




Abstract

This research is focused on creating an efficient and effective net-

work flow framework for applications in routing protocols for mobile,

unicast communications networks with limited delay tolerance in ur-

ban canyons. Urban canyons are environments in which man-made ob-

jects interfere with the dependability of network reception. To account

for fluctuations in reception, networks in this type of environment are

modeled with time-variant edge capacities. To limit delays, algorithms

implemented for these types of networks must be distributed. Specif-

ically, we focus on modifying multicommodity flow problems to find

routing protocols that can (1) effectively send flow through a network

with time-varying edge capacities and (2) operate in a distributed

setting. To achieve this, we developed candidate algorithms by both

manipulating existing fully polynomial time approximation schemes

for multicommodity flow for a time-varying setting and developing

new algorithms that can produce a static, robust invariant allocation

of flow. These candidate algorithms were initially evaluated through

simulations in MATLAB. Then, promising algorithms were assessed

through a theoretical analysis that validated performance and suit-

ability observations made during the MATLAB simulations. Finally,

a distributed implementation plan was developed.
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1 Introduction

As society begins to rely more and more on mobile technology as a primary

conduit for collecting and relaying information, applications have emerged

for mobile devices to be used as a means for improvements in communica-

tions, tracking, and monitoring for a myriad of systems. However, mobility

presents challenges to information sharing: connectivity changes as nodes

move, mobile devices have limited internal capacity, and wireless signals can

have limited or unpredictable bandwidth.

Thus, routing protocols in such networks must fulfill unique needs that

traditional routing protocols currently cannot handle. We provide mathemat-

ical frameworks from which routing protocols can be developed for particular

mobile networks.

1.1 Motivation: Mobile Satellite-Terrestrial Networks

in Urban Canyons

Our inspiration for developing frameworks for routing protocols in mobile

networks comes from a mobile satellite terrestrial network operating in an

urban canyon.

Satellite-terrestrial networks are networks in which transmissions are ex-

changed between satellites and terrestrial nodes [22]. Terrestrial nodes within

a certain ground range are also connected and capable of exchanging infor-

mation when a direct link to a satellite is unavailable. All links between
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nodes have a limited transmission rate. Transmissions are unicast, that is,

transmissions occur between specific source and sink nodes. Furthermore,

these unicast transmissions may occur concurrently, creating the potential

for congestion. In the specific networks we consider, we frequently must

relay messages containing time-sensitive information, therefore ignoring or

delaying transmission of any message is undesirable.

Figure 1: Mobile satellite-terrestrial network

Additionally, the mobile satellite-terrestrial networks we consider operate

in an urban canyon. Urban canyons are environments in which man-made

objects, such as skyscrapers, cause satellite blockage. As terrestrial nodes

move around this environment, links between terrestrial nodes and satellite

nodes are lost intermittently. Because of this, it is difficult for a centralized

algorithm to gather information and transmit operational instructions to the

whole of the network. Thus it is important that any algorithm be able to
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operated locally, or in a distributed setting.

Considering these characteristics, any routing framework must be able to

address:

• Concurrent transmission of multiple and independently critical unicast

flows

• Time-variant edge capacities

• Need for distributed implementation

Existing frameworks for distributed routing protocols in networks of sim-

ilar type are able to address either multiple, unicast flows in static networks

[15] or a single unicast time-variant networks [22], but no work to date has

been able to address multiple, unicast flows in time-variant networks.

1.2 Problem Statement

Given the network topology present in mobile satellite-terrestrial networks,

this research project sought to determine the most efficient, effective means

for routing packets. We define efficient and effective by:

• Flow rate

• Fairness of flow allocation

• Ability to be employed in a distributed manner

• Algorithm speed
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A number of different algorithms, based on the multicommodity flow prob-

lem, were adapted in an attempt to address the problems of time-varying link

capacities, simultaneous unicast communications, and limited local awareness

of overall network behavior. Then, these algorithms were run on simulated

networks. An initial assessment of the advantages and disadvantages of each

algorithm was undertaken by looking at the performance metrics (efficiency

and effectiveness, as defined above) in the simulated networks. Theoretical

analysis of each algorithm provided further assessment of performance or

suitability for the problem. Based on these findings, a distributed implemen-

tation plan was developed for the most promising algorithm, for adaptation

to a routing protocol.

1.2.1 Project Goals

1. Modify multicommodity flow problems to model the network topology

of terrestrial-satellite communications networks

2. Develop algorithms for solving these modified multicommodity flow

models

3. Evaluate effectiveness, efficiency, and suitability of algorithms through

analysis of simulated networks and theoretical analysis

4. Create a distributed implementation plan for the most promising algo-

rithm for adaptation to communication protocols
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1.2.2 Work Activities

1. Review literature on multicommodity flow and possible frameworks

(sampling algorithms, lower-bound approximations, stochastic subgra-

dient algorithms) for solving the invariant allocation problem

2. Define performance metrics for routing and distributed implementation

3. Modify existing distributed multicommodity flow algorithms to operate

in a time-variant setting

4. Develop invariant allocation (static, robust) algorithms that account

for a time-variant network topology

(a) Sampling algorithm

(b) Lower-bound approximation

(c) Stochastic supergradient algorithm

5. Run algorithms in simulated networks

6. Compare performance of algorithms in simulated networks based on

defined metrics

7. Compare performance of algorithms through theoretical analysis based

on defined metrics

8. Develop a distributed implementation plan

5



2 Literature Review

Much work has been done on approximately solving the static multicom-

modity flow problem for large networks, beginning with Dantzig and Wolfe’s

dual decomposition method in 1960 [12]. Shahrokhi and Matula developed

the first fully polynomial time approximation algorithm for the maximum

concurrent flow problem in 1990 [21]. Work since has generalized the method

for a greater variety of network topologies and has improved upon speed, in-

cluding work by Andrews [3] and Garg and Könneman [14]. Other work, like

Awerbuch and Leighton awerbuch2, Awerbuch and Khandekar [5], and Ka-

math, Palmon, and Plotkin [15], has sought to find methods for implementing

these approximation methods in a variety of distributed settings.

Minimal work has been done on network flow problems in a time-variant

setting. Shrader et al [22] built a heuristic routing protocol that seeks to use

multiple paths to find maximum flow for a single unicast flow in time-variant

networks. Neely, Modiano, and Rohrs [18] looked at allocating power in time

varying networks. Andrews [4] showed that his approximation algorithm

for static networks was stable for time-variant networks where no edge was

critically loaded.

The subgradient method has been used extensively for static multicom-

modity flow problems. In fact, the Dantzig-Wolfe method is a projected

subgradient method, as explained in Martins et al [16]. A proof that the

stochastic subgradient method converges appears in notes by Boyd [8] as
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well as extensive practical information on projected and constrained subgra-

dient methods by Boyd [7].

The stochastic subgradient method has also been formulated for dis-

tributed settings by Ram, Nedic, and Veeravalli [19] as well as Nedic and

Ozdaglar [17] for network optimization. Duchi [?] showed that a form of

the subgradient method converges when sampling from ergodic processes, a

later paper [1] shows that any online optimization method converges when

sampling from ergodic processes. Parallel and Distributed Computation: Nu-

merical Methods [9] gives general needs and terminology for distributed im-

plementation of network flow problems.
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3 Research

In this section, we establish the general approach of this research toward

building a framework for routing protocols in networks with our specified

topology.

3.1 Background

3.1.1 Multicommodity Flow

There has been much success in adapting network flow problems for routing

in cases of unicast flow. Previous research on networks with time-variant

edge capacities successfully used the maximum flow problem as a basis for

routing protocols [22].

Because we are concerned with networks that have concurrent transmis-

sion of multiple, unicast flows, heuristics based on the single commodity, max-

imum flow problem will fail [22]. However, multicommodity flow problems,

the natural extension of maximum flow problems for demands of multiple,

concurrent, unicast flows, has been adapted successfully for routing protocols

in static networks [3] [14]. Thus, we use a version of multicommodity flow to

frame our routing problem throughout this project.

The remainder of this section will describe the multicommodity flow prob-

lem in more detail and explicitly define a formulation of the multicommodity

flow problem that is the backbone of our analysis.

Multicommodity network flow uses a linear programming formulation to
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solve network flow problems where there are multiple routing demands that

have specific source-sink pairs. The traditional multicommodity flow prob-

lem seeks to maximize total flow across the network, but other formulations

seek to minimize total cost, or illicit a fair allocation of flow [21]. Because the

networks focused on in this research must relay messages containing time-

sensitive information, ignoring or delaying transmission of any message is

undesirable. To avoid ignoring any specific message, we use a multicom-

modity flow formulation that seeks to fairly allocate flow, called maximum

concurrent flow [3]. The maximum concurrent flow problem is formally de-

fined as:

maximize: z

subject to: zDi ≤
∑ni

j=1 fi,j for all i

∑
(i,j)∈Pe fi,j ≤ ce for all e

(1)

where z is the throughput, or fraction of demand, Di, allocated for each

commodity i, fi,j is the total flow that commodity i routes along path j, Pe

is the set of paths that span over edge e, and ce is the available capacity

across edge e. The first set of constraints ensures flow conservation, and the

second set of constraints are the capacity constraints.
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3.1.2 Fully Polynomial Time Approximation Algorithms

Although multicommodity flow problems can be solved in polynomial time

using linear programming techniques, this method becomes infeasible as the

networks become large [21]. Furthermore, this method requires centralized

control [15]. Therefore, approximation algorithms that are capable of solving

problems in polynomial time have been developed for a variety of static linear

programs. Further developments have modified these algorithms to operate

with local control or otherwise in a distributed setting.

Because fully polynomial time approximation algorithms address the need

for solving multicommodity flow problems quickly in a distributed setting,

these algorithms seemed to be a promising approach for adaptation to the

time-variant model. To fully explore these approximation algorithms, we

adapted two of the most frequently explored algorithms for multicommodity

flow in the literature: Lagrangian relaxation methods and Dantzig-Wolfe

methods. In our approach, the algorithms run as usual, but face changing

capacities after a set number of iterations.

In 1990, Shahrokhi and Matula [21] created a price-directive algorithm

for the maximum concurrent flow model for cases with unit capacity across

all edges. Price-directive algorithms use the dual variables associated with

capacity constraints to decompose the multicommodity problem into multi-

ple single commodity problems [24]. Since then, many papers have focused

on generalizing the algorithm for a wider range of network topologies and

improved computation speed. Algorithms fall into two general categories:
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Lagrangian relaxation methods and Danzig-Wolfe methods. Lagrangian re-

laxation methods create an objective function that multiplies the capacity

constraints by Lagrangian multipliers, and then solve a minimum cost flow

subroutine for each commodity. Danzig-Wolfe methods impose prices on

the capacity constraints while running a subroutine that optimizes the flow

constraints for each commodity.

Garg and Könemann [14] developed two algorithms that use the La-

grangian relaxation method. One uses a minimum cost subroutine, while

the other uses a shortest path subroutine. The method is as follows:

1. Set the initial dual variables assigned to each edge, λ0e = 1/ce

2. In iteration k, route each commodity across paths that minimize λk

3. Update

λk+1
e = λke

(
1 + ε

∑
i x

k,i
e

ce

)
where xk,ie is the flow across edge e from commodity i

4. Return to 2.

Andrews [3] created a maximum-weight algorithm that uses a Danzig-Wolfe

method while taking a moving average of iterative solutions. The method is

as follows:

1. Set the initial dual variables assigned to each edge, λ0e = ce

2. In iteration k, route Di units of flow for each commodity across paths

minimizing λk
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3. Maximize zk subject to zk(λk)T
∑

i x
k,i ≤ (λk)T c

4. Update λk+1 = max{0, λk − c+ zk
∑

i x
k,i}

5. Return to 2.

6. The flow in iteration k is set as the moving average 1
k−k′

∑k
j=k−k′ x

j,i

Because the FPTAP methods rely on dual decomposition, that is, ”...

break[ing] ... the original problem into a set of smaller subproblems...[to]...yield

a constrained optimization problem, the Lagrange dual of which is solved us-

ing a projected subgradient method” [16], the number of iterations required

to converge to the solution within some ε is O
(

1
ε2

)
. In fact, the static Max

Weight method requires O
(
ρ2

ε2

)
where ρ is the width of the problem, found

by maxx (λUB
∑

i x
i/c) for some known upper bound λUB on the through-

put λ. Because converging to a solution to this problem in the static case

depends on the width of the problem, it is difficult to quantify convergence

in the time-variant case. A change in the capacity realizations changes both

the network topology and the width of a problem. When this occurs, the

FPTAP acts as if it is solving a new problem. Thus, we can say that when

titer
ρ2

ε2
≥ trate

where ttier is the time it takes for on iteration of the algorithm, and trate is

the time it takes for the the edge capacities to transition, the time-variant

problem will not converge for that set of capacity realizations. Additionally,
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although the algorithm is solving a new problem every time the capacity

realizations change, the new problem usually will not begin with the optimal

initial dual variables at time t,

λte = C(t)
e

but will instead begin with

λte = C(t−1)
e

This has the potential to further slow the convergence of the algorithm.

3.1.3 Invariant Allocation

Preliminary simulations of the fully polynomial approximation algorithms for

time-variant networks revealed that the algorithm struggled to adjust dual

variables quickly enough for the changing problem. As a result, the algo-

rithm was only able to reach 70-80% of the solution upper bound (found by

solving the linear program in each iteration with the simplex method). While

this phenomenon appears to be related to some ratio of algorithm speed, al-

gorithm convergence rates, and capacity change rate, it is obvious that the

solution with existing fully polynomial time approximation algorithms is lim-

ited in at least some cases. Thus, we sought another solution whose method

could inherently account for changing capacities.

Cogill and Shrader [10] developed an an algorithm that provide a static

allocation of flow that is robust to time-variant edge capacities. Instead of
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optimizing over path flows, the algorithm optimizes over a newly developed

value, α, that uses a ratio of flow for a specific commodity and path to the

total flow for all commodities and path over a specific edge. This allows for

a system to solve a single optimization problem whose solution can be used

for the problem even as the edge capacities change over time.

Unfortunately, the objective function of this optimization problem is very

difficult to evaluate directly. Thus, we sought to create or adapt alternative

methods by which this optimization problem could be solved or approxi-

mately solved.

The remainder of this section describes the invariant allocation problem

in more detail and the methods by which we attempt to evaluate the objective

function.

Consider:

αi,j,e =
fi,j∑

(i,j)∈Pe fi,j

the ratio of flow for commodity i and path j to the total flow for all com-

modities and path over edge e. Since we know that:

∑
(i,j)∈Pe

fi,j ≤ ce

αi,j,e can be expressed as the fraction of edge e’s capacity that is allocated

to path j for commodity i. Clearly:

fi,j ≤ αi,j,ece
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Furthermore, we can express:

z = min
i

{
1

Di

ni∑
j=1

fi,j

}

and

fi,j = min
e∈pi,j

{αi,j,ece}

Since we are interested in cases where the capacity is changing, we express

the capacity realization, ce as a random variable, Ce. This treatment requires

that we look at the expected value, rather than an explicit solution to the

problem. Using this and the substitutions above, the invariant allocation

problem reduces from the maximum concurrent flow formulation to:

maximize: E
[
mini

{
1
Di

∑ni
j=1 mine∈pi,j {αi,j,eCe}

}]
subject to:

∑
(i,j)∈Pe αi,j,e = 1 for all e

αi,j,e ≥ 0 for all e and (i, j) ∈ Pe

(2)

where αi,j,e is the fraction of edge e’s capacity that is allocated to path j for

commodity i and Ce is the random variable representing the capacity for edge

e. In this formulation, the flow conservation constraints have been brought

into the objective function, and the capacity constraints are insured by the

constraints on α values. It can be shown that this problem is equivalent to

the static maximum concurrent flow problem when Ce = ce.
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As alluded to earlier, this objective function is very difficult to directly

evaluate because one must find the expected value by assessing the proba-

bilistic nature of the random variables Ce under two minimizations and one

summation. Because this is impossible for all but trivial network topologies

and probability distributions, this work primarily focuses on approximate

solutions to this invariant allocation problem that can be found and imple-

mented in a distributed setting. These methods are discussed in the following

sections.
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3.2 Sampling Algorithm

3.2.1 Concept

One approach to approximating the solution to the invariant allocation prob-

lem, developed by Cogill and Shrader, [10] is to sample from possible capacity

realizations, and then solve a linear program that maximizes the sample av-

erage.

3.2.2 Execution

The linear program is as follows:

maximize: 1
S

∑S
k=1 zk

subject to: Dizk ≤
∑ni

j=1 fi,j,k for all i, k

fi,j,k ≤ αi,j,ece,k for all e, k and (i, j) ∈ Pe∑
(i,j)∈Pe α(i,j,e) = 1 for all e

α(i,j,e) ≥ 0 for all e and (i, j) ∈ Pe

(3)

where k denotes the k-th sample.

This problem can be solved for α prior to implementation. Then, the only

requirement on the system for implementation is that each edge or vertex pair

know the α values associated with it as well the current value of the capacity.
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3.2.3 Performance: Speed and Accuracy

For large enough k, this solution will generate a close approximation of the

true solution, however this comes at a computational cost. Each additional

sample adds |E| ∗ |(I, J)|+ |I| constraints to the problem, where |E| denotes

the number of edges, |(I, J)| denotes the total number paths, and |I| denotes

the number of commodities. Furthermore, this method requires that the

stochastic models for the edge capacities be known prior to implementation,

which is not guaranteed in this method.

The sampling algorithm increases in size for an increase in the number of

samples. This increase in size comes from the additional |E| ∗ |(I, J)| + |I|

constraints that are added to the problem for every additional sample. Now,

to arrive at a conservative estimate for the number of samples required,

we consider the average time it takes to see all possible mine∈Pi,j {αi,j,eCe}

on a path, 1
mine∈Pi,j {pe,1−pe}

. The time it takes to see all combinations of

mine∈Pi,j {αi,j,eCe} for all paths and commodities is then:

1∏
i

∏ni
j=1 mine∈Pi,j {pe, 1− pe}

Even if we use quicker techniques like fully polynomial time approxima-

tion algorithms, solution time is still O
(
ρ2

ε2

)
, where the width of the problem

is conservatively maxk(ρk)*(number of samples).

Additionally, even with a less conservative estimate for the number of

samples needed, it is difficult to quantify loss of solution accuracy because
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the number of samples needed is dictated by the unique topology of the

network.

Because the sampling method is a potentially unfeasible solution due to

computation time and/or lack of knowledge of the stochastic model, two

other approaches to solving the invariant allocation method were explored.
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3.3 Lower Bound Approximation

3.3.1 Concept

Since the sampling algorithm increases in size by |E|∗|(I, J)|+|I| constraints

for each additional sample k, it may become unfeasible to find a close enough

approximation in a reasonable computation time. Therefore, we sought a

formulation that could approximate the solution to the invariant allocation

problem without requiring an increase in computation time for increased

accuracy.

The lower bound approximation approach finds a lower bound on the

expected value of the objective function of the invariant allocation problem,

and then solves a linear program for the invariant allocation problem using

the lower bound as the objective function. If the lower bound is tight enough,

then the solution for α will closely approximate the α associated with the

invariant allocation objective function.

Two lower bound approximations were developed. One, the logarithmic

bound, closely follows the Chernoff-type bounds described in [11] for a set of

dependent random variables. The other, the ”simple” network bound, uses

a closed-form solution for the expected value for a simple network topology

to form a lower bound on expected value for more complex networks. While

these lower bounds allow for one to solve a smaller linear program with

|E| ∗ |(I, J)|+ |I| constraints rather than k ∗ (|E| ∗ |(I, J)|+ |I|) constraints,

they both still require prior knowledge of the stochastic model.
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The remainder of this section will show the initial derivation required for

the two lower bounds.

Recall the objective function in the invariant allocation problem:

E

[
min
i

{
1

Di

ni∑
j=1

min
e∈pi,j

{αi,j,eCe}

}]

Ideally, one would like to bring the expected value function further into the

problem to facilitate an approximation. Unfortunately, using Jensen’s In-

equality to bring the expected value into the minimum yields an upper bound

rather than a lower bound on the problem. Further research into the prob-

lem did not yield any successful approaches to approximation. So, in order

to create some approximation, we turned to the maximum multicommodity

flow formulation of the problem. This formulation finds the maximum flow

rate by summing each commodity’s rate, rather than taking the minimum

rate as in maximum concurrent flow. In symmetric networks, this formula-

tion yields equivalent α values to the maximum concurrent flow formulation,

but it may diverge in asymmetric networks. Using this formulation, we now

have the objective function:

E

[∑
i

1

Di

ni∑
j=1

min
e∈pi,j

{αi,j,eCe}

]
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which easily simplifies to:

∑
i

1

Di

ni∑
j=1

E

[
min
e∈pi,j

{αi,j,eCe}
]

It is clear to see that if we can find a lower bound on E
[
mine∈pi,j {αi,j,eCe}

]
for each e ∈ pi,j, we can find a lower bound for the maximum multicommodity

flow formulation of the invariant allocation problem.

3.3.2 Execution: Logarithmic Bound

Adapting the proof for the Chernoff-type bounds found in [11], we find:

min
e∈pi,j

{αi,j,ece} = −1

t
ln

(
max
e∈pi,j

{
e−αi,j,ecet

})

≥ −1

t
ln

∑
e∈pi,j

e−αi,j,ecet


Adding expectation:

E

[
min
e∈pi,j

{αi,j,eCe}
]
≥ −1

t
E

ln

∑
e∈pi,j

e−αi,j,eCet


≥ −1

t
ln

E

∑
e∈pi,j

e−αi,j,eCet


= −1

t
ln

∑
e∈pi,j

E
[
e−αi,j,eCet

]
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We see that this inner expectation is simply a moment-generating function.

Since the capacities can be expressed as Bernoulli random variables, this

expectation becomes

E
[
e−αi,j,eCet

]
= pee

−αi,j,eC1
e t + (1− pe)e−αi,j,eC

0
e t

where pe denotes the probability of the capacity being in state 1, and C1
e

and C0
e are capacity realizations in state 1 and state 0, respectively. Com-

bining these results, we have a lower bound approximation for the maximum

multicommodity flow invariant allocation problem:

maximize:
∑

i
1
Di

∑ni
j=1−

1
t

ln
(∑

e∈pi,j pee
−αi,j,eC1

e t + (1− pe)e−αi,j,eC
0
e t
)

subject to:
∑

(i,j)∈Pe αi,j,e = 1 for all e

αi,j,e ≥ 0 for all e and (i, j) ∈ Pe

(4)

3.3.3 Execution: ”Simple” Network Bound

For this approximation, we explore a ”simple” network, one with identical

capacity realizations across all edges where the lower realization is zero, for

which we can find a closed-form solution to the objective function for the

invariant allocation problem.

If all Ce have identically capacity realizations across all edges and the
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lower realization is zero, then:

min
e∈pi,j

{αi,j,eCe} = min
e∈pi,j

{αi,j,e} min
e∈pi,j

{Ce}

Now:

E

[
min
e∈pi,j

{αi,j,eCe}
]

= E

[
min
e∈pi,j

{αi,j,e} min
e∈pi,j

{Ce}
]

= min
e∈pi,j

{αi,j,e}E

[
min
e∈pi,j

{Ce}
]

Because the lower capacity realization is zero, the only instance in which

flow will be greater than zero is when all edges in the path have the non-zero

capacity realization. This happens with probability
∏

e∈pi,j pe. Thus we have

E

[
min
e∈pi,j

{Ce}
]

= C1
e

∏
e∈pi,j

pe + C0
e (1−

∏
e∈pi,j

pe)

Combining these results, we have a closed form solution for the maximum

multicommodity flow invariant allocation problem for problems of this net-

work type:

maximize:
∑

i
1
Di

∑ni
j=1 mine∈pi,j {αi,j,e} (C1

e

∏
e∈pi,j

pe + C0
e (1−

∏
e∈pi,j

pe))

subject to:
∑

(i,j)∈Pe αi,j,e = 1 for all e

αi,j,e ≥ 0 for all e and (i, j) ∈ Pe

(5)
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Note that if the capacities do not fit this framework, then:

min
e∈pi,j

{αi,j,eCe} ≥ min
e∈pi,j

{αi,j,e} min
e∈pi,j

{Ce}

Thus for any network, this solution is a lower bound on the maximum mul-

ticommodity flow invariant allocation problem.

3.3.4 Suitability: Maximum Multicommodity Flow vs Maximum

Concurrent Flow

In symmetrical networks, that is, networks where
∑ni

j=1 mine∈Pi,j {αi,j,eCe} is

the same for all i, the maximum multicommodity flow formulation and the

maximum concurrent flow formulation will yield the same α values. But con-

sider networks that are not symmetric. In the most extreme case, if there is

any commodity m for which
∑nm

j=1 mine∈Pm,j {αm,j,eCe} = 0, then the maxi-

mum concurrent flow throughput z = 0. But the maximum multicommodity

flow throughput is still z =
∑

i 6=m
∑ni

j=1 mine∈Pi,j {αi,j,eCe}. Even in cases

where one commodity simply has a lower value for
∑ni

j=1 mine∈Pi,j {αi,j,eCe},

any commodity’s flow that is in excess of this value will not be incorporated

into the results for maximum concurrent flow, but will be incorporated into

the results for maximum multicommodity flow. Even if we consider simply

using Jensen’s inequality (as an upper bound), the problem still requires a
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symmetric network to converge to the optimal solution. Consider:

E

[
min
i

{
1

Di

ni∑
j=1

min
e∈pi,j

{αi,j,eCe}

}]
=
∑
r

pr min
i

{
1

Di

ni∑
j=1

min
e∈pi,j

{αi,j,eCr
e}

}

min
i

{
E

[
1

Di

ni∑
j=1

min
e∈pi,j

{αi,j,eCe}

]}
= min

i

{
1

Di

ni∑
j=1

∑
r

pr min
e∈pi,j

{αi,j,eCr
e}

}

where pr is the probability of seeing a particular set of realizations r. The

first problem, which is the problem we wish to solve, looks at many samples of

the minimum flow over all commodities. The second problem, which is closer

to the problem we are approximating with the lower bound approximation

approaches, looks at the minimum over all commodities given many samples

of the flow for individual commodities. The lower bound approximation

approach simply tries to push as much flow as possible, rather than pushing

as much flow as possible so that each commodity is equally served. Thus,

edges where one commodity needs to utilize the edge more than another

edge, but produces less overall flow, will not gain a fair share of that edge’s

capacity.

3.3.5 Performance: Logarithmic Limitations

The logarithmic nature of the first lower bound approximation approach

creates some difficulty in finding solutions, namely, the problem is not always

concave so we find local maxima rather than a global maximum.
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Consider a simplified version of the problem:

−1

t
ln
(
e−xt + e−yt

)
where x and y represent some set of −αi,j,eCe. Examining the Hessian, it can

be seen that this problem has principle minors ∆1 < 0, ∆2 = 0, and ∆3 = 0.

Thus the problem is concave, but not strictly concave, and there are optimal

solutions where x = y. But consider a case where there is a coefficient in

front of either of the exponents, or a coefficient in front of either x or y. The

problem is no longer concave.
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3.4 Stochastic Supergradient Method

3.4.1 Concept

Although the lower bound approximation approach is able to limit the size

and computation time needed to approximate the solution to the invariant

allocation problem, both lower bound approximation formulas still require

prior knowledge of the stochastic model. If this information is unavailable,

neither the sampling algorithm nor the lower bound approximations could be

used in a routing protocol without a ”lag” time during which an approximate

stochastic model is determined. As messages may contain time sensitive

information, these approaches may not always yield desirable results. Thus

we sought an approach that could both limit computation time and run

without a predetermined stochastic model.

We considered the stochastic supergradient method because it is capable

of approximating a solution for stochastic programming problems without

a known model and it can easily be implemented in a distributed manner,

since each iteration in the method requires limited memory and computation

[8]. The supergradient method, rather than gradient descent, is required

because the invariant allocation problem has a piecewise objective function

that is not differentiable everywhere, but is still concave. Unfortunately, the

stochastic supergradient method has only been proven for cases with inde-

pendent, identically distributed random variables, and in our networks the

capacity random variables appear to behave as two state Markov chains.

28



However, since the steady-state of Markov chains are independent and iden-

tically distributed, the algorithm is likely still a good approximation, though

theoretical analysis is needed to validate. We use the stochastic supergra-

dient method and develop a distributed implementation plan for use in the

network.

3.4.2 Execution

Given the objective function:

E

[
min
i

{
1

Di

ni∑
j=1

min
e∈pi,j

{αi,j,eCe}

}]
= E [f (α,C)]

consider the supergradient:

f(z, C) ≤ f(x,C) + gT (z − x), g ∈ ∂f (α,C)

Because C is a random variable we are unable to compute the supergradient

directly, however, we can compute a noisy, unbiased supergradient:

g̃ =
1

M

M∑
r=1

g(α,Cr), g = E [g̃|α]

such that f(z, C) ≤ f(x,C) + E [g̃|α]T (z − x) almost surely

of a set of M realizations of C, Cr. This supergradient is only unbiased when

C is independent and identically distributed.
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This noisy, unbiased supergradient allows for an iterative update on α

that will eventually converge to the solution to the objective function of the

invariant allocation problem.

α(k+1) = α(k) + β(k)g̃(k)

where β(k) is not summable but square summable

β(k) ≥ 0,
∞∑
k=1

(β(k))2 <∞,
∞∑
k=1

β(k) =∞

Because the invariant allocation problem also has constraints

∑
(i,j)∈Pe

αi,j,e = 1 for all e

αi,j,e ≥ 0 for all e and (i, j) ∈ Pe

we must incorporate these into the update. The equality constraints are

incorporated by using a projection, Πα, of the constraints onto the update:

α(k+1) = α(k) + β(k)Παg̃
(k)

Πα = I|E|∗|(I,J)| − AT (AAT )−1A

A =
[
I|E|∗|(1,J)| I|E|∗|(2,J)| · · · I|E|∗|(i,J)|

]
The inequality constraints are handled by creating a penalty supergradient
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where the constraints are violated:

g̃(k) =


1
M

∑M
r=1 g(αi,j,e, C

r), α
(k−1)
i,j,e ≥ 0

∂αi,j,e = 1, α
(k−1)
i,j,e < 0

To summarize, the stochastic supergradient method finds solutions to the

stochastic programming problem

maximize: E [f (α,C)]

subject to:
∑

(i,j)∈Pe αi,j,e = 1 for all e

αi,j,e ≥ 0 for all e and (i, j) ∈ Pe

as follows:

1. In iteration k, find a noisy unbiased supergradient g̃(k)

2. Update α(k+1) = α(k) + β(k)g̃
(k)

3. Find f
(k)
best = max{f(α(1)), ..., f(α(k))}

4. Return to 1.

There are no stopping criteria for the stochastic supergradient method.

Therefore, there are two approaches to picking an α to use in the network

at time k. We can use α(k), or we can find α
(k)
best = arg max

α
{fk−1best , f(α(k)}. If

either α(k) or α
(k)
best is unfeasible, we store the closest previous α iterate which

is feasible. While choosing α
(k)
best will usually yield a better approximation,
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if requires greater storage because the objective function must be explicitly

calculated in each iteration.

3.4.3 Suitability: Sampling from a Markov Process

We want to establish that the stochastic supergradient method converges

for random variables that come from a finite state, irreducible, aperiodic

Markov chain. This proof currently only exists for the case where the random

variables are i.i.d. Using the stochastic subgradient method proof in [8], we

show that the stochastic subgradient method converges for random variables

that come from a finite state, irreducible, aperiodic Markov chain, where the

variables are constrained to values between 0 and 1. This proof can easily

be adapted to the supergradient case.

Using the proof in [8] we know:

E
[
||α(k+1) − α∗||2|α(k)

]
= E

[
||α(k) − β(k)g̃(k) − α∗||2|α(k)

]
= ||α(k) − α∗||2 − 2β(k)E

[
g̃(k)T (α(k) − α∗)|α(k)

]
+ (β(k))2E

[
||g̃(k)||2|α(k)

]
= ||α(k) − α∗||2 − 2β(k)E

[
g̃(k)|α(k)

]T
(α(k) − α∗) + (β(k))2E

[
||g̃(k)||2|α(k)

]

Now, since the noisy subgradient is taken with samples drawn from a

Markov process, specifically the distribution P k at time k, where P is the

transition matrix, we are actually concerned with EPk
[
g̃(k)|α(k)

]T
which we

can expand to:
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EPk

[
g̃(k)|α(k)

]T
= Eπ

[
g̃(k)|α(k)

]T
+ (EPk

[
g̃(k)|α(k)

]T
−Eπ

[
g̃(k)|α(k)

]T
)︸ ︷︷ ︸

E[v]

where π is the steady-state distribution of the Markov process, and E[v]

denotes the expected value of the noise.

We know that since Eπ

[
g̃(k)|α(k)

]
is a noisy, unbiased subgradient, we

have:

f(α∗) ≥ f(α(k)) +Eπ
[
g̃(k)|α(k)

]T
(α∗ − α(k))

f(α∗)− f(α(k)) ≥ Eπ
[
g̃(k)|α(k)

]T
(α∗ − α(k))

f(α(k))− f(α∗) ≤ Eπ
[
g̃(k)|α(k)

]T
(α(k) − α∗)

Then:

EPk

[
g̃(k)|α(k)

]T
(α(k) − α∗) = Eπ

[
g̃(k)|α(k)

]T
(α(k) − α∗) +E[v]T (α(k) − α∗)

≥ f(α(k))− f(α∗) +E[v]T (α(k) − α∗)

Plugging in, we have:

E
[
||α(k+1) − α∗||2|α(k)

]
≤ ||α(k)−α∗||2−2β(k)

(
f(α(k))− f(α∗)−−E[v]T (α(k) − α∗)

)
+(β(k))2E

[
||g̃(k)||2|α(k)

]

Taking expectation:

E
[
||α(k+1) − α∗||2

]
≤ E

[
||α(k) − α∗||2

]
−2β(k)

(
E[f(α(k))]− f(α∗)−E

[
−E[v]T (α(k) − α∗)

])
+(β(k))2E

[
||g̃(k)||2

]
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Applying recursively:

E
[
||α(k+1) − α∗||2

]
≤ E

[
||α(1) − α∗||2

]
−2

k∑
i=1

β(i)
(
E[f(α(i))]− f(α∗)

)
+2

k∑
i=1

β(i)E
[
E[v]T (α∗ − α(i))

]
+

k∑
i=1

(β(i))2E
[
||g̃(i)||2

]

To complete the proof, we need to bound:

• E
[
||α(k+1) − α∗||2

]
• E

[
||α(1) − α∗||2

]
• E

[
E[v]T (α∗ − α(i))

]
• E

[
||g̃(i)||2

]
Clearly, E

[
||α(k+1) − α∗||2

]
≥ 0. In our problem α elements lie between

0 and 1, |α − η| < ~1, so we can bound |α − η| ≤ R, E
[
||α(1) − α∗||2

]
≤ R2.

Furthermore, since α elements lie between 0 and 1 and the random variables

take on discrete, finite values, we also see |g̃(i)| ≤ G, E
[
||g̃(i)||2

]
≤ G2.

Finally, we must consider:

E
[
E[v]T (α∗ − α(i))

]
= E

[(
EP i

[
g̃(i)|α(i)

]T
−Eπ

[
g̃(i)|α(i)

]T)
(α∗ − α(i))

]

Since EP i
[
g̃(i)|α(i)

]T
and Eπ

[
g̃(i)|α(i)

]T
are expected values of functions

of random variables with realizations ω, we can write:

EPk

[
g̃(i)|α(i)

]
=
∑
Ω

g̃(α(i), ω)P i(ω)

and

Eπ
[
g̃(i)|α(i)

]
=
∑
Ω

g̃(α(i), ω)π(ω)

where g̃(α(i), ω) is the supergradient assessed at α(i) and realization ω.
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Now we can write:

(
EP i

[
g̃(i)|α(i)

]T
−Eπ

[
g̃(i)|α(i)

]T)
(α∗ − α(i)) =

∑
Ω

g̃(α(i), ω)TP i(ω)(α∗ − α(i))−
∑
Ω

g̃(α(i), ω)T π(ω)(α∗ − α(i))

=
∑
Ω

g̃(α(i), ω)T (α∗ − α(i))(P i(ω)− π(ω))

≤
∑
Ω

∣∣∣g̃(α(i), ω)T (α∗ − α(i))(P i(ω)− π(ω))
∣∣∣

≤
∑
Ω

‖ g̃(α(i), ω)T ‖‖ α∗ − α(i) ‖ |P i(ω)− π(ω)|

≤ GR
∑
Ω

|P i(ω)− π(ω)|

where the second to last step follows from the Cauchy-Schwarz inequality.

We still need explicit bounds on the difference |P i(ω)− π(ω)| in order to

complete the proof. Consider the total variation distance, dTV , defined as:

dTV (P,Q) = sup
A∈F

|P (A)−Q(A)| =
1

2

∑
S

|P (S)−Q(S)|

for P and Q on probability space (S, F ). We can see:

(
EP i

[
g̃(i)|α(i)

]T
−Eπ

[
g̃(i)|α(i)

]T)
(α∗ − α(i)) ≤ 2GRdTV (P i, π)

Taking expectation:

E

[(
EP i

[
g̃(i)|α(i)

]T
−Eπ

[
g̃(i)|α(i)

]T)
(α∗ − α(i))

]
≤ E

[
2GRdTV (P i, π)

]
= 2GRdTV (P i, π)

Since P i and π come from a finite state, irreducible, aperiodic Markov

chain we have:

dTV (P i, π) ≤ Cρi
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for constants ρ < 1 and C <∞.

Now we have bounded all the terms necessary to complete the proof, and

we have:

0 ≤ R2 − 2
k∑
i=1

β(i)
(
E[f(α(i))]− f(α∗)

)
+ 4GRC

k∑
i=1

β(i)ρi +G2
k∑
i=1

(β(i))2

2
k∑
i=1

β(i)
(
E[f(α(i))]− f(α∗)

)
≤ R2 + 4GRC

k∑
i=1

β(i)ρi +G2
k∑
i=1

(β(i))2

min
i=1,...,k

(
E[f(α(i))]

)
− f(α∗) ≤

R2 + 4GRC
k∑
i=1

β(i)ρi +G2
k∑
i=1

(β(i))2

2
k∑
i=1

β(i)

E

[
min

i=1,...,k

(
E[f(α(i))]

)]
− f(α∗) ≤

R2 + 4GRC
k∑
i=1

β(i)ρi +G2
k∑
i=1

(β(i))2

2
k∑
i=1

β(i)

E
[
f

(k)
best

]
− f(α∗) ≤

R2 + 4GRC
k∑
i=1

β(i)ρi +G2
k∑
i=1

(β(i))2

2
k∑
i=1

β(i)

where the second to last step is a result of Jensen’s inequality. Set:

lim
n→∞

n∑
i=1

β(i) =∞, lim
n→∞

n∑
i=1

(β(i))2 <∞

We can see that the denominator diverges. Since
k∑
i=1

ρi is a geometric

progression that converges and β(i)ρi ≤ ρi for all i, by the direct comparison

test,
k∑
i=1

β(i)ρi converges. Thus the numerator converges to some constant

and E
[
f
(k)
best

]
converges to f(α∗).
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3.4.4 Performance: Speed as Compared to FPTAP

This method always offers quicker solutions than FPTAP. Since both are

supergradient methods, they appear to have the same running time, but FP-

TAP must build a new solution for every capacity change while the stochastic

supergradient method improves on a single solution in every iteration.
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3.5 Distributed Implementation

3.5.1 Concept

Any routing protocol for our specific problem requires a distributed imple-

mentation plan, in which nodes can communicate needs for the entire network

simply through messaging between neighboring nodes. This is a requirement

because the stochastic model may not be known, and connectivity between

nodes is often limited. After preliminary analysis, it became clear that the

stochastic supergradient model was best suited for distributed implemen-

tation. The following describes the requirements and pseudocode for dis-

tributed implementation of the stochastic supergradient method.

3.5.2 Execution

Using the following notation, we delineate pseudocode for running the stochas-

tic supergradient algorithm in a distribution setting.
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notation description

si source

di sink

ui head node where (ui, vi) ∈ pi,j

vi tail node

u{i} bottleneck head node where {i} is the set of

commodities i ∈ {i} for

which (u{i}, v{i}) ∈ pi,j

v{i} bottleneck tail node

c(ui,vi),k edge capacity at time k

tch time since last edge capacity

change

{j}i set of all paths j for commodity i

ˆ̃g
(k)
i supergradient of

min
e∈pi,j

{
α
(k−1)
i,j,e ce,k

}
for all j ∈ {j}i

Ideally, a distributed implementation plan for the stochastic supergradient

algorithm would only require that nodes be able to communicate with neigh-

boring nodes. Our plan requires a few additional assumptions:

• Each node knows the commodities i and the paths j to which it belongs

• Each node knows which node comes prior to and which node follows it

in the path pi,j
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• Each source node si knows how many bottleneck head nodes u{i} are

such that i ∈ {i}

• Each bottleneck head node u{i} knows how many bottle neck head

nodes are in the network

• Nodes can send and receive capacity information with neighboring

nodes without saturating the incident edge

The distributed supergradient algorithm requires three subroutines:

• Establish the transition rate of the edge capacities

• Update α (supergradient method)

• Push flow

To establish the transition rate of the edge capacities, the algorithm asks

each set of neighboring nodes to check for a change in incident edge capacity

at a fast rate. This rate is predetermined based on empirical evidence or the-

oretical assumptions about the transition rates. When a change in capacity

is detected, the nodes send the new rate of change information to the source

nodes, which then compile and average the detected rates for some number

of samples. The source nodes must send this information to all bottleneck

head nodes along available paths; then the bottleneck head nodes must find

a current minimum rate amongst all collected values and send it back along

all available reverse paths. This process must be repeated |I| − 1 times to

40



ensure that an overall network minimum has been found. This new value

is used to establish a rate at which each iteration of the other two subrou-

tines occurs. Using the minimum rate found across all commodities ensures

that the network is checking for changes conservatively. Alternatively, this

subroutine does not have to be included in the algorithm if a good estimate

for the transition rate can be established a priori, or the subroutine can be

incorporated and updated within the other two subroutines.

To update α, the algorithm asks the sink nodes to send α
(k−1)
i,j,e and ce,k to

the previous node in the path. Then each node along the reverse path com-

putes the min
e∈pi,j

{
α
(k−1)
i,j,e ce,k

}
found up to that point. When the information

about the values arrives at the source, the source calculates a local supergra-

dient; that is, supergradient of min
e∈pi,j

{
α
(k−1)
i,j,e ce,k

}
for all paths j ∈ {j}i, and

sends it along to the bottleneck head nodes along with
ni∑
j=1

min
e∈pi,j

{
α
(k−1)
i,j,e ce,k

}
.

The bottleneck head nodes then assess a minimum of these amongst all com-

modities that the bottleneck head node shares. This information is then sent

back to the source node to find a minimum amongst all the bottleneck head

nodes that it shares. This process must be repeated |I| − 1 times to ensure

that an overall network minimum has been found. The bottleneck head node

then has the information to compute the supergradient and a local update

on all α values for all i ∈ {i}. These updated values are then propagated to

their respective nodes along the relevant paths and reverse paths.
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To push flow, the algorithm must again ask the sink nodes to send α
(k)
i,j,e

and ce,k to the previous node in the path to compute the min
e∈pi,j

{
α
(k−1)
i,j,e ce,k

}
found up to that point. However, this only needs to be done for paths on

which the supergradient value has been changed; otherwise
ni∑
j=1

min
e∈pi,j

{
α
(k)
i,j,ece,k

}
=

ni∑
j=1

min
e∈pi,j

{
α
(k−1)
i,j,e ce,k

}
. Once the source receives this information, the source

sends it along to the bottleneck head nodes. The bottleneck head nodes then

assess a minimum of these amongst all commodities that the bottleneck head

node shares. This information is then sent back to the source node to find a

minimum amongst all the bottleneck head nodes that it shares. This process

must be repeated |I| − 1 times to ensure that an overall network minimum

has been found amongst all commodities i, which is equivalent to the desired

flow rate, z(k). The source nodes push this flow until the next iteration of

the algorithm.

What follows is the pseudocode associated with the methods described

above.

Establish the transition rate of the edge capacities

• At time t, ui requests capacity across edge (ui, vi) for all vi

• ui:

– evaluates:

∗ if c(ui,vi),t = c(ui,vi),t−tch

discard c(ui,vi),t

∗ if c(ui,vi),t 6= c(ui,vi),t−tch

store c(ui,vi),t and t
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– sends tch along a reverse path pi,j to si

• When desired number of samples, #samp of tch is at si, si:

– sends signal for all nodes along paths pi,j , j ∈ {j}i to stop requesting capacity

across edges

– evaluates tsamp,i =
∑
tch

#samp

• The following steps are repeated |I| − 1 times:

– si :

∗ waits to receive tsamp,i from all j ∈ {j}i

∗ evaluates min {tsamp,i}

∗ sends tsamp,i = min {tsamp,i} to all u{i}, i ∈ {i} along paths pi,j , j ∈

{j}i

– u{i} :

∗ waits to receive tsamp,i from all i ∈ {i}

∗ evaluates min {tsamp,i}

∗ sends tsamp,i = min {tsamp,i} to all si, i ∈ {i} along reverse paths pi,j

• trate = tsamp,i

Update α

• si sends signal along paths pi,j , j ∈ {j}i for di to begin at time k

• ui:

– evaluates min
e∈pi,j

{
α
(k−1)
i,j,e ce,k

}
for all e ∈ pi,j\{1i, ..., ui−1}, (ui−1, ui) ∈ pi,j

– sends min
e∈pi,j

{
α
(k−1)
i,j,e ce,k

}
, α

(k−1)
i,j,e , ce,k, and e to ui − 1

• si :
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– waits to receive min
e∈pi,j

{
α
(k−1)
i,j,e ce,k

}
, α

(k−1)
i,j,e , ce,k, and e from all j ∈ {j}i

– evaluates ˆ̃g
(k)
i and

ni∑
j=1

min
e∈pi,j

{
α
(k−1)
i,j,e ce,k

}
– sends ˆ̃g

(k)
i and

ni∑
j=1

min
e∈pi,j

{
α
(k−1)
i,j,e ce,k

}
to all u{i}, i ∈ {i} along paths pi,j ,

j ∈ {j}i

• u{i} :

– waits to receive ˆ̃g
(k)
i and

ni∑
j=1

min
e∈pi,j

{
α
(k−1)
i,j,e ce,k

}
to all u{i} from all i ∈ {i}

– evaluates min
i

{
ni∑
j=1

min
e∈pi,j

{
α
(k−1)
i,j,e ce,k

}}
among available i

– sends min
i

{
ni∑
j=1

min
e∈pi,j

{
α
(k−1)
i,j,e ce,k

}}
and associated i value to all u{i}, i ∈ {i}

along reverse paths pi,j , j ∈ {j}i

• The following steps are repeated |I − 2| times:

– si :

∗ waits to receive min
i

{
ni∑
j=1

min
e∈pi,j

{
α
(k−1)
i,j,e ce,k

}}
and associated i value

from all u{i} such that i ∈ {i}

∗ evaluates min
i

{
ni∑
j=1

min
e∈pi,j

{
α
(k−1)
i,j,e ce,k

}}
among available i

∗ sends min
i

{
ni∑
j=1

min
e∈pi,j

{
α
(k−1)
i,j,e ce,k

}}
and associated i value to all u{i},

i ∈ {i} along paths pi,j , j ∈ {j}i

– u{i} :

∗ waits to receive min
i

{
ni∑
j=1

min
e∈pi,j

{
α
(k−1)
i,j,e ce,k

}}
from all i ∈ {i}

∗ evaluates min
i

{
ni∑
j=1

min
e∈pi,j

{
α
(k−1)
i,j,e ce,k

}}
among available i

∗ sends min
i

{
ni∑
j=1

min
e∈pi,j

{
α
(k−1)
i,j,e ce,k

}}
and associated i value to all u{i},

i ∈ {i} along reverse paths pi,j , j ∈ {j}i
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• u{i} :

– evaluates i
(k−1)
min = arg min

i

{
ni∑
j=1

min
e∈pi,j

{
α
(k−1)
i,j,e ce,k

}}
– evaluates:

∗ if i = i
(k−1)
min

g̃
(k)
i = ˆ̃g

(k−1)
i

∗ if i 6= i
(k−1)
min

g̃
(k)
i = ~0

– evaluates local update α
(k)
{i} = α

(k−1)
{i} + Πα,{i}g̃

(k)
{i}

– sends α
(k)
i,j along relevant paths and reverse paths pi,j , j ∈ {j}i for all i ∈ {i}

Push flow

• u{i} sends signal along paths pi,j , i = i
(k−1)
min , j ∈ {j}i for di to begin

• ui:

– evaluates min
e∈pi,j

{
α
(k)
i,j,ece,k

}
for all e ∈ pi,j\{1i, ..., ui − 1}, (ui − 1, ui) ∈ pi,j

– sends min
e∈pi,j

{
α
(k)
i,j,ece,k

}
to ui − 1

• if i = i
(k−1)
min , si :

– waits to receive min
e∈pi,j

{
α
(k)
i,j,ece,k

}
from all j ∈ {j}i

– evaluates
ni∑
j=1

min
e∈pi,j

{
α
(k)
i,j,ece,k

}
– sends

ni∑
j=1

min
e∈pi,j

{
α
(k)
i,j,ece,k

}
to all u{i}, i ∈ {i} along paths pi,j , j ∈ {j}i

• else, si :

– sends min
e∈pi,j

{
α
(k)
i,j,ece,k

}
= min

e∈pi,j

{
α
(k−1)
i,j,e ce,k

}
to all u{i}, i ∈ {i} along paths

pi,j , j ∈ {j}i
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• u{i} :

– waits to receive
ni∑
j=1

min
e∈pi,j

{
α
(k)
i,j,ece,k

}
from all i ∈ {i}

– evaluates min
i

{
ni∑
j=1

min
e∈pi,j

{
α
(k)
i,j,ece,k

}}
among available i

– sends min
i

{
ni∑
j=1

min
e∈pi,j

{
α
(k)
i,j,ece,k

}}
to all si, i ∈ {i} along reverse paths pi,j

• The following steps are repeated |I − 2| times:

– si :

∗ waits to receive min
i

{
ni∑
j=1

min
e∈pi,j

{
α
(k)
i,j,ece,k

}}
from all u{i} such that

i ∈ {i}

∗ evaluates min
i

{
ni∑
j=1

min
e∈pi,j

{
α
(k)
i,j,ece,k

}}
among available i

∗ sends min
i

{
ni∑
j=1

min
e∈pi,j

{
α
(k)
i,j,ece,k

}}
to all u{i}, i ∈ {i} to all u{i}, i ∈ {i}

along paths pi,j , j ∈ {j}i

– u{i} :

∗ waits to receive min
i

{
ni∑
j=1

min
e∈pi,j

{
α
(k)
i,j,ece,k

}}
from all i ∈ {i}

∗ evaluates min
i

{
ni∑
j=1

min
e∈pi,j

{
α
(k)
i,j,ece,k

}}
among available i

∗ sends min
i

{
ni∑
j=1

min
e∈pi,j

{
α
(k)
i,j,ece,k

}}
to all si, i ∈ {i} along reverse paths

pi,j

• si pushes z
(k) = min

i

{
ni∑
j=1

min
e∈pi,j

{
α
(k)
i,j,ece,k

}}
along each path pi,j , j ∈ {j}i until

time k + 1, which occurs at trate
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3.5.3 Suitability: Information Exchange Requirements

In order to find a minimum on the overall network, where we seek the min-

imum of a set of values where each value comes from a specific commodity,

the source nodes must send the values to all bottleneck head nodes along

available paths, then the bottleneck head nodes must send all collected val-

ues back along all available reverse paths. This process must be repeated

|I| − 1 times to ensure that an overall network minimum has been found.

To further explore this concept, without loss of generality suppose x1

is the overall network minimum of the set {x1 . . . xI} where |I| is the total

number of commodities in the network.

If s1 sends x1 to all bottleneck head nodes along paths p1,j, j ∈ {j}1, then

all u{i} such that 1 ∈ {i} have received x1.

If all u{i} such that 1 ∈ {i} send x1 to all source nodes along all available

reverse paths pm,j, {1,m} ⊆ {i}, then all sl such that {1,m} ⊆ {i} have

received x1.

Now, it is possible that there are commodities m such that m 6∈ {i}

for any {i} such that 1 ∈ {i}. However, for the network to be connected,

there must be some commodity ln for which {m, ln} ⊆ {i} for some set

of commodities {i}, and furthermore, there must be some set of pairs of

commodities in some bottleneck head node commodity sets {i} by which

{1, l1}, {l1, l2}, . . . , {ln−1, ln}, {ln,m}. This guarantees that if the two step

process of exchanging the current minimum between all available sources and

all available bottleneck head nodes back to all available sources is repeated,
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sm will eventually have received x1. This process takes at most |I| − 1 steps

as the most conservative connectivity case is a network where each bottleneck

head node serves only two commodities.
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4 Results

4.1 General Approach

The following subsection describes the general approach of this research to-

ward exploring the efficiency and effectiveness of each solution concept toward

a framework for a routing protocol.

Concepts were explored through both empirical and theoretical analysis.

Empirical analysis provided measures of efficiency and effectiveness of the

method for specific example networks which in turn helped to inform the

direction of the theoretical analysis for each method. Theoretical analysis

sought to either confirm the suitability of the method for our problem or to

validate performance seen in the empirical results.

Simulations of each method were run in MATLAB on example networks

to gain an understanding of the advantages and limitations of each algorithm.

Performance measures considered were:

• Flow rate

• Fairness of flow allocation

• Ability to be employed in a distributed manner

• Algorithm speed

Through analysis of field measurements, Shrader et al [22] determined

that two-state Markov models are sufficient to simulate edge capacity changes
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over time. Markov models were used in MATLAB simulations for this pur-

pose.

Example networks were built according to topology that was cited in

multi-commodity flow literature, met specific system requirements, and/or

was theoretically intriguing. The main example networks are described at

the end of this section.

Theoretical analysis, as shown in the research section, was based upon

sources discovered in the literature review. Some proofs were necessary to de-

termine the suitability of the approach for our problem. Specifically, suitabil-

ity theoretical analysis: determined how much a lower bound approximation

solution based upon maximum multicommodity flow would deviate from the

maximum concurrent flow solution, determined whether or not the stochas-

tic supergradient method could be used when random variables were Markov

processes as opposed to independent and identically distributed, and deter-

mined the information sharing necessary for distributed implementation of

the stochastic supergradient method. Information gleaned from simulations

helped guide the direction and scope of the performance theoretical analysis

to validate observations made during simulations. Performance theoretical

analysis: determined in which scenarios fully polynomial time approximation

algorithms could not adjust dual variables before edge capacity transitions,

determined how slowly the sampling algorithm would perform given a partic-

ular network and accuracy of approximation required, and determined when

a duality gap would occur in the logarithmic lower bound approach and how
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it would affect the solution.

(a) Edges (b) Paths

Figure 2: Example Network 1

Example Network 1 has two commodities. The flow from commodity 1

moves from the source node s1 to the sink node d1 via path 1 or 2. The flow

from commodity 2 moves from the source node s2 to the sink node d2 via

path 3. The capacities of all edges switch between values of 1 and 2 according

to the transition matrix

P =

.8 .2

.2 .8



51



(a) Edges (b) Paths

Figure 3: Example Network 2

Example Network 2 has two commodities. The flow from commodity 1

moves from the source node s1 to the sink node d1 via path 1 or 2. The flow

from commodity 2 moves from the source node s2 to the sink node d2 via

path 3 or 4. The capacities of all edges switch between values of 1 and 2

according to the transition matrix

P =

.8 .2

.2 .8



(a) Edges (b) Paths

Figure 4: Example Networks 3 and 4
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Example Network 3 has two commodities. The flow from commodity 1

moves from the source node s1 to the sink node d1 via path 1 or 2. The flow

from commodity 2 moves from the source node s2 to the sink node d2 via

path 3 or 4. The capacities of edges 1, 2, 3, 8, 9, and 10 switch between

values of 1 and 2 according to the transition matrix:

P1 =

.8 .2

.2 .8


and the capacities of edges 4, 5, 6, and 7 switch between values of .5 and 1

according to the transition matrix:

P2 =

.7 .3

.1 .9


Example Network 4 has two commodities. The flow from commodity 1

moves from the source node s1 to the sink node d1 via path 1 or 2. The flow

from commodity 2 moves from the source node s2 to the sink node d2 via

path 3 or 4. The capacities of edges 1, 2, 3, 8, 9, and 10 switch between

values of 0 and 2 according to the transition matrix:

P1 =

.8 .2

.2 .8


and the capacities of edges 4, 5, 6, and 7 switch between values of 0 and 1
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according to the transition matrix:

P2 =

.7 .3

.1 .9


4.2 Fully Polynomial Time Approximation Algorithms

We ran a FPTAP algorithm (specifically Andrews’ Max Weight Algorithm

without a moving average) for 200 iterations with capacity realizations chang-

ing every 20 iterations. It is at this ratio of iterations to transition rate that

one begins to see the inability of the algorithm to update for the current

network topology. The following graphs show an average example of the per-

formance of the algorithm as compared to solving the linear program directly

for the current network topology for each example network.

Example Network 1 had a degradation of 10.5% as compared to directly

solving the linear program, Example Network 2 had a degradation of 5.6%,

Example Network 3 had a degradation of 24.8%, and Example Network 4

had a degradation of 16.6%.
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(a) Example Network 1 (b) Example Network 2

(c) Example Network 3 (d) Example Network 4

Figure 5: FPTAP Performance

4.3 Sampling Algorithm

In each instance, the sampling algorithm was run with 10, 50, 100 and 200

samples. The following charts show the α values found on edges where mul-

tiple paths, (i, j), share the edge (otherwise, the algorithm finds α = 1 where

the edge on the path or α = 0 when the edge is not in the path).

Example Network 1
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10 samples

(1,1) (1,2) (2,1)

edge 4 0 0 1

50 samples

(1,1) (1,2) (2,1)

edge 4 0 0 1

100 samples

(1,1) (1,2) (2,1)

edge 4 0 0 1

200 samples

(1,1) (1,2) (2,1)

edge 4 0 0 1

Example Network 2

10 samples

(1,1) (1,2) (2,1) (2,2)

edge 4 0 .5 .5 0

50 samples

(1,1) (1,2) (2,1) (2,2)

edge 4 0 .5 .5 0

100 samples

(1,1) (1,2) (2,1) (2,2)

edge 4 0 .5 .5 0

200 samples

(1,1) (1,2) (2,1) (2,2)

edge 4 0 .5 .5 0

Example Network 3
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10 samples

(1,1) (1,2) (2,1) (2,2)

edge 2 .75 0 0 .25

edge 9 0 .5 .5 0

50 samples

(1,1) (1,2) (2,1) (2,2)

edge 2 .5 0 0 .5

edge 9 0 .5 .5 0

100 samples

(1,1) (1,2) (2,1) (2,2)

edge 2 .5 0 0 .5

edge 9 0 .5 .5 0

200 samples

(1,1) (1,2) (2,1) (2,2)

edge 2 .5 0 0 .5

edge 9 0 .5 .5 0

Example Network 4

10 samples

(1,1) (1,2) (2,1) (2,2)

edge 2 .5 0 0 .5

edge 9 0 .5 .5 0

50 samples

(1,1) (1,2) (2,1) (2,2)

edge 2 .5 0 0 .5

edge 9 0 .5 .5 0

100 samples

(1,1) (1,2) (2,1) (2,2)

edge 2 .5 0 0 .5

edge 9 0 .5 .5 0

200 samples

(1,1) (1,2) (2,1) (2,2)

edge 2 .5 0 0 .5

edge 9 0 .5 .5 0

We find in all cases that 200 samples is sufficient for stability of the
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algorithm results. The following graphs show how the sampling algorithm

performs in each example instance as compared to the known upper bound

on the solution, calculated by solving the maximum concurrent flow problem

directly for each change in capacity (occurring on every 10th iteration).

(a) Example Network 1 (b) Example Network 2

(c) Example Network 3 (d) Example Network 4

Figure 6: Sampling Algorithm Performance

In these instances, the sampling algorithm reaches 96.7% of the output of

the upper bound for Example Network 1, 92.5% of the output of the upper

bound for Example Network 2, 100% of the output of the upper bound for

Example Network 3, and 96.6% of the output of the upper bound for Example
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Network 4.

Recall the conservative estimate for the number of samples required,

1∏
i

∏ni
j=1 mine∈Pi,j {pe, 1− pe}

Using this estimate, Example Network 1 needs 8 samples, Example Network

2 needs 16 samples. and Example Networks 3 and 4 need 64 samples. There-

fore, Example Network 1 will have 20 ∗ 8 = 160 more constraints than the

original problem, Example Network 2 will have 30 ∗ 16 = 480 more con-

straints than the original problem, and Example Networks 3 and 4 will have

42 ∗ 64 = 2688 more constraints than the original problem. It is easy to

see that even for small networks the optimization problem quickly becomes

unwieldy.

4.4 Lower Bound Approximation

The goal of the lower bound approximation approach is to provide an approx-

imation to the solution of the invariant allocation problem. The sampling

algorithm provides a ”hard-coded” solution to the invariant allocation prob-

lem; therefore empirical results for the lower bound approximation approach

consist of comparisons to the results for the sampling algorithm.
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4.4.1 Logarithmic Bound

The logarithmic lower bound approach was run for all example instances. The

following charts show how the α values found in the logarithmic lower bound

approximation approach compare to those found in the sampling algorithm.

If the value differs from the values found in the sampling algorithm with 200

samples, then the value is in boldface.

Example Network 1

(1,1) (1,2) (2,1)

edge 4 0 .5 .5

Example Network 2

(1,1) (1,2) (2,1) (2,2)

edge 4 0 .5 .5 0

Example Network 3

(1,1) (1,2) (2,1) (2,2)

edge 2 .5016 0 0 .4984

edge 9 .5017 0 0 .4983

Example Network 4

(1,1) (1,2) (2,1) (2,2)

edge 2 .5031 0 0 .4969

edge 9 0 .5031 .4969 0
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If the α values are the same, clearly the average throughput remains the

same as well. In Example Network 1, the long run average throughput (run

for 200 samples) was .76 as compared to 1.05 for the sampling algorithm,

a degradation of 28%. Because the network is not symmetrical, using the

maximum multicommodity flow approach does not yield optimal results, as

explored in greater detail in the research section. Network Examples 3 and

4 are within 10−3 of optimal results, thus they experience minimal degra-

dation. This suggests that the algorithm is capable of finding the optimal

result, but more precise parameters are required. It is also interesting to

note that different types of optimization algorithms yield different results

for the logarithmic bound. When run with an interior-point algorithm, the

method yields values close to optimal, but when run with an active-set al-

gorithm, Network Example 3 and 4 results converge to varying degrees from

the optimal values. This suggests (as shown in the research section) that the

logarithmic lower bound method is finding local maxima rather than a global

maximum.

4.4.2 ”Simple” Network Bound

The ”simple” network lower bound approach was run for all example in-

stances. The following charts show how the α values found in the ”simple”

network lower bound approximation approach compare to those found in the

sampling algorithm. If the value differs from the values found in the sampling

algorithm with 200 samples, then the value is in boldface.
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Example Network 1

(1,1) (1,2) (2,1)

edge 4 0 .5 .5

Example Network 2

(1,1) (1,2) (2,1) (2,2)

edge 4 0 .5 .5 0

Example Network 3

(1,1) (1,2) (2,1) (2,2)

edge 2 .5 0 0 .5

edge 9 0 .5 .5 0

Example Network 4

(1,1) (1,2) (2,1) (2,2)

edge 2 .5 0 0 .5

edge 9 0 .5 .5 0

If the α values are the same, clearly the average throughput remains the

same as well. In Example Network 1, the long run average throughput (run

for 200 samples) was .76 as compared to 1.05 for the sampling algorithm, a

degradation of 28%. Because the network is not symmetrical, using the max-

imum multicommodity flow approach does not yield optimal results. This

issue was explored in greater detail in the research section.
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4.5 Stochastic Supergradient Method

The goal of the stochastic supergradient method is to provide an approxima-

tion to the solution of the invariant allocation problem. The sampling algo-

rithm provides a ”hard-coded” solution to the invariant allocation problem;

therefore empirical results for the stochastic supergradient method consist of

comparisons to the results for the sampling algorithm. The stochastic su-

pergradient method was run for all example instances. The following chart

shows how many iterations it consistently took the stochastic supergradient

method to find the α values within 10−3 from the sampling algorithm. This

is based on an algorithm where a new capacity realization is sampled from in

each iteration. The graphs show the convergence of the results to the sam-

pling algorithm throughput by showing the difference between the sampling

algorithm throughput and the stochastic supergradient method throughput

in each iteration.

Number of Iterations Required for Convergence

Example 1 2 3 4

200 200 1750 1750
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(a) Network Example 1 (b) Network Example 2

(c) Network Example 3 (d) Network Example 4

Figure 7: Convergence to Sampling Algorithm Results

Furthermore, in the following graphs one can see how the α values con-

verge.
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Figure 8: Example Network 1

Figure 9: Example Network 2

(a) Edge 2 (b) Edge 9

Figure 10: Example Network 3
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(a) Edge 2 (b) Edge 9

Figure 11: Example Network 4

Although the stochastic supergradient method is not strictly a descent

method, we can see that as the number of iterations increase, the α values

generally move in the direction of the optimal solution.

66



5 Conclusions

We have explored different means for solving a network flow problem with

multiple commodities and time-variant capacities in a distributed setting.

Adapting the standard approximation algorithms (FPTAP) for multicom-

modity network flow problems resulted in optimal solutions only when the

transition rate was slower than the time to compute the logarithmic number

of iterations needed to converge within some ε given the width of a problem

ρ. Thus we sought solutions that could reach optimal solutions under these

conditions by creating a problem that could be solved once and was robust

to changes in capacity over time. The resulting problem, the invariant allo-

cation problem, optimizes over a ratio of flow that is the fraction of an edge

e’s capacity that is allocated to path j for commodity i, rather than over

path flows. When tested through extensive sampling, this method yielded

a throughput that was only 5% or less worse than the longterm through-

put of solving directly in all example instances. Unfortunately, the objective

function of this problem is difficult to assess directly because it is an ex-

pected value, so we sought other methods of approximating the solution to

the invariant allocation problem.

The first method, the sampling algorithm, which samples from possible

capacity realizations and then solves a large linear program, is effective in

finding the optimal solution However, the linear program becomes extremely

large even with a small increase in network size, so the sampling method
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is not feasible to use in a time-sensitive setting. Additionally, the method

requires prior knowledge of the stochastic model, so it cannot be run in a

distributed setting.

The second method, the lower bound approximation approach, sought to

decrease the size of the optimization problem in the sampling algorithm by

finding a tight lower bound on the objective function that would allow us to

solve a simpler linear program. Unfortunately, it is difficult to find a lower

bound on the objective function because we have an expected value of a min-

imum, and Jensen’s Inequality only provides an upper bound. We used the

maximum multicommodity flow formulation as a hopeful approximation of

the problem. This approach yielded two lower bound approximations. The

first approximation, the logarithmic bound, uses the Chernoff-type bounds

in [11] for a set of dependent random variables. The second approximation,

the ”simple” network bound, uses a closed-form solution for the expected

value for a simple network topology that is a lower bound for more com-

plex networks. The ”simple” network bound found optimal solutions in

all example instances except where the network was not symmetrical (i.e.∑ni
j=1 mine∈Pi,j {αi,j,eCe} is not the same for all i). This is due to the sim-

plification of the objective function by using the maximum multicommodity

flow formulation. The logarithmic bound experienced varying degradation

of longterm throughput as compared to the optimal solution when using

certain optimization methods because the objective function is not concave

in all cases, so it is possible that local maxima will be found rather than
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a global maximum. Although the lower bound approximation approach re-

quires solving a much smaller linear program than the sampling algorithm, it

still requires prior knowledge of the stochastic model, so it has limitations in

a distributed setting. However, the ”simple” network bound is still a viable

choice in cases where networks are symmetrical or fairness is not a primary

concern and the linear program can be solved prior to implementation.

The final method, the stochastic supergradient method, sought to find

a solution that did not require prior knowledge of the stochastic model and

could operate in a distributed setting. The stochastic supergradient method

updated the decision variables in each iteration by using a sample to build a

noisy, unbiased supergradient. This approach was previously only proven in

cases where random variables were independent and identically distributed.

We proved that the method can be used for Markov processes. We tested the

method using Markov process as variables and successfully converged to the

optimal solution within 2000 iterations for all example networks. In fact, this

method offered quicker solutions than FPTAP. Since both are supergradient

methods, they appear to have the same running time, but FPTAP must build

a new solution for every capacity change while the stochastic supergradient

method improves on a single solution in every iteration. The stochastic

supergradient approach is the best overall approach to use in networks of

this type. Therefore we built a distributed implementation plan for this

method that performed well in all example networks.
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5.1 Contribution

This work has been executed on behalf of Lincoln Labs and supports en-

deavors in mobile wireless networks, specifically for military and emergency

response communications. Deliverables include results from this thesis doc-

ument and code for the lower bound and stochastic supergradient methods

that can take inputs of network size, connectivity, and a stochastic model to

give α results for any network.

Furthermore, a journal publication is under preparation. This article will

expound upon concepts and results from invariant allocation, the sampling

algorithm, and the stochastic supergradient method. We are exploring pub-

lication in IEEE Transactions on: Communications; Information Theory;

Mobile Computing; Systems, Man and Cybernetics; or Wireless Communi-

cations.

5.2 Future Work

Future work could include more extensive empirical results, a deeper theoret-

ical exploration into the types of networks for which each method is suited,

and further development and testing of distributed implementation.

The methods were tested on a limited number of small networks mostly

due to the computational limitations as well as difficulty of verifying the

accuracy of results. Future work could explore larger networks of more varied

topology, including networks with more than two demands.
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With more empirical results, one could hopefully glean the types of net-

works for which each method is most suitable. This could lead to a greater

theoretical understanding of the methods as well. For example, through the-

oretical understanding of optimization methods and duality gaps, one could

ascertain why particular optimization methods (interior-point vs active-set)

appear to perform better for the logarithmic bound.

Although pseudocode has been developed for the distributed implemen-

tation of the stochastic supergradient method, this plan has gone through

limited testing. A development of hard code and testing on example net-

works could further show the performance of the distribution implementa-

tion. More extensive literature review into information sharing could also

help streamline the distribution implementation plan to improve speed.
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