
Error-correcting Codes for
Data Storage in DNA

Yuanyuan Tang

Department of Electrical and Computer Engineering
University of Virginia, Charlottesville, USA

yt5tz@virginia.edu

A dissertation presented to
the Faculty of the School of Engineering and Applied Sciences

at the
University of Virginia

In Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

in
Electrical Engineering

Copyright ©Yuanyuan Tang 2023
All rights reserved

I

Abstract

Recent advances in DNA sequencing, synthesis, and editing technologies have made DNA
a promising alternative to conventional storage media. Compared to traditional media, DNA
has the advantages of high data density, longevity, and ease of copying information. However,
a diverse set of errors, including deletions, insertions, substitutions, and duplications may
arise at different stages of the data storage and retrieval process. The dissertation focuses on
constructing error-correcting codes to correct multiple sources of error in DNA data storage.

First, duplications and various types of edit errors (including insertions, deletions, and
substitutions) may affect the integrity of data stored in DNA. While recent research has
addressed correcting each of these error types in isolation, there is a notable gap in correcting
them simultaneously, to the best of our knowledge. This is problematic as the presence of
one type of error does not preclude another, especially in long sequences. In this dissertation,
we present families of codes that simultaneously correct any number of duplications and a
bounded number of edit errors, with small impact on code rate compared to the state-of-
the-art codes for duplications only.

Second, to correct various types of localized errors, we construct error-correcting codes
for substring edit errors. A localized error occurs when several errors occur in a bounded
window of the input data. In the literature, localized deletions, insertions, and substitutions
have been studied. A substring edit, defined as replacing a substring with another string,
both with bounded length, encompasses all aforementioned localized errors. In this work, we
first show using statistical analysis of errors that substring edits are common and viewing
errors as substring edits in principle will require less redundancy. Then error-correcting
codes are constructed to correct a substring edit with low redundancy, providing a universal
solution to correct a diverse set of localized errors.

Third, we develop codes for improving the reliability of an emerging DNA synthesis
method that due its cost-effectiveness can alleviate one of the main obstacles for wide spread
use of data storage in DNA, namely terminator-free template-independent enzymatic DNA
synthesis (simplified as enzymatic synthesis). While more economical, enzymatic synthesis
suffers from a higher error rate. Specifically, the number of times each base is synthesized
cannot be controlled precisely and also deletion errors are likely. Existing encoding methods
have either a writing rate upper bounded by log2 3 bits per unit time or cannot combat
against deletions. In this dissertation, we present an error-correcting code and a decoding
algorithm to combat deletions and achieve a writing rate higher than the state of the art.
The error probability of the proposed method is analyzed and the strategies for tuning the
parameters to achieve desirable tradeoffs between different requirements are presented.

Together, all the error correction algorithms, tools, and techniques for duplications and
edits, substring edits, and the errors from the enzymatic synthesis presented in this work have
the potential to contribute to the development of DNA data storage systems with increased
capacity, higher reliability, and lower cost.

II

Acknowledgement

First, I would like to thank my advisor Prof. Farzad Farnoud. During my journey of pursuing my
Ph.D. degree, I got a lot of training in doing research, writing academic papers, and presenting
works. His rigorous attitude towards research and academic works will benefit me in my long-term
career. I was also provided with many opportunities to cooperate with other researchers, which
extended my skills and connections. Without his support, it would be impossible for me to have
a chance to defend my dissertation. I appreciate the help and insightful suggestions from Prof.
Nikolaos Sidiropoulos, Prof. Stephen G. Wilson, Prof. Cong Shen, and Prof. Tom Fletcher in my
dissertation committee about my dissertation and presentation. I also appreciate the help I have
gotten from all the professors and teachers during and before my Ph.D. program. In addition, I
would like to express my gratitude to all my coauthors, including Dr. Ryan Gabrys, Dr. Yonatan
Yehezkeally, Dr. Moshe Schwartz, Dr. Hao Lou, Mr. Shuche Wang, and Mr. Yuting Li.

I would also like to thank all my labmates including Hao Lou, Tao Jin, Kallie Whritenour, Sarvin
Motamen, and Yuting Li. You have supported me and helped me at various stages of my Ph.D.
studies, including the qualifying exam and the proposal. Moreover, the group brainstorming sessions
have significantly broadened my understanding and offered invaluable insights towards resolving my
research challenges.

I appreciate the support of all my friends during my study at UVa, including Zhelong He, Shuo
Li, Jian Wang, Chuanhao Li, Jiarui Xin, Shili Sheng, Yinzhu jin, and many others. Without them,
I would not have had a wonderful journey at UVa and gone through all the tough time during my
study. Even though most of them have moved to other places, I will always treasure the friendships
with them.

Finally, I want to express my deep gratitude to my family members, especially my parents. I
was born in a small village, where almost all people have been farmers for generations. As the only
child and the first one to attend university, my parents did not ask me to help financially support
the family as long as I completed my Master’s program. They also supported me to pursue my
academic dreams in the USA. Furthermore, their optimistic attitudes toward challenges in life has
been a constant source of inspiration. Thanks to their unwavering encouragement and support, I
have successfully overcome numerous challenges and am now poised to defend my dissertation.

Yuanyuan Tang, November, 2023

III

Publications

Journals

• S. Wang, Y. Tang, J. Sima, et al., “Non-binary codes for correcting a burst of at most t
deletions”, IEEE Transactions on Information Theory, 2023 (accepted)

Y. Tang, S. Wang, H. Lou, et al., “Low-redundancy codes for correcting multiple short-
duplication and edit errors”, IEEE Transactions on Information Theory, vol. 69, no. 5, pp. 2940–
2954, 2023

• Y. Tang and F. Farnoud, “Error-correcting codes for short tandem duplication and edit errors”,
IEEE Transactions on Information Theory, vol. 68, no. 2, pp. 871–880, 2022

• Y. Tang and F. Farnoud, “Error-correcting codes for noisy duplication channels”, IEEE Trans-
actions on Information Theory, vol. 67, no. 6, pp. 3452–3463, 2021

• Y. Tang, Y. Yehezkeally, M. Schwartz, et al., “Single-error detection and correction for dupli-
cation and substitution channels”, IEEE Transactions on Information Theory, vol. 66, no. 11,
pp. 6908–6919, 2020

Conferences

• Y. Tang, S. Motamen, H. Lou, et al., “Correcting a substring edit error of bounded length”, in
2023 IEEE International Symposium on Information Theory (ISIT), IEEE, 2023, pp. 2720–
2725

• Y. Tang, S. Wang, R. Gabrys, et al., “Correcting multiple short-duplication and substitution
errors”, in 2022 IEEE International Symposium on Information Theory (ISIT), IEEE, 2022,
pp. 1–6

• Y. Tang and F. Farnoud, “Correcting deletion errors in DNA data storage with enzymatic
synthesis”, in 2021 IEEE Information Theory Workshop (ITW), 2021, pp. 1–6

• Y. Tang, H. Lou, and F. Farnoud, “Error-correcting codes for short tandem duplications and at
most p substitutions”, in 2021 IEEE International Symposium on Information Theory (ISIT),
IEEE, 2021, pp. 1835–1840

• Y. Tang and F. Farnoud, “Error-correcting codes for short tandem duplication and substitu-
tion errors”, in IEEE International Symposium on Information Theory (ISIT), IEEE, 2020,
pp. 734–739

• Y. Tang, Y. Yehezkeally, M. Schwartz, et al., “Single-error detection and correction for du-
plication and substitution channels”, in 2019 IEEE International Symposium on Information
Theory (ISIT), IEEE, 2019, pp. 300–304

IV

• Y. Tang and F. Farnoud, “Error-correcting codes for noisy duplication channels”, in 2019 57th
Annual Allerton Conference on Communication, Control, and Computing (Allerton), IEEE,
2019, pp. 140–146

• S. Wang, Y. Tang, R. Gabrys, et al., “Permutation codes for correcting a burst of at most t

deletions”, in 2022 58th Annual Allerton Conference on Communication, Control, and Com-
puting (Allerton), IEEE, 2022, pp. 1–6

V

List of Figures

1.1 The general DNA storage model with processes of synthesis, storage, and sequencing. 2

2.1 Illustration for the proof of Lemma 4. Solid lines denote any number of exact k-
duplications and dashed lines represent a mixture of exact and noisy duplications
(the number of noisy duplications is determined by P1 and P2). 14

2.2 The various mapping used in the chapter. “Concat.” stands for concatenation. Solid
edges indicate invertible mappings, where we have assumed x1 · · ·xk is known, since
these symbols are not affected by the channel. The mapping µ is generally non-
invertible, but in our constructions, since we assume x is irreducible, if we recover
µ = µ(x), we can recover x. 39

2.3 The lower bound of the code rate with respect to the length n with the duplication
length k = 3 and alphabet size q ∈ {3, 4, 5}. 45

3.1 Finite automaton for the regular language D∗(012) based on [29]. 51
3.2 Finite automaton for the regular language D∗(01234) based on [29]. 52
3.3 If marker sequences, shown as gray, are in the same positions in the codeword x and

the retrieved string y, then β and β′ have the same length and at most two of the
message blocks are affected by the errors, as discussed in the proof of Theorem 50. . 58

3.4 If marker sequences, shown as gray, are in different positions in the codeword x and
the retrieved string y, then a substring u is identified and then expanded to ensure
it contains β′. Those blocks in y that intersect with this expanded substring are
marked as erasures while other blocks are error-free message blocks, as described in
the proof of Theorem 50. 58

3.5 The duplication-substitution channel along with the decoder (i) and an equivalent
representation of the end-to-end system (ii). 60

3.6 Any error-correcting code for channel (ii) is also an error-correcting code for channel
(i). The confusable set for a channel obtained by concatenating p copies of channel
(iii) contains the confusable set for channel (ii). 73

3.7 A sequence z = xp = yp that can be obtained from both x and y through channels
resulting from the concatenation of p DSD(1) channels, each shown by a solid arrow.
The dashed arrows represent the reverse relationships and each yi−1 can be obtained
by passing yi through a DSD(1) channel. 74

3.8 Any error-correcting code for channel (i) is also an error-correcting code for channel
(ii). 82

VI

3.9 s results from passing x and y through a concatenation of p DSD(1) channels and a
channel deleting a suffix of length at most 2pL (c.f. Figure 3.7). 85

4.1 An alignment of two DNA sequences, where the top sequence can be obtained from
the bottom one via deletions (/), insertions (−), and substitutions (·). 93

4.2 Histograms of p-values for the runs-test applied on alignment. 96
4.3 Histograms of p-values for INS-TEST. 96
4.4 Histograms of p-values for SUBDEL-TEST. 97
4.5 Histogram of optimal (b, k) values for the Nanopore sequencing dataset. 97
4.6 Histogram of optimal (b, k) values for the bash dataset. 98

5.1 An example of the enzymatic synthesis system in the precision-resolution (PR) frame-
work with deletions of runs. 112

5.2 The alternating codes and the model of BTq decoding. Each codeword a = a1a2 · · ·ab
concatenates b Tq codewords. For each input a, we can obtain N outputs of alter-
nating sequences

(
ā(1), ā(2), . . . , ā(N)

)
. The goal of the BTq decoding is to recover a

from N outputs
(
ā(1), ā(2), . . . , ā(N)

)
. 117

5.3 The lower bound of the writing rate R(C) of BTq-SC codes with respect to δ ∈
{0.016, 0.018, 0.020, 0.022}. Here m = 56 and L = 3. 124

5.4 The error probability of decoding BTq codewords with respect to the number of
traces. Here, we let λ = 3.0, m = 56, and δ = 0.018. The length of BTq codewords
is n = bm = 224. 125

5.5 The comparison of empirical and theoretical error probabilities of estimating a syn-
thesis time tbi (equivalently bi) by the quantizer function. Let δ = 0.018, λ = 3, and
m = 56. 126

5.6 The pmf of Hamming distance dH(b̂, b) with different number of traces N at the
output. In the simulation, we set λ = 3.0, m = 56, and δ = 0.018. 127

5.7 The effects of δ on the empirical and theoretical error probabilities of estimating tbi
(equivalently bi). Let δ ∈ {0.018, 0.05}, λ = 3, and m = 56. 128

5.8 The error probability of decoding BTq-SC codewords. In this setting, let m = 56,
λ = 3, and δ ∈ {0.018, 0.05}. 128

5.9 The error probability of decoding BTq codewords with respect to block length m.
In this setting, let λ = 3, and δ = 0.018, and m ∈ [36, 46, 56]. Based on the plot,
decreasing m will decrease the error probability of decoding BTq codes. 130

5.10 The error probability of decoding BTq-SC codewords with respect to different λ. In
this setting, let λ ∈ [3, 3.2, 3.5], and δ = 0.018, and m = 56. Based on the plot,
increasing λ will decrease the error probability of decoding BTq-SC codes. 130

5.11 The lower bound of the writing rate R(C) of BTq-SC codes with respect to δ ∈
{0.014, 0.016, 0.018, 0.020}. Here m = 57 and L = 2. 131

5.12 The error probability of decoding BTq-RS codewords with respect to the number of
traces. In this setting, let L = 2, λ = 3.2, δ = 0.015, and m = 57. 132

VII

List of Tables

2.1 Key notations in Chapter 2 . 13
2.2 Examples of ambiguous substitution errors found in Lemma 9 over Σ3. In all cases

y = ϕ̂(x), z = ϕ̄(x), z′ = ϕ̄(x′) . 16
2.3 The changes in µj and sj , j ∈ [k] as a result of exact and noisy duplications, when

the position of the substitution in x′′ satisfies k < p ⩽ (|x′′| − k). Here a, b, c ∈ Σq,
d ∈ Σ2, ā = −a, and a, b ̸= 0. Furthermore, Λ → u and u → Λ represent insertion
and deletion of the string u, respectively. Rows marked by (∗) indicate that this type
of error occurs for at most one value of j ∈ [k]. The marking ($) is related to the
error-correction strategy discussed in Section 2.5.4. 33

2.4 The changes in µj and sj , j ∈ [k] as a result of exact and noisy duplication, when
the position of the substitution in x′′ satisfies (|x′′| − k) < p ⩽ |x′′|. The notation is
the same as that of Table 2.3. 33

2.5 The changes in µ(z) with m2 +m3 < k. 35

3.1 Key notations in Chapter 3 . 50
3.2 Paths representing irreducible strings starting from and ending at specific states. . . 54

4.1 Key notations in Chapter 4 . 92
4.2 Fraction of sequences rejecting the null hypothesis at p-value threshold of 5%. 95
4.3 Comparison of redundancy of burst-error correcting codes with k ⩾ 1 and indepen-

dent indel-error-correcting codes with k = 1. 98

5.1 Key notations in Chapter 5 . 111

VIII

Contents

Abstract . I
Publications . IV

1 Introduction 1
1.1 Motivation and overview . 1
1.2 Background and related work . 2

1.2.1 Duplications and edit errors . 3
1.2.2 Localized errors . 4
1.2.3 Errors occurring in the enzymatic synthesis 5

1.3 Thesis outline, contributions, and notation . 5
1.3.1 Thesis outline . 5
1.3.2 Contributions . 5
1.3.3 Notation . 7

2 Detecting and correcting many k-duplications and one substitution 8
2.1 Introduction . 8
2.2 Notation and preliminaries . 9
2.3 Restricted error-Detecting codes . 12

2.3.1 The error model and the descendant cone . 12
2.3.2 Bounds on the size of the code . 16
2.3.3 Code construction . 19

2.4 Unrestricted error-detecting codes . 22
2.5 Restricted error-correcting codes . 27

2.5.1 Motivation . 27
2.5.2 Notation and preliminaries . 28
2.5.3 Noisy duplication channels . 31
2.5.4 Error-correcting codes for noisy duplication channels 38

2.6 Summary . 45

3 Correcting short tandem duplications and at most p edits 47
3.1 Introduction . 47
3.2 Notation and preliminaries . 48
3.3 Correcting multiple short duplications and one edit error 49

3.3.1 Channels with many ⩽3-TDs and one substitution error 50

IX

3.3.2 Error-correcting codes . 57
3.3.3 Extension to edit errors . 60
3.3.4 Construction of message blocks . 61
3.3.5 Code rate . 62

3.4 Correcting short duplications and at most p substitutions 64
3.4.1 The channel with short duplications and at most p substitutions 65
3.4.2 Code construction . 66
3.4.3 Code rate . 69
3.4.4 Time complexity of encoding and decoding 70

3.5 Low-redundancy codes to correcting short duplications and at most p edits 71
3.5.1 Notation and preliminaries . 72
3.5.2 Confusable sets for channels with short duplication and substitution errors . . 72
3.5.3 Low-redundancy error-correcting codes . 78
3.5.4 Proof of Lemma 88 . 82
3.5.5 Extension to edit errors . 82
3.5.6 The labeling function . 83
3.5.7 The redundancy of the error-correcting codes 83
3.5.8 Time complexity of encoding and decoding 86

3.6 Summary . 87

4 Correcting a substring edit with bounded length 88
4.1 Introduction . 88
4.2 Notation and preliminaries . 89

4.2.1 Notation . 89
4.2.2 The k-substring edit channel . 89
4.2.3 Relevant prior results . 91

4.3 Substring edits in nanopore sequencing and document editing 92
4.3.1 Independence test on alignment . 93
4.3.2 A probabilistic edit process . 94
4.3.3 Experiment results . 95

4.4 Challenges of correcting a k-substring edit . 99
4.5 Error-correcting code for a strict k-substring edit . 99

4.5.1 Locating the error in an interval . 99
4.5.2 Correcting the error in an interval . 102

4.6 Error-correcting code for a k-burst substitution . 103
4.7 Combined error-correcting codes . 104
4.8 Time complexity . 107
4.9 Summary . 107

5 Correct deletions over DNA data storage with enzymatic synthesis 109
5.1 Introduction . 109

X

5.2 Notation and preliminaries . 110
5.3 Channel model for enzymatic DNA synthesis . 111
5.4 Code construction and achievable writing rate . 113

5.4.1 Code for correcting deletions in the alternating sequence 113
5.4.2 Code for correcting substitutions . 115
5.4.3 Combined codes and achievable writing rate 115

5.5 Decoding . 116
5.5.1 Decoding the alternating sequence a . 117
5.5.2 Decoding the run length sequence b . 119

5.6 Code parameters and simulation results . 123
5.6.1 General parameters . 123
5.6.2 Writing rate . 123
5.6.3 Decoding BTq codewords . 124
5.6.4 Error probability of Quantizer function . 125
5.6.5 Analysis of decoding b and a tradeoff . 126
5.6.6 Effects of parameters . 129
5.6.7 Explicit error-correcting codes . 130

5.7 Summary and limitations . 132

6 Conclusion and open problems 134
6.1 Conclusion . 134
6.2 Open problems . 135

Appendix A Proof of Lemma 78 137

XI

Chapter 1

Introduction

1.1 Motivation and overview

In the past decade, the amount of data created and consumed worldwide has increased exponentially.
For example, it is estimated that the amount of data will reach 64.2 Zettabytes (1 zettabyte = 1021

Bytes) in 2020, posing great challenges for conventional data storage media [27], [71]. Recent
advances in deoxyribonucleic acid (DNA) sequencing, synthesis, and editing technologies [53], [90],
[98] have made DNA a promising alternative to conventional storage media. Compared to traditional
media, DNA has several advantages, including high data density, longevity, and ease of generating
copies. For example, the DNA sequences of species extinct for 10, 000 years have been successfully
recovered [98], and a single human cell contains an amount of DNA that can ideally hold 6.4 Gb of
information.

Recent works [13], [22], [23], [38], [52], [59], [98], [99] have demonstrated the feasibility of DNA
data storage and have led to significant advances, such as the ability to provide random-access to the
data [99], a DNA data storage system with portable size [97], and a combination of an inexpensive
enzymatic synthesis method with error-correcting codes to achieve low cost [13], [38].

In general, a DNA data storage pipeline consists of encoding, synthesis, storage, sequencing,
and decoding, as shown in Figure 1.1. Advances in these processes have brought DNA data storage
closer to practical applications.. For example, data can be stored in DNA in vitro or in vivo, where
data storage in vivo can provide a more cost-effective replication method as well as a protective
shell compared to data storage in vitro [69], [70], [102]. By using the CRISPR/Cas system and
Illumina sequencing, an image and a short video has been stored in bacterial cells and recovered
successfully [69]. A new sequencing technique called Nanopore sequencing is also promising [25]
as it allows for longer reads and real-time sequencing at the cost of accuracy [25]. Because of its
promising properties, DNA data storage has been proposed for various applications, including long-
term data storage [30], [31], watermarking genetically-modified organisms (GMOs), and labeling
organisms in biological studies.

Despite these advances, there are still significant challenges to be overcome. One obvious chal-
lenge is that a diverse set of errors may occur at different stages of the data synthesis, storing,
and retrieval process, such as duplications, deletions, insertions, and substitutions. Many recent

1

Figure 1.1: The general DNA storage model with processes of synthesis, storage, and sequencing.

works, such as [6], [8], [14], [18], [28], [30], [34], [36], [38]–[40], [56], [57], [61], [69], [76], [79], [80],
[100], [101], have been devoted to fighting against these errors. For example, the authors in [56],
[61] constructed error-correcting codes to correct substitution errors and meet specific GC-content
balance and run-length constraints. The authors in [8], [30], [36], [43], [100] focused on constructing
error-correcting codes to fight against duplication errors, and the work [96] explored the capac-
ity of the DNA storage channels with insertions, deletions, and substitutions. Furthermore, the
works in [2], [24], [42], [93] designed codes to correct a burst of insertions/deletions or localized
deletions/insertions. For the new inexpensive enzymatic synthesis, the authors in [28], [38], [68]
proposed algorithms or error-correcting codes to achieve low-cost data storage.

In order to provide reliable DNA data storage, by extending the previous works, this dissertation
focuses on constructing error-correcting codes to fight against multiple sources of errors in DNA
data storage, including i) duplications and edits, ii) localized errors, and iii) errors introduced by
enzymatic synthesis.

1.2 Background and related work

Correcting errors is crucial for ensuring reliability in data storage and communication systems. One
of the most common approaches involves to steps: i) modeling the input-output relationship as a
communication channel with specific types of errors and ii) constructing error-correcting codes. An
error-correcting code works by limiting the set of the inputs to a specific set of sequences, each called
a codeword. No two codewords are likely to produce the same output as long as the errors satisfy
certain requirements. Hence, from the output of the channel, we will be able to identify the correct
input. In general, the error-correcting codes fight against errors by introducing extra redundancy
to make the codewords distinguishable even after changes due to errors. We start by providing an
example of error-correcting codes.

Example 1. Suppose a channel model may flip one symbol of the input sequence. A simple error-
correcting code is to choose strings that repeat each symbol 3 times, i.e. C3 = {000, 111} for the
input 0, 1. If the codeword 000 is sent in the channel, the output may appear as one sequence in
the set {000, 100, 010, 001}. Then we can derive the codeword 000 and the input 0. Similarly, the
codeword 111 can be recovered if one of {111, 011, 101, 110} appears as the channel output.

Based on Example 1, the design of error-correcting codes and decoding algorithms can pro-

2

vide reliable communication. We define the following metrics to evaluate the performance of an
error-correcting code. Suppose Cn is an error-correcting code consisting of a subset of codewords
(sequences) of length n. We define the code rate [63] as

R(Cn) =
1

n
logm ∥Cn∥,

where q is the size of alphabet size, ∥Cn∥ ⩽ qn denotes the size of the error-correcting code, and R(Cn)
is bounded by logm q for m ∈ {2, q} with the unit as bits/symbol and symbol/symbol respectively.
We also define the redundancy of the code as

r(Cn) = n− logq ∥Cn∥,

Then the code C3 in Example 1 has rate 1/3 bits/symbol and the redundancy 2 symbols. Com-
pared to the maximum rate 1 bit/symbol, the error-correcting code may be inefficient since another
two extra bits are sent in order to transmit a single bit 0 or 1.

Therefore, given a channel with errors, the core problem is to construct error-correcting codes
that can correct errors with high code rate or with as little redundancy as possible. Since a diverse
set of errors may occur in different stages of data storage and retrieval, this dissertation starts by
reviewing the existing error-correcting codes to fight against various sources of errors in DNA data
storage.

1.2.1 Duplications and edit errors

A duplication in a DNA sequence generates a copy of a substring and then inserts it directly
following the original substring [30], resulting in a tandem repeat, where the duplication length is
the length of the copy. For example, given ACTG, a tandem duplication may generate ACTCTG,
where the inserted copy is marked by the underline, and CTCT is a tandem repeat. Evidence of this
process is found in genomes, such as tandem repeats generated by the slipped-strand mispairings [15],
[37]. Correcting both fixed-length duplications with the same (duplication) length [30], [36], [79],
[81], [101] and bounded-length duplications [7], [8], [29], [30], [35], [84] have been studied recently.
Bounded-length duplications are those whose length is at most a given constant. In particular,
duplications of length at most 3 are referred to as short duplications. For fixed-length duplication
errors, the authors in [30] construct error-correcting codes to correct an arbitrary number of fixed-
length duplications with the asymptotic optimal code rate log2 q − (q−1) log2 e

qk+1 (1 + o(1)) [30]. For
short duplication errors, the code in [30] can correct an arbitrary number of short duplications with
the highest known asymptotic rate [8], [83] by choosing the set of ⩽3-irreducible strings with length
at most n, where each ⩽3-irreducible string is a string that contains no (tandem) repeats with
length at most 6. The rate of the code is log2 2.6590 bits/symbol when the alphabet size q is 4 [83]
and approximately log2(q − 1) as q increases [8].

We note that for q = 4, which is of interest in DNA storage, and for k = 2, 3, 4, the asymptotic
rates of optimal codes correcting any number of exact fixed-length duplications can be shown to
equal 1.9226, 1.9827, 1.9958 bits/symbol with the logarithms in base 2, respectively [30]. The fact

3

that these values are close to 2 bits/symbol indicates that the rate penalty for correcting an infinite
number of exact k-duplication errors compared to only correcting a finite number is not significant
and diminishes as k grows. Furthermore, DNA storage is considered a promising long-term data
storage solution that may suffer many errors. Hence, we focus on correcting many exact fixed-length
duplications and bounded-length duplications rather than a finite number.

Apart from duplications, edit errors such as insertions, deletions, and substitutions are also
frequently occurring in DNA storage [4], [38], [62], [78], [96]. For example, point mutations such as
substitutions are observed in tandem repeat regions of the genomes [62]. Due to an arbitrary number
of short duplications in the long-term storage [30], a single edit error may affect an unbounded
segment of the output. In order to correct both duplications and edit errors, one simple idea is to
construct error-correcting codes as the intersection of duplication-correcting codes and indel/edit-
correcting codes. However, Example 32 shows the failure of this idea even for any fixed-length
duplications and an extra substitution. Another idea is to consider tandem duplications as edits
and then apply indel/edit-error-correcting codes to correct them. However, an arbitrary number of
duplications will lead to a high proportion of edits and a low rate [4], [72]. Therefore, it motivates
the design of error-correcting codes with low redundancy or high rate to simultaneously combat
against many duplications and edit errors.

1.2.2 Localized errors

Localized errors are errors that cluster in windows with lengths much shorter than the whole se-
quence and are observed in various applications such as wireless communication, disk data storage,
DNA storage, and document synchronization. The problem of burst or localized deletions has been
studied by several works [2], [9], [17], [24], [42], [65], [66], [91], [93], [104]. More specifically, codes
for correcting a burst of at most k substitutions were proposed in [17], [104]. Codes capable of
correcting a burst of exactly k deletions were studied by [9], [65], [66], including [9], [66] over binary
sequences and [65] over q-ary sequences. Furthermore, [42], [66], [93], [94] focused on correcting a
burst of at most k deletions (or k insertions) while the works in [2], [24] studied localized deletions
occurring in a window with bounded length k. In particular, the authors in [2], [42] construct
optimal codes with redundancy roughly log n bits. Based on the guess&Check idea, the authors
in [24] construct error-correcting codes to correct localized deletions in window size k with non-zero
error probability, where the codes have redundancy of roughly 5 log n + 1 bits when k = o(log n)

and roughly 5k + 1 bits when k = Ω(log n).

A substring edit error, which replaces one substring with another string both with bounded
lengths, is also considered a localized error. For example, given x = 0132132, a substring edit of
length 3 may generate y = 013122 by replacing x[4:6] = 213 with y[4:5] = 12. In particular, burst
deletions/insertions/substitutions and deletions/insertions occurring in a bounded window can all
be considered as special cases of substring edits with a bounded length. Therefore, this dissertation
focuses on correcting a substring edit of bounded length k with as low redundancy as possible,
providing a universal error correction solution for a diverse set of localized errors.

4

1.2.3 Errors occurring in the enzymatic synthesis

Due to high cost[11], [22] and chemistry limitations [20], [45], DNA sequences produced by common
synthesis methods have limited quantity and quality [38]. Recently, the authors in [38] proposed
a new inexpensive enzymatic method, called terminator-free template-independent enzymatic DNA
synthesis (simplified as enzymatic synthesis), to synthesize DNA sequences. The cost of synthesizing
1000 strands of 1000 nucleotide length by enzymatic synthesis is around one order of magnitude
lower than the phosphoramidite technique [13], [33].

Different from conventional methods with single-base accuracy, in each synthesis round, a ran-
dom number of nucleotides of the same type are appended to a sequence by the enzymatic synthesis.
The random number satisfies a distribution that is affected by multiple factors, including previous
bases and the synthesis duration of the current round [38]. After n synthesis rounds, this process
produces N DNA sequences in parallel. The N synthesized DNA sequences have noisy lengths, as
well as suffer deletions, insertions, and substitutions (of runs), where the deletions are dominant [38].

To combat those errors, the authors in [38] encode information in transitions between adjacent
non-identical bases. Because the main cost stems from the time to synthesize the DNA molecules,
we focus on the writing rate, defined as bits per unit time, in the system [28]. Since the run
lengths are not considered, the writing rate of the work [38] is upper bounded by log2 3 bits per
run1. The works in [28], [68] increase the writing rate by further making full use of run lengths of
nucleotides in N traces without considering the deletions (of runs), the dominant errors. Therefore,
this dissertation designs the error-correcting codes that can achieve a writing rate higher than log2 3

bits per unit time while fighting against deletions (of runs), the dominant errors in the enzymatic
synthesis system.

1.3 Thesis outline, contributions, and notation

1.3.1 Thesis outline

The rest of the thesis is organized as follows. Chapter 2 and Chapter 3 present error-control codes
to correct any duplications and edit errors, the first source of errors. More specifically, Chapter 2
constructs error-detecting codes and error-correcting codes for any fixed-length duplications and at
most one restricted or unrestricted substitution, followed by the error-correcting codes to correct any
short tandem duplications and at most p edit errors in Chapter 3. Chapter 4 focuses on constructing
error-correcting codes to correct a substring edit of bounded length. Finally, the error-correcting
codes to correct errors resulting from enzymatic synthesis are presented in Chapter 5.

1.3.2 Contributions

In order to provide reliable data in DNA storage, this thesis presents error-correcting codes to
correct various sources of errors: i) fixed-length duplications and at most one substitution, ii) short

1We define the unit of time as the amount of time that it takes to produce a run in this method, so the writing
rate in the work [38] is equivalent to log2 3 bits per unit time [28], [38].

5

duplications and at most p edits, iii) a substring edit error, and iv) errors in enzymatic synthesis.
The main contributions are summarized below:

• Motivated by mutation processes occurring in vivo DNA-storage applications, Chapter 2 in-
vestigates two channel models, i.e., the unrestricted substitution and restricted substitution
(also called noisy duplication) models, that mutate stored strings by fixed-length duplicating
substrings as well as substituting symbols. error-detecting codes are constructed for the two
models while error-correcting codes are constructed for restricted substitution channel, which
can handle correctly an unlimited number of fixed-length tandem duplications and at most a
single substitution occurring at any time during the mutation process. In particular, we show
that the proposed code construction corrects a restricted substitution with the asymptotically
optimal code rate as codes correcting exact duplications only.

• Apart from models with fixed-length duplications and at most one substitution, Chapter 3
extends works in [8], [30], [35] to correct an arbitrary number of short tandem duplications with
duplication length upper bounded by 3 and at most p edits. This chapter starts by constructing
MDS-based error-correcting codes to correct an arbitrary number of short duplications and at
most one edit error with an additional rate penalty of 0.003 bits/symbol when the alphabet has
size 4, an important case corresponding to data storage in DNA. Then by applying syndrome
compression technique [75] and an extended MDS-based error-correcting code, the chapter
further constructs low-redundancy error-correcting codes for simultaneously correcting short
(tandem) duplications and at most p edits at the additional cost of roughly 8p(logq n)(1 +

o(1)) symbols of redundancy, thus achieving the same asymptotically optimal rate as codes
correcting short (tandem) duplications only, where q ⩾ 4 is the alphabet size and p is a
constant.

• Chapter 4 first shows through statistical analysis of real data that substring edits better
describe differences between related documents compared to independent edits, and also shows
that substring-edit-correcting codes can synchronize two documents with much lower overhead
compared to general indel/substitution-correcting codes. Furthermore, given a constant k, this
chapter presents binary codes of length n for correcting a single k-substring edit that achieves
the GV bound and subsequently has redundancy of roughly 2 log n, outperforming the lowest
redundancy 4k log n achievable by an existing code for this problem. The time complexities
of both encoding and decoding are polynomial with respect to n.

• For the newly proposed inexpensive enzymatic method, Chapter 5 proposes an error-correcting
code and a decoding algorithm including sequence reconstruction and Bayes inference algo-
rithms that can combat deletions and achieve a writing rate higher than log2 3 bits per unit
time. In particular, for the specific Poisson distribution of run lengths with deletion errors,
the numerical results showed that the code scheme can achieve a code rate of log2 3 bits per
unit time and an error probability approximating the analytical results.

6

1.3.3 Notation

This subsection introduces some notation that will be used in the rest of the thesis. Note that more
specific definitions or preliminaries appear in the corresponding chapters.

Without loss of generality, let Σq = {0, 1, 2, · · · , q − 1} represent a finite alphabet of size q.
Let Σn

q denote the set of all strings of length n over Σq. Let Σ∗
q denote the set of finite strings

over Σq. Then we have Σ∗
q =

⋃∞
n=0Σ

n
q . In particular, the empty string Λ is a member of the

set Σ∗
q . Furthermore, let Σ+

q = Σ∗
q \ {Λ}. Given two integers a, b with a ⩽ b, the set of integers

{a, a+1, · · · , b} is defined as [a, b]. We simplify [a, b] as [b] if a = 1. Let N and N+ denote the sets of
nonnegative and positive integers, respectively. For an integer a ⩾ 1, let b mod a be the remainder
in [0, a−1]. Furthermore, we define b mod ′a as the integer in [a] whose remainder when divided by
a is the same as that of b. Unless otherwise stated, logarithms are in base 2, i.e., log2 5 is denoted
as log 5.

In this thesis, let bold symbols denote strings over Σq, e.g., x,yj ∈ Σ∗
q . The elements of a

string are represented by plain typeface, e.g., the ith elements of x,yj ∈ Σ∗
q are xi, yji ∈ Σq

respectively. For two strings x,y ∈ Σ∗
q , let xy or (x,y) denote their concatenation. Given four

strings x,u,v,w ∈ Σ∗
q , if x can be represented as x = uvw, then the string v is called a substring

of x. For a string x, two substrings u and v are said to overlap if we can write x = abcde, where
c is nonempty, u = bc, and v = cd. Furthermore, the length of a string x ∈ Σn

q is represented as
|x|. Given a set S, the size (the number of elements) of S is denoted as ∥S∥.

Given a family of codes C = {Cn}n, where Cn ⊆ Σn
q , based on base 2 or q, the code rate is

defined as
Rn(C) =

1

n
logq ∥Cn∥ or Rn(C) =

1

n
log ∥Cn∥, (1.1)

where ∥C∥ denotes the size of the code C. Furthermore, the asymptotic rate is defined as

R(C) = lim sup
n→∞

Rn(C). (1.2)

If the meaning is clear from the context, we may refer to both the family and individual codes as
C and write Rn(C), R(C) to refer to the rates for a given construction, where the unit is either
bits/symbol (resp. symbols/symbol) for logarithms with base 2 (resp. q) respectively. Furthermore,
the redundancy of the code is defined as r(Cn) = n− logq ∥Cn∥.

7

Chapter 2

Detecting and correcting many
k-duplications and one substitution

2.1 Introduction

Recall that, in Section 1.2.1, duplications [32], [36], [44], [49], [64] and edit errors [4], [38], [62], [78],
[96] have been previously studied by a number of recent works independently. This chapter focuses
on error-control codes for an arbitrary number of (tandem) duplications of fixed-length k, simplified
as k-TDs or k-duplications, and at most one substitution error as all of them are observed in DNA
data storage.

In a k-TD event, a substring of the DNA sequence of length-k, the template, is duplicated and
the resulting copy is inserted into the sequence next to the template [103]. In a substitution event,
a symbol in the sequence is changed to another symbol of the alphabet. It has been observed
that point mutations such as substitutions are more common in tandem repeat regions of the
genomes [62]. We consider two models for combined k-duplication and substitution errors. In the
first model, called the noisy-duplication model, the copy is a noisy version of the template. Noisy
duplications in this model can be viewed as exact k-duplications followed by substitutions that are
restricted to the newly added copy. Hence, this model is also referred to as the restricted-substitution
model, e.g., ACGT → ACGTCTT . We also consider an unrestricted-substitution model, which
relaxes the noisy duplication model by allowing substitutions at any position in the sequence, e.g.,
ACGT → TCGTCGT .

The main approach in both cases is to reverse the k-duplication process while accounting for the
single substitution (which may spuriously create the appearance of a duplication that never hap-
pened, or eliminate one that did). Different challenges are also presented by the possible locations
for substitutions. We bring these differences to light by providing constructions for error-detecting
codes and error-correcting codes for both the restricted-substitution model and the unrestricted
substitution model.

Our main contributions are the following:

• We present an upper bound on the minimum required redundancy cost for detecting a single

8

restricted substitution, over the necessary rate loss required to correct an unlimited number
of k-duplication events, in Theorem12. That extra cost is upper bounded by O(log(n− k)).

• Through Construction 17 and Construction 20, we also show that the redundancy cost (over
the rate loss due to duplication noise) is upper bounded by O(log(k)) and O(k), respectively.
While the former guarantees larger codes, it is nonconstructive, as opposed to the latter. In
the likely regime where k is fixed, both require only O(1) extra redundancy.

• Through Construction 26, we show that the redundancy cost of detecting a single unre-
stricted substitution (again, over the rate loss due to duplication noise) is upper bounded
by O

(
log(k2n)

)
.

• Finally, Construction 37 and Theorem 38 show that the extra redundancy cost of correcting
a noisy duplication is roughly bounded by (2k + 4) logq n, i.e., (O(k log(n))), without asymp-
totically rate loss.

This chapter is organized as follows. In Section 2.2, we provide the notation as well as relevant
background and known results. In Section 2.3, we construct error-detecting codes for the restricted
substitution model. In Section 2.4, we introduce error-detecting codes for unrestricted substitution
channels. Finally, Section 2.5 constructs error-correcting codes to correct a restricted substitution
(noisy duplication). We conclude with a discussion of the results, and point out some open problems,
in section 2.6.

2.2 Notation and preliminaries

Throughout the chapter, we assume that the alphabet Σ is a unital ring of size q ⩾ 2 (e.g., Zq or,
when q is a prime power, Fq). Thus, addition (or subtraction) and multiplications of letters from
the alphabet are well-defined. The set of finite strings and strings of length at least k over Σ is
denoted Σ∗ and Σ⩾k, respectively. The concatenation of two strings, u,v ∈ Σ∗ is denoted by uv,
and uk denotes concatenating k copies of u. To avoid confusion, the multiplication in the ring is
denoted as a ·b. We say y ∈ Σ∗ is a substring of w ∈ Σ∗ if there exists x, z ∈ Σ∗ such that w = xyz.

The length (number of letters) of u is denoted by |u|, and for a ∈ Σ, we use |u|a to denote the
number of occurrences of a in u. The Hamming weight of u is denoted by wt(u), and if |u| = |v|
we use d(u,v) to denote the Hamming distance between u and v. If the need arises to refer to
specific positions in words, positions are numbered 1, 2,

A (tandem) duplication of length k duplicates a substring of length k and inserts it in tandem
into the string, namely, the copy immediately follows the template. More specifically, a k-TD can
be expressed as [30]

Ti,k(x) =

uvvw if x = uvw, |u| = i, |v| = k

x if |x| < i+ k

For example, from uvw, where |v| = k, we may obtain uvvw. As an example for k = 3 and

9

alphabet Σ = Z3, consider

x = 1012121 → x′ = 1012012121, (2.1)

where the underlined part is the copy.

The analysis of k-duplication errors will be facilitated by the k-discrete-derivative transform,
defined in [16] in the following way. For x ∈ Σ⩾k, we define ϕ(x) ≜ ϕ̂(x)ϕ̄(x), where

ϕ̂(x) ≜ x1 · · ·xk, ϕ̄(x) ≜ xk+1 · · ·xn − x1 · · ·xn−k, (2.2)

in which subtraction is performed entry-wise over Σ. We note that ϕ(·) is a bijection. The duplica-
tion length k is implicit in the definition of ϕ. For a set of strings S, we define ϕ(S) ≜ {ϕ(s) | s ∈
S}.

Let x′ be obtained through a tandem duplication of length k from x. It is not difficult to see
that ϕ̂(x) = ϕ̂(x′) and that ϕ̄(x′) can be obtained from ϕ̄(x) by inserting 0k in an appropriate
position [32]. For the example given in (2.1),

x = 1012121 → x′ = 1012012121

ϕ(x) = 101, 1112 → ϕ(x′) = 101, 1000112
(2.3)

Here, a comma separates the two parts of ϕ for clarity.

Sometimes duplications are noisy and the duplicated symbols are different from the original
symbols. (Unless otherwise stated k-duplications are assumed to be exact.) We only consider the
case where a single symbol is different, called k-ND. We view a noisy duplication as a k-duplication
followed by a substitution in the duplicated substring. Continuing the example, the k-duplication
resulting in x′ may be followed by a substitution,

x′ = 1012012121 → x′′ = 1012112121,

ϕ(x′) = 101, 1000112 → ϕ(x′′) = 101, 1100012.

We also consider unrestricted substitutions, which can occur at any position in the string, rather
than only in a substring that is duplicated by the previous k-duplication. A substitution may be
considered as the mapping x → x + aei, where ei ∈ Σn is a standard unit vector at index i, and
a ∈ Σ, a ̸= 0. Since ϕ is linear over Σ (i.e., ϕ(x+ aei) = ϕ(x) + aϕ(ei)), we denote the transform
of ei as ϵi ≜ ϕ(ei), and observe that ϵi = ei − ei+k for i ⩽ n− k and ϵi = ei for n− k < i ⩽ n. We
note that substitutions might affect two positions in the ϕ-transform domain.

Let Dt(p)
k (x) (for t ⩾ p) denote the set of strings that can be obtained from x through t tandem

duplications of length k, p of which are noisy (in any order), with each noisy duplication containing
a single substitution. D

t(p)
k is called a descendant cone of x. Continuing our earlier examples, we

10

have x′ ∈ D
1(0)
k (x) and x′′ ∈ D

1(1)
k (x). We further define

D
∗(p)
k (x) ≜

∞⋃
t=p

D
t(p)
k (x), D

∗(P)
k (x) ≜

⋃
p∈P

D
∗(p)
k (x), (2.4)

where P is a subset of non-negative integers. We denote P = {0, 1} as ⩽ 1.

We define Dt,p
k (x) to be the set of strings obtained from x through t tandem duplications and p

substitutions, where substitutions can occur in any position (and so we do not require t ⩾ p), and at
any stage during the duplication sequence. We extend this definition similarly to (2.4). Obviously,
for all x ∈ Σ∗,

D
t(0)
k (x) = Dt,0

k (x).

For a string z ∈ Σ∗, µ(z) is obtained by removing all copies of 0k from z. Specifically, for

z = 0m0w10
m1w2 · · ·wd0

md ,

where mi are non-negative integers and wi ∈ Σ \ {0} are nonzero symbols, we define

µ(z) ≜ 0m0 mod kw10
m1 mod kw2 · · ·wd0

md mod k,

where k is implicit in the notation µ(z). For example, if z = 1000112 = ϕ̄(x′) from our earlier
example, with k = 3, then µ(z) = 1112; note, then, that in that example, µ(z) = ϕ̄(x).

Define the duplication root drt(x) of x as the unique string obtained from x by removing all
tandem repeats of length k, where the dependence on k is implicit in the notation. For proof of the
uniqueness of drt(x) see, e.g., [32]. Note that

ϕ(drt(x)) = ϕ̂(x)µ(ϕ̄(x))

(see [32]); indeed, in our running example, x = drt(x′). For a set of strings S, we define

drt(S) ≜ {drt(s) | s ∈ S}.

A string x is k-irreducible if x = drt(x). The set of irreducible strings of length n is denoted
Irr(k)(n), where the duplication length k is again implicit. We denote by RLL(m) the set of strings
in Σm that do not contain 0k as a substring, i.e., the (0, k−1)-run-length limited (RLL) constrained
strings of length m. In other words, RLL(m) = {z ∈ Σm

q |µ(z) = z}. A string x of length n is
irreducible if and only if ϕ̄(x) ∈ RLL(n− k).

A code C ⊆ Σn that can correct any number of k-duplication errors is called a k-duplication
code. We note that a code is a k-duplication code if and only if no two distinct codewords c1, c2 ∈ C

have a common descendant, namely,

D∗,0
k (c1) ∩D∗,0

k (c2) = ∅.

11

It was proved in [32] that this condition is equivalent to all codewords having distinct roots:

Theorem 2. ([32]) For all strings, x1,x2 ∈ Σ∗,

D∗,0
k (x1) ∩D∗,0

k (x2) ̸= ∅

if and only if drt(x1) = drt(x2).

Using Theorem 2, it was suggested in [32] that error-correcting codes that protect against any
number of k-duplications may be obtained simply by taking irreducible words as codewords. Up to
a minor tweaking, this strategy was shown in [32] to produce optimal codes.

Finally, we recall the redundancy of a code C ⊆ Σn as

r(C) ≜ n− logq ∥C∥ = n− log∥Σ∥ ∥C∥,

and the code’s rate (with logarithm in base q) as

R(C) ≜ 1− r(C)

n
.

The key notations are summarized in Table 2.1

2.3 Restricted error-Detecting codes

2.3.1 The error model and the descendant cone

In this section, we consider the case of noisy-duplication errors. Our goal is to correct errors
consisting of any number of exact k-duplications, or detect the presence of a single noisy duplication,
which contains only one substitution. We refer to codes with this capability as 1-noisy duplication
(1ND) detecting. Let us first be more precise in our definition:

Definition 3. A code C ⊆ Σ∗ is a 1ND-detecting code if there exists a decoding function D : Σ∗ →
C ∪ {error} such that if c ∈ C was transmitted and y ∈ Σ∗ was received then D(y) = c if only
k-duplication errors occurred, and D(y) ∈ {c, error} if exactly one of the k-duplication errors that
occurred was noisy, where the noisy duplication could have occurred at any point in the sequence of
the duplication errors.

The following lemma, which relates the intersection of descendant cones to the intersection of
the sets of roots of these cones, is of use in the discussion of 1ND-detecting codes.

Lemma 4. For any strings x1,x2 ∈ Σ∗ and sets P1, P2 ⊆ Z⩾0,

D
∗(P1)
k (x1) ∩D

∗(P2)
k (x2) ̸= ∅

if and only if
drt(D

∗(P1)
k (x1)) ∩ drt(D

∗(P2)
k (x2)) ̸= ∅.

12

Table 2.1: Key notations in Chapter 2

Notation Definition
Σq = {0, 1, · · · , q − 1} The alphabet set with q elements

|u| The length of a sequence u
∥S∥ The number of elements in the set S

ϕ(x) = ϕ̂(x)ϕ̄(x) k-discrete-derivative transform
ϕ̂(x) the first k elements x1 · · ·xk of x
ϕ̄(x) the subtraction xk+1 · · ·xn − x1 · · ·xn−k

D
t(p)
k (x)

noisy duplication descendant cone generated from x by
t k-duplications (including p noisy duplications)

D
∗(p)
k (x)

noisy duplication descendant cone generated from x by
many k-duplications (including p noisy duplications)

Dt,p
k (x)

unrestricted duplication descendant cone generated from x by
t k-duplications and p substitutions

D∗,p
k (x)

unrestricted duplication descendant cone generated from x by
many k-duplications and p substitutions

µ(z) removing all substrings 0k in z

drt(x)
duplication root of x by removing all
tandem copies a of length k from aa

Irr(k)(n)
the set of all length-n irreducible sequences without

tandem repeats aa of length k

RLL(m)
the set of length-m run-length-limited sequences

without substrings 0k

k-TD
a tandem duplication to generate

a substring aa from a

k-ND
a tandem duplication to generate a substring ab from a,

where b differs from a by one symbol

Proof. The ‘only if’ direction follows from definition. For the other direction, assume there exist
x′
1 ∈ D

∗(P1)
k (x1) and x′

2 ∈ D
∗(P2)
k (x2) such that drt(x′

1) = drt(x′
2). But then, by Theorem 2, there

exists x ∈ D
∗(0)
k (x′

1)∩D
∗(0)
k (x′

2). It follows that x ∈ D
∗(P1)
k (x1)∩D

∗(P2)
k (x2). This is illustrated in

Figure 2.1, where y = drt(x′
1) = drt(x′

2).

We can now characterize 1ND-detecting codes in terms of duplication roots and descendant
cones.

Lemma5. A code C ⊆ Σn is a 1ND-detecting k-duplication code if and only if for any two distinct
codewords c1, c2 ∈ C,

D
∗(⩽1)
k (c1) ∩D

∗(0)
k (c2) = ∅, (2.5)

or equivalently,

drt(c2) ̸= drt(c1), (2.6)

drt(c2) /∈ drt(D
∗(1)
k (c1)). (2.7)

13

T5 T6

T

U

T5
ñ

T6
ñ

Figure 2.1: Illustration for the proof of Lemma 4. Solid lines denote any number of exact k-
duplications and dashed lines represent a mixture of exact and noisy duplications (the number of
noisy duplications is determined by P1 and P2).

Proof. Consider the following decoder: If there is a codeword with the same (exact-)duplication
root as the received word, output that codeword. If not, declare that a noisy duplication error
has occurred. Now, suppose (2.5) holds and that c1 is transmitted. If only exact k-duplications
occur, the decoder outputs c1 since exact k-duplications do not alter the root and there is no other
codeword c2 with the same root as c1. If, in addition, a noisy duplication occurs, then the received
word either has the same root as c1 or it does not. Note again that the duplication root of the
received word only changes as a result of the noisy duplication, regardless of when it occurs in the
sequence of k-duplication events. In the former case, the decoder correctly outputs c1. In the latter
case, (2.5) implies that no codeword has the same root as the received word, and thus the decoder
correctly declares that a noisy duplication has occurred.

On the other hand, if (2.5) does not hold, no decoding method can both ‘correct any number
of exact k-duplications’ and ‘detect the presense of one noisy duplication’. That is because there
exist distinct c1 and c2 and some x ∈ D

∗(⩽1)
k (c1) ∩D

∗(0)
k (c2). If x is received then there is no way

to determine whether c1 or c2 was transmitted.
The equivalence between (2.5) and (2.6, 2.7) follows from Lemma 4.

Based on Lemma 5, we consider codes whose distinct codewords satisfy (2.6) and (2.7). Further,
the decoder outputs the codeword with the same root as the retrieved word if it exists, and otherwise
declares a noisy duplication.

As a result of the substitution in the noisy duplication error, the length of the duplication root
may change. One way to simplify the code design is to restrict ourselves to codes whose codewords
all have duplication roots with the same length. Then, error patterns that modify this length can
be easily detected and we can focus on patterns that keep the duplication-root length the same.
Specifically, for a given length n, we consider codes whose codewords are irreducible strings of
length n. The effect of this restriction on the size of the code is discussed following Theorem 12.

14

Definition 6. A substitution error (as a component of a noisy-duplication error) that changes the
root but not the length of the root is called an ambiguous substitution.

It is easy to verify that when k = 1 a noisy duplication is never ambiguous. Thus, challenges
arise only when k ⩾ 2. The following sequence of lemmas characterize the conditions under which
a substitution is ambiguous.

Lemma7. Let x ∈ Σ∗ be some string resulting from a k-duplication, k ⩾ 2. If a substitution occurs
(as part of a noisy duplication) in the last k positions of x then it is not ambiguous.

Proof. Since a substitution that occurs as part of a noisy duplication changes the copied part,
we must have z ≜ ϕ̄(x) = u0kw, with |w| ⩽ k − 1. After the substitution we get x′, with
z′ ≜ ϕ̄(x′) = u0k−i−1b0iw, for some b ∈ Σ \ {0} and i + |w| ⩽ k − 1. It is, however, obvious that
|µ(z)| < |µ(z′)|, and thus |drt(x)| < |drt(x′)|.

Lemma 8. Let x ∈ Σ∗ be some string resulting from a k-duplication, k ⩾ 2. If x′ is obtained from
x as a result of a substitution that occurs (as part of a noisy duplication) in position ℓ ⩽ |x| − k,
and in ϕ(x) positions ℓ+1, . . . , ℓ+ k− 1 contain only zeros, then the substitution is not ambiguous.

Proof. Denote z = ϕ̄(x). Assume z′ ≜ z + b · ϵℓ−k (where the subscript is indeed ℓ − k since by
considering ϕ̄(x) we are omitting the prefix ϕ̂(x) of length k). Then we may write

z = u 0 0k−1 b′ w

b · ϵℓ−k = 0|u| b 0k−1 (−b) 0|w|

z′ = u b 0k−1 (b′ − b) w

where u ∈ Σℓ−k−1, w ∈ Σ∗, b ∈ Σ \ {0}, and b′ ∈ Σ. We now have two cases. If b′ ̸= b, then
obviously |µ(z)| < |µ(z′)|, namely |drt(x)| < |drt(x′)|. If b′ = b, then drt(x) = drt(x′), which is
again not ambiguous.

The remaining cases are all handled in the following lemma.

Lemma 9. Let x ∈ Σ∗ be some string resulting from a k-duplication, k ⩾ 2, and let x′ be obtained
from x as a result of a substitution that occurs as part of a noisy duplication. Denote z ≜ ϕ̄(x) and
z′ ≜ ϕ̄(x′) = z + ϵℓ−k. Assume

z = u 0pk+m+i−1 0 0k−i v b′ w

b · ϵℓ−k = 0|u| 0pk+m+i−1 b 0k−i 0|v| (−b) 0|w|

z′ = u 0pk+m+i−1 b 0k−i v (b′ − b) w

where u,w ∈ Σ∗, v ∈ Σi−1, v is not empty and begins with a non-zero letter, b ∈ Σ \ {0}, b′ ∈ Σ,
the run of zeros 0pk+m+k in z between u and v is maximal, p ∈ Z⩾0, 0 ⩽ m < k, 1 < i ⩽ k.
Furthermore, denote the length of the run of zeros to the left of b′ in z by m1, and to its right by
m2. Then the substitution is ambiguous exactly when either:

C.1 1 < i ⩽ k −m, b′ = b, and ⌊m2
k ⌋ < ⌊m1+m2+1

k ⌋.

15

Table 2.2: Examples of ambiguous substitution errors found in Lemma 9 over Σ3. In all cases
y = ϕ̂(x), z = ϕ̄(x), z′ = ϕ̄(x′)

1.1 2.3
x = 12122022002200

(y, z) = (121, 10200010201)

drt(x) = 12122002200

x = 12122122002200

(y, z) = (121, 10000210201)

drt(x) = 12122002200

x′ = 12122022202200

(y, z′) = (121, 10200210001)

drt(x′) = 12122022200

x′ = 12122120002200

(y, z′) = (121, 10001212201)

drt(x′) = 12120002200

C.2 k −m < i ⩽ k and (b′ /∈ {0, b} or ⌊m2
k ⌋ = ⌊m1+m2+1

k ⌋).

Proof. The following cases are possible:

1. If 1 < i ⩽ (k −m) then:

1.1 if b′ = b and ⌊m2
k ⌋ < ⌊m1+m2+1

k ⌋, then a run of 0s of length at least k will be created in
z′, leading to |µ(z′)| = |µ(z)| but µ(z′) ̸= µ(z). Thus the substitution is ambiguous.

1.2 if b′ = 0 and ⌊m2
k ⌋ < ⌊m1+m2+1

k ⌋, then length of the root over all increases by 2k.

1.3 in all other cases, the root’s length increases by k.

2. If (k −m) < i ⩽ k, then a run of 0s of length m+ i− 1 ⩾ k will exist before b, implying that
the length of the root before v will not change. Then:

2.1 if b′ = b and ⌊m2
k ⌋ < ⌊m1+m2+1

k ⌋, then the length of the root decreases by k.

2.2 if b′ = 0 and ⌊m2
k ⌋ < ⌊m1+m2+1

k ⌋, then the length of the root increases by k.

2.3 in all other cases, the length of the root remains the same, resulting in an ambiguous
substitution.

Examples for the two cases in which ambiguous substitutions occur, as described in Lemma 9,
are given in Table 2.2.

2.3.2 Bounds on the size of the code

We use the analysis of the previous section to find lower bounds on the size of 1ND-detecting codes.
For x ∈ Σn, a quantity that will be useful in bounding the size of codes is the following:

V (x) ≜ ∥ drt(D∗(⩽1)
k (x)) ∩ Σn∥.

This counts the number of strings x′ that can be obtained from x through any number of k-
duplications, at most one of them noisy, and such that |drt(x)| = |drt(x′)|.

16

Lemma 10. For x ∈ Irr(k)(n), where n ⩾ 2k ⩾ 4,

V (x) ⩽ (n− k)(q − 1)− wt
(
ϕ̄(x)

)
(q − 2).

Proof. We first assume, without loss of generality, that the noisy duplication occurs last, since
subsequent k-duplications (which are not noisy) do not change the duplication root. Assume the
notation is as defined in Lemma 9.

We first bound the contribution of the case 1.1 of the proof of Lemma 9 to V (x). Since n ⩾ 2k

and x is irreducible, we have that wt(z) ⩾ 1. There are wt(z) non-zero elements in z that can
serve as the first letter of v, which we shall call the anchor. In this case, b′ ̸= 0, and it is found at
most k−m− 1 positions after the anchor. We contend that there is at most one such choice for b′.
Indeed, if we are in case 1.1, then there is a run of m1 zeros immediately to the left of b′, and m2

to the right. But ⌊
m1 +m2 + 1

k

⌋
>
⌊m2

k

⌋
⩾ 0,

implying
m1 +m2 + 1 ⩾ k.

Thus, if case 1.1 holds then there is a single non-zero element in the k positions following the anchor.
Additionally, since b′ = b, we have a single choice for the value of b. Finally, we note that case 1.1
cannot occur when the anchor is the last non-zero element in z. Hence, in total, the contribution
of case 1.1 does not exceed wt(z)− 1.

We now turn to the case of 2.3. Assuming an anchor was chosen, the value of i can take at most
m values, which is the length of the run of zeros before the anchor, taken modulo k. Ranging over
all the run’s zeros, the effect of modulo k simply leaves us with a choice of a position containing a
0 in z, since x is irreducible. There are n − k − wt(z) such positions. Finally, there are at most
q− 1 possibilities for b. Thus, this case contributes at most (n− k−wt(z))(q− 1) to V (x). Noting
that x itself also contributes to V (x) completes the proof.

To find a lower bound on the size of the code, we apply the Gilbert-Varshamov (GV) bound
with the average size of the sphere (see, e.g., [92]).

Lemma 11. Let x be a randomly and uniformly chosen string from Irr(k)(n). If n ⩾ 2k ⩾ 4, then

E[V (x)] ⩽ 2(n− k)(q − 1)/q.

Proof. Let z = ϕ̄(x). From Lemma 10, to find the expected value of V (x), it suffices to find the
expected value of wt(z).

Fix i and let U be the set of strings obtained by removing position i from the strings in RLL(n−k)

(if multiple copies of a string exist we keep only one). Let S be the set of strings s in U that contain
a run of 0s of length at least k − 1 that includes si−1 or si. Furthermore, let Sc = U \ S. Now, the
number of strings in RLL(n− k) that contain a 0 in position i equals ∥Sc∥, while the total number

17

of strings in RLL(n− k) equals ∥Sc∥q+ ∥S∥(q− 1). Hence, for a randomly chosen z ∈ RLL(n− k),

Pr(zi = 0) =
∥Sc∥

∥Sc∥q + ∥S∥(q − 1)
⩽

1

q

Thus, E[wt(z)] ⩾ (n− k)(q − 1)/q. The result then follows from Lemma 10.

The above lemma leads to the lower bound in the following theorem.

Theorem12. For positive integers n ⩾ 2k ⩾ 4, the maximum size A1ND(n, q, k) of a 1ND-detecting
codes of length n over Zq satisfies

1

4(n− k)
·M ⩽ A1ND(n, q, k) ⩽ M,

where

M ≜
⌊n/k⌋−1∑

i=0

∥Irr(k)(n− ik)∥ =

⌊n/k⌋∑
i=1

qk∥RLL(n− ik)∥ (2.8)

is the number of irreducible words whose descendant cones intersect Σn.

Proof. First we show that

qk+1∥RLL(n− k)∥
2(n− k)(q − 1)

⩽ A1ND(n, q, k) ⩽ M.

The lower bound follows by applying the generalized GV bound [92] with Lemma 11. The upper
bound follows from the fact that the code must be able to correct any number of k-duplication
errors and from [32] where such codes are discussed.

To get the lower bound to the more appealing form we claim, we note that to any string of
length m − k that has no 0k substring, we can append a string of length k whose first element is
nonzero, and thus obtain a string of length m that has no 0k substring. Hence,

∥RLL(m)∥ ⩾ ∥RLL(m− k)∥(q − 1)qk−1.

Thus
∥RLL(n− ik)∥ ⩽

∥RLL(n− k)∥
(q − 1)i−1q(i−1)(k−1)

.

We then have

M =

⌊n/k⌋∑
i=1

qk∥RLL(n− ik)∥

⩽ qk∥RLL(n− k)∥
⌊n/k⌋∑
i=1

1

(q − 1)i−1q(i−1)(k−1)

⩽ qk∥RLL(n− k)∥
∞∑
i=1

1

(q − 1)i−1q(i−1)(k−1)

18

⩽ qk∥RLL(n− k)∥ (q − 1)qk−1

(q − 1)qk−1 − 1
.

Since q + k ⩾ 4 with q, k ⩾ 2,

∥Irr(k)(n)∥ = qk∥RLL(n− k)∥ ⩾ M/2, (2.9)

and we have the desired claim.

2.3.3 Code construction

The goal of this section is to construct 1ND-detecting codes. We shall first consider an auxiliary
code construction which will be useful not only here, but also in the following section. The error
we would like to detect by this auxiliary code is as follows:

Definition 13. For n, k > 0, let z, z′ ∈ Σn be some strings. If we can write

z = u v w 0|v| x

z′ = u 0|v| w v x

where u,v,w,x ∈ Σ∗, 1 ⩽ |v| ⩽ k− 1, v is a non-zero string, and |v|+ |w| = k, then we say z and
z′ differ by a single k-switch error.

Intuitively, a single k-switch error takes a non-zero non-empty substring of length at most k−1,
and switches it with an all-zero substring of the same length found k positions before or after it.

Any non-empty string z ∈ Σn may be partitioned into non-overlapping blocks of length k:

z = B1(z)B2(z) . . . B⌈n/k⌉(z),

where Bi(z) ∈ Σk for all i, except if k does not divide n, in which case, B⌈n/k⌉(z) ∈ Σn mod k. We
note that k is implicit in the definition of Bi(z).

We now give a construction for a family of codes which we then show are all capable of detecting
a single k-switch error.

Construction 14. Let k ⩾ 2 and let p be the smallest odd integer larger than k − 1, namely

p ≜ 2

⌈
k − 1

2

⌉
+ 1.

Fix a code length n ∈ N and let S ⊆ Σn be an arbitrary set of strings. For any string x ∈ S, and
ℓ = 0, 1, 2, 3, we define

Zℓ(x) ≜
∑
i∈Iℓ

|Bi(x)|0,

where Iℓ = {1 ⩽ t ⩽ ⌈n/k⌉ | t ≡ ℓ (mod 4)}. For all 0 ⩽ i, j < p, we construct

Caux
i,j (S) ≜

{
x ∈ S

∣∣ Z0(x) + 2Z2(x) ≡ i (mod p),

19

Z1(x) + 2Z3(x) ≡ j (mod p)
}
.

Theorem 15. Each code Caux
i,j (S) of Construction 14 can detect a single k-switch error or a single

zero replaced by a non-zero letter.

Proof. Since k ⩾ 2 we have p ⩾ 3 which immediately enables the detection of a single zero replaced
by a non-zero letter. Let us therefore focus on the problem of detecting a single k-switch error.

We assume n ⩾ k + 1, otherwise the claim is trivial. Assume x ∈ Caux
i,j (S) sustains a single

k-switch error, resulting in the string x′ ∈ Σn. For 0 ⩽ ℓ ⩽ 3, let

∆ℓ ≜ Zℓ(x
′)− Zℓ(x).

Furthermore, for 0 ⩽ ℓ ⩽ 1, let
Fℓ ≜ ∆ℓ + 2∆ℓ+2.

To prove the error detection capabilities of the code it now suffices to show that

F0 ̸≡ 0 (mod p) or F1 ̸≡ 0 (mod p). (2.10)

Based on the definition of a k-switch error, the number of zeros changes in some blocks. We
consider the following possible cases.

First, if the number of zeros changes in 2 consecutive blocks, then one of the pairs (∆0,∆1),
(∆1,∆2), (∆2,∆3), (∆3,∆0) equals (δ,−δ) for 0 < |δ| < k, and the two other ∆’s are equal to 0.
Then, |F0| = |δ| or |F0| = 2|δ|. In the former case F0 ̸≡ 0 (mod p) since 0 < |δ| < k ⩽ p. In the
latter case, F0 ̸≡ 0 (mod p) since 0 < 2|δ| < 2p and 2δ ̸= p (recall that p is odd).

Second, if the number of zeros changes in two non-consecutive blocks, then only one of the pairs
(∆0,∆2) and (∆1,∆3) equals (δ,−δ) for 0 < |δ| < k, and the other equals (0, 0). Then, either
|F0| = |δ| or |F1| = |δ|, and in both cases (2.10) is satisfied.

Third, if the change of number of zeros occurs in three consecutive blocks, then there exists ℓ

such that ∆ℓ = δ′ ̸= 0 and ∆2+ℓ = 0 (indices taken modulo 4), where 0 < |δ′| < k and 2|δ′| ≠ p.
Then either F0 or F1 takes on the value of δ′ or 2δ′. But δ′ ̸≡ 0 (mod p) and 2δ′ ̸≡ 0 (mod p),
implying that (2.10) is satisfied.

We now turn to construct 1ND-detecting codes. As before, we consider codes that consist of
irreducible strings of length n. We thus need to devise a method to detect ambiguous substitutions.

As mentioned before, when k = 1 ambiguous substitutions cannot occur. Hence Irr(k)(n) is a
1ND-detecting code. For k ⩾ 2, our analysis rests on the following lemma.

Lemma 16. Let k ⩾ 2. If x ∈ Σ∗ and x′ is obtained from x via any number of k-duplications
among which one contains an ambiguous substitution, then ϕ̄(drt(x)) and ϕ̄(drt(x′)) differ by a
single k-switch error, or ∣∣∣∣ϕ̄(drt(x))∣∣

0
−
∣∣ϕ̄(drt(x′))

∣∣
0

∣∣ = 1.

20

Proof. Denote z ≜ ϕ̄(x) and z′ ≜ ϕ̄(x′). With the notation of Lemma 9, one can verify that in
Case 1.1 we have

µ(z) = u′ v 0i−1−|v|b0k−i 0|v| w′

µ(z′) = u′ 0|v| 0i−1−|v|b0k−i v w′ (2.11)

and in Case 2.3,
µ(z) = u′ 0 0k−|v|−1v b′ w′

µ(z′) = u′ b 0k−|v|−1v (b′ − b) w′ (2.12)

for some u′,w′ ∈ Σ∗. In (2.11) we see a single k-switch error. In (2.12), if b′ = b we have a single
k-switch error, and if b ̸= b′ then the number of zeros differ by one.

Construction17. Let n, k be positive integers, n ⩾ k, and let S ≜ RLL(n−k). For all 0 ⩽ i, j < p,
we construct

Ci,j ≜ {ϕ−1(yz) | y ∈ Σk, z ∈ Caux
i,j (S)},

where p and Caux
i,j (S) are defined in Construction 14.

Theorem 18. With the setting as in Construction 17, the code Ci,j is a 1ND-detecting code.

Proof. By our choice of S, we necessarily have that Ci,j ⊆ Irr(k)(n). If k = 1, then C0,0 = Irr(k)(n)

is the only code and the theorem is immediate.
Assume k ⩾ 2. Let c1, c2 ∈ Ci,j be distinct codewords. Since Ci,j ⊆ Irr(k)(n), drt(c1) = c1 and

drt(c2) = c2, which are distinct. Based on (2.7) it suffices to show that for any c′1 ∈ D
∗(1)
k (c1), we

have c2 ̸= drt(c′1).
If drt(c′1) = drt(c1) = c1, then clearly c2 ̸= drt(c′1). So we assume drt(c′1) ̸= c1. It is then

sufficient to show that drt(c′1) /∈ Ci,j . This is obvious if |drt(c′1)| ̸= n and the substitution is not
ambiguous. If the substitution is ambiguous, we obtain the claimed result by combining Lemma 16
and Theorem 15.

Corollary 19. If n ⩾ k ⩾ 2 then

A1ND(n, q, k) ⩾
1

2(k + 1)2
·M,

where M is given by (2.8).

Proof. Let p and Ci,j be defined as in Construction 17. The set {Ci,j | 0 ⩽ i, j < p} forms a
partition of Irr(k)(n). Thus, a simple averaging argument shows that there exist i and j such that

∥Ci,j∥ ⩾
∥Irr(k)(n)∥

p2
.

Since p ⩽ k + 1, and by (2.9), we obtain the claim.

Note that the lower bound on A1ND(n, q, k) in this corollary may be better than the one given
in Theorem 12.

21

The problem with the bound of Corollary 19 is that it is not constructive. In particular, we do not
know exactly what choice of i and j gives the largest code Ci,j in Construction 17. Construction20
below provides a sub-code of C0,0 from Construction 17 whose size can be lower bounded, albeit,
somewhat smaller than the guarantee of Corollary 19.

Construction 20. Let k ⩾ 2 and let p be the smallest odd integer larger than k − 1, namely

p ≜ 2

⌈
k − 1

2

⌉
+ 1.

Fix a code length n ∈ N, n ⩾ 5k. We construct a code C ⊆ Σn in the following way: For each
y ∈ RLL(n− 5k), construct four strings of length k, denoted B0, B1, B2, B3 ∈ Σk,

Bi = 0βi1k−βi , for all 0 ⩽ i ⩽ 3

where

βi = (−(ζi + 2ζi+2) mod p)− 2βi+2, i = 0, 1

βi+2 =

⌊
(−(ζi + 2ζi+2) mod p)

2

⌋
, i = 0, 1

ζi = Zi(ϕ
−1(0ky)), i = 0, 1, 2, 3

and add the codewords ϕ−1(BB0B1B2B3y) where B runs over all strings in Σk.

Theorem 21. Let q be the alphabet size, k the duplication length, q + k ⩾ 4, and n ∈ N, n ⩾ 5k.
Then the code C from Construction 20 is a 1ND-detecting code of size

∥C∥ = ∥ Irr(k)(n− 4k)∥ ⩾
1

2 · q4k
·M,

where M is given in (2.8).

Proof. One can easily verify that 0 ⩽ βi < k, hence all the blocks Bi end with a non-zero symbol and
therefore all the codewords are irreducible. Additionally, by inspection we can verify that C ⊆ C0,0,
where C0,0 is obtained from Construction 17. Thus, C is 1ND-detecting. Finally, all the codewords
constructed are distinct, hence

∥C∥ = qk∥RLL(n− 5k)∥ = ∥Irr(k)(n− 4k)∥ ⩾
1

2 · q4k
·M,

where the last inequality follows from the fact that ∥Irr(k)(n− 4k)∥ ⩾ ∥Irr(k)(n)∥/q4k and then
from (2.9).

2.4 Unrestricted error-detecting codes

Substitution mutations might occur not only in k-duplication copies, but also independently in other
positions. In what follows, we consider a single substitution error occurring in addition to however

22

many k-duplications, at any stage during the sequence of k-duplication events, but not necessarily
in a duplicated substring. We refer to codes correcting many k-duplication errors and detecting a
single independent substitution error as 1S-detecting codes.

Definition 22. A code C ⊆ Σ∗ is a 1S-detecting code if there exists a decoding function D : Σ∗ →
C ∪ {error} such that if c ∈ C was transmitted and y ∈ Σ∗ was received then D(y) = c if only
k-duplication errors occurred, and D(y) ∈ {c, error} if in addition to the k-duplications, exactly one
unrestricted substitution occurred.

Lemma 23. A code C ∈ Σn is a 1S-detecting code if and only if for any two distinct codewords
c1, c2 ∈ C, we have

drt(c1) ̸= drt(c2) and drt(c2) /∈ drt(D∗,1
k (c1)). (2.13)

Proof. In the one direction, we define for any y ∈ Σ∗, D(y) = c if drt(c) = drt(y), and D(y) = error

otherwise. Clearly if (2.13) holds then D is a decoding function proving that C is a 1S-detecting
code.

In the other direction, if (2.5) does not hold we have two (not mutually exclusive) cases. If there
exist c1, c2 ∈ C such that drt(c1) = drt(c2) then by Theorem 2 there exists y ∈ D∗,0

k (c1)∩D∗,0
k (c2)

and no decoding function can always correctly decode y. Similarly, if drt(c2) ∈ drt(D∗,1
k (c1)) then

there exists y ∈ D∗,1
k (c1) such that drt(y) = drt(c2) and no decoding function D can always decode

y correctly.

We shall adopt the same general strategy as the previous section. Namely, we will construct a
code based on irreducible words of length n. Descendants whose duplication root is not of length n

will be easily detected. Our challenge is therefore to detect errors that do not change the length of
the root caused by, what we refer to as, ambiguous substitutions.

Definition 24. An unrestricted substitution error that changes the root but not the length of the
root is called an ambiguous unrestricted substitution.

As in the previous section, when the duplication length is k = 1 there are no ambiguous unre-
stricted substitutions. In that case Irr(k)(n) can easily serve as a 1S-detecting code. Thus, we shall
focus on the case of k ⩾ 2.

Lemma 25. Let n ⩾ 2k ⩾ 4. For any string x ∈ Σn, let x′ ∈ drt(D∗,⩽1
k (x)) ∩ Σn be a string

obtained from x via a single ambiguous unrestricted substitution. If

d(ϕ(drt(x)), ϕ(drt(x′))) ⩾ 3,

then ϕ̄(drt(x)) and ϕ̄(drt(x′)) differ by a single k-switch error.

Proof. Let x′ ∈ D∗,⩽1
k (x), where

∣∣drt(x′)
∣∣ = |drt(x)|, but drt(x′) ̸= drt(x),

23

namely, an ambiguous unrestricted substitution occurred. Let us denote

y ≜ ϕ̂(x), z ≜ ϕ̄(x),

y′ ≜ ϕ̂(x′), z′ ≜ ϕ̄(x′).

Since k-duplications do not change the root, we assume without loss of generality that no k-
duplications occur and only a single substitution occurs. Thus, we can write

x′ = x+ a · ei, yz = y′z′ + a · ϵi,

where i denotes the location of the substitution, and a ∈ Σ \ {0}. Depending on i, a single substi-
tution may result in one or two changed positions in the transform doamin of ϕ. The proof of the
claim comprises of many cases, and we start with some simple ones.

In the first simple case, the substitution occurs in the first k positions, namely, 1 ⩽ i ⩽ k. Since
ϕ(drt(x′)) = y′µ(z′), and y ̸= y′, if we have |drt(x′)| = |drt(x)| then

d(ϕ(drt(x)), ϕ(drt(x′))) ⩽ 2,

by virtue of positions i and i+ k.

In a similar fashion, if the substitution occurs in the last k positions, namely, |x|−k+1 ⩽ i ⩽ |x|,
only a single position is changed in the transform ϕ. Since ϕ(drt(x′)) = y′µ(z′), and z ̸= z′, if we
have |drt(x′)| = |drt(x)| then

d(ϕ(drt(x)), ϕ(drt(x′))) ⩽ 1,

by virtue of positions i.

We are now left with the last interesting case, in which the substitution changes two positions,
i and i+ k, both in the z part of the ϕ-transform. We therefore disregard the part y = y′. We may
now write

z = u a1 v a2 w

z′ = u (a1 + a) v (a2 − a) w

where u,w ∈ Σ∗, v ∈ Σk−1, a, a1, a2 ∈ Σ, and a ̸= 0. We distinguish between two major cases,
depending on whether v = 0k−1.

Case I: In the first major case we have v = 0k−1. Let us write

u = u′0m1 , w = 0m4w′,

where all the indicated runs of zeros are maximal. Thus,

z = u′ 0m1 a1 0k−1 a2 0m4 w′

z′ = u′ 0m1 (a1 + a) 0k−1 (a2 − a) 0m4 w′.

24

The length of the substring between u′ and w′ is m1 +m4 + k + 1 and we note that⌊
m1 +m4 + k + 1

k

⌋
=
⌊m1

k

⌋
+
⌊m4

k

⌋
+ s,

where s ∈ {1, 2}. We distinguish between the following cases:

1. If a1 ̸= 0 and a2 ̸= 0:

1.1 If a1 + a ̸= 0 and a2 − a ̸= 0

d(ϕ(drt(x)), ϕ(drt(x′))) ⩽ 2.

1.2 If exactly one of a1 + a and a2 − a is zero, the length of µ(z′) decreases by k.

1.3 If a1 + a = a2 − a = 0, the length of µ(z′) decreases by sk.

2. If a1 ̸= 0 and a2 = 0:

2.1 If a1 + a ̸= 0, since a2 − a ̸= 0 the length of µ(z′) increases by k.

2.2 If a1 + a = 0, since a2 − a ̸= 0

d(ϕ(drt(x)), ϕ(drt(x′))) ⩽ 1.

3. If a1 = 0 and a2 ̸= 0:

3.1 If a2 − a ̸= 0, since a1 + a ̸= 0 the length of µ(z′) increases by k.

3.2 If a2 − a = 0, since a1 + a ̸= 0

d(ϕ(drt(x)), ϕ(drt(x′))) ⩽ 1.

4. If a1 = a2 = 0, the length of µ(z′) increases by sk.

Case II: In the second major case, assume v ̸= 0k−1. Let us write

u = u′0m1 , v = 0m2v′0m3 , w = 0m4w′,

where all the indicated runs of zeros are maximal. Let c ∈ Σ \ {0} be some nonzero letter in v′,
important to us only for the purpose of being able to refer to the part of the string left of c and the
part of the string to the right of c.

1. Examining the part of the string to the left of c:

1 If a1 ̸= 0:

i. If a1 = −a:

A. If
⌊
m1+m2+1

k

⌋
>
⌊
m1
k

⌋
, the length before c decreases by k and the substring

0j−1(−a)0k−j is deleted.

25

B. If
⌊
m1+m2+1

k

⌋
=
⌊
m1
k

⌋
, the length before c stays the same and the substitution

a1 → 0 occurs.

ii. If a1 ̸= −a, the length before c stays the same and the substitution a1 → (a1 + a)

occurs.

2 If a1 = 0, then a1 ̸= −a, and:

i. If
⌊
m1+m2+1

k

⌋
>
⌊
m1
k

⌋
, the length before c increases by k and 0j−1a0k−j is inserted.

ii. If
⌊
m1+m2+1

k

⌋
=
⌊
m1
k

⌋
, the length before c stays the same and the substitution 0 → a

occurs.

2. Examining the part of the string to the right of c:

1 If a2 ̸= 0:

i. If a2 = a:

A. If
⌊
m3+m4+1

k

⌋
>
⌊
m4
k

⌋
, the length after c decreases by k and 0t−1a0k−t is deleted.

B. If
⌊
m3+m4+1

k

⌋
=
⌊
m4
k

⌋
, the length after c stays the same and the substitution

a2 → 0 occurs.

ii. If a2 ̸= a, the length after c stays the same and the substitution a2 → (a2−a) occurs.

2 If a2 = 0, then a2 ̸= a, and:

i. If
⌊
m3+m4+1

k

⌋
>
⌊
m4
k

⌋
, the length after c increases by k and 0t−1(−a)0k−t is inserted.

ii. If
⌊
m3+m4+1

k

⌋
=
⌊
m4
k

⌋
, the length after c stays the same and the substitution 0 →

(−a) occurs.

Based on the changes of a1 and a2, there are two types of ambiguous unrestricted substitutions:

• Define the sets of cases A ≜ {1(1)iB, 1(1)ii, 1(2)ii} and B ≜ {2(1)iB, 2(1)ii, 2(2)ii}. Any
substitution scenario from A×B results in only two changed symbols, hence

d(ϕ(drt(x)), ϕ(drt(x′))) ⩽ 2.

• The scenarios (1(1)iA,2(2)i) and (1(2)i,2(1)iA) are more complex because they involve both
an inserted a substring and a deleted substring of length k. Since the two cases are similar,
we only show the analysis of the first case (1(1)iA,2(2)i). We therefore have

z = u′ 0m1 a 0m2 v′ 0m3 0 0m4 w′

z′ = u′ 0m1 0 0m2 v′ 0m3 a 0m4 w′

where we recall that a ̸= 0, |v′| ⩽ k−1, and v′ starts and ends with a non-zero letter. Looking
at µ(z′) compared with µ(z), the part to the left of v′ becomes shorter by k letters, whereas
the part to the right of it becomes longer by k letters. In particular, we can write

µ(z) = u′′ 0|v
′| 0m3a0m2 v′ w′′

µ(z′) = u′′ v′ 0m3a0m2 0|v
′| w′′ (2.14)

26

where m2 +m3 + |v′|+ 1 = k.

Having considered all cases, this last case is the only one in which we have an ambiguous
unrestricted substitution in which potentially d(ϕ(drt(x)), ϕ(drt(x′))) ⩾ 3. The swapping described
in (2.14) completes the proof of the claim.

Our strategy, based on Lemma 25, is to build a code as an intersection of two other component
codes. If one component code can detect the swapping of two substrings and the other component
code has a minimum Hamming distance of 3 or more, then their intersection is a 1S-detecting code.

Construction 26. Let q be a prime power, and Σ ≜ Fq be the finite field of q elements. Let
n ⩾ k ⩾ 2 and let r be the unique positive integer such that qr−1−1

q−1 < n ⩽ qr−1
q−1 , namely,

r ≜
⌈
logq(n(q − 1) + 1)

⌉
.

Denote by CH the [n, n − r, 3] shortened Hamming code over Fq, and by CH
0 , CH

1 , . . . , CH
qr−1 its qr

cosets. Finally, let p and Ci,j be defined as in Construction 17. For all 0 ⩽ i, j < p and 0 ⩽ ℓ < qr,
we construct

Ci,j,ℓ ≜ {c ∈ Ci,j | ϕ(c) ∈ CH
ℓ }.

Theorem 27. With the setting as in Construction 26, the code Ci,j,ℓ is a 1S-detecting code. In
particular, there exist i, j, ℓ such that

∥Ci,j,ℓ∥ ⩾
∥Irr(k)(n)∥

qrp2
⩾

∥Irr(k)(n)∥
q(n(q − 1) + 1)(k + 1)2

.

Proof. By Construction 17 we have that Ci,j ⊆ Irr(k)(n), hence also Ci,j,ℓ ⊆ Irr(k)(n), which implies
it can correct any number of k-duplications. Thus, following Lemma 23, it only remains to consider
two distinct codewords c1, c2 ∈ Ci,j,ℓ and show that drt(c2) /∈ drt(D∗,1

k (c1)), namely consider the
case in which a single ambiguous unrestricted substitution occurred as part of the k-duplications.

Assume to the contrary this is not the case. By Lemma 25, if d(ϕ(c1), ϕ(c2)) ⩾ 3, then ϕ̄(c1)

and ϕ̄(c2) differ by a single k-switch error, and this is contradicts the fact that Ci,j detects a single
k-switch error in the ϕ̄ part of the root, a fact that has already been used in Theorem 18. If
d(ϕ(c1), ϕ(c2)) ⩽ 2, then this contradicts the minimum distance implied by using the shortened
Hamming code.

Finally, the existence of the code with the lower bounded size is guaranteed using a simple
averaging argument since {Ci,j,ℓ | 0 ⩽ i, j < p, 0 ⩽ ℓ < qr} forms a partition of Irr(k)(n).

2.5 Restricted error-correcting codes

2.5.1 Motivation

The previous subsection studies the problem of error-detecting codes for k-duplications and one
substitution without asymptotic rate loss. we also consider the error correction in the noisy dupli-
cation model, which is motivated by the abundance of inexact copies in tandem repeat stretches in

27

genomes [62]. In particular, one open question is whether we can correct noisy duplications without
rate loss.

In the noisy duplication channel, two types of errors are possible: i) exact k-duplications, which
insert an exact copy of a substring in tandem, such as ACGTC → ACGTCGTC; and ii) noisy dupli-
cations, which insert approximate copies, e.g., ACGTC → ACGTCTTC. In both cases, the length of
the duplication refers to the length of the duplicated substring (3 in our preceding examples). In
this chapter, we limit our attention to exact and noisy tandem duplications of length k, referred
to as k-TDs and k-NDs, respectively. Furthermore, we only consider noisy duplications where the
copy and the original substring differ in one position. In other words, each noisy duplication can
be viewed as an exact k-duplication followed by a substitution in the inserted copy.

For codes capable of correcting any number of exact k-duplications, the best possible asymptotic
rate (i.e., the limit of the rate for code length n → ∞, as defined in (1.2)) was given in [30] as

1−
(q − 1) logq e

qk+2
+ o(q−k), (2.15)

where o(q−k) represents terms whose ratio to q−k vanishes as k becomes larger. In this subsection, we
show that the proposed codes have the same asymptotic rate as (2.15), and are thus asymptotically
optimal.

This subseciton is organized as follows. The notation and preliminaries are given in Section 2.5.2.
In Section 2.5.3, we analyze the error patterns that manifest as the result of passing through the noisy
duplication channel. Finally, the code construction and the corresponding code size are presented
in Section 2.5.4.

2.5.2 Notation and preliminaries

In this subsection, we recall that the set of descendants obtained through many exact k-TDs and
at most P noisy duplications, i.e., at most P substitution errors, can be expressed as

D
∗(⩽P)
k (x) =

p=P⋃
p=0

∞⋃
t=p

D
t(p)
k (x). (2.16)

In this chapter, we limit our attention to P = 1. Furthermore, Since the first k elements are not
affected by exact or noisy duplications and ϕ̂(x) = ϕ̂(x′) = ϕ̂(x′′), we focus on changes in ϕ̄(·).
Based on the k-discrete-derivative transform, the substitution changes at most two symbols of ϕ̄(x′)

and can be expressed as
ϕ̄(x′′) = ϕ̄(x′) + aϵj , (2.17)

where ϵj = ej−k − ej if (k + 1) ⩽ j ⩽ (|x′| − k) and ϵj = ej−k if (|x′| − k + 1) ⩽ j ⩽ |x′|. We refer
to x′′ as a k-ND descendant of x.

According to [30], given a word x ∈ Σ∗
q , after many (even infinite) k-TD errors, the string

28

(ϕ̂(x), µ(ϕ̄(x))) stays the same. Based on the definition of duplication root drt(x), we then have

ϕ(drt(x)) = (ϕ̂(x), µ(ϕ̄(x))). (2.18)

Definition 28. A word x is called irreducible if drt(x) = x. The set of all irreducible words of
length n is denoted Irr(n), i.e., Irr(k)(n) = {x ∈ Σn

q | drt(x) = x}.

We note that an irreducible word x ∈ Σn
q satisfies ϕ̄(x) ∈ RLL(n− k).

For a word z ∈ Σ∗
q , we define its indicator Γ(z) : Σ∗

q → Σ∗
2 as Γ(z) = Γ1(z) · · ·Γ|z|(z), where

Γi(z) =

1, if zi ̸= 0,

0, otherwise.
i = 1, . . . , |z|. (2.19)

Based on (2.17), the substitution in a noisy duplication alters two symbols in ϕ̄(x′) at distance k.
For the purpose of error correction, it will be helpful to rearrange the symbols into k strings such that
the two symbols affected by the substitution appear next to each other in one of the strings. More
precisely, for j ∈ [k], we define a splitting operation that extracts entries whose position is equal to
j modulo k. That is, for u ∈ Σn

q and j ∈ [k], define Spk(u, j) = uj = (uj1, uj2, . . . , uj,⌊n−j
k ⌋+1) such

that
uji = uj+(i−1)k, 1 ⩽ i ⩽

⌊
n− j

k

⌋
+ 1. (2.20)

For u ∈ Σn
q , we then define the interleaving operation IL : Σn

q → Σn
q as the concatenation of

Spk(u, j), j ∈ [k],
IL(u) = Spk(u, 1) · · · Spk(u, k).

Example 29. Given an alphabet Σ3 = {0, 1, 2}, k = 3, and u′ = ϕ̄(x′) = 221200012, where symbols
at the same position modulo k have the same color, after splitting u′, we obtain

u′
1 =Sp3(u

′, 1) = 220,

u′
2 =Sp3(u

′, 2) = 201,

u′
3 =Sp3(u

′, 3) = 102,

IL(u′) =u′
1u

′
2u

′
3 = 220201102.

Based on (2.17), after one substitution error, we may obtain u′′ = ϕ̄(x′′) = 221201011, where
symbols affected by the substitution error are underlined. We then have

u′′
1 =Sp3(u

′′, 2) = 201,

u′′
2 =Sp3(u

′′, 1) = 220,

u′′
3 =Sp3(u

′′, 3) = 111,

IL(u′′) =u′′
1u

′′
2u

′′
3 = 220201111.

We observe that the error is restricted to u′′
3 and that the two symbols changed by the substitution

29

error are adjacent in IL(u′′), while they are not so in u′′.

Given a word z ∈ Σn
q , we define the cumulative-sum operation CS : Σn

q → Σn
q , as r = CS(z),

where

ri =

i∑
t=1

zt mod q, i = 1, . . . , n. (2.21)

We further define the odd subsequence Od(z) and the even subsequence Ev(z) of a word z ∈ Σ∗
q

as two sequences containing symbols in the odd and even positions, respectively. More precisely,
Od(z) = Sp2(z, 1) and Ev(z) = Sp2(z, 2).

Our results will rely on codes that can correct a single insertion or deletion. We thus recall
the Varshamov-Tenengolts codes [77], [91], which are binary codes capable of correcting a single
insertion or deletion (indel).

Construction 30 ([77]). Given integers m ⩾ 1 and 0 ⩽ α ⩽ (m − 1), the binary Varshamov-
Tenengolts (VT) code CV T (α,m) is given as

CV T (α,m) = {z ∈ Σ⩽m−1
2 |

|z|∑
i=1

izi = α mod m}.

We note that there is a minor difference between this construction and the original VT code.
Namely, we allow strings of length at most m − 1 rather than exactly m − 1. If the length of the
stored word is known, it follows from the proof of the VT code that the code in the construction
above can correct a single indel.

Compared to the binary indel-correcting code, correcting indels in non-binary sequences is more
challenging. We will use Tenengolts’ q-ary single-indel-correcting code [91], which relies on the
mapping ζ : Σ∗

q → Σ∗
2, where the i-th position of ζ(z) is

ζi(z) =

1, if zi ⩾ zi−1,

0, if zi < zi−1.
i = 2, 3, . . . , |z|.

with ζ1(z) = 1.

Construction 31 ([91]). For integers m ⩾ 1, 0 ⩽ α ⩽ (q − 1) and 0 ⩽ β ⩽ (m − 1), Tenengolts’
q-ary single indel-correcting code CTq(α, β,m) over Σ⩽m

q is given as

CTq(α,β,m) =

{
z ∈ Σ⩽m

q

∣∣∣∣ |z|∑
j=1

zj = α mod q,

|z|∑
i=1

(i− 1)ζi(z) = β mod m

}
.

Again, we allow codewords of length at most m, rather than exactly m as was the case in
Tenengolts’ original construction. If the length of the stored codeword is known, it follows from the

30

proofs of the VT code that we can recover the binary sequence ζi(z) with |z| ⩽ m. Then the code
in the construction above can correct a single indel in z.

In contrast to Lemma 25 and Construction 26, we shall see in the following example that an
intersection of a single substitution correcting code with a k-duplication correcting code is not, in
general, a code that can correct k-duplications and one substitution.

Example 32. Set Σ = Z2 and k = 3, and observe the following two sequences of k-duplication and
substitution, as seen in the ϕ-transform domain:

u ≜ 111010111 → 111010111000 → 111000101000

v ≜ 111101010 → 111000101010 → 111000101000

It is clear that if C ⊆ Σ⩾k is a code correcting even a single k-duplication and a single sub-
stitution, even given the order in which they occur, then ϕ−1(u) = 111101010 and ϕ−1(v) =

111010000 cannot both belong to C. Observing that u,v ∈ RLL(9) and the Hamming distance
is dH(ϕ−1(u), ϕ−1(v)) = 4, however, we find that C ≜ {ϕ−1(u), ϕ−1(v)} can correct any number
of k-duplications, or correct a single substitution. Simple intersections, hence, do not suffice for a
code correcting a combination of such errors.

2.5.3 Noisy duplication channels

To enable designing error-correcting codes, in this section, we study the relation between the input
and output sequences in noisy duplication channels. As before, we consider channels with many
(possibly infinite) exact k-duplications and at most one noisy duplication in which one of the copied
symbols is altered.

If a code C ∈ Σn
q corrects many k-TD and one k-ND errors, then for any two distinct codewords

c1, c2 ∈ C, we have
D

∗(⩽1)
k (c1) ∩D

∗(⩽1)
k (c2) = ∅,

where D
∗(⩽1)
k (·) is defined in (2.16). This can be shown to be equivalent to

drt(c2) ̸= drt(c1),

drt(D
∗(⩽1)
k (c1)) ∩ drt(D

∗(⩽1)
k (c2)) = ∅.

(2.22)

Since k-TDs do not alter the root of the sequence, drt(c2) ̸= drt(c1) ensures that k-TD errors
can be corrected. Noisy tandem duplications however alter the roots. In fact, they may produce
sequences with roots whose lengths are different from the roots of the stored sequences. Since the
codewords have distinct roots, it suffices to recover the root of the retrieved word to correct any
errors. We will restrict our constructions to codes whose codewords are irreducible, and thus are
their own roots. While this is not necessary, it will simplify the code construction, as we will show,
and does not incur a large penalty in terms of the size of the code.

For noisy duplication channels, given a codeword x ∈ Σn
q , the generation of descendants x′′ ∈

D
∗(⩽1)
k (x) includes three different cases: only k-TDs; k-TDs followed by one k-ND; and k-TDs,

31

followed by a k-ND, followed by more k-TDs. Since the root is not affected by the k-TDs, to
study drt(D

∗(⩽1)
k (x)), we only need to consider the second case, i.e., we focus on descendants x′′

immediately after the noisy duplication.
Given an irreducible string x ∈ Σn

q with n > 2k, our goal is to characterize drt(D
∗(⩽1)
k (x)).

Based on (2.2), we have
ϕ(x) = (ϕ̂(x), ϕ̄(x)) = (y, z),

where y = ϕ̂(x) ∈ Σk
q and z = ϕ̄(x) ∈ Σn−k

q . Since x is an irreducible string, the string z contains
no runs of 0k, i.e. z = µ(z).

After many k-TDs and one k-ND, we have a descendant x′′ ∈ D
∗(⩽1)
k (x). Since the substitution

only occurs in the copy, the first k symbols always stay the same. Thus x′′ satisfies

ϕ(x′′) = (ϕ̂(x′′), ϕ̄(x′′)) = (ϕ̂(x), ϕ̄(x′′)) = (y, z′′).

Based on (2.18), it suffices to study the problem in the transform domain, i.e., we want to obtain
all possible (y, µ(z′′)) derived from (y, µ(z)). Our code constructions in the next section will also
rely on certain sequences derived from µ(z). The next theorem characterizes how these sequences
can be altered by k-TDs and one k-ND. The theorem relies on the indicator map Γ, defined in (2.19),
and on the splitting operation defined in (2.20).

Theorem33. Let x ∈ Σn
q and let x′′ ∈ D

∗(⩽1)
k (x) be a descendent of x (produced by passing through

the noisy duplication channel). Furthermore, let

z = ϕ̄(x), µ = µ(z),

µj = Spk(µ, j), sj = Γ(µj),

Then we define z′′,µ′′,µ′′
j , s

′′
j , similarly, based on x′′. The differences between sequences defined

based on x and x′′ are given in Table 2.3 and Table 2.4.

Proof. In a noisy duplication channel with many exact k-TDs and at most one k-ND, given a string
x ∈ Σ∗

q , let ϕ(x) = (y, z) with y = ϕ̂(x) ∈ Σk
q and z = ϕ̄(x) ∈ Σ∗

q . Since the k-TDs do not
change the duplication root drt(x), we focus our attention to the substitution that will change the
duplication root. After many exact k-TDs, we obtain x′ ∈ D

⩾1(0)
k (x), a descendant of x. After

the substitution error, we have x′′ ∈ D
⩾1(1)
k (x). Since the following k-TD errors do not change the

duplication root drt(x′′), we focus on the descendants x′ and x′′.
Let ϕ(x′) = (y, z′) and ϕ(x′′) = (y, z′′). In the transform domain, the string z′ can be expressed

as
z′ = ua1a2 · · · ai · · · akb1b2 · · · bi · · · bkv.

where u,v ∈ Σ∗
q and ai, bi ∈ Σq, i ∈ [k]. Let the length of the run of 0s on the left side of ai be m1

and on the right side of ai be m2 (ending at bi and excluding ai, bi), i.e., the substring c0m1ai0
m2d

with a, b ∈ Σ+
q . Similarly, we define m3 and m4 as the length of the run of 0s on the left side and

right side of bi, starting from ai and excluding ai, bi. Based on (2.17), if the substitution position

32

Table 2.3: The changes in µj and sj , j ∈ [k] as a result of exact and noisy duplications, when the
position of the substitution in x′′ satisfies k < p ⩽ (|x′′| − k). Here a, b, c ∈ Σq, d ∈ Σ2, ā = −a,
and a, b ̸= 0. Furthermore, Λ → u and u → Λ represent insertion and deletion of the string u,
respectively. Rows marked by (∗) indicate that this type of error occurs for at most one value of
j ∈ [k]. The marking ($) is related to the error-correction strategy discussed in Section 2.5.4.

|µ′′| − |µ| µ→ µ′′ µj → µ′′
j sj → s′′j

+2k insert 0j−1a0k−j

and 0t−1(0− a)0k−t
Λ → aā (∗)
Λ → 00 ($)
c → 0c0 ($)

Λ → 11
Λ → 00
d → 0d0

+k
insert 0j−1a0k−j

and substitute
bi → (bi − a)

c → a(c− a), c ̸= a (∗)
a → a0 (Λ → 0) ($)
Λ → 0 ($)

0 → 11, 1 → 11
1 → 10 (Λ → 0)
Λ → 0

substitute 0 → a
and insert 0t−1(0 −
a)0k−t

0 → aā (∗)
Λ → 0 ($)

0 → 11
Λ → 0

0 insert 0j−1a0k−j

and delete
0t−1a0k−t with
a at the same posi-
tion

b0 → 0b ($)
stay same

10 → 01
stay same

substitute 0 → a
and bi → (bi − a)
with distance k

0c → a(c− a) (∗, $)
stay same

00 → 11, 01 → 11, 01 →
10
stay same

−k substitute 0 → a
and delete
0t−1a0k−t

0 → Λ ($) 0 → Λ

Table 2.4: The changes in µj and sj , j ∈ [k] as a result of exact and noisy duplication, when the
position of the substitution in x′′ satisfies (|x′′| − k) < p ⩽ |x′′|. The notation is the same as that
of Table 2.3.

|µ′′| − |µ| µ→ µ′′ µj → µ′′
j sj → s′′j

+k insert 0j−1a0k−j Λ → a (∗)
Λ → 0 ($)

Λ → 1
Λ → 0

0 substitute 0 → a 0 → a (∗, $)
stay same

0 → 1
stay same

33

p satisfies k < p ⩽ (|x′| − k), the substitution changes two symbols; if (|x′| − k) < p ⩽ |x′|, the
substitution changes one symbol.

First, we consider the substitution position satisfying k < p ⩽ (|x′| − k) such that two symbols
of z′ changes. The 2 symbols in z′ have a distance of k. After the substitution, we have

z′′ = ua1a2 · · · (ai + a) · · · akb1b2 · · · (bi − a) · · · bkv,

where a ∈ Σ+
q . Based on (2.3), since the substitution only occurs in the copy of a k-TD, we have

ai = 0 and m1 +m2 + 1 ⩾ k.
Since the length between ai and bi is k, we have two cases for m2 and m3:

• If m2+m3 < k, then m2 < (k−1) and m3 < (k−1), which means that the substring between
ai and bi must contain at least one non-zero symbol.

• If m2 +m3 ⩾ k, then m2 = m3 = (k − 1), which means that the substring between ai and bi

is 0k−1.

A) Descendants with m2 +m3 < k: Since the substring between ai and bi must contain at least
one non-zero symbol, the changes in µ(z′), as well as µ(z), caused by ai and bi, can be analyzed
independently. If the non-zero symbol is d ∈ Σ+

q , with ai and bi on the left and right side respectively,
the changes in µ(z′) can be separately studied on the two sides of d. In the following, we use
0j−1a0k−j or 0t−1a0k−t to denote a substring of length k with wt(0j−1a0k−j) = wt(0t−1a0k−t) = 1,
where j, t ∈ [k] and a ∈ Σ+

q .

1. The changes on the left side of d is caused by changing ai. Since ai = 0, then a = ai + a ̸= 0.

1.1 If
⌊m1 +m2 + 1

k

⌋
>
⌊m1

k

⌋
, the length before d increases by k and the substring 0j−1a0k−j

is inserted in µ(z′), before the symbol d.

1.2 If
⌊m1 +m2 + 1

k

⌋
=
⌊m1

k

⌋
, the length before d stays the same and 0 is substituted by a

at ai.

2. The changes on the right side of d is caused by changing bi.

1 If bi ̸= 0,

i. if bi − a = 0,

A. if
⌊m3 +m4 + 1

k

⌋
>
⌊m4

k

⌋
, the length of µ(z′) after d decreases by k and a

substring 0t−1a0k−t is deleted from µ(z′).

B. if
⌊m3 +m4 + 1

k

⌋
=
⌊m4

k

⌋
, the length after d stays the same and a is substituted

by 0 at bi.

ii. if bi − a ̸= 0, the length after d stays the same and bi is substituted by (bi − a).

2 If bi = 0, then bi − a ̸= 0.

1 if
⌊m3 +m4 + 1

k

⌋
>
⌊m4

k

⌋
, the length of µ(z′) after d increases by k and the sub-

string 0t−1(0− a)0k−t is inserted in µ(z′).

34

Table 2.5: The changes in µ(z) with m2 +m3 < k.

ai and bi |µ′′| − |µ| µ→ µ′′

1.1 and 2(1)iA 0 insert 0j−1a0k−j and delete
0t−1a0k−t

1.1 and 2(1)iB +k insert 0j−1a0k−j and a → 0

1.1 and 2(1)ii +k insert 0j−1a0k−j and bi → (bi − a)

1.1 and 1 +2k insert 0j−1a0k−j and 0t−1(q−a)0k−t

1.1 and 2 +k insert 0j−1a0k−j and 0 → (0− a)

1.2 and 2(1)iA −k 0 → a and delete 0t−1a0k−t

1.2 and 2(1)iB 0 two substitutions (0 → a and a → 0)
1.2 and 2(1)ii 0 two substitutions(0 → a and bi →

(bi − a))
1.2 and 1 +k 0 → a and insert 0t−1(0− a)0k−t

1.2 and 2 0 two substitutions(0 → a and 0 →
(0− a))

2 if
⌊m3 +m4 + 1

k

⌋
=
⌊m4

k

⌋
, the length after d stays the same and 0 is substituted

by (0− a) at bi.

Since µ = µ(z) and µ(z) = µ(z′), the changes from µ = µ(z′) to µ′′ = µ(z′′) are shown in
Table 2.5 classified based on ai and bi.

B) Descendants with m2 + m3 > k: Based on the analysis above, when m2 + m3 > k, the
substring between ai and bi is 0k−1. Hence z′ can be rewritten as

z′ = u0m1ai0
k−1bi0

m4v,

where u,v ∈ Σ∗
q . After one substitution, z′′ can be expressed as

z′′ = u0m1(ai + a)0k−1(bi − a)0m4v,

where ai = 0 and a ∈ Σ+
q . Since the length of µ(z′) is influenced by the underlined substring above,

we focus on the changes of this segment.
The length of the underlined substring satisfies⌊m1 +m4 + k + 1

k

⌋
=
⌊m4

k

⌋
+
⌊m1

k

⌋
+ 1,

or ⌊m1 +m4 + k + 1

k

⌋
=
⌊m4

k

⌋
+
⌊m1

k

⌋
+ 2.

The two cases are discussed below in detail.
If the length of the underlined substring satisfies

⌊m1 +m4 + k + 1

k

⌋
=
⌊m4

k

⌋
+
⌊m1

k

⌋
+1, then

the changes in µ(z′) consist of two cases (based on the change from (ai, bi) to (ai + a, bi − a)):

1. if (ai, bi) = (0, qi) with qi ̸= 0, then we again have two cases:

35

1 if ai+a, bi−a are non-zero, the length of µ(z′) increases by k, and the substring 0j−1a0k−j

is inserted in µ(z′) and bi is substituted by bi − a.

2 if (ai + a, bi − a) = (qi, 0), we have µ(z′′) = µ(z′).

2. if (ai, bi) = (0, 0), then ai + a, bi − a are non-zero, the length of µ(z′) increases by k, and the
substring 0j−1a0k−j is inserted in µ(z′) and 0 is substituted by (0− a) at bi.

Similarly, if the length of the underlined substring satisfies
⌊m1 +m4 + k + 1

k

⌋
=
⌊m4

k

⌋
+⌊m1

k

⌋
+ 2, the changes in µ(z′) also contain two cases:

1. if (ai, bi) = (0, qi), then there are two different cases:

1 if ai+a, bi−a are non-zero, the length of µ(z′) increases by k, and the substring 0j−1a0k−j

is inserted in µ(z′) and bi is substituted by bi − a.

2 if (ai + a, bi − a) = (qi, 0), we have µ(z′′) = µ(z′).

2. if (ai, bi) = (0, 0), then ai + a, bi − a are non-zero, the length of µ(z′) increases by 2k, and the
string 0j−1a0k−j and 0t−1(0− a)0k−t are inserted in µ(z′)

Since the k-TDs do not change the duplication root, we have drt(x) = drt(x′) and µ(z) = µ(z′).
Based on the analysis above, the changes in µ(z) caused by one substitution can be divided into
four different cases:

• if |µ(z′′)| = |µ(z)|+ 2k, then µ(z′′) is derived from µ(z) by inserting one 0j−1a0k−j and one
0t−1(0− a)0k−t. Furthermore, a and (0− a) have distance k.

• if |µ(z′′)| = |µ(z)| + k, then µ(z′′) is derived from µ(z) by either inserting 0j−1a0k−j and
substituting bi → (bi − a) or inserting 0t−1(0− a)0k−t and substituting 0 → a. In both cases,
a and (bi − a) have a distance of k.

• if |µ(z′′)| = |µ(z)|, three different cases occur. First, µ(z′′) = µ(z), there are no changes.
Second, µ(z′′) is derived from µ(z) by two substitutions (0 → a and bi → (bi − a) with
distance k). Third, the string 0j−1a0k−j is inserted and 0t−1a0k−t is deleted, where a stays
in the same position. In the third case, µ(z′′) is derived from µ(z) by swapping 0e with a
substring (the form of d or cΣe−2

q d with e ̸= 0 and c, d ∈ Σ+
q) between ai = 0 and bi = a,

where the distance of the beginning of the two substrings is k. Furthermore, the integer e

satisfies 1 ⩽ e ⩽ (k − 1).

• if |µ(z′′)| = |µ(z)| − k, µ(z′′) is derived from µ(z) by deleting 0t−1a0k−t and substituting
0 → a.

In conclusion, the changes from µ = µ(z) to µ′′ = µ(z′′) caused by one substitution are described
in the first and second columns of Table 2.3. We now discuss the changes in µj , i.e., the difference
between µj and µ′′

j for j ∈ [k]. This is done by considering four cases:

36

• If |µ(z′′)| = |µ(z)|+ 2k, µ(z′′) is derived from µ(z) by inserting a 0j−1a0k−j and a 0t−1(0−
a)0k−t. For j ∈ [k], the length of each µj increases by 2. For one value of j, a(0 − a) is
inserted in µj and two 0s are inserted in the other (k − 1) strings with a distance at most 2.

• If |µ(z′′)| = |µ(z)|+ k, µ(z′′) is derived from µ(z) by inserting 0j−1a0k−j or 0t−1(0− a)0k−t

and substituting (bi → (bi − a)) or (0 → a). For j ∈ [k], the length of µj increases by 1. For
one value of j, the insertion and substitution bi → a(bi − a) occur in µj and 0 is inserted into
each of the other (k − 1) strings.

• If |µ(z′′)| = |µ(z)|, µ(z′′) is derived from µ(z) in three different cases. First, µ(z′′) = µ(z),
there are no changes. Second, µ(z′′) is derived from µ(z) by substituting two symbols (0 →
a, bi → (bi−a)) with distance k. For one value of j, the substitutions (0bi → a(bi−a)) occur in
µj and the other (k−1) strings stay the same. Third, µ(z′′) is obtained from µ(z) by inserting
0j−1a0k−j and deleting 0t−1(0 − a)0k−t. For j ∈ [k], at least one µj swaps (b0) → (0b) with
b ∈ Σ+

q and the other strings stay the same.

• If |µ(z′′)| = |µ(z′′)| − k, µ(z′′) is derived from µ(z) by deleting 0t−1a0k−t and substituting
0 → a. For {µ1, . . . ,µk}, one 0 is deleted from each of the k strings.

The changes of {µ1, . . . ,µk} can be summarized in the third column of Table 2.3. The forth
column is obtained by noting that sj = Γ(µj), j ∈ [k]. This completes the proof of Table 2.3.

Second, we consider the case in which the substitution position p satisfies (|x′| − k) < p ⩽ |x′|,
which means that one symbol in z changes. Since one substitution only changes one symbol in z′,
we have

z′′ = ua1a2 · · · (ai + a) · · · ak.

where a ∈ Σ+
q . Since the substitution only occurs in a tandem duplication copy, we have ai = 0 and

m1 +m2 + 1 ⩾ k. Note that a = ai + a ̸= 0. There are two cases to consider:

1. If
⌊m1 +m2 + 1

k

⌋
>
⌊m1

k

⌋
, then the length of µ(z′) increases by k and the substring 0j−1a0k−j

is inserted into µ(z′).

2. If
⌊m1 +m2 + 1

k

⌋
=
⌊m1

k

⌋
, then the length of µ(z′) stays the same and 0 is substituted by a

at ai.

We can then find the difference between µj and µ′′
j , and sj and s′′j , j ∈ [k], which are listed in

Table 2.4. This completes the proof of Theorem 33.

To illustrate the theorem, we provide an example (in the transform domain).

Example 34. Consider Σ3 = {0, 1, 2}, k = 3, and µ = µ(z) = z = 120102002120. Suppose that
after several k-TDs, the descendant is z′ = 0310320031020020610320. Next a k-ND may insert
a substring 03 (marked red below) and alter one or two symbols (underlined). Depending on the
positions of the k-duplication and substitution, the following cases are possible:

37

• If z′′ = 03020110020031020020610320, then µ′′ = µ(z′′) = 020110020102002120 and |µ′′| −
|µ| = 2k, as in the 1st row of Table 2.3.

• If z′′ = 0310320031020020610302021, then µ′′ = µ(z′′) = 120102002102021 and |µ′′|−|µ| = k,
as in the 2nd row of Table 2.3.

• If z′′ = 0310320030011010020610320, then µ′′ = µ(z′′) = 121101002120 and |µ′′| = |µ|, as in
the 3rd row of Table 2.3.

• If z′′ = 0310320030021000020610320, then µ′′ = µ(z′′) = 122102120 and |µ′′| − |µ| = −k, as
in the 4th row of Table 2.3.

Since the length of µ can change by −k, 0, k, or 2k, the noisy duplication may manifest as
deletions, insertions, or substitutions in µ. Furthermore, the complex error patterns in µ are
simplified when we consider µj , j ∈ [k]. The errors marked by (∗) occur for at most one value of
j. These correspond to positions affected by the substitution. (Rows marked by ($) relate to our
error-correction strategy and are discussed in the next section.

We note that for correcting any number of exact k-duplications and t noisy duplications, each
containing a single substitution, a description of the channel can be obtained based on Tables 2.3
and 2.4. This is because the tables describe the effect of a sequence of many exact k-duplications
and one noisy duplication on the root of the sequence (and its derived subsequences) and because
a sequence of errors containing t noisy duplications can be divided into t parts, each consisting of
a number of exact k-duplications and a single noisy duplication. In particular, the length of the
root may change by −2k,−k, 0, k, 2k, 3k, or 4k for two noisy duplications. If each noisy duplication
contains more than one substitution, however, characterizing the channel becomes more challenging
as the number of possible cases grows.

Now that we have determined all changes from (y,µ) to (y,µ′′) resulting from passing through
the noisy duplication channel, we consider the code design to correct many exact k-TDs and at
most one noisy duplication in the next section.

2.5.4 Error-correcting codes for noisy duplication channels

Recall from Section 2.5.3 that we are interested in constructing a code C ⊆ Irr(k)(n) ∩Σn
q that can

correct many exact k-TDs and at most one noisy duplication. Based on (2.22), for any code that
corrects k-TDs, two distinct codewords must have distinct roots. Thus, for a stored codeword x and
the retrieved word x′′, if we can recover the duplication root drt(x) of x from x′′, we can recover
the codeword x. But we have made a further simplifying assumption that C ⊆ Irr(k)(n) and thus
x = drt(x).

As shown in Theorem 33, k-duplication errors manifest in various ways in drt(x′′) and its
counterpart in the µ-transform domain µ(ϕ̄(x′′)). Hence, for error correction, we utilize several
sequences derived from x, including µj and sj , j ∈ [k], as defined in Theorem 33. Furthermore, we
define r = CS(IL(µ)) and r′′ = CS(IL(µ′′)). We note that r (similarly r′′) can be directly found
by rearranging the elements xk+1 · · ·xn.

38

x

z

ϕ̄

drt(x)

drt

µ

µ

ϕ̄

µj

Sp
k

sj

Γ

IL(µ)

Concat.

r
CS

Figure 2.2: The various mapping used in the chapter. “Concat.” stands for concatenation. Solid
edges indicate invertible mappings, where we have assumed x1 · · ·xk is known, since these symbols
are not affected by the channel. The mapping µ is generally non-invertible, but in our constructions,
since we assume x is irreducible, if we recover µ = µ(x), we can recover x.

The relationship between these mappings is illustrated in Figure 2.2. In the figure, solid edges
represent invertible mappings. Since x is irreducible, the stored codeword can be recovered if any of
µ, (µj)j∈[k], IL(µ) or r are recovered (note that x1 · · ·xk are not affected by errors). We use these
mappings to simplify and correct different error patterns described by Theorem 33 in an efficient
manner.

The motivation behind defining µj , j ∈ [k], is to convert insertions and deletions of blocks of
length k into simpler errors involving one or two symbols. Some of the errors, marked by ($) in
Tables 2.3 and 2.4, involve 0s, which appear in the same positions in sj and µj . Correcting these
errors in sj is more efficient since it will rely on binary codes rather than q-ary codes. We will
first correct these errors in sj and then correct the corresponding µj . Finally, the cumulative-sum
mapping CS turns errors marked by (∗), e.g., Λ → aā into a single q-ary insertion or substitution.
Importantly, in each case there is only one such error. So if other errors are corrected, we can
concatenate µj , j ∈ [k], and then correct the single occurrence of this error.

We will construct an error-correcting code that will allow us to recover µ from µ′′. As discussed,
for certain errors occurring in µj , specifically those marked by ($) in Tables 2.3 and 2.4, we may do
so by correcting errors in sj , via Construction 35 below.

The indicator vectors (s1, . . . , sk) are subject to several error patterns: insertion of 11; insertion
of two 0s with distance at most 2; indel of 1 or 0; swaps of two adjacent elements; and substitution
of one or two 0s with one or two 1s. The following code can correct a single occurrence of one of
these errors, as shown in the next theorem. A slightly modified version of this code is used for the
noisy duplication channel.

Construction 35. Given integers 0 ⩽ a ⩽ 2(n + 1), 0 ⩽ b ⩽ 4, and 0 ⩽ c ⩽ 2n, we construct the
code C(a,b,c) as

C(a,b,c) = {u ∈ Σn
2 |u ∈ CV T (a, 2n+ 3), (2.23)

n∑
i=1

ui = b mod 5, (2.24)

39

n∑
i=1

i

 j=i∑
j=1

uj

 = c mod (2n+ 1)}, (2.25)

where n = |u|.

Theorem36. The code C(a,b,c) can correct a single occurrence of any of the following errors (without
a priori knowledge of the type of error):

• an insertion, deletion, or substitution,

• a substitution of two adjacent bits,

• a substitution of one bit by two adjacent bits,

• an insertion of two bits of the form Λ → 11, Λ → 00, or 1 → 010.

These error patterns include all those shown in the sj column of Tables 2.3 and 2.4.

Proof. Given a codeword s ∈ C(a,b,c), let s′′ be obtained from s, either with no error, or via one of
the errors listed in Theorem 36.

1. If |s′′| = |s| − 1, then there has been a single deletion, correctable via the VT code (2.23).

2. If |s′′| = |s|, then there are the following possibilities: no error, a single substitution, swapping
two adjacent different symbols, 00 → 11, and 11 → 00. Based on (2.24), we have

∑n
i=1 s

′′
i =

(b+ b′′) mod 5, and b′′, along with the syndrome of the VT code, is helpful for distinguishing
these cases. If b′′ = 2, one substitution 00 → 11 between s and s′′ has occurred. We have∑

i is
′′
i = a+ 2p+ 1 mod (2n+ 3), where p is the position of the substitution. Hence, we can

recover s by one substitution 11 → 00 at the position p of s′′. If b′′ = −2, a substitution
11 → 00 has occurred from s to s′′. We have

∑
i is

′′
i = a− 2p− 1 mod (2n+3). Then we can

recover s from s′′ by flipping two symbols at positions p and p+ 1. If b′′ = 1, a substitution
0 → 1 has occurred. We have

∑
i is

′′
i = a + p mod (2n + 3). Hence, we can recover s by one

substitution 1 → 0 at position p of s′′. If b′′ = −1, a substitution 1 → 0 has occurred. We have∑
i is

′′
i = a−p mod (2n+3). Then s can be recovered by flipping the symbol in the pth position

of s′′. If b′′ = 0 and the VT syndrome has changed, an adjacent transposition has occurred
in s. If the transposition occurs at p, for the constructed string {scs|scsi =

∑i
j=1 sj , i ∈ [|s|]},

the string scs and scs′′ only differ at position p with |scsp − scs
′′

p | = 1 [19]. Then we have∑
i i
(∑i

j=1 s
′′
j

)
= c ± p mod (2n + 1). Thus, we can recover s by swapping the two symbols

at positions p and (p+ 1) of s′′.

3. If |s′′| = |s| + 1, based on Theorem 33, s′′ is derived from s in one of the following ways:
inserting a 0, inserting a 1, 0 → 11, or 1 → 00. Based on (2.23) and (2.24), we have∑

i is
′′
i = (a+ a′′) mod (2n+ 3) and

∑
i s

′′
i = (b+ b′′) mod 5. If b′′ = 0 and a′′ ⩽ wt(s′′), one

0 is inserted in s, and we can recover s by deleting it [77]. If a′′ > wt(s′′) and b′′ = 1, one
1 is inserted in s. Then we can recover s by deleting a 1 from s′′ [77]. If a′′ > wt(s′′) and

40

b′′ = 2, s′′ is derived from s by a substitution 0 → 11. We have a′′ = 2p + 1 + r1, where p

denotes the position of the original 0 and r1 denotes the number of 1s on its right. During
the recovery process, we denote our guess for the position and the number of 1s on the right
side of the position as p′ and r′1, respectively. If r′1 < r1, then 2p′ + 1 + r′1 > 2p + 1 + r1. If
r′1 > r1, then 2p′ + 1 + r′1 < 2p + 1 + r1. Only if r′1 = r1, then 2p′ + 1 + r′1 = 2p + 1 + r1.
If b′′ = −1, the substitution 1 → 00 has occurred. If the substitution is at the position p,
then a′′ = −p + r1, where r1 denotes the number of 1s on the right side of the substitution.
Similar to correcting the substitution 0 → 11, we can obtain the position p and recover s by
the substitution 00 → 1 at the positions p, (p+ 1) of s′′.

4. If |s′′| = |s| + 2, then s′′ is derived from s in one of three ways: inserting 11, inserting
00, or inserting two 0s separated by 1 (1 → 010). Based on (2.23) and (2.24), we have∑

i is
′′
i = (a+a′′) mod (2n+3) and

∑
i s

′′
i = (b+ b′′) mod 5. If b′′ = 2, 11 is inserted in s. Let

p denote the position in which 11 is inserted. Based on (2.23), we have a′′ = (p+p+1)+2r1 =

2(l0 + l1 + 1) + 1+ 2r1 = 2(l1 + r1 + 2) + 2l0 − 1 = 2wt(s′′) + 2l0 − 1, where l1 and r1 denote
the number of 1s at the left and right sides of the position p, and l0 denotes the number of
0s at the left side of the inserting position. Then we can recover s by deleting one 11 from
s′′ after l0 0s from the beginning. If b′′ = 0, two 0s are inserted in s. If a′′ = 0 mod 2, 00
is inserted in s and a′′ = 2r1, where r1 denotes the number of 1s on the right side of the
insertion position. Then we can recover s by deleting 00 from s′′ before r1 1s from the end of
s′′. If a′′ = 1 mod 2, two 0s are inserted in s separated by 1 and a′′ = 2r1 + 1. Similarly, we
can recover s by deleting two 0s before r1 and r1 + 1 1s from the end of s′′.

These error patterns include all those occurring in {s1, . . . , sk} caused by many exact k-TDs
and at most one substitution error in the noisy duplication channel.

Since (s1, . . . , sk) are weight indicators of (µ1, . . . ,µk), the 0s in (s1, . . . , sk) and (µ1, . . . ,µk)

coincide. However, if a 1 is deleted from a run of 1s in sj , we will not be able to identify which
symbol is deleted from µj . This means that after recovering sj from s′′j we can recover µj only in
certain cases, specifically, those marked by ($) in Table 2.3 and Table 2.4. Interestingly, the errors
not corrected by recovering sj , j ∈ [k] are marked by (∗), indicating that they occur only for a single
value of j. Hence, to correct these errors, we apply the code constraints to the concatenation of
µj , j ∈ [k], rather than to each µj separately.

Construction 37. Define Cnd ⊆ Σn
q as

Cnd = {x ∈ Irr(k)(n) ∩ Σn
q |µ = µ(ϕ̄(x)),

µj = Spk(µ, j), sj = Γ(µj),

sj ∈ CV T (aj , 2|sj |+ 3), (2.26)
|sj |∑
i=1

i

(
t=i∑
t=1

sjt

)
= cj mod (2|sj |+ 1), (2.27)

41

|sj |∑
i=1

sji = b mod 5, (2.28)

Od(IL(µ)) ∈ CTq(ā1, b̄1, ⌈
n− k

2
⌉), (2.29)

Ev(IL(µ)) ∈ CTq(ā2, b̄2, ⌈
n− k

2
⌉), (2.30)

CS(IL(µ)) ∈ CTq(ā3, b̄3, n− k), (2.31)

IL(µ) ∈ CTq(ā4, b̄4, n− k)}, (2.32)

where j, aj , cj , b, āi, b̄i are integers satisfying j ∈ [k], 0 ⩽ aj ⩽ 2(|sj |+1), 0 ⩽ cj ⩽ 2|sj |, 0 ⩽ b ⩽ 4,
0 ⩽ ā1, ā2, ā3, ā4 < q, 0 ⩽ b̄1, b̄2 ⩽ ⌊n−k

2 ⌋, and 0 ⩽ b̄3, b̄4 < n− k.

In Construction 37, the constraints (2.26), (2.27), and (2.28) play the same role as the code in
Construction 35, and the constraints (2.29), (2.30), (2.31), and (2.32) can correct the error patterns
of {µ1, . . . ,µk} not marked by ($) in Table 2.3 and Table 2.4. The constraint (2.26) corrects one
insertion/deletion or two insertions of 0s or 1s in adjacent positions over Σ2. The constraint (2.27)
corrects one transposition of {0, 1} in two adjacent positions. The constraint (2.28) is a weight-
indicating equation for {s1, . . . , sk}. The constraints (2.29), (2.30), (2.32), and (2.31) can correct
one insertion/deletion in Od(IL(µ)), Ev(IL(µ)), IL(µ), and r = CS(IL(µ)) over Σq, respectively.

Theorem38. The error-correcting code Cnd proposed in Construction 37 can correct infinitely many
exact k-TD and up to one k-ND errors. There exists one such code with size

∥ Irr(k)(n)∥
5kq4⌈n−k

2 ⌉2(4⌈nk ⌉2 − 1)k(n− k)2
⩽ ∥Cnd∥ ⩽ ∥ Irr(k)(n)∥. (2.33)

Proof. To prove Theorem 38, we have to show that the error-correcting code Cnd in Construction 37
can correct all error patterns in {µ1, . . . ,µk}. Based on Theorem 36, the code C(a,b,c) over Σ2 can
correct all error patterns shown in the µj column of Tables 2.3 and 2.4 in rows marked by ($). The
constraints (2.29), (2.30), (2.31) and (2.32) can correct the other error patterns.

Given a codeword x ∈ Cnd ⊆ Irr(k)(n) ∩ Σn
q , we have ϕ(drt(x)) = (y,µ) with y = ϕ̂(x) ∈ Σk

q

and µ = µ(z) = z = ϕ̄(x) ∈ Σn−k
q . After many exact k-TDs and at most one substitution, we

obtain a descendant x′′ ∈ D
∗(⩽1)
k (x) with ϕ(x′′) = (y, z′′) and z′′ = ϕ̄(x′′). In the following, we can

recover the codeword (y,µ) by correcting four types of error patterns in (y,µ′′), where µ′′ = µ(z′′).
Based on the recovered (y,µ), we can obtain the duplication root drt(x) and thus the codeword x.
The four cases are below:

• If |µ′′| = |µ| − k, then a 0 is deleted from both {µ1, . . . ,µk} and {s1, . . . , sk}. By (2.26),
we recover {s1, . . . , sk} by inserting a 0 in each of them. Based on (2.19), the positions of 0s
between {µ1, . . . ,µk} and {s1, . . . , sk} coincide. We can recover {µ1, . . . ,µk} by inserting 0s
at the same positions in {s1, . . . , sk}.

• If |µ′′| = |µ|, {µj , j ∈ [k]} contain two types of errors: transpositions of 0 and b in more than

42

one µj , or the substitution either 0c → a(c− a) or 0 → a in one µj . By (2.26), we have

|s′′j |∑
i=1

is′′ji = (aj + a′′j) mod (2|sj |+ 3), j ∈ [k].

If {a′′j , j ∈ [k]} contain more than one non-zero integer, both {µj , j ∈ [k]} and {sj , j ∈ [k]}
with non-zero {a′′j , j ∈ [k]} contain one adjacent transposition of (0, b) and (0, 1), respectively.
By (2.25), the transposition positions {pj , j ∈ [k]} can be obtained. Since both {µj , j ∈
[k]} and {sj , j ∈ [k]} contain adjacent transpositions at the same positions, we can recover
{µj , j ∈ [k]} by swapping two symbols starting at {pj , j ∈ [k]}. If {a′′j , j ∈ [k]} only contain
one non-zero integer, say a′′1, three types of errors may occur based on the weight change
of {sj , j ∈ [k]} by (2.28). Based on the proof of Theorem 36, we can obtain the change
position p1 in µ1 and s1. If p1 < |µ1|, according to Table 2.3, µ1 contains one substitution
0c → a(c − a), we can recover µ1 by the substitution µ′

1p1
µ′
1(p1+1) → 0(µ′

1p1
+ µ′

1(p1+1)). If
p1 = |µ1|, according to Table 2.4, µ1 contains one substitution 0 → a, we can recover µ1 by
the substitution µ′

1p1
→ 0.

• If |µ′′| = |µ| + k, then (k − 1) of {µj , j ∈ [k]} contain one insertion Λ → 0, and one string,
say µk, contains either one insertion Λ → a in Table 2.4 or one insertion and one substitution
c → a(c − a) in Table 2.3. By (2.23), the (k − 1) strings {µj , j ∈ [k − 1]} can be recovered.
After that, we generate IL′(µ) = µ1 · · ·µ(k−1)µ

′
k by concatenating the k strings. Compared

to IL(µ), IL′(µ) contains either one insertion Λ → a or one insertion and one substitution
c → a(c−a). Based on (2.29), (2.30), and Construction 31, we obtain the changes (∆ā1,∆ā2).
If ∆ā1 + ∆ā2 ̸= 0 mod q, then IL′(µ) contains one insertion Λ → a. Then we can recover
the insertion Λ → a by (2.32). If ∆ā1 + ∆ā2 = 0 mod q, IL′(µ) contains one insertion and
one substitution c → a(c − a). By (2.21) and the fact that a + (c − a) = c, we construct
r′ = CS(IL′(µ)) with one insertion. Since (2.31) can correct one insertion in CS(IL′(µ)), we
can recover CS(IL(µ)), IL(µ), and {µj , j ∈ [k]}.

• If |µ′′| = |µ| + 2k, then (k − 1) strings of {µj , j ∈ [k]} insert two 0s with distances at
most 2, and one string such as µ1 contains one insertion a(0 − a). Similar to the proof of
Theorem 36, based on (2.26), we can recover {µ2, . . . ,µk} by deleting two 0s. After that, we
generate the string IL′(µ) = µ′

1µ2 · · ·µk. Obviously, the string IL′(µ) contains one insertion
a(0 − a). When IL(µ(z)) is divided into two strings Od(IL(µ(z))) and Ev(IL(µ(z))), one
symbol is inserted into each of Od(IL(µ(z))) and Ev(IL(µ(z))) to generate Od(IL′(µ(z)))

and Ev(IL′(µ(z))). Since both (2.29) and (2.30) can correct an insertion of one symbol in
Od(IL(µ)) and Ev(IL(µ)), respectively, we can recover IL(µ) and {µj , j ∈ [k]}.

Having recovered {µj , j ∈ [k]}, we can reconstruct µ, the duplication root drt(x), and the
codeword x ∈ Cnd. Thus, the error-correcting code Cnd can correct all the error patterns caused by
many exact k-TD and at most one substitution.

43

Since ⌈n−k
k ⌉ = ⌈nk ⌉ − 1, the code size of Cnd can be rewritten as

∥ Irr(k)(n)∥ ⩾ ∥Cnd∥ ⩾
∥ Irr(k)(n)∥

5kq3⌈n−k
2 ⌉2(4⌈nk ⌉2 − 1)k(n− k)

.

Because the integers j, aj , cj , b, ā1, ā2, ā3, ā4, b̄1, b̄2, b̄3, b̄4 can be any value in their corresponding
ranges, the number of possible codes is 5q3⌈n−k

2 ⌉2(2⌈n−k
k ⌉+ 3)k(2⌈n−k

k ⌉+ 1)k(n− k). These codes
partition the set Irr(k)(n), so there is at least one code with size

∥Cnd∥ ⩾
∥ Irr(k)(n)∥

5q4⌈n−k
2 ⌉2(2⌈n−k

k ⌉+ 3)k(2⌈n−k
k ⌉+ 1)k(n− k)2

.

Since ⌈n−k
k ⌉ = ⌈nk ⌉ − 1, the code size of Cnd can be rewritten as

∥ Irr(k)(n)∥ ⩾ ∥Cnd∥ ⩾
∥ Irr(n)∥

5kq4⌈n−k
2 ⌉2(4⌈nk ⌉2 − 1)k(n− k)2

.

From (2.33), we have

1

n
logq ∥ Irr(k)(n)∥ −

2k + 4

n
logq n− 5k + 5

n

⩽ Rn(Cnd) ⩽
1

n
logq ∥ Irr(k)(n)∥.

Furthermore, based on [90, (8)], for q+k ⩾ 4, M
2 ⩽ ∥ Irr(k)(n)∥ ⩽ M, where M ≜

∑⌊n/k⌋−1
i=0 ∥ Irr(k)(n−

ik)∥ is the size of the optimal code of length n that can correct any number of exact k-duplications.
Hence,

1

n
logq M − 2k + 4

n
logq n− 5k + 6

n

⩽ Rn(Cnd) ⩽
1

n
logq M.

In particular, compared to the optimal code correcting only exact k-duplications, the redundancy is
≲ (2k + 4) logq n symbols. Additionally both codes have the same asymptotic rate (given in (2.15)
for large k), and in this sense the code proposed here is asymptotically optimal, although it is not
clear whether (2k + 4) logq n is the best possible redundancy.

For the alphabet size q ∈ {3, 4, 5} and the duplication length k = 3, Figure 2.3 shows the lower
bound of the code rate as the length n of codewords ranges from 100 to 400, based on (2.33), (1.1)
and [30].

44

100 150 200 250 300 350 400

Length of codewords [n]

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

C
o
d
e
 r

a
te

lower bound with q=3

lower bound with q=4

lower bound with q=5

Figure 2.3: The lower bound of the code rate with respect to the length n with the duplication
length k = 3 and alphabet size q ∈ {3, 4, 5}.

2.6 Summary

We have studied the combination of a single substitution error with an unlimited number of tandem-
duplication errors, with a fixed duplication-window length. We focused on two noise models, where
the substitution error is either restricted to occur in an inserted copy during one of the k-duplication
events, or may occur at any position in the string. We have presented bounds as well as constructions
of error-detecting and error-correcting codes for both models. In all cases, a rate loss is observed
due to the need to recover from an unlimited number of k-duplications. Thus, we are interested in
the extra redundancy cost due to single-error detection or correction.

In the first case of detecting a single restricted substitution, we show that the additional required
cost in redundancy is bounded from above by logq(4(n− k)) using a GV argument in Theorem 12,
where Construction 17 also shows that it is bounded from above by logq(2(k + 1)2); depending on
the asymptotic regime of k, either may be tighter than the other. In Construction 20 we find a
constructive procedure for generating codes for that purpose, which incur a higher redundancy cost
of 4k logq(2); if k is fixed, which is a likely scenario, then that cost is nonetheless constant as well,
and improves upon Theorem12.

Further, in the second case of unrestricted substitution noise, Construction 26 provides error-
detecting codes for a single substitution incurring an extra redundancy cost of O(log(k2n)) in Theorem27
by choosing the set of codewords of the intersection of a Hamming code for one substitution and
Construction 17 for a k-switch error.

Finally, motivated by reducing the gap of rate loss to correct a noisy duplication, we construct
error-correcting codes to correct many exact k-duplications and one noisy duplication, equivalently
one unrestricted substitution, which suffers from a substitution. Our error-correction strategy is
based on roots of sequences and splitting operations that distribute the effect of the k-duplication
among k subsequences of the root but bring symbols affected by a substitution together, shown in
Theorem33. We then constructed an error-correcting code Construction37 that first recovers certain
binary substrings with whose help we can determine k − 1 of the subsequences of the root, leaving

45

a q-ary error in the last subsequence, which is corrected using Tenengolts’ q-ary code. Compared
to the optimal code for correcting only exact k-duplications, the proposed construction incurs a
redundancy of approximately (2k + 4) logq n symbols, without an asymptotic rate loss.

46

Chapter 3

Correcting short tandem duplications
and at most p edits

3.1 Introduction

The previous chapter presents a group of error-detecting codes and error-correcting codes that can
correct any fixed k-TDs and at most one restricted or unrestricted substitution. Apart from k-TDs,
duplications with bounded length k, ⩽ k-TDs, are also widely considered in recent works [8], [30],
[35]. This chapter focuses on constructing error-correcting codes to correct an arbitrary number of
short (tandem) duplications with length bounded by 3, i.e., ⩽3-TDs, and at most p edits, where each
edit can be an insertion, deletion, or a substitution. In the rest of this chapter, we call the channels
with an arbitrary number of short duplications and at most p substitutions as DS(p) channels.
Similarly, let DE(p) channels denote the channels with an arbitrary number of short duplications
and at most p edits. Furthermore, unless otherwise stated, ⩽ 3-TDs denote short duplications,
and irreducible strings represent ⩽3-irreducible strings over Σq. We start by presenting an simple
example of the DS(2) channel and discussing challenges of correct errors.

Example 39. Given the input GTCAC, an arbitrary number of ⩽3-TDs and 2 substitutions may
generate

x = GTCAC → GTCGTCAC → GTCGACAC →

GTCGAGACAC → GTGGAGACAC → GTGGAGGAGACAC,

where the substituted symbols are marked in red, and the short duplication copies are marked with
underlines. Note that there are no restrictions on the orders of the occurrences of short duplications
and substitutions. Provided that an arbitrary number of ⩽3-TDs are possible, the output may have
an unbounded length. Furthermore, a single substitution may be duplicated many times and affect
an unbounded segment of the output.

To correct any number of short duplications and at most p edits, this chapter first constructs
error-correcting codes capable of correcting any short duplications and at most one edit. After
that, a modified error-correcting code is proposed to correct any short duplications and at most p

47

substitutions. Finally, to reduce the redundancy, we further construct an error-correcting code for
the short duplications and at most p edits by applying the syndrome compression technique [88].
When q ⩾ 4 and p are constant, the state-of-the-art construction [88] achieves the same asymptotic
code rate as the error-correcting code for ⩽3-TDs only [30], with an extra redundancy of roughly
8p logq n symbols, and has polynomial time complexities in the encoding and decoding processes.

3.2 Notation and preliminaries

We define a substring edit in a string x ∈ Σ∗
q as the operation of replacing a substring u with a string

v, where at least one of u,v is nonempty. The length of the substring edit is max{|u|, |v|}. An L-
substring edit is one whose length is at most L. For example, given x = 0213122013, a 4-substring
edit can generate the sequence y = 021132013 by replacing the x[4,6] = 3120 by y[4,6] = 13.
Furthermore, a burst deletion in x ∈ Σ∗

q is defined as removing a substring v of x, where |v|
is the length of the burst deletion. A ⩽L-burst deletion has length at most L. For example,
given x = 0213122013, a ⩽4-burst deletion may generate y = 0212013 by removing the substring
x[4,7] = 312.

Recall that a (tandem) duplication (TD) of length k (k-TD) is an operation of generating a copy
of a substring and inserting it directly following the substring, where k is the length of the copy.
For example, for a string x = uvw with |v| = k, a k-TD may generate uvvw by inserting a copy
v, where the substring vv is called a (tandem) repeat with length 2k. Let ⩽k-TDs represent TDs of
length at most k. In this proposal, we focus on ⩽3-TDs, also called short duplications. For example,
given a string x = 213012 ∈ Σ∗

4, a set of ⩽3-TDs may generate an output

x =213012 → 213213012 → 21321303012 → 213221303012 = x′, (3.1)

where the duplicated copies are marked with underlines. Then we define x′ as a descendant of x,
i.e., a string generated from x by a set of ⩽3-TDs. Furthermore, for a string x ∈ Σ∗

q , let D∗(x) be
the set of the descendants generated from x by an arbitrary number of ⩽3-TDs.

A deduplication of length k is an operation of replacing a repeat vv with v with |v| = k.
Then ⩽3-deduplications are deduplications with length upper bound by 3. In this chapter, ⩽3-
deduplications are simply called deduplications. For example, the string x in (3.1) can be recovered
from x′ by three deduplications.

The set of ⩽3-irreducible strings of length n over Σq, denoted Irrq(n), consists of strings without
repeats of the form vv, where |v| ⩽ 3. Note that Irrq(n) is affected by the alphabet size q. For
simplicity, Irrq(n) may also be denoted as Irr(n). Let Irr(∗) represent all irreducible strings of finite
length. A duplication root of x′ is a ⩽3-irreducible string x such that x′ is a descendant of x.
Equivalently, x can be obtained from x′ by performing all possible deduplications of length at most
k. The set of duplication roots of x′ is denoted R(x′), i.e.,

R(x′) = {x ∈ Irr(∗)|x′ ∈ D∗(x)}.

48

For ⩽3-TDs, the work [30] showed that R(x′) has a single element1. When R(x′) is a singleton,
we may treat it as a string instead of a set. The uniqueness of the root implies that if x′′ is a
descendant of x′, then R(x′) = R(x′′).

Besides ⩽3-TDs, we also consider substitution errors, where each substitution replaces an ar-
bitrary symbol by another symbol from the same alphabet. Continuing the example in (3.1), the
output after two substitutions and two ⩽3-TDs on x′ may be

x′ = 213221303012 → 213211303012 → 213213211303012

→ 213213211323012 → 213213211323323012 = x′′,

where the symbols generated from substitutions are marked in red. Let D∗,⩽p(x) represent the set
of strings derived from x by an arbitrary number of ⩽3-TDs and at most p substitutions. In the
example above, we have x′′ ∈ D∗,⩽2(x).

Construction 40. (c.f.[30]) Given q ⩾ 3 and a positive integer n, let Cd
n = Irr(n) over Σq.

Example 41. Given Σ3 = {0, 1, 2} and n = 5, the code with 30 codewords is

Cd
5 = Irr(5) = {01020, 01021, 01201, 01202, 01210, 02010, 02012, 02101, 02102, 02120,

10120, 10121, 10201, 10210, 10212, 12010, 12012, 12021, 12101, 12102,

20102, 20120, 20121, 20210, 20212, 21012, 21020, 21021, 21201, 21202}.

Lemma 42. Given q ⩾ 3, the code Cd
n achieves the same asymptotic code rate as the original code

CD in [30, Construction C] to correct an arbitrary number of short duplications with the highest
known asymptotic rate. Furthermore, given q ⩾ 4, ∥CD∥ ⩽ q−2

q−3∥C
d
n∥.

The key notations used in this chapter are summarized in Table 3.1.

3.3 Correcting multiple short duplications and one edit error

In this subsection, we focus on correcting errors that may arise from channels with many duplica-
tion errors of length at most 3 and one edit error, which may occur in any position in the string.
Note that for duplications whose length is at most 3, the case most relevant to this chapter, Jain
et al. [30] proposed error-correcting codes that were shown to have an asymptotically optimal rate
by Kovačević [35]. Considering a single edit error reveals important insights into the interactions
between edit and duplication errors and will be of use for studying the general case of t edit errors.
Based on Example 39, given that an arbitrary number of duplications are possible, an unbounded
segment of the output word may be affected by a substitution errors, and, for example, the substi-
tuted symbol may appear many times. However, relying on the fact that short tandem duplications
lead to regular languages, we show that with an appropriate construction and preprocessing of the

1Note that this statement only applies to duplications of length at most 3. For duplications of length at most 4,
the root is not unique.

49

Table 3.1: Key notations in Chapter 3

Notation Definition
Σq = {0, 1, · · · , q − 1} the alphabet set with q elements

|u| the length of a sequence u
∥S∥ the number of elements in the set S

⩽ k-TD
a tandem duplication to generate

a substring aa from a with |a| ⩽ k

⩽ 3-TD/STD
a tandem duplication to generate

a substring aa from a with |a| ⩽ 3

Irrq(n)/Irr(n)
the set of all length-n irreducible sequences without

tandem repeats aa of length ⩽ k

R(x) the root of x by removing substrings a from aa with |a| ⩽ 3.

Irrq(n)/Irr(n) removing all substrings 0k in z

D∗,⩽p(x)
the set of all outputs generated from x

by many STDs and at most p substitutions

DS(p) channel
an output may suffer from

many STDs and at most p substitutions from an input

DE(p) channel
an output may suffer from

many STDs and at most p edit errors from an input

DSD(p) channel

an output may suffer from
many STDs and at most p substitutions from an input,

followed by removing all a from aa with |a| ⩽ k

DED(p) channel

an output may suffer from
many STDs and at most p edit errors from an input,

followed by removing all a from aa with |a| ⩽ k

output of the channel, the deleterious effects of the errors may be localized. We leverage constrained
coding and maximum distance separable codes to design codes for correcting the resulting errors,
establish a lower bound on the code rate, and provide an asymptotic analysis that shows that the
code has rate at least log(q − 2), where q is the size of the alphabet and the log is in base 2. We
note that the rate of the code correcting only short duplications is upper bounded by log(q − 1).
When q = 4, the case corresponding to DNA storage, we provide a computational bound for the
code rate, showing that asymptotically its rate is only 0.003 bits/symbol smaller than the code that
corrects short duplications but no edit.

We will first consider only substitution edits and construct error-correcting codes capable of
correcting many short duplications and a substitution. We will then prove that the same code can
correct any number of duplications and an edit error by transforming insertion and deletion errors
to substitution errors.

3.3.1 Channels with many ⩽3-TDs and one substitution error

In this subsection, we study channels that alter the input string by applying an arbitrary number
of duplication errors and at most one substitution error, where the substitution may occur at any
time in the sequence of errors. We will first study the conditions a code must satisfy to be able to

50

Start S1 S2

S3

S4

T2 T4

T3

0 1

2 0

1

0

1

0 2

1

2

0

2001

21

Figure 3.1: Finite automaton for the regular language D∗(012) based on [29].

correct such errors. Then, we will investigate the effect of such channels on the duplication root of
sequences, which is an important aspect of designing our error-correcting codes.

A code C is able to correct an arbitrary number of ⩽3-TDs and a substitution if and only if for
any two distinct codewords c1, c2 ∈ C, we have

D∗,⩽1(c1) ∩D∗,⩽1(c2) = ∅.

To satisfy this condition, it is sufficient to have

R(D∗,⩽1(c1)) ∩R(D∗,⩽1(c2)) = ∅. (3.2)

Condition (3.2) implies that for distinct codewords c1 and c2, R(c1) ̸= R(c2). Since both R(c1)

and R(c2) are singletons, this latter condition is in fact sufficient for correcting only ⩽3-TDs since
this type of error does not alter the duplication root. For correcting only ⩽3-TDs, defining the code
as the set of irreducible strings of a given length leads to asymptotically optimal codes [30], [35].
The decoding process is simply finding the root of the received word.

We take a similar approach to correcting many ⩽3-TDs and a substitution. More specifically,
the proposed code C is a subset of ⩽3-irreducible strings, i.e., R(c) = c for c ∈ C. To recover c
from the received word y, we find R(y) and from that recover R(c) = c, as will be discussed.

We start by studying the effect of ⩽3-TDs and one substitution on the root of a string. Specifi-
cally, for strings x and x′′ ∈ D∗,⩽1(x), it is of interest to determine how R(x′′) differs from R(x).
We either have x′′ ∈ D∗(x), i.e., x′′ suffers only duplications, or x′′ ∈ D∗,1(x). In the former
case R(x′′) = R(x). Hence, below we consider only x′′ ∈ D∗,1(x). Note that duplications that
occur after the substitution do not affect the root and so in our analysis we may assume that the
substitution is the last error. We start by providing a useful definition and auxiliary lemmas.

Let s and s̄ be strings of length n, and let A be the set of symbols in s and Ā the set of symbols

51

Start S1 S2

S3

S4

T2 T4

T3

S5

S6

S7

T5 T7

T6

S8

S9

S10

T8 T10

T9

0 1

2 0

1

0

1

0 2

1

2

0

2001

21

3

1

2

3

1 3

2

3

12

3112

32

4

2

3

4

2 4

3

4

23

4223

43

Figure 3.2: Finite automaton for the regular language D∗(01234) based on [29].

in s̄. We say that s dominates s̄ if there exists a function f : A → Ā such that s̄ = f(s), where
f(s) = f(s1) · · · f(sn). For example, 0102 dominates 1212 (using the mapping f(0) = 1, f(1) =

2, f(2) = 2) but 0102 does not dominate 0010. The string 012 · · · k dominates any string of length
k + 1.

The following lemma helps reduce the number of cases we need to consider by using the domi-
nance relationship defined above.

Lemma 43. Suppose s dominates s̄. The following hold:

1. Suppose we apply the same duplication in both s and s̄ (that is, in the same position and with
the same length). Let the resulting strings be s′ and s̄′, respectively. Then s′ dominates s̄′.

2. If a deduplication is possible in s, a deduplication in the same position and with the same
length is possible in s̄. Let the result of applying this deduplication to s and s̄ be denoted by
s′ and s̄′, respectively. Then s′ dominates s̄′.

3. Let s̄′ be obtained from s̄ via a substitution in position i and let s′ be obtained from s by
substituting the symbol in position i with a symbol x not present in s. Then, s′ dominates s̄′.

4. We have |R(s̄)| ⩽ |R(s)|.

Before proving the lemma, below we provide an example for each statement, where duplicated,
deduplicated, and substituted symbols are underlined. For i) consider

s = 0102 → s′ = 010102

s̄ = 0101 → s̄′ = 010101,

for ii) consider

s = 01021021 → s′ = 01021

52

s̄ = 01011011 → s̄′ = 01011,

for iii) consider

s = 01021021 → s′ = 01023021

s̄ = 01011011 → s̄′ = 01010011,

and for iv) consider

s = 01021021 → 01021 = R(s)

s̄ = 01011011 → 01011 → 011 → 01 = R(s̄).

Proof. Let f be a function that can show s dominates s̄. i) For the first statement, the same
mapping f also shows that s′ dominates s̄′. ii) For the second statement, consider a repeat aa in s.
Then the repeat f(a)f(a) is present in s̄ in the same position. So the deduplication is possible in s̄.
The same mapping f proves that s′ dominates s̄′. iii) For the third statement, let the substitution
in s̄ alter the symbol in position i to some symbol a. If we extend f by mapping x to a, then f

proves that s′ dominates s̄′. iv) From ii), any sequence of deduplications applied to s can also be
applied to s̄ = f(s). In particular, the sequence of deduplications that takes s to its root R(s) takes
s̄ = f(s) to f(R(s)). The root of s̄ can be obtained by removing any remaining repeats in f(R(s))

(recall that the root is unique so all sequences of deduplications must lead to the same sequence).
Hence |R(s̄)| ⩽ |f(R(s))|. Noting |f(R(s))| = |R(s)| completes the proof.

The next lemma studies the length of the roots of the descendants for a special subset of strings.

Lemma 44. For any alphabet Σq,

max
x∈Σ3

q

max
x′′∈D∗,1(x)

|R(x′′)| = 13,

max
x∈Σ5

q

max
x′′∈D∗,1(x)

|R(x′′)| ⩽ 17.

Proof. For the first statement, it suffices to consider only x = 012 and assume that the substitution
that leads to x′′ replaces a symbol in x with some symbol other than 0, 1, and 2, e.g., 3. To see
this, consider any string x̄ of length 3 over any alphabet. The string x̄ is dominated by x. Now
consider any x̄′′ ∈ D∗,1(x̄). There is a sequence of “errors” consisting of duplications, a substitution,
and more duplications that transforms x̄ to x̄′′. By Lemma 43, i) and iii), there is a corresponding
sequence of errors, consisting of duplications, a substitution, and duplications, that when applied
to x will result in x′′, where x′′ dominates x̄′′ (the substitution in the sequence of errors for x
substitutes the existing symbol with a symbol not in the set {0, 1, 2}). Then by Lemma 43, iv), we
have |R(x̄′′)| ⩽ |R(x′′)|. Since this is true for any choice of x̄ and any x̄′′ ∈ D∗,1(x̄), it suffices to
find

max
x′′∈D∗,1(012)

|R(x′′)|,

53

Table 3.2: Paths representing irreducible strings starting from and ending at specific states.

State Irreducible paths
from ‘Start’ to
state

Irreducible paths
from State to S3

S1 0 012, 1012, 12, 12012,
S2 01, 01201 012,1012, 12, 12012, 2, 2012,

212, 212012
S3 012 012, 02012, 12, 12012, 2, 2012,

212, 212012
S4 0120 012, 02012, 1012, 12, 12012,

2012

T2 010, 012010 012, 1012,12, 12012
T3 0121 12, 12012, 2, 2012, 212, 212012
T4 01202 012, 02012, 2012

where the substitution resulting in x′′ replaces the existing symbol with a symbol not present in
x = 012. Henceforth, we assume x = 012.

As shown in [29], D∗(x) is a regular language whose words can be described as paths from ‘Start’
to S3 in the finite automaton given in Figure 3.1, where the word associated with each path is the
sequence of the edge labels. Let x′ ∈ D∗(x) and x′′ ∈ D0,1(x′). Assume x′ = uwz and x′′ = uŵz,
where u, z are strings and w and ŵ ̸∈ {0, 1, 2} are distinct symbols. The string u represents a path
from ‘Start’ to some state U and the string z represents a path from some state Z to S3 in the
automaton, where there is an edge with label w from U to Z.

Since R(x′′) = R(R(u)ŵR(z)), we have |R(x′′)| ⩽ |R(u)| + 1 + |R(z)| (recall that R(s) is a
singleton for a string s). The maximum value for |R(u)| is the length of some path from ‘Start’ to
U such that the corresponding sequence does not have any repeats (henceforth, called an irreducible
path). All such paths/sequences are listed in the second column of Table 3.2 for all choices of
U . Similarly, the maximum value for |R(z)| is the length of some irreducible path from Z to
S3; all such possibilities are listed in the third column of Table 3.2. An inspection of Table 3.2
shows that choosing U = T2 and Z = S2 leads to the largest value of |R(u)| + 1 + |R(z)|, namely
6 + 1 + 6 = 13. We note that the specific sequence achieving this length is x′′ = 0120103212012,
which can be obtained via the sequence x → 012 012 012 → 012 01012 012 → 012 0101212 012 →
0120103212012 = x′′ with a substitution 1 → 3 in the last step, where we have combined non-
overlapping duplications into a single step.

Let us now prove the second statement. Again we need only consider x = 01234, for which
D∗(x) is the regular language whose automaton is shown in Figure 3.2. In a similar manner to the
proof of the previous part, we can show that the length of the longest irreducible path from ‘Start’
to any state in the automaton is at most 8 and the length of the longest irreducible path from any
state to S9 is also at most 8. Hence, |R(x′′)| ⩽ 8 + 1 + 8 = 17, completing the proof.

We now consider changes to the roots of arbitrary strings when passed through a channel with
arbitrarily many ⩽3-TDs and one substitution. The next lemma is used in the main result of this

54

section, Theorem 47, which shows that even though a substituted symbol may be duplicated many
times, the effect of a substitution on the root is bounded.

Lemma 45. Let x be any string of length at least 5 and x′ ∈ D∗(x). For any decomposition of x
as

x = r ab t de s,

for a, b, d, e ∈ Σq and r, t, s ∈ Σ∗
q, with t nonempty, there is a decomposition of x′ as

x′ = u ab w de v

such that u,w,v ∈ Σ∗
q, uab ∈ D∗(rab), abwde ∈ D∗(abtde), and dev ∈ D∗(des).

Proof. If x = x′, the claim is true since we may choose u = r,w = t,v = s. It suffices to consider
the case in which x′ is obtained from x via a single duplication. The case of more duplications can
be proved inductively.

First suppose the length of the duplication transforming x to x′ is 1. If this duplication occurs in
r, we choose u to be the descendant of r and let w = t and v = s, satisfying the claim. Duplication
of a single symbol in t or s is handled similarly. If a is duplicated, we let u = ra, w = t, v = s. If
b is duplicated, we let u = r, w = bt, v = s. The cases for d and e are similar.

Second, consider a duplication of length 2 or 3. Such a duplication is fully contained in rab,
abtde, or des. A duplication of length 2 or 3 applied to a string z does not alter the first two and
the last two symbols of z. So, for example, if the duplication occurs in rab, then we can choose
u such that uab ∈ D1(rab) and let w = t and v = s. The cases of duplications contained in the
other strings are similar.

We now provide an example in which we illustrate how the root of a string can be altered by
several duplications and one substitution.

Example 46. Fix Σ4 = {0, 1, 2, 3} as the alphabet. In the following examples, x is an irreducible
string, x′ ∈ D∗(x), and x′′ ∈ D0,1(x′). We compare R(x) = x with R(x′′). In particular, we will
decompose R(x) and R(x′′) as R(x) = αβγ and R(x′′) = αβ′γ. In other words, R(x′′) can be
obtained from R(x) by deleting β and inserting β′.

• Let x = 012302, x′ = 011201201230202, and x′′ = 011201301230202, where the under-
lined symbols result from duplication and the bold symbol from substitution. Then R(x′′) =

012013012302 and the change from R(x) to R(x′′) can be viewed as

R(x) = 012︸︷︷︸
α

302︸︷︷︸
γ

→ R(x′′) = 012︸︷︷︸
α

013012︸ ︷︷ ︸
β′

302︸︷︷︸
γ

,

with β = Λ.

• Let x = 13203103, x′ = 1313213203103103, and x′′ = 1313213103103103. Then R(x′′) =

55

13213103 and the change from R(x) to R(x′′) can be viewed as

R(x) = 132︸︷︷︸
α

0︸︷︷︸
β

3103︸︷︷︸
γ

→ R(x′′) = 132︸︷︷︸
α

1︸︷︷︸
β′

3103︸︷︷︸
γ

.

• Let x = 012010321201230, x′ = 01201201032120201201230, and x′′ = 01201201012120201201230.
Then R(x′′) = 01230 and the change from R(x) to R(x′′) can be viewed as

R(x) = 012︸︷︷︸
α

0103212012︸ ︷︷ ︸
β

30︸︷︷︸
γ

→ R(x′′) = 012︸︷︷︸
α

30︸︷︷︸
γ

, (3.3)

with β′ = Λ.

Let L be the smallest integer, if it exists, such that for any alphabet Σq, any x ∈ Σ∗
q , and any

x′′ ∈ D∗,1(x), we can obtain R(x′′) from R(x) by deleting a substring of length at most L and
inserting a substring of length at most L in the same position. The example given in (3.3) shows
that L, if it exists, satisfies L ⩾ 10. We note however that the definition does not guarantee that
L exists as we may be able to produce examples in which the length of the deleted or the inserted
substring is arbitrarily long. The next theorem shows that such examples cannot be constructed by
providing an explicit upper bound on L.

Theorem 47. L exists (i.e., it is finite). Moreover, L ⩽ 17.

Proof. We may assume x is irreducible. If it is not, let x0 = R(x) so that x′′ ∈ D∗,1(x) ⊆ D∗,1(x0).
If the statement of the theorem holds for x0, it also holds for x since R(x) = R(x0).

We will find α,β,β′,γ ∈ Σ∗
q with R(x) = αβγ and R(x′′) = αβ′γ such that |β′| ⩽ 17. By

symmetry, it suffices to prove |β′| ⩽ 17 for all irreducible x. To see this symmetry, note that αβ′γ

is obtained from αβγ by applying, in order, duplications, a single substitution, more duplications,
and finally removing all repeats (performing all possible deduplications). Recall that for ⩽3-TDs,
the root is unique and regardless of the order in which deduplications are applied, we will arrive at
the same root. In other words, applying a sequence of duplications to a string s and then removing
all repeats is equivalent to removing all repeats from s. Hence, we may instead assume that the
process transforming αβγ to αβ′γ is as follows: duplications, substitution, deduplications. Since
this process is reversible, general statements that hold for β′ also hold for β.

Let x′ ∈ D∗(x) be obtained from x through duplications and x′′ be obtained from x′ through
a substitution. We assume that x = rabcdes, where r, s ∈ Σ∗

q and a, b, c, d, e ∈ Σq, such that the
substituted symbol in x′ is a copy of c. Note that if |x| < 5 or if a copy of one of its first two
symbols or its last two symbols are substituted, then we can no longer write x as described. To
avoid considering these cases separately, we may append two dummy symbols to the beginning of
x and two dummy symbols to the end of x, where the four dummy symbols are distinct and do
not belong to Σq, and prove the result for this new string. Since these dummy symbols do not
participate in any duplication, substitution, or deduplication events, the proof is also valid for the
original x.

56

With the above assumption and based on Lemma 45, we can write

x = r ab c de s

x′ = u ab w de v ∈ D∗(x),

x′′ = u ab z de v ∈ D0,1(x′),

(3.4)

where uab ∈ D∗(rab), abwde ∈ D∗(abcde), dev ∈ D∗(des), and z is obtained from w by substitut-
ing an occurrence of c. From (3.12), R(x′′) = R(rR(abzde)s), where R(abzde) starts with ab and
ends with de (which may fully or partially overlap). The outer R in R(rR(abzde)s) may remove
some symbols at the end of r, beginning and end of R(abzde), and the beginning of s, leading
to αβ′γ, where α is a prefix of r, β′ is a substring of R(abzde), and γ is a suffix of s. Hence,
|β′| ⩽ |R(abzde)|. But abzde ∈ D∗,1(abcde) and thus by Lemma 44, |R(abzde)| ⩽ 17, completing
the proof.

3.3.2 Error-correcting codes

Having studied how duplication roots are affected by tandem duplication and substitution errors,
in Subsection 3.3.2, we construct codes that can correct such errors. In Subsection 3.3.3, we show
that the same codes can correct duplication and edit errors. We will also determine the rate of
these codes and compare it with the rate of codes that only correct duplications, which provides an
upper bound.

As noted in the previous section, the effect of a substitution error on the root of the stored
codeword is local in the sense that a substring of bounded length may be deleted and another
substring of bounded length may be inserted in its position. A natural approach to correcting such
errors is to divide the codewords into blocks such that this alteration can affect a limited number of
blocks. In particular, we divide the string into message blocks that are separated by marker blocks
known to the decoder. We start with an auxiliary construction.

Construction48. Let l,m,N be positive integers with m > l and σ ∈ Irr(l). The code Cσ of length
n = N(m+ l)− l over Σq consists of irreducible strings x obtained by alternating between message
blocks of length m and copies of the marker sequence σ, i.e.,

x = B1σB2σ · · ·σBN ,

such that x ∈ Irr(N(m+ l)− l), Bi ∈ Irr(m) ⊆ Σm
q , i ∈ [N], and there are exactly two occurrences

of σ in σBiσ, for all i ∈ [N]. (Thus, there are precisely N − 1 occurrences of σ in x.)

We remark that for our purposes, we can relax the condition on σBiσ for i = 1, N . Specifically,
it suffices to have exactly one occurrence of σ in B1σ and one occurrence of σ in σBN . For
simplicity however, we do not use these relaxed conditions.

Example 49. Let m = 6, N = 5, and σ = 01231 with l = 5. Then the code Cσ in Construction 48

57

Figure 3.3: If marker sequences, shown as gray, are in the same positions in the codeword x and
the retrieved string y, then β and β′ have the same length and at most two of the message blocks
are affected by the errors, as discussed in the proof of Theorem 50.

Figure 3.4: If marker sequences, shown as gray, are in different positions in the codeword x and
the retrieved string y, then a substring u is identified and then expanded to ensure it contains β′.
Those blocks in y that intersect with this expanded substring are marked as erasures while other
blocks are error-free message blocks, as described in the proof of Theorem 50.

will contain the codeword

x =0120130123103012101231202312

0123130320301231203023,

where the message blocks B1 = 012013, B2 = 030121, B3 = 202312, B4 = 303203, B5 = 203023

are marked in red. Furthermore, σBiσ ∈ Irr(16) for i ∈ [5], which, as will be shown in Lemma 51
below, implies that the codeword x ∈ Σ50

4 is irreducible.

Given an input x with N message blocks, let y be the root of the output after duplications and
at most one substitution. We define a block in y as a maximal substring that does not overlap with
any separator sequence σ. Note that a block in y may or may not be an error-free message block
from x.

With Construction 48 in hand, in the next theorem, we show that the effect of one substitution
and many tandem duplications is limited to a small number of message blocks. We note that L
appearing in the theorem below was defined before Theorem 47 and satisfies L ⩽ 17.

Theorem 50. Let Cσ be the code defined in Construction 48. If m > L, then there exists a decoder
Dσ that, for any x ∈ Cσ and y ∈ R(D∗,⩽1(x)), outputs z = Dσ(y) such that, relative to x, either
two of the message blocks Bi are substituted in z or four of them are erased.

Proof. Let x = αβγ and y = αβ′γ, where by Theorem 47, |β|, |β′| ⩽ L. To avoid a separate
treatment for blocks B1 and BN , the decoder appends σ to the beginning and the end of y and

58

assumes that the codewords are of the form σB1σ · · ·σBNσ. The decoder considers two cases
depending on whether the marker sequences σ are in the same positions in y as in the codewords
in Cσ. If the markers are in the same positions, as shown in Figure 3.3, then |x| = |y|, and
consequently, |β| = |β′| ⩽ L. Since L < m = |Bi|, at most two (adjacent) blocks Bi are affected by
substituting β by β′ and thus z = y differs from x in at most two blocks.

On the other hand, if the markers are in different positions in y compared to the codewords
in Cσ, the decoder uses the location of the markers to identify the position of the message blocks
that may be affected and erases them, as described below. By the definition of blocks in y, since
the markers are in different positions in x and y, there is at least one block B in y whose length
differs from m. Hence, y has a substring u of length m + 2l that starts with σ and contains part
or all of B but does not end with σ. Two examples where such a situation may arise are shown in
Figure 3.4. On the left, |β| = |β′| and a marker is absent from y due to substituting β with β′. On
the right, β and β′ have different lengths, and this causes the markers to move.

Let δ = |x|−|y| = |β|−|β′| and δ+ = max(0, δ). Note that |β′| = |β|−δ ⩽ L−δ. Furthermore,
|β′| ⩽ L and so |β′| ⩽ min(L,L − δ) = L − δ+. Let y′ be obtained by removing u along with
L− δ+−1 elements from each of its sides from y. This removes β′ from y. More formally, we claim
y′ can be obtained via a deletion from x. First, suppose |β′| = 0. Then y = αγ. Note that u is
not a substring of x since every substring of x that has length m+ 2l and starts with σ also ends
with σ. Hence, it must overlap with both α and γ. After deleting u from y, we obtain a string
y′ = α′γ ′ such that α′ is a prefix of α and γ ′ is a suffix of γ, proving the claim. Next, suppose
that |β′| > 0 and recall that y = αβ′γ. Since u is not a substring of x, it is not a substring of α
or γ. Furthermore, as u is longer than β′, it not a substring of β′ either. Hence, at least one of the
following holds: i) u overlaps with both α and β′ or ii) u overlaps with both β′ and γ. Case i) is
shown in Figure 3.4. In either case, the substring of y consisting of u and the L− δ+ − 1 elements
on each side of u contains β′, proving the claim. Hence, y′ is a sequence that relative to x suffers
a deletion of length at most m+ 2l + 2L − 2δ+ − 2 + |β| − |β′| < 3m+ 2l from a known position.
The deletion affects at most 4 message blocks and since its location is known, the decoder can mark
these message blocks as erased.

In Construction 48, the constraint that x must be irreducible creates interdependence between
the message blocks, making the code more complex. The following lemma allows us to treat each
message block independently provided that σ is sufficiently long.

Lemma51. Let x be as defined in Construction 48 and assume l ⩾ 5. The condition x ∈ Irr(N(m+

l)− l) is satisfied if
σBiσ ∈ Irr(m+ 2l), for all i ∈ [N]. (3.5)

Proof. Suppose that x has a repeat aa, with |a| ⩽ 3. Since |aa| ⩽ 6 and |σ| ⩾ 5, there is no i such
that the repeat lies in BiσBi+1 and overlaps both Bi and Bi+1. So it must be fully contained in
B1σ, σBN , or σBiσ for some 2 ⩽ i ⩽ N − 1, contradicting assumption (3.5).

We now present a code based on Construction 48 and prove that it can correct any number of
tandem duplications and one substitution error.

59

(i) (ii)

Figure 3.5: The duplication-substitution channel along with the decoder (i) and an equivalent
representation of the end-to-end system (ii).

Construction 52. Let l,m be positive integers with m > l ⩾ 5, and σ ∈ Irr(l). Furthermore, let
Bm
σ denote the set of sequences B such that σBσ ∈ Irr(m + 2l) has exactly two occurrences of σ,

and M = M
(m)
σ = |Bm

σ |. Finally, let t be a positive integer such that 2t ⩽ M and ζ : F2t → Bm
σ be

an injective mapping. We define CMDS as

CMDS = {ζ(c1)σζ(c2)σ · · ·σζ(cN) :c ∈ MDS(N,N − 4, 5)},

where MDS(N,N − 4, 5) denotes an MDS code over F2t of length N = 2t − 1, dimension N − 4,
and Hamming distance dH = 5.

Note that the mapping ζ exists because ∥F2t∥ ⩽ ∥Bm
σ ∥ by the choice of t. For example, we can

sort the elements of F2t and Bm
σ lexicographically and map the ith element of F2t to the ith element

of Bm
σ .

Theorem 53. If m > L, then the error-correcting code CMDS in Construction 52 can correct any
number of ⩽3-TDs and at most one substitution error.

Proof. Let the stored codeword be x = B1σ · · ·σBN ∈ CMDS , where Bi = ζ(ci) for i ∈ [N] and
c ∈ C, with C denoting an MDS(N,N − 4, 5) code. Based on the definitions of ζ and the set
Bm

σ in Construction 52, the ith message block Bi = ζ(ci) satisfies σBiσ ∈ Irr(m + 2l). Then, by
Lemma 51, x ∈ Irr(N(m + l) − l) and so x ∈ Cσ. Therefore, CMDS ⊆ Cσ. Suppose the retrieved
word is y. By Theorem 50, Dσ(y) suffers either at most two substitutions or at most four erasures
of message blocks. Suppose the message block Bi is substituted by another string v of length m.
If ζ−1(v) exists, this translates to a substitution of ci. If not, we define ζ−1(Bi) as an arbitrary
element of F2t , again leading to a possible substitution of ci with another symbol. To decode, we
can use the MDS decoder on ζ−1(Dσ(y)), which relative to c suffers either ⩽ 2 substitutions or
⩽ 4 erasures. Given that the minimum Hamming distance of the MDS code is 5, the decoder can
successfully recover c.

3.3.3 Extension to edit errors

In this subsection, we extend Theorem 53 to include insertion and deletion errors in addition to
substitution errors. We do so by showing an insertion can be viewed as a duplication plus a
substitution and a deletion as a substitution plus a deduplication.

The duplication-substitution channel discussed so far can be viewed as shown in Figure 3.5i,
where in a pre-decoding step, the root of the retrieved string is found and then passed to the

60

decoder. Recall that for ⩽ 3-TDs, applying a sequence of duplications to a string s and then
removing all repeats is equivalent to removing all repeats from s. Hence, The process shown in
Figure 3.5i is equivalent to the one shown in Figure 3.5ii. The same equivalence holds if we replace
the block representing a substitution error with a block representing an edit error. We can now
prove the following corollary to Theorem 53.

Corollary 54. If m > L, then the error-correcting code CMDS in Construction 52 can correct any
number of ⩽3-TDs and at most one edit error.

Proof. Suppose that c ∈ CMDS suffers a sequence of errors consisting of duplications, an edit, and
more duplications. Then all repeats are removed from the resulting string. This process is equivalent
to applying the first set of duplications and the edit and then removing all the repeats. Denote
this sequence of operations applied to c by S and the final result by S(c). We show that we can
find a sequence S′ consisting of duplications, at most one substitution, and removal of all repeats,
such that S(c) = S′(c). If the edit in S is a substitution, then we let S′ = S. If it is an insertion
or a deletion, we again start by setting S′ = S and then modify S′ as follows: i) If the edit is an
insertion, we replace it in S′ by a duplication and, if needed, a substitution. Namely, we duplicate
the symbol before the insertion and then substitute the copy as needed. For example, if in S we have
abc

ins−−→ abxc, we replace this step by abc
dup−−→ abbc

sub−−→ abxc, where ins stands for insertion, dup
for duplication, and sub for substitution. The substitution is not necessary if x = b. ii) If the edit is
a deletion, we replace it by a deduplication that is preceded by a substitution if needed. Namely, we
substitute the symbol that is deleted in S to be equal to the previous symbol and then deduplicate
it. For example, if in S we have abc

del−−→ ac, we replace this step by abc
sub−−→ aac

dedup−−−→ ac in S′,
where del stands for deletion and dedup for deduplication. If b = a, the substitution is not needed.
Now, S′ is a sequence consisting of duplications, at most one substitution, and then removal of
all repeats, and furthermore S(c) = S′(c). From Theorem 53 and the above discussion about the
equivalence of Figures 3.5i and 3.5i, we find that the decoder can produce c given S′(c).

3.3.4 Construction of message blocks

In this subsection, we study the set Bm
σ of valid message blocks of length m with σ as the marker.

Since in Construction 52, the markers σ do not contribute to the size of the code, to maximize the
code rate, we set l = |σ| = 5, i.e., σ ∈ Irr(5).

For a given σ, we need to find the set Bm
σ . The first step in this direction is finding all irreducible

sequences of length m + 2l = m + 10. We will then identify those that start and end with σ but
contain no other σs.

As shown in [30], the set of ⩽3-irreducible strings over an alphabet of size q is a regular language
whose graph Gq = (Vq, ξq) is a subgraph of the De Bruijn graph. The vertex set Vq consists of 5-
tuples a1a2a3a4a5 that do not have any repeats (of length at most 2). There is an edge from
a1a2a3a4a5 → a2a3a4a5a6 if a1a2a3a4a5a6 belongs to Irr(6). The label for this edge is a6. The
label for a path is the 5-tuple representing its starting vertex concatenated with the labels of the
subsequent edges. In this way, the label of a path in this graph is an irreducible sequence and each

61

irreducible sequence is the label of a unique path in the graph. The graph Gq, when q = 3, can be
found in [30, Fig. 1].

The following theorem characterizes the set Bm
σ and will be used in the next subsection to find

the size of the code.

Theorem 55. Over an alphabet of size q and for σ ∈ Irr(5), there is a one-to-one correspondence
between B ∈ Bm

σ and paths of length m+5 in Gq that start and end in σ but do not visit σ in their
interiors. Specifically, each sequence B ∈ Bm

σ corresponds to the path with the label σBσ.

Proof. Consider a path p = v1v2 · · ·vk+1 where vi are vertices of Gq and k is the length of the
path. Denote the label of this path by s = s1s2 · · · sk+5. It can be shown by induction on k that
vi = sisi+1si+2si+3si+4. Hence, the label of a path of length m + 5 that starts and ends in σ but
does not visit σ otherwise is an irreducible sequence with exactly two occurrences of σ and is of
the form σBσ where B ∈ Bm

σ . Conversely, suppose B ∈ Bm
σ . Then σBσ is an irreducible string

of length m + 10 and thus the label of a unique path of length m + 5 in Gq. This path starts and
ends in σ. But it does not visit σ in its interior since that would imply there are more than two
occurrences of σ in σBσ.

3.3.5 Code rate

We now turn to find the rate of the code introduced in this section. For a code C of length n and
size |C|, the rate is defined as R(C) = 1

n log ∥C∥. For the code of Construction 52,

R(CMDS) =
N − 4

Nm+ (N − 1)l
log(N + 1),

where N depends on the choice of σ ∈ Irr(5). More specifically, N ⩽ 2⌊logM
(m)
σ ⌋ − 1. Choosing the

largest permissible value for N implies that N ⩾ (M
(m)
σ − 1)/2 and

R(CMDS) ⩾
1− 4/N

m+ l
log(N + 1)

⩾
1

m+ l

(
1− 8

M
(m)
σ − 1

)
(logM

(m)
σ − 1).

If we let m and M
(m)
σ grow large, the rate becomes

R(CMDS) =
1

m
logM

(m)
σ (1 + o(1)). (3.6)

For a given alphabet Σq, let A denote the adjacency matrix of Gq, where the rows and columns
of A are indexed by v ∈ Vq ⊆ Σ5

q . Furthermore, let A(v) be obtained by deleting the row and column
corresponding to v from A and c(v) (resp. rT(v)) be the column (row) of A corresponding to v with

the element corresponding to v removed. Recall that M
(m)
σ = |Bm

σ | and l = 5. From Theorem 55,
M

(m)
σ equals the number of paths of length m+ l in Gq that start and end with σ but do not visit σ

in their interiors. The number of paths of length m+ l− 2 from vertex u to vertex v in Gq without

62

the occurrence of σ is given by the (u,v) element of
(
A(σ)

)m+l−2. Noting that the paths start and
end σ, we have

M
(m)
σ = rT(σ)

(
A(σ)

)m+l−2
c(σ), (3.7)

where (·)T denotes matrix transpose. Here, multiplying by rT(σ) from the left and c(σ) from the right

allow us to sum over elements (u,v) of
(
A(σ)

)m+l−2 such that there is an edge from σ to u and an
edge from v to σ. As m → ∞, if A(σ) is primitive [48], we have

1

m+ l
logM

(m)
σ → log(λσ), (3.8)

where λσ is the largest eigenvalue of A(σ). Maximizing over σ ∈ Vq yields the largest value for
M

(m)
σ in (3.7) and (3.8), and thus the highest code rate. This is possible to do computationally

for small values of q and, in particular, for q = 4, which corresponds to data storage in DNA. In
this case, A(σ) is primitive for all choices of σ ∈ Irr(5) and the largest eigenvalue is obtained for
σ = 01201 (and strings obtained from 01201 by relabeling the alphabet symbols). For this σ, we
find λσ = 2.6534, leading to an asymptotic code rate of 1.4078 bits/symbol.

It was shown in [30] that the set of ⩽ 3-irreducible strings of length n is a code correcting any
number of ⩽3-TDs. In [35], it was shown that the rate of this code, 1

n log ∥ Irr(n)∥, is asymptotically
optimal. It is easy to see that 1

n log ∥ Irr(n)∥ ⩽ log(q − 1) as no symbol can be repeated. For the
case of q = 4, we have 1

n log ∥ Irr(n)∥ = log 2.6590 = 1.4109 bits/symbol. Therefore, the cost of
protection against a single edit in our construction is only 0.003 bits/symbol. It should be noted,
however, that here we have assumed m is large, thus ignoring the overhead from the MDS code and
marker strings.

In addition to the computational rate obtained above for the important case of q = 4, we will
provide analytical bounds on the code rate. An important quantity affecting the rate of the code is
the number of outgoing edges from each vertex in Gq that do not lead to σ. The asymptotic rate of
the code is bounded from below by the number of such edges. The next lemma, which establishes
the number of outgoing edges for each vertex, will be useful in identifying an appropriate choice of
σ, and the following theorem provides a lower bound for M

(m)
σ for such a choice.

Lemma 56. For q > 2, a vertex v = a1a2a3a4a5 in Gq has q − 2 outgoing edges if a3 = a5 or
a1a2 = a4a5. Otherwise, it has q − 1 outgoing edges.

Proof. Consider v = a1a2a3a4a5 ∈ Irr(5), and w = a2a3a4a5a6 ∈ Irr(5). There is an edge from v

to w if a1a2a3a4a5a6 ∈ Irr(6). The number of outgoing edges from v equals the number of possible
values for a6 such that this condition is satisfied. Clearly, a6 ̸= a5. Furthermore, if a3 = a5, then
a6 ̸= a4 and if a1a2 = a4a5, then a6 ̸= a3.

However, a3 = a5 and a1a2 = a4a5 cannot simultaneously hold, since that would imply a2 = a3,
contradicting v ∈ Irr(5). Hence, if either a3 = a5 or a1a2 = a4a5 holds, then there are q−2 outgoing
edges and if neither holds, there are q − 1 outgoing edges.

Since σ must also be excluded, it may seem that the number of outgoing edges may be as low
as q− 3. But we show in the next theorem that with an appropriate choice of σ, we can have q− 2

63

as the lower bound.

Theorem57. Over an alphabet of size q > 2, there exists σ ∈ Irr(5) such that M (m)
σ ⩾ (q−2)m−cq ,

where cq is a constant independent from m.

Proof. Recall that M (m)
σ is the number of paths of length m+5 in Gq that start and end in σ but do

not visit σ otherwise. Since the path must return to σ, we will show below that for an appropriate
choice of σ, there is a path in Gq from any vertex to σ, and define cq such that the length of this
path is at most cq + 5. Hence M

(m)
σ is at least the number of paths of length m − cq from σ to

another vertex that do not pass through σ.
As shown in Lemma 56, each vertex in Gq has at least q − 2 outgoing edges. We select σ such

that this still holds even if edges leading to σ are excluded. We do so by ensuring that each vertex
v with an outgoing edge to σ has q − 1 outgoing edges. Let v = a1a2a3a4a5 and σ = a2a3a4a5a6.
Based on Lemma 56, if a2 ̸= a5 and a3 ̸= a5, then v has q− 1 outgoing edges. In particular, we can
choose σ = 01020 since q ⩾ 3. With this choice, M (m)

σ ⩾ (q − 2)m−cq .
To complete the proof, we need to show that there is a path in Gq from any vertex to σ = 01020.

For q = 3, 4, 5, we have checked this claim computationally by explicitly forming Gq. Let us then
suppose q ⩾ 6, where the alphabet Σq contains {3, 4, 5}. Let v = a1 · · · a5 be some vertex in Gq.
There is an edge from v to a2 · · · a6 for some a6 ∈ {3, 4, 5} since, from Lemma 56, at most two
elements of Σq are not permissible. Continuing in similar fashion, in 5 steps, we can go from v to
some vertex w = b1 · · · b5 whose elements bi belong to {3, 4, 5}. We can then reach σ in 5 additional
steps via the path w → b2 · · · b4b50 → b3b4b501 → · · · → σ, proving the claim. In particular, for
q ⩾ 6, we have cq ⩽ 5.

We can now find a lower bound on the asymptotic rate, based on (3.6) and the proceeding
theorem:

Corollary 58. For q > 2, as m → ∞, R(CMDS) ⩾ log(q − 2)(1 + o(1)).

We note that this gives the lower bound of 1 bit/symbol for q = 4, which we can compare to the
upper bound of log(q − 1) = 1.585 for codes correcting only duplications and to the rate obtained
computationally following (3.8), which was 1.4078 bits/symbol.

3.4 Correcting short duplications and at most p substitutions

Based on the work in Section 3.3, one interesting question is to correct more than one edit or
substitution error apart from many short duplications. In this subsection, we construct error-
correcting codes to correct an arbitrary number of ⩽3-TDs and at most p substitutions. The key
idea is to concatenate every 3p consecutive message blocks with different "colors" in Construction 48
as one message group such that at most 2p message groups are substituted or erased in the roots
of the output. This section starts by the analysis of the channel properties, followed by the code
construction, code rate, and the time complexity.

64

3.4.1 The channel with short duplications and at most p substitutions

In this subsection, we study channels with an arbitrary number of ⩽3-TDs and at most p substitu-
tions and motivate our error-correction approach.

First, we consider channels with only short duplication errors (i.e., ⩽3-TDs). Let x and y ∈
D∗(x) denote the input and output of the channel. Note that the duplication root of x is also the
duplication root of y. This fact, along with the uniqueness of duplication roots for short duplications,
implies that the channel does not alter the duplication root. This observation was used in [30] to
propose using the set of irreducible strings of length n as a code for correcting an arbitrary number
of duplications. This code was shown to be asymptotically optimal by [35].

The problem of correcting short duplications and an additional substitution was studied in [84],
[85]. There, motivated by the use of roots for correcting duplication errors, the effect of the substi-
tution on the duplication roots was studied.

Theorem59. [85, Theorem 3] There exists a (minimal) positive integer L such that for any x and
y ∈ D∗,⩽1(x), R(y) can be obtained from R(x) through an L-substring edit.

It was shown in [85] that L ⩽ 17. Note that a priori, it is not clear that the effect of the
substitution can be limited to a short substring since the substituted symbol may be duplicated as
parts of substrings of different lengths an arbitrary number of times.

For the channel with many short duplications and at most p substitutions, we can prove the
following result.

Theorem 60. For any x ∈ Σ∗ and y ∈ D∗,⩽p(x), R(y) can be obtained from R(x) by at most p

L-substring edit errors.

Proof. Consider the sequence of substitution and duplication errors that transform x into y. (Note
that the errors may occur in any order.) For i ∈ [p], let yi be the sequence obtained just after the
ith substitution error. Furthermore, let y0 = x and yp+1 = y. By Theorem 59, for i ∈ [p], R(yi)

can be obtained from R(yi−1) via an L-substring edit. Also, R(yp) = R(yp+1). Hence, R(y0) can
be transformed into R(yp+1) via p L-substring edits.

We next provide an example, demonstrating Theorem 60.

Example 61. Let the alphabet be Σ4 = {0, 1, 2, 3} and p = 2. We take the input x to be irre-
ducible, i.e., R(x) = x. By passing through the channel, x suffers multiple ⩽3-TDs and 2 symbol
substitutions, resulting in y ∈ D∗,2(x). We show the difference between R(x) and R(y) for two
possible input-output pairs. Below, substrings added via duplication are marked with underlines,
while substituted symbols are red and bold.

First, we provide an example where R(y) can be obtained from R(x) via non-overlapping sub-
string edits:

x = 3210313230121321,

y = 321320321031313213232121321321,

65

R(x) = 321︸︷︷︸
α0

︸︷︷︸
β1

031︸︷︷︸
α1

3230121︸ ︷︷ ︸
β2

321︸︷︷︸
α2

,

R(y) = 321︸︷︷︸
α0

320321︸ ︷︷ ︸
β′
1

031︸︷︷︸
α1

︸︷︷︸
β′
2

321︸︷︷︸
α2

,

where the errors are β1 = Λ → β′
1 and β2 → β′

2 = Λ.
In the second case, the two edits overlap, leading to a single substring substitution:

x = 132031230,

y = 132320321320321230230230,

R(x) = 13203︸ ︷︷ ︸
α0

︸︷︷︸
β1

1230︸︷︷︸
α1

R(y) = 13203︸ ︷︷ ︸
α0

2132032︸ ︷︷ ︸
β′
1

1230︸︷︷︸
α1

.

Generally, t overlapping L-substring edits result in a (tL)-substring edit.

3.4.2 Code construction

To construct codes correcting at most p L-substring edits in irreducible sequences, similar to [83], we
divide the codewords into message blocks, separated by markers, while maintaining irreducibility,
such that an L-substring edit only affects a limited number of message blocks. In the case of p = 1

studied in [83], it was shown that if the markers appear in the correct positions in the retrieved
word, then at most two of the message blocks are substituted. For p > 1 however, even if all
markers are in the correct positions, it is not guaranteed that a limited number of message blocks
are substituted, making it challenging to correct more than one error.

We start by recalling an auxiliary construction from [83].

Construction 62. [83, Construction 6] Let l,m,NB be positive integers with m > l ⩾ 5 and
σ ∈ Irrq(l). Also, let Bm

σ denote the set of sequences B of length m such that σBσ is irreducible
and has exactly two occurrences of σ. Define

Cσ = {B1σB2σ · · ·σBNB
: Bi ∈ Bm

σ }.

The irreducibility of σBiσ ensures that the codewords are irreducible.
We denote the output of the channel by y. Define a block in y as a maximal substring that does

not overlap with any σ. Furthermore, define an m-block in y as a block of length m. Note that
m-blocks can be either message blocks in x or new blocks created by substring edits.

Having divided each codeword into NB message blocks and NB − 1 separators, we study in the
next lemma how message blocks are affected by the errors.

Lemma 63. Let x ∈ Cσ, m > L, and y be generated from x through at most p L-substring edits.
Then there are less than (NB + p) m-blocks in y. Furthermore, there are at least NB − 2p error-free

66

m-blocks in y which appear in x in the same order. More precisely, there are blocks Bi1 , Bi2 , . . . , Bik

in y, where k ⩾ NB − 2p, each Bij is a message block in x, and any two blocks Bij and Bij′ have
the same relative order of appearance in x and in y.

Proof. First suppose y has ⩾ (NB + p) message blocks. This implies that the length of y is at least
(NB + p)m+ (NB + p− 1)l, which is larger than the length of x by pm+ (p− 1)l. But this is not
possible as m > L and the total length of inserted substrings is at most pL.

Furthermore, if m > L, each L-substring edit alters i) a message block in x, ii) a message block
and a marker σ, or iii) two message blocks and the marker between them. Hence at least NB − 2p

message blocks of x appear in y without being changed.

If the positions of the error-free m-blocks described in Lemma 63 in y were known, a Reed-
Solomon (RS) code of length NB and dimension NB − 2p could be used to recover codewords in
Cσ. This however is not the case since the blocks can be shifted by substring edits. In order
to determine the positions of the error-free m-blocks, we introduce another auxiliary construction
based on Construction 62 by combining message blocks into message groups, where the message
blocks in each group have different “colors”.

Construction 64. For an integer T , we partition Bm
σ into T parts Bm

σ (j), j ∈ [T]. The elements of
Bm
σ (j) are said to have color j. Let NB be a positive integer that is divisible by T . We define the

code
C(σ,T) =

{
B1σB2σ · · ·σBNB

∈ Cσ : Bi ∈ Bm
σ (i mod ′ T)

}
,

where Cσ has parameters m, l with m > L and m > l ⩾ 5.
We divide the message blocks B1, . . . , BNB

in each x ∈ C(σ,T) into N̂ = NB/T message groups,
where the k-th message group is Sk = (B(k−1)T+1, . . . , BkT−1, BkT). Note that the message blocks
in each message group have colors 1, 2, . . . , T in order.

For example, if NB = 12, T = 3, N̂ = 4, then in a codeword

x = B1σB2σB3σB4σB5σB6σ · · ·σB10σB11σB12,

the first group is (B1, B2, B3) and the second group is (B4, B5, B6). Furthermore, message blocks
in both groups have colors (1, 2, 3). The colors in the message group will help us identify the true
positions of the message blocks.

Definition 65. For x ∈ C(σ,T) and y derived from x through at most p L-substring edits, let the
i-th m-block in y be denoted by B′

i. A T -group in y is a substring B′
k+1σB

′
k+2 · · ·σB′

k+T such that
the m-block B′

k+j has color j.

The next lemma characterizes how error-free message groups (those that do not suffer any
substring edits but may be shifted) appear in y.

Lemma 66. Suppose x ∈ C(σ,T) and let y be obtained from x through at most p L-substring edits.
For r ∈ [N̂], if the r-th message group in x is not affected by any substring edit errors, then it will
appear as a T -group after b m-blocks in y, where b ∈ [(r − 1)T − 2p, (r − 1)T + p− 1].

67

Proof. Since m > L, each L-substring edit can affect at most two message blocks and thus at
most two message groups. Hence, there are at least N̂ − 2p message groups that do not suffer any
substring edits.

Let the r-th message group Sr in x be free of substring edits. Given that the colors of its message
blocks are not altered, it will appear as a T -group in y. Since each substring edit alters at most two
message blocks, among the (r − 1)T message blocks appearing before Sr in x, at most 2p do not
appear in y. Furthermore, the substring edits add at most pL to the length of x. Since m > L, this
means that at most p−1 new m-blocks are created in y. Hence, b ∈ [(r−1)T−2p, (r−1)T+p−1].

The previous lemma guarantees the presence of error-free, but possibly shifted, T -groups, and
provides bounds on their position in y. In the following theorem, we use these facts to show that
these T -groups can be synchronized and the errors can be localized.

Theorem 67. Let C(σ,T) be a code in Construction 64 and suppose T ⩾ 3p and N̂ ⩾ 4p+ 1. There
is a decoder Dec such that, for any x ∈ C(σ,T) and y derived from x through at most p L-substring
edits, v = Dec(y) suffers at most t substitutions and e erasures of message groups, where t+e ⩽ 2p.

Proof. We start by identifying all T -groups in y. Note that no two T -groups can overlap. Let
v = (S′

1, . . . , S
′
N̂
) be the decoded vector, where S′

r is the decoded version of the message group Sr,
determined as follows.

For r = 1, . . . , N̂ :

1. If there exists a T -group T appearing after b message blocks such that b ∈ [(r−1)T −2p, (r−
1)T + p− 1], then let S′

r = T .

2. If such a T -group does not exist, let S′
r = Λ, denoting an erasure.

We note that for each r, at most one T -group may satisfy the condition in 1). If two such T -groups
exist appearing after b and b′ message blocks, we must have |b − b′| ⩾ T and b, b′ ∈ [(r − 1)T −
2p, (r − 1)T + p− 1], implying 3p− 1 ⩾ T , which contradicts the assumption on T .

If a message group Sr is not subject to a substring edit, then by Lemma 66, we have S′
r = Sr.

Otherwise, we may have a substitution of that message group, i.e., S′
r ̸= Sr, or an erasure, S′

r = Λ.
Since each substring edit may affect at most 2 message groups, the total number of substitutions
and erasures is no more than 2p.

We now construct an MDS code that can correct the output of the decoder of Theorem 67.

Construction 68. Let C(σ,T) be the code in Construction 64 with parameters l,m, T, N̂ satisfying
m > L,m > l ⩾ 5, T ⩾ 3p, and N̂ ⩾ 4p + 1. Furthermore, assume |Bm

σ (j)| ⩾ N̂ + 1 for j ∈ [T].
Finally, let γ be a positive integer such that 2γ ⩽ N̂ + 1 and ζj : F2γ → Bm

σ (j) be an injective

68

mapping for j ∈ [T]. We define CE as

CE = {ζ1(c11)σ · · ·σζj(cj1)σ · · ·σζT (cT1)σ

ζ1(c
1
2)σ · · ·σζj(cj2)σ · · ·σζT (cT2)σ · · ·

ζ1(c
1
N̂
)σ · · ·σζj(cjN̂)σ · · ·σζT (cTN̂) :

{cj , j ∈ [T]} ⊆ MDS(N̂ , N̂ − 4p, 4p+ 1)},

where MDS(N̂ , N̂ − 4p, 4p + 1) denotes an MDS code over F2γ of length N̂ = 2γ − 1, dimension
N̂ − 4p, and minimum Hamming distance dH = 4p + 1, and cj = (cj1, c

j
2, . . . , c

j

N̂
) is a codeword of

the MDS code.

For each j, we also define an inverse ζ−1
j for ζj . For B ∈ Bm

σ (j), if β ∈ F2γ such that ζj(β) = B

exists, then let ζ−1
j (B) = β. Otherwise, let ζ−1

j (B) = 0.

Theorem 69. The error-correcting codes CE in Construction 68 can correct any number of short
duplications and at most p symbol substitutions.

Proof. Given a codeword x ∈ CE , let x′′ ∈ D⩽p(x) and let y = R(x′′). Note that by construction, x
is irreducible. Thus, by Theorem 82, y can be obtained from x through at most p L-substring edits.
As CE ⊆ C(σ,T), based on Theorem 67, v = Dec(y) suffers at most t substitutions and e erasures of
message groups, where t + e ⩽ 2p. Hence, for j ∈ [T], the blocks (ζj(c

j
1), ζj(c

j
2), . . . , ζj(c

j

N̂
)) suffer

at most 2p erasures or substitutions. Consequently, if we apply ζ−1
j to the corresponding retrieved

blocks in v, the codeword (cj1, c
j
2, . . . , c

j

N̂
) also suffers at most 2p substitutions or erasures, which

can be corrected using the MDS code.

3.4.3 Code rate

In this subsection, we present choices for the parameters of Construction 68 and discuss the rate of
the resulting code.

Among the nE symbols of each codeword in Construction 68, 4pTm+(N̂T −1)l symbols belong
to MDS parities or markers. We choose T and l to be their smallest possible values and set T = 3p

and l = 5.
The construction requires that ∥Bm

σ (j)∥ ⩾ N̂ + 1 for all j. Let M
(m)
σ = ∥Bm

σ ∥. Dividing
Bm
σ into parts of nearly equal sizes, we find that each part Bm

σ (j) has size at least M
(m)
σ /T − 1.

We then choose N̂ + 1 as the largest power of two not larger than M
(m)
σ /T − 1, ensuring that

N̂ + 1 ⩾ M
(m)
σ /(2T)− (1/2). Assume

M
(m)
σ ⩾ 24p2 + 15p. (3.9)

Then N̂ + 1 ⩾ M
(m)
σ /(2T)− (1/2) ⩾ 4p+ 2.

Furthermore, note that N̂T (m+5)− 5 = nE and thus N̂ = nE+5
(m+5)(3p) . The size of the code then

becomes
∥CE∥ = (N̂ + 1)(N̂−4p)(3p),

69

and

log ∥CE∥ ⩾

(
nE

m+ 5
− 12p2

)
log

(
M

(m)
σ

6p
− 1

2

)

⩾

(
nE

m+ 5
− 12p2

)(
logM

(m)
σ + log

(
1

6p
− 1

2M
(m)
σ

))

⩾

(
nE

m+ 5
− 12p2

)(
logM

(m)
σ − log(6p+ 1)

)
, (3.10)

where in the last step we have used the fact that M
(m)
σ ⩾ 24p2 + 15p.

It was shown in [83] that M
(m)
σ ⩾ (q − 2)m−cq for some σ, where cq is a constant independent

of m. In particular, c3 ⩽ 13, c4 ⩽ 7, c5 ⩽ 6, and cq ⩽ 5 for q ⩾ 6. To satisfy (3.9), we need

m ⩾ max{logq−2(24p
2 + 15p) + cq,L+ 1}. (3.11)

From (3.10), for the rate of CE ,

log ∥CE∥
nE

⩾

(
m− cq
m+ 5

− 12p2m

nE

)
log(q − 2)− log(6p+ 1)

m+ 5

⩾

(
1− cq + 5

m+ 5
− 12p2m

nE

)
log(q − 2)− log(6p+ 1)

m+ 5
,

where m satisfies (3.11). For log p = o(log nE), letting m = Θ(log nE), we find that the rate asymp-
totically satisfies

log ∥CE∥
nE

⩾ log(q − 2)(1− o(1)),

while the redundancy is at least Θ(nE/ log nE). We observe that a low redundancy and an asymp-
totic rate equal to that of Irrq(nE) is not guaranteed for CE , unlike CB, proposed in Construction 90
in the next section. However, CB relies on CE to protect its syndrome as stated in Lemma 88, whose
proof is given in the subsection 3.5.4.

3.4.4 Time complexity of encoding and decoding

In this subsection, we analyze the time complexities of both the encoding and decoding algorithms
for the error-correcting code in Construction 68. Recall that we choose T to be a constant and
choose N̂ = Θ(∥Bm

σ ∥) thus satisfying log N̂ = Θ(m). Also, note that nE = Θ(N̂). Furthermore,
we choose each part Bm

σ (j) in the partition of Bm
σ to be a contiguous block in the lexicographically

sorted list of the elements of Bm
σ . So the complexity of computing the mapping ζj is polynomial in

∥Bm
σ ∥ and thus in N̂ .
We first discuss the complexity of the encoding. The complexity of producing the MDS code-

words used in CE is polynomial in N̂ . Mapping these to sequences in Bm
σ is also polynomial in N̂

as discussed in the previous paragraph. Hence, the encoding complexity is polynomial in N̂ as well
as in nE .

Decoding can be performed as described in the proof of Theorem 69, using the decoder described
in Theorem 67 and its proof. As the steps described in the proofs of these theorems are polynomial

70

in the length of the received sequence, so is the time complexity of the decoding.

3.5 Low-redundancy codes to correcting short duplications and at
most p edits

Compared to the codes in [30] for only duplications, the codes in Construction 68 incur an asymp-
totic rate loss when q = 4 in order to correct the additional edits. By applying the syndrome
compression technique [72]–[75], the current chapter provides codes for correcting any number of
short duplications, ⩽3-TDs, and at most p (unrestricted) edits with no asymptotic rate penalty
compared to correcting short duplications only, where p and the alphabet size q are constants.

One of the challenging aspects of correcting multiple types of errors, even when optimal codes
for individual error types exist, is that codes for each type may utilize incompatible strategies.
In particular, correcting duplications relies on constrained codes (local constraints) while edits
are corrected using error-correcting codes with codewords that satisfy certain global constraints.
Combining these strategies is not straightforward as encoding one set of constraints may violate
the other, or alter how errors affect the data. Our strategy, which can be viewed as modified
concatenation described in [50], is to first encode user data as a constrained sequence x, which does
not contain any repeats of length ⩽ 6 (such sequences are called irreducible). Then using syndrome
compression, we compute and append to x a “parity” sequence r to help correct errors that occur
in x. Syndrome compression has recently been used to provide explicit constructions for correcting
a wide variety of errors with redundancy as low as roughly twice the Gilbert-Varshamov bound
[72]–[75].

Another challenge arises from the interaction between the errors. When both short duplications
and edits are present, a single edited symbol may be duplicated many times and affect an unbounded
segment. However, when the input is an irreducible sequence, after removing all tandem copies with
length ⩽ 3 from the output, the effects of short duplications and at most p edits can be localized in
at most p substrings, each with length ⩽ 17 [83]. Using the structure of these localized alterations,
we describe the set of strings that can be confused with x and bound its size, allowing us to leverage
syndrome compression to reduce redundancy.

A third challenge is ensuring that the appended vector r is itself protected against errors and can
be decoded correctly. We do this by introducing a higher-redundancy MDS-based code over irre-
ducible sequences. After decoding the appended vector, we use it to recover the data by eliminating
incorrect confusable inputs.

Compared to the explicit code for short duplications only [30], the proposed code corrects ⩽ p

edits in addition to the duplications at the extra cost of roughly 8p(logq n)(1 + o(1)) symbols of
redundancy for q ⩾ 4, and achieves the same asymptotic code rate. We note that the state-of-the-
art redundancy for correcting p edits is no less than 4p logq n(1 + o(1)) [73]. Time complexities of
both the encoding and decoding processes are polynomial when p is a constant.

For simplicity of exposition, we first consider the channel with short duplications and substitu-
tions only and construct codes for it. Then, in Subsection 3.5.5, we show that the same codes can

71

correct short duplications and edit errors. We note that short duplications and edits may occur in
any order. Henceforth, the term duplication refers to short duplications only.

3.5.1 Notation and preliminaries

Given a sequence x ∈ Σn
q , we define the binary matrix U(x) of x as

u1,1 u1,2 · · · u1,n

u2,1 u2,2 · · · u2,n
...

...
. . .

...
u⌈log q⌉,1 u⌈log q⌉,2 · · · u⌈log q⌉,n

 ∈ {0, 1}⌈log q⌉×n,

where the jth column of U(x) is the binary representation of the jth symbol of x for j ∈ [n], and
the ith row of U(x) is denoted as Ui(x) for i ∈ ⌈log q⌉.

Suppose q ⩾ 3 is a constant. We start with the definition of confusable sets for a given channel
and a given set of strings S ⊆ Σn

q . In our application, S is the set of irreducible strings, upon which
the proposed codes will be constructed.

Definition 70. A confusable set B(x) ⊆ S of x ∈ S consists of all y ∈ S, excluding x, such that
x and y can produce the same output when passed through the channel.

Definition 71. Let R(n) be an integer function of n. A labeling function for the confusable sets
B(x),x ∈ S, is a function

f : Σn
q → Σ2R(n)

such that, for any x ∈ S and y ∈ B(x), f(x) ̸= f(y).

Theorem 72. (c.f. [75, Theorem 5]) Let f : Σn
q → Σ2R(n), where R(n) = o(log log n · log n),

be a labeling function for the confusable sets B(x),x ∈ S. Then there exists an integer a ⩽

2log ∥B(x)∥+o(logn) such that for all y ∈ B(x), we have f(x) ̸≡ f(y) mod a.

The definitions and Theorem 102 are used in our code construction in Section 3.5.3. The
construction and analysis rely on the confusable sets for the channel, discussed below.

3.5.2 Confusable sets for channels with short duplication and substitution er-
rors

In this section, we study the size of confusable sets of input strings passing through channels with
an arbitrary number of duplications and at most p substitutions. This quantity will be used to
derive a Gilbert-Varshamov bound and, in the next section, to construct our error-correcting codes.

Since the duplication root is unique, and duplications and deduplications do not alter the dupli-
cation root of the input, Irrq(n) is a code capable of correcting duplications. The decoding process
simply removes all tandem repeats. In other words, if we append a root block, which deduplicates
all repeats and produces the root of its input, to the channel with duplication errors, any irreducible

72

Dups, ⩽ p subs

(i) DS(p) channel

Dups, ⩽ p subs Root

(ii) DSD(p) channel

Dups ⩽ 1 sub Root

(iii) DSD(1) channel

Figure 3.6: Any error-correcting code for channel (ii) is also an error-correcting code for channel
(i). The confusable set for a channel obtained by concatenating p copies of channel (iii) contains
the confusable set for channel (ii).

sequence passes through this concatenated channel with no errors. This approach produces codes
with the same asymptotic rate as that of [30], achieving the highest possible asymptotic rate.

Similar to [83], we extend this strategy to design codes for the channel with duplication and
at most p substitution errors, denoted the DS(p) channel and shown in Figure 3.6i. Note that the
duplications and substitutions can occur in any order. We take the code to be a subset of irreducible
strings and find the code for a new channel obtained by concatenating a root block to the channel
with duplication and substitution errors, denoted as the DSD(p) channel and shown in Figure 3.6ii.
Clearly, any error-correcting code for DSD(p) is also an error-correcting code for the DS(p) channel.

We now define the confusable sets over Irrq(n) for the DSD(p) channel and bound its size, which
is needed to construct the code and determine its rate.

Definition 73. For x ∈ Irrq(n), let

B⩽p
Irr (x) = {y ∈ Irrq(n) : y ̸= x,

R(D⩽p(x)) ∩R(D⩽p(y)) ̸= ∅}

denote the irreducible-confusable set of x.

Note that the DSD(1) channel can be represented as shown in Figure 3.6iii. This is because
the sequence of errors consists of duplications, substitutions, more duplications, and finally all
deduplications. Hence, duplications that occur after the substitutions are all deduplicated and we
may equivalently assume they have not occurred. Next, observe that the confusable set for the
concatenation of p DSD(1) channels contains the confusable set for a DSD(p) channel. In other
words, if the same string is input to the concatenation of p DSD(1) channels and to a DSD(p)
channel, the set of possible outputs of the former is a superset of the set of possible outputs of the
latter. Hence, we have the following lemma.

Lemma 74. An error-correcting code for the concatenation of p DSD(1) channels is also an error-
correcting code for the DSD(p) channel.

73

Figure 3.7: A sequence z = xp = yp that can be obtained from both x and y through channels
resulting from the concatenation of p DSD(1) channels, each shown by a solid arrow. The dashed
arrows represent the reverse relationships and each yi−1 can be obtained by passing yi through a
DSD(1) channel.

We can thus focus on this concatenated channel. The advantage of considering DSD(1) is that it
is reversible in the sense that if v can be obtained from an input u, then u can be obtained from the
input v, and this simplifies our analysis. In particular, we have u ∈ R(D⩽1(v)) and v ∈ R(D⩽1(u)).

Figure 3.7 shows a confusable string z obtainable from irreducible sequences x ∈ Irrq(n) and
y ∈ B⩽p

Irr (x), after passing through p DSD(1) channels, each represented by a solid arrow. More
precisely, xi ∈ R(D⩽1(xi−1)) and yi ∈ R(D⩽1(yi−1)), where x = x0,y = y0, z = xp = yp.
Furthermore, yi−1 ∈ R(D⩽1(yi)). Hence, y can be generated from x by concatenating the solid-line
path from x to z and the dashed-line path from z to y, i.e., x→ x1 → · · · → z → yp−1 → · · · → y,
where each → represents a DSD(1) channel. Considering the number of possibilities in each step
gives the following lemma.

Lemma 75. For x ∈ Irrq(n),

∥B⩽p
Irr (x)∥ ⩽ max

xi,yi

p−1∏
i=0

∥R(D⩽1(xi))∥
p∏

i=1

∥R(D⩽1(yi))∥

where the maximum for xi (resp. yi) is over sequences that can result from x (resp. y) passing
through the concatenation of i DSD(1) channels.

It thus suffices to find ∥R(D⩽1(x))∥ for x ∈ Irrq(∗). As

∥R(D⩽1(x))∥ ⩽ ∥R(D1(x))∥+ ∥R(D(x))∥

= ∥R(D1(x))∥+ 1,

we find an upper bound on ∥R(D1(x))∥, in Lemma 77, using the following lemma from [83].

74

Lemma 76. [83, Lemma 3] Let x be any string of length at least 5 and x′ ∈ D(x). For any
decomposition of x as

x = r ab c de s,

for a, b, c, d, e ∈ Σq and r, s ∈ Σ∗
q, there is a decomposition of x′ as

x′ = u ab w de v

such that u,w,v ∈ Σ∗
q, uab ∈ D(rab), abwde ∈ D(abcde), and dev ∈ D(des).

Lemma 77. For an irreducible string x ∈ Σn
q ,

∥R(D1(x))∥ ⩽ nmax
t∈Σ5

q

∥R(D1(t))∥.

Proof. Given an irreducible string x ∈ Irrq(n), let x′ ∈ D(x) be obtained from x through duplica-
tions and x′′ obtained from x′ by a substitution. For a given x, ∥R(D1(x))∥ equals the number of
possibilities for R(x′′) as x′′ varies. Note that duplications that occur after the substitution do not
affect the root. So we have assumed that the substitution is the last error before the root is found.

Decompose x as x = rabcdes with r, s ∈ Irrq(∗) and a, b, c, d, e ∈ Σq, so that the substituted
symbol in x′ is a copy of c. Note that if |x| < 5 or if a copy of one of its first two symbols or its
last two symbols is substituted, then we can no longer write x as described. To avoid considering
these cases separately, we may append two dummy symbols to the beginning of x and two dummy
symbols to the end of x, where the four dummy symbols are distinct and do not belong to Σq,
and prove the result for this new string. Since these dummy symbols do not participate in any
duplication, substitution, or deduplication events, the proof is also valid for the original x.

By Lemma 76, we can write

x = r ab c de s

x′ = u ab w de v,

x′′ = u ab z de v,

(3.12)

where uab ∈ D(rab), abwde ∈ D(abcde), dev ∈ D(des), and z is obtained from w by substituting
a copy of c. From (3.12), R(x′′) = R(rR(abzde)s), where R(abzde) starts with ab and ends with
de (which may fully or partially overlap).

To determine ∥R(D1(x))∥, we count the number of possibilities for R(x′′) as x′′ varies. Consid-
ering the decomposition of x′′ into uabzdev given in (3.12), we note that if R(abzde) is given, then
R(x′′) = R(rR(abzde)s) is uniquely determined. So to find an upper bound, it suffices to count
the number of possibilities for R(abzde). We thus have

∥R(D1(x))∥ ⩽
∑

∥{R(abzde) : abzde ∈ D1(abcde)}∥,

where the sum is over the choices of c in x, or equivalently the decompositions of x into rabcdes,

75

in (3.12). As there are n choices for c, we have

∥R(D1(x))∥ ⩽ nmax
t∈Σ5

q

∥R(D1(t))∥.

The next lemma provides a bound on ∥R(D1(t))∥ for t ∈ Σ5
q by identifying the “worst case”. The

proof is given in Appendix A.

Lemma 78. Given q ⩾ 3, we have

max
t∈Σ5

q

∥R(D1(t))∥ ⩽ ∥R(D1(01234))∥,

where D1(01234) ⊆ Σ∗
q+4 (the substituted symbol can be replaced with another symbol from Σq+4).

As shown in [29], D(01234) is a regular language whose words can be described as paths from
‘Start’ to S9 in the finite automaton given in Figure 3.2. Then D1(01234) is equivalent to the set
of paths from ‘Start’ to S9 but with the label on one edge substituted. We will use this observation
to bound ∥R(D1(01234))∥ in Lemma 80. The next lemma establishes a symmetric property of the
automaton that will be useful in Lemma 80. Lemma 79 is proved by showing that there is a bijective
function h : U → V between U and V and between R(U) and R(V). Specifically, for u = u1 · · ·un,
we let v = h(u) = ūnūn−1 . . . ū1, where for a ∈ {0, 1, 2, 3, 4}, ā = 4− a.

Lemma79. Let U and V be the sets of labels of all paths from Start to any state and from any state
to S9, respectively, in the finite automaton of Figure 3.2. Then ∥U∥ = ∥V ∥ and ∥R(U)∥ = ∥R(V)∥.

Proof. Define h(a) = 4− a for a ∈ Σ5 and h(u) = h(un)h(un−1) · · ·h(u1) for u ∈ Σn
5 . Furthermore,

for S ⊆ Σ∗
5, define h(S) = {h(u) : u ∈ S}. Note that h is its own inverse. We claim that h has the

following properties, to be proved later:

1. For s, t ∈ Σ∗
5, s is a prefix of t if and only if h(s) is a suffix of h(t).

2. For t ∈ Σ∗
5, D(h(t)) = h(D(t)).

3. For S ⊆ Σ∗
5, R(h(S)) = h(R(S)).

By definition, if u ∈ U then u is a prefix of some x ∈ D(01234). Then, by Property 1, h(u) is a
suffix of h(x). By setting t = 01234, it follows from Property 2 that D(01234) = h(D(01234)), and
thus h(x) ∈ D(01234). Hence, h(u) is in V . Similarly, we can show that if v ∈ V , then h(v) ∈ U .
As h is its own inverse, we have V = h(U) and ∥U∥ = ∥V ∥. Applying Property 3 with S = U yields
R(V) = h(R(U)) and ∥R(V)∥ = ∥R(U)∥.

We now prove Properties 1-3. Property 1 follows from the definition of h. Property 2 follows
from the observation that if x′ is obtained from x via a duplication, then h(x′) can be obtained
from h(x) via a duplication, i.e., the relationship represented by h is maintained under duplication.
To prove Property 3, it suffices to show that R(h(t)) = h(R(t)) for t ∈ Σ∗

5, which holds as h is
maintained under deduplication.

76

Lemma 80. For q̂ ⩾ 5 and D1(01234) ⊆ Σ∗
q̂, where the substitution replaces a symbol with any

symbol from Σq̂, we have
∥R(D1(01234))∥ ⩽ 222(q̂ − 1).

Proof. Based on [29], recall that D(01234) is a regular language whose words can be described as
paths from ‘Start’ to S9 in the finite automaton given in Figure 3.2, where the word associated with
each path is the sequence of the edge labels. Let x′ ∈ D(01234) and let x′′ be generated from x′ by
a substitution. Assume x′ = uwv and x′′ = uŵv, where u,v ∈ Σ∗

5, w ∈ Σ5 and ŵ ∈ Σq̂ \ {w}. So
there are q̂ − 1 choices for ŵ. The string u represents a path from ‘Start’ to some state su and the
string v represents a path from some state sv to S9 in the automaton, where there is an edge with
label w from su to sv.

As x′′ = uŵv, we have R(x′′) = R(R(u)ŵR(v)), where R(u) is an irreducible string represented
by a path from “Start" to state su, and R(v) is an irreducible string represented by a path from sv

to S9. Define U and V as in Lemma 79. We thus have ∥R(D1(x))∥ ⩽ ||R(U)||× (q̂−1)×||R(V)|| =
||R(U)||2 × (q̂ − 1). By inspection, we can show that

R(U) = {Λ, 0, 01, 01201, 012, 0120, 010, 012010,

0121, 01202, 0123, 01232, 01231, 012313, 012312,

0123121, 01234, 012343, 012342, 0123424,

0123423, 01234232},

and hence ||R(U)|| = 22, completing the proof.

Theorem 81. For an irreducible string x ∈ Σn
q , with q ⩾ 3,

∥R(D⩽1(x))∥ ⩽ 968nq + 1.

Proof. From Lemmas 77, 78, and 80, it follows that ∥R(D1(x))∥ ⩽ 222n(q̂− 1) ⩽ 2q · 222n = 968nq

with q̂ = q + 4. Furthermore, ∥R(D⩽1(x))∥ ⩽ ∥R(D1(x))∥+ 1.

We can now use Theorem 81 along with Lemma 75, to find a bound on ∥B⩽p
Irr (x)∥. To do so,

we need to bound the size of xi and yi shown in Figure 3.7, for which the following theorem is of
use. The theorem is a direct extension of [83, Theorem 5] and thus requires no proof. An example
demonstrating the theorem is given in Example 61.

Theorem 82 (c.f.[83, Theorem 5]). Given strings x ∈ Σn
q and v ∈ D⩽p(x), R(v) can be obtained

from R(x) by at most p L-substring edits, where L = 17.

It follows from the theorem that for 1 ⩽ i ⩽ p,

|xi| ⩽ n+ pL, |yi| ⩽ n+ pL.

The next theorem then follows from Lemmas 75 and 81.

77

Theorem83. Let x ∈ Irrq(n) ⊆ Σn
q be an irreducible string of length n with q ⩾ 3. The irreducible-

confusable set B⩽p
Irr (x) of x satisfies

∥B⩽p
Irr (x)∥ ⩽ (968q(n+ pL) + 1)2p.

The size of the confusable sets will be used for our code construction. It also allows us to derive
a Gilbert-Varshamov (GV) bound, as follows.

Theorem 84. There exists a code of length n capable of correcting any number of duplications and
at most p substitutions with size at least

∥ Irrq(n)∥
(968q(n+ pL) + 1)2p

·

We will show in Lemma 95 that the size of the code with the highest asymptotic rate for
correcting duplications only is essentially ∥ Irrq(n)∥. Assuming that p and q are constants, this GV
bound shows that a code exists for additionally correcting up to p substitution errors with extra
redundancy of approximately 2p logq n symbols. The two constructions presented in the next section
have extra redundancies of 4p logq n and 8p logq n, which are only small constant factors away from
this existential bound.

3.5.3 Low-redundancy error-correcting codes

As stated in Section 5.3, our code for correcting duplications and substitutions is a subset of irre-
ducible strings of a given length. In this section, we construct this subset by applying the syndrome
compression technique [75], where we will make use of the size of the irreducible-confusable set
∥B⩽p

Irr (x)∥ derived in Section 5.3. In this section, unless otherwise stated, we assume that both
q ⩾ 4 and p are constant.

We begin by presenting the code constructions for correcting duplications and substitutions in
Subsection 3.5.3, assuming the existence of appropriate labeling functions used to produce the syn-
drome information and an auxiliary error-correcting code used to protect it. The labeling functions
will be discussed in Subsection 3.5.6, while the auxiliary ECC is presented in Section 3.4. In Sub-
section 3.5.5, we show that the proposed codes can in fact correct duplications and edits. The
redundancy of the codes and the computational complexities of their encoding and decoding are
discussed in Subsections 3.5.7 and 3.5.8, respectively.

We first present a code in Construction 85 that assumes an error-free side channel is available,
where the length of the sequence passing through the side channel is logarithmic in the length of
the sequence passing through the main channel. We then present the main result of this section,
Construction 90, which does not make such an assumption and is intended for a single noisy chan-
nel. Construction 85 helps motivate certain components of Construction 90 and make its proof of
correctness more clear. In addition, it may have potential practical applications. For example, in a
DNA storage system, metadata of the data stored on DNA may be stored on silicon-based devices
such as disk or flash. Due to the maturity of these technologies, they may provide a nearly error-free

78

channel, suitable for storing a small amount of side information.

a) Channels with error-free side channels

In the construction below, x is transmitted through the noisy channel, while r, which encodes the
information (a, f(x) mod a) is transmitted through an error-free channel.

Construction 85. Let n, p, q be positive integers. Furthermore, let f be a (labeling) function and,
for each x ∈ Irrq(n), ax be a positive integer, such that for any y ∈ B⩽p

Irr (x), f(x) ̸≡ f(y) mod ax.
Define

CA
n = {(x, r) : x ∈ Irrq(n), r = (ax, f(x) mod ax)},

where r is assumed to be the q-ary representation of (ax, f(x) mod ax).

We consider the length of this code to be N = n + |r|. As will be observed in (3.13), |r| =
O(logq n) and so the sequence carried by the side channel is logarithmic in length. Recall that the
existence of the labeling functions is discussed in Subsection 3.5.6.

Theorem 86. The code in Construction 85, assuming the labeling function f and ax (for each
x ∈ Irrq(n)) exist, can correct any number of duplications and at most p substitutions applied to x,
provided that r is transmitted through an error-free channel.

Proof. Let the retrieved word from storing x be v ∈ R(D⩽p(x)). Note that ax and f(x) mod ax

can be recovered error-free from r. By definition, for all y ̸= x that could produce the same v,
we have y ∈ B⩽p

Irr (x). But then, f(y) ̸≡ f(x) mod ax, and so we can determine x by exhaustive
search.

b) Channels with no side channels

To better illustrate the construction with no side channels, let us first observe what the issues are
with simply concatenating x and r and forming codewords of the form xr.

• The code in Construction 85 relies on a sequence v ∈ R(D⩽p(x)) but if xr is stored, the
output of the channel is a sequence w ∈ R(D⩽p(xr)). As the boundary between x and r
becomes unclear after duplication and substitution errors, it is difficult to find v ∈ R(D⩽p(x))

from w ∈ R(D⩽p(xr)). To address this, instead of finding v, we find a sufficiently long prefix,
as discussed in Lemma 87. This will also require us to modify the labeling function.

• The decoding process requires the information encoded in r, which is now subject to errors.
We will address this by using a high-redundancy code that can protect this information,
introduced in Lemma 88 and discussed in detail in Subsection 3.5.4.

• The codewords need to be irreducible. This is discussed in Lemma 89.

For integers p, j, denote by D⩽p
⩽j (x) the set of strings that can be obtained by deleting a suffix

of length at most j from some v ∈ R(D⩽p(x)). Note that D⩽p
⩽j (x) ⊆ Irrq(∗).

79

Lemma 87. Let x be an irreducible string of length n and r any string such that xr is irreducible.
Let w ∈ R(D⩽p(xr)) and s be the prefix of w of length n− pL. Then s ∈ D⩽p

⩽2pL(x).

Proof. Based on Theorem 82, w can be considered as being generated from xr by at most p L-
substring edits. Let j be the last symbol of x not affected by a substring edit (i.e., it is not deleted
by a substring edit, but it may be shifted). Suppose t ⩽ p substring edits occur before xj and
at most p − t after xj . Then, j ∈ [n − (p − t)L, n]. The symbol xj appears as the ith symbol
of w for some i ∈ [j − tL, j + tL] . Then, w[i] ∈ R(Dt(x[j])). It follows that v ∈ R(Dt(x)) for
v = w[i]x[j+1,n]. As i ⩾ j − tL and j ⩾ n− (p− t)L, we have n− pL ⩽ i. Hence, s = w[n−pL] is a
prefix of w[i] and thus also a prefix of v. Specifically, s can be obtained from v by a suffix deletion
of length

|v| − (n− pL) = i+ (n− j)− (n− pL)

⩽ n+ tL+ (p− t)L − (n− pL)

= 2pL.

As v ∈ D⩽p(x), we have s ∈ D⩽p
⩽2pL(x).

By choosing the first n − pL elements of w ∈ R(D⩽p(xr)), we find s ∈ D⩽p
⩽2pL(x), which is a

function of only x rather than xr. But in doing so, we have introduced an additional error, namely
deleting a suffix of length at most 2pL. As a result, we need to replace the labeling function f with
a stronger labeling function f ′ that, in addition to handling both substitutions and duplications,
can handle deleting a suffix of x. More precisely, f ′ is a labeling function for the confusable set

B⩽p,⩽2pL
Irr (x) = {y ∈ Irrq(n) :

y ̸= x,D⩽p
⩽2pL(x) ∩ D⩽p

⩽2pL(y) ̸= ∅}.

The details of determining f ′ will be discussed in Section 3.5.6. Assuming the existence of the
labeling function, r encodes (a′x, f

′(x) mod a′x), where for x ∈ Irrq(x), a′x is chosen such that

f ′(x) ̸≡ f ′(y) mod a′x, for all y ∈ B⩽p,⩽2pL
Irr (x).

To address the second difficulty raised above, i.e., protecting the information encoded in r, we
use an auxiliary high-redundancy code given in Section 3.4. The following lemma, which is proved
in Subsection 3.5.4, provides an encoder for this code.

Lemma 88. Let σ = 01020. There exists an encoder E1 : ΣL
2 → Irrq(L

′) such that i) σE1(u) ∈
Irrq(∗) and ii) for any string x ∈ Irrq(∗) with xσE1(u) ∈ Irrq(∗), we can recover u from any
w ∈ R(D⩽p(xσE1(u))). Asymptotically, L′ ⩽ L

log(q−2)(1 + o(1)).

We use E1(a′x, f ′(x) mod a′x) to denote E1(u), where u is a binary sequence representing the
pair (a′x, f

′(x) mod a′x). For x ∈ Irrq(n), by letting r = E1(a′x, f ′(x) mod a′x), we can construct
codewords of the form xσr. But such codewords would not necessarily be irreducible. Irreducibility
can be ensured by adding a buffer bx between x and σr, as described by the next lemma.

80

Lemma 89. For q ⩾ 3 and any irreducible string x over Σq, there is a string bx of length cq such
that xbxσ is irreducible. Furthermore, c3 = 13, c4 = 7, c5 = 6, and cq = 5 for q ⩾ 6.

Before proving Lemma 115, we recall from [30] that Irrq(∗) is a regular language whose graph
Gq = (Vq, ξq) is a subgraph of the De Bruijn graph. The vertex set Vq consists of 5-tuples
a1a2a3a4a5 ∈ Irrq(5) that do not have any repeats (of length at most 4). There is an edge from
a1a2a3a4a5 → a2a3a4a5a6 if a1a2a3a4a5a6 belongs to Irrq(6). The label for this edge is a6. The
label for a path is the 5-tuple representing its starting vertex concatenated with the labels of the
subsequent edges. The proof below is similar to that of [83, Theorem 15] and is presented here for
completeness.

Proof. Given x ∈ Irrq(n) and q ⩾ 3, x can be represented by a path over the graph Gq, ending at
the vertex x[n−4:n]. Furthermore, σ = 01020 can be considered as a vertex in Gq since σ ∈ Irrq(5).
Let us assume for the moment that q ⩾ 6. Based on [83, Lemma 14], each vertex has at least q − 2

outgoing edges. So from each vertex, there is at least one outgoing edge whose label is equal to
either 3, 4, or 5. So, starting from x[n−4:n], we may arrive at some vertex with label bx ∈ {3, 4, 5}5

in 5 steps. Furthermore, bxσ is irreducible as both bx and σ are irreducible and have no symbols
in common. Hence, there is a path of length 5 from bx to σ in Gq. So there is a path in Gq with
label xbxσ, implying that xbxσ is irreducible. We further have cq = |bx| = 5. For q ∈ {3, 4, 5}, we
have verified computationally that, for any choice of x[n−4:n], there exists a path from x[n−4:n] to σ
of length cq +5, with the value of cq as given in the lemma. Denoting the label of this path as bxσ
gives us the sequence bx of length cq, with xbxσ being irreducible.

The lemma implies that xbxσr is irreducible. This is because any substring of length at most 6
is either in xbxσ or in σr but cannot span both as |σ| = 5. But xbxσ and σr are both irreducible,
as shown in Lemma 115 and Lemma 88.i, respectively.

We are now ready to present the code construction.

Construction 90. Let f ′ be a labeling function for the confusable sets B⩽p,⩽2pL
Irr (x),x ∈ Irrq(n).

Furthermore, for each x, let a′x be an integer such that f ′(x) ̸≡ f ′(y) mod a′x for y ∈ B⩽p,⩽2pL
Irr (x).

Let
CB
n = {xbxσr : x ∈ Irrq(n), r = E1(a′x, f ′(x) mod a′x)}.

Note that for simplicity, we index the code by the length of x rather than the length of the code-
words xbxσr, i.e., n in CB

n refers to the length of x. The length of r is discussed in Subsection 3.5.7
below.

Theorem 91. The code in Construction 90 can correct any number of short duplications and at
most p substitutions.

Proof. Let the retrieved word be w ∈ R(D⩽p(xbxσr)). From Lemma 88, given w, we can find a′x

and f ′(x) mod a′x. By Lemma 115, xbxσr is irreducible. Then, by Lemma 87, the (n− pL)-prefix
of w, denoted s, satisfies s ∈ D⩽p

⩽2pL(x). By definition, for all y ̸= x that could produce the same
s, we have y ∈ B⩽p,⩽2pL

Irr (x). But then, f ′(y) ̸≡ f ′(x) mod a′x, and so we can determine x by
exhaustive search.

81

Dups ⩽ 1 sub Root

(i) DSD(1) channel

Dups ⩽ 1 edit Root

(ii) DED(1) channel

Figure 3.8: Any error-correcting code for channel (i) is also an error-correcting code for channel (ii).

3.5.4 Proof of Lemma 88

To simplify the proof, instead of directly proving Lemma 88, we prove the following lemma, which
essentially reverses the sequences in Lemma 88. Since both duplication and deduplication are
symmetric operations, the lemmas are equivalent.

Lemma 92. Let σ = 01020. There exists an encoder E1 : ΣL
2 → Irrq(L

′) such that i) E1(u)σ ∈
Irrq(∗) and ii) for any string x ∈ Irrq(∗) with E1(u)σx ∈ Irrq(∗), we can recover u from any
w ∈ R(D⩽p(E1(u)σx)). Asymptotically, L′ ⩽ L/ log(q − 2)(1 + o(1)).

Proof. Let v = E1(u) and w ∈ R(D⩽p(vσx)). Furthermore, let s be |v| − pL-prefix of w. By
Lemma 87, we have s ∈ D⩽p

⩽2pL(v). So s can be obtained from v through at most 3p L-substring
edits. So if we let E1 be an encoder for CE designed to correct 3p substitution errors and an infinite
number of duplications, we can recover u from s. The rate of this encoder is lower bounded by
log(q − 2)(1 + o(1)).

3.5.5 Extension to edit errors

We now show that the codes in Constructions 85 and 90 are able to correct an arbitrary number
of duplications and at most p edit errors, where an edit error may be a deletion, an insertion, or a
substitution.

Define the DED(1) and DED(p) channels analogously to the DSD(1) and DSD(p) channels by
replacing substitutions with edit errors. Any error-correcting code for a concatenation of p DED(1)
channels is also an error-correcting code for DED(p).

Additionally, any error-correcting code for a DSD(1) channel is also an error-correcting code for
the DED(1) channel. This is because any input-output pair (x,y) for DED(1), shown in Figure 3.8ii,
is also an input-output pair for the DSD(1) channel, shown in Figure 3.8i. This claim is proved
in [83, Corollary 12], where it was shown that a deletion can be represented as a substitution
and a deduplication, e.g., abc → ac as abc → aac → ac, and an insertion as a duplication and a
substitution, e.g., abc → abdc as abc → abbc → abdc.

Since CA and CB can correct errors arising from a concatenation of p DSD(1) channels, they can
also correct errors arising from a concatenation of p DED(1) channels and thus a DED(p) channel,
leading to the following theorem.

82

Theorem93. The codes in Constructions 85 and 90 can correct any number of duplications and at
most p edit errors.

3.5.6 The labeling function

In this subsection, we first present the labeling function f such that f(x) ̸= f(y) for y ∈ B⩽p
Irr (x),

used in Construction 85. By Theorem 82, z ∈ R(D⩽p(x)) ∩ R(D⩽p(y)) can be obtained from x

and from y by at most 2pL indels. Hence, it suffices to find f such that f(x) ̸= f(y) if there is
a string z that can be obtained from both x and y through 2pL indels. Note that since we are
utilizing syndrome compression, choosing a more “powerful” labeling function does not increase the
redundancy, which is still primarily controlled by maxx∈Irrq(n) ∥B

⩽p
Irr (x)∥. We use the next theorem

for binary sequences to find f .

Theorem 94. [74] There exists a labeling function g : {0, 1}n → Σ2R(t,n) such that for any two
distinct strings c1 and c2 confusable under at most t insertions, deletions, and substitutions, we
have g(c1) ̸= g(c2), where R(t, n) = [(t2 + 1)(2t2 + 1) + 2t2(t− 1)] log n+ o(log n).

Since z ∈ R(D⩽p(x)) can be obtained from x via at most 2pL indels, Ui(z) can be derived from
Ui(x) by at most 2pL indels, for i ∈ [⌈log q⌉]. Based on Theorem 109 and the work [74], by letting
t = 2pL, we can obtain a labeling function g for recovering Ui(x) from Ui(z) under at most 2pL
indels. Therefore, f : Σn

q → Σ2⌈log q⌉R(t,n) ,

f(x) =

⌈log q⌉∑
i=1

2R(t,n)(i−1)g(Ui(x)),

where t = 2pL, is a labeling function for the confusable sets B⩽p
Irr (x), x ∈ Irrq(n). For each x, a

value ax needs to be also determined such that f(x) ̸≡ f(y) mod ax for y ∈ B⩽p
Irr (x). The existence

of such ax, satisfying log ax ⩽ log ∥B⩽p
Irr (x)∥+ o(log n), is guaranteed by Theorem 102 provided

that p is a constant (ensuring that p4 = o(log log n)). The labeling function f and integers ax are
used in Construction 85.

In a similar manner, we can construct f ′ as a labeling function for B⩽p,⩽2pL
Irr (x),x ∈ Irrq(n) and

integers a′x, by setting t = 4pL to account for the deletion of length at most 2pL. This time, for
all x ∈ Irrq(n), log a′x ⩽ log ∥B⩽p,⩽2pL

Irr (x)∥+ o(log n). The labeling function f ′ and integers a′x are
used in Construction 90.

3.5.7 The redundancy of the error-correcting codes

In this section, we study the rate and the redundancy of the codes proposed in Constructions 85
and 90 and compare these to those of the state-of-the-art short-duplication-correcting code given
in [30], which has the highest possible asymptotic rate. For an alphabet of size q, the asymptotic
rate of this code for short duplications is log λ, where λ is the largest positive real root of x3 − (q−
2)x2 − (q − 3)x− (q − 2) = 0 [8].

83

The following lemma shows that the code proposed in [30] essentially has size Irrq(N), where
N is the length of the code, a fact that will be helpful for comparing the redundancies of the codes
proposed here with this baseline.

Lemma 95. Let CD
N be the code of length N over alphabet Σq introduced by [30] for correcting any

number of duplication errors. For q ⩾ 4,

∥ Irrq(N)∥ ⩽ ∥CD
N∥ ⩽

q − 2

q − 3
∥ Irrq(N)∥.

Proof. As shown in [30], ∥CD
N∥ =

∑N
i=1 ∥ Irrq(i)∥. Based on [83, Lemma 14], given u ∈ Irrq(N − 1),

there are at least q−2 choices for a ∈ Σq such that x = ua ∈ Irrq(N). Thus, (q−2)∥ Irrq(N−1)∥ ⩽

∥ Irrq(N)∥ and, consequently, ∥ Irrq(N − i)∥ ⩽ ∥ Irrq(N)∥
(q−2)i

. Then we have

∑N
i=1 ∥ Irrq(i)∥
∥ Irrq(N)∥

⩽
N−1∑
j=0

1

(q − 2)j
⩽

q − 2

q − 3
.

We now compare the redundancy of the code CA of Construction 85 with the code CD of [30]
for correcting only duplications. The length N of CA

n is N = n+ |r|, where

|r| = 2 logq ax

⩽ 2logq ∥B
⩽p
Irr (x)∥+ o(logq n)

⩽ 4p logq n+ o(logq n)

(3.13)

symbols. Hence, N = n + 4p logq n + o(logq n). Then, the difference in redundancies between CA
n

and CD
N , both of length N , is

logq ∥CD
N∥ − logq ∥CA

n ∥ = logq
∥ Irrq(N)∥
∥ Irrq(n)∥

+O(1) (3.14)

⩽ logq q
N−n +O(1)

⩽ 4p logq n+ o(logq n),

where the equality follows from Lemma 95 and the first inequality from the fact that ∥ Irrq(i+1)∥ ⩽

q∥ Irrq(i)∥. Noting that logq n = logq N + o(logq N) yields the following theorem.

Theorem 96. For constants q ⩾ 4 and p, the redundancy of the code CA
n of length N is larger than

the redundancy of the code CD
N of the same length by at most 4 logq N + o(logq N).

We now turn our attention to comparing the redundancy of CB
n of length N with CD

N . Here,
N −n = |r|+O(1) = |E1(a′x, f ′(x) mod a′x)|+O(1). Similar to (3.14), the extra redundancy is then
|r|+O(1), which through a′x depends on ∥B⩽p,⩽2pL

Irr (x)∥, investigated in the next lemma.

84

Figure 3.9: s results from passing x and y through a concatenation of p DSD(1) channels and a
channel deleting a suffix of length at most 2pL (c.f. Figure 3.7).

Lemma 97. For x ∈ Irrq(n) with q ⩾ 3,

∥B⩽p,⩽2pL
Irr (x)∥ ⩽ q4pL(n+ pL)2p.

Proof. The proof is similar to that of Theorem 83, but also takes into account the effect of the suffix
deletions, as shown in Figure 3.9. We have

∥B⩽p,⩽2pL
Irr (x)∥ ⩽ (968q(n+ pL) + 1)2p(2pL+ 1)(2pLq2pL + 1)

⩽ (2pL+ 1)2q2pL(968q + 1)2p(n+ pL)2p

⩽ q4pL(n+ pL)2p.
In the first line, (968q(n+pL)+1)2p is derived based on Theorem 83; (2pL+1) bounds the number
of ways s can be obtained from xp through a suffix deletion of length at most 2pL; and (2pLq2pL+1)

bounds the number of ways yp can be obtained from s by appending a sequence of length at most
2pL. The third line is obtained by noting that (968q + 1)2p(2pL+ 1)2 ⩽ q2pL with L = 17.

Lemma98. For constants q ⩾ 4 and p, and x ∈ Irrq(n), the length |r| of r = E1(a′x, f ′(x) mod a′x)

satisfies
|r| ⩽ 8p logq n+ o(logq n).

Proof. From the previous subsection, assuming p is a constant, we have that log a′x ⩽ log ∥B⩽p,⩽2pL
Irr (x)∥+

o(log n) ⩽ 2p log n + o(log n). Since (f ′(x) mod a′x) ⩽ a′x, we need 4p log n + o(log n) bits to rep-
resent the pair (a′x, f

′(x) mod a′x). Then, by Lemma 88, |E1(a′x, f ′(x) mod a′x))| ⩽ 4p log n(1 +

o(1))/ log(q − 2). The lemma follows from log q
log(q−2) ⩽ 2 for q ⩾ 4.

Using Lemma 98, the next theorem gives the extra redundancy of correcting p substitutions
compared to [30] and shows that there is no relative asymptotic rate penalty.

85

Theorem 99. For constants q ⩾ 4 and p, the redundancy of the code CB
n of length N is larger than

the redundancy of the code CD
N of the same length by at most 8 logq N + o(logq N). The codes have

the same asymptotic rate, which, for q = 4, equals log 2.6590.

3.5.8 Time complexity of encoding and decoding

Suppose q ⩾ 4 is a constant. The time complexities of both the encoding and decoding processes
are polynomial in the lengths of the stored and retrieved sequences, respectively. The encoding
process consists of four main parts:

1. Generating x ∈ Irrq(n) by the state-splitting algorithm, which has polynomial-time complex-
ity [8].

2. Determining bx such that xbxσ ∈ Irrq(∗), which has constant time complexity as the relevant
subgraph of the De Bruijn graph (see Lemma 89) has a constant size (no more than q5 vertices).

3. Determining a′x and f ′(x) mod a′x. This is done in three steps, with polynomial time complex-
ity. i) Given x ∈ Irrq(n), we find the elements of a set B̂ ⊇ B⩽p,⩽2pL

Irr (x) whose size satisfies
the upper bound given in Lemma 97. Specifically, given x we find all sequences that can be
obtained from it through ⩽ p short substring substitutions, one deletion of a suffix of length
⩽ 2pL, one insertion of a suffix of length ⩽ 2pL, and another ⩽ p short substring substitu-
tions, where in each short substring substitution step, we replace a substring abcde ∈ Irrq(5)

by another irreducible substring from the set R(D1(abcde)) and then deduplicate all copies.
The total time complexity of this step is O(n2p) as each element of B̂ is obtained by a bounded
number of operations and ∥B̂∥ = O(n2p). ii) Since computing f ′(·) from [74] has time complex-
ity O(n log n), computing it for all elements of B̂ takes O(n3p log n) steps. iii) Computing the
remainder of these values modulo the ⩽ 2logO(n2p) possible values for a′x also has polynomial
complexity.

4. Generating r = E1(a′x, f ′(x) mod a′x) using the encoder E1 for the code in Construction 68,
which has complexity polynomial in |r| based on Subsection 3.4.4. Hence, by Lemma 98, the
complexity is at most polynomial.

Therefore, when p is a constant, the time complexity of the encoding process is polynomial with
respect to N (as well as n).

Decoding requires finding the root of the retrieved word, which is linear in its length; decoding
a′x and f ′(x) mod a′x, which is polynomial as discussed in Subsection 3.4.4; and determining x
through a brute-force search among all inputs that can lead to the same (n− pL)-prefix of the root
of the retrieved sequence. Similar to the discussion about finding B̂ above, the brute-force search
is polynomial in n. Hence, decoding is polynomial in the length of the retrieved sequence.

86

3.6 Summary

This chapter focused on correcting any short duplications and at most p edit errors by three steps:
i) correcting short duplications and at most one edit, ii) correcting short duplications and at most
p substitutions, iii) correcting short duplications and at most p edits with low redundancy.

This chapter first considered constructing error-correcting codes for channels with many short
duplications and one edit error. Because the channel allows an arbitrary number of duplications, a
single edit may affect an unbounded segment of the output. For example, an inserted symbol may
appear many times in different positions. However, with an appropriate construction of message
blocks and processing of the output strings, the edit error leads to the erasure of at most 4 message
blocks or substitution of at most 2. Therefore, a maximum distance separable (MDS) code in
Construction 52 with minimum Hamming distance 5 over message blocks can correct these errors.
When q = 4, the case corresponding to DNA storage, a computational bound for the code rate
shows that the asymptotic rate is only 0.003 bits/symbol smaller than that of the code that corrects
short duplications but no edits.

Motivated by the work for an extra edit error, this chapter next extended the previous work
to correct short duplications and at most p substitutions. Based on the preprocessing for one edit
error, the effect of short duplications and at most p substitutions can be transformed as at most
p substring edit errors over constrained sequences. Different from one substring edit that causes
erasure or substitution errors, multiple substring edits poses the challenge of identifying error-free
message blocks. By concatenating at least 3p blocks with different colors as a message group, we may
detect at most 2p substitutions or erasures of message groups in the decoder. Hence, we proposed
an extended MDS code in Construction 68 to correct another at most p substitutions, with a loss
of asymptotic code rate. Note that the construction is applied as an auxiliary code to protect the
syndrome information in the following.

In order to further reduce the rate loss, we introduced codes for correcting any number of
duplication and at most p edit errors simultaneously. Recall that the set of irreducible strings is a
code capable of correcting short duplication errors with low redundancy. To additionally correct edit
errors, we append to each irreducible sequence x of length n a vector generated through syndrome
compression that enables us to distinguish confusable inputs. Given that edit and duplication errors
manifest as substring edit errors, we designed a buffer and the auxiliary code in a way to enable
us to recover the syndrome information from the received string. In each step of the construction,
we carefully ensured that the resulting sequence is still irreducible. The additional redundancy
compared to the codes correcting duplications only [30] is 8p(logq n)(1 + o(1)), with the number of
edits p and the alphabet size q being constants and q ⩾ 4. This additional redundancy is at most
a factor of 2 away from the lowest-redundancy codes for correcting p edits only [73] and a factor
of 4 away from the GV bound given in Theorem 84. The encoding and decoding processes have
polynomial time complexities. We focused on q ⩾ 4 as it includes the case with the most practical
importance, i.e., q = 4. While not all the results of the chapter are valid for q = 3 (e.g., the bound
on L′ in Lemma 88), we expect many of the ideas to be applicable to this case.

87

Chapter 4

Correcting a substring edit with
bounded length

4.1 Introduction

As discussed in Section 1.2.2, localized errors including burst substitutions/insertions/deletions
or localized deletions [2], [9], [17], [24], [42], [65], [66], [91], [93], [104] are widely observed in
various applications such as wireless communication, disk data storage, DNA storage, and document
synchronization. For example, the duplications discussed in previous chapters can all be viewed as
localized errors. The current chapter focuses on correcting a k-substring edit error with as low
redundancy as possible, which replaces one substring with another string at the same position, both
with lengths bounded by k. Note that one motivation is that burst deletions, burst insertions,
burst substitutions, and deletions/insertions occurring in a bounded window can all be considered
as special cases of substring edits with a bounded length.

Unlike prior works that assume the prevalence of burst errors, we first present an experimental
analysis to statistically validate this hypothesis. Based on two datasets, two versions of the source
code of the bash shell and the DNA sequencing data exposed to errors, statistical tests provide
strong evidence against the null hypothesis, namely that errors/edits are distributed uniformly in the
sequences. Moreover, we study the suitability of substring-edit-correcting codes for error correction
and data synchronization. For each data sequence and its edited version, the experiment shows that
substring-edit-correcting codes achieve lower redundancy than general indel/substitution-correcting
codes.

Our problem is related to the problem of deletion-correcting codes and burst-deletion-correcting
codes. However, as we will show in Lemma 100, a code that can correct a burst of at most ℓ deletions
(or one that can correct a burst of at most ℓ insertions) cannot necessarily correct a k-substring
edit, even if ℓ is much larger than k. On the other hand, a k-substring edit can be corrected by a
code that can correct 2 bursts of at most k deletions or, as we show in Lemma 100, by a code that
can correct at most 2k deletions. These observations lead to the conclusion that existing codes for
correcting multiple deletions [72], [74] or multiple bursts of deletions [86] can correct a k-substring

88

edit with redundancy at least 4k log n [74]. The goal of the current work is to construct codes that
can correct a k-substring edit with less redundancy.

While codes for correcting a burst of at most k deletions cannot correct a k-substring edits, the
idea of first identifying an approximate location for the error presented in Lenz et al. [42] and Bitar
et al. [2] using the position of specific patterns is useful for our problem. We divide k-substring
edits into strict k-substring edits (that will change the length in the outputs) and bursts of at
most k substitutions, referred to as k-burst substitutions. For strict edits, we first extend the codes
in [2], [42] to locate the error to be in an interval of length O((log n)2) and then correct it. For k-
burst substitutions, which cannot be located using the patterns mentioned above, we adapt the Fire
code [17]. Then we combine the two error-correcting codes in a manner that enables polynomial-time
encoding and decoding.

The chapter is organized as follows. Section 4.2 presents the notation and preliminaries. Sec-
tion 4.3 discusses the prevalence of burst errors in real data and the utility of substring-edit-
correcting codes. Finally, Section 4.4 presents the code constructions and an analysis of the time
complexity of encoding/decoding and the redundancy.

4.2 Notation and preliminaries

4.2.1 Notation

Without loss of generality, let Σq = {0, 1, . . . , q−1} be a finite alphabet of size q. The set of length-n
strings and finite strings over Σq are denoted as Σn

q and Σ∗
q , respectively. The empty string, denoted

Λ, is also considered a member of Σ∗
q . In this chapter, we focus on the binary alphabet Σ2. For

a, b ∈ Z, let [a, b] = {a, a+ 1, . . . , b} and [b] = [1, b]. Unless otherwise stated, logarithms are to the
base of 2.

For x,y ∈ Σn
2 , let x[a,b] = xaxa+1 · · ·xb and let xy and (x,y) denote the concatenation of x,y.

For x,v ∈ Σ∗
q , v is a substring of x if x = uvw for some u,w ∈ Σ∗

q . Furthermore, |x| is the length
of a sequence x and ∥S∥ is the number of elements in a set S. Given an integer r and a symbol
a ∈ Σ2, let ar denote a run of r consecutive symbols a.

4.2.2 The k-substring edit channel

Given a string x, a k-burst deletion (resp. insertion) in x removes (resp. inserts) at most k con-
secutive symbols, while a k-substring edit replaces a substring v of x by another string v′, where
|v|, |v′| ⩽ k and at least one of v,v′ is non-empty. The k-substring edit is a k-burst substitution if
|v| = |v′| and a strict k-substring edit otherwise. In particular, v′ = Λ results in a burst deletion
addressed by previous works. For example, given x = 100111011101 ∈ Σn

2 , a 4-substring edit may
generate z = 10010101101 by replacing x[5,8] = 1101 with z[5,7] = 010.

The next lemma discusses the relationship between deletion-correcting codes and codes that can
correct a k-substring edit.

89

Lemma 100. The codes in the statements below are over Σn
q , where n, q ⩾ 2. Let k be a positive

integer.

1. A code that can correct 2 k-burst deletions can correct a k-substring edit.

2. For any ℓ < n, there exists a code that can correct a burst of at most ℓ deletions but not a
k-substring edit.

3. For any ℓ < n, if ℓ < 2k, then there exists a code that can correct up to ℓ deletions but not a
k-substring edit.

Proof. 1. For two words x,y, if z can be obtained from each by a k-substring edit, then there
exists a z′ that can be obtained from each by 2 k-burst deletions, by also deleting the inserted
strings from z.

2. Consider the code C = {0n, 10n−21}, which can correct any burst of at most ℓ < n deletions
since 0n can only produce 0m,m ∈ [n], while the 10n−21 cannot. Note that 0n−11 can be
obtained from both 0n and 10n−21 through a single substitution. So C cannot correct a
k-substring edit for k > 0.

3. Let h = min{n, 2k} and note that ℓ < h. Consider the code {0hv, 1hv}, v ∈ Σn−h
q , which can

correct any ⩽ ℓ deletions. However, each of the codewords can produce 0⌊h/2⌋1⌈h/2⌉v via a
k-substring edit.

Given a code C ⊆ Σn
q , the redundancy of the code C is defined as n log q − log ∥C∥. For binary,

which is the focus of our code construction, part 1 of the above lemma implies the code given
in [74] for correcting ⩽ 2k deletions can correct a k-substring edit over the binary alphabet with
the redundancy of roughly 8k log n bits. If the k-substring edit is viewed as at most k insertions,
deletions, or substitutions, the code given in [74] requires redundancy of roughly 4k log n bits. To
the best of our knowledge, that is the lowest redundancy that can be achieved by an existing code
for this problem. The code we present in Theorem 118 has redundancy of roughly 2 log n.

Given a string x ∈ Σn
q , let Db,k(x) ⊆ Σ∗

q denote the set of strings generated from x by at most b
k-substring edit errors and let Bb,k(x) ⊆ Σn

q denote the confusable set of x, i.e., the set of sequences
y other than x for which Db,k(x) ∩Db,k(y) ̸= ∅. When b = 1 and k is clear from the context, we
use D(x), B(x) instead of Db,k(x), Bb,k(x).

We now find the Gilbert-Varshamov (GV) bound on the size of the code. Define

rn(b, k) = max
x∈Σn

q

∥Bb,k(x)∥+ 1.

Lemma 101. Assuming an alphabet of size q, we have

rn(b, k) ⩽ (n+ bk)2b(k + 1)4bq2kb

90

and there exists a code C ⊆ Σn
q of length n capable of correcting at most b k-substring edits with the

size at least
∥C∥ ⩾

qn

rn(b, k)
.

Proof. For x ∈ Σn
q , let Bb,k(x) ⊆ Σn

q denote the set of sequences that can produce the same output
as x by at most b k-substring edits. That is y ∈ Bb,k(x) if and only if there exists z that can
be produced from both x and y through at most b k-substring edit errors. Furthermore, each
k-substring edit is reversible, i.e., if xi ∈ D(xi−1), then xi−1 ∈ D(xi). Then each y ∈ Bb,k(x) can
be generated from x by x → x1 → · · · → xb−1 → z → yb−1 → · · · → y1 → y by 2b k-substring
edits, where x = x0 and y = y0. This sequence of edits consists of at most 2b burst deletions and
2b burst insertions. There are ⩽ (k + 1)4b ways to choose their lengths and ⩽ q2kb to choose the
inserted strings. We claim, to be proved later, that for each string, there are at most n+ bk possible
positions for the edit, yielding the Lemma.

To prove the claim, note that for a string of length m, there are m + 1 possible positions for
a substring edit that involves only an insertion and m positions if the edit contains a nontrivial
deletion. The strings xi,yi, z either have length less than n+ bk or if their length is equal to n+ bk

(only possible for z), then the edit must contain a deletion.

Assuming b, k are constants, the redundancy is bounded above by 2b log n + o(log n), which is
the same as the redundancy of the codes proposed in this chapter for b = 1 and the binary alphabet.

4.2.3 Relevant prior results

We first recall a result from syndrome compression, a technique used to construct codes with low
redundancy [75], to our problem.

Theorem 102 (c.f. [75, Theorem 5]). Given x ∈ Σn
2 , let f : Σn

2 → Σ2R(n) be a (labeling) function
over the confusable set B(x) such that f(x) ̸= f(y) for every y ∈ B(x), where R(n) = o(log log n ·
log n). Then there exists an integer a ⩽ 2log ∥B(x)∥+o(logn) such that for all y ∈ B(x), we have
f(x) ̸≡ f(y) mod a.

We will use the following definitions and results from [2], [42]. These works correct a burst of
deletions with low redundancy by first locating the approximate position of the error.

Given sequences x ∈ Σn
2 and a pattern (string) P, define 1P(x) ∈ Σn

2 as the indicator vector
whose ith element is 1 if x[i,i+|P|−1] = P and is 0 if x[i,i+|P|−1] ̸= P or i+ |P| − 1 > n. Further, let
nP(x) denote the number of 1’s in 1P(x) and aP(x) represent a length-(nP(x)+1) vector whose jth
element is the distance between positions of the (j − 1)-th and the jth 1 in the string (1,1P(x), 1)

for j ∈ [nP(x)+1]. A sequence x is (P, δ)-dense if each interval of length δ in x contains at least one
substring P. The set of (P, δ)-dense binary strings of length n is denoted DP,δ(n). Based on [42,
Lemma 1], for P = 0k1k, n ⩾ 5, and δ = k22k+1⌈log n⌉, we have

|DP,δ(n) ∩ Σn
2 | ⩾ 2n−1. (4.1)

Furthermore, for j ⩾ 2, we have aP(x)j ⩾ 2k due to the length of P.

91

Given an integer string x ∈ Zn, define the Varshamov-Tenengolts (VT) check sum as V T (x) =∑n
i=1 ixi. We next recall the code in [2] used to locate the burst of deletions or localized deletions

in an interval.

Lemma103 (cf. [2]). Given integers c1 ∈ [0, 4], c2 ∈ [0, 6n−1], and δ = k22k+1⌈log n⌉, there exists
a code

Cd = {x ∈ Σn
2 ∩ DP,δ(n), nP(x) = c1 mod 5,

V T (aP(x)) = c2 mod 6n.}

that can locate a burst of deletions or localized deletions in an interval with length O((log n)2).

The key notations used in the chapter are summarized in Table 4.1.

Table 4.1: Key notations in Chapter 4

Notation Definition
Σq = {0, 1, · · · , q − 1} the alphabet set with q elements

[a, b] the set of consecutive integers {a, a+ 1, · · · , b}
∥S∥ the number of elements in the set S

k-substring edit
generate y = uv′w from x = uvw by replacing

the substring v with another string v′ with |v|, |v′| ⩽ k

D1,k(x)/D(x)
the set of all outputs generated
from x by a k-substring edit

P the pattern (string), i.e., 0k1k

nP(x) the number of patterns in x

aP(x)
the length-(nP(x) + 1) vector representing the distance

between two adjacent patterns in x

(P, δ)-dense string
each interval of length-δ in x

contains at least one pattern P

DP,δ(n) the set of all (P, δ)-dense strings

V T (x)
∑n

i=1 ixi

4.3 Substring edits in nanopore sequencing and document editing

In this section, we investigate the hypothesis that in real-world settings, errors/edits commonly occur
in a bursty manner, rather than being distributed uniformly. We also study whether substring-edit-
correcting codes can achieve lower redundancy than general edit-correcting codes. We performed
experimental studies on two real-world datasets, corresponding to two applications of the codes:

• Error-correction: We investigate the set of errors encountered in nanopore sequencing [12] in
DNA data storage. The data consists of 1000 input-output pairs, where the input represents
the (true) base sequence of a DNA molecule. Each input sequence is of length 200, with
bases randomly generated from {A,C,G, T}. The output represents the sequence detected by

92

Figure 4.1: An alignment of two DNA sequences, where the top sequence can be obtained from the
bottom one via deletions (/), insertions (−), and substitutions (·).

nanopore, as simulated by using the nanopore deep simulator [47] and the Nanopore’s Guppy
basecaller.

• Data synchronization: Suppose Alice, who knows only x, needs to communicate x to Bob,
who knows only z. Consider two documents x and z, where x is the edited version of z. This
task is referred to as data synchronization, and can be accomplished using error-correcting
codes [60]. We study the characteristics of the editing process, which affects the number of
bits needed for synchronization. The dataset consists of versions 5.0 and 5.1 of the source
code for the Bash utility1, containing 1301 and 1383 files, respectively, where each common
file in version 5.1 is viewed as an edited version of the one in version 5.0.

Recall that our goal is to determine whether edits/errors are i) bursty or ii) uniformly/independently
distributed. To rigorously answer this question, one way is to first define a uniform/independent
random process for errors and edits and then use hypothesis testing to determine if such a model
explains the observed data, which will be discussed in Subsection 4.3.2. First, however, we perform
an intuitive but less rigorous test over the alignment of pairs of sequences in Subsection 4.3.1. Finally,
in Subsection 4.3.2, we consider choosing the model that leads to the lowest cost in error-correction
and synchronization tasks for our data.

4.3.1 Independence test on alignment

Let z be the erroneous/edited version of x. An alignment between x and z identifies the positions
where the sequences match and how they differ (see Figure 4.1).

From the alignment, let us produce the binary sequence, denoted a, in which 1 represents a
match and 0 represents an edit (substitution, insertion, deletion). If edits/errors are distributed
in a uniform manner over x, e.g., resulting from an “independent” process, then it is reasonable
to expect the alignment a to resemble an iid sequence. Therefore, we apply the Wald-Wolfowitz
runs-test [51].

Wald-Wolfowitz runs-test

Consider a binary sequence a = a0a1 · · · aN−1. The Wald-Wolfowitz runs-test [51] tests the null
hypothesis that a is iid generated. The number of runs R is used as the test statistic. Conditioned

1https://ftp.gnu.org/gnu/bash/

93

on the number of 1’s t1 and the number of 0’s t0, it can be shown that

Pr(R = 2s|t1, t0) =
2
(
t1−1
s−1

)(
t0−1
s−1

)(
N
t1

) , (4.2)

Pr(R = 2s+ 1|t1, t0) =
(
t1−1
s−1

)(
t0−1
s

)
+
(
t1−1
s

)(
t0−1
s−1

)(
N
t1

) . (4.3)

where there are
(
N−1
s−1

)
choices to put N balls into s bins each with at least one ball. Note that either

too large or too small values of R imply dependence between ai’s, thus suggest to reject the null
hypothesis. However, in all examples we tested, the actual number of runs r is small. Therefore,
for simplicity, we consider the one-sided test with p-value Pr(R ⩽ r|t1, t0) =

∑r
y=1 Pr(R = y|t1, t0).

Here, the null hypothesis is that a is iid generated and the number R of runs in a is the test statis-
tic. Conditioned on the number of 0’s t0 and the number of 1’s t1, the p-value is Pr(R ⩽ r|t0, t1), as
we do not expect to see very few runs in an iid sequence. As in “RUNS-TEST” column of Table 4.2,
this test strongly suggests that edits are not iid for both datasets.

4.3.2 A probabilistic edit process

Another approach is to perform hypothesis testing on a probabilistic edit process. Again, let x be
our data sequence of length n, and z its edited version. Based on an intuitive interpretation of
“uniform edits”, we define the following simple edit process: i) A random number Ki of insertions
are uniformly distributed over the n + 1 bins between xi and xi+1, i = 0, . . . , n, where x0 and
xn+1 are defined as the empty symbol. ii) A random number Kd of substitutions and deletions are
uniformly applied on x1, . . . , xn.

The null hypothesis is that z is generated by this edit process. Since insertions occur indepen-
dently of substitutions and deletions, we apply two separate tests. For insertions, we consider W ,
the number of non-empty bins as the test statistic. According to the proposed edit process, how
are insertions located can be described by the problem of distributing s balls uniformly over the N

bins. The probability of observing w non-empty bins can be shown as

Pr(W = w|s,N) =

(
N
w

)
·
(
s−1
w−1

)(
N+s−1

s

) , (4.4)

where
(
N+s−1

s

)
denotes all the cases of distributing s balls into N bins, and

(
N
w

)
·
(
s−1
w−1

)
denotes

all the cases that w bins are not empty. If most insertions cluster in a small number of bins, i.e.,
W being small, then we reject the null hypothesis. The p-value Pr(W ⩽ w|s,N) is summarized in
“INS-TEST” column of Table 4.2.

For substitutions and deletions, we consider again R, the number of runs in the edit pattern
(excluding insertions) as the test statistic, and reject the null hypothesis if R is small. The results
are given in “SUBDEL-TEST” column of Table 4.2. High rejection rates for both tests suggest that
edits are not uniform.

subsectionOperational evaluation of error/edit models Given two sequences x ∈ Σn
q and z ∈

94

Σ∗
q , their differences can be described via b k-substring edits for a range of possible pairs (b, k).

Operationally, the best description, i.e., (b, k) pair, is the one that leads to the lowest cost for the
task at hand. For error-correction, where z is an erroneous copy of x, the cost is the redundancy
of the code that allows correcting the errors in z. If z can be obtained from x via b k-substring
edits, based on the GV bound, there exists such a code of length n with redundancy log rn(b, k).
For synchronization, where x is the edited version of z (or vice versa), the cost is the information
exchange, i.e., the number of bits needed to be transmitted. It can be shown [60] that exchanging
log rn(b, k) bits is sufficient, achievable using a systematic code with n information symbols and
logq rn(b, k) check symbols.

4.3.3 Experiment results

Our experiment starts with computing the alignment of data sequence pairs in both datasets. We
consider the 1000 input-output pairs in the nanopore sequencing dataset and the 589 pairs of
common files (with lengths at most 20000 bytes and contain edits) in the bash dataset. We use the
conventional dynamic programming approach [55] for computing the alignment. Table 4.2 presents
the fraction of sequences rejecting the null hypothesis at p-value threshold of 5% for two datasets
for three thresholds.

RUNS-TEST INS-TEST SUBDEL-TEST
Bash 97.2% 100% 97.6%
DNA 95.7% 94.6% 76.1%

Table 4.2: Fraction of sequences rejecting the null hypothesis at p-value threshold of 5%.

a) Runs-test on alignment

For each alignment, the runs-test is applied for determining if it resembles an iid sequence. In
particular, the alignment is first converted into a binary edit pattern sequence with 1 representing a
match and 0 one of the three types of edits. The p-value of the runs-test is computed according to
(4.2) and (4.3), where t1, t0, r are the numbers of 1’s, 0’s, and runs in the edit pattern, respectively.

In our experiment, the runs-test is applied on all 1000 input-output pairs in the nanopore
sequencing dataset and 589 pairs of edited files in the bash dataset. Table 4.2 contains fraction of
sequences rejecting the null hypothesis at p-value threshold of 5%. We also provide histograms of
all obtained p-values in Figure 4.2. It is clear that most alignment data does not suggest edits being
uniform.

b) Testing the edit process

The second part of our analysis focuses on the two testings for the proposed edit process. We assume
that the alignment between two data sequences gives the actual edits that happened. Let n be the
length of the unedited data sequence.

95

(i) Bash dataset (ii) Nanopore sequencing dataset

Figure 4.2: Histograms of p-values for the runs-test applied on alignment.

(i) Bash dataset (ii) Nanopore sequencing dataset

Figure 4.3: Histograms of p-values for INS-TEST.

• INS-TEST: For the insertions, we obtain the number of insertions Ki and the number of runs
of insertions w from the alignment. The p-value is defined as the probability of seeing at most
w non-empty bins, i.e., Pr(W ⩽ w|s = Ki, N = n+ 1), where the pmf of W is given by (4.4).

• SUBDEL-TEST: For the substitutions and deletions, we first remove the insertions from the
alignment. Next, we convert the alignment to the binary edit pattern and count the number
of 1’s Kd (corresponding to edits) and the number of 0’s n −Kd. The test statistic is again
R, the number of runs in the edit pattern. It is clear that under the assumed edit process,
the distribution of R given Kd is given by (4.2) and (4.3), with t1 = Kd, t0 = n − Kd. The
p-value is computed in the same way.

INS-TEST and SUBDEL-TEST are both applied on the two datasets, with fractions of rejections in
Table 4.2. Note that we only apply INS-TEST on data sequences that contain at least 5 insertions,
and only apply SUBDEL-TEST on data sequences that contain at least 1 deletion or substitution.
Figures 4.3 and 4.4 show histograms of the p-values. Strong evidence for rejecting the uniform edit

96

process can be observed.

(i) Bash dataset (ii) Nanopore sequencing dataset

Figure 4.4: Histograms of p-values for SUBDEL-TEST.

c) Operational evaluation of error/edit models

For each pair of sequences in the genome data set, among all valid (b, k) pairs, we find the one
that minimizes rn(b, k), where n = 200, q = 4. The histogram of the best (b, k) pairs is given in
Figure 4.5, which indicates that viewing the errors as 13 2-substring edits minimizes the redundancy
for the largest number of input-output pairs.2 This suggests that edits with k > 1 better describe
our data and codes correcting b k-substring edits for k > 1 are of use in DNA data storage. Note,
however, that a priori we do not know the error that will occur and may have to over-provision to
achieve reliability.

Figure 4.5: Histogram of optimal (b, k) values for the Nanopore sequencing dataset.

Similarly, for each edited file in the bash dataset, we find the (b, k) pair with the minimum
redundancy, i.e., log rn(b, k) with n being the unedited file size and alphabet size q = 256, among
all valid pairs. In our experiment, we let k range from 1 to 10 and only consider files of lengths

2We point out that only 272 sequence pairs are included as the rest are so erroneous that they have their minimum
redundancy log rn(b, k) larger than the original length (400 bits for n = 200, q = 4).

97

smaller than 3000 bytes (392 in total) to avoid large running time. The valid (b, k) pairs are found
by computing the smallest b for each k using a dynamic programming based algorithm. By only
including files whose minimum redundancy is smaller than the original length (log rn(b, k) < 8n),
we are left with 122 files. Figure 4.6 shows the histogram of the best (b, k) pairs for these 122 files.
It can be seen that for majority of the files studied, viewing edits as k-substring edits for k > 1

minimizes the redundancy. In particular, for k = 10, a group of pairs of files differ by b = 66

k-substring edits. A more careful analysis reveals that the files in the new version 5.1 added a claim
of copyrights compared to the corresponding old version 5.0. Comparing Figure 4.5 with Figure 4.6,
the best choice of k for bash data is higher for that of DNA. It represents that the editing of files
is prone of bursty manners.

Figure 4.6: Histogram of optimal (b, k) values for the bash dataset.

Based on Figure 4.5 and Figure 4.6, codes correcting burst errors achieve lower redundancy
compared to codes correcting independent indels. To further support the results, Table 4.3 presents
the average redundancy of indel-correcting codes (k = 1) and burst-correcting codes (k ⩾ 1) to
correct a symbol over two datasets, respectively. In this experiment, suppose a dataset contains
N files with file size {n1, · · · , nN}, we define the average redundancy of correcting the datasets as∑N

i=1 logq rni(bi, ki)/
∑N

i ni, where (bi, ki) is the pair for the ith file. Based on the numerical results,
for both datasets, the burst-error-correcting codes (k ⩾ 1) achieve a lower redundancy compared to
the indels-error-correcting codes (k = 1).

Bash dataset Nanopore sequencing dataset
k k ⩾ 1 k = 1 k ⩾ 1 k = 1

average logq rn(b,k)

n 0.30 0.62 0.84 1.06

Table 4.3: Comparison of redundancy of burst-error correcting codes with k ⩾ 1 and independent
indel-error-correcting codes with k = 1.

98

4.4 Challenges of correcting a k-substring edit

Given a constant k, this section focuses on constructing codes of length N for correcting a k-
substring edit error with redundancy roughly 2 logN and polynomial time complexities in both the
encoding and decoding processes. Unless otherwise stated, let n represent the length of (P, δ)-dense
strings.

Based on Lemma 103, given an input x ∈ DP,δ(n), locating the burst of deletions relies on the
number of patterns nP(x) and the relative distances of every two adjacent patterns aP(x). Com-
pared with locating a burst of deletions, locating a k-substring edit is more complicated. Suppose
x ∈ DP,δ(n) and y ∈ D(x) is an output generated from x by a k-substring edit. We need to
overcome the following challenges. First, when the k-substring edit is a substitution, i.e., |x| = |y|,
it is possible for both aP and nP to remain the same, preventing us from locating the error. Second,
even if the substring edit is strict, i.e., |x| ≠ |y|, there is no guarantee that the changes affecting aP
and nP will enable us to identify the approximate location of the error. To address these issues, this
chapter will extend the previous error-correcting code to correct a strict substring edit and adapt a
low-redundancy code to correct a burst of substitutions, respectively.

In order to construct error-correcting codes reaching the GV bound, we have the following
corollary, which also summarizes our approach.

Corollary 104. The code C ⊆ ΣN
2 is capable of correcting a k-substring edit if it can correct either

a k-burst substitution or a strict k-substring edit error.

4.5 Error-correcting code for a strict k-substring edit

Similar to works in [2], [42], given a constant k, this subsection focuses on correcting a strict k-
substring edit by first localizing the error and then correcting it in the interval. More specifically,
it consists of two steps. First, we extend the error-locating code in Lemma 103 from [2] to locate
the strict k-substring edit in an interval of length L = O((log n)2) with redundancy roughly log n.
Second, a modified syndrome compression code [75], [93] is designed to correct the error in the
specific interval with redundancy roughly O(log log n).

4.5.1 Locating the error in an interval

This subsection focuses on extending the codes in Lemma 103 to locate a strict k-substring edit
since it will affect at least one of nP(x) and aP(x).

Lemma105. Given P = 0k1k and δ = k22k+1⌈log n⌉, let x ∈ DP,δ(n)∩Σn
2 be a (P, δ)-dense string

and y ∈ D(x). Then a k-substring edit does not create nor destroy more than two adjacent patterns
P in x, i.e., nP(y) ∈ [nP(x)− 2, nP(x) + 2].

Proof. Let x = uvw and y = uv′w. Observe that

nP(u) + nP(w)
(a)
⩽ nP(x)

(b)
⩽ nP(u) + nP(w) + 2,

99

nP(u) + nP(w)
(c)
⩽ nP(y)

(d)
⩽ nP(u) + nP(w) + 2,

where the upper bounds holds because |v|, |v′| ⩽ k and the length of the pattern is 2k. The upper
bound on nP(y) follows from (d) and (a), and the lower bound from (c) and (b).

Then we have the following corollary.

Corollary 106. Let x ∈ DP,δ(n) and y ∈ D(x). Then aP(y) can be generated from aP(x) as a
result of a 3-substring-edit.

According to the changes of nP(x) and aP(x), we extend the code in Bitar et al. work [2] as
the following construction that helps to locate a strict k-substring edit occurring in the (P, δ)-dense
string for x ∈ DP,δ(n). Compared to localized deletions only reducing the length, the following
modification can deal with the case of increasing the length and locating a strict k-substring edit
in a wider interval.

Construction 107. Given 0 ⩽ c1 ⩽ 4 and 0 ⩽ c2 < 7n, let

Cloc(c1, c2) = {x ∈ Σn
2 ∩ DP,δ(n), nP(x) = c1 mod 5,

V T (aP(x)) = c2 mod 7n}.

Then we have the following lemma.

Lemma 108. Let k be a constant. Given x ∈ Cloc(c1, c2), a strict k-substring edit occurring in x
can be located in a substring of x with length L = O(δ2) = O((log n)2).

Proof. The lemma is proved by adapting a similar method from the work [2]. The key idea is to
construct a monotonic function with respect to the index of the first message block, partitioned by
patterns, that is affected by the strict k-substring edit. Then we can find a range of the indices,
leading to an interval in which the strict k-substring edit occurs.

Given x ∈ Σn
2 ∩ DP,δ(n) and y ∈ D(x), we get aP(x) and nP(x) from x since x ∈ Cloc(c1, c2).

Similarly, aP(y) and nP(y) from y. Since x ∈ DP,δ(n), we have 2k ⩽ aP(x)i ⩽ δ for i ⩾ 2.
In the following, we analyze the changes from aP(x) to aP(y). Based on Lemma 106, the vector

aP(y) can be considered generating from aP(x) by replacing a substring u in aP(x) to another
substring v in aP(y), i.e.,

aP(x) = (aP(x)[1,t),u, aP(x)[e1,nP (x)])

= (aP(y)[1,t),u, aP(y)[e2,nP (y)]),

aP(y) = (aP(x)[1,t),v, aP(x)[e1,nP (x)])

= (aP(y)[1,t),v, aP(y)[e2,nP (y)]).

where 0 ⩽ |u|, |v| ⩽ 3, t ⩽ e1, e2 ⩽ t+3. Note that aP(y)i satisfies 2k ⩽ aP(y)i ⩽ 3δ+k < 4δ, where
the lower bound is obtained since P has length 2k for i ⩾ 2. Furthermore, based on Lemma 105,

100

we have |nP(y)− nP(x)| ⩽ 2 and ||u| − |v|| ⩽ 2. Therefore, the length of aP(y)i is upper bounded
by 3δ + k after breaking two patterns and inserting a substring of length upper bounded by k.

Let d = |u|−|v|. Then d ∈ [−2, 2] can be uniquely computed from y, i.e., d = nP(y)−c1 mod 5.
Let k′ = |x| − |y|, then we have k′ =

∑e1−1
i=t aP(x)i −

∑e2−1
i=t aP(y)i, where 0 < |k′| ⩽ k. Note that

k′ ̸= 0 for a strict k-substring edit.
Then we have

Z :=V T (aP(y))− V T (aP(x))

=d

nP (y)∑
i=e2

aP(y)i − t

(
e1−1∑
i=t

aP(x)i −
e2−1∑
i=t

aP(y)i

)

−
e1−1∑
i=t+1

(i− t)aP(x)i +

e2−1∑
i=t+1

(i− t)aP(y)i

=d

nP (y)∑
i=t+3

aP(y)i − tk′ + E,

where 0 < |k′| ⩽ k and E is

E = d

t+2∑
i=e2

aP(y)i −
e1−1∑
i=t+1

(i− t)aP(x)i +

e2−1∑
i=t+1

(i− t)aP(y)i.

However, the range of E will be modified since aP(y)i has a different range. Since e2 ⩽ t + 3,
the total components of the first and the last summation are at most three each with coefficients
max(|d|, e2 − t− 1) ⩽ 2. Then we have |E| ⩽ 3 · 2 ·max(aP(y)i) < 24δ. Then the difference of VT
check sum satisfies

Z = d

nP (y)∑
i=t+3

aP(y)i − tk′ + E, |E| < 24δ.

where 0 < |k′| ⩽ k results from a strict k-substring edit compared to k ⩾ k′ > 0 for a burst deletion.
Therefore, we have −3n − 24δ < Z < 3n + 24δ. Since 7n > 6n + 48δ + 1 and V T (aP(x)) =

c2 mod 7n, the integer Z ∈ [−3n − 24δ + 1, 3n + 24δ − 1] can be uniquely obtained based on
Z = V T (aP(y))− c2 mod 7n.

In the following, we define a function

H(t) := d

nP (y)∑
i=t+3

aP(y)i − tk′.

Our task is to prove that H(t) is a strictly monotonic function with respect to t for 0 < |k′| ⩽ k,
not only k ⩾ k′ > 0:

• Firstly, suppose 0 < k′ ⩽ k. If d ⩾ 0, H(t) is a strictly decreasing function of t. If d < 0, then
by the function aP(y)i ⩾ 2k > k′, then H(t) is a strictly increasing function of t.

• Secondly, suppose −k ⩽ k′ < 0. If d ⩽ 0, H(t) is a strictly increasing function of t. If d > 0,

101

since aP(y)i ⩾ 2k > −k′, H(t) is a strictly decreasing function of t.

Given Z, k′, and d, the task is to locate t in the set

I = {t : H(t) ∈ [Z − 24δ, Z + 24δ]}.

For a monotonic function H(t), there are at most 48δ + 1 choices of t. Since aP(y)i < 4δ, we can
locate the strict k-substring edit in an interval of length at most 192δ2 +4δ = O(δ2) = O((log n)2).
The time complexity to compute aP(y), nP(y), and the interval is O(n).

4.5.2 Correcting the error in an interval

Suppose a strict k-substring edit is located in an interval of lenth L = O(δ2). Next, we present
error-correcting codes that can correct the strict k-substring edit in the specific interval with length
L.

Similar to the work [93], we generate two sets of blocks of length 2L by partitioning x ∈ DP,δ(n).
More specifically, given N̂ = n/2L, let Se = (se1, se2, · · · , seN̂) and So = (so1, so2, · · · , so(N̂−1))

denote the set of even and odd blocks respectively, where sei = x[2(i−1)L+1:2iL] for i ∈ [N̂] and
soi = x[(2i−1)L+1:(2i+1)L] for i ∈ [N̂ − 1].

Since the k-substring edit is located in a specific interval with the length bounded by L, then it
will occur in at least one block of either Se and So. In the following, we apply a modified syndrome
compression code [75] to correct a strict k-substring edit in a length-2L string.

Based on Theorem 102, for u ∈ Σ2L
2 and a labeling function f over B(u), the decoder can

recover u by v ∈ D(u), a, and f(u) mod a. Furthermore, a complex labeling function f does not
affect the redundancy of the code since the redundancy 2 log a is affected by the size of B(u). Since
a strict k-substring edit can be viewed as a k-burst deletion followed by a k-burst insertion, we
introduce a labeling function that can correct at most 2k insertions, deletions, and substitutions.
The following theorem introduces a function from the work [74] to correct at most t = 2k insertions,
deletions, and substitutions.

Theorem 109 (cf. [74]). Given a constant k, t = 2k, and L = O((log n)2), There exists a labeling
function g : Σ2L

2 → Σ2R(t,2L) such that for any two distinct strings s1 and s2 confusable under at
most t insertions, deletions, and substitutions, we have g(s1) ̸= g(s2), where R(t, 2L) = ((t2 +

1)(2t2 + 1) + 2t2(t− 1)) log 2L+ o(log 2L) = O(log log n) + o(log log n).

Based on Lemma 101, given u ∈ Σ2L
2 , the size of the confusable set B(u) satisfies ∥B(u)∥ <

(2L + k)2(k + 1)422k. Then for each sei ∈ Σ2L
2 and wei ∈ B(sei), there exists an integer aei such

that g(sei) ̸≡ g(wei) mod aei for i ∈ [N̂], where aei ⩽ 2log ∥B(sei)∥+o(logL). The same property holds
for each soi ∈ Σ2L

2 for i ∈ [N̂ − 1].

Based on the two sets of messages Se, So, we have the following construction for a k-substring
edit.

102

Construction 110. Let β = (β1, β2, · · · , β6). Given x ∈ Cloc(β1, β2) with length n, we generate
two sets of message blocks Se and So. Let β3, · · · , β6 < α. Then we have

Cstrict(β, α) = {x ∈ Cloc(β1, β2),
N̂∑
i=1

aei = β3 mod α,

N̂∑
i=1

(g(sei) mod aei) = β4 mod α,

N̂−1∑
i=1

aoi = β5 mod α,

N̂−1∑
i=1

(g(soi) mod aoi) = β6 mod α.}

where α satisfies α ⩾ (2L+ k)2(k + 1)422k2o(logL) > max(ae1, ao1 · · · , ae(N̂−1), ao(N̂−1), aeN) .

Note that a similar construction appeared recently in [93], [94] for burst deletions. However, our
construction includes a more powerful error-locating code and modified modulus so that our code
can correct a strict k-substring edit.

Lemma 111. Given a constant k, the error-correcting code Cstrict(β, α) in Construction 110 can
correct a strict k-substring edit error with the redundancy of roughly log n+16 log log n+o(log log n)

bits.

Proof. Let x ∈ Cstrict(β, α) and z ∈ D(x) with |x| ≠ |z|. Based on Lemma 108, a strict k-substring
edit will be located in an interval of length L.

According to the definition of Se and So, each pair of two blocks in (soi, sei) and (soi, se(i+1))
shares a common substring of length L for i ∈ [N̂ − 1]. Based on the output z and the lo-
calized interval, the decoder can generate two sets of blocks, i.e., S′

e = (s′e1, s
′
e2, · · · , s′eN) and

S′
o = (s′o1, s

′
o2, · · · , s′o(N−1)), similar to Se and So. Then for at least one of two recovered sets S′

e, S
′
o

at the decoder, saying S′
e, only one block saying s′ei for i ∈ [N] has a different block length and

contains the whole interval of length L where the strict k-substring edit occurs. Then s′ei ∈ D(sei)

and the other blocks in S′
e are error-free. For all error-free blocks s′ej with j ̸= i, we can recover aej

and g(sej). Then we can uniquely recover aei and g(sei) mod aei. Then we can recover sei based
on s′ei, aei, and g(sei) mod aei. As a result, we can recover x based on S′

e.
Based on Construct 110, there exists some code Cstrict(β, α) such that ∥Cstrict(β, α)∥ ⩾ 2n−1

β1β2α4 .
Let α = (2L+ k)2(k + 1)422k2o(logL) with L = O((log n)2), the redundancy of the code is

n− log ∥Cstrict(β, α)∥ ⩽ 1 + 4 logα+ log 7n+ log 5

= log n+ 16 log log n+ o(log log n).

4.6 Error-correcting code for a k-burst substitution

In this subsection, we present a code that can correct a k-burst substitution error.

103

Construction 112 (cf. [3], Fire code). Let g0(x) be an irreducible polynomial of degree m ⩾ k

that does not divide x2k−1 − 1. Then, there exists a linear cyclic code (called Fire code) of length
n1 = LCM(2k− 1, 2m − 1) with the generator polynomial g(x) = (x2k−1 − 1)g0(x) and deg(g(x)) =

m + 2k − 1. Then the Fire code CF can be represented as [n1, n] code with the codeword length n1

and the dimension n = n1 − (m+ 2k − 1).

Theorem 113 (cf. [3]). The Fire code CF can correct a single k-burst substitution.

Then the redundancy of the Fire code can be presented by the following lemma.

Lemma 114. Given a constant k, the Fire code CF corrects a k-burst substitution with the redun-
dancy roughly log n+ o(log n).

Proof. Based on Construction 112 and the definition of the redundancy of an error-correcting code,
the redundancy of the Fire code is

r(CF) = n1 − log2 ∥CF ∥ = m+ 2k − 1.

Given x ∈ Σn
2 , since m ⩾ k, the length of Fire code satisfies

2m − 1 ⩽ n1 = n+m+ 2k − 1 ⩽ (2k − 1)(2m − 1).

Therefore, we have m = log n1 + o(log n1) = log n + o(log n) > k as n → ∞. Therefore, the
redundancy of the Fire code is roughly log n+ o(log n) when k is a constant.

Hence, given x ∈ Σn
2 , there exists a function hF (x) of length roughly log n+ o(log n) such that

(x, hF (x)) ∈ CF is capable of correcting a k-burst substitution.

4.7 Combined error-correcting codes

Based on Lemma 104, given x ∈ DP,δ(n) ∩ Σn
2 , the receiver can correct a k-substring edit from

y ∈ D(x) if hF (x) and (β, α) are sent to the receiver by an error-free channel. For simplicity,
let rx := (hF (x),β, α) be a binary representation of the data. Then each codeword of the final
error-correcting codes can be generated by concatenating two parts, i.e., (x, rx). Furthermore, we
may add a buffer between x and rx such that a k-substring edit affects either x or rx. Finally, We
also need another function that can detect or correct a k-substring edit occurring in rx. We start
by finding a suitable buffer bx.

Since a k-substring edit should not affect both x and rx, the length of the buffer satisfies
|bx| > k. The buffer in the following lemma helps distinguish whether the strict k-substring edit
affects x or rx.

Lemma 115. Given a string w = xbxu with x ∈ Σn
2 and u ∈ Σ∗

2. A buffer bx = 1k+10k+11k+1

can distinguish whether a strict k-substring edit affect either x or u.

104

Proof. Let w = xbxu with x ∈ Σn
2 and u ∈ Σ∗

2. Suppose bx = 1k+10k+11k+1 = w[n+1:n+3k+3].
Let z ∈ D(w). Since a strict k-substring edit is considered, we have |z| ̸= |w|. Furthermore, let
k′ = |w| − |z|. Then we analyze the effect of a strict k-substring edit in the following cases.

• If 0 < k′ ⩽ k, we focus on the substring z[n+1−k′,n+3k+3].

– If z[n+1−k′,n+3k+3−k′] = 1k+10k+11k+1 or if z[n+k+2−k′,n+3k+3−k′] = 0k+11k+1, the strict
k-substring edit does not affect u. Furthermore, z[1:n−k′] ∈ D(x).

– If z[n+1,n+3k+3] = 1k+10k+11k+1 or if z[n+1,n+2k+2] = 1k+10k+1, the strict k-substring
edit does not affect x.

– Otherwise, the strict k-substring edit only affects the buffer, does not affect both x and
u.

• If −k ⩽ k′ < 0, we focus on the substring z[n+1,n+3k+3−k′].

– If z[n+1,n+3k+3] = 1k+10k+11k+1 or if z[n+1,n+2k+2] = 1k+10k+1, the strict k-substring
edit does not affect x.

– If z[n+1−k′,n+3k+3−k′] = 1k+10k+11k+1 or if z[n+k+2−k′,n+3k+3−k′] = 0k+11k+1, the strict
k-substring edit does not affect u. Furthermore, z[1:n−k′] ∈ D(x).

– Otherwise, the strict k-substring edit only affect the buffer, does not affect both x and
u.

Hence, the buffer bx = 1k+10k+11k+1 can help distinguish whether a strict k-substring edit affects
either x or u.

Then a burst-substitution-detecting function E1 suffices to decode x if it can detect an k-burst
substitution in rx.

Lemma 116. Given a constant k and bx = 1k+10k+11k+1, a burst-substitution-detecting function
E1 in xbxrxE1(rx) is sufficient to decode x for a k-substring edit.

Proof. Recall that since the length of the buffer is larger than k, a k-substring edit will not affect
x and rxE1(rx) simultaneously. Then we present how a burst-substitution-detecting function is
sufficient to decode x. Given w = xbxrxE1(rx), let z = D(w). Furthermore, let k′ = |w| − |z|.
Then we decode x in the following process.

• Suppose xbxrxE1(rx) suffers a strict k-substring edit and k′ ̸= 0. Based on Lemma 115, we
can distinguish whether x is affected. If x is error-free, we are done. If x is affected by a
strict k-substring edit, then rx is error-free. Since z[1:n−k′] ∈ D(x), then x can be recovered
from z[1:n−k′] and (β, α) in rx.

• Suppose xbxrxE1(rx) suffers a k-burst substitution and k′ = 0. Then we decode x in following
cases:

105

– If z[n+1,n+3k+3] = 1k+10k+11k+1, the burst substitution affects either x or rxE1(rx). If
the burst-substitution-detecting code E1 does not detect an error in rxE1(rx), then x
is affected. Then we can decode x from z[1:n] ∈ D(x) and hF (x) in rx. If an error is
detected in rxE1(rx), x = z[1:n] is error-free.

– z[n+1,n+3k+3] ̸= 1k+10k+11k+1 but z[n+1,n+2k+2] = 1k+10k+1, x is error-free.

– z[n+1,n+3k+3] ̸= 1k+10k+11k+1 but z[n+k+2,n+3k+3] = 0k+11k+1, then z[1:n] ∈ D(x) can be
generated from x by a k-burst substitution. Thus, we can decode x from z[1:n] ∈ D(x)

and hF (x).

– Otherwise, the k-substring edit only affect the buffer, x is error-free.

The simplest burst-substitution-detecting function is a parity-checking function. Given rx, let
L1 = |rx| > k. Then we partition rx into T = ⌈L1/(k + 1)⌉ blocks of length (k + 1), i.e., wj for
j ∈ [T], where additional 0s are appended if the last block has less than (k + 1) binary symbols.
Then the error-detecting function E1 : ΣL1

2 → Σ2k+2
2 appends γ1 and γ2 in the binary form (each

with length (k + 1)) following rx, where

γ1 =

⌈T/2⌉∑
j=1

w2j−1

 mod 2k+1,

γ2 =

⌊T/2⌋∑
j=1

w2j

 mod 2k+1.

The final construction is shown below.

Construction 117. Given a constant k, bx = 1k+10k+11k+1, we have a construction CN as

CN = {xbxrxγ1γ2 ∈ ΣN
2 ,x ∈ Σn

2 ∩ DP,δ(n)},

where rx = (hF (x),β, α) and γ1γ2 are in binary form generated by E1(rx) in each codeword
xbxrxγ1γ2 ∈ ΣN

2 .

Theorem 118. The error-correcting code CN in Construction 117 can correct a k-substring edit
with the redundancy of roughly 2 logN + o(logN) bits, where N = n+ 2 log n+ o(log n).

Proof. We first prove that the error-correcting code CN can correct a k-substring edit. Given
w = xbxrxγ1γ2 ∈ CN and z ∈ D(w). Let k′ = |w| − |z|.

• If k′ ̸= 0, the buffer bx helps distinguish whether the strict k-substring edit affect x by
Lemma 115. If x is error-free, we are done. If x suffers a substring edit, then rx is error-free
and x can be recovered from z[1:n−k′] ∈ D(x) and (β, α).

• If k′ = 0. Then γ1 and γ2 help recover x based on Lemma 116.

106

Next, we discuss the redundancy of the error-correcting code CN .
Based on (4.1), the size of the error-correcting code in Construction 117 is ||CN || ⩾ 2n−1.

According to the definition of redundancy, the main task is to explore the length N of the codeword
c = xbxrxγ1γ2.

Based on the analysis above, the lengths of x, bx, and rx, γ1γ2 are n, 3k+3, 2 log n+ o(log n),
and 2k + 2, respectively. Therefore, we have N = n + 2 log n + o(log n). Then the redundancy of
the error-correcting code in Construction 117 is roughly

N − log ||C|| = 2 log n+ o(log n) = 2 logN + o(logN),

where log n = logN + o(logN).

4.8 Time complexity

This subsection presents that the error-correcting codes CN have polynomial time complexities in
both encoding and decoding algorithms.

We start with the time complexity of the encoder. Given a constant k, each codeword is
generated by four steps:

• First, given a binary message string u, an (P, δ)-dense string x ∈ DP,δ(n) can be generated
by Algorithm 2 from Wang et.al [94]. The time complexity is polynomial with respect to n.

• Second, append a buffer bx = 1k+10k+11k+1 with time complexity O(1) .

• Third, produce rx to fight against a k-burst edit by applying the encoders of the linear Fire
code [3], the error-locating code in Lemma 108, and the modified syndrome compression codes.
For a constant k, the encoders of the Fire code [3] and the error-locating code have polynomial
time complexity with respect to n. Furthermore, based on [74], [75], for a constant k, the time
complexity of the modified syndrome compression is also polynomial with respect to n.

• Forth, append two parity blocks γ1 and γ2 with time complexity O(n).

Therefore, the time complexity of the encoder is polynomial with respect to n.
The decoder consists of detecting the parity check bits, decoding the Fire code [3], locating

the error in an interval, and decoding the modified syndrome compression codes. Similarly, for
a constant k, the time complexity of the decoder is also polynomial with respect to n. Since
N = n+2 log n+o(log n), the time complexities of both the encoder and the decoder are polynomial
with respect to N .

4.9 Summary

A k-substring edit will have many localized errors such as burst insertions/deletions/substitutions as
a special case. Based on two datasets, the statistical hypothesis tests and the codes reaching the GV

107

bounds show that the substring edits are common errors and substring-edit-correcting codes can
achieve a lower redundancy compared to insertion/deletion-error-correcting codes. Furthermore,
this chapter constructs error-correcting codes to correct a k-substring edit with the redundancy of
roughly 2 log n by using two codes, one error locating based code to correct a strict k-substring
edit and one Fire code for a burst of at most k substitutions. Both the encoding and the decoding
algorithms have polynomial time complexities.

108

Chapter 5

Correct deletions over DNA data storage
with enzymatic synthesis

5.1 Introduction

As mentioned in Section 1.2.3, the inexpensive enzymatic synthesis will generate multiple DNA
strands in parallel. For each round, a noisy (random) number of nucleotides of the same type are
appended to a sequence. The deletions (of runs), the dominant errors, occur if no nucleotide is
appended in a round. This chapter focuses on constructing error-correcting codes to correct noisy
run lengths and deletion errors in the channel model and achieve a writing rate higher than log2 3

bits per unit time.

The channel model resulting from enzymatic synthesis with noisy run lengths can also be viewed
as an insertion-deletion channel with multiple traces. Such a view would benefit from the extensive
literature on the topic, including [5], [10], [26], [41], [54], [78]. However, this approach would not be
able to take advantage of the specific structure of the deletions and insertions. Namely, each deletion
or insertion event modifies a single run and follows specific distributions given the synthesis time
for the corresponding round. As each run may be altered by inserting or deleting a large number of
symbols, the resulting insertion-deletion probability would be very large. Burst insertion-deletion
channels would be more appropriate, but these also ignore the fact that each event is limited to a
single run.

To correct errors arising from noisy run lengths, similar to [28], the current chapter also uses the
PR framework but also proposes error-correcting codes and a decoding algorithm to correct deletions
(of runs) in the DNA sequences as well as achieve a writing rate higher than log2 3 bits per unit time.
The code construction contains two codes. Based on [1], we introduce the block-based Tenegolts q-ary
(BTq) code by concatenating Tenegolts q-ary codes. This code is used to protect against deletions
of run by combining with the sequence reconstruction algorithms. Then, by applying a decoding
algorithm with sequence reconstruction of alternating sequences, synchronization of run lengths in
parallel sequences, and time estimation with the application of the statistical inference, the second
substitution-correcting (SC) code decodes the information stored in the run lengths[28]. Based on

109

numerical results, in some settings, the constructed code (including an explicit construction) can
decode codewords with the error probability approximating the analytical values while achieving a
writing rate higher than log2 3 bits per unit time. Finally, we discussed a method to set suitable
parameters that can achieve the target error probability of decoding both BTq and SC codewords.

The rest of this chapter is organized as follows. Section 5.2 provides the notation and pre-
liminaries. Section 5.3 introduces the channel model. The code construction as well as its rate
are presented in Section 5.4, followed by decoding procedures in Section 5.5. Finally, Section 5.6
presents the numerical results while Section 5.7 concludes the section.

5.2 Notation and preliminaries

We start by introducing more notation below apart from that in Section 1.3.3.

Let x = x1x2 · · ·xn ∈ Σn
q be an alternating string of length n over Σq if xi ̸= xi+1 for i ∈ [n−1].

Let Sn
q be the set of alternating strings of length n. Therefore, Sn

q ⊆ Σn
q . Let [n] denote the set

{1, . . . , n} and N and N+ denote the sets of nonnegative and positive integers, respectively.

A run is a maximal substring consisting of a single symbol. For a ∈ Σq, r ∈ N, let ar = a · · · a
represent a repeated r times. For a ∈ Σn and r ∈ Nn, let x = ar = ar11 ar22 · · · arnn . If ri > 0 and
ai is different from ai−1 and ai+1, then ai

ri is a run in x and ri is the run length of ai. Note that
if a ∈ Sn

q is alternating and r ∈ Nn
+ is positive, then x = ar has n runs. We define Ωn

q as the set
consisting of all strings with n runs.

Conversely, given a string x ∈ Ωn
q , we can decompose it into its alternating string a ∈ Sn

q and
run length sequence r ∈ Nn

+ such that ar = x. Formally, we define a mapping ψ : Ωn
q → Sn

q × Nn
+

as
ψ(x) = (a, r) = (ψ1(x),ψ2(x)).

For example, given a string x = 11144331 = 1342321, we have a = ψ1(x) = 1431 and r = ψ2(x) =

3221.

Based on [28], given a finite directed and labeled graph G = (V,E,L) with the set of vertices V , a
finite multiset of edges (allowing parallel edges) E ⊆ V ×V , and the labels on the edges L : E → Σ+,
the length of an edge e ∈ E is l(e) = |L(e)|. If all edges have length 1, the graph G is ordinary.
Furthermore, a single path s = e1e2 · · · em in G generates the word L(s) = L(e1)L(e2) · · · L(em),
where ei ∈ E. Given two vertices v1, v2 ∈ V and a string x ∈ Σ∗, the graph G is called lossless if
we can find at most one path s such that L(s) = x. Based on the graph G, we define a constrained
system consisting of all words generated by finite paths in G, S(G) = {L(r)|r is a finite path in G}.
If G is not ordinary, an equivalent ordinary graph G′ can be constructed by converting each edge
v

w1...wl−−−−→ u into a path v
w1−→ v1

w2−→ · · ·
wl−1−−−→ vl−1

wl−→ u by inserting auxiliary vertices v1, . . . , vl−1,
where wi ∈ Σ.

We next recall the construction of Tenegolts q-ary codes [91] that are capable of correcting a
single insertion or deletion (indel) over Σq.

Construction119. Based on Tenegolts q-ary (Tq) code [91], given integers m ⩾ 1, 0 ⩽ α ⩽ (q−1)

110

and 0 ⩽ β ⩽ (m− 1), we construct the code CTq(α, β,m) over Σq as

CTq(α,β,m) =

{
z ∈ Σm

q

∣∣∣∣ m∑
j=1

zj = α mod q,

m∑
i=1

(i− 1)ζi(z) = β mod m

}
,

where the i-th symbol of ζ : Σm
q → Σm

2 is

ζi(z) =

1, if zi ⩾ zi−1,

0, if zi < zi−1,
i = 2, 3, . . . ,m,

with ζ1(z) = 1.

Given an error-correcting code C, suppose each codeword is encoded from k bits of data and is
stored in DNA by T time units of synthesis, we define the writing rate of the code as k/T bits per
unit time [28].

The key notations used in the chapter are summarized in Table 5.1.

Table 5.1: Key notations in Chapter 5

Notation Definition
Σq = {0, 1, · · · , q − 1} The alphabet set with q elements

∥S∥ The number of elements in the set S

An alternating string
A string x with xi ̸= xi+1 for
every two consecutive symbols

Sn
q The set of all length-n alternating sequences

ar = a · · · a
A run of r consecutive symbols of a
with base a and the run length r.

x = ar
The sequence x = ar = ar1

1 ar2
2 · · ·arn

n with
the alternating sequence a and the run length vector r

Tsyn = {t0, t1, . . . , tL−1} The set of L different discrete time units

tbi ∈ Tsyn

The ith round’s synthesis time in Tsyn

with bi ∈ ΣL = {0, 1, · · · , L− 1}

5.3 Channel model for enzymatic DNA synthesis

In this section, we describe the channel model for the enzymatic DNA synthesis in the precision-
resolution (PR) framework with deletions of runs.

In enzymatic synthesis N DNA sequences are synthesized in parallel. The synthesis process
consists of n rounds, and in each round, a number of nucleotides of the same type, e.g., A, are
added to the sequences. Nucleotides added in rounds i and i + 1 are of different types, so each
round adds a run to each sequence. The lengths of the runs are controlled by the duration of the

111

round. We assume that the number of bases synthesized is a random variable r with distribution1

D(t), independent of all other events, where t is the associated time spent on the synthesis of the
run. Given the noisiness of the run lengths, following the precision-resolution framework of [28],
we choose t from a set of discrete times Tsyn = {t0, t1, . . . , tL−1}. In this method, N sequences are
synthesized simultaneously, all of whom have the same alternating sequence (unless a run is deleted
due to no bases being added to the sequence) but the run lengths may differ due to synthesis noise.

We thus model the enzymatic channel in the PR framework as follows: Given two sequences
a ∈ Sn

q , b ∈ Σn
L, and the set Tsyn, enzymatic DNA synthesis creates N traces xj = a

rj , where the
run length rji for the ith run in the jth trace is determined as rji ∼ D(tbi) with tbi ∈ Tsyn.

At the decoder, we determine a and b from (xj)
N
j=1, by first finding ā(j) = ψ1(xj) and r̄j =

ψ2(xj).
There are two sources of error in this channel. For the moment, assume that we are given

(rji)
N
j=1, from which we must find the value of tbi and thus bi. Given that rji are random quantities,

we may decode bi incorrectly, leading to substitution errors in the codewords b. This is the first
source of error. The larger the gap between tk and tk+1, the smaller the probability of this type
of error. The second source of error arises from the fact that if r = 0, the corresponding run
disappears from the trace (this occurs if during synthesis, no base is added to the sequence), leading
to deletions of runs. This causes synchronization issues, which may prevent us from determining all
of the values (rji)

N
j=1.

The following example demonstrates the channel model with enzymatic synthesis and possible
ways the deletion of runs can affect the alternating and run length sequences, shown in Figure 5.1.

Figure 5.1: An example of the enzymatic synthesis system in the precision-resolution (PR) frame-
work with deletions of runs.

Example 120. Suppose N = 3 and n = 8. Let a = ACTCGACT and tb = t = 22121312.
After n = 8 rounds of synthesis, three DNA strands are generated in parallel. Suppose the run
lengths for three DNA strands are r1 = (2, 2, 1, 1, 0, 2, 2, 2), r2 = (3, 2, 0, 2, 1, 3, 1, 1), and r3 =

1In general, this distribution may depend on the previous symbol but for simplicity, we assume the same distri-
bution regardless of the previous base.

112

(2, 3, 1, 2, 2, 3, 0, 2), where 0 represents no base is appended to the corresponding DNA strand. We
thus have:

1. x1 = A2C2T 1C2G0A2C2T 2 = A2C2T 1C2A2C2T 2. Then ā(1) = ACTCACT and r̄1 =

(2, 2, 1, 1, 2, 2, 2). Therefore, r1,5 = 0 leads to a deletion in ā(1) compared to a and a deletion
in the run lengths r̄1 compared to r1.

2. x2 = A3C2T 0C2G1A3C1T 1 = A3C4G1A3C1T 1. Then ā(2) = ACGACT and r̄2 = (3, 4, 1, 3, 1, 1).
Therefore, r2,3 = 0 leads to two deletions in ā(2) compared to a and two deletions and a sub-
stitution in r̄2 compared to r2. This occurs because the two runs of C are merged.

3. Similarly, x3 = A2C3T 1C2G2A3C0T 2 = A2C3T 1C2G2A3T 2. Then ā(3) = ACTCGAT and
r̄3 = (2, 3, 1, 2, 2, 3, 2). Therefore, r3,7 = 0 leads to a deletion in ā(3) compared to a and a
deletion in the run lengths r̄3 compared to r3.

Based on the example, a single zero run length in the enzymatic synthesis may lead to one or
more deletion of (runs) in the output, e.g., the case r1,5 = 0 and r2,3 = 0. If the channel with
enzymatic synthesis is viewed as an IDS channel [78], the insertion and deletion probabilities may
be very high.

To avoid this challenge, the decoder recovers a and t by using {ā(1), ā(2), ā(3)} and {r̄1, r̄2, r̄3}
respectively. Compared to the a, the set of output {ā(1), ā(2), ā(3)} suffer multiple deletions. A
multiple sequence reconstruction method or error-correcting code can be applied to recover a. Com-
pared to the run lengths {r1, r2, r3}, the run lengths {r̄1, r̄2, r̄3} suffer deletions and substitutions
simultaneously. Furthermore, the set of run lengths {r1, r2, r3} is not available in the synthesis
and retrieval process. Therefore, it is important to propose an algorithm to align run lengths to the
right rounds, select suitable run lengths, estimate the synthesis time t from the selected run lengths
accurately, and finally correct substitutions of the synthesis times.

5.4 Code construction and achievable writing rate

Based on Example 120, zero run lengths lead to deletions in alternating sequences (ā(j))Nj=1 while
noisy run lengths (rji)Nj=1 (as well as the corresponding deletions and substitutions) result in substi-
tution errors over the synthesis time tb as well as b. Therefore, our overall error-correction strategy
is to protect a against deletions through deletion-correction codes and multiple sequence recon-
struction algorithms and protect b by substitution-correction codes. Finally, the achievable writing
rate of combining both the deletion and substitution codes is discussed at the end of Section 5.4.3.

5.4.1 Code for correcting deletions in the alternating sequence

To correct deletions in the alternating sequence a, we use a trace reconstruction method based
on the binary construction proposed in [1]. In this construction, each codeword is divided into
blocks, each of which can correct a single deletion via the VT code. The construction can be easily
extended to the q-ary alphabet by using Tenegolts q-ary single-deletion-correcting code, described

113

in Construction 119. An additional constraint to ensure the codewords are alternating sequences is
also needed. Compared to other error-correcting codes, the VT codes and the Tq codes can achieve
a low redundancy.

Construction 121. Given the alphabet Σq, code length n, and block length m that divides n, the
Block-based Tenegolts q-ary code (BTq code) is

CBTq(α,β, n) =

{
a ∈ Sn

q

∣∣∣∣a = z1z2 · · · zb,

zi ∈ CTq(αi, βi,m) ∩ Sm
q , i ∈ [b]

}
,

where b = n/m, α = (α1, α2, · · · , αb) ∈ Σb
q, and β = (β1, β2, · · · , βb) ∈ Σb

m.

Example 122. Following the example in Figure 5.1, the alternating sequence a = ACTCGACT

may be a codeword from CBTq(α,β, n) over S8
4 with n = 8, b = 2, m = 4, and q = 4. The

two substrings ACTC and GACT are two Tq codewords from CTq(α1, β1, 4) and CTq(α2, β2, 4)

respectively.

Lemma 123. There exist choices for α and β such that

∥CBTq(α,β, n)∥ ⩾ (q − 1)n/(qbmb).

Proof. Based on Construction 121, the code CBTq(α,β, n) is constructed over the set of alternating
sequences of length n, i.e., Sn

q with ∥Sn
q ∥ ⩾ (q − 1)n. Furthermore, the code CBTq(α,β, n) is also

affected by the set of parameters α = (α1, α2, · · · , αb) ∈ Σb
q, and β = (β1, β2, · · · , βb) ∈ Σb

m, where
αi ∈ [0, q − 1] and βi ∈ [0,m − 1] for i ∈ [b]. Then there exists at least one code with a set of
parameters α and β such that ∥CBTq(α,β, n)∥ ⩾ (q − 1)n/(qbmb).

Given n,m, α, and β, the set of BTq codewords can be generated by selecting alternating
sequences satisfying the constraints in Construction 121. To protect an alternating sequence with
length k over Σq, there exists a BTq code with an encoder EBTq : Sk

q → Sn
q such that n = k/Cm

asymptotically, where

Cm = 1− 1

m
logq−1(qm). (5.1)

and q − 1 is chosen as the base of the logarithm because each position of the alternating sequence
contains q − 1 choices2. Based on Lemma 123, the existence of the encoder can be shown by
(q − 1)k = (q − 1)nCm = (q − 1)n/(qbmb). Note that the existence of the encoder is used to explore
the bound of the achievable analytical writing rate in Theorem 126. The design of such an encoder
requires further exploration. The BTq codewords will be directly generated in the simulation to
analyze the error probability.

2We assume only q − 1 in the first round.

114

5.4.2 Code for correcting substitutions

This subsection presents substitution-correction codes to correct errors occurring tb and b.
As discussed earlier, the length of each run is controlled by the duration of each synthesis round.

Following the precision-resolution framework [28], the synthesis time in each round is an element of
the set Tsyn = {t0, t1, . . . , tL−1}, with tb ∈ N+ and b ∈ ΣL, where 1 ⩽ t0 < t1 < . . . < tL−1 ⩽ M .
Note that a larger L can increase the information per run, but also increases the probability that the
synthesis time is not decoded correctly. Given the set of run lengths associated with synthesis round
i, a quantizer function, discussed later, will be used to determine the index bi of the synthesis time
tbi in round i in the set Tsyn = {t0, . . . , tL−1}. Given the noisiness of the run lengths, substitution
errors are possible in b. We assume the substitution probability is bounded by δ/2. Then a
substitution-correcting code can be applied over b to fight against these substitution errors.

In order to explore the upper bound of the writing rate discussed in Theorem 126, we present a
systematic code in the following lemma based on the Gilbert Varshamov (GV) bound.

Lemma124. (c.f. [63]) Given 1−1/L ⩾ δ > 0, there exists a systematic substitution-correcting code
(SC code) over ΣL for large n that can correct nδ/2 substitution errors with asymptotic redundancy
n(1− Cδ,L), where

Cδ,L = 1 + δ logL
δ

L− 1
+ (1− δ) logL(1− δ).

We refer to this code as Csc and to its systematic encoder as Esc : Σs
L → Σn

L, where n = s/Cδ,L

asymptotically.

Note that the systematic code Csc in Lemma 124 can achieve a good writing rate. In applications,
a diverse set of substitution codes such as MDS codes can be applied in the PR framework based
on the requirements of the writing rate and the error probability.

5.4.3 Combined codes and achievable writing rate

Given the codes discussed in the previous two subsections, we introduce the overall code for cor-
recting both deletions and substitution errors arising in the PR framework.

Construction 125. The BTq-SC code is defined as

C = {(a, b) : a ∈ CBTq, b ∈ Csc}.

Observe that a ∈ Sn
q and b ∈ Σn

L.

Let Gq = (V,E,L) be the graph with V = Σq. For every two distinct vertices u, v ∈ V , L

directed parallel edges with labels vtb , b ∈ ΣL are added from u to v, where tb ∈ Tsyn. Based on [28,
Lemma 1], the graph Gq is lossless and the capacity of S(Gq) is

Cap(S(Gq)) = log2 λ(AG′
q
),

where G′
q is the equivalent ordinary graph of Gq, AG′

q
is the adjacency matrix of G′

q, and λ(AG′
q
) is

the largest eigenvalue of AG′
q
.

115

Based on a state-splitting encoder over the constraint graph G′
q and the two encoders EBTq and

Esc, the writing rate is given in the next theorem, which in contrast to [28], also takes into account
the deletion-correcting code.

Theorem126. Given 0 < δ ⩽ 1− 1/L, Tsyn, m, and M , there exists a code C of Construction 125
that can achieve an asymptotic writing rate per unit time

R(C) ⩾ Cap(S(Gq))/(1 +Mα(1/Clb − 1)),

where α is the sum of the probabilities of non-auxiliary vertices in the stationary distribution of the
max-entropic Markov chain (MEMC) over G′

q [21] and Clb = min(Cδ,L, Cm).

Proof. Based on Construction 125, given the alternating sequence a ∈ Sn
q and the synthesis times

in n rounds (tb1 , · · · , tbn) ∈ Tn
syn, every string a

tb1
1 · · · atbnn generated from a codeword (a, b) can be

represented by a path in Gq, belonging to the constrained system S(Gq). Furthermore, the capacity
of the constrained system S(Gq) is Cap(S(Gq)).

By the state-splitting algorithm, we can build an encoder E for S(Gq) with the code rate ap-
proaching Cap(S(Gq))[28]. Given k message bits, the encoder E generates a sequence in S(Gq) with

k
Cap(S(Gq))

synthesis time units and k
Cap(S(Gq))

α runs asymptotically [28, Theorem 3]. Then the en-
coded information contains an alternating sequence and a synthesis time sequence both with length

k
Cap(S(Gq))

α. By using the encoders EBTq and Esc, the sequence with k
Cap(S(Gq))

α runs, generated by
the encoder E , can be encoded as a codeword with at most k

Cap(S(Gq))
α 1

Clb
runs. Then the error-

correcting code C introduces at most k
Cap(S(Gq))

α(1
Clb

− 1)M time units for parity symbols. Since
Csc is a systematic code, the total synthesis time is at most k

Cap(S(Gq))
(1+Mα(1

Clb
− 1)) time units.

Therefore, the writing rate satisfies R(C) ⩾ Cap(S(Gq))/(1 +Mα(1
Clb

− 1)) bits per unit time.

Figure 5.3 and Figure 5.11 show the lower bound of R(C) given in Theorem 126. The parameters
are discussed in detail in Section 5.6.1. It can be observed that rates larger than log2(3) bits per
unit time are achievable.

5.5 Decoding

In this section, we describe the decoding procedure by the combined error-correcting codes. Our
goal is to decode (a, b) from

(
ā(1), ā(2), . . . , ā(N)

)
and {r̄j}N1 . First, for a given set of alternating

sequences {ā(j)}N1 , we explore an achievable error probability and compare multiple sequence recon-
struction algorithms to decode a by the deletion-correcting code CBTq. Second, suppose decoding
a succeeds, an alignment algorithm is proposed to identify (rji)

N
j=1 for each i by using a. As we

will see, there is no guarantee that (rji)
N
j=1 can be fully determined. Finally, a quantizer function

is designed to determine bi based on the available values of (rji)Nj=1, followed by a discussion of its
error probability and the correction of substitutions over b by the substitution code Csc.

116

5.5.1 Decoding the alternating sequence a

This subsection focuses on the decoding procedure for the alternating sequence a from {ā(j)}N1 . We
start with a discussion of the analytically achievable error probability by applying the BTq codes,
followed by a comparison of multiple sequence reconstruction algorithms to decode a from {ā(j)}N1 .

a) The achievable error probability

This subsection focuses on the analytically achievable error probability of decoding the alternating
sequences, which is a reference for evaluating the performance of decoding alternating sequences.

Given an alternating sequence a = a1a2 · · ·ab (also a BTq codeword) with b concatenated non-
binary VT codewords, the enzymatic synthesis generates N alternating sequences {ā(j)}N1 . Then
the goal of this subsection is to explore the achievable error probability of decoding a from {ā(j)}N1 ,
where ā(j) can be considered to be generated from a by suffering multiple deletions. Note that the
deletion probabilities of symbols in a are affected by the L levels of synthesis times.

Figure 5.2: The alternating codes and the model of BTq decoding. Each codeword a = a1a2 · · ·ab
concatenates b Tq codewords. For each input a, we can obtain N outputs of alternating se-
quences

(
ā(1), ā(2), . . . , ā(N)

)
. The goal of the BTq decoding is to recover a from N outputs(

ā(1), ā(2), . . . , ā(N)
)
.

Based on the error-correction capability of BTq codes, we have the following definition.

Definition 127. The output
(
ā(1), ā(2), . . . , ā(N)

)
, ā(j) = ā

(j)
1 · · · ā(j)b , for an input codeword a =

a1a2 · · ·ab, is called semi-alignable if for each i ∈ [b], there exists at least one j ∈ N such that a(j)i

suffers at most one deletion.

Then the following lemma presents the achievable error probability that a BTq codeword a is
not semi-alignable based on the outputs.

Lemma 128. Let a = a1a2 · · ·ab be a BTq codeword, and let
(
ā(1), ā(2), . . . , ā(N)

)
be N outputs,

both over the alphabet Σq. Furthermore, Let m and pd represent the block length of Tq codewords
and the average probability of deleting a single symbol in the channel. Then a BTq codeword a is
not semi-alignable with the probability

P = 1− (1− PN
e)b,

117

where Pe represents the probability that the ith block a(j)i is not semi-alignable for i ∈ [N], roughly,

Pe ≃ 1−
((

m

0

)
p0d(1− pd)

m + (1− 1

q
)

(
m

1

)
p1d(1− pd)

m−1

)
.

Proof. Based on the analysis above, a BTq codeword a = a1a2 · · ·ab is semi-alignable if and only
if each concatenated Tq codeword ai for i ∈ [b] is semi-alignable. Let Pji represent the probability
that the ith Tq codeword is not semi-alignable in the jth trace by using a(j)i . Without the alignment
among the N independence outputs, the probability that a codeword a is not semi-alignable is

P = 1−
b∏

i=1

(1−
N∏
j=1

Pji),

Since each Tq code can correct one deletion [91], then Pji represents the probability that a(j)i

suffers at least two deletions. In the rest of the proof, we assume a perfect detection of a(j)i and
an expected deletion probability pd for each nucleotide in a. Then the error probability Pji is
identical for different i, j, i.e., Pe = Pji. Based on the binomial distribution, the probability Pe can
be obtained by excluding two cases: i) the corresponding substring suffers no deletion and ii) the
corresponding substring suffers one deletion. However, when the deletion of a symbol leads to a
merging of two adjacent symbols, e.g., ACA → AA → A, the corresponding substring will suffer
two deletions for q choices of symbols. When pd is very small, the merging case should be considered
when we exclude the second case ii). Therefore, the probability Pe can be represented as

Pe ≃1−
((

m

0

)
p0d(1− pd)

m +

(
m

1

)
p1d(1− pd)

m−1 − q

q2

(
m

1

)
p1d(1− pd)

m−1

)
≃1−

((
m

0

)
p0d(1− pd)

m + (1− 1

q
)

(
m

1

)
p1d(1− pd)

m−1

)
,

where
(
m
0

)
p0d(1 − pd)

m represent case i) and (1 − 1
q)
(
m
1

)
p1d(1 − pd)

m−1 represents case ii) (in which
the merging cases are considered).

b) Multiple sequence reconstruction algorithms

This subsection focuses on applying multiple reconstruction algorithms to recover the BTq codeword
a from the set of N outputs {ā(j)}Nj=1, and then compares their performance with the achievable
error probability in Lemma 128. Note that the BCJR algorithm with “drifts” [41], [78] requires a
large size, i.e., roughly for (q − 1)m, of candidates for state variables for large m. Therefore, we
leave it in the future and discuss the following 4 algorithms.

i) MSA-based algorithm: The first algorithm to recover a from N alternating traces {ā(j)}Nj=1

is to apply the multiple sequence alignment (MSA) algorithm over N DNA traces followed by
the majority voting algorithm, simply called the MSA-based algorithm. Suppose the sequence a′

is obtained after a majority voting. Then we further screen a′ and remove empty-space symbol.
Compared to the following algorithm, the MSA-based algorithm suffers higher error probability

118

because the syndrome information of the Tq codes is not considered.
ii) Coded-based algorithm [1]: The second algorithm decodes the alternating sequence a from

{ā(j)}Nj=1 by applying a coded trace reconstruction algorithm from [1], simply called coded-based
algorithm. Given that the code CBTq is an extension of the binary-coded trace reconstruction
method, the decoding method is similar and is described briefly here. Recall that each codeword
consists of blocks capable of correcting a single deletion. In the first phase, the aim is to identify
blocks that are deletion-free in at least one trace and to correct these blocks in all traces using their
error-free copies. Assuming the first phase has succeeded, the remaining blocks have errors in all
their copies. In the second phase, a decoder for Tenegolts code is used to correct deletion errors in
these blocks to the extent possible. Note that the error probability of the coded trace reconstruction
algorithm from [1] is roughly low bounded by the probability in Lemma 128.

iii) MSA-coded-based algorithm: This part proposes the decoding algorithm called MSA-coded-
based algorithm consisting of the MSA-based algorithm and the Coded-based algorithm. More
specifically, the decoder first decodes a string based on the MSA-based algorithm. If the string is
decoded incorrectly and has a length at most n, it will be considered as a trace of the coded-based
algorithm. Then the coded-based algorithm will decode the codeword by using N + 1 traces. The
motivation is that the trace recovered by the MSA-based decoding algorithm will suffer fewer errors
by synchronization compared to other traces, which will benefit the decoding process. Furthermore,
one more trace will also decrease the decoding error probability of the coded-based algorithm.

iv) The combined algorithm: Since the previous three decoding algorithms may function dif-
ferently for different BTq codewords, this part proposes a combined algorithm consisting of three
decoding algorithms. The combined algorithm starts with the MSA-based algorithm, followed by
the coded-based algorithm, and the MSA-coded-based algorithms. The decoding is considered to
be successful if at least one of three algorithms recover the BTq codewords.

By setting suitable parameters, Section 5.6.3 discussed the empirical error probabilities of
4 sequence reconstruction algorithms and them compared to the achievable error probability in
Lemma 128.

5.5.2 Decoding the run length sequence b

This subsection presents the framework of decoding synthesis times tb and the indices b from the
run lengths, including a synchronization algorithm and a quantizer function. In the subsection,
we assume that a has been decoded correctly. If this is not the case, a decoding failure (possibly
undetected) has occurred.

For each synthesis round i, if (r1i, . . . , rNi) were known, we could decode bi using the fact that
rji ∼ D(tbi). However, our decoding is based on ā(j) and r̄j . As Example 120 shows, due to
merging, some values in rj are summed and appear as a single value in r̄j . So to decode bi, we first
find a subset Ri of the samples {r1i, . . . , rNi} that are known to be generated in the ith round (are
not the sum of two or more elements of rj). Given this set, then a maximum-likelihood (ML) or
Maximum a posteriori (MAP) quantizer can be used to decode bi. In the following, we first show
how to find Ri, then discuss the quantizer in detail.

119

The elements of the set Ri are determined by aligning ā(j) with a. We consider two specific
alignments, the forward alignment and the backward alignment. In the forward alignment, starting
from the left, each element α of ā(j) is aligned with the leftmost non-aligned instance of α in a. The
backward alignment is similar but it starts from the right side and each symbol α in ā(j) is mapped
with the rightmost non-aligned instance of α in a. Let fjk be the position in a to which the kth
element r̄jk of r̄j is aligned to in the forward alignment, and let gjk represent the corresponding
position in the backward alignment.

Example129. Continuing Example 120, the forward and backward alignments of ā(2) = ACGACT

with a = ACTCGACT are given as

a = ACTCGACT

ā(2) = AC GACT
,

a = ACTCGACT

ā(2) = A CGACT

We have f21 = g21 = 1, f22 = 2 but g22 = 4, f23 = g23 = 5, f24 = g24 = 6, f25 = g25 = 7, and
f26 = g26 = 8. For ā1 = ACTCACT , both alignment methods lead to the same alignment,

a = ACTCGACT

ā(1) = ACTC ACT
.

In this case, we have f1k = g1k = k for k ∈ [1, 4] and f1k = g1k = k + 1 for k ∈ [6, 8].

The following lemma, whose proof is omitted due to space limitation, describes the relationship
between r and r̄j .

Lemma130. Suppose the kth element of ā(j) is α. If fjk = gjk = i, then ai = ājk = α and the run
length of the kth element of ā(j) is r̄jk = rjfjk .

Proof. Suppose a
rji
ji is generated in the ith round. Because of the effect of deletions, it may appear

as ājk and r̄jk in āj and r̄j , respectively. Then fjk ⩽ i and gjk ⩾ i. Therefore, if fjk = gjk = i, we
have fjk = gjk = i.

When considering xj , it follows from the lemma that if the fjk = gjk, then r̄jk = rjfjk . For the
sake of simplicity, we only use these values for the purpose of decoding. Specifically, let Ri be the
multiset of values r̄jk with fjk = gjk = i for j ∈ [N].

Example 131. Continuing Example 120, we have R1 = {3, 2, 3}, R2 = {2, 3}, R3 = {1, 1}, R4 =

{1, 2}, R5 = {1, 2}, R6 = {2, 3, 3}, R7 = {2, 1}, R8 = {2, 1, 2}.

According Lemma 130, we obtain n sets of run lengths {Ri, i ∈ [n]} for n rounds. Based on
the observation from Example 131, the number of run lengths varies for different sets. Therefore,
the rest of this subsection presents a robust estimator that can estimate the synthesis times and
corrects substitutions.

120

a) Quantizer function Q(Ri)

As stated above, each bi is decoded based on Ri, which consists of run lengths r ∼ D(tbi). Let N̂i

denote the number of elements in Ri. For simplicity of notation and without loss of generality, we
assume Ri = {r1,i, r2,i, . . . , rN̂i,i

}.
We assume that D is a Poisson distribution with parameter λt, where λ determines the expected

number of nucleotides added per unit time and t is the duration of the synthesis round. Hence, for
all i, j, we have rji ∼ Poi(λtbi). By rescaling the unit of time and λ, we assume t1, the smallest
synthesis time, is equal to 1. This allows us to represent the rate in a simple way, and compare
with the conventional system that uses only a single synthesis time, whose rate is upper bounded
by log2 3 bits. We note however that the approach is also applicable to other distributions.

The quantizer Q produces an estimate b̂i of bi as follows. Let R̄i =
∑

r∈Ri
r denote the sum of

the elements of Ri. We define b̂i as3

b̂i =arg max
b∈ΣL

Poi(R̄i|λN̂itb)π(tb),

where Poi(k|λ) is the value of the Poisson probability mass function (pmf) with parameter λ at k

and π(tb) is the prior probability of tb ∈ Tsyn. Then we estimate b̂i for the ith round by the following
lemma.

Lemma132. Given the set of synthesis times Tsyn = {t0, t1, · · · , tL−1}, their prior probability π =

{π(t0), · · · , π(tL−1)}, and the set of run lengths in Ri following the Poisson distribution Poi(k|λtbi),
we can find b̂i by comparing R̄i with thresholds

ρl =
N̂iλ(tl − tl−1) + ln (π(tl−1)/π(tl))

ln(tl/tl−1)
, l ∈ [L− 1],

ρ0 = 0, ρL = ∞. Specifically, if ρl ⩽ R̄i < ρl+1, then b̂i = l.

Proof. Based on the two specific alignments, a set of N̂i non-zero run lengths Ri = {r1,i, r2,i, . . . , rN̂i,i
}

are obtained for the the ith iteration. Since rj,i ∼ Poi(λtbi), the output of the quantizer func-
tion is b̂i := Q(Ri). Let R̄i =

∑
r∈Ri

r denote the sum of the elements of Ri. Then we have
R̄i ∼ Poi(N̂iλtbi). Since N̂i varies for different iterations, the method in [28] cannot be applied.
Based on the MAP estimation, the quantizer function can be written as

b̂i =arg max
bi∈ΣL

Pr(tbi |λ, R̄i = k, N̂i)

∝ arg max
bi∈ΣL

Pr(R̄i = k|N̂iλtbi)π(tbi).

where π(tbi) ∈ π = {π(t0), · · · , π(tL−1)} is the prior probability for tbi ∈ Tsyn = {t0, t1, · · · , tL−1}.
Given bi ∈ [L], the key is to obtain b̂i = bi when R̄i ∈ (ρbi , ρbi+1), where ρbi is the threshold

between bi−1 and bi, and ρbi+1 is the threshold between bi and bi+1. Let us focus on the threshold

3We note that this estimator is not exactly the MAP estimator since the precise joint distribution P (bi, Ri) is
more complex due to the fact that the size N̂i of Ri is also random and not independent of its elements.

121

ρbi between bi − 1 and bi at first. Given the threshold ρbi , the posterior probabilities satisfy

ln(π(tbi−1)Pr(R̄i = ρbi |N̂iλtbi−1))

= ln(π(tbi)Pr(R̄i = ρbi |N̂iλtbi))

where ln(π(tbi)Pr(R̄i = ρbi |N̂iλtbi)) ∝ ρbi ln(N̂iλtbi) − N̂iλtbi + lnπ(tbi). Therefore, by the above
equation and without considering the effect of constant, the threshold is

ρbi =
N̂iλ(tbi − tbi−1) + ln (π(tbi−1)/π(tbi))

ln(tbi/tbi−1)
.

Similarly, we have the threshold ρbi+1. Therefore, b̂i is correctly estimated as bi if ρbi ⩽ R̄i <

ρbi+1.

Based on the analysis above, the quantizer algorithm to obtain the output b̂i := Q(Ri) can be
shown below:

• In the ith round, given Tsyn = {t0, t1, . . . , tL−1}, π = {π(t0), · · · , π(tL−1)}, λ, Ri = {r1,i, . . . , rN̂i,i
},

and N̂i = |Ri|, we have R̄i =
∑

r∈Ri
r.

• For 1 ⩽ l ⩽ L− 1, the threshold between l and l + 1 is computed as

ρl =
N̂iλ(tl+1 − tl) + ln (π(tl)/π(tl+1))

ln(tl+1/tl)
.

Furthermore, since 0 ⩽ R̄i < ∞, let ρ0 = 0 and ρL = ∞.

• The synthesis time is quantizered as b̂i = l if ρl ⩽ R̄i < ρl+1, where l ∈ {0, 1, · · · , L− 1}.

Based on the quantizer b̂i := Q(Ri), the estimation of the index b̂i for the ith round may fail if
the run lengths R̄i < ρl and R̄i ⩾ ρl+1. Given the set of run lengths Ri and N̂i, the error probability
of estimating b̂i is the sum of probabilities with run lengths smaller than ρl or not smaller than ρl+1.
However, due to the deletions and substitutions occurring in the run lengths, the size N̂i of Ri varies
for different inputs and rounds. Therefore, it is difficult to determine the probability of incorrectly
decoding bi without Ri. Instead, an approximate lower bound may be obtained by considering
the probability of incorrect decoding based on all N run lengths (r1i, . . . , rNi). Assuming a prior
probability vector π = (π(t0), . . . , π(tL−1)), this probability is given as

Pe(N,π) =

L−1∑
l=0

π(tl) Poi(R̄i < ρl ∪ R̄i ⩾ ρl+1|Nλtl),

where R̄i =
∑N

j=1 rj,i. Note that the error probabilities for l = 0 and l = L − 1 only consider
probabilities with run lengths not smaller than ρ1 and smaller ρL−1 respectively since ρ0 = 0 and
ρL = ∞.

For information symbols of the codewords b ∈ Csc, the prior distributions π can be obtained
from the MEMC over G′

q, which we denote by πM . To approximate the average probability of error

122

for all symbols of the codeword, we assume that the parity symbols have a uniform distribution πU .
Then the lower bound on the probability of symbol error can be approximated as

Pe(N) ≃ Cδ,LPe(N,πM) + (1− Cδ,L)Pe(N,πU), (5.2)

where Pe(N) is derived by applying a systematic substitution code approaching the GV bound of
code rate. We may derive the expected error probability if N is replaced by the expected number
of traces.

b) Correcting substitutions

By executing the quantizer function for n rounds, we will recover b̂, where each symbol in the
systematic code Csc may suffer a substitution with the error probability lower bounded by Pe(N).
If dH(b̂, b) ⩽ δn/2, then b can be identified correctly. By choosing suitable δ, we can achieve a
tradeoff between the writing rate and the capability of correcting substitution errors.

5.6 Code parameters and simulation results

In this section, we will first briefly discuss some of the code parameters and then present the
numerical results.

5.6.1 General parameters

In the simulation, we let L = 3, q = 4, a ∈ Sn
q , b ∈ Σn

L, Tsyn = {t0, t1, t2} = {1, 2, 3}, M =

t2 = 3. Based on the MEMC over G′
q, the prior probabilities for elements in Tsyn = {1, 2, 3} are

πM = (π(t0), π(t1), π(t2)) = (0.759, 0.192, 0.049). Furthermore, the parameter α in Theorem 126 is
α = 0.7756. The number of traces N is in the range {10, 15, 20, 25, 30}. Furthermore, each BTq
codeword is generated by concatenating b = 4 Tq codewords, each with length m.

We note that given some aspects of our code construction are not explicit, they are not fully
implemented in the simulation but rather the results are obtained based on their properties. In
particular, the code Csc is not explicit. We generate a set of strings b to simulate codewords from
Csc with the writing rate Cδ,L. For each string b ∈ Σn

L, the first ⌊nCδ,L⌋ message symbols satisfy
the distribution πM and the other ⌈n(1 − Cδ,L)⌉ parity symbols satisfy the uniform distribution
πU . For a, a random codeword from the code CBTq with α = (0, 0, 0, 0),β = (1, 2, 3, 4) is chosen.
Traces are generated based on codewords (a, b) and then decoded to produce (â, b̂). If a = â and
dH(b, b̂) ⩽ ⌊nδ/2⌋, decoding has succeeded. Unless otherwise stated, 5 × 105 codewords (a, b) are
stored in DNA in the simulation.

5.6.2 Writing rate

This subsection presents that our construction BTq-SC code can achieve a writing rate higher than
log2 3 bits per unit time. For simplicity, the block length is fixed to be m = 56, then the length

123

of each BTq codeword is n = 4m = 224. To analyze the effect of the parameter δ, we set δ in the
range {0.016, 0.018, 0.020, 0.022}.

0.016 0.017 0.018 0.019 0.02 0.021 0.022

1.54

1.55

1.56

1.57

1.58

1.59

1.6

1.61

W
ri
ti
n

g
 r

a
te

 [
b

it
s
/u

n
it
 t

im
e

]

R(C)

log2(3)

Figure 5.3: The lower bound of the writing rate R(C) of BTq-SC codes with respect to δ ∈
{0.016, 0.018, 0.020, 0.022}. Here m = 56 and L = 3.

Based on Theorem 126, Figure 5.3 shows a lower bound of R(C) with respect to δ ∈ {0.016, 0.018,
0.020, 0.022}. The curve with stars denotes the upper bound of writing rate, log2 3 bits per unit time,
of codes in [38], and the curve with circles represents the lower bound of R(C) in Theorem 126. Based
on the numerical results, the BTq-SC code can achieve a higher substitution correction capability
at the cost of the writing rate. More specifically, given m = 56, R(C) can be larger than log2(3)

bits per unit time when δ ⩽ 0.018.

5.6.3 Decoding BTq codewords

In this subsection, we compared the error probabilities of four sequence reconstruction algorithms
to decode BTq codes (alternating sequences). Note that the BTq codewords are generated by
concatenating b Tq codewords, where each Tq codeword is generated via a syndrome check of a
length-m alternating sequence. A systematic encoding/decoding algorithm will be left for future
work.

Based on Lemma 128, the error probability of BTq codewods is affected by the expected deletion
probability pd, the block length m, and the number of traces. If the number of deletions in each block
of length m is too large, the error-correcting capabilities of the BTq code will become ineffective.
Based on Poisson distribution, the deletion probability of a given run is at most e−λ when t0 = 1.
Since there are L levels of synthesis time, the expected deletion probability for Lemma 128 is
approximately

pd = Cδ,L

L−1∑
l=0

π(tl)e
−λtl +

(1− Cδ,L)

L

L−1∑
l=0

e−λtl . (5.3)

124

10 12 14 16 18 20 22 24 26 28 30

Number of traces [N]

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
rr

o
r

p
ro

b
a

b
ili

ty
 [

m
=

5
5

]

coded-based

MSA-based

MSA-coded-based

Combined-based

achievable probability[analytical]

Figure 5.4: The error probability of decoding BTq codewords with respect to the number of traces.
Here, we let λ = 3.0, m = 56, and δ = 0.018. The length of BTq codewords is n = bm = 224.

Hence the expected number of deleted runs in each block is at least mpd (note that more runs can
be deleted due to merging). Based on Figure 5.3, we let m = 56, δ = 0.018, and λ = 3 to achieve a
writing rate higher than log2 3 bits per unit time4. Each BTq codeword consists of 220 rounds.

Figure 5.4 compares the decoding error probability of the four decoding algorithms in Subsec-
tion 5.5.1 with respect to the number of DNA strands N ∈ {10, 15, 20, 25, 30}. More specifically, the
error probabilities of the coded-based algorithm, the MSA-based algorithms, the MSA-coded-based
algorithm, and the combined algorithms are represented by curves with the upper arrows, diamonds,
stars, and squares respectively. Since the number of deleted runs ξ = mpd ≃ 2 is higher than one
run which can be corrected by a Tq code, both the coded-based algorithm and the MSA-based al-
gorithm suffer high error probabilities. However, by combining the MSA-based algorithm with the
coded-based algorithm, the MSA-coded-based algorithm can significantly decreases the error proba-
bility. In other words, the output generated by the MSA algorithm may suffer at most one deletion
in each Tq block. However, the effect of the MSA algorithm decreases when N is large. Finally,
the numerical results showed that the combined algorithm and the MSA-coded-based algorithm
outperform the other two algorithms and reach the analytical error probability in Lemma 128.

5.6.4 Error probability of Quantizer function

This subsection discusses the error probability of quantizer function b̂i := Q(Ri). Furthermore,
following the previous discussion, we set m = 56, λ = 3, δ = 0.018. Note that, in the rest of the
simulation results, we assume that the BTq codeword a is successfully decoded by the combined
algorithm.

To discuss the quantizer function, the BTq codeword a is assumed to be decoded correctly and

4The work [38] shows that the length of raw sequences is around 3 times the length of the compressed sequence
(alternating sequences).

125

n sets of run lengths Ri for i ∈ [n] have been acquired. By assuming all N run lengths available
for the ith round, Pe(N) in (5.2) provided an analytically lower bound of the error probability of
quantization. However, the zero run lengths and merging of runs in real situations will reduce the
size of Ri. Let Na denote the average number of acquired run lengths in each of n rounds. By only
considering the effects of zero run lengths and merging runs, we have

Na(N) ≃ N

(
1− (1 +

2

q
)pd

)
, (5.4)

where 2
qpd denotes the expected number of runs affected by the merging of run lengths.

10 12 14 16 18 20 22 24 26 28 30

Number of traces [N]

10
-3

10
-2

P
ro

b
a

b
ili

ty
 o

f
s
y
m

b
o

l
e

rr
o

r

Theoretical Pe(N)

Theoretical Pe(N
a
)

Empirical Pe

Figure 5.5: The comparison of empirical and theoretical error probabilities of estimating a synthesis
time tbi (equivalently bi) by the quantizer function. Let δ = 0.018, λ = 3, and m = 56.

Figure 5.5 compares the analytical and empirical symbol error probabilities by the quantizer
function. The two analytical errors are based on Pe(N) and Pe(Na) given in (5.2) and Na in (5.4),
which assume all run lengths and an expected number of run lengths are available, respectively.
It can be seen that the empirical error probability approximates the analytical error probability
Pe(Na), and is also close to the lower bound Pe(N), implying that the synchronization method for
identifying the run lengths (in Subsection 5.5.2) is effective. Furthermore, we can observe that the
error rate falls nearly exponentially as N increases.

5.6.5 Analysis of decoding b and a tradeoff

Based on figure 5.5, the empirical average error probability of the quantizer function approxi-
mates the analytical error probability Pe(Na). Furthermore, we assume that the run lengths gen-
erated in different rounds are independent. If the substitution errors of the quantizer function
are also independent, the number of substitution errors in b satisfies the Binomial distribution,

126

x ∼ Bin(n, Pe(Na)). Then the probability mass function (pmf) of dH(b̂, b) = k satisfies

Pr(dH(b̂, b) = k) =

(
n

k

)
Pe(Na)

k(1− Pe(Na))
n−k. (5.5)

Figure 5.6: The pmf of Hamming distance dH(b̂, b) with different number of traces N at the output.
In the simulation, we set λ = 3.0, m = 56, and δ = 0.018.

Based on the assumption in (5.5), Figure 5.6 compares the probability of dH(b̂, b) = k and
Bin(n, Pe(Na)) in terms of different number of traces N . More specifically, the histograms represent
the probability of the substitutions, and the curves with stars denote the pmf of Bin(n, Pe(Na)).
For N = 10, 15, 20, we observe that the probabilities of dH(b̂, b) = k approximates the pmf of the
binomial distribution perfectly.

Therefore, an error-correcting code C can correct at most d substitutions with error probability
roughly

Pe(C, d) = 1−
d∑

k=0

Pr(dH(b̂, b) = k) ≃ 1− Pr(x ⩽ d), (5.6)

where x ∼ Bin(n, Pe(Na)). Recall that there exists a systematic substitution-correcting code satis-
fying the GV bound that can correct ⌊nδ/2⌋ = 2 substitutions. Based on Figure 5.6, the Csc can
decode δ with low error probabilities when N ⩾ 20. However, it suffers a high error when N is small.
Then we may apply error-correcting codes C with a larger d to achieve a lower error probability.
However, a larger d results in a larger δ. Therefore, it is necessary to analyze the effect of δ on the
probabilities of the quantizer function and Pr(dH(b̂, b) = k).

Figure 5.7 shows the effects of δ on the error probabilities of estimating synthesis times by the
quantizer function. The two curves with stars represent the error probabilities acquired by letting
δ = 0.018, and the two curves with circles are acquired by letting δ = 0.05. Based on the numerical
results, for a specific δ ∈ {0.018, 0.05}, the empirical error probability represented by solid curves
approximates the analytical error probability. Furthermore, by increasing δ from 0.018 to 0.05,

127

10 12 14 16 18 20 22 24 26 28 30

Number of traces [N]

10
-3

10
-2

P
ro

b
a

b
ili

ty
 o

f
s
y
m

b
o

l
e

rr
o

r

Theoretical Pe(N
a
), =0.018

Empirical Pe, =0.018

Theoretical Pe(N
a
), =0.05

Empirical Pe, =0.05

Figure 5.7: The effects of δ on the empirical and theoretical error probabilities of estimating tbi
(equivalently bi). Let δ ∈ {0.018, 0.05}, λ = 3, and m = 56.

both the empirical and analytical error probabilities have a limited increasing. Therefore, slightly
increasing δ in a small range does not obviously affect the error probability of the quantizer function
as well as the pmf of Pr(dH(b̂, b) = k).

Since n = 224 is large enough, there exists a systematic substitution-correcting code Csc that
can correct d = ⌊nδ/2⌋ = 5 substitutions for a larger δ = 0.05. Based on the analysis, given a large
n, by increasing δ, we can select a suitable code C capable of correcting more substitutions, which
achieves a tradeoff between the writing rate and error probability.

10 12 14 16 18 20 22 24 26 28 30

Number of traces [N]

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

E
rr

o
r

p
ro

b
a

b
ili

ty
 o

f
d

e
c
o

d
in

g
 (

a
,b

)

Empirical Pe(C), =0.018

Analytical cdf(2), =0.018

Empirical Pe(C), =0.05

Analytical cdf(5), =0.05

Figure 5.8: The error probability of decoding BTq-SC codewords. In this setting, let m = 56, λ = 3,
and δ ∈ {0.018, 0.05}.

Figure 5.8 analyzes the error probability of decoding BTq-SC codewords, Pe(C, d), with respect

128

to the number of DNA sequences N for δ ∈ {0.018, 0.05}. In particular, the two curves with squares
represent the error probability when δ = 0.018, and the two curves with circles are for δ = 0.05.
For each specific δ, the empirical error probability approximates the probability 1 − Pr(x ⩽ d) for
d = ⌊nδ/2⌋ and x ∼ Bin(n, Pe(Na)). Furthermore, as N increases, the error probability of decoding
BTq-SC codewords quickly diminishes. By increasing δ from 0.018 to 0.05, the empirical error
probability Pe(C, d) decreases obviously. Furthermore, the gap increases as N increases. Therefore,
by setting suitable δ, we can achieve a tradeoff between the writing rate and the error probability.
However, if both δ and N are large, the error probability of decoding the substitution codewords,
i.e., b, will be lower bounded by the error probability of decoding BTq codewords a.

Based on Figure 5.8, given a set of parameters λ, n, Tsyn, the decoding error probability Pe(C, d)
can be represented as

Pe(C, ⌊nδ/2⌋) ≃ 1− Pr(x ⩽ ⌊nδ/2⌋), (5.7)

where x ∼ Bin(n, Pe(Na)) and Pe(Na) is also a function of δ. Therefore, without considering the
writing rate, the error probability Pe(C, d) with respect to δ can be shown in the following curve.
Then for a specific target BTq-SC decoding error probability Pe(C, d), we can find suitable δ as well
as the Csc.

5.6.6 Effects of parameters

This subsection analyzes the effects of parameters, i.e., δ, λ,m, and N , on the empirical error prob-
abilities.

Figure 5.8 presents the error probability with respect to the parameter δ. Based on the simulation
results, increasing δ from 0.018 to 0.05 will obviously decrease the error probability. However, if
N is large, the benefits of a large δ will be diminished by the error probability of decoding BTq
codewords, i.e., a.

Figure 5.9 discussed the effect of error probability of decoding BTq codewords with respect to
the block length m. As m decreases from 56 to 36, the error probability of decoding BTq codewords
decreases rapidly. Furthermore, the gap between them also increases as N increases.

Figure 5.10 discusses the error probability of decoding b with respect to the expected number of
nucleotides added per unit time λ. By increasing λ from 3.0 to 3.5, the error probability of decoding
b also decreases rapidly. Note that under the setting of λ = 3.5,m = 56, and δ = 0.018, the DNA
storage with enzymatic synthesis can achieve a writing rate ⩾ log2 3 bits per unit time and an error
probability as low as 10−5.

Based on the analysis above, increasing λ, δ, and decreasing m can increase the error probability
of decoding BTq-SC codewords. Furthermore, we can design a DNA storage system with target
error probability by i) setting suitable δ, λ, and N satisfying Pe(C, d) and ii) decreasing m necessarily
if the error probability of decoding a restricts the error probability of decoding b.

129

10 12 14 16 18 20 22 24 26 28 30

Number of traces [N]

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

E
rr

o
r

p
ro

b
a

b
ili

ty
 [

=
3

]

BTq decoding, m=36

BTq decoding, m=46

BTq decoding, m=56

Figure 5.9: The error probability of decoding BTq codewords with respect to block length m. In
this setting, let λ = 3, and δ = 0.018, and m ∈ [36, 46, 56]. Based on the plot, decreasing m will
decrease the error probability of decoding BTq codes.

10 12 14 16 18 20 22 24 26 28 30

Number of traces [N]

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
rr

o
r

p
ro

b
a

b
ili

ty
 o

f
d

e
c
o

d
in

g
 (

a
,b

)

Empirical Pe(C), =3

Analytical cdf(2), =3

Empirical Pe(C), =3.2

Analytical cdf(2), =3.2

Empirical Pe(C), =3.5

Analytical cdf(2), =3.5

Figure 5.10: The error probability of decoding BTq-SC codewords with respect to different λ. In
this setting, let λ ∈ [3, 3.2, 3.5], and δ = 0.018, and m = 56. Based on the plot, increasing λ will
decrease the error probability of decoding BTq-SC codes.

5.6.7 Explicit error-correcting codes

Based on Figure 5.3 and Figure 5.10, the error-correcting code in Construction 125 can achieve
a writing rate higher than log2 3 bits per unit time and an error probability approximating (5.7).
However, one important question is whether an explicit substitution-error-correcting code Csc can
be applied in Construction 125. As far as we know, the Reed-Solomon (RS) codes can achieve the
singleton bound of a substitution channel with a high code rate. Therefore, this subsection presents

130

an explicit Construction 125 called BTq-RS code, i.e., CBTq−RS = {(a, b),a ∈ CBTq, b ∈ CRS}.
To simplify the simulation, we reset L = 2 since the RS codes in matlab is over binary. Let

q = 4, a ∈ Sn
q , b ∈ Σn

L, Tsyn = {t0, t1} = {1, 2}, M = t2 = 2. Based on the MEMC over G′
q,

the prior probabilities for elements in Tsyn = {1, 2} are πM = (π(t0), π(t1)) = (0.7913, 0.2087).
Furthermore, the parameter α in Theorem 126 is α = 0.8273. The number of traces N is in the
range {10, 15, 20, 25, 30}. Furthermore, each BTq codeword is generated by concatenating b = 4 Tq
codewords, each with length m = 57. Then the length of codewords is n = bm = 228. Note that
2× 105 codewords (a, b) are generated in this simulation.

0.014 0.015 0.016 0.017 0.018 0.019 0.02

1.52

1.53

1.54

1.55

1.56

1.57

1.58

1.59

1.6

W
ri
ti
n

g
 r

a
te

 [
b

it
s
/u

n
it
 t

im
e

]

R(C)

log2(3)

Figure 5.11: The lower bound of the writing rate R(C) of BTq-SC codes with respect to δ ∈
{0.014, 0.016, 0.018, 0.020}. Here m = 57 and L = 2.

Based on Theorem 126, Figure 5.11 shows a lower bound of the writing rate R(C) with respect
to δ ∈ {0.014, 0.016, 0.018, 0.020}. Based on the numerical results, the BTq-SC code can achieve a
writing rate R(C) larger than log2(3) bits per unit time when δ ⩽ 0.015. Therefore, in the rest of
the simulation, we let δ = 0.015 to guarantee that the RS code can correct more substitutions.

Given n = 228, δ = 0.015, and L = 2, the systematic substitution code Csc at most can hold
n(1− Cδ,L) = 26 redundant symbols. In order to achieve a writing rate higher than log2 3 bits per
unit and high error-correcting capability, we construct the Reed-Solomon code RS(38, 34, 5)26 as
the systematic substitution-error-correcting code, where each codeword contains 4× 6 = 24 parity
symbols and can correct 2 substitutions. Since the SC code is required to correct ⌊nδ/2⌋ = 1

symbol, the BTq-RS error-correcting code CBTq−RS is a valid code of the Construction 125.

Figure 5.12 presents the error probability of decoding BTq-RS codewords with respect to the
number of traces. The solid curve represents the empirical error probability of decoding BTq-RS
codewords and the dashed curves represent the analytical error probability of correcting ⌊nδ/2⌋ = 1

or 2 substitution errors. Based on the numerical results, the BTq-RS code can achieve an empirical
error probability approximating the analytical error probability Pe(C, d) (5.6) with d = 2, where
x ∼ Bin(n, Pe(Na)) and Pe(Na) is derived by (5.2),(5.4), and (5.3) with L = 2. Therefore, we

131

10 12 14 16 18 20 22 24 26 28 30

Number of traces [N]

10
-8

10
-6

10
-4

10
-2

10
0

E
rr

o
r

p
ro

b
a

b
ili

ty
 o

f
d

e
c
o

d
in

g
 (

a
,b

)

Empirical Pe(BTq-RS)

Analytical Pe(C,d=2)

Analytical Pe(C,d=1)

Figure 5.12: The error probability of decoding BTq-RS codewords with respect to the number of
traces. In this setting, let L = 2, λ = 3.2, δ = 0.015, and m = 57.

have an accurate analytical symbol error probability of the quantizer function (5.2). Furthermore,
by choosing suitable δ, the valid construction BTq-RS code can achieve tradeoff between the error
probability and the writing rate.

5.7 Summary and limitations

By a new inexpensive enzymatic synthesis method [38], the current chapter proposed an error-
correcting code and decoding algorithms to correct deletions (of runs), the dominant errors, over
DNA traces and achieve a writing rate higher than log2 3 bits per unit time. Based on the precision-
resolution (PR) framework [67], this section proposed error-correcting codes called BTq-SC code,
consisting of a block-based Tenegolts q-ary (BTq) code [1] over alternating strings and a substitution-
correcting (SC) code over synthesis times, and a decoding algorithm consisting of sequence recon-
struction algorithms, synchronization algorithms, and Bayes estimation. Compared to the codes
either with a writing rate lower than log2 3 bits per run in [38] or not being able to correct deletions
in [28], the proposed code can achieve a writing rate higher than log2 3 bits per unit time and a
decoding error probability approximating the analytical error probability. By modifying different
parameters, we can achieve tradeoff between a (low) target error probability and the writing rate.

As the code construction and the decoding algorithm perform good, one open problem is to
design an encoder with the code rate approximating (5.1) for the BTq code over alternating se-
quences. For example, the recently proposed systematic encoder in [58] can be a good reference for
our problem.

132

Acknowledgement

The research presented in this chapter benefited from the helpful discussions and insightful comments
from Dr. Mete Civelek.

133

Chapter 6

Conclusion and open problems

Due to the advantages of high density, longevity, and ease of generating copies, DNA is considered a
promising alternative for future data storage. However, a diverse set of errors will occur in synthesis,
storage, and sequencing of DNA storage. In this dissertation, we studied the problems of correcting
multiple sources of errors over DNA data storage, i.e., i) fixed-length (tandem) duplications (k-TDs)
and one substitution, ii) short tandem duplications and at most p edits, iii) a substring edit error,
and iv) noisy run lengths and deletions (of runs) from enzymatic synthesis. More specifically, we
proposed error-correcting codes and decoding algorithms that can correct more errors at a low extra
cost compared to previous works in different settings. The rest of the chapter first concludes the
main contributions of this chapter, followed by the discussion of future open problems.

6.1 Conclusion

Chapter 2 studied the problem of constructing error-control codes to fight against an unlimited
number of fixed-length duplications and at most one substitution. We focused on two noise models,
where the substitution error is either restricted to one duplication event (called noisy duplication or
restricted substitution), or may occur at any position in the string (called unrestricted substitution).
First, we designed an error-detecting code in Construction 17 and Theorem 18 to detect another
restricted substitution (apart from an unlimited number of k-TDs) at an extra cost of O(log k) bits.
Second, Construction 26 presented error-detecting codes for any k-TDs and at most one unrestricted
substitution, respectively. For a noisy duplication channel, we constructed error-correcting codes
in Construction 37 to correct a restricted substitution with an extra redundancy of roughly (2k +

4) logq n symbols, without extra loss in asymptotic rate loss.
Chapter 3 dealt with the problem of correcting an unlimited number of short duplications

(with length upper bounded by 3) and at most p edits. To achieve this goal, we start with the
problem of correcting one extra edit error. Hence, we first constructed (Reed-Solomon-based) error-
correcting codes in Construction 52 to correct any number of short tandem duplications and at
most one edit at an extra cost of 0.003 bits/symbol compared to the asymptotically optical codes
for short duplications only. After that, we proposed new error-correcting codes in Construction 68
to correct an unlimited number of short duplications and at most p substitutions based on the

134

idea of concatenating blocks into groups. However, the code construction suffers an obvious rate
loss asymptotically [86]. Therefore, to further reduce the redundancy, we constructed an error-
correcting codes in Construction 90 to correct an arbitrary number of short tandem duplications
and at most p edits by applying the syndrome compression technique [75] and Construction 90
to protect the syndrome redundant information. When q ⩾ 4 and p are constant, the state-of-
the-art error-correcting codes in Construction 90 achieves the same asymptotic code rate as the
error-correcting codes for ⩽3-TDs only [30], with an extra redundancy of roughly 8p logq n symbols,
and has polynomial time complexities in the encoding and decoding processes.

Chapter 4 focused on correcting a k-substring edit as it will have many localized errors such as a
burst of insertions/deletions/substitutions as a special case. First of all, we presented the motivation
of correcting substring edits by the statistical hypothesis tests in Table 4.2 and the codes reaching
the GV bounds in Figure 4.5 and Figure 4.6, showing that the substring edits are common errors
and substring-edit-correcting codes can achieve a lower redundancy compared to insertion/deletion-
error-correcting codes. Then this chapter constructed error-correcting codes in Construction 117 to
correct a k-substring edit with the redundancy of roughly 2 log n and polynomial time complexities
in both encoding and the decoding algorithms.

Because of the promising future of the inexpensive enzymatic synthesis, Chapter 5 proposed an
error-correcting code and a decoding algorithm to fight against noisy run lengths and deletions (of
runs) over DNA storage and achieve a writing rate higher than log2 3 bits per unit time. Based
on the precision-resolution (PR) framework [67], we first presented an error-correcting codes in
Construction 125 called BTq-SC code, consisting of a block-based Tenegolts q-ary (BTq) code [1]
over alternating strings and a substitution-correcting (SC) code over synthesis times, followed by
a decoding algorithm including sequence reconstruction, statistical estimation, and the analysis of
symbol error probability. Finally, we discussed the strategies for modifying parameters that can
achieve a tradeoff among target error probability, data rate, and other requirements.

6.2 Open problems

The first possibly challenging problem is correcting multiple edits and duplications of length bounded
by an arbitrary constant k. If k is larger than 3, the duplication root is no longer unique [30], which
complicates the code design. Furthermore, a key feature of duplications of length at most 3 is
that such duplications lead to regular languages. We used this fact to characterize the effect of the
channel on the roots of sequences. However, if k ⩾ 4, then the language is not regular [46], leading to
challenges in characterizing the channel, especially under the effect of multiple edits. To guarantee
a unique root under ⩽ k duplications with k ⩾ 4, the work [8] constructed error-correcting codes
by selecting a set of (k + 1)-distinct strings with q ⩾ (k + 1) and achieved an asymptotic code rate
of 1

k

∑k
i=1 log(q − i). This means that, despite the interesting approach, to correct duplications of

length ⩾ 4, [8] requires q ⩾ 5, which is not suitable for the important application of data storage in
DNA with q = 4.

As analyzed in Section 4, we constructed error-correcting codes to correct a substring edit with

135

redundancy roughly 2 log n, which is higher than the lower bound of roughly log n derived from
the special case of correcting a burst of deletions [66]. Therefore, one important open problem is
to construct error-correcting codes with redundancy of roughly log n bits. Furthermore, another
important open problem is to extend the current method to correct multiple substring edit errors.

For the DNA storage model with enzymatic synthesis, Section 5 presented code construction
and a decoding algorithm to fight against deletions (of runs). Since deletions, insertions, and
substitutions can all simultaneously occur in the process [38], one possible open problem is to
extend the current framework and error-correcting codes to simultaneously correct three types of
errors while still achieving a high writing rate.

136

Appendix A

Proof of Lemma 78

Lemma 78. Given q ⩾ 3, we have

max
t∈Σ5

q

∥R(D1(t))∥ ⩽ ∥R(D1(01234))∥,

where D1(01234) ⊆ Σ∗
q+4 (the substituted symbol can be replaced with another symbol from Σq+4).

To prove Lemma 78, we start with the definition of dominance between two sequences from [83].

Definition 133. Let s and s̄ be strings of length n, and let A be the set of symbols in s and Ā

the set of symbols in s̄. We say that s dominates s̄ if there exists a function η : A → Ā such that
s̄ = η(s), where η(s) = η(s1) · · · η(sn). Furthermore, a set U of strings dominates a set T if there
is a single mapping η such that for each string t ∈ T there is a string u ∈ U such that t = η(u).

For example, 0102 dominates 1212 (using the mapping η(0) = 1, η(1) = 2, η(2) = 2) but 0102

does not dominate 0010. The string 012 · · · k dominates any string of length k + 1.
We recall an auxiliary lemma showing properties of dominance from [83], along with two other

auxiliary lemmas that are used to simplify the proof of Lemma 78.

Lemma 134. ([83, Lemma 1]) Assume there are two strings s, s̄ with s dominating s̄.

1. Suppose we apply the same duplication in both s and s̄ (that is, in the same position and with
the same length). Let the resulting strings be s′ and s̄′, respectively. Then s′ dominates s̄′.

2. If a deduplication is possible in s, a deduplication in the same position and with the same
length is possible in s̄. Let the result of applying this deduplication to s and s̄ be denoted by
s′ and s̄′, respectively. Then s′ dominates s̄′.

Lemma135. Let s̄ be a string over Σ̄ and s a string over Σ such that s dominates s̄. Let the number
of distinct symbols in s̄ and s be denoted q̄s and qs, respectively, and suppose ∥Σ∥ ⩾ ∥Σ̄∥+(qs− q̄s).
Then Dp(s) ⊆ Σ∗ dominates Dp(s̄) ⊆ Σ̄∗. In other words, there is a mapping η : Σ → Σ̄ that for
any ȳ ∈ Dp(s̄) ⊆ Σ̄∗, there exists y ∈ Dp(s) ⊆ Σ∗ such that ȳ = η(y).

137

Before proving the lemma, we provide an example with multiple short duplications and a sub-
stitution error, where the duplicated substrings are marked with underlines and the substituted
symbols are in red.

Let Σ = {0, 1, 2, 3, 4} and Σ̄ = {0, 1, 2, 3}. Suppose s = 012 and s̄ = 010 with qs = 3 and q̄s = 2.
The mapping η(0) = 0, η(1) = 1, and η(2) = 0, shows that s dominates s̄, i.e., s = 012 → s̄ = 010.

Let ȳ1 = 010010010 ∈ D(s̄). Then there exists y1 = 012012012 ∈ D(s) dominating ȳ1, via the
same mapping η.

Next, assume ȳ2 = 010012010 is generated from ȳ1 by a substitution 0 → 2. Then y2 =

012013012, obtained from y1 after a substitution 2 → 3 in the same position, dominates ȳ2, via the
mapping η extended by η(3) = 2.

Proof of Lemma 135. Without loss of generality, assume that Σ̄ = {0, 1, . . . , ∥Σ̄∥ − 1} and that the
symbols appearing in s̄ are 0, 1, . . . , q̄s − 1, where q̄s ⩽ ∥Σ̄∥. Similar statements hold for Σ, s, qs.
By assumption, there exists some mapping η : {0, . . . , qs − 1} → {0, . . . , q̄s − 1} showing that s
dominates s̄. Since ∥Σ∥ − qs ⩾ ∥Σ̄∥ − q̄s, we may extend η by mapping symbols in Σ not occurring
in s to symbols in Σ̄ not occurring in s̄. Specifically, we assign η(i) = i − (qs − q̄s) ∈ Σ̄ for
i ∈ {qs, qs + 1, . . . , ∥Σ∥ − 1} ⊆ Σ to construct η : Σ → Σ̄ .

Let the sequence of errors transforming s̄ to ȳ be denoted by T̄j , j = 1, . . . , k and let ȳj =

T̄j(ȳj−1) with ȳ0 = s̄ and ȳ = ȳk. We will find a corresponding sequence (Tj), where each Tj

has the same type of error as T̄j , and define yj = Tj(yj−1). We prove that for each j, we have
ȳj = η(yj). The claim holds for j = 0 by assumption. Suppose it holds for j − 1. We show that it
also holds for j. If T̄j is a duplication, by Lemma 134.1), then we choose Tj to be a duplication of
the same length in the same position. If T̄j substitutes some symbol in ȳj−1 with a ∈ Σ̄, then Tj

substitutes the symbol in the same position in yj−1 with a symbol b ∈ Σ such that η(b) = a. It then
follows that ȳj = η(yj) for each ȳj . Therefore, we have Dp(s) ⊆ Σ∗ dominates Dp(s̄) ⊆ Σ̄∗.

Lemma 136. If a set of strings Y dominates a second set Ȳ , then ||R(Ȳ)|| ⩽ ||R(Y)||.

Proof. Suppose Y dominates Ȳ via a mapping η : Σ → Σ̄. Then, for each ȳ ∈ Ȳ , there exists
some y ∈ Y such that ȳ = η(y). For ȳ ∈ Ȳ , define η−1(ȳ) as the lexicographically-smallest
sequence among {y ∈ Y : η(y) = ȳ}. Furthermore, define Y ′ = {η−1(ȳ) : ȳ ∈ Ȳ } and note that
Y ′ ⊆ Y . With this definition, Y ′ dominates Ȳ and η is a bijection between the two sets. We have
∥Ȳ ∥ = ∥Y ′∥ ⩽ ∥Y ∥. Also, as Y ′ ⊆ Y , we have ∥R(Y ′)∥ ⩽ ∥R(Y)∥.

To prove the lemma, we show that ∥R(Ȳ)∥ ⩽ ∥R(Y ′)∥. It suffices to prove that if ȳ1, ȳ2 ∈ Ȳ

have distinct roots, then y1,y2 ∈ Y ′, where y1 = η−1(ȳ1) and y2 = η−1(ȳ2), also have distinct
roots.

Suppose, on the contrary, that y1,y2 do not have distinct roots, i.e., R(y1) = R(y2). Let T1 and
T2 represent the sequences of deduplications on y1 and y2 that produce their roots, i.e., R(y1) =

T1(y1) and R(y2) = T2(y2). Based on the Lemma 134.2) above, there exist two corresponding
sequences of deduplications T̄1 and T̄2 such that T̄1(ȳ1) = η(R(y1)) and T̄2(ȳ2) = η(R(y2)). If
R(y1) = R(y2), then T̄1(ȳ1) = T̄2(ȳ2). But by the uniqueness of the root, R(ȳ1) = R(T̄1(ȳ1)) and

138

R(ȳ2) = R(T̄2(ȳ2)). So R(ȳ1) = R(ȳ2). But this contradicts the assumption. Hence, the roots of
y1 and y2 are distinct.

With Lemma 135 and Lemma 136 in hand, we prove Lemma 78 in the following.

Proof of Lemma 78. Let s = 01234. If t is the empty string, the claim is trivial. So in the rest of
the proof, we assume t is not empty. Based on Definition 133, s dominates t for any t ∈ Σ5

q \ {Λ}.
Let qt denote the number of distinct symbols in t and note that there are 5 distinct symbols in s. By
Lemma 135, with p = 1, D1(s) ⊆ Σ∗

q+4 dominates D1(t) ⊆ Σ∗
q for any t ∈ Σ5

q since q+4 ⩾ q+(5−qt)

as qt ⩾ 1. Applying Lemma 136 to D1(s) and D1(t) completes the proof.

139

Bibliography

[1] M. Abroshan, R. Venkataramanan, L. Dolecek, and A. G. i Fabregas, “Coding for deletion
channels with multiple traces”, in 2019 IEEE International Symposium on Information The-
ory (ISIT), IEEE, 2019, pp. 1372–1376.

[2] R. Bitar, S. K. Hanna, N. Polyanskii, and I. Vorobyev, “Optimal codes correcting localized
deletions”, in 2021 IEEE International Symposium on Information Theory (ISIT), IEEE,
2021, pp. 1991–1996.

[3] R. E. Blahut, Algebraic codes for data transmission. Cambridge university press, 2003.

[4] J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient low-redundancy codes for correcting
multiple deletions”, IEEE Transactions on Information Theory, vol. 64, no. 5, pp. 3403–3410,
2018.

[5] J. Brakensiek, R. Li, and B. Spang, “Coded trace reconstruction in a constant number of
traces”, in 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS),
IEEE, 2020, pp. 482–493.

[6] K. Cai, Y. M. Chee, R. Gabrys, H. M. Kiah, and T. T. Nguyen, “Optimal codes correcting
a single indel/edit for DNA-based data storage”, arXiv preprint arXiv:1910.06501, 2019.

[7] Y. M. Chee, J. Chrisnata, H. M. Kiah, and T. T. Nguyen, “Deciding the confusability of
words under tandem repeats in linear time”, ACM Transactions on Algorithms (TALG),
vol. 15, no. 3, pp. 1–22, 2019.

[8] Y. M. Chee, J. Chrisnata, H. M. Kiah, and T. T. Nguyen, “Efficient encoding/decoding
of GC-balanced codes correcting tandem duplications”, IEEE Transactions on Information
Theory, vol. 66, no. 8, pp. 4892–4903, 2020.

[9] L. Cheng, T. G. Swart, H. C. Ferreira, and K. A. Abdel-Ghaffar, “Codes for correcting
three or more adjacent deletions or insertions”, in 2014 IEEE International Symposium on
Information Theory, IEEE, 2014, pp. 1246–1250.

[10] M. Cheraghchi, R. Gabrys, O. Milenkovic, and J. Ribeiro, “Coded trace reconstruction”,
IEEE Transactions on Information Theory, vol. 66, no. 10, pp. 6084–6103, 2020.

[11] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital information storage in DNA”,
Science, vol. 337, no. 6102, pp. 1628–1628, 2012.

140

[12] D. Deamer, M. Akeson, and D. Branton, “Three decades of nanopore sequencing”, Nature
Biotechnology, vol. 34, no. 5, pp. 518–524, May 2016.

[13] A. Doricchi, C. M. Platnich, A. Gimpel, et al., “Emerging approaches to dna data storage:
Challenges and prospects”, ACS nano, vol. 16, no. 11, pp. 17 552–17 571, 2022.

[14] O. Elishco, R. Gabrys, and E. Yaakobi, “Bounds and constructions of codes over symbol-pair
read channels”, IEEE Transactions on Information Theory, vol. 66, no. 3, pp. 1385–1395,
2020.

[15] F. Farnoud, M. Schwartz, and J. Bruck, “Estimation of duplication history under a stochastic
model for tandem repeats”, BMC Bioinformatics, vol. 20, no. 1, 2019.

[16] F. Farnoud, M. Schwartz, and J. Bruck, “The capacity of string-duplication systems”, IEEE
Transactions on Information Theory, vol. 62, no. 2, pp. 811–824, 2015.

[17] P. Fire, A class of multiple-error-correcting binary codes for non-independent errors. Stanford
University, 1959, vol. 55.

[18] R. Gabrys, S. Pattabiraman, and O. Milenkovic, “Mass error-correction codes for polymer-
based data storage”, in IEEE International Symposium on Information Theory (ISIT), 2020,
pp. 25–30.

[19] R. Gabrys, E. Yaakobi, and O. Milenkovic, “Codes in the Damerau distance for deletion and
adjacent transposition correction”, IEEE Transactions on Information Theory, vol. 64, no. 4,
pp. 2550–2570, 2017.

[20] P. Gaytán, “Chemical synthesis of oligonucleotides using acetone as a washing solvent”,
Biotechniques, vol. 47, no. 2, pp. 701–702, 2009.

[21] M. George, S. Jafarpour, and F. Bullo, “Markov chains with maximum entropy for robotic
surveillance”, IEEE Transactions on Automatic Control, vol. 64, no. 4, pp. 1566–1580, 2018.

[22] N. Goldman, P. Bertone, S. Chen, et al., “Towards practical, high-capacity, low-maintenance
information storage in synthesized DNA”, Nature, vol. 494, no. 7435, pp. 77–80, 2013.

[23] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust chemical preserva-
tion of digital information on DNA in silica with error-correcting codes”, Angewandte Chemie
International Edition, vol. 54, no. 8, pp. 2552–2555, 2015.

[24] S. K. Hanna and S. El Rouayheb, “Codes for correcting localized deletions”, IEEE Transac-
tions on Information Theory, vol. 67, no. 4, pp. 2206–2216, 2021.

[25] A. P. Heikema, D. Horst-Kreft, S. A. Boers, et al., “Comparison of illumina versus nanopore
16s rrna gene sequencing of the human nasal microbiota”, Genes, vol. 11, no. 9, p. 1105, 2020.

[26] T. Holenstein, M. Mitzenmacher, R. Panigrahy, and U. Wieder, “Trace reconstruction with
constant deletion probability and related results.”, in SODA, vol. 8, 2008, pp. 389–398.

[27] S. e. IDC, “Volume of data/information created, captured, copied, and consumed worldwide
from 2010 to 2020, with forecasts from 2021 to 2025”, IDC Statista, 2021.

141

[28] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Coding for optimized writing rate in DNA
storage”, in IEEE International Symposium on Information Theory (ISIT), 2020, pp. 711–
716.

[29] S. Jain, F. Farnoud, and J. Bruck, “Capacity and expressiveness of genomic tandem dupli-
cation”, IEEE Transactions on Information Theory, vol. 63, no. 10, pp. 6129–6138, 2017.

[30] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Duplication-correcting codes for data
storage in the DNA of living organisms”, IEEE Transactions on Information Theory, vol. 63,
no. 8, pp. 4996–5010, 2017.

[31] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Noise and uncertainty in string-duplication
systems”, in 2017 IEEE International Symposium on Information Theory (ISIT), IEEE, 2017,
pp. 3120–3124.

[32] S. Jain, F. F. Hassanzadeh, M. Schwartz, and J. Bruck, “Duplication-correcting codes for
data storage in the dna of living organisms”, IEEE Transactions on Information Theory,
vol. 63, no. 8, pp. 4996–5010, 2017.

[33] M. A. Jensen and R. W. Davis, “Template-independent enzymatic oligonucleotide synthesis
(tieos): Its history, prospects, and challenges”, Biochemistry, vol. 57, no. 12, pp. 1821–1832,
2018.

[34] H. M. Kiah, T. Thanh Nguyen, and E. Yaakobi, “Coding for sequence reconstruction for single
edits”, in IEEE International Symposium on Information Theory (ISIT), 2020, pp. 676–681.

[35] M. Kovačević, “Codes correcting all patterns of tandem-duplication errors of maximum length
3”, arXiv preprint arXiv:1911.06561, 2019.

[36] M. Kovačević and V. Y. Tan, “Asymptotically optimal codes correcting fixed-length du-
plication errors in DNA storage systems”, IEEE Communications Letters, vol. 22, no. 11,
pp. 2194–2197, 2018.

[37] E. S. Lander, L. M. Linton, B. Birren, et al., “Initial sequencing and analysis of the human
genome”, 2001.

[38] H. H. Lee, R. Kalhor, N. Goela, J. Bolot, and G. M. Church, “Terminator-free template-
independent enzymatic DNA synthesis for digital information storage”, Nature communica-
tions, vol. 10, no. 1, pp. 1–12, 2019.

[39] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Coding over sets for DNA storage”,
IEEE Transactions on Information Theory, vol. 66, no. 4, pp. 2331–2351, 2020.

[40] A. Lenz, Y. Liu, C. Rashtchian, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Coding for
efficient DNA synthesis”, in IEEE International Symposium on Information Theory (ISIT),
IEEE, 2020, pp. 2885–2890.

[41] A. Lenz, I. Maarouf, L. Welter, A. Wachter-Zeh, E. Rosnes, and A. G. i Amat, “Concatenated
codes for recovery from multiple reads of DNA sequences”, in 2020 IEEE Information Theory
Workshop (ITW), IEEE, 2021, pp. 1–5.

142

[42] A. Lenz and N. Polyanskii, “Optimal codes correcting a burst of deletions of variable length”,
in 2020 IEEE International Symposium on Information Theory (ISIT), IEEE, 2020, pp. 757–
762.

[43] A. Lenz, A. Wachter-Zeh, and E. Yaakobi, “Duplication-Correcting Codes”, arXiv:1712.09345
[cs, math], Dec. 2017. arXiv: 1712.09345 [cs, math].

[44] A. Lenz, A. Wachter-Zeh, and E. Yaakobi, “Duplication-correcting codes”, Designs, Codes
and Cryptography, vol. 87, pp. 277–298, 2019.

[45] E. M. LeProust, B. J. Peck, K. Spirin, et al., “Synthesis of high-quality libraries of long
(150mer) oligonucleotides by a novel depurination controlled process”, Nucleic acids research,
vol. 38, no. 8, pp. 2522–2540, 2010.

[46] P. Leupold, V. Mitrana, and J. M. Sempere, “Formal languages arising from gene repeated
duplication”, in Aspects of Molecular Computing, Springer, 2003, pp. 297–308.

[47] Y. Li, S. Wang, C. Bi, Z. Qiu, M. Li, and X. Gao, “Deepsimulator1. 5: A more power-
ful, quicker and lighter simulator for nanopore sequencing”, Bioinformatics, vol. 36, no. 8,
pp. 2578–2580, 2020.

[48] D. Lind, B. Marcus, L. Douglas, and M. Brian, An introduction to symbolic dynamics and
coding. Cambridge university press, 1995.

[49] H. Mahdavifar and A. Vardy, “Asymptotically optimal sticky-insertion-correcting codes with
efficient encoding and decoding”, in 2017 IEEE International Symposium on Information
Theory (ISIT), Jun. 2017, pp. 2683–2687.

[50] B. H. Marcus, R. M. Roth, and P. H. Siegel, “An introduction to coding for constrained
systems”, Lecture notes, 2001.

[51] C. R. Mehta and N. R. Patel, “IBM SPSS exact tests”, Armonk, NY: IBM Corporation,
pp. 23–24, 2011.

[52] L. C. Meiser, P. L. Antkowiak, J. Koch, et al., “Reading and writing digital data in DNA”,
Nature Protocols, vol. 15, no. 1, pp. 86–101, 2020.

[53] O. Milenkovic and C. Pan, “Dna-based data storage systems: A review of implementations
and code constructions”, arXiv preprint arXiv:2310.04694, 2023.

[54] F. Nazarov and Y. Peres, “Trace reconstruction with exp(o(n1/3)) samples”, in Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, 2017, pp. 1042–
1046.

[55] S. B. Needleman and C. D. Wunsch, “A general method applicable to the search for similar-
ities in the amino acid sequence of two proteins”, Journal of molecular biology, vol. 48, no. 3,
pp. 443–453, 1970.

[56] T. T. Nguyen, K. Cai, K. A. S. Immink, and H. M. Kiah, “Capacity-approaching constrained
codes with error correction for dna-based data storage”, IEEE Transactions on Information
Theory, vol. 67, no. 8, pp. 5602–5613, 2021.

143

https://arxiv.org/abs/1712.09345

[57] T. T. Nguyen, K. Cai, K. A. S. Immink, and H. M. Kiah, “Constrained coding with error
control for DNA-based data storage”, in IEEE International Symposium on Information
Theory (ISIT), IEEE, 2020, pp. 694–699.

[58] T. T. Nguyen, K. Cai, and P. H. Siegel, “Every bit counts: A new version of non-binary vt
codes with more efficient encoder”, in ICC 2023-IEEE International Conference on Commu-
nications, IEEE, 2023, pp. 5477–5482.

[59] L. Organick, S. D. Ang, Y.-J. Chen, et al., “Random access in large-scale DNA data storage”,
Nature biotechnology, vol. 36, no. 3, pp. 242–248, 2018.

[60] A. Orlitsky, “Interactive communication: Balanced distributions, correlated files, and average-
case complexity”, in [1991] Proceedings 32nd Annual Symposium of Foundations of Computer
Science, Oct. 1991, pp. 228–238.

[61] S.-J. Park, H. Park, H.-Y. Kwak, and J.-S. No, “Bic codes: Bit insertion-based constrained
codes with error correction for dna storage”, IEEE Transactions on Emerging Topics in
Computing, 2023.

[62] D. Pumpernik, B. Oblak, and B. Borštnik, “Replication slippage versus point mutation rates
in short tandem repeats of the human genome”, Molecular Genetics and Genomics, vol. 279,
no. 1, pp. 53–61, 2008.

[63] R. M. Roth, “Introduction to coding theory”, IET Communications, vol. 47, 2006.

[64] F. Sala, R. Gabrys, C. Schoeny, and L. Dolecek, “Exact reconstruction from insertions in
synchronization codes”, IEEE Transactions on Information Theory, vol. 63, no. 4, pp. 2428–
2445, 2017.

[65] C. Schoeny, F. Sala, and L. Dolecek, “Novel combinatorial coding results for DNA sequencing
and data storage”, in 2017 51st Asilomar Conference on Signals, Systems, and Computers,
IEEE, 2017, pp. 511–515.

[66] C. Schoeny, A. Wachter-Zeh, R. Gabrys, and E. Yaakobi, “Codes correcting a burst of dele-
tions or insertions”, IEEE Transactions on Information Theory, vol. 63, no. 4, pp. 1971–1985,
2017.

[67] M. Schwartz and J. Bruck, “On the capacity of the precision-resolution system”, IEEE trans-
actions on information theory, vol. 56, no. 3, pp. 1028–1037, 2010.

[68] R. Shafir, O. Sabary, L. Anavy, E. Yaakobi, and Z. Yakhini, “Sequence reconstruction un-
der stutter noise in enzymatic dna synthesis”, in 2021 IEEE Information Theory Workshop
(ITW), IEEE, 2021, pp. 1–6.

[69] S. L. Shipman, J. Nivala, J. D. Macklis, and G. M. Church, “CRISPR–Cas encoding of
a digital movie into the genomes of a population of living bacteria”, en, Nature, vol. 547,
no. 7663, pp. 345–349, Jul. 2017.

[70] S. L. Shipman, J. Nivala, J. D. Macklis, and G. M. Church, “Molecular recordings by directed
CRISPR spacer acquisition”, en, Science, Jun. 2016.

144

[71] J. Sima, “Correcting errors in dna storage”, Ph.D. dissertation, California Institute of Tech-
nology, 2022.

[72] J. Sima and J. Bruck, “On optimal k-deletion correcting codes”, IEEE Transactions on In-
formation Theory, vol. 67, no. 6, pp. 3360–3375, 2020.

[73] J. Sima, R. Gabrys, and J. Bruck, “Optimal codes for the q-ary deletion channel”, in 2020
IEEE International Symposium on Information Theory (ISIT), IEEE, 2020, pp. 740–745.

[74] J. Sima, R. Gabrys, and J. Bruck, “Optimal systematic t-deletion correcting codes”, in 2020
IEEE International Symposium on Information Theory (ISIT), IEEE, 2020, pp. 769–774.

[75] J. Sima, R. Gabrys, and J. Bruck, “Syndrome compression for optimal redundancy codes”, in
2020 IEEE International Symposium on Information Theory (ISIT), IEEE, 2020, pp. 751–
756.

[76] J. Sima, N. Raviv, and J. Bruck, “Robust indexing-optimal codes for DNA storage”, in IEEE
International Symposium on Information Theory (ISIT), IEEE, 2020, pp. 717–722.

[77] N. J. Sloane, “On single-deletion-correcting codes”, Codes and designs, vol. 10, pp. 273–291,
2000.

[78] S. R. Srinivasavaradhan, S. Gopi, H. D. Pfister, and S. Yekhanin, “Trellis BMA: Coded trace
reconstruction on IDS channels for DNA storage”, in 2021 IEEE International Symposium
on Information Theory (ISIT), IEEE, 2021, pp. 2453–2458.

[79] Y. Tang, Y. Yehezkeally, M. Schwartz, and F. Farnoud, “Single-error detection and correc-
tion for duplication and substitution channels”, IEEE Transactions on Information Theory,
vol. 66, no. 11, pp. 6908–6919, 2020.

[80] Y. Tang and F. Farnoud, “Correcting deletion errors in DNA data storage with enzymatic
synthesis”, in 2021 IEEE Information Theory Workshop (ITW), 2021, pp. 1–6.

[81] Y. Tang and F. Farnoud, “Error-correcting codes for noisy duplication channels”, IEEE Trans-
actions on Information Theory, vol. 67, no. 6, pp. 3452–3463, 2021.

[82] Y. Tang and F. Farnoud, “Error-correcting codes for noisy duplication channels”, in 2019
57th Annual Allerton Conference on Communication, Control, and Computing (Allerton),
IEEE, 2019, pp. 140–146.

[83] Y. Tang and F. Farnoud, “Error-correcting codes for short tandem duplication and edit
errors”, IEEE Transactions on Information Theory, vol. 68, no. 2, pp. 871–880, 2022.

[84] Y. Tang and F. Farnoud, “Error-correcting codes for short tandem duplication and substitu-
tion errors”, in IEEE International Symposium on Information Theory (ISIT), IEEE, 2020,
pp. 734–739.

[85] Y. Tang and F. Farnoud, “Error-correcting codes for short tandem duplication and substi-
tution errors”, arXiv preprint arXiv:2011.05896, 2020.

145

[86] Y. Tang, H. Lou, and F. Farnoud, “Error-correcting codes for short tandem duplications and
at most p substitutions”, in 2021 IEEE International Symposium on Information Theory
(ISIT), IEEE, 2021, pp. 1835–1840.

[87] Y. Tang, S. Motamen, H. Lou, et al., “Correcting a substring edit error of bounded length”, in
2023 IEEE International Symposium on Information Theory (ISIT), IEEE, 2023, pp. 2720–
2725.

[88] Y. Tang, S. Wang, R. Gabrys, and F. Farnoud, “Correcting multiple short-duplication and
substitution errors”, in 2022 IEEE International Symposium on Information Theory (ISIT),
IEEE, 2022, pp. 1–6.

[89] Y. Tang, S. Wang, H. Lou, R. Gabrys, and F. Farnoud, “Low-redundancy codes for correct-
ing multiple short-duplication and edit errors”, IEEE Transactions on Information Theory,
vol. 69, no. 5, pp. 2940–2954, 2023.

[90] Y. Tang, Y. Yehezkeally, M. Schwartz, and F. F. Hassanzadeh, “Single-error detection and
correction for duplication and substitution channels”, in 2019 IEEE International Symposium
on Information Theory (ISIT), IEEE, 2019, pp. 300–304.

[91] G. Tenengolts, “Nonbinary codes, correcting single deletion or insertion”, IEEE Transactions
on Information Theory, vol. 30, no. 5, pp. 766–769, 1984.

[92] L. M. Tolhuizen, “The generalized gilbert-varshamov bound is implied by turan’s theorem
[code construction]”, IEEE Transactions on Information Theory, vol. 43, no. 5, pp. 1605–
1606, 1997.

[93] S. Wang, Y. Tang, R. Gabrys, and F. Farnoud, “Permutation codes for correcting a burst of
at most t deletions”, in 2022 58th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), IEEE, 2022, pp. 1–6.

[94] S. Wang, Y. Tang, J. Sima, R. Gabrys, and F. Farnoud, Non-binary codes for correcting a
burst of at most t deletions, 2022.

[95] S. Wang, Y. Tang, J. Sima, R. Gabrys, and F. Farnoud, “Non-binary codes for correcting a
burst of at most t deletions”, IEEE Transactions on Information Theory, 2023.

[96] Z. Yan, C. Liang, and H. Wu, “Upper and lower bounds on the capacity of the dna-based
storage channel”, IEEE Communications Letters, vol. 26, no. 11, pp. 2586–2590, 2022.

[97] S. H. T. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and error-free DNA-based data
storage”, Scientific reports, vol. 7, no. 1, pp. 1–6, 2017.

[98] S. H. T. Yazdi, H. M. Kiah, E. Garcia-Ruiz, J. Ma, H. Zhao, and O. Milenkovic, “DNA-based
storage: Trends and methods”, IEEE Transactions on Molecular, Biological and Multi-Scale
Communications, vol. 1, no. 3, pp. 230–248, 2015.

[99] S. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, “A rewritable, random-access
DNA-based storage system”, Scientific reports, vol. 5, no. 1, pp. 1–10, 2015.

146

[100] Y. Yehezkeally and M. Schwartz, “Uncertainty of reconstructing multiple messages from
uniform-tandem-duplication noise”, in IEEE International Symposium on Information The-
ory (ISIT), 2020, pp. 126–131.

[101] Y. Yehezkeally and M. Schwartz, “Reconstruction codes for DNA sequences with uniform
tandem-duplication errors”, IEEE Transactions on Information Theory, vol. 66, no. 5, pp. 2658–
2668, 2020.

[102] S. S. Yim, R. M. McBee, A. M. Song, Y. Huang, R. U. Sheth, and H. H. Wang, “Robust
direct digital-to-biological data storage in living cells”, Nature chemical biology, vol. 17, no. 3,
pp. 246–253, 2021.

[103] K. Zhou, A. Aertsen, and C. W. Michiels, “The role of variable dna tandem repeats in
bacterial adaptation”, FEMS microbiology reviews, vol. 38, no. 1, pp. 119–141, 2014.

[104] W. Zhou, S. Lin, and K. Abdel-Ghaffar, “Burst or random error correction based on Fire
and BCH codes”, in 2014 Information Theory and Applications Workshop (ITA), IEEE, 2014,
pp. 1–5.

147

	Abstract
	Publications
	Introduction
	Motivation and overview
	Background and related work
	Duplications and edit errors
	Localized errors
	Errors occurring in the enzymatic synthesis

	Thesis outline, contributions, and notation
	Thesis outline
	Contributions
	Notation

	Detecting and correcting many k-duplications and one substitution
	Introduction
	Notation and preliminaries
	Restricted error-Detecting codes
	The error model and the descendant cone
	Bounds on the size of the code
	Code construction

	Unrestricted error-detecting codes
	Restricted error-correcting codes
	Motivation
	Notation and preliminaries
	Noisy duplication channels
	Error-correcting codes for noisy duplication channels

	Summary

	Correcting short tandem duplications and at most p edits
	Introduction
	Notation and preliminaries
	Correcting multiple short duplications and one edit error
	Channels with many 3-TDs and one substitution error
	Error-correcting codes
	Extension to edit errors
	Construction of message blocks
	Code rate

	Correcting short duplications and at most p substitutions
	The channel with short duplications and at most p substitutions
	Code construction
	Code rate
	Time complexity of encoding and decoding

	Low-redundancy codes to correcting short duplications and at most p edits
	Notation and preliminaries
	Confusable sets for channels with short duplication and substitution errors
	Low-redundancy error-correcting codes
	Proof of Lemma 88
	Extension to edit errors
	The labeling function
	The redundancy of the error-correcting codes
	Time complexity of encoding and decoding

	Summary

	Correcting a substring edit with bounded length
	Introduction
	Notation and preliminaries
	Notation
	The k-substring edit channel
	Relevant prior results

	Substring edits in nanopore sequencing and document editing
	Independence test on alignment
	A probabilistic edit process
	Experiment results

	Challenges of correcting a k-substring edit
	Error-correcting code for a strict k-substring edit
	Locating the error in an interval
	Correcting the error in an interval

	Error-correcting code for a k-burst substitution
	Combined error-correcting codes
	Time complexity
	Summary

	Correct deletions over DNA data storage with enzymatic synthesis
	Introduction
	Notation and preliminaries
	Channel model for enzymatic DNA synthesis
	Code construction and achievable writing rate
	Code for correcting deletions in the alternating sequence
	Code for correcting substitutions
	Combined codes and achievable writing rate

	Decoding
	Decoding the alternating sequence bold0mu mumu aa!aaaa
	Decoding the run length sequence bold0mu mumu bb!bbbb

	Code parameters and simulation results
	General parameters
	Writing rate
	Decoding BTq codewords
	Error probability of Quantizer function
	Analysis of decoding bold0mu mumu bb!bbbb and a tradeoff
	Effects of parameters
	Explicit error-correcting codes

	Summary and limitations

	Conclusion and open problems
	Conclusion
	Open problems

	Appendix Proof of Lemma 78

