.  

This experimental study focuses on the use of the Local Search (LS) algorithm to train 

neural networks. LS is a single-candidate derivative-free optimization algorithm. It differs 
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from evolutionary algorithms, e.g. [101], which are also derivative-free but multi-

candidate. The Local Search algorithm can be useful in cases where the neural network or 

task is non-differentiable, does not have a representative loss function or the derivatives 

are uninformative in guiding the optimizer [74]. The study focuses only on the Multi-Layer 

Perceptron (MLP) neural implementation, i.e. feed-forward networks. The Local Search 

algorithm, however, may be useful in other neural network implementations. In the 

following paragraphs, the training loop of neural networks will be examined. 

Typically, training is an iterative optimization process before deployment. Its goal is to 

find a set of parameters (weights and biases) suitable for the goal task. The network’s 

parameters are modified by an optimization algorithm in a loop until convergence. When 

put together, the network’s parameters can be thought of as a single vector 𝜽 ∈  ℝ𝑁, where 

𝑁 is the space dimensionality and is possibly on the order of 106. The optimizer moves the 

parameter vector 𝜽𝑖 , in parameter space (set of all possible values), where 𝑖 is the 𝑖-th 

iteration in the optimization process. 

Think of 𝜽𝑖 as a point on a hypersurface of 𝑁 orthogonal dimensions. In such a scenario, 

knowing the direction in which to move the solution (which elements in 𝜃 to increase, and 

which to decrease) is extremely valuable. Computing the gradient of the loss function 

usually tells the optimizer about the direction (in parameter space) in which it should move 

the current solution 𝜽𝑖  to produce the candidate solution 𝜽𝑖+1 . This information about 

search directions has made gradient- based optimization algorithms a staple in neural net 

training. 
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The typical training process exposes the neural network to samples from input space, and 

evaluates the outputs of the networks through what is called a loss function. By minimizing 

training loss, which is a function of network’s parameters, the neural network learns 

important features in the input space. Those features usually generalize beyond the training 

dataset, and are validated using the validation dataset. This is the typical training dynamic 

in Deep Learning. The choice of loss function is thus quite important. In well-defined tasks 

such as Image Classification [100], there are widely-used loss functions such as Categorical 

Cross-Entropy. For other ill-defined tasks, a representative loss function may need to be 

“designed” by an expert. 

The proposed algorithm (LS) does not need a loss function to train the network. It only 

needs a “training signal” that may be from a loss function or may indeed be from another 

source. In this, LS makes training simpler. However, to be sure, having a loss function may 

still be useful in many cases. In addition, LS uses randomness to search local spaces instead 

of the global parameter space. As such, on a high level, the philosophy is to turn the vast 

global space into a smaller local neighborhood. The search takes place in only a constrained 

number of directions concurrently. This will be discussed in the coming sections. 

TRAINING ACCESSIBILITY 

In a well-defined setting, it is common to find representative loss functions that can be used 

to tackle the task at hand. An example of this is Image Classification. It is a well-defined 

task, and usually loss functions such as Categorical Cross-Entropy can be used to train 

networks to solve it. However, there are other sorts of settings where loss functions may 
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not be available or representative. An example of this is Hyper-parameter Tuning. There is 

no loss function that an optimizer can use to solve this problem. Another example is 

Reinforcement Learning. While the Bellman equation is commonly used, it is not always 

representative of the task. An expert is usually needed in this case to design a loss function 

for the task.  

The Local Search algorithm can be used by non-experts as an alternative or as a 

complement to traditional optimization algorithms for neural nets. The LS algorithm does 

not require a loss function to train a neural net. The simplicity of the algorithm, the 

simplicity of its implementation and the fact that it does not require a loss function can 

make it ideal for non-experts or those who want to try neural networks for the first time or 

on novel tasks. In a nutshell, it can make training neural networks more accessible to more 

people. 

RELATED WORK 

Despite creative variations, e.g. GANs [96], fundamentals of neural network training have 

remained relatively constant with the reliance on the Backpropagation algorithm [78] and 

Stochastic Gradient Descent [15] variants such as ADAM [17]. This stagnation in 

innovating neural network training methods has also been remarked upon in [117] and 

[118].  

The authors in [118] proposed a new training approach called Decoupled Neural Interfaces 

(DNI). This method is an alternative to Backpropagation. It is still derivative-based, as it 

uses gradient descent. They validated their approach on a number of tasks including the 
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MNIST and CIFAR-10 datasets. The method performed competitively in terms of final 

performance, compared to BP. The experiments were performed on relatively long 

optimization horizons (500K steps). Compared to DNI, BP was extremely quick to 

converge. However, DNI was primarily developed to address the “Locking” problem in 

the BP algorithm, and it is successful in that regard.  

The Kick-back approach proposed in [117] is also presented as an alternative to 

backpropagation. Like DNI, it is still derivative-based. The approach is validated on simple 

robotic datasets, and not complex ones such as MNIST or CIFAR. 

The authors remark that their method was still in its infancy, and thus not suitable for 

modern deep learning tasks such as multiclass learning (e.g. Image Classification). Kick-

back was mainly addressing the credit-assignment problem, however. The performance of 

Kickback was similar to BP in terms of convergence speed and accuracy.  

In recent years there were attempts to propose alternative neural network training methods 

in different settings. For example, researchers in [75] and [74] used Genetic Algorithms 

and Evolution Strategies to train a network to solve typical reinforcement learning tasks 

such as Atari games. Both algorithms performed well on the given tasks. Both are 

evolutionary algorithms and use a population size on the order of hundreds to a thousand. 

At each optimization step, hundreds of function evaluations need to take place before the 

optimizer can produce the new set of candidate solutions. Thus, this approach can be costly 

in terms of number of function evaluations, especially when compared to single-candidate 

optimization approaches.  
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There is little evidence to suggest a focus in the machine learning community on variants 

of Random Search, such as our Local Search, as means to train neural networks. There 

were attempts in the 1990s such as [119] and [120] to train neural nets with Randomness-

based algorithms. The tasks in those papers, however, are far less complex than modern 

deep learning tasks. The networks themselves were much smaller and did not contain 

millions of parameters as is common nowadays. Interestingly, it was remarked upon in [75] 

that random search performs exceedingly well to train the neural network, and does in fact 

solve Atari games. Random Search has been found to produce even “high scores” in those 

games, beating modern deep reinforcement learning methods such as DQN [121]. 

ALGORITHM 

LOCAL SEARCH 

Local Search is built around the concept of managing the immense dimensionality of neural 

network parameter space. The main approach is to reduce the global search dimensions, 𝑁, 

into a local neighborhood composed of a relatively small number of dimensions, 𝑆. Instead 

of searching 𝑁 dimensions simultaneously, the LS optimizer partitions the space into 𝐾 =

 𝑁 ∗ 𝑆 batches. Every iteration(s) it will search a segment for a number of subsequent 

iterations. To move in all 𝑁 dimensions, 𝐾 iterations need to elapse. The dimensions in 

each batch are picked at random by shuffling an indices vector 𝐼 =  [0, 1, 2, . . . , 𝑁 − 1] 

and then splitting it into 𝐾 batches of size 𝑆. The shuffling is repeated every 𝐾 iterations. 

The intuition in this approach is as follows. When searching a dimension, there is no 

information to guide the optimizer on which direction (positive or negative) to move along, 
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and by how much. This leaves the matter to a pseudorandom guess sampled from a uniform 

distribution 𝒰(−𝑟, 𝑟), where 𝑟 is an empirically-derived hyper-parameters. In aggregate, 

the guesses are defined as a noise vector 𝐝 whose components are independently sampled 

from 𝒰(−𝑟, 𝑟) . The more concurrent “guesses” the optimizer has to take, i.e. as 𝑆 

increases, the less likely it will yield a positive outcome. Thus, randomly searching all 

dimensions at once is extremely unlikely to yield improvements in the score. Consequently, 

the idea is to avoid the pitfalls of a large-dimensional random search by only searching a 

quite small number of dimensions, i.e. perform a local search. Naturally, doing this will 

come at a cost of convergence speed. 

SCORE DECAY 

During training, the optimizer can get stuck in a local minimum. By being “greedy”, the 

optimizer can discard solutions that perform slightly worse than the current solution but 

would lead to a better solution over the proceeding optimization steps. Score Decay 

worsens the score (i.e. increases if the objective was to minimize, or decreases if the 

objective was to maximize) decreases by a certain amount 𝑝𝑠𝑐𝑜𝑟𝑒 (0.0002 in this study) 

each step. It is designed to help the optimizer move out of local minima and explore the 

search space more actively. The value of  𝑝𝑠𝑐𝑜𝑟𝑒 is determined empirically. It should not 

be too large, else the optimizer may diverge.  

It should be noted that using Score Decay may cause the score to oscillate between better 

and worse values. In other words, without Score Decay, the score should monotonically 

improve or remain constant but never worsen. In the ablation study that will follow, the 
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importance of Score Decay will be examined. The entire algorithm is given in Algorithm 

1. 

ALGORITHM 1 LOCAL SEARCH W/ SCORE DECAY (MINIMIZATION MODE) 

 Result: 𝜽 
1 Initialize model: 𝜽0; 

2 Declare noise vector of size 𝑆: 𝒅 ∈  [−𝑟, 𝑟]𝑆
 
; 

3 Initialize indices vector: 𝑰 =  [0, 1, 2, 3, . . . , 𝑁 −  1]; 

4 Prepare I( ) 

5 Shuffle 𝑰; 

6 Split 𝑰 into 𝐾 batches of size 𝑆; 

7 Declare batch index: 𝑘 = 0; 
8 Declare penalty: 𝑝 =  𝑝𝑠𝑐𝑜𝑟𝑒; 
9 𝑠𝑐𝑜𝑟𝑒 ← 𝐹(𝜽0); 
10 for 𝑖 ← 0 to 200,000 do  
11 if 𝑘 >  𝐾 then 
12 Prepare I( ) 
13 𝜽𝑖 + 1 

←  𝜽𝑖; 
14 Sample noise from Uniform distribution: 𝒅 ∼  𝒰([−𝑟, 𝑟]𝑆); 
15 Add noise to selected indices in 𝜽𝑖 + 1: 𝜽𝑖 + 1[𝑰𝑘]  =  𝜽𝑖 + 1[𝑰𝑘]  +  𝒅; 
16 if 𝐹(𝜽𝑖 + 1)  <  𝑠𝑐𝑜𝑟𝑒 then 
 Update rules: 
17 𝑠𝑐𝑜𝑟𝑒 ←  𝐹 (𝜽𝑖 + 1); 
18 𝜽 ←  𝜽𝑖 + 1; 
19 if convergence OR stagnation then 
20 

Terminate; 

21 Score Decay: 𝑠𝑐𝑜𝑟𝑒 =  𝑠𝑐𝑜𝑟𝑒 +  𝑝; 
22 Increment batch index: 𝑘 =  𝑘 +  1 

 

EXPERIMENTATION 

This section presents the experiments that were performed using the Local Search 

algorithm. LS is tested on the Fashion-MNIST dataset. The choice of this dataset is not 

arbitrary. In many papers, it is standard procedure when introducing a new concept to first 

test it on the hand-written digit classification dataset MNIST. However, over the years, it 
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has been remarked that this dataset is not quite representative of modern ma- chine learning 

tasks, particularly in Computer Vision. For that reason, the machine learning community 

began introducing different datasets, and FashionMNIST is one of those. The classes are 

much more challenging than regular MNIST.  

The trained model has 5+ Million parameters. The model is a VGG-like CNN composed 

of: 2 convolutional layers with 32 and 64 kernels, a maxpool layer, 2 convolutional layers 

of 128 and 256 kernels, a maxpool layer, a fully-connected layer with 6400 neurons, a 

fully-connected layer with 768 neurons and an output fully-connected layer with 10 

neurons representing the 10 classification classes. In this work, the activation function used 

after each layer is the hyperbolic tangent function. However, the Rectified Linear Unit 

function (ReLU) has also been tested and was found to yield similar results.  

There are 4 experimental sets. The first is an overview of optimization algorithms’ 

performance on FMNIST. The second is a minor ablation study on the LS algorithm. The 

third is a presentation of hyper-parameter tuning. Finally, the fourth is a training of the 

CNN with the Local Search algorithm using only the training accuracy as a learning signal, 

i.e. not using a loss function as is typical in SGD-based optimization. 

The first experimental set is a direct comparison on training performance between 

Stochastic Gradient Descent (SGD+BP), Local Search (LS) and Random Search (RS). 

Each algorithm is allowed to converge fully. If it is clear that the algorithm has converged 

or will not improve further, it is terminated. The aim is to showcase Local Search between 

an upper-bound (SGD) and a lower-bound (RS). 
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The second experimental set is a minor ablation study on two features of the LS algorithm. 

In each case, the same conditions are used except for the specific feature under 

examination. The most obvious feature is Locality. Thus, the first experiment is to conduct 

Global Search (i.e. use all directions). The second experiment is to remove the Score Decay 

feature. If the algorithm does not converge or it is clear it will not improve, training is 

terminated.  

The third experimental set is an examination of the founding hypothesis of using Local 

Search to train neural nets: that the greater the number of dimensions the search is 

conducted over, the lower the likelihood of improvement is. In this set, the number of 

search dimensions is varied.  

The fourth experimental set demonstrates the usefulness of LS when there is no loss 

function. Without a loss function, derivative-based methods would not be usable. In such 

a scenario, only derivative-free optimization methods are usable. The experiment examines 

the possibility of learning using only the training accuracy as a learning signal. The 

algorithm used to train the network is still Local Search. However, instead of minimizing 

the loss value, the algorithm attempts to maximize training accuracy. It should be noted 

that switching from loss to accuracy will likely require a re-tuning of LS hyper-parameters, 

such as 𝑆 and 𝑟 to achieve best performance in this task. We did not do re-tune the hyper-

parameters, however, for the sake of conformity. The results of the four experimental sets 

are presented in Figure 17, Figure 18, Figure 19 and Figure 20, as well as their 

corresponding tables Table 15,   
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Table 16, Table 17 and Table 18. 

TRAINING CONSTRAINTS 

Local Search requires a static loss surface and thus is not amenable to mini-batch training 

as is used in SGD, which can estimate the gradient from a mini-batch. We can’t use mini-

batch training, but we nonetheless have three options. The first is to download the entire 

training set to GPU memory, and run inference on it. However, the FMNIST has 50,000 

training images and could not be loaded entirely onto the GPU (Titan V 12GB).  

The second option is to divide the training set into mini-batches in RAM, send each batch 

for inference on the GPU and then aggregate the metrics (loss and accuracy). This option 

means that the entire training set can be used. It comes at a cost of wall-clock time, 

however. There are more than 10 experiments performed in total in this study. Each 

experiment runs until the algorithm terminates, which can take up to hundreds of thousands 

of iterations. Running inference on the entire training set for millions of iterations is 

prohibitively time and resource-consuming.  

The third option and the one used in this study is to download only a portion of the training 

set, as much as will saturate the GPU memory without blocking it. Inference is much faster, 

and the conclusions and insights drawn from the experiments should still hold. Thus, in 

this study, only 10% of the training set is used (5,000 images), picked at random.  

In the case of validation, the entire set is used. Validation is performed only after the 

algorithm converges or is terminated, i.e. it is only performed once. For the validation 

phase, it is not prohibitive to divide the validation set into batches, send each to the GPU 
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and aggregate the metrics (i.e. follow option 2 mentioned above). As such, in the validation 

runs, the entire validation set is used (10,000 images).  

The relatively long horizons (high number of optimization steps) in this study obviate the 

need to generate confidence intervals. If there were a few “lucky” steps in the optimization 

trajectory, they would not affect the global behavior of the algorithm. Thus, the experiment 

does not need to be repeated many times to assert performance. 

RESULTS 

Each experiment will be discussed in turn. The first experimental set’s results, as shown in 

Figure 17, reveal that LS is not as fast as SGD in terms of convergence speed. It 

approximately takes SGD 1,000 steps to converge to a loss ≃ 0.15. LS takes 50,000 steps 

to reach the same loss, i.e. LS is up to 50X slower. This is not the whole story, as it is 

noticeable from the figure that the gap between SGD and LS widens as the optimization 

advances. It means that the 50X margin is a worst-case for this particular loss hypersurface. 

Interestingly, however, LS continues to improve until it reaches a loss of 0. SGD simply 

stagnates at 0.15. It may be suggestive of a resilience property of Local Search compared 

to Gradient-following approach. 

TABLE 15 RESULTS OF EXPERIMENTAL SET 1 

Name Training Loss Training Accuracy (%) Test Loss Test Accuracy (%) 

LS 0.0165 100 0.6760 84 

SGD 0.1431 97 0.4024 86 

RS 2.7617 9 2.7552 9 
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FIGURE 17 LOCAL SEARCH TAKES ∼ 50X MORE STEPS THAN SGD TO REACH THE SAME 

LOSS. HOWEVER, LS CONVERGES TO A 0 LOSS, BEATING SGD. RANDOM SEARCH 

UTTERLY FAILS. 

In addition, it is clear that Random Search fails completely in this scenario. It does not 

improve the solution at all, even after running for 100,000 steps. This comes in contrast to 

earlier findings in [75]. In that paper, RS was found to be completely adequate to the point 

it surprised the authors. RS in those Atari game experiments achieved high-scores that 

compete with Deep Reinforcement Learning models. Here, however, it fails completely. It 

is perhaps suggestive on the different nature of the domains, and how and where 

randomness can be useful and to what extent. Thus, in this experiment, RS serves as a 

lower-bound and SGD as an upper-bound (in terms of convergence speed). 
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TABLE 16 RESULTS OF EXPERIMENTAL SET 2: MINOR ABLATION STUDY 

Name Training Loss Training Accuracy (%) Test Loss Test Accuracy (%) 

LS 0.0165 100 0.6760 84 

LS w/o Score Decay 0.5972 78 0.6548 76 

GS 3.0430 14 3.0656 13 

 

 

FIGURE 18 LOCAL SEARCH IS BETTER WHEN COUPLED WITH SCORE DECAY. GLOBAL 

SEARCH DIVERGES. 

The second experimental set shows the important effect of dimensionality and Score 

Decay. It is clear from Figure 18 that performing a Global Search (i.e. a search in all 

possible directions simultaneously) is not bountiful. Thus, that algorithm terminated 

quickly after 10,000 steps. In addition, it is also clear that decaying the score has a large 

effect on convergence. In the early stages, using score decay has no significant bearing on 

convergence speed. However, as optimization advances, it is critical. The optimizer 

stagnates without it, and is terminated after 50,000 steps. Recall that score decay was 

introduced to help the optimizer overcome local minima and allow it to explore the search 
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space more actively. Its effectiveness may suggest that the search space has deep local 

minima. 

TABLE 17 RESULTS OF EXPERIMENTAL SET 3: VARYING SEARCH DIMENSIONALITY 𝑺 

𝑺 Training Loss Training Accuracy (%) Test Loss Test Accuracy (%) 

200 0.3696 88 1.0136 78 

50 0.584 99 0.7312 82 

25 0.0165 100 0.6760 84 

10 0.0223 100 0.6360 83 

 

FIGURE 19 RESULTS SUGGEST THERE IS AN OPTIMAL RANGE FOR THE NUMBER OF 

SEARCH DIMENSIONS S, TOO HIGH OR TOO LOW DEGRADES PERFORMANCE. 

From set 3, the effect of varying the number of search dimensions is clear, as demonstrated 

in Figure 19. First a note about the figure. That figure was cropped on the Y-axis so as to 

zoom-in on the bottom part. In the cropped-out part, the optimizer quickly descends as in 

Figure 17 and Figure 18. There is not much difference between the competitors, i.e. little 

to no information. Thus, the figure is cropped and zoomed-in so that the minute differences 

can be easily distinguishable.  
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Increasing the number of search dimensions (as seen when 𝑆 = 200 ) moves the LS 

algorithm to behave more like Global Search, and thus diminishes its value. This effect 

further confirms the hypothesis about search dimensionality and its bearing on the search 

process, and the effectiveness of LS in this case. Diminishing the number of search 

dimensions (as seen when 𝑆 = 10) also is not helpful. As the number of search dimensions 

gets smaller, the “impact” each guess has on the overall optimization is reduced. Consider 

the pathological case of a single search dimension. The optimizer would require a 

tremendous number of optimization steps to converge. This suggests that there is an upper 

and lower bound on the number of search dimensions to achieve optimal results with LS. 

TABLE 18 RESULT OF EXPERIMENTAL SET 4: USING ACCURACY INSTEAD O LOSS AS 

LEARNING SIGNAL. 

Training Loss Training Accuracy (%) Test Loss Test Accuracy (%) 

2.7539 74 2.9072 68 

 

FIGURE 20 WHAT IF YOU DON’T HAVE A LOSS FUNCTION? LS CAN TRAIN THE CNN 

USING ONLY ACCURACY AS A LEARNING SIGNAL. 
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Finally, in the fourth experimental set the idea of training a neural network without a loss 

function is tested as seen in Figure 20. Instead of using categorical cross-entropy as was 

with all other experiments, the training accuracy itself was used as a learning signal. It can 

be seen that the network does in fact learn, it achieves 74% accuracy on the training set. 

And as shown in Table 18 the learnings are validated as it achieves 68% on the validation 

set.  

The accuracy metrics are not as good as those achieved when a loss function is used for 

training. However, this experiment does indicate the plausibility of training without any 

loss function. Furthermore, it demonstrated that the hypersurface created by the loss 

function, i.e. loss hypersurface, is easier to navigate than the accuracy hypersurface. 

Remarkably, from Table 18, the both training and validation losses are quite high compared 

to the accuracy figures. This suggests that loss space is not the only representative space 

of the task. In other words, the task can be solved in other spaces which do not necessarily 

conform in topology to loss space. Also, there noticeable “jumps” in the graph. This 

suggests that learning through accuracy is sensitive to values of a small subset of 𝜽. 

CONCLUSIONS 

The Local Search algorithm was used to train a convolutional neural network with 5 

Million parameters on the FashionMNIST dataset. Due to resource constraints and the 

number of experiments performed only 10% of the training data was used (5,000 images). 

The optimizer managed to achieve 100% training accuracy, and 84% validation accuracy 

on the entire validation set (10,000 images). LS outperformed SGD in terms of final 
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accuracy and loss metrics. However, SGD was found to be up to 50X faster than LS. In 

addition, Random Search was found to be completely ineffective in training such a 

network, a departure from recent results in the deep reinforcement learning community 

suggesting otherwise.  

This study, in addition to those findings, presented a minor ablation study and a survey on 

a significant hyper-parameter 𝑆 (the number of search dimensions). The ablation study 

demonstrated the need for the features used in LS. Also, the intuition behind using LS has 

been confirmed when contrasted by the case of Global Search and generally high number 

of search dimensions S. It is certainly better to take random guesses in only a tiny subset 

of the entire search space. When 𝑆 is too small performance worsened, which suggests 

there is an optimal range for the number of search dimensions 𝑆. 

Finally, the case for training neural networks without a loss function has been presented. 

The CNN was trained to 74% training accuracy and 68% validation accuracy. Remarkably, 

those accuracy metrics coincided with relatively high loss metrics (2.75 and 2.9). This 

suggests that the optimization hypersurface created by accuracy is topologically different 

from that of categorical-cross entropy loss. Thus, training plausibility using accuracy was 

demonstrated, with an additional insight as a byproduct.  

The experiments and approach presented in this study may hopefully act as a steppingstone 

towards further improvements in derivative-free single-candidate optimization algorithms 

for neural network training. The task of multi-class learning, the 5x106 parameters and the 

use of FashionMNIST dataset all make the experiments here more applicable and 
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representative of modern deep learning tasks. Though LS is unlikely to be a competitor to 

SGD at this stage, it may be used in tandem with it. In cases without loss functions or 

without differentiability, LS can be used as a go-to alternative to the researcher. 

This experiment constitutes an introduction of Local Search to successfully train a 

convolutional neural network with more than 5-Million parameters. The LS algorithm still 

requires further studies in order to fully understand the manner in which it works under 

different training dynamics, and how it can be effectively used.  

In particular, it is desirable to understand how the tuning of the hyperparameters of the task 

and the trained network will affect training performance and convergence. For example, in 

what way does the network architecture affect training performance when using LS? In 

addition, how will LS perform solved Deep Reinforcement Learning tasks? 

Once these aspects are studied and understood, LS algorithm and its derivatives can start 

to act a replacement for the traditional SGD-based training approach. As such, the 

researcher can have multiple tools to train her network with and be able to select the best 

tool for any scenario.  
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EXPERIMENTAL STUDY 5: EXAMINING HYPERPARAMETERS WHEN 

TRAINING NEURAL NETWORKS USING LOCAL SEARCH 

INTRODUCTION 

The principles relied upon in training neural networks have remained largely the same for 

decades. Specifically, the use of derivative-based optimization algorithms is by far the most 

common technique. Stochastic Gradient Descents (SGD) and its variants, e.g. ADAM [17], 

coupled with the Backpropagation (BP) algorithm [78] are staple ingredients for DNN 

training. As with everything, SGD and BP have limitations and challenges associated with 

their use. For instance, relying on derivative- based techniques requires the network 

architecture to be end- to-end differentiable. Also, there are tasks that cannot be solved 

directly such as Hard Attention [81]. Furthermore, the training process itself is an 

optimization of a proxy function usually called the “loss” function. If the loss function is 

not representative of the task, then the optimization process will fail. Thus, for every task, 

a representative loss function needs to be found, usually by an expert. Once the loss 

function is found, it can then be used by members of the respective community. An 

example of this is Categorical Cross-entropy which is commonly used in Image 

Classification tasks. 

The limitations of SGD+BP motivate the search of alternative options to train DNNs. Such 

options include derivative- free optimization algorithms. Derivative-free methods need not 

compete directly with SGD or replace it. They simply can act as yet-another-tool or 
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alternative for researchers to use. Since they don’t require a loss function, derivative-free 

methods can make DNN training more accessible to non-experts on novel tasks.  

Regardless of the optimization algorithm, the number of hyperparameters involved in 

training DNNs is typically quite large. An exhaustive search is thus prohibitively costly. 

The Deep Learning community in general has used standard practices to select those 

hyperparameters. In a typical scenario, experts would try many hyperparameter 

configurations, e.g. manually or through a grid-search, and publish their best-performing 

ones. Those published configurations then become standard practices until they are 

replaced by even better- performing ones (state-of-the-art). Examples of hyperparameters 

include the number of layers, the configuration of each layer and the choice of non-linearity 

(activation function).  

Here is a case where the choice of hyperparameters (number of layers, type of layers, etc...) 

was key. A likely source of improvement in benchmark tasks, e.g. ImageNet, is innovative 

neural network architecture. Note the improvement introduced by moving from a VGG-16 

architecture [68] to a ResNet architecture [100] in Image Classification tasks. A major 

argument for ResNet was the introduction of residual connections as means of 

accommodating the nature of training through error backpropagation. By paying close 

attention to the training dynamics of SGD+BP, ResNet architecture improved upon the 

state-of-the-art in Image Classification.  

This experimental study features a small-scale study on the choice of 3 network 

hyperparameters in regards to training with Local Search (LS) [122]. Local Search is a 
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rather dated optimization concept. However, it has been recently used to train neural 

networks successfully for image classification, albeit it was significantly slower to 

converge than SGD. For comparison, SGD will be included in the study to represent 

derivative-based optimization algorithms. LS is a single-candidate optimization algorithm, 

just like SGD, which makes the comparison fairer and more relevant. The study should 

reveal the effect, if any, of changing the selected hyperparameters. 

RELATED WORK 

There seems to be a stagnation in innovation in the fundamentals of neural network 

training. This has also been remarked upon in [117] and [118]. There are creative variations 

in the training process, such as Generative-Adversarial Networks [96]. However, the 

fundamentals remain constant. There is a reliance on the combination of SGD variants, e.g. 

ADAM, and Backpropagation. Reliance on SGD+BP means that only derivative-based, 

single-candidate optimization techniques are investigated. Innovations such as Dropout 

layers [123] are thus also primarily geared towards networks trained under those principles.  

Despite this, the interest in alternative methods to train neural networks seems to be rising. 

For example, evolutionary algorithms have been used in [75] and [74] to train networks in 

the field of Reinforcement Learning. The authors in those papers used Genetic Algorithms 

and Evolution Strategies to train network on to play Atari games. While being derivative- 

free, those methods are multi-candidate based. This means that at each optimization step, 

the algorithm performs many evaluations of the loss function. Both papers used a relatively 

high number of populations (on the order of 102 − 103). Thus, the number of function 
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evaluations performed is quite large if directly compared to single-candidate based 

methods like SGD.  

There are efforts to replace BP as well. Authors in [118] and [117] presented alternatives 

to BP called Decoupled Neural Interfaces (DNI) and Kick-back. Both methods were tested 

using datasets such as MNIST and CIFAR-10. The methods performed competitively 

compared to SGD+BP. However, both are also still in their infancy and thus warrant further 

work as noted by the authors, particularly Kickback. 

Otherwise, there is no evidence to suggest significant interest in single-candidate, 

derivative-free methods to train neural networks. There were attempts, however, in the 

1990s as in [119] and [120]. Those attempts, though promising at the time, are not 

representative of modern deep learning tasks. The networks used are too small and don’t 

contain millions of trainable parameters as is common today. Thus, we find ourselves in 

the uncommon position of investigating single-candidate derivative-free optimization 

methods to train deep neural networks.  

Otherwise, hyperparameter optimization is a lively field of study. We see examples of 

many recent works investigating new methods to optimize hyperparameters, particularly 

for neural networks. Some works use Reinforcement Learning for hyperparameter 

optimization e.g. [124]. A more popular technique is Bayesian Optimization as in [125] 

and [126], however. The study in [127] conducted 20,000 experiments using the authors’ 

Learning Curves method. It was found that their proposal both improved and worsened 

performance, depending on the scenario at hand. It is a sizable undertaking by the authors 
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of that studying because of the relatively large number of experiments. In addition, 

researchers from large corporations such as Google and IBM also study the topic of 

hyperparameter optimization, e.g. in [128] and [129]. Furthermore, even large government 

labs such as the renowned Oak Ridge National Lab (ORNL) study this problem [130]. 

Without a doubt, the topic we study of hyperparameter optimization is important and 

relevant for all who take interest in deep learning and neural networks. Given the scale of 

this study, there is no need to use any method proposed above. These methods, e.g. 

Bayesian Optimization, are most suitable when the sample complexity is high and when 

each sample is costly to acquire. For those reasons, this study will rely on performing the 

hyperparameter examination manually by hand. 

EXPERIMENTAL SETUP 

The LS and SGD algorithms are tested on the FashionMNIST dataset. It is a modern dataset 

that is representative of modern Deep Learning tasks, especially in Computer Vision. It has 

the same construction as the original MNIST dataset, however the classes are much more 

challenging. Given the computational constraints and the number of experiments 

performed, only 5,000 randomly-sampled images are used from the training set. However, 

all the test set was used (10,000 images). Another reason to use a subset of the training set 

is the relatively long optimization horizons of the experiments. The LS algorithm can take 

105 iterations to converge. If the entire set is used, the wall-clock time it will take to perform 

all the experiments would be prohibitively long. 
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Mini-batch training is only possible when SGD is used, and not LS. SGD can estimate the 

gradient from the mini-batch, while LS requires a static loss surface. Therefore, for fairness 

we used batch-training only, i.e. put all the training data as one batch. This way LS and 

SGD can be directly compared with no variation in training processes. 

The tests are conducted on a conventional VGG-like CNN with the following architecture: 

2 convolutional layers with16 and 32 filters respectively, followed by maxpooling, then 2 

convolutional layers with 64 and 128 filters respectively, followed by maxpooling and 

finally 2 fully-connected layers of size 768 and 10, respectively. The default activation 

function used is the hyperbolic tangent function. The loss function used is Categorical 

Cross-entropy. Across all experiments this same general architecture is used, with only the 

hyperparameter in question being varied. The tests were conducted using the PyTorch 

platform [104]. 

EXPERIMENTAL SETS 

The experiments are divided into 3 experimental sets, where each set tests a particular 

hyperparameter. The first set examines the effect of varying the number of parameters of 

the neural network. It is interesting to assess whether, and how, this variable affects the 

training process. The sizes of the CNN layers are varied to achieve the number of 

parameters desired. In this set 10 experiments are performed, split between SGD and LS. 

The second set tests the performance of the algorithms against challenging weight 

initialization schemes. It is well-known that neural network training is affected by the 

weight initialization scheme [103]. In this test, the aim is to gauge the effect of weight 



Chapter 5: Training DNNs with Local Search 

 

 

 

160 

initialization while training with LS. Again, for comparison, SGD is included. In total, 

there are 8 experiments split between both algorithms. The Uniform scheme has limits in 

the range [-0.1, 0.1], the Normal scheme has standard deviation 0.1, the Sparse scheme has 

0.9 sparsity ratio. 

The final set tests performance under different activation functions. Similar to the weight 

initialization, neural network training is known to be affected by the choice of activation 

function [103]. It is important to assess how the choice of activation function affects 

training when LS is used. This should allow proper selection of activation function, and 

perhaps reveal insights about LS dynamics. In total, 3 functions are used for both SGD and 

LS yielding 6 experiments. 

Overall, a total of 24 experiments are performed across the 3 experimental sets. In all the 

tables, the configuration with the best test loss is typed in boldface. 

RESULTS AND DISCUSSION 

NETWORK PARAMETERIZATION 

The first set examines the effect of varying network parameterization. It is shown from   
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TABLE 19 AND  

Table 20, as well as Figure 21 that the performance of the LS algorithm degrades with the 

reduced number of parameters. This degradation, while strong, doesn’t render the 

algorithm ineffective or useless. It can be seen that the network still learns to a significant 

degree as proved by the test loss. 
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TABLE 19 VARYING NUMBER OF TRAINABLE PARAMETERS (LS) 

Parameters (103) Training Loss Training Accuracy (%) Test Loss Test Accuracy (%) 

5200 0.0165 100 0.6760 84 

2500 0.0999 98 0.6104 82 

440 0.2064 93 0.6556 80 

122 0.4231 85 0.7176 79 

41 0.6299 79 0.8529 74 

 

TABLE 20 VARYING NUMBER OF TRAINABLE PARAMETERS (SGD) 

Parameters (103) Training Loss Training Accuracy (%) Test Loss Test Accuracy (%) 

5200 0.09 97 0.4024 86 

2500 0.1710 95 0.4176 86 

440 0.2198 94 0.4068 86 

122 0.2673 92 0.4288 84 

41 0.3003 90 0.4336 85 

 

 

FIGURE 21 LOCAL SEARCH IS SENSITIVE TO NETWORK PARAMETRIZATION, WHILE 

SGD IS RESILIENT. DATA IS ACQUIRED AT 41, 440, 2500 AND 5200 ON THE X-AXIS. 
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In the best case, where the network has 2.5𝑥106 parameters, a test of 0.6 was achieved. In 

comparison, at the worst case when the network had 41𝑥103 parameters, the test loss was 

0.85. The difference is only 0.25 between the worst and best cases. This translated into a 

reduction in test accuracy from 82% to 74%. Again, while appreciable, a 12% reduction in 

test accuracy doesn’t negate the fact that the network has learned. 

There could be an argument that the LS algorithm has not converged. If, however, Figure 

22 is consulted, then it is evident that the algorithm has indeed converged to 0.63 for 

training loss. This means that regardless of the number of optimization iterations, the 

algorithm is unlikely to improve. What the results seem to suggest is that training is 

appreciably degraded as the network parameterization is diminished. 

In contrast, SGD doesn’t suffer from a similar degradation when the network parameters 

are reduced. SGD was able to train the network to 86% test accuracy in the best case, with 

5.2x106 parameters and to 84% test accuracy in the worst case. Thus, there is no 

appreciable difference in test accuracy. In test loss as well the difference between the best 

and worst case is 0.03. This result demonstrates that SGD is not sensitive to network 

parameterization. It works equally well in both high and low-dimensional search spaces. 
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FIGURE 22 TRAINING PERFORMANCE DEGRADES WHEN NETWORK 

PARAMETERIZATION IS LOW, WHILE DOUBLING THE SIZE OF A LARGE NETWORK 

HAS NEGLIGIBLE EFFECT. 

Both algorithms benefited, albeit negligibly, from the increased number of parameters. 

SGD trained both the 5.2 Million-parameter network and the 41 Thousand-parameter 

network to almost the same test accuracy. The result shows that the FMNIST image 

classification task is solvable with the number of parameters being on the order of 104. 

Recall that the network used in experimental sets 2 and 3, i.e. the default network, has 2.5 

Million parameters. This default network is thus over-parameterized.  

This is somewhat remarkable since we would expect that a lower number of parameters 

corresponds to lower number of search dimensions, i.e. smaller search space. The smaller 

search space ought to have made the optimization task, i.e. finding the best set of weights, 
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easier for Local Search. Evidently, the contrary is true. The LS algorithm leverages the 

over-parameterization of the network.  

We attempt to provide an explanation by considering how the LS algorithm conducts 

optimization. LS randomly samples a batch of size 𝑆 (where 𝑆 is 25 in all the tests in this 

study) from the parameter vector 𝜽 , and adds noise 𝒅 , where 𝒅 ~ 𝒰[−0.1, 0.1]  is a 

uniformly-sampled noise vector. If the applied noise yielded an improvement, then the 

solution is kept. Otherwise, the candidate solution is discarded. It seems that increasing the 

network parameterization increases the number of equally-good solutions in the search 

space. Consider when two solutions, i.e. neural networks, A and B represented by 𝜽𝐴 and 

𝜽𝐵  (where 𝜽  is the parameter vector representing the neural network’s weight 

configuration) achieve the same test accuracy but are not identical, i.e. 𝜽𝐴 ≠ 𝜽𝐵 . This 

means that both solutions A and B are equally-good. Since they are not identical, they 

occupy different locations in the search space (i.e. weight space). Thus, the search space 

features two equally-good points in terms of evaluation metric (test accuracy in this 

example). Expanding on this example, we hypothesize that over-parameterization 

increases the number of “equally-good” locations in the search space. In other words, over-

parameterization alters the geometry of the search space favorably to the optimization 

process. 

Following this line of thought, there is a greater chance for the algorithm to “luck out”. The 

LS algorithm has a higher chance of picking important parameters and applying useful 

noise (since the number of equally-good solutions is greater). It can be seen from Figure 
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22 that this benefit saturates. Doubling the network size from 2.5 Million parameters to 5.2 

Million parameters didn’t significantly affect training performance. 

WEIGHT INITIALIZATION SCHEME 

The second experimental set tests the effect of varying the weight initialization scheme. It 

is shown from Table 21 and Table 22 that both algorithms are fairly resilient to the choice 

of initialization scheme. However, it should be mentioned that we did not apply adversarial 

initializations. For example, we didn’t test how the algorithms would perform in case of 

unbounded random initialization. The rationale behind this choice was to test the effect of 

practical, realistic scenarios not adversarial ones. LS trains the networks to 0.48 and 0.61 

in the worst and best cases, respectively. This 0.13 difference in test loss corresponds to 

only 2% decrease in test accuracy. 

TABLE 21 USING DIFFERENT WEIGHT INITIALIZATION SCHEMES (LS) 

Scheme Training Loss Training Accuracy (%) Test Loss Test Accuracy (%) 

He Normal 0.0999 98 0.6104 82 

Normal 0.1652 95 0.5724 83 

Sparse 0.2141 93 0.4762 84 

Uniform 0.213 93 0.4936 84 

 

TABLE 22 USING DIFFERENT WEIGHT INITIALIZATION SCHEMES (SGD) 

Scheme Training Loss Training Accuracy (%) Test Loss Test Accuracy (%) 

He Normal 0.1710 95 0.4176 86 

Normal 0.087 98 0.5712 83 

Sparse 0.3823 87 0.47 83 

Uniform 0.2854 90 0.4548 84 
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Similarly, SGD trains the networks to 0.57 and 0.41 test loss in the worst and best cases, 

respectively. This translates to only a 3% difference in test accuracy. If one applies careful 

examination, it can be remarked that SGD is slightly less resilient than LS in the case of 

Sparse initialization.  

Interestingly, the He Normal initialization yielded the highest test loss in case of LS and 

also the lowest Training Loss. For SGD, He Normal yielded the lowest Test Loss. It was 

odd to find that the same initialization yields the worst and best Test Loss for LS and SGD, 

respectively. 

CHOICE OF ACTIVATION FUNCTION 

Finally, the third set tests the effect of varying the activation function. From Table 23 and 

Table 24 it is shown that again both algorithms are fairly resilient to this hyperparameter. 

Similar to the previous set, only practically-usable activation functions were tested for the 

same reason outlined earlier.  

The best test loss for LS was 0.55 and the worst was 0.67. This 0.11 difference 

corresponded to a 2% reduction in test accuracy. Similarly, SGD trained the network to a 

0.42 test loss in the best case and 0.48 in the worst. This 0.06 difference in test loss 

translated to a reduction of 1% in test accuracy.  

TABLE 23 USING DIFFERENT ACTIVATION FUNCTIONS (LS) 

Function Training Loss Training Accuracy (%) Test Loss Test Accuracy (%) 

Tanh 0.0999 98 0.6104 82 

ReLU 0.1881 94 0.5556 83 

ELU 0.2092 92 0.6780 81 
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TABLE 24 USING DIFFERENT ACTIVATION FUNCTIONS (SGD) 

Function Training Loss Training Accuracy (%) Test Loss Test Accuracy (%) 

Tanh 0.1710 95 0.4176 86 

ReLU 0.0864 98 0.4844 85 

ELU 0.0614 99 0.4532 86 

 

Again, it is notable that the best choice for LS (Tanh) was the worst for SGD in terms of 

Training Loss. Both this remark and the one made in the previous experimental set suggest 

that SGD and LS require different, and sometimes opposing, choices for hyperparameters. 

CONCLUSIONS 

The experimental sets in this study comprised a small-scale investigation on how the choice 

of 3 hyperparameters affects neural network training dynamic under two optimization 

paradigms, derivative-based and derivative-free. SGD was used to represent derivative-

based optimization and Local Search was used to represent derivative-free optimization; 

both being single-candidate based. The 3 examined hyperparameters were: the number of 

trainable parameters in the network (network parametrization), the choice of weight 

initialization scheme and the choice of activation function. In total, 24 tests were performed 

across 3 experimental sets. 

In general, the results confirm one aspect: that there needs to be careful optimization of the 

hyperparameters based on which algorithm is used. The first set revealed that training 

performance degrades significantly under low network parameterization in the case of LS. 

The training accuracy was reduced by 21% and test accuracy by 10%, from the best to the 

worst case. SGD was resilient to this, and didn’t suffer from a similar degradation. Training 
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accuracy decreased by 7% and test accuracy by only 2%. Note that the number of network 

parameters was varied by 2 orders of magnitude (106-104).  

We hypothesize that over-parameterization of the network alters the geometry of the search 

space in such a way that makes it favorable for Randomness-based algorithms like Local 

Search. Thus, when designing networks to be trained by LS or similar algorithms one needs 

to over-parametrize, i.e. make sure there is an abundance of parameters in the network. 

The second and third experimental sets revealed that the choices of weight initialization 

scheme and activation function are not as sensitive as the number of parameters. 

Performance, i.e. test accuracy, does vary but not significantly (only by 1- 3%). Notably, 

the best choices were different for LS and SGD.  

At this early stage, it is unlikely that LS will compete with SGD in terms of convergence 

speed. However, it has demonstrated itself to be competitive in terms of absolute 

performance, i.e. training and test accuracy. For that reason, it is important to further study 

LS and similar algorithms and improve upon them.  

The promise of derivative-free optimization of neural networks can compensate for the 

relatively long optimization horizon. Previously-unsolvable scenarios, e.g. when no loss 

function is available, may become more accessible under this optimization paradigm. This 

study is a step in that direction. It attempts to examine the differences in how those two 

paradigms (derivative-based and derivative-free single- candidate) conduct training, and 

are affected by hyperparameters. This aims to generate new insights, and ultimately, create 

new tools for the researcher and practitioner to use in their tasks. 
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EXPERIMENTAL STUDY 6: SOLVING OPENAI CLASSIC CONTROL PROBLEMS 

USING LOCAL SEARCH AND REINFORCEMENT LEARNING 

INTRODUCTION 

In this experiment we perform a simple validation regarding the use of Local Search (LS) 

algorithm in Reinforcement Learning settings. This should illuminate whether or not it is 

possible to use LS in domains outside Computer Vision (CV) that require a quite different 

training behavior. From the results of [75] and our own experiments in the previous 

sections, we know that training a ConvNet on a CV dataset is vastly different from training 

an RL agent in an RL setting. The difference is highlighted by the poor performance of 

Random Search in CV and its remarkable success in RL. 

RL tasks vary in difficulty, and consequently the sample complexity required to solve them. 

It is notoriously known in the RL community that sample complexity, i.e. the number of 

samples taken from the environment required to solve a task, is a major obstacle [75] for 

RL algorithms. Sample complexity can easily jot to the order of 106 for many benchmark 

tasks [121]. For that reason, it is unreasonable to start experimenting with an introductory 

algorithm on complicated benchmark tasks. 

As in MNIST and variants for Computer Vision, there are simple yet representative 

benchmark tasks for RL. To this end we resort to Open AI Gym’s Classic Control problems 

[131]. These problems are characterized by being low-dimensional in observation space, 

i.e. state space, and in action space. The Classic Control problems also have short horizons, 

which means that the episode terminates quickly if the agent performs has a faulty policy. 
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Also, it does not take many steps (typically on the order of 103) to attain maximal rewards. 

These characteristics constitute an ideal test bed while also posing a non-trivial challenge 

for the algorithm. 

It should be noted that we don’t attempt to beat or meet state-of-the-art on those 

benchmarks. The goal here is not to improve upon SOTA but rather to validate that the LS 

algorithm can indeed be used in an RL setting. For that reason, we don’t include other 

algorithms in our evaluations. 

CLASSICAL CONTROL TASKS 

The LS algorithm is tested on Classical Control tasks in Open AI Gym. Namely, they are 

Acrobot, Pendulum, Mountain Car Continuous and Cartpole. In total, we test the algorithm 

on 4 tasks using the same neural architecture. Let us examine those tasks in some detail. 

ACROBOT 

 

FIGURE 23 A GRAPHICAL DEPICTION OF THE ACROBOT ENVIRONMENT 
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The Acrobot environment features two joints and two links, where the joint between the 

two links is actuated. The goal is to swing the links up to a certain height. When the goal 

is met the episode terminates. This environment has an inverted reward scheme. It assigns 

a penalty of -1 with each step where the task remains unfulfilled. 

There are six observation dimensions, all are bounded real numbers. The control scheme 

is discrete, with 3 actions corresponding to different torques (+1, 0, -1). A graphical 

depiction is provided in Figure 23. 

PENDULUM 

 

FIGURE 24 A GRAPHICAL DEPICTION OF THE PENDULUM ENVIRONMENT 

The goal in Pendulum is to swing up a pendulum whose position is fixed about a pivot, and 

to keep it upright. The pendulum starts in a bounded random position. The environment 

does not simulate friction. There are 3 dimensions of observation, and one dimension of 
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action: the value of the effort applied to the joint (positive or negative value determines the 

rotation angle). Thus, Pendulum is a continuous control problem. 

The reward is calculated according to a weighted distance from the reference angle (at 0o), 

the angular velocity of the pendulum and the amount of effort expended. In essence, the 

network needs to swing the pendulum upright and keep it balance in the smallest number 

of steps whilst expending the least amount of effort. The pendulum starts at a bounded 

random location and with a bounded random velocity. A graphical depiction of the 

environment is provided in Figure 24. 

MOUNTAIN CAR CONTINUOUS 

 

FIGURE 25 A GRAPHICAL DEPICTION OF THE MOUNTAIN CAR ENVIRONMENT 

In this environment, a car is on a one-dimensional track that takes the shape of two hills. 

To reach the top of the right hill the car first has to build momentum by climbing the left 

hill. The episode terminates successfully when the car reaches the flag goal on the right 
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hill. The reward is calculated according to the amount of energy expended to reach that 

goal. The force applied in this version of the problem is a continuous real number, bounded 

between [-1.0, 1.0]. A graphical depiction of the environment is provided in Figure 25. 

CARTPOLE 

 

FIGURE 26 A GRAPHICAL DEPICTION OF THE CARTPOLE ENVIRONMENT 

A cart is moving along a frictionless one-dimensional track. In the environment, the cart’s 

mission is to control its movement to balance and keep upright a pole. A reward of +1 is 

allocated at each step when the pole is kept upright. When the pole deviates beyond a 14o 

angle in either direction, the episode terminates. A graphical depiction of the environment 

is provided in Figure 26. The pole starts within a bounded random angle, and a random 

perturbation is applied. 

SETTING 
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The tasks in this study were solved using an RL feedback loop. In each optimization step, 

the network would take control of the agent for 1 episode. Each episode lasts for N steps, 

or until termination either due to solving the task or reaching a termination condition (such 

as reaching the edge of the screen display). We set the maximum number of optimization 

steps to 500. Our previous knowledge about the task, and from other implementations, 

suggests that this task is quite solvable within this optimization horizon. 

When we say that the task is “solved” in the following sections, we mean that it has 

successfully terminated or achieved a score that indicates that the goal of the task has been 

fulfilled. We do not mean solved in the context of Leaderboards where a solution is 

required to yield a certain average return over a certain number of episodes, typically on 

the order of 102. 

RESULTS 

We started with the Mountain Car Continuous problem using the Local Search algorithm 

on a fully-connected network of 2 layers. The number of parameters on that network was 

on the order of 106 parameters. The number of Search Directions 𝑆 was 25. 



Chapter 5: Training DNNs with Local Search 

 

 

 

176 

 

FIGURE 27 RESULT OF USING LS ON MOUNTAIN CAR CONTINUOUS TASK. THE X-AXIS 

IS THE OPTIMIZATION STEP, AND THE Y-AXIS IS THE FINAL REWARD. WE SEE THAT 

THE NETWORK LEARNS NOT TO EXPEND ENERGY (REWARD 0) BUT NOT TO SOLVE 

THE TASK. 

From Figure 27 we see that the agent stops expending energy as the optimization 

progresses, but still cannot solve the task. To establish a baseline, we trained the same 

network using Random Search instead. Recall that RS was able to train highly-competitive 

agents in Atari games [75]. 
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FIGURE 28 RESULT OF USING RANDOM SEARCH ON MOUNTAIN CAR CONTINUOUS 

TASK. RS SOLVES THE TASK. 

From Figure 28 we can see that Random Search indeed solves the problem. Shown on the 

Y-axis are the episodic rewards tied to the optimization step. Near step 200 we see that the 

reward is in the positive range, which means that the task has been solved. 

It was interesting to see RS solve the task and resulted in us re-evaluating what LS is doing. 

A key difference between LS and RS is the number of search directions 𝑆 (along the 

parameter vector 𝜽). The result in the figure suggested that we need to increase the number 

of search directions. This contrasts with what we observed when solving Computer Vision 

problems in the previous experiments. There we observed that decreasing the number of 

search directions was much more beneficial to convergence. There we also noted how RS 
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fails completely to train the network. This further confirms the great difference in 

optimizing neural networks for CV and RL. 

Before we increased 𝑆 , however, we wanted to assert the impact of the network 

parametrization on the search process (i.e. training). Recall that network parametrization 

had a great impact on training performance with LS in the previous experiment (using the 

FashionMNIST dataset). 

 

FIGURE 29 RS WAS NOT ABLE TO SOLVE THE TASK USING A SMALLER NETWORK (369 

PARAMETERS). 

Reducing the network parameterization from 1𝑥106 to 369 while maintaining the same 

network architecture but reducing the layer sizes, we re-ran the experiment using RS to 
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train the network. We see from Figure 29 that RS was unable to train the network. Given 

the simplicity of the task, we know it should still be solvable using only 369 parameters. 

What we conclude from this is that Randomness-based algorithms require over-

parameterization of the neural networks to improve perform. We confirm that this is the 

case also for LS as can be seen from Figure 30. 

 

FIGURE 30 LS ALSO FAILS TO SOLVE THE MOUNTAIN CAR CONTINUOUS TASK WHEN 

THE NETWORK PARAMETERS ARE ONLY 369. 

Using all these insights, we increased the number of search directions S to 250 first and 

then to 2500. We still observed that the task is unsolved. However, moving from S=25 to 

S=250 allowed the agent to reach the near-zero reward quicker as can be seen in Figure 31. 

This encouraged us to increase it further increase S to 2500. We again saw that while the 

task remained unsolved, the agent reached near-zero rewards quicker, check Figure 32. 
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FIGURE 31 AT S=250, LS IS STILL UNABLE TO SOLVE MOUNTAIN CAR CONTINUOUS. 

THOUGH IT JUMPS TO NEAR-ZERO MUCH QUICKER THAN S=25. 

 

FIGURE 32 AT S = 2500, LS IS STILL UNABLE TO SOLVE MOUNTAIN CAR CONTINUOUS. 

IT REACHES NEAR-ZERO REWARD QUICKER THAN S=250. 

These results confirmed our hypothesis that increasing S leads to better training 

performance for LS. We thus increased S to 250,000. 
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FIGURE 33 LS FINALLY SOLVES MOUNTAIN CAR CONTINUOUS TASK, S=250,000. 

From Figure 33 we see that LS was finally able to solve the mountain car continuous task. 

It achieved high rewards, near 90. In addition, we observe that it reached this solution much 

quicker than Random Search did. This confirms our hypothesis about network 

parameterization but challenged our previous hypothesis that 𝑆 needs to be much smaller 

than the size of 𝜽. 

Following all these insights, we now use LS under these new conditions to solve the other 

environments. 
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FIGURE 34 LS SOLVES PENDULUM BY GETTING REWARDS NEAR AND OVER -150. 

 

FIGURE 35 LS SOLVES ACROBOT BY GETTING REWARDS NEAR AND OVER -80. 
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FIGURE 36 LS SOLVES CARTPOLE BY REACHING MAXIMUM REWARDS NEAR 1000. 

In Figure 34 we see that LS is capable of solving Pendulum. Recall that to fulfill the task, 

the reward needs to be near -150 and better. We thus see that near step 600, the algorithm 

finds a good solution near 0. The subsequent steps are all attempts to improve that solution. 

We have needed to extend the optimization horizon from 500 to 1500. In Figure 35 we see 

that LS solves Acrobot as well. It gets rewards in the -80 range and above. Finally, we also 

see from Figure 36 that LS can solve Cartpole by attaining the maximum available reward 

of 1000.  

Hence, from this section we conclude that LS can solve all Open AI Gym Classical Control 

problems. We confirm that the insights generated from the Mountain Car task has extended 
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to the other problems. It is important to note that while the tasks were solved, the 

performance could have been better had a hyperparameter optimization process been 

applied. We did not optimize the hyperparameters (such as S) because the goal of these 

studies is not to beat a benchmark, but to ascertain the capabilities of LS in different RL 

settings. 

ROBUSTNESS 

We wanted to test whether LS can produce robust solutions. Recall that in all the Classical 

Control environments, there are random perturbations. Solving one instance (i.e. episode) 

of the problem as in the previous section may be enough as an existence proof. However, 

it is insufficient to produce robust neural network controllers (i.e. agents).  

To produce robust controllers, the agent must be able to perform the task across almost all 

possible perturbations. In this regard, we expanded our RL loop so that each optimization 

step would not feature a single episode but many episodes (with the rewards being 

aggregated). The neural network will experience many perturbations throughout those 

episodes, and thus its true capacity and robustness will be evaluated.  

While this method is effective, it is also costly in terms of resources and time. For those 

reasons, we choose the Cartpole task as the reference for robustness. It is a simple yet 

representative task for this category. Our goal in this section is to produce a robust 

controller for the Cartpole task. Again, the method is to increase the number of episodes 

per optimization step while aggregating the rewards. 
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FIGURE 37 LS IS ABLE TO PRODUCE A ROBUST CONTROLLER. IT ACHIEVES REWARDS 

NEAR THE MAXIMUM POSSIBLE OF 10,000. 

From Figure 37 we see that LS quickly reaches near 10,000 rewards, which is the 

maximum. The network in each step controls the agent for 20 episodes where each episode 

lasts for 500 action steps. Thus, the LS algorithm has successfully produced a robust 

controller that is able to control the agent under various perturbations. 

CONCLUSIONS 

Local Search was used in a Reinforcement Learning setting to solve the Classical Control 

tasks in Open AI Gym. Using the insights from the previous experiments, we over-

parametrized the control network to be on the order of 106. This did indeed prove important 

as was confirmed afterwards. However, unlike insights from the previous experiments on 
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Computer Vision task (Fashion MNIST dataset), making the search direction S to be much 

smaller than the network parameter vector size is not a beneficial decision. 

It was found that Random Search can solve the tasks. Using this insight, by increasing S, 

we were also able to solve the tasks using LS. This suggests S is dependent on the 

optimization environment or context. It may be the case that S can be adjusted via an on-

line heuristic during optimization. This may alleviate the worry of optimizing S for every 

scenario. In addition, we were able to solve the tasks quicker than RS, which confirms LS 

as a better option. 

Following the solution of the tasks, we also tested for the robustness of the solutions. It 

was found that LS can produce robust controllers. To do so, we used an aggregated-reward 

scheme and expanded the number of episodes per optimization step. This scheme was 

successful for the Cartpole problem, and we hypothesize that it would be just as effective 

for the other problems. 

We conclude that LS is possibly an option for researchers to use in RL settings. From our 

results, we are encouraged to try LS on more challenging tasks such as Atari games and 

Mujoco 3D control environments. We provide the results in this experimental study as a 

steppingstone for more complex problems.  
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CONCLUSION 

In this chapter we investigated a single-candidate algorithm called Local Search to train 

neural networks. The algorithm proved capable of addressing all the benchmark problems 

in the performed experiments. However, the algorithm also had a high sample-complexity. 

It is not yet ripe to test on physical robots for physical tasks. Nonetheless, the fact that there 

exists a single-candidate approach that is derivative-free and capable of training neural 

networks with millions of parameters should not be dismissed. It’s a remarkable 

achievement to the state-of-the-art in derivative-free optimization methods. Historically 

and fundamentally, derivative-free methods did not perform well when the number of 

search dimensions was high (106 is considered immense). Furthermore, multi-candidate 

methods would generally perform much better than single-candidate due to the latter’s 

limited capability to explore.  

For those reasons, it is significant to have a single-candidate derivative-free method to train 

networks with millions of weights on complex, modern problems. Regarding ERL, there 

is a need to improve upon the current implementation of LS by first understanding its 

dynamics better. Future iterations of LS should be able to demonstrate their effectiveness 

to produce learning robots with the ERL method. 

  



Chapter 6: Summary & Conclusions 

 

 

 

188 

CHAPTER 6: SUMMARY & CONCLUSIONS 

OVERVIEW 

The topic of Robot Learning has been investigated and based upon our observations a 

method to train robots called Experiential Robot Learning (ERL) has been proposed. The 

ERL method is poised to address a gap we identified in the literature. The problem is that 

robots are not mature enough to be used in unconstrained environments (i.e. in the wild) 

because they cannot learn and thus cannot respond to new situations. Our hypothesis 

therefore is that the development of a methodology that permits experiential learning could 

allow robots to learn and therefore to succeed in novel situations. 

What are the requirements on experiential robot learning that would enable robots to 

succeed in novel situations? ERL would need to be experiential, open ended, scalable and 

platform agnostic, among many other characteristics. The ERL method resembles 

aspirational goals which we hope robotic solutions would achieve, e.g. being Scalable. In 

this regard, Neural Networks (NN) provide a promising path towards achieving ERL and 

this dissertation evaluates this promise through a series of experimental studies. 

The early experiments illuminated a problem with using Deep Learning for ERL: the need 

for differentiable, informative loss functions can’t always be satisfied. The exploitative 

behavior of gradient-following is incompatible with the exploratory nature of ERL. 

To address these shortcomings, we developed Local Search algorithm, a gradient-free 

single-candidate optimization algorithm to train neural networks. It provided good results 
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on the experiments performed in absence of a differentiable loss function. LS creates a 

viable path towards the implementation of the ERL method. 

DISCUSSION 

TRAINING NNS WITH DEEP LEARNING 

In the first experiment we demonstrated how to apply ERL to current Deep Learning 

techniques and build a robot that learns experientially. The robot was autonomously able 

to build and expand on a visual dictionary of identifiable objects by interacting with 

humans and the physical environment. The implementation obtained a high number on our 

Attractiveness Score (AS) scale, which rendered it a success. 

The early experiments, however, demonstrated a problem with using NN (i.e. Deep 

Learning) for ERL: the need for differentiable loss functions & neural architectures can’t 

always be satisfied. Moreover, the exploitative-nature of gradient-descent is not suitable to 

solve problems that require exploration. There are also many tasks where the optimization 

hypersurface is riddled with deep minima and saddle points. In cases where the gradients 

are inaccessible or uninformative (which is well-documented), then another family of 

optimization algorithms is required. The ERL method in its core is inherently exploratory, 

the robot is expected to “discover” solutions to novel problems on its own, experientially. 

After solving one problem, it is expected to solve another problem and so on. This 

fundamentally challenged the statistical-optimization approach of Deep Learning. Recall 

that the Deep Learning training technique at its conception was almost exclusively used in 

Supervised Learning settings on limited datasets, e.g. MNIST. 
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In response to these limitations, we developed 3 gradient-free algorithms called 

Accelerated Neuroevolution, Multiple Search Neuroevolution and Local Search. All three 

algorithms were developed, and validated, to train deep neural networks and provide good 

results on the experiments performed. 

TRAINING NNS WITH EVOLUTIONARY TECHNIQUES 

The first algorithm, Accelerated Neuroevolution, is a primitive form of Neuroevolution 

with mechanisms to ensure diversity and convergence speed. Being an evolutionary 

algorithm, it is a member of the multi-candidate optimization family. Against a baseline 

Neuroevolution algorithm, AN was quicker to train a NN to solve (i.e. play well) the game 

of Flappy Bird. Testing AN on a real robot revealed that it satisfied ERL principles. The 

robot was able to discover the reward policy experientially and fulfill the simple task 

assigned to it. The experiment was a simple discrete control of a single joint, i.e. 1 Degree-

of-Freedom (DOF). This is not unheard of in robotics, especially for introductory tasks. 

This experiment also featured an integration between Deep Learning and Neuroevolution, 

where the Perception module was trained using Deep Learning, and the Control module 

was trained using AN. This hybrid architecture was the first of its kind to be used in this 

way. Thus, the method of ERL was successfully applied to Neuroevolution methods as 

well. The robot again ranked high on our AS scale.  

A major limitation for AN however was the fact that it is a multi-candidate optimization 

method. This essentially translated to a high sample complexity for robot exploration tasks. 

In other words, the robot would take too long to solve a problem because taking a single 
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optimization step requires the evaluation of an entire pool (group of candidate solutions). 

In addition, the benchmark of solving Flappy Bird constitutes too low of a standard to 

compare against. 

Multiple Search Neuroevolution (MSN) expanded on the approach of Neuroevolution but 

employed advanced heuristics. Many mechanisms were introduced to acquire improved 

search behavior. While excelling at exploration, evolutionary methods are challenged by 

exploitation, i.e. the careful movements in Search Space to capitalize on narrow but 

profitable regions such as Valleys (which comes naturally to gradient-free methods). In 

addition, there is the curse of dimensionality. As the problem size increases, the neural 

network size increases (because the representation capacity required to solve the problem 

increases) and with it the search dimensions. This increase in search dimensions leads to a 

non-linear (i.e. substantial) decrease in search speed because the search space typically 

becomes more complex.  

The advanced heuristics in MSN were found to help in this regard. The experiments 

performed on Global Optimization functions included a wide range of competitive 

evolutionary and derivative-based algorithms. MSN improved upon the convergence speed 

of all the competitors by at least 7X and an order of magnitude at most. Though these 

functions were limited to 2 dimensions, they still posed a formidable challenge as proved 

by the poor performance of the other algorithms. The optimization hypersurfaces of those 

functions are pathologically designed to be adversarial. They challenge many different 

properties of optimization algorithms, e.g. exploration vs. exploitation. 
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Furthermore, MSN trained a 5 Million parameter Convolutional Neural Network (CNN) 

using only 50 populations on a subset of the MNIST dataset to 90% validation accuracy. 

As a reference, Stochastic Gradient Descent (SGD) was included in those experiments. 

Training such a relatively large network with a small pool has not been achieved before. 

Despite the successes, there were significant drawbacks. First, it is argued again that 

MNIST is not a particularly difficult problem, or representative of modern Deep Learning 

challenges. Second, the convergence speed of MSN was much slower than SGD. It should 

be noted that SGD and its variants are the backbone optimization algorithm of Deep 

Learning. With MSN being a multi-candidate optimization algorithm, and SGD being 

single-candidate, the problem of convergence compounded the sample complexity. 

Meaning that in order to take one optimization step, SGD needs to evaluate one sample 

(because it is single-candidate), while MSN needs to evaluate many. Finally, MSN featured 

many hyperparameters due to its reliance on advanced heuristics. This means that MSN 

may potentially require heavy hyperparameter tuning prior to being applied on different 

optimization tasks. 

TRAINING WITH SINGLE-CANDIDATE TECHNIQUES 

Following the limitations of MSN, it was clear that multiple-candidate methods will not 

suffice for an efficient implementation of ERL. The robot cannot be expected to perform 

N evaluations (even if N is only 15, which is a relatively miniscule pool size) before taking 

a single optimization step. It will always be the case, that if we include a single-candidate 

method as a reference it will have a much lower sample complexity than a multi-candidate 
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method. Of course, the single-candidate method would need to be able to perform the task 

well (the task’s loss function must have informative gradients). 

For those reasons, the next algorithm we present is Local Search. It is a single-candidate 

gradient-free algorithm to train neural networks. By performing multiple evaluations from 

the same location, multi-candidate methods get a noisy estimate of the gradient. Despite 

being derivative-free, multi-candidate method can still leverage this noisy estimate 

information to push the search in the right direction (when appropriate). Single-candidate 

methods don’t even have that luxury, in a general sense. 

The Local Search algorithm performs well on the experiments performed. It worked in both 

Computer Vision and Reinforcement Learning settings. The results indicate that LS is 

much better than Random Search but worse than SGD in terms of convergence speed. In 

case of Computer Vision setting, a subset of the Fashion MNIST dataset was used. This is 

a much newer dataset that is representative of modern Deep Learning tasks yet simple 

enough to be an introductory task. LS was able to train the neural networks without any 

loss functions. 

From these experiments, we discovered interesting insights about the search dynamics of 

LS under different conditions. Network parameterization as well as the number of search 

directions are both critical to achieving a good performance from LS. To conclude, LS 

provides a plausible option for implementation in robots that learn using the ERL 

methodology. 
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As a summary and for reference, we provide a comparison between the 3 techniques to 

train NNs in Table 25. 

TABLE 25 AN OVERVIEW COMPARISON BETWEEN THE 3 NN TRAINING TECHNIQUES 

Technique Deep Learning Neuroevolution Local Search 

Derivatives Required None None 

Underlying Algorithm SGD Varies Random Search 

Loss Function Required Optional Optional 

High-Precision Required Optional Optional 

Natural Behavior Exploitative Explorative Balanced 

Optimization Family Single-candidate Multi-candidate Single-candidate 

High Dimensionality Handles well Typically Struggles Typically Struggles 

Sample Complexity Naturally Low Naturally High Naturally Low 

SCOPE 

In this dissertation we started from a very high-level view of the problem where the focus 

was on motivation, purpose and methodology. In this light, the ERL method was 

developed. We progressively delved into lower-levels. The work after the method 

comprised of focusing on possible applications of ERL and examining different 

implementations. The first experiment reflected this focus on implementation-driven 

research and experimentation.  

However, we ended up diving into a deep, low-level view of the problem. The fact that we 

studied optimization algorithms of neural networks demonstrates this. More often than not, 

and the lack of innovation in training algorithms is evidence, research is stuck at the 

medium-level where it is application-driven. That we went deeper than most and generated 

new optimization algorithms highlights the fundamental nature of the ERL method and 

how it is different from everything else. The reason we went so deep is that we wanted to 
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adhere to ERL as much as possible. The then-current state-of-the-art (i.e. Deep Learning) 

was not conducive to adopting this approach. 

Recently, this has started to change. In the past two years, there has been a growing interest 

in fundamentally changing the way neural networks are trained. Gradient-free methods 

seem to be gathering traction after investigations from major, world-class technology labs 

such as Google DeepMind, Open AI and Uber AI. 

The research in this dissertation could have taken so many directions. It was decided to 

keep the focus as much as possible on robotics. However, it was not always feasible to do 

so. First, the low-level investigations warrant that the newly-developed algorithms be 

validated on common benchmarks before deployment on a robot. These algorithms need 

to be better than other algorithms in some respect, as well as overcome some of the 

obstacles facing the implementation of ERL. This meant that we cannot immediately test 

on robotic applications. Thus, the focus deviates into tasks like global optimization 

functions. 

Second, the timeframe allocated to development of these optimization algorithms was quite 

limited which meant that rapid prototyping is a must. All the candidate algorithms needed 

to prove their worth or be discarded in as little time as possible. Needless to say, it takes a 

long time to iterate on an idea until the final algorithm is produced. Robotic tasks are 

inherently time-consuming. The robot takes time to plug-in, charge, set-up, use and store 

away. In addition, doing something in the real physical environment is naturally more 
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demanding than performing simulations. In consequence, we couldn’t adhere to focusing 

solely on robotic applications throughout this dissertation. 

If the state-of-the-art training algorithms and neural architectures were conducive to use 

under the principles of ERL, all this time and effort would have been saved and diverted to 

pure robotics research. Pure robotics research here refers to the physical robot 

implementations under different scenarios. 

The scope pre-defined in the first chapter underlines the approach adopted throughout this 

dissertation. The purpose of this investigation is not to beat the state-of-the-art in any task 

or benchmark. If that was the case, one would simply optimize a robot to perform said task 

and once beaten declare that the job is done. This in fact would be the exact approach we 

are against since the definition of the motivation. Specifically, that hand-engineering 

approaches are ungeneralizable and unscalable. It would be folly to attempt to address this 

problem by yet-again creating and focusing on engineering a solution to a specific 

problem/task/application. 

Hence for the entire course of study, the focus has been on general learning problems. The 

goal of all the robot experiments was to demonstrate the capacity of experiential learning, 

not to fulfill the task. We limited the test applications to performing a single task in any 

given experiment. If learning can be demonstrated on one task then our goal has been 

fulfilled, irrespective of whether the robot can solve another task(s). The tasks themselves 

were also designed to be straightforward and simple in nature. Yet, they were also 

challenging and satisfied the requirement that they couldn’t be performed without learning. 
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This balances the time & effort spent time on solving the task, and the significance of the 

achievement. 

In summary, we attempted to stick to practical implementations of ERL when possible and 

veered only when necessary. The performed experiments were chosen with deliberation to 

cast a balance between rapid prototyping and meaningfulness & relevance. The approach 

adopted in the whole of this dissertation was a top-down approach. We started from the top 

by making observations and developing a method. Then we ventured to apply this method 

using then-SOTA optimization algorithms. Finally, we delved into the low-levels and 

developed novel optimization algorithms which are more conducive to the afore-defined 

ERL method. Our method, combined with the new algorithms, provide a clear path for 

future research to allow robots to learn from physical experiences in the real environment.  
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FUTURE WORK 

Thus far in the research we have reached the point of validating the LS algorithm (one of 

the developed gradient-free algorithms) on relatively simple tasks. The LS algorithm was 

developed to enable the ERL method in cases where Deep Learning approaches are not 

effective or possible. We demonstrated how the ERL method can be applied to a real robot 

application using Deep Learning approach, i.e. SGD, not LS. 

The obvious direction of future work is to use LS to demonstrate ERL principles on a real 

robot in elaborate settings. Recall that ERL attempts to reject sim2real techniques 

(performing learning in simulation and then transferring the “trained” network to the real 

environment) in favor of learning on-the-job, i.e. in the real physical environment and not 

in simulation. ERL does not negate simulations entirely, but it rather attempts to stress the 

importance of physical learning from experience (the ability to learn experientially, 

specifically). There is a heated debate at the moment on sim2real approaches, following 

the impressive-yet-disappointing results from Open AI Robotics [132]. The impressive 

aspect is that a neural network can control a robot with unprecedented dexterity. The 

disappointing aspects are that the robot achieves the task (manipulating a Rubik’s cube) 

correctly 60% of the time, and 0% at worst case, and that the robot took about 10,000 years 

of simulated experience to reach this level (months of wall-clock time). It leaves us 

wondering how many years of simulated experience it will take to learn to walk for 

instance. For those reasons, the ERL method may be needed so that it presents a voice that 

emphasizes the importance of learning from physical experience. Understandably, physical 
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experiments are costly in time and resources. Thus, the level of complexity of physical 

experiments must be scaled according to the progress made here and in subsequent work. 

Following the last 3 experiments, we can surmise that the LS algorithm itself needs further 

study to fully understand its training dynamics. There are questions regarding the use of 

randomness and heuristics, and the impact those would have on convergence. There are 

also open questions regarding the neural architecture, and whether LS can successfully 

train more elaborate cells like LSTMs. 

Another direction of research is to study the combination of evolutionary and single-

candidate methods to form more powerful optimization algorithms. It may be the case that 

a single-candidate is too linear (lacking in diversity) and a pure multi-candidate approach 

is too costly (in terms of sample-complexity). A hybrid approach where a relatively tiny 

number of candidates (under 10) are used may be promising. The increased sample 

complexity may be compensated by a faster convergence rate. 

The advanced heuristics employed in MSN algorithm may also be streamlined and used to 

enhance the LS algorithm. The use of heuristics may alleviate the need to tune the number 

of search directions, which is an important parameter as discussed in the Hyperparameter-

search experimental study. This approach of employing heuristics may also improve the 

exploration/exploitation characteristics of LS. Ideally, this would lead to faster 

convergence, possibly translating into faster learning in the physical environment. 
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LESSONS LEARNED 

The lessons learned would require a chapter of their own should we include everything. 

The PhD journey is gruesome and grilling to say the least. One often fails rather than 

succeed. Failure becomes the norm, not success. This begs the question of how one would 

succeed after constant failures. In this section we attempt to capture those answers. 

First and foremost, it has been noticed that the state of the art in AI and Machine Learning 

is constantly shifting. The bar upon which upcoming algorithms and implementations are 

compared to is getting higher.  In those circumstances, it is rather difficult for one to 

innovate. 

To make an innovation one must take risks, and often those risks do not pay off. In a highly-

challenging environment, however, we don’t have the luxury of not innovating. The shift 

in this thesis from gradient-based to gradient-free algorithms is one such risk. Had we not 

taken that risk; we would have encountered many obstacles to adhering to the defined 

principles of ERL. 

Thus, the first lesson is not to follow state-of-the-art but rather to attempt to create your 

own. The second lesson is, sometimes it is simply unfeasible to implement what one 

proposes. The current technological offering may not be conductive to what is being 

proposed. 

For example, in our proposal of ERL we wanted robots to learn online. However, we found 

that due to the current technological offering in embedded systems it is nigh impossible to 
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embed large deep models in training loops. It is possible to use deep models in inference 

loops, meaning that the agent is already trained. But training on embedded systems is not 

feasible today from our experience. As such, we resorted to shifting the training loops onto 

a desktop workstation and communicating with the robot via Wi-Fi. The workstation would 

capture the robot’s sensory inputs, perform training, and then proceed to feed the robot the 

action policy. 

Third lesson is to create what isn’t there should there be a need for it. In all our endeavors 

it was quite challenging to write code for the different implementations and test loops. We 

wanted to test many conditions, scenarios and models, and found ourselves re-writing code 

and/or writing endless scripts. There was no software framework in which neural networks 

can be optimized with minimal number of lines, and in different scenarios. So, we went 

and created it. After writing the DNNOP framework (available for free online), we 

experienced an unprecedented acceleration in our arduous research efforts. 

Fourth and final lesson is to get unstuck once you are stuck. After completing the first 

paper, we wanted to work on Robot Motion using ERL. At that time, we were still using 

typical deep RL settings, i.e. gradient-based optimization. For months and weeks, the robot 

could not learn. Now, we could either attribute this to the inherent sample complexity 

requirement for RL techniques, or to some limitation in our own implementation. We 

would save the robot’s pre-programmed movements, then feed it to the network so the 

network can “memorize” the control actions. The network would be able to reproduce 

perfectly the learned sequences, as well as perform remarkably well on predicting other 
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unseen trajectories. Logically, this means the network has learned the robot’s dynamics 

and how the sensory readings should affect the joints, and vice versa. This now-trained 

network would then be used to control the robot, and it would fail unquestionably.  

When the network would fail, and upon some pondering, we would introduce some 

innovation. Some tweak to the way we conducted training and/or inference. While this skill 

did help at times, we were stuck in an endless loop of debugging and introducing 

improvements. The robot would not learn. It would not explore the action space either. 

This is when it became apparent that a new approach was needed. If it didn’t work, well, it 

couldn’t be any worse than where we were at that moment. This is where the fourth lesson 

was learned. If it doesn’t work, learn how to think in a more wholesome manner, and “zoom 

out” to consider the problem from a wider perspective. 

When we “zoomed out”, we noticed immediately that the lack of exploration may be 

something not within the way we use Deep Learning but within Deep Learning itself. And 

so we concluded upon further consultation of core Machine Learning and Optimization 

literature. The gradient-descent family of optimization algorithms are created and used 

based on an assumption of convexity in the overall loss hypersurface (i.e. solution domain). 

Furthermore, there are many instances where even globally-convex problems would be 

challenging to the greedy-behavior of gradient descent-based algorithms, i.e. gradient-

following. For example, one can easily conjure hypersurfaces which has global convexity 

but riddled with deep minima and saddle points. Gradient-following would not work in 

those scenarios. As such, we took a decision and it paid off remarkably. It was instantly 
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noticeable how the new exploration-based algorithms are remarkably suitable for our 

purposes. For those reasons, getting unstuck is perhaps the key lesson learned. 

DELIVERABLES 

In this section we attempt to capture what was delivered in this dissertation as well as in 

the PhD journey. This is an important, capsule-size collection of information. It should aid 

the reader capture the essence of this scholastic endeavor. The information is organized by 

category. Under each category are the items which were accomplished.  

A. Algorithms & Software 

1. Accelerated Neuroevolution algorithm 2018 

2. Multiple Search Neuroevolution algorithm 2018 

3. Local Search w/ Score Decay algorithm 2019 

4. Developed DNNOP software framework 2018 

B. Publications & Submissions 

1. Published ERL in IEEE ICDL 2017 

2. Published LS in IEEE UEMCON 2019 

3. Published Hyperparameter Search for LS in IEEE ICICIS 2019  

4. Submitted paper to ICLR 2018 

5. Submitted paper to CoRL 2018 

6. Submitted paper to ICLR 2019 

7. Submitted paper to IEEE CEC 2019 

8. Submitted paper to IEEE GECCO 2019 

C. Participation & Presentations 

1. Participated in RoboCup 2016 

2. Attended IEEE HKN Student Leadership Conference 2015 

3. Attended HRI 2016 conference 

4. Attended CoRL 2018 conference 

5. Presented (poster) at IEEE ICDL 2017 
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6. Presented (poster) at ICRA 2018 

7. Presented (oral) at A2IC 2018 conference 

8. Presented (oral) at IEEE UEMCON 2019 

9. Presented (poster) at 2019 Lehigh University Robot Learning 

workshop 

10. Presenting (oral) at IEEE ICICIS 2019 

D. Awards & Grants 

1. Received travel grant from UVA ECE Chair’s office 2015  

2. Received NSF EAPSI award 2016 

3. Received UVA diversity award 2018 

4. Received UVA ECE Best TA award 2018 

5. Received workshop travel grant from Lehigh University 2019  

E. Professional Experience 

1. Worked w/ RoboPAL group at NTU, Taiwan 2016 

2. Worked w/ Robotics team at Nvidia, Silicon Valley 2018 

3. Recommended purchases for computer lab at Rice 240 and 

administered it for 2 years 2017-2019 

4. Visiting PhD Scholar at Lehigh University 2019 

F. Academic & Scholastic Experience 

1. Refereed Local High and Middle School science fair 2017  

2. TA for 6 courses 

3. Co-designed and co-taught “Robots & Humans” w/ prof. Dugan  2017 

4. Co-taught Robot Summer Camp at UVA for High School diverse 

students 2018 

5. Taught Computer Science to Native and Diverse Middle and High 

School students in South Dakota 2018 

6. Lectured on several occasions in several different classes  2015-2018 

7. Admitted into IEEE HKN Honor Society 2014 

8. President of IEEE HKN Gamma Pi UVA chapter 2014  
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