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Chapter 1

INTRODUCTION

Classical knot theory, that is the study of knots and links in 3-space, is a large

and important area of study in low-dimensional topology. For a given link L, we

have three particular invariants—the Jones polynomial V (L), the Khovanov homology

Kh(L), and the Lipshitz-Sarkar-Khovanov (L-S-K) spectrum X (L)—that stand at

the intersection of knot theory with quantum topology, mathematical physics, and

representation theory. The hierarchy of these invariants is illustrated in Figure 1.1.

X (L)

H∗

��

(L-S-K spectrum)

Kh(L)

χq

��

(Khovanov homology)

L
Jones 1984

//

L-S 2011

11

00

Khov 1999

V (L) (Jones polynomial)

Figure 1.1: A diagram of invariants for a link L; V (L) can be obtained from Kh(L)

which contains more information about L, and similarly Kh(L) can be obtained from

X (L) which contains still more information about L.

The celebrated Jones polynomial V (L) was discovered by Vaughn Jones in 1984
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[Jon97]. Besides being able to distinguish many different links in S3, it also provides

a combinatorial obstruction to a link being alternating [Thi87]. In addition, the

Jones polynomial has further relationships with Chern-Simons theory [Wit94] and

the Vassiliev invariants of knots [KR00].

The Khovanov homology Kh(L) was discovered by Mikhail Khovanov in 1999

[Kho00]. It is a bigraded (co-)homology theory that categorifies the Jones polynomial

of L, with graded Euler characteristic recovering V (L). In this way, the Khovanov

homology Kh(L) contains at least as much information about a link L as does V (L),

but its added algebraic structure has been used to see more than can be clearly seen

from V (L) alone; in particular Kh(L) can detect the unknot U [KM11] (it is unknown

whether or not the Jones polynomial can also detect U). Functorial properties of

Kh(L) also lead to bounds on the slice genus of links, which have been used to give a

purely combinatorial proof of the Milnor conjecture on the slice genus of torus knots

[Ras10].

The L-S-K spectrum X (L) of a link L was constructed by Robert Lipshitz and

Sucharit Sarkar in 2011 [LS14a]. It is the suspension spectrum of a CW-complex that

spectrifies the Khovanov homology, in the sense that the reduced singular cohomology

H̃∗(X (L)) recovers Kh(L). As with the comparison between Kh(L) and V (L), the

L-S-K spectrum X (L) contains at least as much information about L as does Kh(L),

but its added topological structure can allow one to see more. In particular, X (L)

can be used to compute cohomological operations on Kh(L) [LS14c] that can be used
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to improve on the slice genus bounds found using Khovanov homology alone [LS14b].

On the other hand, given a framed link L and an irreducible representation of

the Lie algebra sl2(C), as indexed by its dimension n ∈ N, we can also define the

colored Jones polynomial (Vn(L)) as follows. We cable L with n parallel strands (as

defined by the framing of L) and insert a copy of the nth Jones-Wenzl projector Pn

[Wen87] into each component of L before taking the Jones polynomial as usual. Pn is

a special idempotent element in the Temperley-Lieb algebra TLn(C(q)) on n strands.

The resulting Vn(L), besides being related to the representation theory of sl2(C),

is also conjecturally related to the hyperbolic volume of knot complements [Kas97].

The Jones-Wenzl projector Pn itself has many important applications in quantum

field theory and is used to build quantum invariants of 3-manifolds [KL94].

A categorification of Pn is then necessary to define a colored Khovanov homology

Khn(L) which categorifies Vn(L) in the same sense that Kh(L) categorifies V (L).

Lev Rozansky’s approach to this problem was based upon replacing Pn by an infinite

twist [Roz14a]. That is, after cabling the link L with n strands, we add k full twists

into each component. The resulting link is denoted Lkn. Then both colored invariants

Jn(L) and Khn(L) are formed by taking a limit as the twisting k →∞ as in Figure

1.2. In this way, Rozansky showed that the Khovanov chain complex associated to

an infinite twist provides a suitable categorification of the Jones-Wenzl projector Pn.

Chapter 2 will focus on clarifying and expanding upon the summary of previous

work presented above. After that there are three main goals of this manuscript, all
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X (Lkn)
limk→∞ //

H∗

��

???

Kh(Lkn)
limk→∞ //

χq

��

Khn(L)

χq

��
L // Lkn

<<

88

// V (Lkn)
limk→∞ // Vn(L)

Figure 1.2: A diagram of colored invariants Vn(L) and Khn(L) that suggests the way

towards a colored Xn(L).

related to Figure 1.2 and Rozansky’s categorified projectors. The first goal is to fill in

the upper-right hand box of Figure 1.2 with a colored version of the L-S-K spectrum

Xn(L).

Theorem 1.0.1. There exists a colored L-S-K spectrum for any sl2(C) colored link.

Its reduced cohomology is isomorphic to the colored Khovanov homology defined in

[CK12], [Roz14b].

Theorem 1.0.1 provides an invariant which spectrifies the colored Khovanov ho-

mologyKhn(L) in the same sense that X (L) spectrifiesKh(L); Corollary 1.0.5 further

below will guarantee that there is indeed new information within Xn(L) for even the

simplest case where L = U the unknot. Loosely speaking, the process of proving The-

orem 1.0.1 will involve a spectrification of the Jones-Wenzl projector Pn in a manner

similar to the categorification of Pn using infinite twists.

Theorem 1.0.2. For any link diagram D involving a finite number of Jones-Wenzl

projectors, there exists an L-S-K spectrum X (D) with reduced cohomology isomorphic
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to the homology defined using the categorified Jones-Wenzl projectors as in [Roz14a]

and [CK12].

An example of the type of diagram in the statement of Theorem 1.0.2 is pro-

vided in Figure 1.3. Notice that the Jones-Wenzl projectors themselves, and their

categorifications, are defined using tangles. The L-S-K spectrum has not yet been

defined for tangles, and so Theorem 1.0.2 requires that the projectors involved are

closed in some way to form a link diagram. Nevertheless we will also prove several

properties of such spectra, such as being ‘killed by turnbacks’, that the projectors

and their categorifications satisfy. In this sense, Theorem 1.0.2 spectrifies the notion

of Rozansky’s categorified projector, lifting the important element Pn of TLn into the

stable homotopy category. Theorems 1.0.1 and 1.0.2 will be the focus of Chapter 3.

Figure 1.3: An example diagram for which Theorem 1.0.2 defines an L-S-K spectrum.

The second goal of this manuscript is to analyze the behavior of colored L-S-K

spectra as the coloring parameter n goes towards infinity. For a certain special class of

links (called B-adequate links), the work of Armond and Garoufalidis-Le shows that

the coefficients of the colored Jones polynomial stabilize as n → ∞ [GL15, Arm13].
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For these same links, Rozansky also showed that the colored Khovanov homology

groups stabilize as the coloring grows [Roz14b]. In Chapter 4 we will adapt these

techniques to give a similar stabilization result for colored L-S-K spectra as n→∞.

Theorem 1.0.3. The L-S-K spectra of n-colored B-adequate links stabilize as n→∞.

We will also present a separate, simpler argument giving sharper bounds on stabi-

lization of the colored L-S-K spectra (and thus the colored Khovanov homology and

colored Jones polynomial) for the unknot U . In this case, cabling and twisting U re-

sults in constructing torus links T (n, k), whose stable Khovanov homology has been

extensively studied [GORS14, GOR13, Hogb], and so we state the theorem below

accordingly.

Theorem 1.0.4. In the case of the unknot U , the n-colored L-S-K spectra

Xn(U) = X (T (n,∞)) stabilize as n → ∞ and the stable limit X (T (∞,∞)) :=∨
j∈(2N∪0)X j(T (∞,∞)) satisfies

X j(T (∞,∞)) ' X j/2(T (j/2,∞)) ' X (j/2)2(T (j/2, j/2)) for j > 0

X 0(T (∞,∞)) ' X−1(T (1,∞)) ' S0

where S0 denotes the standard sphere spectrum.

Here the superscripts on the spectra refer to the internal quantum grading, which

we will describe in Chapter 2. The approach for this simplified case will also provide

us with the following corollary.
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Corollary 1.0.5. For all k ≥ 3, the L-S-K spectrum X (T (3, k)) admits a non-trivial

Sq2 action.

Theorem 1.0.3 shows that the limiting behavior of the colored invariants of Ar-

mond, Garoufalidis-Le, and Rozansky lifts to the corresponding colored spectra in

the stable homotopy category, while Theorem 1.0.4 and Corollary 1.0.5 provide in-

sight into the behavior of the L-S-K spectra for torus links, which are in some sense

the simplest links with ‘thick’ Khovanov homology which allows for the possibility of

much new information to be gained from their spectra.

Finally, the third goal of this manuscript is to generalize all of these results in

a slightly different direction. In the building of the colored invariants for links, we

cable the links and insert an infinite twist into each component. One might ask what

would happen if some other infinite braid were inserted in place of the infinite twist.

In Chapter 5 we will show that, with the addition of one extra assumption which we

call completeness (which will be a very natural assumption to make), any positive,

infinite braid can be used in place of the infinite twist to give the same result.

Theorem 1.0.6 (joint with G. Islambouli). Let B be any complete semi-infinite pos-

itive braid, viewed as the limit of positive braid words

B = lim
`→∞

σj1σj2 · · ·σj` .

Then the limiting Khovanov chain complex KC(B) is chain homotopy equivalent to

the categorified Jones-Wenzl projector, and B may be used in place of the infinite twist
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in the construction of any of the sl2(C) colored invariants Vn(L), Khn(L), or Xn(L).

Chapter 5 will also include some simple considerations for more general classes of

infinite braids. Theorem 1.0.6 shows that, up to the notion of completeness, any pos-

itive infinite braid can be used to categorify and spectrify the Jones-Wenzl projector

Pn. This result also provides some indication that the stable behavior of both the

Khovanov homology and L-S-K spectra for positive infinite braids is insensitive to

the specifics of the braid, indicating that although the conjectures about such stable

homology are often stated in terms of torus braids [GORS14, GOR13, Hogb], in fact

these conjectures may be true in much greater generality.

Remark 1.0.1. The majority of these results have appeared in the author’s papers

[Wil16, Wil, IW17]. The paper [Wil] was first published in Algebraic & Geometric

Topology by Mathematical Sciences Publishers.
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Chapter 2

BACKGROUND AND
CONVENTIONS

2.1 The Decategorified Story

The purpose of this section is to define the Jones and colored Jones polynomials for

knots and links. Although the original definition of the Jones polynomial [Jon97] had

roots in functional analysis and quantum mechanics, a purely combinatorial approach

comes from the application of the Kauffman bracket [Kau88]. We follow Kauffman’s

approach here. An important aspect of the Jones polynomial is its local nature -

computations are based on single crossings at a time. We thus begin by presenting

the local picture via tangles and the Temperley-Lieb algebra. This approach allows

for a relatively simple definition for the Jones-Wenzl projector and the colored Jones

polynomial, which we present at the end of this section.
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Figure 2.1: The five additive basis elements for TL3(R).

2.1.1 The Temperley-Lieb Algebra

Fix n ∈ N and a (commutative) ring R. The nth Temperley-Lieb algebra over R is the

algebra TLn(R) additively generated as a module over R by the set of crossingless

planar matchings between two fixed sets of n points on opposite sides of a rectangle.

The additive basis elements of TL3(R) are depicted in Figure 2.1.

Multiplication of basis elements is carried out by concatenating matchings. If a

closed loop is created during concatenation, it is replaced by a scalar factor d ∈ R.

To begin with, we set

R := Z[q, q−1]

d := q + q−1.

The multiplicative identity is the diagram of n vertical lines, and will be denoted

by In. It is well-known that TLn(R) is multiplicatively generated by the diagrams

{ei|i = 1, . . . , n − 1} described in Figure 2.2. See Figure 2.3 for an example of

multiplication in TL3(R). By convention, we can set TL0(R) to be a copy of the

ground ring R, viewed as being generated by the empty diagram.
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Figure 2.2: The diagrams ei ∈ TLn(R) that form the standard multiplicative basis.

Figure 2.3: Two examples of multiplication in TL3(R). The first illustrates e1 · e2.

The second illustrates the computation e1 · e1 = (q + q−1)e1.
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Figure 2.4: An example of a (3, 3)-tangle diagram.

Remark 2.1.1. There is nothing particularly important about our choice of Z as the

‘base’ from which we choose our ground ring to be Z[q, q−1]. Other rings and fields

are equally valid to work with, but we will usually work over Z. If another ring is

used (typically Z/2Z), we will make this clear within the notation.

2.1.2 The Kauffman Bracket and the Jones Polynomial

Having fixed n ∈ N, an (n, n)-tangle is an isotopy class of an embedding of n disjoint

intervals, along with any number of disjoint circles, into the cube [0, n+ 1]× [−1, 1]2

with the 2n endpoints mapped to the fixed boundary points (i,−1, 0) and (i, 1, 0) for

i = 1, . . . , n. Intuitively, this gives a set of n strands connecting n endpoints on the

top and bottom of a rectangular box (perhaps entwined with disjoint circles), and

is drawn via a tangle diagram as shown in Figure 2.4. The Temperley-Lieb algebra

TLn(Z[q, q−1]) is related to (n, n)-tangles via the Kauffman bracket 〈·〉, a function

converting (n, n)-tangle diagrams into elements of TLn (see [KL94]). There exist

several different normalization conventions for defining the Kauffman bracket in the

literature. We choose to adopt the following convention.

〈 〉
=
〈 〉

− q
〈 〉

(2.1.1)



13

Figure 2.5: The crossing on the left is a positive crossing; the crossing on the right is

negative.

The first local picture on the right hand side of Equation 2.1.1 will be referred to

as the 0-resolution of the crossing, while the second picture will be the 1-resolution.

This local relation, together with the Temperley-Lieb relation that replaces circles by

the scalar factor (q + q−1), allows any (n, n)-tangle diagram to be evaluated to an

element of TLn(Z[q, q−1]).

Under this convention, the Kauffman bracket is invariant under the Reidemeister

moves only up to a degree shift. To build a true invariant of tangles, we orient the

strands and let n+ and n− denote the number of positive and negative crossings

respectively (positive and negative crossings are illustrated in Figure 2.5). Then the

Jones invariant V (T) ∈ TLn(Z[q, q−1]) of an oriented (n, n)-tangle T can be defined

as

V (T) := (−1)n
−

(q)n
+−2n− 〈DT〉 (2.1.2)

where DT is any diagram for the tangle T. In particular, the Jones polynomial of

a knot or link L is calculated as the Jones invariant of L viewed as a (0, 0)-tangle.

Thus V (L) ∈ TL0(Z[q, q−1]) = Z[q, q−1] is a Laurent polynomial invariant of knots

and links in S3.
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2.1.3 The Jones-Wenzl Projector and the Colored Jones Poly-

nomial

If we enlarge R to the field R := C(q) of rational functions of q, we can find a special

idempotent element in TLn(R), denoted Pn, characterized by the following axioms:

I. Pn ·ei = ei ·Pn = 0 for any of the standard multiplicative generators ei ∈ TLn(R).

This is often described by stating that Pn is “killed by turnbacks”.

II. The coefficient of the n-strand identity tangle In in the expression for Pn is 1.

These are the Jones-Wenzl projectors (one for each n ∈ N), originally defined in

[Wen87]. The simplest non-trivial example is P2, shown below.

P2 = I2 −
1

q−1 + q

〈 〉
(2.1.3)

Although the Jones-Wenzl projectors have been extensively studied in a variety of

contexts [KL94], here we will focus on their use for defining the colored Jones poly-

nomial of a link.

Let L be a framed, oriented `-component link in S3 with link diagram DL. A

coloring of a link L refers to assigning an irreducible sl2(C) representation to each

component of L. Such representations are characterized by their dimension, allowing

us to simply consider colorings as assignments of non-negative integers to each link

component. Following the convention of Rozansky [Roz14a], we allow the color n to

correspond to the (n + 1)-dimensional sl2(C) representation. In this way, we define
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a coloring γ of L to be an ordered `-tuple of colors γ := (n1, . . . , n`) ∈ N` that

assigns the color nh to the hth component of L. We denote the resulting colored

link by Lγ. Then the colored Jones polynomial of the link Lγ is obtained by cabling

each component with its designated nh number of strands, inserting a copy of the

nth
h Jones-Wenzl projector Pnh into each such cabled component, and then taking the

usual Jones polynomial. See Figure 2.6.

Figure 2.6: On the left is an example Lγ, with components colored n1 and n2; on the

right is the resulting diagram DLγ for taking the colored Jones polynomial.

Remark 2.1.2. The cabling of each component depends on the framing of that com-

ponent. Note that it is always possible to represent a framed link L by a link diagram

where each component is given the blackboard framing. This is accomplished by rep-

resenting the unframed link L via any suitable projection to the plane as usual, and

then adding positive or negative kinks (Reidemeister I moves) to the diagram which

adjust the framing of the link as necessary. Unless otherwise stated, we will assume

that this has been done for diagrams in this manuscript.
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2.2 The Categorified Story

The goal of this section is to categorify the concepts of the previous one. Roughly

speaking, we would like to construct chain complexes whose Euler characteristics

recover elements of the Temperley-Lieb algebra such as the Jones polynomial of a

link, or the Jones-Wenzl projector (and thus the colored Jones polynomial). This was

originally carried out by Mikhail Khovanov for the Jones polynomial of links [Kho00],

and later with more algebraic sophistication for tangles as well [Kho02]. However, a

simpler diagrammatic approach was discovered by Dror Bar-Natan [BN05] and that is

the approach we follow here. The Jones-Wenzl projector was categorified later by Ben

Cooper and Slava Krushkal [CK12], and independently by Lev Rozansky [Roz14a].

Both approaches use infinite chain complexes, but Rozansky’s version presents such

a complex with a clear interpretation as the Khovanov complex of an infinite twist.

This viewpoint will be crucial throughout this manuscript, and so we will expand on

it somewhat further below.

2.2.1 Bar-Natan’s Graphical Temperley-Lieb Category

We present here a quick summary of Bar-Natan’s diagrammatic categorification of

the Temperley-Lieb algebra. The interested reader is strongly encouraged to turn

to the source itself [BN05] for a much fuller account. The central idea, inspired by

Equation 2.1.1, is essentially local in nature and somewhat formal. We seek to replace
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Figure 2.7: The local relations for the morphisms in the category Cob•(n).

Equation 2.1.1 by a two term chain complex

q y ?
:=

q y ?−→ q
q y

(2.2.1)

where the first term has homological degree zero, and the q indicates a second formal

grading which will be used to recover the polynomial coefficients in R = Z[q, q−1].

In order to carry out this task, we first define a category Cob•(n) whose objects

are embedded 1-manifolds in a rectangle with boundary mapped to n fixed points

on either side of the rectangle. Thus, the objects are precisely the basis diagrams of

TLn, but also allowing for disjoint circles to be present. The morphisms in Cob•(n)

are formal sums of ‘dotted’ cobordisms (with fixed boundary) between such diagrams,

relative some local moves. Here ‘dotted’ simply means that dots may be drawn on any

surface in our cobordism, and that such dots are free to slide along the surface. The

local moves are described in Figure 2.7. The spherical relations ensure that no disjoint

closed cobordisms are ever needed in a morphism, and the two-dot relation ensures

that no more than one dot need ever be accounted for on any surface. The neck-
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cutting relation eliminates the need for any genus. Both the objects and morphisms

of Cob•(n) allow for concatenation similar to TL(n), although there is not yet a

natural method for removing a disjoint circle. There is also not yet a notion of

having coefficients to a diagram in the ground ring Z[q, q−1].

We attempt to fix both of these problems using formal categorical notions. Start-

ing with our category Cob•(n), we begin by introducing a purely formal Z-grading

to objects, the quantum grading. We then take the additive closure of our q-graded

Cob•(n) by allowing for formal direct sums of objects, and matrices of morphisms

between them. Finally, we consider the category of chain complexes (up to chain

homotopy equivalence) over this additive closure of Cob•(n), and call this category

TLn. Although the objects are not groups and we do not have a meaningful notion

of homology at this stage, we still gain a homological grading which, together with

the formal q-grading, allows us to take the graded Euler characteristic of any such

complex to recover elements of TLn(Z[q, q−1]). This process respects the concate-

nation operation, where “concatenating” two complexes means taking their tensor

product with diagrams and morphisms formed by concatenation. Furthermore, the

local relations of Figure 2.7 can now be used to prove a chain homotopy equivalence

that categorifies the relation of removing a disjoint circle:

JD t K ∼= q JDK⊕ q−1 JDK (2.2.2)

Here the double brackets J·K indicate that these are chain complexes, and the q symbol

indicates a shift in the formal q-grading.
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Remark 2.2.1. We refer to the complexes built here (and throughout this manuscript)

as chain complexes, but in fact the maps within any of these complexes are taken to

increase homological grading by one, rather than decrease. Thus these complexes

would be classically considered cochain complexes, but following the literature on the

subject we still refer to them as chain complexes.

Remark 2.2.2. With the help of Equation 2.2.2 we can effectively remove all closed

circles from a diagram within any term of a complex in TLn. In the case n = 0, which

is of prime interest for invariants of knots and links, this means we can reduce the

chain complex to one where every diagram is the empty diagram. That is to say, in

each homological and q-degree we see only a direct sum of empty diagrams which can

be interpreted as copies of Z (the q-gradings will recover the powers of q allowing the

Euler characteristic to land correctly in Z[q, q−1]). Once we have done this, the local

relations of Figure 2.7 also allow us to eliminate all closed surfaces, so that the maps

involved will all be matrices of multiples of the empty cobordism. In this way we can

already interpret an element of TL0 as a bigraded complex of free modules over Z.

We shall not pursue this viewpoint in this manuscript, but see Remark 2.2.3.
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2.2.2 The Chain Complex Associated to a Tangle and Kho-

vanov Homology

With our category TLn in place, we now provide an actual definition to the idea of

Equation 2.2.1 by setting

q y
:=

q y s−→ q
q y

(2.2.3)

where the map s indicates a saddle cobordism between the two resolutions of the

crossing (the cobordism s is the identity cobordism everywhere away from the cross-

ing). Here the 0-resolution is taken to be in homological degree zero, and the

1-resolution is taken to be in homological degree one (see Remark 2.2.1). The full

complex of a tangle is then a tensor product over all of these two term complexes

(q-grading is taken to be additive under tensor product, just as the power of q in the

Jones invariant is additive under multiplication), and so takes the form of a cubical

complex, usually referred to as the cube of resolutions.

Similarly to the case of the Kauffman bracket, the chain complex built in this way

is only invariant under Reidemeister moves up to degree shifts. In order to build a

true invariant of tangles, we again introduce orientations on the strands, and let n+

and n− count the number of positive and negative crossings in the diagram DT for a

given tangle T. We then make the following key definition.

Definition 2.2.1. The Khovanov chain complex of an (n, n)-tangle T with diagram
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DT will be denoted KC(T), and is defined by

KC(T) := h−n
−

qn
+−2n− JDTK (2.2.4)

where h and q denote global homological and q-degree shifts that are applied to the

entire complex. To isolate specific bigradings, we use superscripts KCi,j(T) where i

indicates the homological grading, and j indicates the q-grading.

It is proven in [BN05] that the formula of Equation 2.2.4 gives a well-defined

TLn-valued invariant of tangles (that is to say, different diagrams for the same tangle

produce chain homotopy equivalent complexes in TLn). Furthermore, by construction

it is clear that the q-graded Euler characteristic of such a complex recovers the Jones

invariant of the tangle. That is,

χq(KC(T)) = V (T). (2.2.5)

In the particular case of a knot or link L viewed as a (0, 0)-tangle, we can do even

better. As currently constructed, KC(L) would be a chain complex where the terms

are given by resolutions of the link diagram DL into diagrams of disjoint circles in the

plane, and the differentials are comprised of saddle maps between them. In order to

create a complex of actual modules of which we can take homology, we replace any

resolution D with the free module over Z (or whatever base ring/field we like, see

Remark 2.1.1) generated by Cob•(∅, D), the set of dotted cobordisms from the empty

set to D. The relations of Figure 2.7 (particularly the neck-cutting relation) guarantee

that we only need to consider discs giving birth cobordisms at each circle. This is
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equivalent to decorating each circle in the diagram D with either a v+ (standing for an

undotted birth cobordism at that circle) or v− (standing for a dotted birth cobordism

at that circle). We call the result a decorated diagram or a decorated resolution of the

link diagram DL. In an abuse of nomenclature that we shall justify in Remark 2.2.3

below, we keep the same name and notation KC(L) for the resulting complex. The

saddle maps that make up the differential can be computed on the generators with

the help of the local neck-cutting relation, and we arrive at the new definition below.

Definition 2.2.2. Given a knot or link L ⊂ S3 with diagram DL, the Khovanov chain

complex of L is denoted KC(L) and is constructed as follows. As a module over the

base ring (usually assumed to be Z), KC(L) is generated by all possible decorated

resolutions of DL. The differential on KC(L) acts on any decorated resolution D

by a sum of maps based on single saddle cobordisms going from 0-resolutions in D

to 1-resolutions (together with a choice of sign convention mimicking the alternating

signs used when taking the tensor product over the various
q y

for each crossing,

see [BN05]). The effect on the decorations depends on whether the saddle merged two
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circles (multiplication m) or split one circle into two (co-multiplication ∆) as follows:

m(v+, v+) = v+ (2.2.6)

m(v+, v−) = m(v−, v+) = v− (2.2.7)

m(v−, v−) = 0 (2.2.8)

∆(v+) = (v+, v−) + (v−, v+) (2.2.9)

∆(v−) = (v−, v−) (2.2.10)

All circles that are not affected by a saddle maintain their decorations. The homolog-

ical degree and q-degree of any generator are determined by the following formulae:

degh(·) := #(1-resolutions)− n− (2.2.11)

degq(·) := #(1-resolutions) + (#(v+)−#(v−)) + (n+ − 2n−) (2.2.12)

where n+ and n− count the number of positive and negative crossings in the original

diagram DL for the link L.

With this definition, it is not hard to show that the differentials respect the q-

degree, and thus we can split KC(L) as a direct sum over q-degrees:

KC(L) = ⊕j∈ZKC∗,j(L). (2.2.13)

Thus when we take homology, our groups are bigraded.

Definition 2.2.3. The Khovanov homology of a knot or link L is denoted Kh(L)

and is defined to be the homology of the Khovanov complex KC(L). We again use
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superscripts Khi,j(L) to isolate specific gradings (i for homological grading, j for q-

grading).

Since the complex KC(L) is well-defined for a link up to chain homotopy equiv-

alence, the homology groups Kh(L) are also well-defined up to isomorphism. For an

excellent example showing the construction of KC(L) for the trefoil, see Figure 1 in

[BN05].

Remark 2.2.3. The seemingly new version for KC(L) given as Definition 2.2.2 is,

in fact, chain homotopy equivalent to the chain complex one would get by constructing

KC(L) by viewing L as a (0, 0)-tangle as before, and then using the chain homotopy

equivalences of Equation 2.2.2 to arrive at a complex where every diagram is the

empty set (see [BN07]), which can then be interpreted as a complex of modules over Z

as in Remark 2.2.2. This equivalence justifies the use of the same name and notation

for KC(L) that is used for (n, n)-tangles where n 6= 0. It also guarantees that the

graded Euler characteristic of Kh(L) correctly recovers the Jones polynomial V (L) in

the same way as it did for any (n, n)-tangles.

Remark 2.2.4. As indicated earlier, this definition for Khovanov homology is not the

one originally given by Khovanov himself [Kho00], but is easily shown to be equivalent

[BN05]. For tangles, Khovanov’s approach produces an actual complex of modules

over a more complicated ring [Kho02], but we will not need this construction here.

Remark 2.2.5. The notations above assume a ground ring of R = Z[q, q−1] for
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TLn(R). We will occasionally make use of allowing Z/2Z coefficients instead, that

is, allowing R = Z/2Z[q, q−1] (see Remark 2.1.1). In such cases, we will notate the

Khovanov complex and homology as KC(L;Z/2Z) and Kh(L;Z/2Z) respectively.

2.2.3 Categorifying the Jones-Wenzl Projector and Colored

Khovanov Homology

Our category of chain complexes TLn was built with decategorification to TLn(Z[q, q−1])

in mind. This allowed us to define the Khovanov homology Kh(L) which categorifies

the Jones polynomial V (L). However, the colored Jones polynomial makes use of

the Jones-Wenzl projectors Pn ∈ TLn(C(q)) - in particular, Pn contains terms with

coefficients that are rational in q. The question of how to categorify these fractions

was handled by Ben Cooper and Slava Krushkal [CK12], and independently by Lev

Rozansky [Roz14a], at about the same time. Both approaches focused on one central

idea: we expand the rational coefficients of Pn as power series in q (or q−1, see Remark

2.2.6) and observe that all of the coefficients of this series are integral. Then we seek

to categorify these terms via infinite chain complexes within TLn.

We begin with an axiomatic definition for precisely what we are looking for. Specif-

ically, we seek a semi-infinite chain complex Pn ∈ TLn satisfying:

I. Pn ⊗ ei ' {∗} for any TLn generator ei viewed as a one-term complex in TLn.

That is, Pn is “contractible under turnbacks”.
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II. The identity diagram In appears only once, in homological degree zero.

III. All negative homological degrees and q-degrees of Pn are empty, and the differ-

entials are made up of degree zero maps.

Such a complex Pn is called a categorified Jones-Wenzl projector. For more details

on this axiomatic definition, see [CK12] where such complexes are constructed induc-

tively and are shown to be unique up to chain homotopy equivalence. The simplest

non-trivial example is P2, shown below (compare to Equation 2.1.3).

P2 = −→ q −→ q3 −→ q5 −→ · · · (2.2.14)

The maps in the complex (2.2.14) are given explicitly in [CK12]. Note that the graded

Euler characteristic for P2 gives a power series representation of P2 from Equation

2.1.3, as discussed above.

Remark 2.2.6. The version of Pn described above is based upon expanding the ratios

in Pn as power series in the variable q. However, it is equally valid to expand them

as power series in the variable q−1. Thus the third axiom of Pn could be replaced by

a similar axiom declaring the positive homological and q-gradings to be empty.

An attempt at spectrifying the Cooper-Krushkal construction of Pn was discussed,

and accomplished for n = 2, by Andrew Lobb, Patrick Orson, and Dirk Schuetz

[LOS], but problems occurred for n ≥ 3. Instead, we will follow the construction in

[Roz14a], where Lev Rozansky provided a categorification for any Pn via an infinite
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torus braid. If we let σ1, . . . , σn−1 denote the standard generators of the braid group

Bn, we introduce the following notation for full twists on n strands:

Tk
n := (σ1σ2 · · ·σn−1)nk. (2.2.15)

After giving a well-defined notion for a stable limit of chain complexes, Rozansky

proved the following theorem.

Theorem 2.2.4 (Rozansky). The (renormalized) Khovanov chain complexes of torus

braids hn
−

q−(n
+−2n−)KC(Tk

n) stabilize up to chain homotopy as k → ±∞. The lim-

iting complex, denoted KC(T±∞n ), satisfies the axioms of a categorified Jones-Wenzl

projector, and so by the uniqueness result of [CK12] we may write

Pn
∼= KC(T±∞n ) (2.2.16)

Proof. See [Roz14a], and also section 1.6 in [Roz14b].

We shall consider some details of this approach more carefully in Chapter 5 where

they will be more immediately relevant. In essence, the stable limiting aspect of

Theorem 2.2.4 means that if we are seeking a chain complex categorifying the Jones-

Wenzl projectors up through a given homological degree, it is enough to replace any

Pn in a diagram with a copy of T±kn for large k (we shall often refer to this as a

‘finite-twist approximation’). The exact size of k needed depends on the homological

degree we are interested in. The graded Euler characteristic of this complex stabilizes

as k →∞ to give a power series representation of the rational terms appearing in the
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usual formulas for the Pn. Positive (right-handed) twisting gives a power series in q,

while negative (left-handed) twisting gives a power series in q−1.

In particular, Theorem 2.2.4 gives a concrete approach to defining a colored Kho-

vanov homology for knots and links in S3. As illustrated in Figure 1.2 in the introduc-

tion, we take our framed link L and cable it according to the desired coloring γ, just

as we would for the colored Jones polynomial. However, instead of inserting a copy of

Pnh into each cable, we insert a copy of the torus braid Tk
nh

for large k. The resulting

link is denoted Lkγ. We then take a stable limit of chain complexes hn
−

q−NKC(Lkγ)

as the twisting k →∞ to arrive at the colored Khovanov complex KCc(Lγ), and take

homology to arrive at the colored Khovanov homology Khc(Lγ).

2.3 The Spectrified Story

Having now a bi-graded chain complex KC(L) whose graded Euler characteristic re-

covers the Jones polynomial J(L), one might ask whether or not KC(L) is isomorphic

to the cochain complex of some space associated with L, perhaps even a cell complex

whose cellular cochain complex recovers KC(L). (Note that we ask for the cochain

complex of the space, since the Khovanov complex has differentials that increase ho-

mological degree.) If such a space exists, one would hope that it splits as a wedge

sum over the different q-degrees, just as KC(L) splits in Equation 2.2.13. One might

also hope that the space can be constructed combinatorially from a diagram for L,

just as KC(L) can be, and of course that the space so constructed does not depend
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on the choice of diagram. Finally, one would hope that the space contains some new

information about the link that was not available in KC(L) and Kh(L) alone.

In [LS14a], Robert Lipshitz and Sucharit Sarkar show that these hopes are very

nearly fulfilled. The only caveat is that, rather than a space for L, we construct

a spectrum X (L) in the stable homotopy category. Thus we refer to X (L) as a

“spectrification” of KC(L), which itself was a categorification of V (L). The goal of

this section is to first describe the invariant X (L) and its important properties before

turning to an overview of its construction.

Remark 2.3.1. Note that we only mention a spectrification X (L) for knots and links,

rather than for tangles. As of this writing, there is no published work producing a well-

defined space-like invariant for tangles that can recover the Khovanov homology of a

tangle, which itself requires Khovanov’s own more sophisticated algebraic machinery

(see Remark 2.2.4). This will be an important point in deciding precisely what we

should mean by “spectrifying” the Jones-Wenzl projector needed for colored Khovanov

homology.

2.3.1 The Lipshitz-Sarkar-Khovanov Spectrum of a Knot or

Link

In this section we will expand upon several of the points about L-S-K spectra brought

up during the Introduction. We begin with a more precise statement.
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Theorem 2.3.1 ([LS14a]). Given a link L ⊂ S3 with diagram DL, there exists a

spectrum X (DL) that satisfies the following properties:

� X (DL) is the suspension spectrum of a CW complex.

� X (DL) splits as a wedge sum X (DL) :=
∨
j∈ZX j(DL) such that H̃ i(X j(DL)) ∼=

Khi,j(L); that is, the reduced cohomology of X (DL) recovers the Khovanov ho-

mology of the link L.

� The stable homotopy type of each X j(DL) is an invariant of the link L; that is,

it does not depend on the choice of diagram DL.

The third item above in particular allows us to eliminate the diagram from the

notation and define:

Definition 2.3.2. Given a link L, the L-S-K spectrum of L is the spectrum X (L) :=∨
j∈ZX j(L) of Theorem 2.3.1.

We postpone discussion on the construction of X (L) and the proof of Theorem

2.3.1 for the moment and instead focus on some of its interesting properties, mostly

presented here without proof. To begin with, there are some cases where X (L) is

actually not interesting.

Proposition 2.3.3 ([LS14a]). If L is an alternating link, X (L) is a wedge sum of

Moore spaces, and thus is completely determined by Kh(L).

Fortunately, this is not the case in general.
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Proposition 2.3.4 ([LS14c]). There exist links L for which X (L) is not a wedge sum

of Moore spaces.

One important consequence of having a stable homotopy invariant for links is that

the cohomology (that is, the Khovanov homology Kh(L)) admits an action by the

Steenrod algebra.

Proposition 2.3.5. Non-trivial Steenrod square operations on H̃ i(X j(L);Z/2Z) =

Khi,j(L;Z/2Z) can serve to differentiate links with isomorphic Khovanov homology

[LS14c] and also give rise to slice genus bounds [LS14b] for the link L.

In fact, in [LS14c], Lipshitz and Sarkar derive a combinatorial formula for both

Sq1 and Sq2 acting on the cochain level (that is, on generators of KC(L)), and they

use this formula explicitly to calculate the invariant X (L) for some links with small

crossing number via classification results of Whitehead [Whi50] and Chang [Cha56].

Proposition 2.3.6 ([LS14b]). A cobordism between two links L and L′ induces a

map X (L)→ X (L′).

This last proposition is used to produce the slice genus bounds of Proposition

2.3.5, but it is not yet clear in the literature whether or not there is such a map that

is an invariant of the isotopy type of the cobordism. Indeed, Lipshitz and Sarkar

construct these maps by decomposing a cobordism into elementary pieces, and the

maps have not been shown to be independent of this decomposition.
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The most important property of X (L) for our purposes comes from the following

‘Collapsing Lemma’. Fixing j ∈ Z, we use Equation 2.2.3 to consider the Khovanov

chain complex KC(L) represented as the mapping cone of a chain map:

KCj+NL(L) = Cone
(
KCj+NL0 (L0) −→ KCj−1+NL1 (L1)

)
(2.3.1)

where L1 and L0 are the links resulting from taking the 1-resolution and 0-resolution,

respectively, of a single crossing in the diagram for L. The single superscripts stand

for q-gradings, with NL denoting the q-degree normalization shift n+−2n− in the link

diagram L, and similarly for NL1 and NL0 (the extra −1 for L1 takes into account

the loss of a 1-resolution from the point of view of L1). There is a corresponding

cofibration sequence of spectra (see Theorem 2 in [LS14a]):

ΣaX j+NL0 (L0) ↪→ X j+NL(L) � ΣbX j−1+NL1 (L1) (2.3.2)

where the Σ stands for suspensions allowing for shifts in homological degree, with

a = n−L0
− n−L and b = n−L1

− n−L + 1, the differences in the count of negative crossings

n− for the various diagrams. See Equations 2.2.11 and 2.2.12 to clarify the grading

shifts.

Lemma 2.3.7. With KCj+NL(L) =
(
KCj+NL0 (L0) −→ KCj−1+NL1 (L1)

)
as above,

we have:

� If KCj−1+NL1 (L1) is acyclic, then the induced inclusion ΣaX j+NL0 (L0) ↪→ X j+NL(L)

is a stable homotopy equivalence.
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� If KCj+NL0 (L0) is acyclic, then the induced surjection X j+NL(L) � ΣbX j−1+NL1 (L1)

is a stable homotopy equivalence.

Proof. Both of these are special cases of Lemma 3.32 in [LS14a], presented as in

Theorem 2 from the same paper. A cofibration sequence induces a long exact sequence

on cohomology, and if one piece is acyclic, the other two pieces must be isomorphic.

Whitehead’s theorem for spectra then guarantees that the map involved is a stable

homotopy equivalence (there is no π1 obstruction in the stable homotopy category).

Lemma 2.3.7 says that we can resolve crossings in a diagram one at a time, and

if one resolution of a crossing results in a diagram with an acyclic chain complex

in the specified q-degree, this entire part of the full chain complex can be collapsed

and we are left with the chain complex using only the other resolution (up to some

potential suspensions). We will want to make repeated use of this idea throughout

this manuscript.

2.3.2 The Construction (An Overview)

In this section we give a very broad overview of the construction of the L-S-K spectrum

X (L) of a link L. The summary here is based entirely upon [LS14a], to which the

reader is referred for a much more complete treatment. We only seek to give the

main ideas here. None of the material in this section will be used further in this

manuscript.
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A k-manifold with corners X is a topological space where every point has a neigh-

borhood homeomorphic to some point in the ‘cornered’ Euclidean space Rk
≥0, and the

transition maps between overlapping neighborhoods give C∞ diffeomorphisms. The

boundary ∂X is made up of points of various co-dimension. A face is a union of

closures of boundary components of co-dimension 1. A k-dimensional 〈n〉-manifold

is a k-manifold with corners X along with a specified arrangement of n faces ∂iX

making up the boundary ∂X = ∂1X ∪ · · · ∪ ∂nX so that any two faces intersect in a

‘mutual face’. That is, ∂iX ∩ ∂jX is a face of both ∂iX and ∂jX each viewed as their

own (k − 1)-manifolds with corners.

A flow category C is a category where each object x is assigned a single Z-grading

gr(x). The objects are to be interpreted as critical points of a Morse function on

some space. The morphisms of C are manifolds with corners of dimensions based on

the gradings of the objects, and with composition rules based on faces:

� Mor(x, x) = {id}.

� For x, y ∈ C, Mor(x, y) is a compact (gr(x) − gr(y) − 1)-dimensional

〈gr(x)− gr(y)− 1〉-manifold (negative dimensional manifolds are considered

empty).

� For gr(x) > gr(z) > gr(y), composition gives an embedding

◦ : Mor(z, y)×Mor(x, z) ↪→ ∂(gr(z)−gr(y))Mor(x, y)

such that ∂mMor(x, y) is given as the union of all of these embeddings over all
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objects z with gr(z)− gr(y) = m.

The morphisms are to be interpreted as the moduli spaces of flow lines of a Morse

function from one critical point to another, after modding out by the ‘flowing’ action

of R. Composition is to be interpreted as giving ‘broken flow lines’ that pass through

a mid-level critical point as the boundary of the full moduli space of flows. A framed

flow category is a flow category C together with framed embedding data for all of

the morphism spaces into a large multi-faced Euclidean manifold with corners (not

necessarily just Rk
≥0) that all fit together with composition coherently in a specific

way.

The relation to Khovanov homology here is based on viewing KC(L) via the

cube of resolutions. The generators of KC(L) are decorated diagrams sitting at the

vertices of the cube. We would like to have a Morse function for the unit cube where

the critical points are precisely the vertices, with grading given by the sum of the

coordinates of the vertex. Then the morphism spaces will be based on downward flows

of this function from one vertex to another, and these will need to be embedded and

framed into some cornered Euclidean space to arrive at a cubical framed flow category

CC . This cubical category will then give rise to a Khovanov flow category CK(L)

where there are multiple objects ‘covering’ each critical point (vertex) of the cube,

corresponding to the generators of KC(L). The morphism spaces will be (trivial)

covering spaces (in the usual topological sense) of the morphism spaces of the cube

category, allowing the embeddings of the morphism spaces of CC to lift naturally and
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make CK(L) into a framed flow category. From this point, the general construction

of Cohen-Segal-Jones [CJS95] produces a spectrum X (L) whose cochain complex

recovers the complex that CK(L) is based on, that is, KC(L).

The process outlined above is carried out in [LS14a], specifically in Sections 4

and 5. We will not go into further detail here, except to mention one important

facet of the construction. At one point in order to maintain consistency among the

various morphism spaces and composition, a choice needs to be made regarding the

1-dimensional moduli spaces (that is, the morphism spaces coming from decorated

resolutions that differ in grading by 2, ie connected by two saddle maps). In the case

where either order of taking the two saddle maps would result in first co-multiplication

∆, and then multiplication m (illustrated in Figure 2.8), the 1-dimensional moduli

space of the cubical CC would be a single interval, while the moduli space starting at v+

and going down to v− as in Figure 2.8 should involve two intervals, but there is a choice

of what the boundary of each interval should correspond to via composition. Lipshitz-

Sarkar refer to this choice as a ladybug matching, and provide a consistent rule for

doing so, and then go on to show that the eventual invariant X (L) does not depend

on this choice (so long as it is kept consistent throughout the construction). This

ladybug matching choice can be regarded as the genuinely new piece of combinatorial

data to be extracted from the link diagram DL that is unseen by the ‘despectrified’

KC(L) alone.

While constructing X (L) in this way from the diagram DL, many choices are
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Figure 2.8: A 2-dimensional face of a cube of resolutions illustrating the scenario

that requires a choice of ladybug matching. The v+ term has four choices on how

to map down to the v− term; two choices along the upward path (∆(v+) is a sum

of two terms) and likewise two choices along the lower path. The ladybug matching

fixes which upward choice corresponds to which downward choice as boundaries of an

interval in the 1-dimensional moduli space.
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made besides just the ladybug matching and the choice of diagram, including choices

of framed embeddings into a (choice of) cornered Euclidean space. The fact that

X (L) is independent of these choices (up to stable homotopy equivalence) is shown

in Section 6 of [LS14a].

We end this section with a few simple remarks about the Cohen-Segal-Jones con-

struction as it applies to CK(L) and X (L) specifically. X (L) is built first as a cell

complex, taking a 0-dimensional basepoint, and then adding on one cell per generator

(decorated resolution) in the Khovanov chain complex KC(L). The attaching maps

for each new cell are based on the framed embeddings of the moduli spaces from the

corresponding new object of CK(L) to the lower grading objects. The 0-dimensional

moduli spaces are single signed points - counting them with sign produces the differ-

ential of KC(L), which Defintion 2.2.2 ensures is indeed a sum of maps to different

decorated resolutions with coefficient positive or negative 1. Since KC(L) splits over

q-degree, this process can also be done one q-degree at a time, ensuring that X (L)

does split as a wedge-sum over q-degree as claimed earlier. Finally, after this cell

complex has been constructed, the suspension spectrum is taken (along with possible

formal desuspensions to account for proper homological grading) and we have the

stable homotopy invariant X (L).
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Chapter 3

SPECTRIFYING THE
JONES-WENZL PROJECTOR
AND A COLORED LIPSHITZ-
SARKAR-KHOVANOV
SPECTRUM

The purpose of this chapter is to spectrify the Jones-Wenzl projector Pn and its

categorified Pn. Unfortunately, Pn and Pn are based on TLn and TLn respectively,

which are based on tangle diagrams. Since there is no L-S-K spectrum-like invariant

for tangles at this time (see Remark 2.3.1), we instead seek to build an L-S-K spectrum

for any closed link-like diagram that involves Jones-Wenzl projectors. In particular,

this will allow us to build a colored L-S-K spectrum for colored links using the colored

diagrams Lγ (see Figure 2.6). In addition, we will prove various properties of our

construction that are similar to the axioms of Pn and Pn. Finally, we will also

include a small addendum on applying our construction to build an L-S-K spectrum

for quantum spin networks.
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3.1 Basic Notations and a Key Counting Lemma

We begin with some general notation for use throughout this section.

� n ∈ N will always denote a number of strands for various purposes (typically

for a given torus braid or, later, for an n-strand cabling of a link diagram).

� Boldface capital letters will refer to braids and/or tangles within a diagram.

� In will denote the identity braid on n strands.

� Tk
n will denote a torus braid on n strands with k full right-handed (positive)

twists (see Equation 2.2.15).

� T−kn will denote such a torus braid with k full left-handed (negative) twists.

� Z will often be used to denote an arbitrary tangle.

� We will use the inner product notation 〈Z1,Z2〉 to indicate connecting two

tangles top to top and bottom to bottom. This notation is meant to imitate

the inner product in the Temperley-Lieb algebra. See Figure 3.1.

� Z∩i will be used to indicate that the ith and (i + 1)st strands at the top of the

tangle Z are being capped off. Similarly, Z∪i will indicate capping off the i and

i+ 1 strands at the bottom. See Figure 3.1.

In many link diagrams in this manuscript, a single copy of T±kn will be singled out

for consideration, allowing the diagram to be viewed as
〈
T±kn ,Z

〉
for some tangle Z
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Figure 3.1: The diagram 〈T1
4,Z

∩2〉. T1
4 indicates the full right-handed twist on 4

strands, and Z is some fixed (6, 4)-tangle. The ∩2 indicates a cap on the 2nd and 3rd

strands above Z.

(similar to Figure 3.1, but without the cap). In these situations, we will also view the

normalization shifts of Equations 2.2.11 and 2.2.12 as split into contributions based

on the Tn and the Z as in the following definition.

Definition 3.1.1. In a link diagram L viewed as L =
〈
T±kn ,Z

〉
as above, the symbol

τ will be used to denote the q-normalization shift n+ − 2n− counting only crossings

within one full twist of the n strands (that is, within T±1n ). Similarly, the symbol η

will be used to denote the homological normalization shift n− counting only crossings

within one full twist. The symbol NZ will be used to denote the q-normalization

shift n+ − 2n− counting only crossings within the tangle Z. More generally, ND will

denote the shift n+ − 2n− counting crossings within a diagram D (whether tangle or

otherwise).

We will have no need for the homological normalization shift n− counting only

crossings in Z.
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Remark 3.1.1. Notice that these shifts τ , η and NZ depend on the orientation of

the strands, and allowable orientations are affected by the full link diagram involved,

not just the piece being counted. In Figure 3.1 for example, the value of τ depends

heavily on the tangle Z, despite the fact that it only counts crossings within the T1
4.

In cases where the tangle Z is changing, subscripts will be attached to the symbol τ

as necessary to indicate which full diagram is being considered. Similarly, if there are

multiple Tni to consider within some single link diagram, the subscript i will be used

for the shifts τi and ηi to indicate which twist is being considered.

In order to illustrate these notations, we prove the following very simple observa-

tion about full twists that indicates why they are preferable to work with (as opposed

to the fractional twists that will be used later in Chapter 5).

Lemma 3.1.2. For any (n, n)-tangle Z, consider the diagram D(k) :=
〈
Tk
n,Z

〉
. Then

all of the D(k) are links with the same number of strands, which can be oriented

equivalently for all k. Thus ND(k) = kτ + NZ with NZ and τ independent of k (in

particular, NZ can be determined by the diagram D(0) = 〈I,Z〉). Similarly for such

a diagram, η is also independent of k.

Proof. In a full twist, any strand takes the ith point at the top to the ith point on the

bottom, so for the purposes of counting and orienting the strands, this is equivalent to

the identity braid I. The orientations of the strands are all that matters for calculating

NZ, and also for calculating τ and η. Since τ counts positive and negative crossings

for one full twist, k full twists will contribute kτ .
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Remark 3.1.2. The previous observation was written and notated for positive full

twists, but it is clear that the exact same argument holds for negative full twists as

well. This will be typical of several of the arguments later in this section.

We conclude this section with the key counting lemma which is used essentially

throughout the manuscript. This lemma can be viewed as a generalization of Marko

Stošić’s Lemma 1 in [Sto07].

Lemma 3.1.3. Fix n ≥ 2 in N. Then for any i ∈ {1, 2, . . . , n − 1} and for any

(n − 2, n)-tangle Z, consider the link diagram D± =
〈
(T±kn )∩i,Z

〉
. That is, consider

any closure of T±kn involving at least one turnback at the top. Then for any chosen

orientation of the strands we have:

� This link diagram is isotopic to D′± =
〈
T±kn−2,Z∪n−i

〉
� Letting τ± count n+ − 2n− for crossings from Tn in D± and letting τ ′± count

this shift for crossings from Tn−2 in D′±, we have

τ ′+ = τ+ + 2n (3.1.1)

τ ′− = τ− + 2n− 6 (3.1.2)

Proof. We pull the turnback through the full twists, which corresponds to pulling out

two ‘parallel’ strands wrapping around the cylinder defining the torus braid. As in

Lemma 3.1.2, using full twists ensures that the turnback ‘exits’ the torus braid at

the same two points that it entered, which swing around to give the (n − i)th and
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(n − i + 1)st points at the bottom of Z. This leaves us with n − 2 strands for the

torus braid, still with the same amount of twisting. See Figure 3.2. This proves the

first point.

Figure 3.2: The diagram
〈
(T±kn )∩i,Z

〉
with the T±kn drawn as separate T1

n’s. The

cap is pulled through the twists as shown (the dashed red line would be for +k; the

opposite direction would be taken for −k). The n and n − 2 show the number of

strands entering and exiting at various points. The (i) at the bottom of the twisting

indicates the ith strand counted from the left, and similarly for the (n − i) at the

bottom of Z.

To prove the second point, we first note that the total number of crossings in a

full twist on n strands is n(n − 1), while the total number for a full twist on n − 2

strands is (n − 2)(n − 3). This means that when pulling the turnback through, we

managed to eliminate 4n−6 crossings. One full twist of these two strands corresponds
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to two Reidemeister 1 moves; the other 4n− 8 eliminations all must have come from

Reidemeister 2 moves. Regardless of the type of twist and the orientation of the

strands, all of these Reidemeister 2 moves would have eliminated one positive and one

negative crossing each. The two Reidemeister 1 moves would have eliminated negative

crossings from a positive twist, or eliminated positive crossings from a negative twist.

Again, this is independent of the orientation of the strands. Calculating the effect of

these eliminations on the normalization n+ − 2n− gives the result.

Remark 3.1.3. There is no difference in having the turnback at the bottom of the

T±kn . The proof makes it clear that it ends up at the top of the Z in that case.

3.2 Proving Theorem 1.0.2

Let D denote a link diagram involving a finite number of Jones-Wenzl projectors.

More precisely, D is obtained from a link diagram by formally replacing a finite

number of identity braids Ini with Jones-Wenzl projectors Pni . (Figure 1.3 in the

introduction provides clarification). We would like to define X j(D) as the homotopy

colimit of a sequence of spectra of finite link diagrams that stabilizes as the twisting

in the diagram goes to infinity. To do this we focus on a single projector at a time.

Towards that end, we combine Lemmas 2.3.7 and 3.1.2 to establish the following two

sequences.

Proposition 3.2.1. Fix n ∈ N and j ∈ Z. Let Z be an arbitrary (n, n)-tangle. Then
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the maps of Lemma 2.3.7 provide the following two sequences (one for right-handed

twists, one for left-handed twists):

X j+NZ
(〈

T0
n,Z

〉)
↪→ ΣηX j+NZ+τ

(〈
T1
n,Z

〉)
↪→ · · · ↪→ ΣkηX j+NZ+kτ

(〈
Tk
n,Z

〉)
↪→ · · ·

(3.2.1)

X j+NZ
(〈

T0
n,Z

〉)
� · · ·� Σk(η−n(n−1))X j+NZ+kτ+kn(n−1)

(〈
T−kn ,Z

〉)
� · · · (3.2.2)

where the symbols η, τ , and NZ are as defined in Definition 3.1.1.

Proof. To build the right-handed sequence (3.2.1), we ‘start’ with the (k + 1)st term

and resolve crossings within one of the full twists one at a time until we reach the

kth term. Specifically, we consider the diagram
〈
Tk+1
n ,Z

〉
=
〈
Tk
n,T

1
n · Z

〉
where we

use the product notation to indicate concatenation (see Figure 3.3). We number the

crossings of the T1
n sitting above Z starting from the ‘topmost’ such crossing. Then

each inclusion in (3.2.1) will be defined as the composition of n(n − 1) inclusions

coming from (2.3.2) by resolving these numbered crossings as 0-resolutions in this

order (note that the all-zero resolution of T1
n is precisely In).

We now introduce some notation to help keep track of this process. Let D0 :=

T1
n ·Z. Then for each i = 1, 2, . . . , n(n− 1), let Di denote the diagram obtained from

Di−1 by resolving the ith crossing with a 0-resolution, and let Ei denote the diagram

obtained from Di−1 (not from Ei−1; this will change for the left-handed sequence) by

resolving the ith crossing with a 1-resolution. Thus Di will have all crossings up to

the ith resolved as 0-resolutions, while Ei will have all crossings up to the (i − 1)st
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resolved as 0-resolutions, but the ith as a 1-resolution. This arrangement allows us to

see, at each step i, the cofibration sequence (ignoring the homological shifts)

X j+NDi
+kτDi

(〈
Tk
n,Di

〉)
� � // X j+NDi−1

+kτDi−1

(〈
Tk
n,Di−1

〉)
����

X j+NEi
+kτEi−1

(〈
Tk
n,Ei

〉)
.

(3.2.3)

For further clarification, see Figure 3.3. Notice the subscripts on the τ terms - the

orientations (and thus positive/negative crossing information) of the strands within

Tk
n may change when resolving crossings (see Remark 3.1.1). However, we also know

from Lemma 3.1.2 that all of the τ∗ terms and N∗ terms are independent of k. The

final term Dn(n−1) is precisely Z, so Lemma 3.1.2 allows the τ and NZ terms to be

preserved as indicated in the sequence (3.2.1). The suspensions giving the homological

shifts are clear: we are counting the number of negative crossings introduced in a new

twist.

The left-handed sequence (3.2.2) is built using compositions of the surjections

of the cofibration sequence (2.3.2), since the left-handed twist T−1n needs an all-

one resolution to give the identity braid In. For this reason, the roles of the Di

and Ei are swapped, and their definitions change slightly. To prevent confusion,

we use new names Fi and Gi and define G0 := T−1n · Z, and let Gi denote the

diagram obtained from Gi−1 by resolving the ith crossing with a 1-resolution, and

let Fi denote the diagram obtained from Gi−1 by resolving the ith crossing with a

0-resolution. Pictorially the Gi match the Di from above, and the Fi match the Ei,
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Figure 3.3: Building a single map in the sequence (3.2.1) as a composition of inclusions

coming from resolving crossings as in Lemma 2.3.7. The numbering on the crossings

in the diagram
〈
Tk
n, D0

〉
indicates the order in which we resolve crossings. D1 and

E1 are illustrated as well, with the first crossing resolved. Note that E2 is obtained

from D1, not from E1. Thus any Ei will have precisely one cup/cap.
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but in the cofibration sequences we see (again ignoring homological shifts)

X j+(k+1)n(n−1)−(i−1)+NFi
+kτFi

(〈
T−kn ,Fi

〉)
↪→ X j+(k+1)n(n−1)−(i−1)+NGi−1

+kτGi−1

(〈
T−kn ,Gi−1

〉)
� X j+(k+1)n(n−1)−i+NGi

+kτGi
(〈

T−kn ,Gi

〉)
.

(3.2.4)

Notice the extra shifts of i − 1 and i, which occur because we have been ‘losing’ 1-

resolutions along the way. We can see that, once i = n(n−1), we arrive at j+kn(n−1)

together with the normalization terms, as desired for
〈
T−kn ,Z

〉
in sequence (3.2.2).

We use Lemma 3.1.2 in the same way to guarantee that the NZ and τ terms don’t

change, and we also see the extra homological shift due to losing 1-resolutions as we

go.

Proposition 3.2.2. Fix j ∈ Z and n ≥ 2 in N. Then for any (n, n)-tangle Z,

both sequences (3.2.1) and (3.2.2) stabilize. That is, there exist bounds b+ and b−

such that, for k ≥ b+, the maps in (3.2.1) are all stable homotopy equivalences, and

similarly for k ≥ b− for the maps in (3.2.2). Furthermore, b+ depends only on j and

the all-zero resolution of Z, while b− depends on j, the number of crossings in Z, and

the all-one resolution of Z.

Proof. We will prove the stabilization of the two sequences separately to highlight

the slight differences between the two. The notations Di, Ei, Fi and Gi introduced

in the previous proof will be used throughout.

Focusing first on the right-handed case, we consider the cofibration sequences

(3.2.3). According to Lemma 2.3.7, as long as all of the Khovanov chain complexes
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KCj+NEi
+kτEi−1

(〈
Tk
n,Ei

〉)
are acyclic, the inclusions in Equation 3.2.3 will be stable

homotopy equivalences for all i = 1, . . . , n(n− 1), allowing us to conclude that their

composition (which is the map in the sequence (3.2.1)) is as well. Let minq(·) be the

minimal q-degree of non-zero Khovanov homology for a link diagram. Our goal now

is to find a bound b+ so that, for all i = 1, . . . , n(n− 1),

j +NEi + kτEi − 1 < min
q

(〈
Tk
n,Ei

〉)
for all k ≥ b+. (3.2.5)

Figure 3.4 illustrates the key point of the proof. The diagram
〈
Tk
n,Ei

〉
has a

turnback at the ‘top’ of Ei that can be swung around and ‘pulled through’ the twisting

Tk
n and then back around to the bottom of Ei, just as in Lemma 3.1.3. Let E ′i denote

the resulting tangle, so that we have
〈
Tk
n,Ei

〉
isotopic to

〈
Tk
n−2,E

′
i

〉
. Since Khovanov

homology is an isotopy invariant, we must have

min
q

(〈
Tk
n,Ei

〉)
= min

q

(〈
Tk
n−2,E

′
i

〉)
. (3.2.6)

Now the minimal q-degree of non-zero Khovanov homology for a diagram is

bounded below by the minimal possible q-degree in the entire Khovanov chain com-

plex, which occurs in the all-zero resolution by decorating all of the circles with v−.

The all-zero resolution of the crossings coming from T’s give identity braids, and so

we have

min
q

(〈
Tk
n−2,E

′
i

〉)
≥ −#circ

(〈
In−2,Z

∩ι
∪ι,all-zero

〉)
+ kτ ′E′i +NE′i

. (3.2.7)

Here #circ(·) indicates the number of circles present in the planar diagram, while

ι := i mod (n − 1). The “all-zero” subscript indicates that all of the crossings in
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Figure 3.4: Pulling the turnback in
〈
Tk
n,Ei

〉
through the twists to get

〈
Tk
n−2,E

′
i

〉
.

The turnback and its path are indicated in red. Note that none of the crossings in Ei

(including Z) are affected.

Z∩ι∪ι have been resolved into zero-resolutions. The τ ′ term and the N term are the

n+−2n− normalization terms as usual. The τ ′ indicates that we are counting positive

and negative crossings from Tn−2 as opposed to τ that was counting such crossings

in Tn (see the notation used in Lemma 3.1.3).

Now because we performed an isotopy to get from Ei to E′i, the orientations of the

strands did not change. Furthermore, no crossings were added to or removed from

Ei. Thus NEi = NE′i
, and τ ′E′i

can be viewed as τ ′Ei . We then use Equation 3.1.1 from

Lemma 3.1.3 to deduce

min
q

(〈
Tk
n−2,E

′
i

〉)
≥ −#circ

(〈
In−2,Z

∩ι
∪ι,all-zero

〉)
+ k(τEi + 2n) +NEi . (3.2.8)

Combining Equations 3.2.5, 3.2.6, and 3.2.8 gives us the following new goal for our
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bound b+:

j +NEi + kτEi − 1 < −#circ
(〈

In−2,Z
∩ι
∪ι,all-zero

〉)
+ k(τEi + 2n) +NEi for all k ≥ b+

(3.2.9)

which is clearly satisfied for all i by choosing

b+ := max
ι=1,...,n−1

j + #circ
(〈

In−2,Z
∩ι
∪ι,all-zero

〉)
2n

. (3.2.10)

We see clearly from the definition of b+ that it depends only on j and the all-zero

resolution of Z, as claimed. The final homological shift is clear.

We now turn to the left-handed sequence (3.2.2). The strategy is very similar so

we will be brief. This time we consider the cofibration sequence (3.2.4) where our

goal is to bound k to ensure that all of the KCj−(i−1)+NFi
+kτFi

(〈
T−kn ,Fi

〉)
are acyclic,

ensuring that the surjections give stable homotopy equivalences.

Since the Fi pictorially match the Ei from before, we can still use Lemma 3.1.3

in the same way to arrive at
〈
T−kn−2,F

′
i

〉
with corresponding τ ′. Now comes the main

difference between the left- and right-handed sequences. For the right-handed twist,

the all-zero resolution of Tk
n−2 is just In; in particular, it is independent of k. Taking

0-resolutions motivates bounding based on the minimal q-degree. But for the left-

handed twist, it is the all-one resolution of T−kn that is just In. Taking 1-resolutions

motivates bounding based on the maximal q-degree. So we define maxq(·) to be

the maximal q-degree of non-zero Khovanov homology for a given diagram, which

is bounded above by the maximal q-degree for the full Khovanov chain complex.
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Following the logic of the right-handed case, we get

max
q

(〈
T−kn ,Fi

〉)
= max

q

(〈
T−kn−2,F

′
i

〉)
≤ #cros

(〈
T−kn−2,F

′
i

〉)
+ #circ

(〈
In−2,Z

∩ι
∪ι,all-one

〉)
+ k(τ ′F′i) +NFi

= (k(n− 2)(n− 3) + (n(n− 1)− i) + #cros(Z))

+ #circ
(〈

In−2,Z
∩ι
∪ι,all-one

〉)
+ k(τFi + 2n− 6) +NFi

= k(n2 − 3n+ τFi) + (n(n− 1)− i) + #cros(Z)

+ #circ
(〈

In−2,Z
∩ι
∪ι,all-one

〉)
+NFi .

The #cros(·) denotes the total number of crossings. This term appears because the

q-degree counts the number of 1-resolutions taken (which will be all of the crossings).

The third line breaks this term into several self-explanatory pieces; the n(n− 1)− i

term handles the crossings ‘above’ the Z (See Figure 3.4). Meanwhile, the changing

of τ ′ to τ + 2n − 6 in the third line follows from the left-handed version of Lemma

3.1.3.

From the cofibration (3.2.4) above, we see that our goal for the left-handed twists

is to ensure that, for all i = 1, . . . , n(n− 1), and for all k ≥ b−,

j+(k + 1)n(n− 1)− (i− 1) +NFi + kτFi >

k(n2 − 3n+ τFi) + (n(n− 1)− i) + #cros(Z) + #circ
(〈

In−2,Z
∩ι
∪ι,all-one

〉)
+NFi .

This is clearly achieved by setting

b− := max
ι=1,...,n−1

−j + #cros(Z) + #circ
(〈

In−2,Z
∩ι
∪ι,all-one

〉)
2n

(3.2.11)
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which clearly depends only on j, the number of crossings in Z, and the all-one reso-

lution of Z as desired.

Remark 3.2.1. Notice the similarity between the bounds b+ and b−. In both cases,

the bound involves ±j
2n

plus a constant term (independent of j). Thus all of the careful

tracking of normalization shifts ‘cancel out’ in precisely the same way regardless of

using right- or left-handed twists. The sign change of j versus −j also makes sense

when we recall that the graded Euler characteristic of these spaces is meant to give

a power series expansion of the corresponding rational functions coming from the

Jones-Wenzl projectors, in q for right-handed twists (so using positive j terms) and

in q−1 for left-handed twists (so using negative j terms). With this in mind, the

only real difference between b+ and b− comes from the use of the all-zero resolution

of D versus the all-one resolution, and the need to count crossings away from the

left-handed twists.

We are now ready to prove Theorem 1.0.2. Let D denote a diagram obtained

from a link diagram by formally replacing a finite number of identity braids Ini with

Jones-Wenzl projectors Pni . Let m ∈ N denote the total number of projectors in D.

For any (k1, . . . , km) ∈ (N∪ 0)m, let D±(k1, . . . , km) denote the diagram D with each

Pni replaced by T±kini
. Note that it is very important that the diagrams have either

all right-handed twists, or all left-handed twists. We do not allow any mixing of the

two.

We focus on the right-handed case first. Fixing j ∈ Z, we consider the infinite
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m-dimensional cube of maps built as follows. The vertices of the cube correspond to

(k1, . . . , km) ∈ (N ∪ 0)m. At each such vertex we place the space

X j+ND
+ (k1, . . . , km) := Σ

∑m
i=1 kiηiX j+ND+

∑m
i=1 kiτi(D(k1, . . . , km)). (3.2.12)

Here, the subscripts on the normalization shifts τ and η indicate which Tni is being

referred to (see Definition 3.1.1 and Remark 3.1.1). Meanwhile, the ND is referring

to the normalization shift n+ − 2n− for all crossings totally separate from any of

the inserted twists (ie, crossings present in the original diagram D, discounting the

Jones-Wenzl projectors). Now between any two adjacent vertices of (N∪ 0)m, we see

all of the ki remain constant except one of them, say kî, which differs by one between

the two vertices. To this edge we assign the map

X j+ND
+ (k1, . . . , kî, . . . , km) ↪→ X j+ND

+ (k1, . . . , kî + 1, . . . , km) (3.2.13)

induced by Lemma 2.3.7 as in Proposition 3.2.1.

Definition 3.2.3. Given a diagram D involving Jones-Wenzl projectors, the (right-

handed) L-S-K spectrum ofD is defined to be the wedge sum X+(D) :=
∨
j∈ZX

j+ND
+ (D)

where for each q-degree j+ND, the spectrum X j+ND
+ (D) is defined to be the homotopy

colimit of the cube of maps described by Equations 3.2.12 and 3.2.13.

Proof of Theorem 1.0.2 (Right-handed Case). We wish to show that the cube of maps

defining X j+ND
+ (D) ‘stabilizes’ in a particular sense. To do this we isolate a single

projector Pnî and fix all of the ki 6=î. This allows us to view the maps (3.2.13) as
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(ignoring homological shifts)

X j+kîτî+ND+
∑
i 6=î kiτi

(〈
T
kî
nî
,Z
〉)

↪→ X j+(kî+1)τî+ND+
∑
i 6=î kiτi

(〈
T
kî+1
nî

,Z
〉)

(3.2.14)

where the tangle Z includes all of the other Tki
ni

. Having fixed j, these maps are

all stable homotopy equivalences for kî > b+
î

for some bound b+
î

that depends only

on the all-zero resolution of Z. Since the all-zero resolution of any Tki
ni

is just Ini

regardless of ki, this bound b+
î

is independent of the other ki (this is the point that

requires we do not mix right- and left-handed twists in our construction). Thus

we can find the various bounds b+i one projector at a time effectively ignoring the

rest. Since there are only finitely many projectors, we can find a global bound b+

which works for all of the ki at once and declare that the cube is stable for all

ki > b+. This also allows us to use a simpler notation: let D(k) := D(k, . . . , k),

and similarly for X j+ND
+ (k) = X j+ND

+ (k, . . . , k). Our proof then shows that, for any

fixed j ∈ Z, the ‘diagonal sequence’ X j+N(D)
+ (k) stabilizes as k → ∞, and so the

hocolim X j+ND
+ (D) ' X j+ND

+ (k) for some large enough k depending on j. Since the

chain complexes of the twists are known to stabilize to the categorified Jones-Wenzl

projectors, the wedge sum X+(D) =
∨
j∈ZX

j+ND
+ (D) satisfies the requirements of

Theorem 1.0.2.

The left-handed twists work in exactly the same fashion, so we only mention the

slight differences. We populate the vertices of the cube by spaces

X j+ND
− (k1, . . . , km) := ΣaX j+

∑m
i=1 kini(ni−1)+ND+

∑m
i=1 kiτi(D(k1, . . . , km)) (3.2.15)
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where a :=
∑m

i=1 ki(ηi−ni(ni−1)) gives the homological shift. The edges of the cube

are maps

X j+N(D)
− (k1, . . . , kî, . . . , km) � X j+ND

− (k1, . . . , kî + 1, . . . , km) (3.2.16)

induced by Lemma 2.3.7 once again. Notice the extra grading shift
∑m

i=1 kini(ni−1),

which counts the number of crossings available in all of the T−kini
.

Definition 3.2.4. Given a diagram D involving Jones-Wenzl projectors, the (left-

handed) L-S-K spectrum ofD is defined to be the wedge sum X−(D) :=
∨
j∈ZX

j+ND
− (D)

where for each q-degree j+ND, the spectrum X j+ND
− (D) is defined to be the homotopy

limit of the cube of maps described by Equations 3.2.15 and 3.2.16.

Proof of Theorem 1.0.2 (Left-handed Case). Focusing on one projector (̂i) at a time

as before, the formula (3.2.11) for b−
î

does appear to depend on the other ki since

the term #cros(Z) will count crossings in the other twists. However, this count is

cancelled out precisely by the extra grading shift
∑m

i=1 kini(ni−1), and the bounds b−i

are again mutually independent allowing the same argument as for the right-handed

case to go through. The details here are left to the reader.

Thus we have two equally eligible candidates, X+(D) and X−(D), for a spectrum

that satisfies the requirements of Theorem 1.0.2, depending on whether we want to

view the Euler characteristic as a power series representation of the corresponding

rational function in q+1 or q−1. In either case, the wedge summand in a specific q-

degree can be computed using a finite-twist approximation D(k) where the amount
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of twisting k needed depends both on the diagram D and on the q-degree being

considered.

Remark 3.2.2. The independence of the various ki used in the proofs above has been

used to take the homotopy colimit (or limit) ‘diagonally’, simplifying the notation by

tracking only a single value of k. However, this independence can also be viewed as

allowing us to take the colimit one projector at a time, in any order we like. This is

already implicit in the diagonal version in the passage from D(k) to D(k+1), where it

does not matter in what order we treat all of the projectors going from their individual

k-twists to their individual (k + 1)-twists.

3.3 Properties of X (D)

Before going on to establish the connection to spin networks and colored links, we

state and prove some properties for X+(D) for diagrams D with Jones-Wenzl pro-

jectors as above. The propositions in this section will be stated and proved for

right-handed twists only; the left-handed versions for X−(D) are proved analogously,

using alterations similar to those discussed in the previous section. As such, we drop

the + notation for the time being.

Our first property is perhaps the most fundamental one. Recall that the first

axiom used to characterize both the Jones-Wenzl projectors and their categorifications

is that they are ‘killed by turnbacks’. The following proposition gives the analogous
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statement for our spectra X (D).

Proposition 3.3.1. For any diagram D involving at least one Jones-Wenzl projector

that is capped by at least one turnback, X (D) ' ∗.

Proof. Theorem 1.0.2 ensures that the cohomology of X (D) matches the homology

defined using the categorified Jones-Wenzl projectors, which is known to vanish for

such D (see Theorem 2.2.4). As noted in Theorem 2.3.1, X (D) has the stable ho-

motopy type of the suspension spectrum of a CW complex up to some finite formal

de-suspension, and thus Whitehead’s theorem implies that the trivial cohomology of

X (D) forces it to be contractible.

The next proposition ensures that crossings in a diagram involving projectors still

give rise to cofibration sequences in the same sense as Equation 2.3.2, leading to a

version of Lemma 2.3.7 for our spectra X (D).

Proposition 3.3.2. Let D be a diagram involving a finite number of Jones-Wenzl

projectors, and consider a specified crossing in D. Let D′ and D′′ be the corresponding

diagrams where the crossing is replaced with its 1-resolution and 0-resolution respec-

tively. Then we have the following cofibration sequence of spectra

ΣaX j+ND′′ (D′′) ↪→ X j+ND(D) � ΣbX j−1+ND′ (D′) (3.3.1)

where the shifts are precisely the same as those indicated with Equation 2.3.2. In

particular, if either of ΣaX j+ND′′ (D′′) or ΣbX j−1+ND′ (D′) is contractible, then the

other is stably homotopy equivalent to X j+N(D)(D).



60

Proof. In short, the sequence (3.3.1) is built by applying Equation 2.3.2 to a suitably

large finite twist approximation X (D(k)) for X (D). The homological and q-degree

shifts coming from Equation 2.3.2 are based on counting positive and negative cross-

ings in the honest link diagram D(k). The crossings away from the twists account for

the shifts in Equation 3.3.1, while the crossings within the twisting contribute only

to renormalizing the diagonal sequences used for D′ and D′′. The final statement is

then clear (see Lemma 2.3.7).

In more detail, we consider the term Σ
∑m
i=1 kηiX j+ND+

∑m
i=1 kτi(D(k)) in the diagonal

sequence used to build X j+ND(D) (continuing to use the notation of earlier in this

section). Resolving the specified crossing in the diagram D(k) results in the diagrams

D′(k) and D′′(k) which would be used to approximate X (D′) and X (D′′). The key

point to notice is that for the honest link diagram D(k), the shift ND +
∑m

i=1 kτi is

the same as ND(k), and similarly for D′(k) and D′′(k). Thus we can use Equation

2.3.2 to build a cofibration sequence

ΣAΣ
∑
kηiX j+ND′′(k)(D′′(k)) �

� // Σ
∑
kηiX j+ND(k)(D(k))

����
ΣBΣ

∑
kηiX j−1+ND′(k)(D′(k)).

The homological shifts A and B are differences in total counts of negative crossings.

Since a and b account for these differences away from the twisting, the reader can

easily verify that A = a +
∑
k(η′′i − ηi) and B = b +

∑
k(η′i − ηi). Putting these in
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place we see the sequence

ΣaΣ
∑
kη′′i X j+ND′′(k)(D′′(k)) �

� // Σ
∑
kηiX j+ND(k)(D(k))

����
ΣbΣ

∑
kη′iX j−1+ND′(k)(D′(k)).

Since all of these spectra stabilize as k →∞, we can take k large enough so that each

term in this sequence is stably homotopy equivalent to the corresponding spectrum

in Equation 3.3.1.

Corollary 3.3.3. For any diagram D involving an n-strand Jones-Wenzl projector Pn

concatenated with a braid β on those n strands, X j+ND(D) ' Σa+β−X j+ND\β−β−(D\β)

where D \ β is used to denote the diagram created by replacing β with In, the identity

braid on those same n strands (this replacement is referred to as straightening the

braid β), and β− is the number of crossings of the form in β viewed vertically

(ie the number of crossings that require 1-resolutions to transform β into In). The

homological shift a is the difference between the number of negative crossings in the

two diagrams, as in Lemma 2.3.7.

Proof. Let Pn1 be the projector with β concatenated. Since any braid β is a product of

elementary generators σ±1ι in the braid group Bn1 (so ι ∈ {1, . . . , n1−1}), it is enough

to prove the statement for such generators (ie, for a single crossing above the Pn1). For

each j ∈ Z, Proposition 3.3.2 allows us to build a cofibration sequence (3.3.1) using

this crossing. One of the two resolutions will lead to a diagram involving a turnback

above Pn1 , forcing the corresponding spectrum to be contractible via Proposition
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Figure 3.5: An example of two concatenated projectors Pn1 · Pn2 with n1 ≤ n2, for

which Corollary 3.3.4 allows us to absorb Pn1 into Pn2 on the level of the spectra.

3.3.1. Thus the other resolution, corresponding to ‘straightening’ the crossing σ±1ι ,

will give a spectrum stably homotopy equivalent to the original. The −β− shift comes

from the −1 term for the 1-resolution in Equation 3.3.1 needed to ‘straighten’ any

σ−1ι in β. The homological shift is determined similarly.

The next corollary can be viewed as lifting the idempotency of the Jones-Wenzl

projectors and their categorifications to the realm of spectra.

Corollary 3.3.4. Let D be a diagram involving two concatenated projectors of possi-

bly different sizes, say Pn1 · Pn2 with n1 ≤ n2 (see Figure 3.5 for clarification on this

notion). Let D′ be obtained from D by replacing the smaller projector Pn1 with an

identity braid In1. Then X (D) ' X (D′).

Proof. We fix j ∈ Z and replace D by D(k) for k > b+ as in the proof of Theorem

1.0.2. Here we make stronger use of the independence of the various ki to fix k1 > b+1 ,

while still allowing the other ki to limit towards infinity together. In symbols, we are

considering X j+N(D)+k1τ1+k
∑m
i=2 τi(D(k1, k, . . . , k)). Having fixed k1 in this way, we
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can view the Tk1
n1

as a braid that is allowed to be straightened as in Corollary 3.3.3.

When doing this, the grading shift effectively removes the k1τ1, and there is no −β−

term because all of the crossings are of the form . This leaves us with precisely

X j+N(D)+k1τ1+k
∑m
i=2 τi(D(k1, k, . . . , k)) ' X j+N(D)+k

∑m
i=2 τi(D′(k))

and since the Tk1
n1

contributed only full twists to the diagram, the strand orientations

before and after the straightening can be the same so that N(D) = N(D′). Thus we

are left with X j+N(D′)+k
∑m
i=2 τi(D′(k)) which is precisely the sequence needed to build

X (D′). Any homological shifts that are needed along the way cancel precisely; we

leave these details to the reader.

3.4 An L-S-K Spectrum for Colored Links

Recall that, given a colored link Lγ with colored diagram DLγ , the colored Jones

polynomial of Lγ is calculated by taking the usual Jones polynomial of the diagram

DLγ . Using categorified Jones-Wenzl projectors as in [Roz14a] or [CK12], we can

build a colored chain complex for Lγ in the same way, whose homology groups are

referred to as the colored Khovanov homology of Lγ (see [CK12] and [Roz14b]). Using

Rozansky’s version of the categorified projectors allows us to prove Theorem 1.0.1.

Definition 3.4.1. Given a colored link Lγ, we define the colored L-S-K spectrum of

Lγ to be Xc(Lγ) := X (DLγ ) as defined by Theorem 1.0.2 for the diagram DLγ .
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Proof of Theorem 1.0.1. As indicated above, the colored Khovanov homology groups

for a colored link Lγ are defined by a link diagram DLγ involving Jones-Wenzl pro-

jectors. Therefore Theorem 1.0.2 gives the existence of a colored L-S-K spectrum

that properly recovers the colored homology. There is a choice of where to place

the projector on each cabled component when creating DLγ . The invariance of Xc

with respect to such a choice is proved one q-degree at a time. Since each X j
c (Lγ)

is equivalent to X j(DLγ (k)) for some large enough k, and DLγ (k) is just an honest

link diagram with Tk
nh

in place of the Pnh , we see that these twists Tk
nh

can be slid

up and down along the cablings, including above or below other cablings, as desired.

Similarly invariance under Reidemeister moves II and III is proved by considering the

finite approximation for each j, where such moves give clear isotopies of honest link

diagrams. Meanwhile, Reidemeister I moves give framing shifts as expected, since

undoing a kink corresponds to adding a full twist on a cable.

We end this short section with a quick property of the colored L-S-K spectra

inspired by the discussion in section 3.8 of [Hoga], which illustrates the use of Propo-

sition 3.3.2 and Corollary 3.3.3 in dealing with the colored spectra.

Definition 3.4.2. Let Lγ denote a colored link with ` components, and let αh denote

the component of Lγ colored with nh. Define L
o(h)
γ to be the colored link obtained from

Lγ by introducing a new unknotted, 1-colored component α`+1 that links positively

once around the component αh as in Figure 3.6.
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Figure 3.6: The new unknotted, 1-colored component α`+1 linking positively once

around the component αh (colored with nh), forming L
o(h)
γ

Proposition 3.4.3. For any colored link Lγ with ` components as above, the colored

spectra of Lγ and L
o(h)
γ for any h ∈ {1, . . . , `} fit in the following cofibration sequence:

X j+1−2nh
c (Lγ) ↪→ X j

c (Lo(h)γ ) � Σ2nhX j−1−4nh
c (Lγ). (3.4.1)

Proof. We focus on X j
c (L

o(h)
γ ), built via the diagram D

L
o(h)
γ

. In this diagram we slide

the specified Pnh along the cabling to be drawn directly below the ‘new’ unknot α`+1,

which is colored by 1 so that we need no cabling for this component (note that P1 is

just the identity strand). We then construct the cofibration sequence of Proposition

3.3.2 by resolving the ‘upper-left’ crossing (see Figure 3.7).

As illustrated in Figure 3.7, we denote the resulting diagrams D0 and D1 for the

0-resolution and 1-resolution respectively. The 0-resolution is also the oriented one,

and so the resulting shift in q-degree is only −1 for the loss of a positive crossing.

The 1-resolution allows for an orientation as shown in the diagram, where all of the

previously positive crossings (there were originally 2nh of them, but one was resolved)

become negative. Thus we have a q-degree shift of −1 for the loss of the resolved
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Figure 3.7: Resolving the upper-left crossing in D
L
o(h)
γ

to create a cofibration sequence.

The resulting diagrams D0 and D1 are isotopic to D′0 and D′1 which allow the use of

Corollary 3.3.3.

positive crossing, −1 for the loss of a 1-resolution, and −3(2nh − 1) for the positive

crossings becoming negative (−1 each for losing a positive crossing, and −2 each for

adding a negative crossing). We also have a homological shift of −2nh given the loss

of a 1-resolution and the addition of 2nh− 1 negative crossings, which is offset by the

2nh suspension. The diagrams also make it clear that crossings away from this area

retain their sign, so that these shifts are the only shifts present and we see:

X j−1(D0) ↪→ X j(D
L
o(h)
γ

) � Σ2nhX j+1−6nh(D1). (3.4.2)

At this point, we first use an isotopy (Reidemeister moves) to rearrange D0 and

D1 into D′0 and D′1 respectively (also shown in the diagram). The D′0 and D′1 are



67

then diagrams with braids above the Pnh . The shifts in Equation 3.4.1 are obtained

from those in Equation 3.4.2 by straightening these braids (all positive crossings for

D′0, and all negative for D′1) as in Corollary 3.3.3.

Remark 3.4.1. There are similar cofibration sequences for a (−1)-linking unknot (ie

switching the orientation of the unknot α`+1 in Figures 3.6 and 3.7). The details of

the resulting degree shifts are left to the reader.

3.5 An L-S-K Spectrum for Quantum Spin Net-

works

We include this final section to introduce another application of our construction.

This section is largely separate from the remainder of this manuscript, and can be

skipped with no loss to the other chapters.

A (closed) quantum spin network (the notion dates back to Roger Penrose in

[Pen71]) consists of a trivalent graph where each edge has been labelled with a natural

number. The labels are not entirely independent: for each vertex where three edges

labelled n1, n2, n3 meet, we must have

ni ≤ nj + nk ∀ {i, j, k} = {1, 2, 3}

n1 + n2 + n3 ≡ 0 mod 2.

(3.5.1)

From such a spin network G, a q-deformed quantum invariant can be defined as

follows (see chapter 4 in [KL94]). First we replace each n-labelled edge by a cable
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of n parallel strands together with a copy of the Jones-Wenzl projector Pn. Then

we replace each vertex having edge labels n1, n2, n3 with a ‘balanced splitting’ of the

cables as in Figure 3.8. Call the resulting diagram D(G). The final step is to evaluate

the Jones polynomial of D(G), using the rational expressions for the Jones-Wenzl

projectors present.

Figure 3.8: Building the q-deformed invariant of a quantum spin network; the ni are

labels in the original network, and the fractions on the right hand side tell how many

parallel strands to send each direction from the vertex

In [CK12], Cooper and Krushkal replace the projectors in D(G) with their own

categorified projectors, thus defining a categorified spin network. If instead of this

we replace the projectors with Rozansky’s categorifications using infinite twists, we

see a diagram of the form covered by Theorem 1.0.2.

Definition 3.5.1. Given a quantum spin network G, we define the L-S-K spectrum

of the spin network G to be X (G) := X (D(G)) as defined in Theorem 1.0.2 for the

diagram D(G).

Theorem 3.5.2. There exists an L-S-K spectrum for any sl2(C) quantum spin net-
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work. Its reduced cohomology is isomorphic to the homology of the categorified spin

networks defined in [CK12].

Proof. X (G) as defined using Theorem 1.0.2 is clearly well-defined with regards to

isotopies of the graph of G, which induce isotopies of D(G). There is also a ‘twist’

move at a vertex, shown in Figure 3.9. This move is accomplished by a framing twist

on the strand labelled n1, which would result in a shift of q-degree for the spectrum (a

framing twist creates a torus braid on the relevant cable, which can be straightened at

the cost of such a shift using Corollary 3.3.3). This corresponds to the shift described

in section 4.2 of [KL94].

Figure 3.9: A twist move on a spin network coming from a framing twist on the

strand labelled n1
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Chapter 4

A TAIL FOR THE COLORED
L-S-K SPECTRUM OF A
B-ADEQUATE LINK

In this chapter the main goal is to establish the stabilization of the uni-colored L-

S-K spectra of B-adequate links as the coloring n → ∞, generalizing the work of

[Arm13, GL15] for the colored Jones polynomial and [Roz14b] for the colored Kho-

vanov homology. The first three sections will be devoted to proving Theorem 1.0.3.

These sections will make heavy use of the definitions and notations from Chapter

3. In the final section, we also provide a largely separate (and simpler) proof for

Theorem 1.0.4 for the case of the unknot, which also provides a sharper bound on

the amount of twisting needed.

4.1 Discussion and Strategy

Before investigating the details of the proof of Theorem 1.0.3, we outline the general

strategy and logic, expanding on the summary given in the introduction. The goal is
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to adapt Rozansky’s proof in [Roz14b] of the fact that the colored Khovanov homology

groups of B-adequate links stabilize as the color goes to infinity. The proof in that

paper builds maps fn that give isomorphisms of colored homology groups between

the n-colored and (n+1)-colored link L, but only within a certain homological range.

In order to prove Theorem 1.0.3 then, it is enough to show that

� The maps fn in [Roz14b] are induced by maps Fn between colored spectra, at

least within the homological range of isomorphism.

� If n is large enough, the homological range of isomorphism guaranteed by Rozan-

sky is enough to cover all non-zero homology of the corresponding colored spec-

tra (and thus the Fn induce isomorphisms on all homology, and so give stable

homotopy equivalences by Whitehead’s theorem).

Neither of these statements is difficult to prove conceptually, but the notation

involved becomes somewhat cumbersome. The reason is that, on the one hand,

the colored spectrum is a homotopy limit, and in order to build maps we resort to

finite approximations (ie the corresponding diagram with high twisting of the cables).

This requires q-degree shifts depending on k. On the other hand, the maps fn built

by Rozansky are compositions of a large number of simpler maps, many of which

themselves shift the q-degree which will lead to separate q-degree shifts depending

on n. In addition, the maps were built with the use of the categorified Jones-Wenzl

projectors rather than finite-twist approximations of them. Thus some care will be
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needed.

Throughout this section, following [Roz14b], all of the twisting will be left-handed

(ie, using X−(D) from the proof of Theorem 1.0.2). We recall here that, in addition to

shifts of the form kτ for the normalization shift n+−2n−, the left-handed sequence also

requires shifts of the form kn(n−1) for counting the total number of crossings within

the twist, accounting for 1-resolutions needed to move backward in the sequence. See

Equation 3.2.2.

4.2 Definitions, Notation, and a Restatement of

Theorem 1.0.3

We begin with the deifnition of B-adequacy, as well as some notation. Some of this is

repeated from previous sections but is recalled here for convenience. Note that, since

the colored L-S-K spectrum of a link requires a specified framing, B-adequacy will be

stated in terms of a blackboard framed diagram.

Definition 4.2.1. A link diagram L is called B-adequate if the all-one resolution of

L contains precisely one more circle than any resolution of L which contains precisely

one 0-resolution.

� L denotes a framed, oriented link having a blackboard framed diagram which

is B-adequate (the diagram will also be denoted L).
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� χ will denote the total number of crossings in the diagram L.

� π will denote the total number of positive crossings in the diagram L (only

important for the homological shift, which will be ignored as often as possible).

� χ! will denote the total number of crossings in a minimal B-adequate diagram

for L, ignoring framing (only important for one key bound).

� ζ will denote the total number of circles present in the all-1 resolution of the

diagram L.

� X j
c (Ln) will denote the colored L-S-K spectrum, in q-degree j, of the link L with

all of its components colored with the natural number n; see Definition 3.4.1.

� For each (n, k) ∈ N2, L(n, k) will denote the diagram obtained from L by

cabling all components with n parallel strands, and adding a twist of T−kn to

each cabling between every crossing. That is, if we replace the diagram L with

the graph with vertices at crossings and edges for strands between them, then

each edge would be assigned a T−kn (see the beginning of section 4 in [Roz14b]).

� m will denote the total number of twistings T−kn coming from Jones-Wenzl

projectors in the diagram L(n, k). This plays a similar role to `, the number of

components of the link L, in Chapter 3. However, as the previous item suggests,

m > ` for our diagrams since we will be placing many such twistings on each

component.
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� For any oriented diagram (link or tangle) D, ND will denote the normalization

shift n+ − 2n− counting all crossings in D.

The following notation is important enough to warrant its own definition.

Definition 4.2.2. For a given diagram L as above, the Colored q-degree Shift is the

integer function s(n, k) that counts the normalization shift, the number of crossings,

and the number of circles in the all-1 resolution of the link L(n, k). That is, with

notation as above,

s(n, k) := NL(n,k) + kmn(n− 1) + n2χ+ nζ. (4.2.1)

Remark 4.2.1. Note that nζ is the proper count for the number of circles in the

all-1 resolution of L(n, k), since the T−kn ’s present will become In’s, and the all-1

resolution of a crossing coming from the original diagram gives a cabled version of

the same resolution as in Figure 4.1.

Figure 4.1: Illustration of the all-1 resolution of a crossing in a cabled diagram

Before moving forward, we illustrate the use of these notations to restate the result

of Theorem 1.0.1:
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Theorem 4.2.3 (Theorem 1.0.1 Restated For Uni-Colored Links). For any colored

link Ln with the coloring n on every component, there exists a colored L-S-K spectrum

Xc(Ln) :=
∨
j∈ZX

j+s(n,0)
c (Ln) with wedge summands defined to be the homotopy limits

of the following sequences

X j+s(n,0)(L(n, 0)) � · · ·� X j+s(n,k)(L(n, k)) � · · · (4.2.2)

which stabilize for large enough k. In particular, for large enough k we have a finite-

twist approximation for X j+s(n,0)
c (Ln) as

X j+s(n,0)
c (Ln) ' X j+s(n,k)(L(n, k)) (4.2.3)

Remark 4.2.2. The term s(n, 0) is included in the original wedge summand for

Xc(Ln) for convenience moving forward; note that the terms n2χ and nζ in Equation

4.2.1 are independent of k, and simply persist throughout the sequence (4.2.2).

Proof. This is essentially the sequence built in the proof of Theorem 1.0.2 for X−(D)

as applied to Theorem 1.0.1, except that extra projectors (and thus extra copies

of T−kn ) are present. These extra projectors cause no issues, however, thanks to

Corollary 3.3.4. In the proof of Theorem 1.0.2, the shift in the sequence includes

a normalization term −
∑
kiτi and a crossing counting term

∑
kini(ni − 1). Here

the ki and ni are all equal, and both terms are then absorbed into the shift s(n, k).

Meanwhile, the left-handed twisting of a cabling where all strands are oriented the

same way (in accordance with the orientation of L) means that all of the crossings

involved are negative. This ensures that the homological shifts cancel out (we lose



76

negative crossings at the same rate that we lose 1-resolutions), so no suspensions are

necessary.

We now restate Theorem 1.0.3 in a more precise fashion.

Theorem 4.2.4. Fix a framed, oriented B-adequate link with blackboard framed dia-

gram L. With notation as above, there exist sequences of maps for each j ∈ Z

X j+s(1,0)
c (L1) � Σ−3πX j+s(2,0)

c (L2) � · · ·Σ−(n
2−1)πX j+s(n,0)

c (Ln) � · · · (4.2.4)

that become stable homotopy equivalences for n > χ! − 2j + 1.

This version of Theorem 1.0.3 is the desired final result. However, as indicated

in the previous section, we actually build the required maps by taking finite-twist

approximations for the various Xc(Ln). With the help of Equation 4.2.3 we translate

Theorem 4.2.4 into the following:

Theorem 4.2.5. Fix a framed, oriented B-adequate link with blackboard framed dia-

gram L. With notation as above, for each j ∈ Z and for each (n, k) ∈ N2, there exists

a map denoted Fn,k,j as shown below:

Fn,k,j : Σ−((n+1)2−1)πX j+s(n+1,k)(L(n+ 1, k)) � Σ−(n
2−1)πX j+s(n,k)(L(n, k)) (4.2.5)

such that, for large enough k, the following properties both hold:

1. Both the X (L(n, k)) and X (L(n + 1, k)) terms are stably homotopy equivalent

to their respective colored L-S-K spectra, so that Fn,k,j provides the map Fn,j
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below:

Σ−((n+1)2−1)πX j+s(n+1,0)
c (Ln+1)

'

Σ−((n+1)2−1)πX j+s(n+1,k)(L(n+ 1, k))

�

Σ−(n
2−1)πX j+s(n,k)(L(n, k))
'

Σ−(n
2−1)πX j+s(n,0)

c (Ln)

(4.2.6)

which is used to construct the sequence (4.2.4).

2. For n > χ! − 2j + 1, the map Fn,k,j (and thus, Fn,j) is a stable homotopy

equivalence.

Before discussing the proof of this theorem, we provide a table and example to

illustrate the statement of Theorem 4.2.4. The following lemma and corollary are

provided to avoid useless clutter.

Lemma 4.2.6. For any link L, and for any n ∈ N, we have that j = 0 gives the

maximal possible q-degree for non-zero colored spectrum X j+s(n,0)
c (Ln).

Proof. By the finite-twist approximation (4.2.3), we have that

X j+s(n,0)
c (Ln) ' X j+s(n,k)(L(n, k))

for some large enough k. The link L(n, k) has Khovanov chain complex generator z

with maximal possible q-degree occurring in the all-one resolution, assigning v+ to
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all of the circles. Since the all-one resolution of the left-handed twists give identity

braids, this generator z has q-degree equal to:

degq(z) = #(1-resolutions) + (#(v+)−#(v−)) + (n+ − 2n−)

= #(crossings) + #(circles) +NL(n,k)

= s(n, k).

which corresponds to j = 0.

Corollary 4.2.7. For any link L, and for any n ∈ N, we have that X j+s(n,0)
c (Ln) is

trivial for odd j.

Proof. We see from the proof of Lemma 4.2.6 that in any finite approximation for

X j+s(n,0)
c (Ln), there is a generator in q-degree corresponding to j = 0. The parity

of q-degree is constant throughout the Khovanov chain complex, so we must have j

even.

Remark 4.2.3. Lemma 4.2.6 can be regarded as giving an alternative meaning for

what the grading j, and the shift s(n, k), are describing. We see that s(n, k) is precisely

the maximum possible q-grading for the Khovanov chain complex of L(n, k), and then

j is a measure of how far from that maximum we are. This means j ≤ 0, which

correctly corresponds to building a power series in q−1 for the rational terms in the

decategorified setting of the projectors.

We now present the general table of colored spectra for any link L arranged to

take advantage of Theorem 4.2.4.
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j = 0 j = −2 j = −4 j = −6 . . .

Xc(L1) X s(1,0)
c (L1) ∨ X s(1,0)−2

c (L1) ∨ X s(1,0)−4
c (L1) ∨ X s(1,0)−6

c (L1) ∨ · · ·

Xc(L2) X s(2,0)
c (L2) ∨ X s(2,0)−2

c (L2) ∨ X s(2,0)−4
c (L2) ∨ X s(2,0)−6

c (L2) ∨ · · ·

Xc(L3) X s(3,0)
c (L3) ∨ X s(3,0)−2

c (L3) ∨ X s(3,0)−4
c (L3) ∨ X s(3,0)−6

c (L3) ∨ · · ·

...
...

...
...

...

Table 4.1: The table of uni-colored L-S-K spectra for a link L, with the vertical axis

indicating color via subscript on L and the horizontal axis indicating the suitably

normalized q-degree; stabilization occurs vertically starting at a color that depends

on both j (the column) and L.
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With Table 4.1 in mind, we can reinterpret some of the theorems stated above.

� Theorem 4.2.3 guarantees that all of the colored L-S-K spectra in Table 4.1

exist, and Equation 4.2.3 guarantees that any one of them is stably homotopy

equivalent to the spectrum of a finite-twist approximation L(n, k). Note that

there is no single bound for k that approximates all of the spectra in the table

at once, since the bound would depend on both j and n.

� Theorem 4.2.4 asserts that there are ‘vertical’ maps connecting all of the terms in

any column of Table 4.1, and furthermore that these maps are stable homotopy

equivalences for n > χ! − 2j + 1. Thus in any given column (fixed j) we see

that the spectra are all stably equivalent for large enough n. This is the general

statement of Theorem 1.0.3.

� Theorem 4.2.5 is the stepping stone to proving Theorem 4.2.4. It asserts the

existence of the vertical maps after replacing each entry in Table 4.1 by its cor-

responding finite-twist approximation as guaranteed by Equation 4.2.3. Since

we build the maps one at a time, we can focus on two adjacent entries in one

column of the table (fix j and focus on n and n + 1 for some n) and take k to

be larger than both stability bounds for these two entries. Then this vertical

map composes with the finite-twist approximation equivalences as in Equation

4.2.6 to give the maps asserted by Theorem 4.2.4.

To illustrate the stabilization as n → ∞, we build the table for L being the
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simplest non-trivial link, that is, the positive Hopf link.

Example 4.2.8. Let L be the positive Hopf link. The reader can quickly verify that

χ = χ! = 2

ζ = 2

NL = 2

s(n, 0) = NL(n,0) + 0 + n2χ+ nζ

= n2NL + n2χ+ nζ

= 4n2 + 2n

which means that the bound n > χ! − 2j + 1 for stabilization becomes

n > 3− 2j.

Thus we have Table 4.2 for the Hopf link.

Notice that in the second column of Table 4.2, stabilization begins after n = 8

(n > 3−2(−2) = 7). Also, note the absence of horizontal dots in the first row. When

n = 1, the colored Khovanov homology (and spectrum) is just the usual Khovanov

homology (and spectrum), which we know only exists in these 4 q-degrees for the

positive Hopf link L.

4.3 The Proof

As mentioned in the discussion on strategy above, the maps Fn,k,j will be lifts of the

maps fn defined in Theorem 2.12 of [Roz14b]. In that paper, Rozansky considers these
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j = 0 j = −2 j = −4 j = −6 . . .

Xc(L1) X 6
c (L1) ∨ X 4

c (L1) ∨ X 2
c (L1) ∨ X 0

c (L1)

Xc(L2) X 20
c (L2) ∨ X 18

c (L2) ∨ X 16
c (L2) ∨ X 14

c (L2) ∨ · · ·

Xc(L3) X 42
c (L3) ∨ X 40

c (L3) ∨ X 38
c (L3) ∨ X 36

c (L3) ∨ · · ·

Xc(L4) X 72
c (L4) ∨ X 70

c (L4) ∨ X 68
c (L4) ∨ X 66

c (L4) ∨ · · ·

'
Xc(L5) X 110

c (L5) ∨ X 108
c (L5) ∨ X 106

c (L5) ∨ X 104
c (L5) ∨ · · ·

'

Xc(L6) X 156
c (L6) ∨ X 154

c (L6) ∨ X 152
c (L6) ∨ X 150

c (L6) ∨ · · ·

'

Xc(L7) X 210
c (L7) ∨ X 208

c (L7) ∨ X 206
c (L7) ∨ X 204

c (L7) ∨ · · ·

'

Xc(L8) X 272
c (L8) ∨ X 270

c (L8) ∨ X 268
c (L8) ∨ X 266

c (L8) ∨ · · ·

' '

...
...

...
...

...

Table 4.2: The table of uni-colored L-S-K spectra for the positive Hopf link L; the

vertical stable homotopy equivalences begin when n > 3− 2j, illustrated in the first

two columns.
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as grading-preserving maps between ‘shifted colored Khovanov homology groups’:

fn : H̃ iR,jR(Ln) −→ H̃ iR,jR(Ln+1) (4.3.1)

where we have used iR and jR to denote Rozansky’s grading conventions. [Roz14b]

asserts the existence of these maps, and the fact that they are isomorphisms so long

as iR ≤ n− 1.

Here, we first provide the translation between Rozansky’s grading conventions and

our own. The reader can verify from [Roz14b] that

iR =#cros−#1-resolutions = #0-resolutions (4.3.2)

jR =− (#(v+)−#(v−)) + nζ (4.3.3)

where the #cros term refers to the total number of crossings in the diagram DLn (see

Figure 2.6 in Section 4). From this and Equations 2.2.11 and 2.2.12 we see that

i = −iR + n+ (4.3.4)

j = (−iR − jR) + (n+ − 2n−) + #cros + nζ (4.3.5)

where the n+ and n− are counting positive and negative crossings in the diagram DLn .

Although some further simplifications are possible, this format most clearly matches

the format seen in the sequence (4.2.4) of Theorem 4.2.4 involving the s(n, k) shift.

Now these colored homology groups use the diagrams DLn containing the cate-

gorified Jones-Wenzl projectors. In [Roz14a] these categorified projectors are defined

as stable limits of complexes using T−kn in place of the projectors, as in the proof of
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Theorem 1.0.1. This means that for large enough k the following homology groups

match:

H̃ iR,jR(Ln) ∼= H̃ iR,jR(DLn(k))

H̃ iR,jR(Ln+1) ∼= H̃ iR,jR(DLn+1(k))

so long as iR ≤ n−1, the homological range which we are interested in. Thus we may

focus on these finite-twist approximations of the colored links Ln, and the maps fn

in this context will give rise to the maps Fn,k,j we seek. The reader may check that

the grading shifts now correspond to those present in Equation 4.2.5.

Now we prove the two lemmas that correspond to the two points discussed in the

beginning of this section. For the first lemma, we avoid going into detail about the

precise definition of the maps fn; the interested reader should consult sections 3 and

4 of [Roz14b].

Lemma 4.3.1. The maps fn of Rozansky can be lifted to maps Fn,k,j as in Equation

4.2.5.

Proof. The maps fn are built out of several sorts of maps corresponding to local

transformations as in Section 4 of [Roz14b]:

1. Reidemeister moves involving strands away from the projectors.

2. Short exact sequences of complexes arising from resolving a crossing away from

the projectors.
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3. ‘Straightening braids’ via resolving crossings adjacent to projectors.

4. Adding new Pn projectors adjacent to an existing Pn+1 projector, and other

similar uses of the idempotent-like behavior of the categorified projectors.

5. ‘Sliding’ projectors above and below other strands.

6. Viewing the categorified Pn+1 as a cone of a map C → In+1 where the complex

C involves no identity braid diagrams (there are further grading conditions; see

both [Roz14a] and [Roz14b]). This allow a short exact sequence roughly of the

form KC (〈C,Z〉) ↪→ KC (〈Pn+1,Z〉) � KC (〈In+1,Z〉).

The first two types of maps clearly extend first to the finite-twist approximations,

then to the corresponding spectra (type 1 can be viewed as the content of Section

6 of [LS14a], while type 2 is Lemma 2.3.7 also based on [LS14a]). Types 3 and

4 lift in a manner corresponding to Corollaries 3.3.3 and 3.3.4 respectively, giving

stable homotopy equivalences for large enough k. Type 5 is just a combination of

Reidemeister moves on the level of the finite-twist approximation, as in the proof of

well-definedness of the colored spectrum (proof of Theorem 1.0.1 in Section 4.2).

For type 6, we return to [Roz14a] where the cone format of the categorified Pn+1

is derived based on the finite-twist approximations, which exhibit this cone structure

via resolving all of the crossings in the twisting. And so this map lifts to a long

composition of maps of spectra coming from the cofibrations (2.3.2) which, on the

level of homology, is precisely the desired map.
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We note here that some of these maps giving stable homotopy equivalences (es-

pecially types 3 and 4) rely not just on Rozansky’s bounds, but in the new setting

on a proper lower bound for k. Since there are only finitely many such moves used

to build the map fn, we can always force k to be large enough to satisfy all of these

lower bounds before we begin.

The second lemma requires the following theorem from [Roz14b].

Theorem 4.3.2 ([Roz14b] Theorem 2.1). Using the notation of Equation 4.3.1, we

have that H̃ iR,jR(Ln) = 0 for jR < −1
2
(iR + χ!).

Proof. This is one of several bounds on non-zero shifted colored Khovanov homology

provided by Theorem 2.1 in [Roz14b]. It is treated as a corollary of Theorem 2.11

which is proved with a spectral sequence built from the multicone presentation of

the colored Khovanov chain complex resulting from resolving crossings away from the

projectors. See Section 5 of that paper.

Using this result we can prove the following.

Lemma 4.3.3. Fix j ∈ Z. Then for n > χ! − 2j + 1, we have (for large enough k)

H i(Σ−(n
2−1)πX j+s(n,k)(L(n, k))) = 0

for all i < π − n+ 1, which is equivalent to all iR > n− 1 for H̃ iR,jR(Ln).

Proof. For large enough k we have

H i(Σ−(n
2−1)πX j+s(n,k)(L(n, k))) ∼= H i+(n2−1)πX j+s(n,0)

c (Ln)) ∼= H̃ iR,jR(Ln)
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Definition 4.2.2 describes s(n, k) as a count of normalizations, crossings, and circles.

This allows us to use Equations 2.2.12 and 4.3.2 to convert:

j + s(n, k) = j +NL(n,k) + #crossings(L(n, k)) + nζ

= #(1-resolutions) + (#(v+)−#(v−)) +NL(n,k)

j + #0-resolutions + nζ = (#(v+)−#(v−))

so that

jR =−#(v+ − v−) + nζ

=− j −#0-resolutions

=− j − iR.

The last line follows from the fact that the suspensions are designed to ensure that iR

counting 0-resolutions in Ln is the same as counting 0-resolutions in the finite-twist

approximation L(n, k). A similar (and simpler) conversion ensures that the bound

i < π − n + 1 is equivalent to iR > n − 1. Meanwhile, the bound n > χ! − 2j + 1

quickly yields

j >
1

2
(χ! − n+ 1).

Combining all of these gives, for n > χ! − 2j + 1 and i < π − n+ 1 (iR > n− 1),

jR = −j − iR

< −1

2
(χ! − n+ 1)− iR

< −1

2
(χ! + iR)
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which is precisely the bound of Theorem 4.3.2 for zero homology as desired.

Proof of Theorem 4.2.5. From Lemma 4.3.1, we have the existence of the required

maps Fn,k,j that induce isomorphisms on homology for all homological gradings cor-

responding to iR ≤ n− 1. From Lemma 4.3.3, once n > χ! − 2j + 1 all of the spaces

involved have zero homology in all homological gradings corresponding to iR > n−1.

Therefore for n > χ! − 2j + 1 the maps Fn,k,j induce isomorphisms on all homology

groups, and so by Whitehead’s theorem they are stable homotopy equivalences as

desired.

As noted above, this provides the proof of Theorem 1.0.3.

4.4 A More Explicit Tail for the Colored L-S-K

Spectrum of the Unknot

In this final section we prove Theorem 1.0.4 by giving an alternative, more explicit

proof showing the tail behavior for the colored L-S-K spectrum of the unknot. Since

cabling an unknot with a torus braid twist simply produces the torus links T (n,m),

we use the notation X (T (n,∞)) for the spectrum of the n-colored unknot. Along the

way, we will also be able to prove Corollary 1.0.5.

Remark 4.4.1. There is an important distinction to be made here. Earlier, the

notation Tk
n was used to denote a torus braid consisting of k full (right-handed)
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twists. Now we use the notation T (n,m) to denote a torus link with m fractional 1
n

th

(right-handed) twists. The reasons for this change will be made clear moving forward.

To begin with, we give our precise limiting definition in this setting of fractionally

twisting torus links.

Definition 4.4.1.

X (T (n,∞)) =
∨
j∈ZX j−n(T (n,∞)), where for each j ∈ Z,

X j−n(T (n,∞)) := hocolim
[
X j−n(T (n, 0)) ↪→ · · · ↪→ X (j−n)+m(n−1)(T (n,m)) ↪→ · · ·

]
(4.4.1)

Note that the q-degree shift of −n in this definition plays a role similar to that of

the term s(n, 0) in Sections 4.2 and 4.3. (Indeed, since the unknot has no crossings

and one circle in any resolution, this term is precisely s(n, 0); the negation is because

we will be considering right-handed twisting rather than left-handed). The maps in

this sequence come from resolving crossings, precisely as in Proposition 3.2.1.

Before going into the details of the proof, we provide Table 4.3 to illustrate the

goal of the construction, similar to Table 4.1 for the general case. As in Lemma 4.2.6

and Corollary 4.2.7, we have only even values for the q-degree j starting at j = 0.

The goal of this section will be to construct the ‘vertical’ stable homotopy equiva-

lences already presented in Table 4.3. Note that, like in the general case (Table 4.1),

the j terms are arranged to ‘start’ at zero, but now increase in the positive direction.

This stems from the fact that we will be using right-handed twists rather than the
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j = 0 j = 2 j = 4 j = 6 . . .

X (1,∞) X−1(1,∞) ∨ X 1(1,∞)

' '
X (2,∞) X−2(2,∞) ∨ X 0(2,∞) ∨ X 2(2,∞) ∨ X 4(2,∞) ∨ · · ·

' ' '

X (3,∞) X−3(3,∞) ∨ X−1(3,∞) ∨ X 1(3,∞) ∨ X 3(3,∞) ∨ · · ·

' ' ' '

X (4,∞) X−4(4,∞) ∨ X−2(4,∞) ∨ X 0(4,∞) ∨ X 2(4,∞) ∨ · · ·

' ' ' '

...
...

...
...

...

Table 4.3: The table of colored L-S-K spectra for the unknot, notated as spectra of

torus links (the T is dropped from the notation), with the horizontal axis indicating

suitably normalized q-degree; the vertical stabilizations in each column besides the

first begin along the diagonal n = j/2.
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left-handed twists considered in the previous section. Also, since T (1,∞) is just an

unknot, there is no need for an infinite wedge sum in the first row (similar to the first

row in Table 4.2 for the Hopf link; see Example 4.2.8).

The construction of these vertical maps follows a simple observation. It is well

known that the torus links satisfy T (n, n + 1) ∼= T (n + 1, n). The sequences used

to build X (T (n,∞)) in Definition 4.4.1 are based on going from X (T (n,m)) ↪→

X (T (n,m+ 1)). We can combine these two ideas to see a ‘diagonal’ sequence of the

form (omitting the T from the notation):

X (n, n− 1) ↪→ X (n, n) ↪→ X (n, n+ 1) ↪→ · · ·

'

X (n+ 1, n) ↪→ X (n+ 1, n+ 1) ↪→ X (n+ 1, n+ 2) ↪→ · · ·

'

X (n+ 2, n+ 1) ↪→ · · ·

. . .

(4.4.2)

If we can find a lower bound on n so that all of these maps are stable homotopy

equivalences, including the horizontal dots (indicating that in fact X (n, n − 1) '

X (n,∞), and similarly for the other rows), we would have stable equivalences between

spectra X (n,∞) as n → ∞ as desired. Of course, this cannot be done once and for

all; instead, it is done one (shifting) q-degree at a time. The vertical equivalences in

Table 4.3 will be precisely the resulting maps.

We begin with the horizontal maps.
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Theorem 4.4.2. Fix j ∈ Z and n ∈ N. Then for m ≥ max(j−n, n−1), the sequence

(4.4.1) stabilizes. That is, the maps

X (j−n)+m(n−1)(T (n,m)) ↪→ X (j−n)+(m+1)(n−1)(T (n,m+ 1)) (4.4.3)

are stable homotopy equivalences.

Proof. Since this proof requires updating all of the notation and bounds of Proposition

3.2.2, we relegate this to an appendix (Subsection 4.4.1) at the end of the chapter.

Proof of Corollary 1.0.5. For the case when n = 3 and j = 6, we have

X 3(T (3,∞)) ' X 9(T (3, 3)) ' X 11(T (3, 4)) ' X 13(T (3, 5)) ' · · · (4.4.4)

and it is shown in [LS14c] that X 11(T (3, 4)) has non-trivial Sq2 action.

With the bounds of Theorem 4.4.2 in place, we are ready to provide the vertical

equivalences of Table 4.3 via the idea of Equation 4.4.2.

Lemma 4.4.3. Fix j ∈ (2N ∪ 0). Then for n ≥ j
2
, we have

X j−n(T (n,∞)) '


X (j/2)2(T ( j

2
, j
2
)) n = j

2

X j−n+(n−1)2(T (n, n− 1)) n > j
2

(4.4.5)

X j−(n+1)(T (n+ 1,∞)) ' X j−(n+1)+n2

(T (n+ 1, n)) (4.4.6)

Proof. This follows directly from Theorem 4.4.2. When n = j
2
, the j − n term

dominates in the bound m ≥ max(j − n, n − 1), and the sequence (4.4.1) stabilizes



93

once m = j − n = j
2
. If n > j

2
, the n− 1 term dominates and the sequence stablizes

as soon as m = n− 1. Note that if j = 0, then for any n we are automatically in this

second case. Meanwhile, if n ≥ j
2
, then n+ 1 > j

2
and this gives Equation 4.4.6.

Lemma 4.4.4. For n ≥ j
2

as above, define the map φn,j to be the composition below

(we omit the first term and first map if n = j
2
)

X j−n+(n−1)2(T (n, n− 1))

↓

X j−n+n(n−1)(T (n, n))

↓

X j−n+(n+1)(n−1)(T (n, n+ 1))

'

X j−(n+1)+n2

(T (n+ 1, n))

where the first two maps are the same maps appearing in the sequence (4.4.1), and

the final equivalence comes from the isotopy T (n,m) ∼= T (m,n). Then φn,j defines a

stable homotopy equivalence

φn,j : X j−n+(n−1)2(T (n, n− 1))
'−→ X j−(n+1)+n2

(T (n+ 1, n)).

Proof. As in the previous lemma, the first two maps are stable homotopy equivalences

due to the bound in Theorem 4.4.2.

Remark 4.4.2. We see that this map φn,j plays a role similar to that of the Fn,j of
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the previous section, but is much easier to define than the maps fn in [Roz14b] that

lead to Fn,j.

Proof of Theorem 1.0.4. Combining Lemmas 4.4.3 and 4.4.4 gives stable homotopy

equivalences

X j−n(T (n,∞))

Lemma 4.4.3

'

X j−n+(n−1)2(T (n, n− 1))

Lemma 4.4.4

'

X j−(n+1)+n2

(T (n+ 1, n))

Lemma 4.4.3

'

X j−(n+1)(T (n+ 1,∞))

for arbitrary n > j
2
, which gives all of the necessary stable homotopy equivalences

as indicated in Table 4.3 but for the initial ones in each column. The calculations

presented in Theorem 1.0.4 refer to these initial equivalences that mark the beginning

of the stabilization, that is when n = j
2

so that we are considering X j/2(T ( j
2
,∞)). In

this case, Lemma 4.4.3 shows that X j/2(T ( j
2
,∞)) ' X (j/2)2(T ( j

2
, j
2
)) so long as j > 0,

from which point the same construction gives the initial stable homotopy equivalence.

Meanwhile the j = 0 case stabilizes immediately (ie for n = 1) giving the spectrum

of an unknot, which is known to be the sphere spectrum in q-degrees ±1.
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Remark 4.4.3. It is clear that a similar argument could be used to define X (Uγ) for

an unlink U allowing the colors on each component to tend to infinity. We do not go

through the calculation here.

We conclude with a brief discussion on the differences between the new approach of

this section and the general approach of the previous one. One difference is that we use

right-handed twisting in this new approach, but this is of no consequence and a left-

handed version of the new approach could easily be derived. The important difference

is that, in the general case, the stable homotopy equivalences required are based on

Rozansky’s maps fn which are very complicated, requiring multiple properties of the

categorified projectors (idempotency, straightening adjacent braids, a careful multi-

cone presentation). Even with no crossings (as in the unknot or unlink), the passage

from cabling with n strands to cabling with n+ 1 requires extra projectors and clever

manipulations between them. In our new approach for the unknot, the only maps

required are those that already arise in the stable sequence (4.4.1) based on resolving

crossings, and maps derived from Reidemeister moves providing the isotopy between

T (n, n + 1) and T (n + 1, n). In fact this new approach views the tail of the colored

L-S-K spectra of the unknot as a stabilization (one q-degree at a time) of the sequence

X (T (n + 1, n)) as n → ∞, rather than as a statement about categorified projectors

and colored spectra in the usual sense.

The simple form of the maps used in this approach also gives an improvement on

the bound on n for stabilization. In Rozansky’s approach, the bound grows like 2j,
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while here the bound grows like j
2
. Compare Table 4.3 to Table 4.2 to see the gap

between beginning of stabilization for adjacent columns in the two cases.

4.4.1 Proof of Theorem 4.4.2

The map of Equation 4.4.3 is built in the same way as the maps of Proposition 3.2.1.

We have cofibration sequences similar to those in Figure 3.3 where the tangle Z is now

just the vertical identity tangle I, and the full twists on the left are now allowed to be

fractional twists. In a slight abuse of notation, we set D0 := T (n,m) and Di to be the

link obtained from Di−1 by resolving the ‘topmost’ crossing of Di as a 0-resolution,

and Ei obtained from Di−1 by resolving the topmost crossing as a 1-resolution. Note

that these symbols are links now, not tangles, since we do not need to keep track of

the extra tangle Z. See Figure 4.2.

The concept of this proof is the same as that of Proposition 3.2.2. That is, we

write out a cofibration sequence for each i = 1, . . . , n− 1

X (j−n)+NDi (Di) ↪→ X (j−n)+NDi−1 (Di−1) � X (j−n)−1+NEi (Ei) (4.4.7)

and try to show that all of the terms X (j−n)+NEi (Ei) are homologically trivial. The

only ingredient from before that is missing here is a counting lemma similar to Lemma

3.1.3 for the Ei that are encountered here (in particular, these Ei involve fractional

twists instead of full twists). Thus, our main goal is to prove

Lemma 4.4.5. Any diagram Ei coming from T (n,m+ 1) as above can be simplified
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Figure 4.2: The new definition for Di and Ei, illustrated for the case n = 4, m = 2.

In this case, D0 = T (4, 3), while D3 = Dn−1 = T (4, 2).

by Reidemeister moves to a new positive link diagram E ′i by pulling the turnbacks

through the twisting. Letting NEi and NE′i
denote the normalization shifts n+ − 2n−

for each of these diagrams, we have for m ≥ n− 1

NE′i
> NEi + n+m− 2 (4.4.8)

Proof. For m ≥ n, this bound follows from Lemma 1 in [Sto07]. The count n+m− 2
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is a direct translation of Stošić’s count of negative crossings in the diagram Ei, and

each negative crossing gets removed by either a Reidemeister 1 or Reidemeister 2

move as we pull the turnback through the diagram to arrive at E ′i. Reidemeister 2

moves shift the normalization by precisely 1 (loss of one positive and one negative

crossings affecting N = n+− 2n−), while the Reidemeister 1 moves will clearly be for

negative crossings giving a shift of 2. Because m ≥ n, we have at least one full twist

to pull through which guarantees at least 2 Reidemeister 1 moves, which accounts for

the strict inequality. Indeed in this case, we are guaranteed NE′i
> NEi + n + m− 1

because we have at least 2 such moves.

When m = n − 1, we treat E1 separately from the other Ei. For E1 we see

the diagram illustrated in Figure 4.3, where the strands are closed up outside of the

picture in the usual way. The red circles clearly indicate that the turnback can be

pulled through via n−2 Reidemeister 2 moves, then a negative Reidemeister 1 move,

then another n− 2 Reidemeister 2 moves. The shifts above quickly show that

NE′i
= NEi + 2n− 2 = NEi + n+m− 1

indicating that we do need the precise form of Equation 4.4.8.

For Ei>1, we see that the turnback can be pulled through the torus braid T (n, n−1)

leaving us with a copy of T (n − 2, n − 3) as in Figure 4.4 (note that we use the

notation T to indicate the fractionally twisting torus braid rather than the complete

torus link). Now we count crossings similarly to the proof of Lemma 3.1.3. The initial

braid T (n, n− 1) had (n− 1)2 crossings, while the new T (n− 2, n− 3) has (n− 3)2
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Figure 4.3: The picture for E1, where the topmost turnback is pulled around the

cabling allowing for the diagram on the right; the red circles indicate Reidemeister

moves that will occur while pulling the turnback through the twisting.

crossings. The crossings ‘above’ the braid remain unchanged, so the total change in

the number of crossings is (n− 1)2 − (n− 3)2 = 4n− 8. Since the turnback was able

to swing completely around the entire torus braid (see the red dashed line in Figure

4.4), it must have accomplished precisely two (negative) Reidemeister 1 moves (ie a

shift of 4). This leaves 4n − 10 crossings eliminated by Reidemeister 2 moves (see

Figure 4.3 to see that these are the only moves involved), ie a shift of 2n − 5. We

compute a total shift of 2n− 1 = m+ n, again verifying the inequality.

The bound m ≥ n−1 contributes the (n−1) term in the bound given in Theorem

4.4.2. Meanwhile, we also need a bound on the minimal q-degree of our E ′i similar to



100

Figure 4.4: The picture for Ei>1; the topmost turnback is pulled around the cabling

and then through the torus braid T (n, n− 1) along the indicated dashed line, elimi-

nating two strands from the braid but keeping the twisting at one strand less than a

full twist, leaving us with T (n− 2, n− 3).

Equation 3.2.7.

Lemma 4.4.6. For each i = 1, . . . , n− 1, the diagram E ′i coming from Lemma 4.4.5

has minimal q-degree bound

min
q

(E ′i) ≥ NE′i
− (n− 1). (4.4.9)

Proof. Using the same logic as Equation 3.2.7, we have

min
q

(E ′i) ≥ NE′i
−#circ(E ′i,all-zero)

≥ NE′i
− (n− 1)

where we bound the number of circles #circ(E ′i,all-zero) ≤ n − 1 as follows. Each

disjoint circle must have at least one local max. The diagram T (n,m) begins with n



101

local maxima. When we resolve one (and only one) crossing as a 1-resolution ( ) to

create Ei, this pushes us to n + 1 local maxima. However, since we pull the upper

turnback around the diagram down to the bottom, we lose two local maxima, putting

us at n− 1. None of the moves during the simplification from Ei to E ′i introduce any

new maxima. Thus we have the necessary bound.

We now prove Theorem 4.4.2 by appealing to the logic of the proof of Proposition

3.2.2. For any i = 1, . . . , n − 1, we have that X (n−j)−1+NEi (Ei) ' X (n−j)−1+NEi (E ′i).

But using Lemmas 4.4.5 and 4.4.6 (valid since we assume m ≥ n−1), our assumption

that m ≥ (j − n) implies

(j − n)− 1 +NEi ≤ m− 1 +NEi

< NE′i
− n+ 1

≤ min
q

(E ′i)

And thus X (n−j)−1+NEi (Ei) is trivial for all i, and so all of the X (j−n)+NDi (Di) are

stably homotopy equivalent, and since D0 = T (n,m + 1) and Dn−1 = T (n,m), we

are done.
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Chapter 5

THE KHOVANOV HOMOLOGY
AND L-S-K SPECTRUM FOR
MORE GENERAL INFINITE
BRAIDS

The purpose of this chapter is to prove Theorem 1.0.6, and then to state and prove

a similar theorem for L-S-K spectra. All of the work in this chapter was done in

collaboration with Gabriel Islambouli. We will begin by reviewing some homological

algebra necessary for handling the limits of complexes arising from our infinite braids,

mostly borrowed from the groundwork in [Roz14a] used to prove Theorem 2.2.4.

Throughout this chapter, the notations h and q will be used to denote shifts in

homological grading and q-grading, respectively, of Khovanov chain complexes (see

Remark 5.1.1 to avoid potential confusion with the shifts involved in earlier notation).



103

5.1 Homological Algebra and Rozansky’s Infinite

Twist

5.1.1 A Closer Look at the Khovanov Chain Complex

We begin by recalling Equation 2.3.1 as it applies to a tangle Z. We will be handling

this cone construction more carefully moving forward, so we restate it here as a lemma.

Lemma 5.1.1. Let Z be an oriented tangle, with a specified crossing . Let Z0

denote the same tangle with the crossing replaced by its 0-resolution , and let Z1

denote the same with the 1-resolution . Then the shifted Khovanov complex of Z

can be viewed as a mapping cone:

hn
−

q−NKC(Z) = Cone
(

hn
−
0 q−N0KC(Z0) −→ hn

−
1 q−N1+1KC(Z1)

)
. (5.1.1)

Here n− indicates the number of negative crossings in Z, while N indicates n+−2n−,

the number of positive crossings minus twice the number of negative crossings in Z.

The subscripts n−i and Ni indicate the same counts of crossings in Zi for i = 0, 1.

The main arguments of this chapter will use this construction in an iterated fashion

over many crossings. As such, the Cone() notation and the subscripts for the grading

shifts quickly become unwieldy. For this reason, we drop the word Cone from the

notation and adopt the following convention:

Definition 5.1.2. The symbols n− and N := n+−2n− will count positive and negative
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crossings in whatever tangle they appear with. Thus Equation 5.1.1 will be written as

hn
−

q−NKC(Z) =
(

hn
−

q−NKC(Z0) −→ hn
−

q−N+1KC(Z1)
)

(5.1.2)

and it will be understood that the various n− and N are actually different numbers

within this mapping cone.

Corollary 5.1.3. Given tangles Z,Z0, and Z1 as in Lemma 5.1.1, there is a chain

map hn
−

q−NKC(Z) → hn
−

q−NKC(Z0) with mapping cone that is chain homotopy

equivalent to hn
−+1q−N+1KC(Z1).

Now in our normalization, KC itself is invariant under all Reidemeister moves.

Combining this with the notational convention of Definition 5.1.2 gives the following

shifts for the (negative) Reidemeister I and Reidemeister II moves that we shall need

later.

hn
−

q−NKC

( )
' hn

−+1q−N+2KC
( )

(5.1.3)

hn
−

q−NKC

( )
' hn

−+1q−N+1KC

( )
' hn

−
q−NKC

( )
(5.1.4)

Compare these shifts to those that occur using the grading conventions in [Roz14a],

and to the counting arguments used in the earlier chapters (particularly Lemma 4.4.5).

Meanwhile, since Reidemeister III moves only change the arrangement of crossings

rather than their number or orientation, we see that Reidemeister III moves incur no

shifts to either homological or q-grading even within this renormalized setting.



105

Figure 5.1: The fractional twist T and the full twist T = T n in the case n = 4.

Remark 5.1.1. There is a potential for confusion in the shifting notation used here.

The shifting functors h (or Σ) and q indicate a shift in homological and q-degrees for

KC and X . However, a superscript on KC or X indicates a specified degree, and

this specification is taken to occur after any indicated shifts. For example, for any

given j ∈ Z, we have that q−NKCj(L) = (q−NKC)j(L) = KCj+N(L).

5.1.2 Limits of Chain Complexes and Rozansky’s Infinite

Twist

Definition 5.1.4. In the braid group Bn on n strands, the symbol T will denote

the fractional (right-handed) twist T := σ1σ2 · · ·σn−1. We will continue to use the

notation T for the full twist T = T n.

In [Roz14a] Lev Rozansky provided a notion of a system of chain complexes

stabilizing to some limiting complex, and proved Theorem 2.2.4 stating that

limk→∞ hn
−

q−NKC(Tk
n) ∼= Pn.
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Remark 5.1.2. In fact Rozansky’s original result concerned left-handed rather than

right-handed twisting, but the methods clearly translate to the right handed case with

no trouble. The left-handed version recovers a power series expansion of Pn in the

variable q−1; see Remark 2.2.6.

For a full account of the notions involved with such limiting complexes, see

[Roz14a]. Here we recall only the material most helpful for our current purposes,

translated to right-handed twisting.

Definition 5.1.5. Given a chain map A
f−→ B between chain complexes, let |f |h

denote the maximal degree d for which the complex Cone(f) is chain homotopy equiv-

alent to a complex C that is trivial below homological degree d.

In essence, |f |h denotes the maximal homological degree through which the map

f gives a chain homotopy equivalence between A and B. Note that all of the chain

complexes being discussed here have differential increasing homological degree by 1

(as in the Khovanov chain complex).

Definition 5.1.6. An inverse system of chain complexes is a sequence of chain maps

{Ak, fk} := A1
f1←− A2

f2←− · · · (5.1.5)

Such a system is called Cauchy if the maps fk satisfy |fk|h →∞ as k →∞.

Definition 5.1.7. An inverse system {Ak, fk} has a (inverse) limit A∞ :=

limk→∞Ak if there exist maps f̃k : A∞ → Ak that commute with the system maps fk

such that |f̃k|h →∞ as k →∞.



107

Theorem 5.1.8 (Theorem 2.5 in [Roz14a]). An inverse system of chain complexes

{Ak, fk} has a limit A∞ if and only if it is Cauchy.

Unwinding the definitions and results in [Roz14a], we see that the limiting complex

A∞ of Theorem 5.1.8 is, up through homological degree d, chain homotopy equivalent

to the corresponding Ak0 beyond which all of the maps fk≥k0 satisfy |fk≥k0|h ≥ d.

In this sense the chain complexes Ak stabilize to give the limiting complex A∞ “one

homological degree at a time”. Thus if we have a second inverse system of B`’s with

homotopy equivalences to the Ak’s up through ever-increasing homological degrees,

we should be able to conclude that B∞ ' A∞. The following proposition clarifies

this idea.

Proposition 5.1.9. Suppose {Ak, fk} and {B`, g`} are Cauchy inverse systems with

limits A∞ = limk→∞Ak and B∞ = lim`→∞B` respectively. Suppose there are maps

F` : B` → Ak=z(`)

(z(`) is an increasing function of `, not necessarily strict, such that z(`) → ∞ as

`→∞) forming a commuting diagram with the system maps fk and g`. If |F`|h →∞

as `→∞, then B∞ ' A∞.

Proof. Similar to the proof of Proposition 3.13 in [Roz14a], the definition of the limit

provides maps that compose with the maps F` to give maps from B∞ to all of the

Ak (this may require composing with some of the maps fk). Thus there is a map

F∞ : B∞ → A∞ making commutative diagrams with all of the f̃k (see Theorem 3.9
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in [Roz14a]). All of the other maps have homological order going to infinity as ` and

k go to infinity, forcing |F∞|h = ∞ and thus B∞ ' A∞. Figure 5.2 illustrates the

situation that will occur within this chapter.

5.2 Proving Theorem 1.0.6

5.2.1 An Overview

Definition 5.2.1. A semi-infinite right-handed braid B on n strands is a semi-infinite

word in the standard generators σi of the braid group Bn

B := σj1σj2 · · · (5.2.1)

Such a braid is called complete if each σi for i = 1, 2, . . . , n− 1 occurs infinitely often

in the word for B.

Such an infinite braid B is called right-handed because there are no left-handed

crossings (σ−1i ) allowed.

Definition 5.2.2. Given a semi-infinite right-handed braid B = σj1σj2 · · · , the `th

partial braid of B shall be the braid B` := σj1σj2 · · · σj`.

The proof of Theorem 1.0.6 will be based upon Proposition 5.1.9 and, in particular,

Figure 5.2. With that diagram in mind, we have the following correspondences.

1. The chain complexes hn
−

q−NKC(T kn) will play the role of the Ak.
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Figure 5.2: The diagram for Proposition 5.1.9. Given the two Cauchy systems

{Ak, fk} and {B`, g`}, [Roz14a] provides the complexes A∞,B∞ and the maps f̃ , g̃.

If we can find maps F (shown in red), then [Roz14a] also provides the map F∞ (blue).

If we can show |F`|h →∞ as `→∞, then F∞ is a chain homotopy equivalence.
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2. Theorem 2.2.4 then guarantees that A∞ ' Pn.

3. Given a semi-infinite right-handed braid B := σj1σj2 · · · , the chain complexes

hn
−

q−NKC(B`) will play the role of the B`.

4. Each map g` will be precisely the map of Corollary 5.1.3 obtained by resolving

the crossing σj`+1
. The maps fk are just compositions of such maps, as in

[Roz14a].

5. The maps F` will be constructed via iterating Corollary 5.1.3 over a careful

choice of crossings to resolve.

6. The function k = z(`) will be based upon how far along the infinite braid B we

must look before we can “see” the braid T kn sitting within B`.

7. The estimates on |F`|h will be based upon Corollary 5.1.3 together with care-

ful use of Equations 5.1.3 and 5.1.4. Similar arguments will estimate |g`|h to

guarantee that {B`, g`} was indeed Cauchy.

5.2.2 The Details

Fix the number of strands n. We begin with a semi-infinite, right-handed, complete

braid B and set out to prove Theorem 1.0.6 via Proposition 5.1.9 using the list of the

overview. The points 1-4 of the overview require no further explanation. We begin
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with points 5 and 6, that is, the construction of the map

F` : hn
−

q−NKC(B`)→ hn
−

q−NKC(T kn)

where k = z(`) must be determined.

Given the braid B`, we start at the top of the braid (beginning of the braid word)

and seek the first occurrence of generator σ1. From that point we go downward

and find the first occurrence of σ2, and so forth until we reach σn−1. In this way

we have found crossings within B` that would, in the absence of the crossings we

“skipped”, give a single copy of T 1. We connect these crossings with a dashed line

going rightward then downward as in Figure 5.3, and we call such a set of crossings a

diagonal. The crossings involved are called diagonal crossings. Having found such a

diagonal within B`, we work our way back up the braid B` in the same way going from

the diagonal σn−1 to the previous (not necessarily diagonal) σn−2 and so forth until

we reach another σ1 (if there were no skipped crossings, we are now back at the σ1 we

started with). We begin the second diagonal from the first σ1 that is below this σ1 we

found at the end of our upward journey. In this way we find disjoint diagonals with

as few “skipped” crossings between them as possible. See Figure 5.3 for clarification.

Let y(`) denote the number of diagonals that can be completed within B` in this

way. The function z(`) determining the destination of the map F` is

z(`) :=

⌊
y(`)

n

⌋
(5.2.2)

where b·c denotes the integer floor function. Thus z(`) gives the number of full
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Figure 5.3: An illustration of finding diagonals within some B`. In step 1, we find

the first diagonal illustrated in red. In step 2, we work our way back up from the

diagonal σn−1 as in the blue arrows until we arrive at the σ1 marked by a blue star.

In step 3, we begin forming the second diagonal starting from the first σ1 below the

starred crossing from step 2.
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twists that can be seen within B`. The map F` is then the composition of maps

coming from Corollary 5.1.3 where we are resolving all non-diagonal crossings in B`.

Note that the order in which we resolve the crossings is irrelevant, and in fact the

map F` can be viewed as a projection from the single mapping cone of the direct

sum of the Khovanov maps assigned to each non-diagonal crossing. However in this

chapter we shall consider F` as a large composition starting from resolving the bottom-

most (non-diagonal) crossing. From this consideration it should be clear that the

maps F` commute with the maps fk and g` of the two systems hn
−

q−NKC(T kn) and

hn
−

q−NKC(B`), which are also just maps based on resolving bottom-most crossings.

We now move on to point 7 from the overview. We wish to estimate |F`|h. Viewing

F` as a composition of projections from crossing resolutions as above, we estimate

the homological order of the cone of the ith such projection with the help of Corollary

5.1.3. That is, we view hn
−

q−NKC(B`) as an iterated mapping cone

hn
−

q−NKC(B`) =(((
· · · → hn

−
q−N+1KC(Z3)

)
→ hn

−
q−N+1KC(Z2)

)
→ hn

−
q−N+1KC(Z1)

)
and we consider the minimum homological order of

hn
−+1q−N+1KC(Zi)

where Zi is a tangle that is obtained from B` by resolving the first i− 1 non-diagonal

crossings (starting from the bottom of the braid) as 0-resolutions, and then resolving

the ith non-diagonal crossing as a 1-resolution. Iterating Lemma 5.1.1 over all of the
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remaining non-diagonal crossings, we can see hn
−+1q−N+1KC(Zi) as a large multi-

cone as illustrated in Figure 5.4.

Note that every diagram within the large multi-cone for hn
−+1q−N+1KC(Zi) is

made up of diagonal crossings and possible turnbacks from 1-resolutions ( ) between

the diagonals. Indeed we are guaranteed at least the one turnback pair ( ) already

present within Zi, but there may be many more. Now we turn to the key lemma that

produces the required estimate on |F`|h. This lemma can be seen as a generalization

of the counting lemmas 3.1.3 and 4.4.5 used in previous chapters.

Lemma 5.2.3. Let D be any (n, n) tangle diagram involving precisely y diagonals of

crossings, no other crossings, and at least one pair of turnbacks between the diagonals

(see the diagrams in Figure 5.4). Then D can be simplified to a new diagram D′

via Reidemeister 3, Reidemeister 2, and negative Reidemeister 1 moves. During this

process, all of the Reidemeister 2 and negative Reidemeister 1 moves remove crossings,

and the total number of such moves is at least y.

Proof. We view the y diagonals as partitioning the diagram D into y + 1 zones, and

we call such a zone empty if there are no turnbacks ( ) within it. By assumption

there is at least one non-empty zone. We start from the topmost non-empty zone, and

choose the ‘bottommost’ such pair in this zone (ie, the last σjm within the given zone

where a 1-resolution occurred). The lower turnback can then be passed through the

diagonals below it one at a time via Reidemeister II moves (Figure 5.5) and negative

Reidemeister I moves (first step of Figure 5.6) until the turnback reaches the next non-
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Figure 5.4: A multicone presentation for an example hn
−+1q−N+1KC(Zi). The KC

notation and the shifts hn
−+1q−N+1+r on each term are suppressed. Here r is the sum

of the three resolution numbers above each diagram.
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Figure 5.5: Pulling a turnback downward through a diagonal via Reidemeister II.

Figure 5.6: An example of pulling a turnback downward through two diagonals via

negative Reidemeister I and Reidemeister II moves.

empty zone. Note that, following a Reidemeister I move into an empty zone, multiple

moves are required to pass through the next diagonal (also illustrated in Figure 5.6).

Nevertheless, it is clear that during this process, the number of such Reidemeister

moves will be at least the same as the number of diagonals passed through.

Having now reached the second non-empty zone, we find the bottommost turnback

within this zone and continue the process until the final zone is reached. This accounts

for passing through all the diagonals below the topmost non-empty zone. Finally, we

return to that starting zone and choose the ‘topmost’ turnback within that zone (ie

the first σjm within that zone where a 1-resolution occurred) and pass this turnback

through all of the diagonals above it. If the first move required is a Reidemeister II
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Figure 5.7: An example of pulling a turnback upward through diagonals. Each step

indicates passing through one diagonal, so that the total number of negative Reide-

meister I and Reidemeister II moves is clearly at least the number of such diagonals.

move (ie the two strands connected by the turnback are adjacent on the defining torus

of the twist), this process will be the same as the downward one. If the first move

is a (negative) Reidemeister I move, this process may require some Reidemeister III

moves as illustrated in Figure 5.7. However it is clear that there will still be at least

as many Reidemeister II and negative Reidemeister I moves as there are diagonals,

and thus the total number of such moves is at least y as desired.

More conceptually, a sequence of diagonals with empty zones between them cor-
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Figure 5.8: A topmost turnback entering a set of diagonals corresponds to a turnback

being pulled through the center of a torus braid as shown here. The blue arrow

indicates the direction of the pulling.

responds to a torus braid. A topmost turnback below this (or bottommost turnback

above this) corresponds to connecting two strands of the torus braid. The simpler

cases above correspond to these two strands being adjacent, while the more complex

case of Figure 5.7 corresponds to connecting two non-adjacent strands. Either way,

the turnback can be pulled up (or down) through the center of the torus as in Fig-

ure 5.8. Passing through diagonals corresponds to passing by other strands, which

must eliminate crossings, thus necessitating at least one Reidemesiter I or II move.

The Reidemeister I moves must be negative because they are undoing right-handed

twisting.

Corollary 5.2.4. Every term hn
−+1q−N+1+rKC(D) in the multicone expansion of

any hn
−+1q−N+1KC(Zi) (see Figure 5.4) is chain homotopy equivalent to a complex
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of the form hn
−+1+shq−N+1+r+sqKC(D′) where sh and sq are homological and q-degree

shifts depending on the expansion term, and r is the number of 1-resolutions taken to

arrive at D from Ti. Moreover, for any term in the expansion, sq ≥ sh ≥ y.

Proof. The shifts come from Equations 5.1.3 and 5.1.4.

As an example of Corollary 5.2.4, consider the (111)-entry from Figure 5.4. We

illustrate the process of Lemma 5.2.3, keeping track of the shifts, for this entry in

Figure 5.9. In this case we get sh = 4 = y, while sq = 5. As an illustration of the case

where Reidemeister III moves are also required, we show the process for the (001)-

entry in Figure 5.10 where sh = 8 > y and sq = 10. Notice that further simplifications

are possible in the first case, indicating that our given bounds will rarely be sharp.

Proof of Theorem 1.0.6. We build a commuting diagram as in Figure 5.2 using the

listed points of the overview. The construction of F` as a composition of mapping

cone projections p ensures |F`|h is at least as large as the minimum |p|h amongst all

such p. As described above, this is precisely the minimum homological order amongst

all the hn
−+1q−N+1KC(Zi) via Corollary 5.1.3. Corollary 5.2.4 guarantees that the

minimal homological degree of any term in the multicone expansion of such a complex

(and thus for the entire complex) is at least y, the number of diagonals found in B`.

Thus we have

|F`|h ≥ y.

The assumption that the semi-infinite braid B is complete ensures that y → ∞ as
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Figure 5.9: The process of Lemma 5.2.3 shown for the (111)-entry from Figure 5.4,

illustrating the degree shifts of Corollary 5.2.4. The turnback that is about to be

‘pulled’ is indicated by a blue star.
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Figure 5.10: The process of Lemma 5.2.3 shown for the (001)-entry from Figure 5.4,

illustrating the degree shifts of Corollary 5.2.4. The turnback that is about to be

‘pulled’ is indicated by a blue star.



122

`→∞. The mapping cones of the maps g` also involve diagrams with turnbacks, so

that a similar (and simpler) argument also ensures |g`|h → ∞ as ` → ∞, verifying

that this system is Cauchy and has a limit. Thus we may use Proposition 5.1.9 to

conclude the proof.

5.3 A Similar Theorem for L-S-K Spectra

In this section we seek to generalize the work of the previous section into the realm

of the L-S-K spectra built with infinite twists in Chapter 3. The precise statement is

provided below.

Theorem 5.3.1. Let B denote any closure of a complete semi-infinite positive braid

B as in Theorem 1.0.6. Let T ∞ denote the corresponding closure of the infinite twist.

Then

X (B) := lim
`→∞

ΣaqbX (σj1σj2 · · · σj`) ' X (T ∞) (5.3.1)

where a and b stand for homological shifts (via suspensions Σ) and q-degree shifts.

Figure 5.11 illustrates a closure of B and the corresponding closure of T ∞. As

noted earlier (see Remark 2.3.1), the L-S-K spectrum for braids and/or tangles has

not yet been defined; as such, Theorem 5.3.1 is the closest notion available to a lifting

of Theorem 1.0.6 to the stable homotopy category.

The proof of Theorem 5.3.1 is a very simple generalization of the proof of Theorem

1.0.6 to the setting of the L-S-K spectra. In short, we build a diagram similar to



123

Figure 5.11: A possible closure B of the infinite braid B, and the corresponding closure

T ∞ of the infinite twist.

Figure 5.2 out of spectra instead of chain complexes. Then instead of tracking the

homological order below which the maps are chain homotopy equivalences, we track

the q-degree below which the maps are stable homotopy equivalences. Corollary 5.2.4

ensures that this maximal q-degree of equivalence goes to infinity as the sequence of

maps goes to infinity.

We begin by recalling the cofibration sequence of Equation 2.3.2, repeated below

for convenience.

ΣaX j+NL0 (L0) ↪→ X j+NL(L) � ΣbX j−1+NL1 (L1)

Then if we continue to use the convention of Definition 5.1.2, the version of Lemma

2.3.7 we will use is restated as a corollary here.

Corollary 5.3.2. If for some q-degree j ∈ Z we have q−N+1KCj(L1) homologically

trivial, then the inclusion map

Σn−X j+N(L0) ↪→ Σn−X j+N(L) (5.3.2)

is a stable homotopy equivalence.
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We now generalize the definitions needed to discuss stable limits of infinite se-

quences of L-S-K spectra, as in Definition 5.1.6 and Theorem 5.1.8. We do not need a

notion of sequences of spectra being ‘Cauchy’, but we do need some notion of stability.

Definition 5.3.3. A map between L-S-K spectra f : Σn−q−NX (L)→ Σn−q−NX (L′)

is called q-homogeneous if f preserves normalized q-degrees between wedge summands.

That is,

f = ∨j∈Zf j (5.3.3)

for q-preserving maps

f j : X j+N(L)→ X j+N(L′).

In this case, we let |f |q denote the maximal q-degree d for which f j is a stable homo-

topy equivalence for all j ≤ d.

It is clear from the definitions that the maps of Equation 2.3.2 are q-homogeneous.

Definition 5.3.4. An infinite sequence of q-homogeneous maps

Σn−q−NX (L0)
f0−→ Σn−q−NX (L1)

f1−→ Σn−q−NX (L2)
···−→ (5.3.4)

will be called a direct q-system of L-S-K spectra, denoted {X (Lk), fk}. Such a system

is called q-stable if |fk|q →∞ as k →∞.

Theorem 5.3.5. A q-stable direct q-system {X (Lk), fk} has homotopy colimit

X (L∞) :=hocolim
(

Σn−q−NX (L0)
f0−→ Σn−q−NX (L1)

f1−→ Σn−q−NX (L2)
···−→
)

(5.3.5)

=
∨
j∈Z

X j(L∞) (5.3.6)
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where

X j(L∞) := hocolim
(
X j−N(L0)

f0−→ X j−N(L1)
f1−→ X j−N(L2)

···−→
)

and for each j, there exists lower bound kj such that

X j(L∞) ' X j−N(Lk) ∀k ≥ kj.

Proof. This is clear from the properties of a homotopy colimit after unwinding the

definitions.

Remark 5.3.1. Notice that the maps of the sequence (5.3.4) go in the opposite direc-

tion as those of Equation 5.1.5 considered earlier for chain complexes. This is to be

expected, since the inverse system of Equation 5.1.5 should be recovered by the singular

cochain functor C∗ which is contravariant. Similarly, our limits here are homotopy

colimits, as opposed to the inverse limits considered in the previous section.

With these ideas in place, we can state and prove the stable homotopy version of

Proposition 5.1.9 providing the diagram corresponding to Figure 5.2.

Proposition 5.3.6. Suppose {X (Lk), fk} and {X (M`), g`} are q-stable direct q-

systems with homotopy colimits X (L∞) and X (M∞) respectively, as in Equation 5.3.5.

Suppose there are q-homogeneous maps

F` : Σn−q−NX (Lz(`))→ Σn−q−NX (M`)

(z(`) is an increasing function of `, not necessarily strict, such that z(`) → ∞ as

`→∞) forming a commuting diagram with the system maps fk and g`. If |F`|q →∞
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as `→∞, then we have

X (L∞) ' X (M∞).

Proof. The proof is very similar to that of Proposition 5.1.9. See Figure 5.12. The

properties of homotopy colimits provide the existence of q-homogeneous maps f̃k :

Σn−q−NX (Lk) → X (L∞) and g̃` : Σn−q−NX (M`) → X (M∞) as well as the map

F∞ : X (L∞) → X (M∞) which must commute with all of the other maps. Fixing

some q-degree j, Theorem 5.3.5 and the assumption on the maps F` guarantee that

the wedge summand maps f̃ jk , g̃j` and F j
` all become stable homotopy equivalences once

k and ` are large enough. Thus F∞ must also provide a stable homotopy equivalence

F j
∞ : X j(L∞)

'−→ X j(M∞). This happens for all j, so in fact F∞ is the desired

(q-homogeneous) stable homotopy equivalence.

Proof of Theorem 5.3.1. Given a specified closure B of a complete semi-infinite right-

handed braid B on n strands, we build the diagram of Figure 5.12 in a manner

completely analogous the building of the diagram of Figure 5.2.

� The links Lk are the corresponding closures of the full twists Lk := T nk.

� The maps fk are compositions of the cofibration maps of Equation 5.3.2 coming

from resolving the crossings of the last full twist in T n(k+1) as 0-resolutions

(our convention will now be to resolve the bottom-most twist, rather than the

top-most as in Chapter 3, since this aligns most closely with drawing braids

downwards as we have done).
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Figure 5.12: The diagram for Proposition 5.3.6, omitting the normalization shifts

Σn−q−N on each term. Compare to Figure 5.2. Given the two q-stable systems

{X (Lk), fk} and {X (M`), g`}, the homotopy colimits X (L∞) and X (M∞) come with

maps f̃ and g̃. If we find the q-homogeneous maps F (red) and show that |F`|q →∞

as `→∞, then the map F∞ on the colimits (blue) is a stable homotopy equivalence.
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� The links M` are the corresponding closures of the partial braids B`, that is,

M` := B`.

� The maps g` are the inclusion maps of Equation 2.3.2 coming from resolving

the last crossing of B`+1 as a 0-resolution.

� The maps F` are compositions of inclusions coming from resolving non-diagonal

crossings as 0-resolutions precisely as in the proof of Theorem 1.0.6.

See Figure 5.11 for the notion of corresponding closures of braids. In this language,

Chapter 3 shows that the direct system {X (T nk), fk} is q-stable, with homotopy

colimit X (T ∞) satisfying many properties similar to closures of the Jones-Wenzl pro-

jectors Pn. The proof that |F`|q and |g`|q go to infinity with ` is analogous to the

similar statement about |F`|h and |g`|h in the proof of Theorem 1.0.6. In short,

we use Corollary 5.3.2 to change the question to one of homological triviality of

q−N+1KCj(Zi) for closures of braids Zi involving diagonals and turnbacks, as before.

The estimate of Corollary 5.2.4 still holds, but now we are concerned with the min-

imum q-value (rather than minimum homological value) of a complex of the form

hn
−+1+shq−N+1+r+sqKC(D′) (where again D′ came from a partial resolution D of Zi

by pulling turnbacks through diagonals). As in Chapters 3 and 4 we let #circ(Dall-zero)

denote the number of circles present in the all-zero resolution of the diagram D. Then

the minimum q-degree for generators of the complex hn
−+1+shq−N+1+r+sqKC(D′) is
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precisely

min
q

(
hn
−+1+shq−N+1+r+sqKC(D′)

)
= 1 + r + sq −#circ(D′all-zero) (5.3.7)

since each circle in the all-zero resolution of the link can contribute a generator v−

with q-degree -1.

Now the number of circles in a resolution is bounded above by the number of

local maxima present in the diagram. The number of such maxima in the all-zero

resolution of any D′ is comprised of two parts, those within the tangle D′ and those

without (so those due to the specified closure). The second category will contribute

some constant c that is independent of the tangle D′, and indeed independent of the

infinite braid B at all. The first category will be bounded above by the number of

1-resolutions that were taken to arrive at D from B` (note that the process of pulling

turnbacks through diagonals does not create maxima). But this number is precisely

1 + r. Thus we have

min
q

(
hn
−+1+shq−N+1+r+sqKC(D′)

)
= 1 + r + sq −#circ(D′all-zero)

≥ 1 + r + sq − (1 + r + c)

≥ y − c

which certainly goes to infinity as y does. The assumption of completeness ensures

y →∞ as `→∞, and so we have |F`|q →∞ as `→∞. As in the proof of Theorem

1.0.6, the argument for |g`|q is a simpler version of this, and so we are done.
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5.4 More General Infinite Braids

In this section we collect a handful of corollaries of Theorems 1.0.6 and 5.3.1 for

dealing with other types of infinite braids.

Corollary 5.4.1. Let B be a complete semi-infinite braid containing only finitely

many left-handed crossings
( )

. Then KC(B) is chain homotopy equivalent to a

shifted categorified Jones-Wenzl projector haqbPn, and similarly for the L-S-K spectra

X (B) ' ΣaqbX (T ∞).

Proof. If there are only finitely many left-handed crossings, we can view B as the

product of the finite partial braid Bm which contains all of these crossings, and the

infinite braid B′ which consists of the rest of B. Then the result follows from the

similar properties of Pn (see [Roz14a]) and X (T ∞) (see Corollary 3.3.3). The shifts

a and b will depend on the orientations of the crossings in the finite Bm.

To give the most general possible statement, we start with a definition.

Definition 5.4.2. A tangle involving semi-infinite braids is a tangle diagram Z where

any finite number of interior discs Di containing only the identity tangles Ini are

formally replaced by complete semi-infinite right-handed braids Bi (see Figure 5.13).

Theorem 5.4.3. For any tangle Z involving finitely many complete semi-infinite

right-handed braids Bi on ni strands, the Khovanov chain complex KC(Z) (defined

in a limiting sense analogous to that of KC(B) in Theorem 1.0.6) is chain homotopy



131

Figure 5.13: An example of a closed tangle involving semi-infinite braids B1 and B2.

As long as both are right-handed and complete, the resulting Khovanov chain complex

and L-S-K spectrum will match those of the same diagram with infinite twists in place

of the B1 and B2.

equivalent to the Khovanov complex of the same tangle where the Bi have been replaced

with the corresponding Pni. Similarly, if the tangle Z is closed, then X (Z) is stably

homotopy equivalent to the same tangle where the Bi have been replaced with the

corresponding infinite twist T ∞ni .

Proof. This is an immediate generalization of the work presented in this chapter.

Theorem 5.4.3 allows us to consider many sorts of infinite (right-handed) braids

by breaking them up into complete semi-infinite (right-handed) braids. For instance,

a non-complete semi-infinite braid is equivalent to a tangle involving a finite braid

and two or more complete semi-infinite braids below it (see Figure 5.14). As another

example, a bi-infinite braid B = · · ·σj−2σj−1σj0σj1σj2 · · · can be viewed as the com-

position of two semi-infinite braids B = B− · B+ (see Figure 5.15). In this way we see

that many different notions of infinite braids have limiting Khovanov complex (and

L-S-K spectrum, if closed) made up of combinations of Jones-Wenzl projectors (or
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Figure 5.14: Viewing a non-complete infinite braid as a combination of two complete

ones, which limit to their respective Pni .

spectra involving closures of infinite twists). Choices of how to arrange the diagrams

(for instance, where to begin the semi-infinite complete braid in Figure 5.14) lead

to normalization shifts within the resulting complex or spectrum similar to those in

Corollary 5.4.1.
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Figure 5.15: Viewing a bi-infinite braid as a combination of two semi-infinite ones,

which limit to their respective Pni .
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