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Abstract 
Atherosclerosis is one of the primary causes of cardiovascular disease, which accounts for 32% of global 
deaths and costs the United States $312.6 billion each year. Heritability estimates for atherosclerosis and 
its associated diseases vary between 40% to 70%, suggesting a strong genetic contribution to the disease. 
Investigations need to be conducted on how genetic variations manifest as changes in gene expression 
profiles at the early stages of atherosclerotic development. Thus, this project aims to leverage machine 
learning methods to analyze tissue-level RNA-seq data of coronary and aortic atherosclerosis in young 
adults and predict a sample’s pathology given its transcriptomic profile. Various feature selection methods 
were implemented to extract biologically relevant gene sets that were then used to train Extreme Gradient 
Boosting (XGBoost) classifiers to differentiate between early and late stages of atherosclerosis. The best 
performing models were trained on the top 90 and 120 differentially expressed genes yielding an accuracy 
of 85.96% and 86.54% for aortic and coronary samples respectively. Non-linear dimensionality reduction 
and gene ontology enrichment analysis were used to characterize the transcriptomic profiles representative 
of the gene sets determined by the feature selection methods. The results shown in this project lay the 
groundwork for the application of machine learning methods in the analysis of RNA-seq data at the tissue 
level which could eventually lead to applications in personal and preventative treatments for atherosclerotic 
development in young adults. 
 
Keywords: Atherosclerosis, Machine Learning, RNA-Seq, Feature Selection.

Introduction 

Development of Atherosclerosis in Young Adults 

Cardiovascular disease is the leading cause of 
death, accounting for 32% of all deaths 
worldwide.1 According to the Centers for Disease Control 
and Prevention (CDC), one person dies from heart disease 
every 36 seconds in the United States and about 655,000 
Americans die from it each year due to heart attacks and 
strokes. Healthcare services, medications, and loss of 

productivity caused by cardiovascular diseases cost the 
United States $312.6 billion each year.2 One of the main 
causes for these diseases is atherosclerosis; the hardening 
and narrowing of arteries due to the buildup of plaque 
derived from cholesterol, cellular waste products, loose 
smooth muscle cells, and macrophages. At the molecular 
level, hundreds of intra- and extracellular proteins jointly 
alter their cellular processes to remodel the local vascular 
environment of the artery, causing the development of 
lesions and plaques alongside arterial walls.3 Acute rupture 
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of these lesions causes local thrombosis, leading to partial 
or total occlusion of the blood vessel and eventual vascular 
death. Severe clinical outcomes of this disease include 
ischemic heart disease, coronary artery disease, ischemic 
stroke, and peripheral arterial disease.4 

Since atherosclerosis is predominantly a long-term 
asymptomatic condition until a plaque rupture occurs, it is 
difficult to diagnose and characterize in young adults. 
Atherosclerotic cardiovascular disease is commonly 
diagnosed for men older than 45 years and women older 
than 55 years of age. Current diagnostic and preventative 
methods focus mostly on antecedent risk factors such as 
hypertension, diabetes mellitus, smoking, and dyslipidemia, 
which are not deterministic of the molecular and genetic 
changes that occur during the early stages of 
atherosclerosis. To improve early disease detection in 
younger adults and prevent the progression of the disease 
prior to the manifestation of clinical symptoms, it is vital to 
investigate and identify the specific molecular patterns and 
pathways that constitute healthy versus atherosclerotic 
arterial tissues.3 

Specifically, it is necessary to identify the key 
changes in gene expression that are associated with the 
initial development of atherosclerotic tissue in young adults. 
Heritability estimates for atherosclerosis and its associated 
diseases vary between 40% to 70%, suggesting a strong 
genetic contribution to the disease. Genome-wide 
association studies have identified 175 loci associated with 
an increased risk in atherosclerosis, affecting common risk 
factors such as blood lipid levels, nitric oxide signaling, and 
blood pressure. While some of these loci have been 
individually identified for their functionality, investigations 
still need to be conducted on how these genetic variations 
manifest as changes in gene expression profiles at the early 
stages of atherosclerotic development.5 

Machine Learning for Tissue-Level RNA-Sequencing 
Analysis 

 Identification of differentially expressed genes and 
characterization of the different transcriptomic profiles 
between phenotypic disease states can be used to understand 
gene function and the molecular mechanisms underlying 
different biological processes associated with the 
development of the disease. The most popular method for 
analyzing differentially expression genes is RNA-seq 
because of its remarkable power and accuracy and the low 
cost of next generation sequencing technologies. RNA-seq 
analyzes transcriptomic profiles by comparing the 
abundance of RNA sequences extracted from target 
locations between treatment groups. However, RNA-seq 

can be highly variable as it is affected by cell types, 
proliferation, and differentiation status in the samples when 
investigating its changes at the level of entire tissues.6 When 
obtaining information about a large number of genes from 
various cell types in the tissue, traditional statistical and 
correlational analyses are unable to capture the intertwining 
relationships between them. Hence, more advanced 
methods such as machine learning can be applied to better 
investigate these complex signatures hidden in the data.7  

Machine learning (ML) is a multidisciplinary field 
that employs computer science, artificial intelligence, 
computational statistics, and information theory to build 
algorithms that can learn from large-scale datasets and make 
predictions on a new data set. It is increasingly becoming a 
key tool for biological studies including image analysis, 
robust phenotyping, and gene discovery. Therefore, ML 
methods can assist in the investigation of transcriptomic 
profiles and the identification of differentially expressed 
genes that are missed by regular RNA-seq analyses.6 The 
transcriptomic patterns obtained from the systematic 
collection of arterial samples can lead to the development 
of personalized treatment strategies for the prevention of 
atherosclerosis in young adults with similar molecular sub-
types.  

In this study, we modified and optimized existing 
ML classifiers to analyze tissue-level genetic datasets of 
human coronary and aortic atherosclerosis using supervised 
ML algorithms and feature selection methods. The 
prediction models were designed to discriminate between 
early and late stages of atherosclerosis using RNA-seq data. 
Next, we analyzed and compared the top gene features 
selected by different feature selection methods on the 
performance of the ML model. Lastly, we identified 
differentially expressed genes in each of the methods and 
analyzed their functionality associated with early and late 

stages of atherosclerosis. 

Fig. 1. ML-based RNA-seq analysis pipeline for atherosclerosis. This 
figure describes the design workflow for the entire project. Analysis of 
this pipeline was conducted through UMAP analysis of the dataset based 
on pathology score and model results, and gene ontology enrichment 
analysis of the feature selection methods. 
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Results 

Data Acquisition and Preprocessing 

The ML-based RNA-seq analysis pipeline is shown 
in Figure 1. The tissue-level RNA-seq datasets representing 
131 coroner’s autopsies of young adults were obtained from 
the Genomic and Proteomic Architecture of Atherosclerosis 
(GPAA) project. Separate analyses were conducted for data 
sampled from the left anterior descending coronary artery 
(LAD) and the distal abdominal aorta (AA). Table 1 shows 
the distribution of samples across each dataset according to 
disease pathology, sex, and race. Each of the samples in the 
original datasets consisted of 19,710 genes. After 
converting to FPKM values, removing near-zero variance 
features, and filtering out features with high collinearity (r 
> 0.8), the final AA dataset consisted of 243 samples x 
13,696 genes and the LAD dataset consisted of 89 samples 
x 12,373 genes. These datasets are much larger than those 
used to conduct similar analysis in previous runs by Price et 
al (2021). By increasing the number of samples used to train 
the models, we hope to better generalize the ML model and 
improve its performance. 

 

Feature Selection 

First, this project aimed to implement and 
characterize different feature selection methods which 
attempt to reduce the high dimensionality of the datasets 
and identify key features in the transcriptomic profile. The 
normalized datasets were randomly stratified and split into 
five 80% training sets and 20% testing sets for training, 
validating, and testing various feature selection methods. 
Different feature selection methods include L1 regularized 
linear regression (LASSO), random forest, and recursive 
feature elimination (RFE). Each algorithm provides unique, 

individual rankings to gene features. Figure 2 compares the 
stability of the feature selection methods by identifying the 
number of similar gene features between the top 240 ranked 
genes selected for each of the 5 dataset splits. For both the 
AA and LAD datasets, LASSO and RFE selected more than 
86% of the same genes across dataset splits. However, 
random forest only selected 6.67% (16/240) and 1.67% 
(4/240) of the same gene features across splits for the AA 
and LAD datasets respectively. These results indicate that 

  AA LAD 
Class Label (Normal/Diseased)  162/81 63/26 
Pathology Grading (NL/FS/FP/FC)  98/64/45/36 33/30/24/2 
Total  243 89 
Age  16-59 18-59 

Sex (M/F)  164/79 54/35 
Race (W/B/H/A)  180/54/9/0 63/22/3/1 

Fig. 2. Stability of feature selection methods. Venn diagrams show 
similarity between gene features across 5 splits of the AA (top row) and 
LAD (bottom row) datasets for LASSO, random forest, and RFE feature 
selection methods. Random forest is the least stable feature selection 
method. 

Fig 3. Comparison of feature selection methods to differentially 
expressed genes for AA (a, b, c) and LAD (d, e, f) datasets. Figures a 
and d compare similar genes across the top 240 ranked gene features for 
each feature selection method. Figures b and e describe the adjusted P-
values for differentially expressed genes across the feature selection 
methods. Figures c and f describe the fold change values for differentially 
expressed genes across the feature selection methods.  
 

Table 1. Metadata counts for AA and LAD datasets. Binary class label 
was assigned based on pathology grading. Normal or early-stage 
atherosclerosis was defined by non-lesional (NL) or fatty streaks (FS) 
pathology. Diseased or late-stage atherosclerosis was defined by fibrous 
plaques (FP) and complex fibrous plaques (FC). Demographic factors 
shown below include age, sex (male/female), and race 
(white/black/Hispanic/Asian). 
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the random forest is the least stable of the feature selection 
methods. 
 
 Next, we conducted differential expression analysis 
using DESeq2 on the entire datasets and obtained 3,975 
genes for AA samples and 267 genes for LAD samples that 
are differentially expressed between early and late stages of 
atherosclerosis (adjusted p-value = 0.001). The genes were 
sorted were ranked in descending order of the fold change 
magnitudes to obtain the top 240 differentially expressed 
features that were used to also train the ML classifier. 
Figure 3a and Figure 3d show the comparison of number of 
similar features between the top 240 ranked gene features 
of each feature selection method averaged across the five 
folds of the datasets. Gene features selection using random 
forest has the greatest number of similar features with the 
top 240 differentially expressed genes for both datasets. 
Figure 3b,c and Figure 3e,f show the adjusted p-value and 
fold change for the top 240 average ranked gene features 
selected by the different feature selection methods. Only 
random forest showed lower p-values and higher fold 
changes for higher ranked genes, a pattern similar to that of 
the top 240 differentially expressed genes. These results 
indicate that the random forest is more likely to identify 
differentially expressed genes.  

XGBoost Model Performance 

 The project then aimed to implement and increase 
performance of an existing supervised ensemble learning 
classifier which differentiates between early and late stages 
of atherosclerosis. The classifier consisted of 5 shallow 
learners – Logistic Regression, Random Forest, Standard 
Vector Machine (SVM), Decision Tree, and Naïve Bayes – 
being trained on the top 3, 6, 9, 12, 15¸18, 21, 24, 27, 30, 
60, 90, 120, 150, 180, 210, or 240 of the selected features 
from each feature selection method using the same 5 folds 

of the dataset used earlier. The results from the shallow 
learners were then combined using Extreme Gradient 
Boosting (XGBoost) to increase model performance. The 
best average accuracy scores for each of the feature  
selection methods were obtained with the top 90 ranked 
gene features for the AA dataset and the top 120 ranked 
gene features for the LAD dataset as shown in Figure 4. The 
best performing classifiers were from the top 90 
differentially expressed genes (accuracy = 85.96%) for the 
AA dataset and the top 120 differentially expressed genes 
(accuracy = 86.54%) from the LAD dataset. 

Fig. 4. Average accuracy scores for XGBoost models trained from gene sets of variable sizes selected by various feature selection methods on 
AA (left) and LAD (right) samples. The XGBoost model trained from top 90 and top 120 differentially expressed (DE) genes for AA and LAD 
datasets had the highest accuracy scores and overall model performance. Model performance of gene sets from other feature selection methods were 
not significantly different from a random set of genes; however, random forest did perform slightly better than other feature selection methods. 

Fig. 5. UMAP dimensionality reduction and clustering based on 
pathology score (a, d) and confusion matrix of best performing 
model (b, d) for AA and LAD samples. Pathology score is defined as 
% involvement of FC in tissue samples, indicating that the pathology of 
the sample worsens as the score increases. Pathology-based clustering 
indicates that there are differences in gene expression profiles between 
early and late stages of atherosclerosis. Clustering on the confusion 
matrix allows for visual comparisons with pathology scores on the 
accuracy of the model in detecting non-linear associations.  
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UMAP (Unifold Manifold Approximation and Projection 
for Dimension Reduction) 

 UMAP was used to visualize the high-dimensional 
data from the gene expression datasets into three-
dimensional space. The project aim was to improve model 
performance by identifying clusters of data which separate 
different atherosclerotic pathologies and compare those 
clusters with the outputs from the model. Such clusters were 
observed when evaluating pathology score (Figure 5a,c) and 
a few similarities were noted with the outputs of the best 
model, the top 90 and 120 differentially expressed genes  for 
AA and LAD datasets respectively (Figure 5b,d). 

Gene Ontology Enrichment Analysis 

  Finally, the project aimed to identify and 
characterize the functionality of the enriched genes obtained 
from the best models of each of the feature selection 

methods in their association with the development of 
atherosclerosis. Gene ontology enrichment analysis was 
conducted on the highest performing gene sets from each 
feature selection method and analyzed for its functionality 
in biological processes. Figure 6 shows the analysis for AA 
data and Figure 7 shows the analysis for LAD data. There 
were no statistically significant enriched terms (p < 0.05) 
for the top 120 ranked gene features for random forest and 
RFE feature selection on the LAD dataset. 

Discussion 
 This project aimed to investigate various feature 
selection methods and leverage them to improve 
performance of supervised, ensemble machine learning 
classifiers that differentiate between early and late stages of 
atherosclerosis in young adults. The best feature selection 
method was found to be the ranked set of 90 and 120 

Fig. 6. Gene ontology (GO) enrichment analysis of top 90 ranked gene features for various feature selection methods in AA samples. Only GO 
biological processes are listed for enriched terms (adjusted P-value < 0.05). 
 

Fig. 7. Gene Ontology (GO) enrichment 
analysis of top 120 ranked gene features 
for various feature selection methods for 
LAD samples. Only GO biological processes 
are listed for enriched terms (adjusted P-
value < 0.05). As such, there are no 
significant enriched terms for random forest 
and RFE feature selection.  
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differentially expressed genes (p < 0.001) for AA and LAD 
samples respectively. These findings indicate that 
traditional differential expression analysis is still able to 
differentiate transcriptomic profiles of RNA-seq data at the 
tissue-level and functions better than the ML-based feature 
selection methods. Additionally, the other feature selection 
methods show no difference in model performance 
compared to a set of random genes, which indicates that 
these methods are not able to identify functionally important 
sets of genes associated with early and late stages of 
atherosclerosis. A possible explanation for these results 
could be due to the extensive heterogeneity in the dataset 
caused by the analysis of RNA sequences from tissue-level 
samples. To obtain a balanced dataset that allows machine 
learning methods to account for this heterogeneity, a similar 
number of samples are needed relative to the number of 
genes. Thus, more data needs to be collected to train the 
ML-based feature selection methods and XGBoost models. 

From the ML-based feature selection methods, the 
gene sets from random forest feature selection had the 
highest performance for the XGBoost classifiers. The 
average gene set was also the most closely associated with 
differentially expressed genes. However, stability analysis 
indicates random forest feature selection method to be the 
least stable with the fewest number of similar features 
between the folds of the dataset. A combination of high 
performance and a lack of stability indicates that the random 
forest algorithm is overfitting to each training dataset and is 
not able to generalize across datasets. Overfitting causes 
significantly lower model performance when the model 
predicts differences in atherosclerosis pathology based on 
external, novel data.   
 Non-linear dimensionality reduction and clustering 
using UMAP showed that the transcriptomic profiles of 
tissue-level samples are separable by atherosclerosis 
pathology as distinct groups of similar samples were 
observed in the three-dimensional UMAP space. 
Comparison of the pathology scores with the performance 
of the best XGBoost model showed similarities in clusters 
as expected. However, it is important to note the location of 
certain false positive samples that lie within clusters of true 
positive samples and certain false negative samples that lie 
within clusters of true negative samples. These samples may 
indicate the presence of labeling errors in the original 
dataset in which samples may have been assigned an 
incorrect pathology. Supervised UMAP clustering can be a 
potential method to use in the future to correct for these 
labeling errors and improve model performance. 
 Lastly, gene ontology enrichment analysis of gene 
sets in AA and LAD samples revealed unique functionality 
for each feature selection method. For both AA and LAD 

samples, the top 90 and 120 differentially expressed genes 
revealed biological processes involved in tissue and bone 
development and remodeling. Genes selected from LASSO 
feature selection revealed biological processes involved in 
inorganic ion homeostasis. Genes selected from random 
forest feature selection revealed processes involved in lipid 
metabolism and inflammatory response in AA samples. 
Genes selection from RFE feature selection revealed 
processes involved in protein citrullination, an irreversible 
post-translational modification that can lead to the 
production of autoantigens and an autoimmune reaction that 
could lead to the development of atherosclerosis.8 Random 
forest and RFE feature selection methods did not reveal any 
significant enriched terms in LAD samples. It is likely that 
this is caused by the smaller sample size of the LAD dataset 
as there is not enough data for the feature selection methods 
to extract non-random information. These functionalities 
extracted by enrichment analysis are closely related with the 
development of atherosclerosis suggesting that the feature 
selection methods do identify functionally relevant genes 
from the dataset.8 Further investigation must still be done to 
fully understand and characterize the mechanism for feature 
selection and why it reveals functionally significant 
information. It is important to note that LASSO and RFE 
feature selection methods identified relevant functional 
processes for atherosclerosis but were not associated with 
differentially expressed genes. 
 While this study is preliminary in nature, future 
availability of samples from a greater number of young 
adults, especially those samples representing late stages of 
atherosclerosis, may help in building more effective feature 
selection methods and ML classifiers to differentiate 
between transcriptomic profiles of atherosclerosis. Further 
investigation into the transcriptomic basis for the severity of 
disease pathology is necessary to characterize these genetic 
profiles and eventually develop personalized, preventative 
strategies for atherosclerosis in the future. 

Materials and Methods 
 This project employed the workflow shown in 
Figure 1 to achieve the overall goal of designing machine 
learning methods for tissue-level RNA-seq analysis of 
atherosclerosis in young adults. 

Data Acquisition 

 RNA-sequencing data was acquired from previous 
research conducted for the GPAA project.3,9 Samples were 
extracted from the left anterior descending coronary artery 
(LAD) and abdominal aorta (AA) through coroner’s 
autopsies of 131 young adults (Table 1). Samples were 
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graded by pathologists and scored as non-lesional or normal 
(NL), fatty streaks (FS), fibrous plaques (FP), or complex 
fibrous plaques (FC). These classifications increase in size 
of the plaques within the arterial samples and thus increase 
in the severity of atherosclerosis. RNA was extracted from 
the samples and sequenced at the tissue level. 

Data Preprocessing 

In processing the data for feature selection, the 
samples were grouped into a binary label based on its 
pathological classification: normal/early stage 
atherosclerosis (NL and FS) and diseased/late stage 
atherosclerosis (FP and FC). Then, the RNA-sequencing 
data was processed and quantified to produce fragments per 
kilobase of exon per million mapped fragments (FPKM) 
values which represent the abundance of each gene within a 
sample. Feature dimensionality reduction techniques were 
applied to increase readability of the dataset and remove 
noise. These techniques included removing features with 
near-zero variance and filtering out features with high 
collinearity (r > 0.8). The resulting values were then 
standardized across samples using a z-score 
normalization. Preprocessing steps were implemented 
using Python 3.6 and R 4.1.1.  

Feature Selection 

 Feature selection is an advantageous step in 
handling large datasets and reducing its dimensionality 
before training a machine learning model. Feature selection 
helps in searching for a subset of relevant gene features 
associated with normal or diseased classification of 
atherosclerosis. To reduce the dimensionality of the dataset 
and extract functionally relevant genetic information, three 
different feature selected algorithms were implemented that 
provide individual rankings to gene features: LASSO, 
random forest, and RFE. The least absolute shrinkage and 
selection operator (LASSO) conducts regression analysis to 
simultaneously estimate parameters and select important 
variables. Random forest uses decision tree-based strategies 
to rank features based on a feature importance attribute. 
Recursive feature elimination (RFE) utilizes recursion for 
feature extraction where smaller and smaller sets are 
considered as features until a desired number of features is  
returned. Initial implementations of these feature selection 
methods were provided by Colin Price using the Python 3.6 
scikit-learn library. The methods were trained on stratified 
5-fold splits of the preprocessed FKPM dataset with an 
80/20 train-test split. To obtain a consensus “average” 
ranking of gene sets between splits, the overall mean 
ranking of each feature was calculated. 

Differential Expression Analysis 

 Differential expression analysis is a common 
statistical method used to analyze gene counts from RNA-
seq data and identify overexpressed or under-expressed 
genes between treatment groups. This analysis was 
implemented on the raw gene counts of the datasets using 
the DESeq2 package in R 4.1.1. Differentially expressed 
genes were filtered at an adjusted p-value < 0.001 and the 
genes were ranked with decreasing magnitude of the fold 
change. 

Training and Evaluation of XGBoost Classifiers 

 Ensemble learning methods such as XGBoost 
involve the consolidation of performance results from 
individual, “shallow” learners to increase classification 
accuracy while preventing overfitting on the dataset. For 
each split of the dataset, the top 3, 6, 9, 12, 15¸18, 21, 24, 
27, 30, 60, 90, 120, 150, 180, 210, or 240 ranked gene 
features from each feature selection method were used to 
train five shallow learners: Logistic Regression, Random 
Forest, Standard Vector Machine (SVM), Decision Tree, 
and Naïve Bayes. The results of these individual models 
were then used to train the XGBoost model to classify 
between normal and diseased states of atherosclerosis in 
samples. Performance of the model was analyzed using 
confusion matrices and accuracy scores (Equation 1). Initial 
implementations of the shallow learners and XGBoost 
classifier were provided by Colin Price using the Python 3.6 
scikit-learn and xgboost libraries.  

UMAP (Unifold Manifold Approximation and Projection 
for Dimension Reduction) 

 UMAP is a general-purpose non-linear 
dimensionality reduction algorithm for the visualization of 
high-dimensional datasets in three-dimensional space. The 
algorithm searches for a low-dimensional projection of the 
data that has the closest possible equivalent fuzzy 
topological structure. Pathology scores and confusion 
matrices obtained from XGBoost models were then 
visualized to observe clustering of samples in the low-
dimensional projection of the dataset. UMAP was 
implemented using the Python 3.6 umap-learn and scikit-
learn libraries. 

Gene Ontology Enrichment Analysis 

 Gene ontology (GO) enrichment analysis was 
performed on the list of genes returned by feature selection 

!""#$%"& = () + (+
() + ,+ + (+ + ,) [1] 
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methods to characterize its biological functionality and how 
the transcriptomic profile plays a role in the development of 
atherosclerosis. Statistically significant (p < 0.05) enriched 
GO terms were displayed for biological processes. 
Enrichment analysis was performed using the web-based 
g:Profiler tool using a background gene list of the Homo 
sapiens genome from Ensembl (GRCh38.p13).10    
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