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Abstract
The analytical expression for the ultimate limit of communications efficiency
has been known since Shannon’s A Mathematical Theory of Communica-
tion, published in 1948. Since then, the digital revolution has provided the
signal processing complexity needed to close the gap between this limit and
practical communication systems. This dissertation on optimizing com-
munications systems investigates the tradeoff between communications ef-
ficiency and signal processing complexity in light of the current state of art
techniques in communications theory. It begins with techniques of calcu-
lating information rates for non-linear satellite channels. Information rate
calculations give the absolute limit in communications efficiency and are
used as a reference point to the optimization problem. The second part of
this dissertation uses information rate calculations to examine the complex-
ity versus efficiency tradeoff of a physical layer approach known as faster-
than-Nyquist (FTN) signalling, which has been a popular area of research
recently. Our results show FTN does not show significant advantages over
a much simpler OFDM technique, which is already widely implemented in
modern communications systems. These results inspired the question of
what method of optimizing communications systems could be obtained at
the least marginal cost in complexity. While techniques such as MIMO [9]
still holds promise for future improvement at the physical layer, application
specific optimization may give the greatest performance gain at the least cost
in signal processing complexity. The final part of this thesis examines this
statement and hopes to provide evidence of this conjecture.
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Chapter 1

Introduction

1.1 First Came the Theory
The research and development of communications and information theory
bears a striking resemblance to a related area of research where the inception
of an elegant theory overshadows its validation and application years later.
James Clerk Maxwell predicted the existence of electromagnetic radiation
along with his eponymous equations in 1863. Twenty-five years later, and
9 years after Maxwell’s death, the existence of electromagnetic radiation
was empirically verified by Henrich Hertz. In 1895, the year after Hertz’s
death, the application of electromagnetic waves in wireless communications
was pioneered by Guglielmo Marconi [58].

Similarly, Claude Shannon in 1948 laid forth the foundation of commu-
nications and information theory in A Mathematical Theory of Communi-
cation [43]. In his treatise, the maximum bit rate for reliable communi-
cation over a given communications channel was analytically formulated.
These rates allowed arbitrary complexity in the receiver and transmitter,
and therefore practical systems can only approach this limit. As Maxwell’s
equations required the practical engineering of Hertz and Marconi to be
verified and applied, the pursuit of Shannon’s limit of reliable communica-
tion needed the digital revolution to provide the necessary signal processing
power.
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1.2 Optimization and Tradeoff
Figure 1.1 shows the fundamental tradeoffs involved in optimizing com-
munications systems. The curve represents the maximum communications
efficiency in an additive white Gaussian noise channel where only the points
below the curve are achievable [38]. The ratio of energy per bit to noise
power spectral density Eb/N0 represents power efficiency, where lower val-
ues are more efficient. Spectral efficiency is represented in units of bits/Hz
where higher values are deemed more efficient. Thus there is a fundamental
tradeoff between power efficiency and spectral efficiency. Increasing com-
plexity is required to approach the efficiency limits implied by the curve.
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Figure 1.1: Tradeoffs in Optimizing Communications Systems

The integrated circuit was invented in 1958, and since then Moore’s
Law1 has accurately predicted an exponential growth in computing power.
As computing power has become cheaper, more elaborate and complex sig-
nal processing schemes were developed to push performance closer to the
Shannon limit. Modern error correcting codes have been able to approach

1Though not a scientific law, Gorden Moore’s prediction of exponential growth in
affordable computational power has proved accurate over the last half century



within 1 dB of the Shannon limit on Gaussian noise channels. This monu-
mental achievement raises the question of how to continue trading off com-
plexity for communications efficiency, as the fundamental limit bars any
further significant increase in efficiency

MIMO2 technology is one of the answers. MIMO allows multiple chan-
nels to be created within the same bandwidth. This comes with an increase
in the number of transmitters and receivers in a system as well as signal
processing to distinguish the symbols that appear across the multiple chan-
nels. MIMO has been applied to many different communications channels
such as wireless, optical, and DSL. Massive MIMO over millimeter wave
frequencies has been proposed as the basis for 5G wireless.

While MIMO continues to hold promise of increasing communications
efficiency, this thesis attempts to explore another area which may have been
overlooked due the entrenched standards based on the layered communica-
tions stack. As will be explained, there is a confluence of technology and
trends that makes this optimization particularly viable in the near future.
We call this application specific optimization (ASO).

1.3 Organization and Contributions
This thesis is organized into three sections:

Computing Information Rates of Nonlinear Satellite Channels

Calculating information rates give a metric by which the efficiency of a
practical communications system can be measured, and gives the margin of
how much a communications system can be improved. The curve in Figure
1.1 holds only for the AWGN channel with Gaussian alphabet. Information
rate calculations are more challenging for other more complex channels.

In this section we calculate information rates of reduced complexity
receivers for the the non-linear satellite channel. We calculate rates at
different memory depths, with and without the “matched” filter, and for
one-way and bidirectional same frequency transmission. We also investigate
designing reduced complexity receivers for the nonlinear satellite channel by
marginalizing the channel law. (The work from this section were presented
in LATINCOM2013, GLOBECOM2013, and ICC2014 )

2Multiple Input / Multiple Output



Faster-than-Nyquist, and Comparison with OFDM

Here we compare the efficiency versus complexity tradeoff of Faster-than-
Nyquist (FTN) signalling and orthogonal frequency division multiplexing
(OFDM). To do so we apply these modulation techniques to the Wifi G
and Wifi B spectral masks and calculate their respective information rates.
While FTN has classically been applied to root-Nyquist pulses, we derive
a pulse from the spectral mask and show that FTN techniques can still be
applied. Although a worthwhile and interesting area of research, our anal-
ysis shows that any marginal improvement over another spectrally efficient
modulation technique known as orthogonal frequency division multiplexing
(OFDM) does not merit its implementational complexity. (The work form
this section was presented in LATINCOM2015 )

Application Specific Optimization

Our study of FTN suggests that further improvement in single channel
communications efficiency may provide only marginal benefits at high com-
plexity costs. This thought has inspired our research in ASO as a technique
that seeks to unlock optimization gains which have up to now been shackled
by entrenched layered protocol standards. We propose an approach to ASO
that maintains compatibility with the Internet while providing performance
gains at low marginal complexity costs as well as providing other benefits
inherent in cloud computing. This novel architecture takes advantage of
current trends in data center technology and network function virtualiza-
tion. (The work form this section has been submitted to NETSOFT2016
and IEEE Transactions in Communications)



Part I

Computing Information Rates of
Nonlinear Satellite Channels
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Chapter 2

Some Information Theory
Background

This chapter presents the intuition behind information theory as a back-
ground to this dissertation. All three parts of this thesis rely on information
rate calculations.

2.1 Entropy
Shannon formulated the foundation of information theory by appropriating
the idea of entropy from statistical mechanics as a measure of informa-
tion. Information messages can be represented as random variables, and a
measure of information is the entropy of the random variable:

H(X) , EX [p(x) log2

1

p(x)
] (2.1)

where X is a random variable representing information, EX [·] is the expec-
tation with respect to X, and p(x) is the probability distribution of X.

It is important to differentiate between Shannon’s definition of informa-
tion and our common notion of information. Here the definition of informa-
tion is in the context of information that needs to be transmitted since it is
unknown at the receiver. Thus the receiver only knows the possible values
of the information as represented by a random variable and its distribution.
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Notice that entropy is zero if the random variable is deterministic1.
This is to say that if the receiver already knows what X will be, there is
no transfer of information nor any need for communication. So if a copy
of the Encyclopedia Britannica were present at both the transmitter and
receiver, in terms of information theory there is no amount of information
with respect to this fact since nothing needs to be communicated.

Each possible value that X may take on is known as a symbol, and
the set of all possible symbols is known as the alphabet. Figure 2.1 shows
the APSK-16 constellation as a practical example of an alphabet and its
constituent symbols. APSK stands for amplitude and phase shift keying
and is a modulation used in satellite communications under the DVB-S2
standard. There are 16 symbols in this alphabet where each symbol is a
point on the complex plane. These complex values represent the amplitude
and phase of a carrier for a bandpass waveform, much like a phasor in linear
circuit analysis. In practice the distribution p(X) is typically uniform over
all the symbols in the constellation 2.

 

Figure 2.1: APSK-16 Constellation

1That is p(x1) = 1 for some symbol x1
2However this incurs a slight performance penalty with respect to the optimum per-

formance theoretically attainable over a Gaussian noise channel



When the logarithm in (2.1) is base 2, the units of entropy is in bits.
Thus H(X) represents the average number of bits communicated when a
symbol X is received. In other words, if the vector xN1 , {x1, x2, ...xN} is
received with each symbol drawn independently from the distribution p(x)
the expected amount of information conveyed would be NH(X) bits.

H(X) also represents the minimum average number of bits needed to
represent the random variable X. This is also to say that on average NH(X)
bits would be needed to represent a vector xN1 of length N if each Xn

in the vector were independent. An application of this would be to save
information generated by X to some digital media. The most efficient
mapping from vectors xN1 to bits would use on the average NH(X) bits.

Instead of using bits to represent symbol vectors xN1 , we could instead
have a binary information source which are then encoded onto vectors xN1
which are then transmitted over a communications channel. Just as there
is an efficient mapping from vectors of X to bits, there is also an efficient
mapping of bits to vectors of X such that the distribution of X is still p(x)
and the average number of bits encoded per symbol is H(X). In the case of
APSK-16, a binary bit source could be mapped four bits at a time to a con-
stellation point symbol. As long as the bits are independent and identically
distributed (IID), then the symbols are also IID. As most communications
systems today are based on the binary logic of VLSI technology, this map-
ping is ubiquitous in practical implementations.

2.2 The Discrete-time Memoryless Channel
Thus X, or equivalently a bit source used to generate X, could represent
an information source. And the average amount of information generated
per realization of X is H(X). However a communications channel typically
does not faithfully represent each realization of X with perfect fidelity.
Instead the channel can corrupt X according to the conditional distribution
p(y|x), which is known as the channel law. Now the receiver gets a random
variable Y and now has to do its best to infer what the original X was.
Figure 2.2 shows a discrete-time memoryless channel where each channel
use is described by p(y|x) is independent of the discrete time index n. X
represents the transmitter’s input into the channel, and Y is the output of
the channel as seen by the receiver.



X p(y|x) Y

channelTX RX

Figure 2.2: A Discrete-Time Memoryless Channel

For a memoryless channel

p(yN1 |xN1 ) =
N∏
n=1

p(yn|xn)

An example of a discrete-time memoryless channel is the additive white
Gaussian noise (AWGN) channel shown in Figure 2.3. N (0, σ2) is normally
distributed noise with variance σ2. Since the noise is both white and Gaus-
sian, the noise in each use of the channel is independent of each other. We
also assume independence of the input symbols X between channel uses as
well as with the noise. Thus the channel law can be expressed as

p(y|x) =
1√

2πσ2
e

1
2( y−xσ )

2

(2.2)

X

𝓝(0,𝛔2)

Y+

Figure 2.3: Discrete-Time AWGN Memoryless Channel

The output distribution p(y) can be calculated from the input distribu-
tion p(x) and the channel law by marginalizing the joint distribution 3. In
the case of the APSK-16 modulation in an AWGN channel:

p(y) =
∑
x

p(y|x)p(x) (2.3)

=
16∑
x=1

1

16

1

2πσ2
e

1
2( |y−x|σ )

2

3While the input distribution p(x) is discrete over the symbols in the alphabet, p(y|x)
and p(y) are continuous distributions due to the AWGN



where p(y|x) in this case is the circularly symmetric complex normal distri-
bution with mean x and variance σ2 in each dimension. While the channel
in 2.2 represents a baseband channel where X and Y are real, in 2.3 the
channel is complex representing the magnitude and phase of a carrier in a
bandpass signal 4. Plots of p(y) for 20 dB SNR and 10 dB SNR are shown
in Figures 2.4 and 2.5 respectively.

Figure 2.4: p(y) for APSK-16 over an AWGN Channel at 20 dB SNR

2.3 Mutual Information
Shannon proved that given an input distribution p(x), the maximum num-
ber of bits on average that a discrete-time memoryless channel could transfer
per channel use was a difference in entropies. This difference is defined as

4The signal to noise ratio (SNR) in 2.2 is E[X2]/σ2, while in 2.3 it is E[|X|2]/2σ2



Figure 2.5: p(y) for APSK-16 over an AWGN Channel at 10 dB SNR

the mutual information:

I(X;Y ) , H(X)−H(X|Y ) = Ex[log2

1

p(x)
] + Ex,y[log2

1

p(x|y)
] (2.4)

= H(Y )−H(Y |X) = Ey[log2

1

p(y)
] + Ex,y[log2

1

p(y|x)
] (2.5)

where H(X|Y ) is the conditional entropy of X given Y.
The conditional entropy H(X|Y ) can be interpreted as the amount of

information needed to gain perfect knowledge of X given the knowledge
of Y. This is the situation at the receiver where it has received Y but is
missing the amount of information signified by H(X|Y ).

The mutual information I(X;Y ) represents the maximum average amount
of information transferred per use of the communications channel given
p(x). It can be calculated by taking the measure of information inherent in
the source, H(X), minus the information that the receiver does not know,
H(X|Y ) as in 2.4.



The mutual information can also be calculated as in 2.5. This difference
can be interpreted as the amount of information inherent in the received
signal H(Y ) minus the channel noise entropy H(Y |X). This also appeals
to our intuition as the amount of information in Y about X is the total
amount of information in Y minus the “information” in Y that has nothing
to do with X, H(Y |X).

This suggests that the mutual information I(X;Y ) is the maximum
amount of information about X that can be inferred from Y, and vice
versa. And Shannon showed that this also represents the absolute limit of
reliable communications – that is communications where the error rate can
be driven to zero – when given an input distribution p(x) and a channel law
p(y|x). This is done by encoding messages or bits not directly onto each
symbol xn, but onto a vector xN1 . As N → ∞, the maximum number of
messages that can be distinguished at the receiver after being corrupted by
the channel is 2NI(X;.Y ). This results in an information rate of I(X;Y ) bits
per channel use 5.

Figure 2.6 shows an example of the entropies related to the discrete-time
memoryless channel. We would expect H(Y ) to be greater than H(X) since
Y includes the randomness of the channel. However the gap representing
I(X;Y ) is the same as seen in (2.4).

H(X)

H(Y)

H(X|Y)

H(Y|X){I(X;Y)

{I(X;Y)

Figure 2.6: Mutual Information Illustration

5log2(2
NI(X;Y ))/N = I(X;Y )



2.4 Channel Capacity
In a typical engineering scenario the channel p(y|x) is given while the chan-
nel input X and its distribution p(x) are design variables. Shannon defined
the channel capacity as the maximization of the mutual information over
all input distributions:

C = max
p(x)

I(X;Y ) (2.6)

For the AWGN channel, Shannon showed that the input distribution
p(x) that maximizes the mutual information and thus gives the capacity is
simply a Gaussian distribution X ∼ N (0, σ2

s). Then the capacity for a real
baseband signal is

C =
1

2
log2(1 +

σ2
s

σ2
n

) (2.7)

The channel capacity represents the maximum achievable bit rate for reli-
able communications over a given channel.

2.5 Practical Waveform Channels
Practical bandlimited AWGNwaveform channels can be analyzed as discrete-
time memoryless AWGN channels through a signal space transformation
using root-Nyquist pulse shaping and matched filtering.

A Nyquist pulse pny(t) such as the sinc and raised cosine pulse have
zero crossings at an offset T0 and symbol intervals T, which occur at a rate
known as the Nyquist rate:

pny(T0 + kT ) =

{
1 k = 0

0 otherwise

where k is an integer.
This feature allows symbols x[k] to be extracted from a pulse ampli-

tude modulated signal xny(t) without intersymbol interference (ISI) when
sampled with the correct offset at the Nyquist rate:

xny(t) =
∑
n

xnpny(t− nT )

xn = xny(T0 + kT )



A root-Nyquist pulse is derived from a Nyquist pulse by spectral factor-
ization. If Pny(f) is the Fourier transform of pny(t), then the root Nyquist
pulse is defined as Prny(f) =

√
Pny(f). The root-Nyquist pulse has the

property of being time orthogonal with itself when spaced at intervals of T :∫ ∞
−∞

prny(t)prny(t+ nT )dt =

{
1 n = 0

0 otherwise

The root-Nyquist pulses spaced at intervals of T can be considered an
orthonormal basis {φn(t)}. Pulse shaping then is a mapping of a discrete
time symbol sequence xN1 onto a continuous time signal space spanned by
this orthonormal basis:

xrny(t) = xN1 � φN1 (t)

where � denotes the inner product defined as

=
∑
n

xnφn(t)

=
∑
n

xnprny(t− nT ) (2.8)

Then the discrete symbols xn can be recovered without ISI by:

xn = 〈xrny(t), φn(t)〉 (2.9)

where < · > is the inner product is defined as

=

∫ ∞
−∞

xrny(t)φn(t)dt (2.10)

=

∫ ∞
−∞

xrny(t)prny(t− nT )dt (2.11)

The inner product in 2.9 can be implemented as a matched filter m(t)
where m(t) = p(T0 − t). If we filter xrny(t) with m(t) and sample at the
right moments of t = T0 + nT , then

xrny(t) ? m(t) |t=T0+nT =

∫ ∞
−∞

xrny(τ)m(T0 + nT − τ)dτ (2.12)

=

∫ ∞
−∞

xrny(τ)prny(τ − nT )dτ (2.13)

= 〈xrny(t), φn(t)〉 (2.14)
= xn (2.15)



The pulse shaping and matched filtering waveform channel is shown in
Figure 2.7.

p(T0-t)p(t)

𝓝(0,𝛔2)

+
Xn Yn

t=T0+nT

xrny(t) y(t)

Figure 2.7: Pulse Shaping and Matched Filtering

As a consequence of the Karhunen–Loève theorem, AWGN noise at the
output of the matched filter and sampled with recovered signals is indepen-
dent from sample to sample [38]. Thus the combination of pulse shaping and
matched filter reduces the continuous waveform channel to an equivalent
vector channel where the mutual information calculations for the discrete-
time memoryless channel in Section 2.3 can be applied. Thus the channel
in Figure 2.7 is equivalent to the discrete time channel shown in Figure 2.3.

Quadrature amplitude modulation (QAM) is a passband communica-
tions technique which takes symbols from a complex alphabet, converts
these discrete time symbols to a time domain waveform via pulse shaping,
and then modulates a carrier’s amplitude and phase according to complex
waveform. APSK-16 is an example of QAM. The real and complex compo-
nents in QAM can be construed as two baseband channels, and the QAM
capacity can be calculated from (2.7) as follows:

The capacity per baseband channel is

CBB =
1

2
log2

(
1 +

σ2
s

σ2
n

)
(2.16)

Assuming that the pulse shaping function p(t) and matched filter φk(t) have
been normalized to unit energy, then the capacity of the QAM channel is

CQAM = 2CBB (2.17)

= log2

(
1 +

Es
N0

)
(2.18)

where Es = σ2
s/2 since the energy is divided between the two channels and

N0 = σ2
n/2 which is the noise variance seen at the output of the matched

filter. N0 is the noise PSD.



The channel capacity can be compared to the mutual information for
a practical alphabet and input distribution as a performance metric of the
design. Figure 2.8 compares the Shannon capacity as calculated in (2.16)
with the mutual information of various practical constellations in bits per
channel use. The alphabet size of these constellations are summarized in
Table 2.1. The gap between the Shannon bound and the mutual informa-
tion for the practical constellations represents a performance penalty. This
penalty can be kept low as long as the constellation size is sufficient for a
given signal to noise ratio Es/N0.

Figure 2.8: Bits Per Channel Use of Capacity vs. Practical Constellation
Designs

Thus there is a linear transformation from the waveform signal space
to an equivalent discrete-time AWGN vector channel. So the mutual infor-
mation calculated for the equivalent discrete-time AWGN channel can be
applied to the QAM waveform channel simply by multiplying the mutual
information with the Nyquist symbol rate, which gives an information rate
in bits per second for the channel. This bit rate can be compared to that
of a practical system and an important performance measure.

The symbol rate is typically a function of the bandwidth of the chan-
nel. Shannon also derived the maximum spectral efficiency of an AWGN



Table 2.1: Constellations in Figure 2.8

Constellation Symbols in Alphabet
Shannon capacity Infinite
Binary phase shift keying (BPSK) 2
Quadrature phase shift keying (QPSK) 4
Amplitude phase shift keying (APSK) 16 16
Amplitude phase shift keying (APSK) 32 32

waveform channel. Using sinc pulse shaping, a symbol rate Rs equal to the
bandwidth of the channel W is possible. In this case, the capacity in bits/s
is:

C = Rs log2(1 +
EsRs

N0W
) bits/s

= W log2(1 + SNR) bits/s

Dividing C by W gives the maximum attainable spectral efficiency:

C/W = log2(1 + SNR) bits/s/Hz

which is perhaps the most celebrated expression in all of communication
theory.

That sinc pulse shaping results in the maximum spectral efficiency is a
consequence of the sampling theorem. For QAM signalling, the sinc pulse
spaced at the Nyquist rate Rs = W forms a complete orthonormal basis
for all time domain signals limited to a bandwidth W. Thus the mutual
information of an equivalent DMC channel also applies to the bandpass
waveform channel with sinc shaping since the discrete symbol vectors from
the DMC can fully span the waveform signal space. The most efficient
transmission scheme as implied by the mutual information has an equiva-
lent representation in the waveform signal space via sinc pulse shaping, or
ideal reconstruction in terms of the sampling theorem. Thus the mutual
information or capacity of a discrete-time AWGN channel implies the max-
imum reliable bit rate possible in a bandlimited AWGN waveform channel
by multiplying the mutual information by the bandwidth. This bit rate
corresponds to pulse shaping with the sinc function.



Chapter 3

Information Rates of Non-linear
Satellite Channels

The calculation of the mutual information for the memoryless discrete-time
AWGN channels and the related information rates of bandlimited AWGN
waveform channels are straightforward with modern computation tools.
The calculation of the curves for practical constellations in Figure 2.8 in-
volves a two-dimensional numeric integration over the complex plane for the
calculation of h(Y )1. h(Y |X) is the relative entropy of a Gaussian random
variable which is known in closed-form [12]. These calculations assume a
memoryless source and channel where (2.2) holds. When either the source
or channel has memory – that is the output Yn depends on more than one
source symbols, for example Xn, Xn−1, and Xn−2 – the calculation of the
information rate can become much more complex. This is certainly the case
with calculating the information rates of non-linear satellite channels.

3.1 Memory in Non-linear Satellite Channels
The satellite channel is a relay channel as shown in Figure 3.12. The satel-
lite acts as an intermediary which relays messages between two earth termi-
nals. Typically frequency division duplexing is used where the uplink and

1The relative entropy h(Y ) pertains to a continuous random variable, but has the
same form as H(X) in (2.1) if the probability mass function is replaced with the proba-
bility density

2Figure adapted from Chenguang Xu
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downlink are on different frequency bands. Because of their limited power
budgets, satellites operate their amplifiers with higher power efficiency, but
at the cost of greater non-linear distortion.

Figure 3.1: Satellite Relay Channel

The non-linear distortion of a traveling wave tube (TWT) amplifier
found in many satellites can be modeled using the Saleh model [41]:

A(r) =
αar

1 + βar2

Φ(r) =
αΦr

2

1 + βΦr2

g(x) =A(|x|)ej(∠x+Φ(|x|)

where αa = 2.15, βa = 1.15, αΦ = 2.16, βΦ = 9.10
A(r) represents output amplitude as a function of input amplitude and is

plotted in Figure 3.2. This represents the amplitude-to-amplitude distortion
as the amplitude distortion is only a function of the input amplitude. The
peak amplitude output has been normalized to correspond to the unit input
amplitude. Φ(r) represents phase shift as a function of input amplitude,
and is also shown in Figure 3.2. This is the amplitude-to-phase distortion
as the phase distortion is only a function of the input amplitude.



Figure 3.2: Saleh Model Characteristic

Figure 3.3 shows the non-linearity inserted between the pulse shaping
and matched filteringin Figure 2.7. While the amplifier distortion accord-
ing to this model is inherently memoryless, this non-linearity interferes
with the operation of the pulse shaping and matched filtering originally
designed provide ISI free detection(see Section 2.5). Due to this distortion,
the “matched” filter is no longer matched to the transmit waveform. If this
“matched” filter is used, in addition to the presence of ISI there will also
be a loss of information since the output of the filter no longer provides
sufficient statistics.

p(T0-t)p(t) g(.)

𝓝(0,𝛔2)

+
Xn Yn

t=T0+nT

Figure 3.3: Non-linear Satellite Channel with Pulse Shaping and
“Matched” Filtering



3.2 Entropy Rate Calculations for Finite
State Channels

Information rate calculations of finite state channels with memory are en-
tropy rate calculations:

I(X ;Y) = h(Y)− h(Y|X )

h(Y) , lim
N→∞

1

N
h(Y N

1 ) (3.1)

h(Y N
1 ) = −EY N1 [log p(yN1 )]

= −
∫
y1

∫
y2

...

∫
yN

p(yN1 ) log p(yN1 )dy1dy2...dyN

p(yN1 ) =
∑
x1

∑
x2

...
∑
xN

p(xN1 )
N∏
n=1

p(yn|xnn−L) (3.2)

where yN1 = (y1, y2, ...yN), and L is the memory order of the finite state
channel.

The dependency of Yn on Xn
n−L can be represented in terms of states.

We can define

Sn , Xn
n−L+1

Sn−1 , Xn−1
n−L

With this definition the channel law can be expressed as

p(yn|xnn−L) = p(yn|Sn, Sn−1) (3.3)

The number of states is |X |L where |X | is the alphabet size of the source
X.

The complexity of these calculations is exponential in N and a large N is
necessary for the convergence in 3.1. Instead of calculating the information
rate from first principles, it is possible to estimate it using the Asymptotic
Equipartition Property (AEP) [3, 36]

lim
N→∞

− 1

N
log p(yN1 )→ h(Y) (3.4)

yN1 is a long simulated realization of the random process Y N
1 which can be

done with linear complexity with respect to N in lieu of the exponential



complexity in 3.2. The left side of 3.4 converges with probability one to the
entropy rate.

3.3 Calculating Entropy Rates on a Trellis
If the channel has a finite state description then p(yn1 ) can be calculated on
a trellis. A trellis can be used to represents a state machine, with the nodes
representing the states and the branches representing state transitions. Fig-
ure 3.4 shows two sections of a simple 4-state trellis for Sn−1 to Sn+1. The
trellis could be extended to both the left and the right by prepending or
appending additional sections. Traditionally the trellis was used to describe
convolutional codes, and decoding algorithms such as the Viterbi algorithm
and BCJR algorithm are described in terms of the trellis. Here the trellis
is used to model the channel memory with the state Sn−1 = xn−1

n−L repre-
senting the previous inputs that have influence over the current output yn.
Once the output yn is realized, the channel state transitions to a new state
Sn = Xn

n−L+1.

snsn-1 sn+1

Figure 3.4: A 4-state Trellis

p(yn1 ) can be calculated using the forward sweep of the BCJR algorithm
[5], which is based on the following factorization:

p(yn1 , sn) =
∑
sn−1

p(yn, sn|sn−1)p(yn−1
1 , sn−1) (3.5)

=
∑
sn−1

p(yn−1
1 , sn−1)p(yn|sn, sn−1)p(sn|sn−1) (3.6)

This is a recursive algorithm where each iteration happens over one sec-
tion of the trellis. The terms p(yn−1

1 , sn−1) are associated with the nodes



towards the left of the trellis section. The terms p(yn|sn, sn−1)p(sn|sn−1)
are associated with each branch in the trellis section, with p(sn|sn−1) repre-
senting the state transition probability, and p(yn|sn, sn−1) representing the
channel law. Then the nodes p(yn1 , sn) at the right side of the trellis sec-
tion can be calculated summing over the terms associated with the previous
nodes multiplied by the terms associated with incoming branches. Once the
algorithm has run for a sufficient length N for the convergence of the AEP
in (3.4), then p(yn1 ) can be calculated by marginalizing over sn by summing
over the node terms of the last trellis section.

While this method gives a linear complexity increase with the num-
ber of symbols N, the trellis size remains exponential with respect to the
channel memory. Calculations for channels with large memory depth are
still intractable. However one may arbitrarily specify a reduced complexity
channel and with it calculate upper and lower bounds to the information
rate [3].

The BCJR algorithm was designed to do maximum a posteriori prob-
ability (MAP) decoding of convolutional codes. Here we use the forward
sweep to calculate a probability measure to estimate information rate, but
the full BCJR over the same trellis would also be the optimum MAP de-
tector for this channel. Thus there is a strong analog between calculating
information rates of a channel by simulation and designing the receiver.
Both have the same trellis structure.

3.4 Reduced Complexity Receiver
Information Rates

If the real channel is characterized by a finite state trellis with the branch
term p(yn|sn, sn−1) then one can arbitrarily specify a reduced complexity
channel characterized by q(yn|s′n, s′n−1). s′n represents a state variable from
a reduced state space that is computationally tractable for the BCJR algo-
rithm. Then we are able to calculate [3] an estimate for the upper bound
of the information rate:

I(X ;Y) ≤ − 1

N
log q(yN1 )− h(Y|X ) (3.7)

and an estimate for the lower bound:

I(X ;Y) ≥ − 1

N
log q(yN1 ) +

1

N
log q(yN1 |xN1 ) (3.8)



The tightness of the bounds above depend on how closely q(yn|s′n, s′n−1)
approximates the true channel law p(yn|sn, sn−1).

The lower bound of the achievable information rate stated above is also
the achievable rate of a maximum likelihood (ML) receiver matched to
our reduced complexity channel representation q(yn|s′n, s′n−1) [3, 17, 18].
The random coding argument with an error exponent that contains the
information rate represented in the above calculations has been used to
prove this.

This result is particularly germane to the design of reduced complexity
receivers since there is a one-to-one analog between the specification of
q(yn|s′n, s′n−1) and the structure of the ML receiver matched to it. Both
imply the same trellis structure, and this makes defining the approximate
channel and designing the reduced complexity receiver practically one and
the same.

A convenience afforded by this result is that our study of reduced com-
plexity receivers we can begin with focus on information rate calculations
with the assumption that these rate curves can be approached by good
codes and decoders.

In our investigation of non-linear reduced complexity receivers we use
marginalization and truncation, or at times a combination of the two to
obtain the reduced complexity design.

Reducing Complexity by Marginalization

One way to obtain a reduced complexity receiver is by reducing the state
space by marginalizing the least influential symbols in the channel law. For
example if a finite state channel law is p(yn|xn−3, xn−2, xn−1, xn), a reduced
complexity channel law can be computed as:

pm(yn|x′n−1, x
′
n) =

∑
xn−3

∑
xn

p(yn|xn−3, x
′
n−1, x

′
n, xn)

Here the number of states has been reduced from |X |3 to |X |, and S ′n = X ′n
and S ′n−1 = X ′n−1. We would expect that the central symbols xn−2 and xn−3

to be more influential over yn than the edge symbols xn−3 and xn−4 since
the central symbols correspond to the central region of the pulse shape.

Although the number of states has been reduced, the description of the
distribution pm(yn|x′n−1, x

′
n) still has high complexity. In the case of an



AWGN channel, this distribution is a Gaussian mixture with |X |2 terms.
For practical implementations it may be necessary to find a lower com-
plexity representation such as a single Gaussian distribution. This can be
done by calculating the mean µpm and variance σ2

µ of the centroids of the
Gaussian mixture. Then the mixture can be approximated as the Gaussian
N (µpm , σ

2
µ + σ2) where σ2 is the variance of the AWGN. This technique is

explored in Section 3.7.

Reducing Complexity by Truncation

Another way to obtain a reduced complexity receiver is to simply truncate
without marginalization the effect of the least influential symbols during
pulse shaping before the non-linearity. If the edge symbols are truncated
and the non-linearity is mild, then since the constellation is symmetric we
would expect that the distribution calculated by truncation to be close to
that calculated by marginalization.

3.5 One-way Transmission with “Matched”
Filter Detection

Figure 3.5 shows the satellite relay channel for one-way transmission with
“matched” filtering. U is the bit source, and Û is the estimated bits at the
output of the detector D. The E|Π|M block stands for channel encoding,
interleaving, and modulation. h(t) is the pulse shaping filter and h(−t) is
the “matched” filter, which is no longer truly matched to h(t) because of the
non-linear distortion caused by g(·). The non-linearity is modeled using the
Saleh model as explained in Section 3.1 h1r is the transfer function from the
transmitting terminal to the satellite, and hr2 is the transfer function from
the satellite to the receiving terminal. X̂ is the transmit sequence, and Ŷ
is the receive sequence. N(t) is AWGN.

Figure 3.6 (adapted from [56]) shows a realization of Y which is the
output of the sampler after “matched” filtering in the absence of noise. A
root-raised-cosine (RRC) pulse shape is used with an excess bandwidth
parameter of β = 0.25. The dispersion of the samples is due to the non-
linearity disturbing the orthogonality of the pulses, causing ISI.

An input backoff (IBO) of -2 dB was used here. By backing off the input
the amplifier operates over less of its non-linear region. In Figure 3.2 an IBO



Figure 3.5: One-way “Matched” Filtering System Diagram

of 0 dB corresponds to an average input power level of 1, which has been
normalized to correspond to the peak instantaneous output power. Backing
off the input mitigates the non-linear distortion, however eventually it also
begins to lower the output power which also affects the performance of the
satellite link.

Figure 3.6: RRC Matched Filter Output Without AWGN with IBO = -2
dB



The finite state channel law p(yn|xnn−L) for the “matched” filter system
in Figure 3.5 is the normal distribution N (µ, σ2) where

µ =

∫ ∞
−∞

g

(
n∑

m=n−L

xmp(t−mT )

)
p(t− (n− L+ k))dt (3.9)

and σ2 = N0/2 is the noise variance.
L is the memory depth induced by the non-linearity, and k is an integer

such that xn−L+k is the input symbol that has most influence over yn. If
g(·) is a mild non-linearity, we would expect that the center symbol xn−L+k

would have the most influence over yn. We would expect that this symbol is
in the middle of the vector xnn−L because the RRC matched filter is greatest
in the middle.

In our numerical results, an RRC pulse having a length of Lp = 8 symbol
periods at 8 times oversampling was used. The full memory order of the
matched filtering system is 2(Lp − 1) = 14. This is the number of adjacent
symbols that affect the output Yn in addition to the most influential symbol
Yn−L+k.

When using a “matched” filter configuration, it makes sense to marginal-
ize or truncate down to a reduced complexity channel law that has an odd
number of symbols. For example, based on the index in (3.9), the three sym-
bols that have the most influence over yn are xn−L+k, which corresponds to
the symbol over the main lobe of the “matched” filter, and xn−L+k−1, which
is the symbol immediately to the left of the main lobe, and xn−L+k+1, the
symbol immediately to the right. The other symbols can be marginalized or
truncated. This results in a reduced complexity channel law with a reduced
memory L′ = 2, which is investigated in Section 3.5.

Non-Return-to-Zero (NRZ) Pulse Shaping

The NRZ pulse shape is a rectangle function with the width at the symbol
rate. This avoids ISI even in the presence of the non-linearity since the
pulses do not overlap. However this is not a practical pulse shape for spec-
tral efficient communications since the occupied bandwidth is infinite. How-
ever calculating the information rates using NRZ pulse shaping is easy and
a useful comparison against information rates of more bandwidth-efficient
pulse shapes.



Figure 3.7 shows a realization of Y for NRZ pulse shaping without noise.
Notice that in comparison to Figure 3.6 there is no ISI. However when
compared to Figure 2.1, one can see the effect of the amplitude-to-amplitude
and amplitude-to-phase distortion (see Section 3.1) where the radius of the
rings and their phases have been distorted accordingly. The ring ratio is the
ratio of the outer ring of the constellation to the inner ring. At the input to
the non-linearity it is 2.85, as recommended in the DVB-S2 standard. This
ratio is clearly changed by the non-linearity.
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Figure 3.7: NRZ Matched Filter Output Without AWGN

In the case of this specific pulse, to calculate information rates we do
not need to resort to the simulation techniques from Section 3.3. Instead
the numerical integration techniques from Section 2.5can be used over the
distorted constellation shown in Figure 3.6.

The information rates calculated for NRZ pulse shaping is shown in
Figure 3.8, assuming uplink noise is negligible at the input to the nonlin-
earity. Here the information rates are plotted for different input backoff
(IBO) levels. The IBO levels are in reference to the input level of the Saleh
model that corresponds to Esat which is the received energy for a signal at
saturated power output. Based on the normalization of the Saleh model
in Section 3.1, the IBO reference value at 0 dB corresponds to an input at



unit energy. The complex noise variance at the receiver output is N0, the
one-sided noise spectral density.
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Figure 3.8: NRZ Matched Filter Information Rates

As required for 16-APSK modulation, the high-SNR asymptote ap-
proaches log2 16 = 4 bits/symbol at all input backoffs (IBO), but the proper
choice of input backoff can optimize resources. For example, with coded
transmission onto 16-APSK at 3 bits/symbol, input backoff of -2 dB is op-
timal, and requires Es/N0 = 11 dB. Notice also that for lower SNR (or
rates), even closer to saturation is (slightly) better, but input backoff =
-2 dB is remarkably robust. For comparison in Figure 3.8, we show the
achievable rate for unconstrained Gaussian channel and for 16-APSK, in-
terpreting Esat as average energy per symbol. Much of the gap between the
linear 16-APSK result and best nonlinear curve is due to the difference in
average output power between linear and nonlinear cases, about 1.1 dB at
IBO=-2 dB. Under an equal average power comparison, linear and nonlin-
ear achievable rates are quite similar, indicating that nonlinear distortion
is a relatively small effect compared to additive noise over the region of
interest, at least for this NRZ pulse.



Memoryless Detection for RRC Pulse Shaping

In the case of RRC Pulse shaping and “matched filtering”, It is possible to
use memoryless detection where there is no compensation for the ISI. The
ML detector of a memoryless channel is

X̂ =
arg max p(Y |X = xm)
xm

(3.10)

If the channel is AWGN, then the ML detector amounts to picking the
symbol xn which minimizes the Euclidean distance |y − xn|.

For a channel with memory the above detection rule could be modified
as

X̂ =
arg max q(Y |X = xm)
xm

(3.11)

where q could be the marginal of the channel law:

pm(y|x) =
∑
xn−L

∑
xn−L+2

...
∑

xn−L+k−1

∑
xn−L+k+1

...
∑
xn

p(yn|xn−L, xn−L+1, ..., xn−L+k−1, x, xn−L+k+1, ...xn)

In this case q(y|x) is a Gaussian mixture with centroids µx at points de-
termined by the pulse shaping filter p(t), non-linearity g(·), and “matched”
filter p(−t) as seen in (3.9). Figure 3.6 can be interpreted as a sample of
the centroids of pm(y) =

∑
x pm(y|x)p(x). Each of the 16 clusters of points

represent a sample of the centroids of pm(y|x).
When the SNR is low, the Gaussian mixture will resemble a single Gaus-

sian with a mean µpm that is the average of the centroids, and a variance
σ2
pm = σ2

µ + σ2 where σ2
µ is the variance of the centroids and σ2 is the vari-

ance of the AWGN. This suggests a memoryless reduced complexity receiver
that does minimum Euclidean distance detection with the metric |y−µpm|.

While in Section 3.3, the entropy rate estimation is done on a trellis,
it is also possible to use the AEP (3.4) to estimate information rates for a
reduced complexity receiver that does not take advantage of the memory.
In this case, a trellis is not used, however the principles in Section 3.4
regarding reduced complexity receiver information rates still apply. In this
case, the reduced complexity channel law is pm(y|x), from which we can
estimate H(Y|X ), and pm(y) can be used to estimate H(Y).



To do this, a long sequence xN1 is generated. Then from this, yN1 is
generated by simulating the pulse shaping, non-linearity, AWGN, “matched”
filtering, and sampling. Then the entropy rates can be estimated as

ĥ(Y|X ) =
1

N

N∑
n=1

pm(yn|xn)

ĥ(Y) =
1

N

N∑
n=1

pm(yn)

Then the information rate for the above reduced complexity ML receiver
matched to pm(yn|xn) can be estimated as

Î(X ;Y) = ĥ(Y)− ĥ(Y|X )

In the following results, a combination of truncation and marginal-
ization was used. The memory of the system was truncated from from
14 to 4, leaving two symbols on both sides of the most influential sym-
bol. Then marginalization and Gaussian approximation was used to obtain
pm(y1|x1, x2). Then the AEP was applied as in the one way case to compute
the information rates.

The information rates in bits per channel use as a function of Es/N0

is plotted for the case of RRC pulse shaping and a memoryless reduced
complexity receiver is shown in Figure 3.9. The RRC pulse has a roll-off
factor of 0.25, which is in the midrange of the roll-off factors specified in
the DVB-S2 standard.

Again the curves are plotted for several IBO levels. A point of interest
from Figure 3.9 is that to obtain R = 3 bits/symbol, we require Esat/N0

of 11.2 dB, and at this point IBO = -2 dB seems optimum. Thus mem-
oryless detection for RRC yields slightly worse information rates than the
memoryless NRZ case at the same IBO.

Memory-2 Detection for RRC Pulse Shaping

Truncation was used to generate a reduced complexity trellis, where the
pulse shaping only included the indicies n − L + k, n − L + k − 1, and
n − L + k + 1. This results in a memory-2 trellis with |X |2 = 162 = 256
states.
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Figure 3.9: Memoryless Reduced Complexity Information Rates (RRC
pulse shaping)

Figure 3.10 shows the information rates calculated for a reduced com-
plexity Memory-2 receiver. The information rates were calculated on a
trellis as explained in Section 3.3. Here the required SNR to obtain 3
bits/symbol drops by about 0.4 dB to 10.8 dB as compared with memory-
less detection for IBO = -2 dB. This is a consequence of better modeling of
the deterministic channel effect.

3.6 Two Bidirectional Users with “Matched”
Filter Detection

Figure 3.113 (adapted from [35]) shows the system diagram of a two users us-
ing the same frequency for bidirectional communications. Each user trans-
mits a symbol sequence X(1)N

1 and X(2)N

1 respectively that are pulse shaped
and combined at the satellite antenna. The combined signal passes through
the non-linearity g(·). Then the signal is received by both terminals as

3Figure adapted from Chenguang Xu
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Figure 3.10: Memory-2 Reduced Complexity Information Rates (RRC
pulse shaping)

Y (1)N

1 and Y (2)N

1 respectively. Since each terminal knows its own transmit
sequence, it is able to cancel the echo of its own transmit sequence and ex-
tract the intended data. This can potentially double the spectral efficiency
by reuse of the same spectrum for bidiretional data transfer.

)( th
)(1 tX

)(2 tX

rh2

rh1 1rh

(.)g

2rh )(2 tN

)(1 tN

)(1 tY

)( th)(th

)(th
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X (1)1
N

X (2)1
N

Y (1)1
N

Y (2)1
N

Figure 3.11: Two Bidirectional Users “Matched” Filtering System Diagram

To calculate information rates in the case of on-frequency bidirectional
transmission, we need to estimate I(X (1);Y(1)|X (2)) which gives the infor-
mation rate of user 1 transmitting X(1)N

1 to user 2 via the satellite which is



received as Y (1)N

1 . Y (1)N

1 contains information from both users since both
X(1)N

1 and X(2)N

1 are combined at the satellite. Likewise I(X (2);Y(2)|X (1))
gives the information rate of user 2 transmitting to user 1 in this bidirec-
tional scenario.

The calculation of I(X (1);Y(1)|X (2)) is a difference in entropy rates:

I(X (1);Y(1)|X (2)) = lim
N→∞

h(Y (1)N

1 |X(2)N

1 )− lim
N→∞

h(Y (1)N

1 |X(1)N

1 , X
(2)N

1 )

(3.12)

where the second term the noise entropy.
As with one-way transmission, the state description of

p(y(1)
n|x(1)n

n−L, x
(2)n

n−L)

needed to calculate
h(Y (1)N

1 |X(2)N

1 )

is exponential with respect to the memory depth L. The complexity of the
trellis is only a function of x(1)n

n−L, and has |X |L states, the same as in the
one user case. As before we need to use a reduced complexity channel law

p(y(1)
n|x′(1)n

n−L′1
, x(2)n

n−L)

with reduced memory depth L′. Again, this can be done by either trunca-
tion or marginalization.

NRZ Pulse Shaping

NRZ pulse shaping can be used in the two user case which results in a
memoryless channel despite the non-linearity. As with one-way transmis-
sion, the entropy calculations can be done via numerical integration. These
calculations were done by Xu in [57]. Figure 3.12 shows the information
rates for two synchronous users with equal average power.

Memoryless Detection for RRC Pulse Shaping

As with the above results in one-way transmission, a truncation and marginal-
ization was used. The memory of the system was truncated from from
14 to 4, leaving two symbols on both sides of the most influential sym-
bol. Then marginalization and Gaussian approximation was used to obtain
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Figure 3.12: NRZ Matched Filter Information Rates for Two Users with
Equal Power

pm(y1|x1, x2). Then the AEP was applied as in the one way case to compute
the information rates.

Figure 3.13 shows the estimated information rates for this setup with
various IBO levels. We observe that to achieve 3 bits/modulator symbol the
required SNR is 16.1 dB, with an optimal IBO of about -6 dB. Compared
with similar results for single-user RRC transmission, the SNR must be
increased by about 4.5 dB, and the backoff increased to compensate for
larger peak to average ratio (PAPR) with two signals.

Memory-2 Detection for RRC Pulse Shaping

As in one-way transmission, truncation was used to generate a reduced
complexity trellis, where the pulse shaping only included the indexes n −
L+ k, n−L+ k− 1, and n−L+ k + 1. This results in a memory-2 trellis
with |X |2 = 162 = 256 states.

Figure 3.14 presents the results obtained with this memory-2 model.
Incorporation of two-symbol memory into the model gives a better channel
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Figure 3.13: Bidirectional Memoryless Reduced Complexity Information
Rates (RRC pulse shaping)

model, and proper decoding will slightly increase achievable rates, or lower
SNR needed to obtain a given achievable rate. For example, to obtain
R=3 bits/symbol/user, we now require only 15.2 dB, primarily because the
optimal backoff can increase to -4 dB. In essence, proper modeling (and
processing) of the nonlinear ISI allows a higher amount of nonlinearity.

3.7 One-way Transmission with Waveform
Detection

In Section 3.5, a “matched” filter and sampling shown in Figure 3.5 was
used to reduce the continuous waveform to discrete samples Yn. While this
architecture is common in linear communications systems, this causes loss of
information as explained in Section 3.1. This information can be preserved
by removing the “matched” filter and performing detection in the waveform
domain. Figure 3.15 shows such a system without a “matched” filter.
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Figure 3.14: Bidirectional Memory-2 Reduced Complexity Information
Rates (RRC pulse shaping)

Memory-3 Detection

Next, we discard the matched filter and sample the received signal at eight
times the symbol rate. We omit the OMUX filter in this experiment. The
results here are based on marginalizing a channel with pulse shaping filter
length eight symbols (so L = 7) to a reduced-complexity representation
with L = 3.

To characterize the memory of the system in the absence of a matched
filter we divide the pulse into 8 basis chips [6], each the length of one
symbol as shown in Figure 3.16. An oversampling rate of 8 was chosen
to encompass, without aliasing, the spectral regrowth caused by the non-
linearity.

Thus yn from the channel law factor p(yn|sn, sn−1) associated with each
trellis branch (see Section 3.3) is changed to a vector yn. The expected value
E[Y n|Sn = sn, Sn−1 = sn−1] is the output of the memoryless nonlinearity
with an input comprised of a linear combination of the basis chips. If we
enumerate the basis chips as row vectors φ1, φ2, ...φ8 and form a generator
matrix G = [φ1;φ2; ...φ8], an 8 (pulse length) by 8 (oversampling rate)



Figure 3.15: One-way Waveform Detection System Diagram

matrix. Then:

E[Y n|Sn = sn, Sn−1 = sn−1] = µp(sn, sn−1) (3.13)
= µp(x

n
n−L)

= g(xnn−LG)

where xnn−L is interpreted as a row vector and g(·) is the memoryless non-
linearity which in our case is the Saleh model.

A logical way to obtain a reduced complexity receiver is to marginalize
the symbols associated with the chips that have the least amplitude. Based
on our pulse and basis chips, to reduce the memory order L = 7 to L′ = 3,
we would marginalize s1, s2, s7, s8 according to (7). The result is a Gaussian
mixture which we will approximate with a spherically-symmetric Gaussian
vector of length 8, with a variance per real dimension that is the same across
all branches in the trellis.

The expected chip projections associated with the reduced complexity



1 2 3 4 5 6 7 8
−0.5

0

0.5

1

1.5

A
m

p
li

tu
d
e

Samples

Figure 3.16: Eight Basis Chips

receiver is calculated by:

E[Ym|S ′m = s′m, S
′
m−1 = s′m−1] = µq(s

′
m, s

′
m−1)

= µq(x
′m
m−L′)

=
∑
x1

∑
x2

∑
x7

∑
x8

µp(x1, x2, x
′
1, x
′
2, x
′
3, x
′
4, x7, x8)

|X |4

where |X | is the size of the alphabet which in our case was 16.
These were stored into a lookup table, and the single common variance

was calculated empirically by calculating the variance of the error between a
long simulated realization from the real channel, and a waveform generated
from µq(sm, sm−1).

Figure 3.17 shows the information rates calculated from this method.
Figure 3.18 shows a magnification of the same results at 3 bits per symbol.
For reference there is a plot of achievable rates for a linear channel, as well as
the rates of a non-return-to-zero (NRZ) pulse shaped configuration. Under
NRZ or rectangular pulse shaping there is no memory, but the constellation
still gets distorted by the nonlinearity.

When compared to the memoryless matched filtered case in 3.5, we can
see that the the SNR requirement at 3 bits per symbol has improved to
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Figure 3.17: Information Rate for Memory-3 Reduced-State Receiver

about Esat/N0 = 10.2 dB which is a 1 dB improvement. The curve that
has the highest rate is now IBO=0 dB; essentially by better probabilistic
modeling of the channel, with oversampling, we are able to ‘decode’ the
increased distortion associated with operation at saturation. The memory-
less receiver sees these nonlinearity effects as intersymbol interference, but
a trellis-based receiver is able to compensate for some of this nonlinearity
and hence perform at higher rates in the presence of the nonlinearity.

It is important to note that our linear model produces a larger average
output power than the nonlinear model, so the comparison with linear chan-
nel results is not exactly fair. We measured the output power at IBO=0dB
to be 0.7 dB below that of our linear amplifier. The required SNR for
the linear model is Es/N0 = 9.4 dB. So the gap between the linear model
and the IBO=0 dB curve is mostly due to output power difference, which
suggests that the L = 3 receiver is able to compensate for most of the
nonlinearity, even at IBO=0 dB.
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Figure 3.18: Information Rate for Memory-3 Near 3 Bits/Symbol

Marginalization with Generalized Gaussian Vector
Approximation

Here we investigate whether a general Gaussian vector approximation to
the marginals in (5) would perform better than the spherically symmetric
approximation we used in the previous section. To investigate this, we ap-
plied an output multiplexing (OMUX) filter (see Figure 3.15) to the output
of the nonlinear amplifier with BTb = 1.38 allowing downsampling from 8
times oversampling to 2 times oversampling without aliasing effects. This
was done to avoid the generation of a 16 × 16 covariance matrix which
would be needed at 8 times oversampling. This filter was incorporated in
the calculation of the approximation of q(ym|s′m, s′m−1).

Now, instead of just finding µq(x′mm−L′) as the mean from

µp(x1, x2, x
′
1, x
′
2, x
′
3, x
′
4, x7, x8)

for all x1, x2, x7, and x8, we also find the covariance matrix Cq(x
′m
m−L′)

based on these µp values and store them with µq for each branch in the
trellis. During the trellis sweep we use the general form of the multivariate
normal distribution with the appropriate µq and Cq covariance matrix for
each branch.



However, with this finer-tuned channel law, we did not see any appre-
ciable improvement. Figure 3.19 shows the two curves for IBO=0 dB from
the two methods are basically indistinguishable. We attribute this to the
dominance of additive receiver noise over most of the SNR range shown.
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Figure 3.19: Comparison of Single Common Variance and General Gaus-
sian Approximation



Part II

Faster-than-Nyquist, and
Comparison with OFDM
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Chapter 4

Introduction

Many applications in wireless technology specify power spectrum masks
that emissions must satisfy, primarily in order to avoid significant interfer-
ence to adjacent channels, and perhaps to allow for nonlinear amplification
effects. Examples of such masks are found in WiFi, UMTS standards, and
in satellite communication. These masks imply an information-theoretic
limit on the reliable communication rate, given some received power level
Pr and Gaussian noise level.

Assuming a standard white Gaussian noise model for the channel, along
with an ideal dispersionless transmission, the constrained capacity 1 can be
shown to be [1]

Ccon =

∫ ∞
0

log2[1 +
Pr|H(f)|2

N0

]df bits/second (4.1)

where |H(f)|2 is the spectral mask constraint, normalized so that its one-
sided spectral integral is 1. In a familiar special case where the mask is an
ideal rectangle having bandwidth B Hz, we have |H(f)|2 = 1/B and the
resulting constrained capacity is

Ccon = B log2(1 +
Pr
N0B

) bits/second (4.2)

There has been renewed interest recently in transmission schemes for
maximizing information rate subject to bandwidth constraints. Time-domain

1Constrained in the sense that the transmitted power spectrum is shaped according
to |H(f)|2
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FTN operation [1] is a single-carrier QAM approach that intentionally sig-
nals faster than the ‘Nyquist rate’, or faster than a system designed to
have zero intersymbol interference (ISI) would use. This introduction of
ISI can actually allow an increase in information rate, in bits/symbol and
bits/second, whenever the pulse shaping design has ‘excess bandwidth’, i.e.
the occupied bandwidth exceeds that associated with sinc-pulse shaping.
The gains are larger when the excess bandwidth increases; on the other
hand for very tight pulse shaping designs, FTN operation cannot provide
any gain over the traditional brickwall Shannon formula in (4.2) above, see
[40].

In this chapter we compare the use of FTN with OFDM in scenarios with
mask constraints, using the WiFi 802.11 b and g masks as design examples.
The 802.11b standard is based on direct sequence spread spectrum and has
a rectangular mask over the 22 MHz central zone. It requires attenuation
of -30 dB relative to the peak power spectral density from 11 MHz out to
22 MHz from the center. At 30 MHz from the center the mask requires a
relative power of -50 dB.

On the other hand, the 802.11g standard is based on OFDM with a
mask that allows an 18 MHz central zone with decibel-linear decay to -20
dB relative power at 11 MHz from center, followed by another decibel-linear
decay to -40 dB at 30 MHz from the center. Beyond 30 MHz the mask limits
emissions at -40 dB. These two masks are shown in Figure 4.1.

Figure 4.1: Spectral Masks for WiFi Standards



Traditionally the single-carrier QAM approach for these mask constraint
would pick a transmit pulse that is root-Nyquist for signaling rate of maybe
16 Msps, with excess bandwidth factor 3/8. This design would fit under
both masks and have an occupied bandwidth of 22 MHz. Zero ISI ensues,
assuming an ideal channel. Similarly, OFDM designs, as in 802.11g, would
space 64 tones (not all active subchannels) over the range of 20 MHz, with
guard intervals on upper and lower band edges to meet the mask constraint.
Neither design fully utilizes the potential of the mask-constrained channel;
the ‘excess bandwidth’ allowed by the mask can significantly increase infor-
mation rate especially for high SNR.

Both FTN and more aggressive OFDM designs can increase the achiev-
able information rate over these baseline designs, as discussed below. We
first review FTN and its implementation, then concentrate on OFDM, with
the belief that OFDM has implementation advantages for attaining the
constrained capacity implied by the mask.

4.1 FTN Background
A FTN pulse modulated signal has the form

xftn(t) =
∑
n

xnprny(t− nT/s)

where prny(t) is a root-Nyquist pulse with orthogonality at time intervals
of T see( 2.5). FTN pulse shaping has the same form as ( 2.8) except it
contains a speedup factor s, with s = 1 signifying the Nyquist rate. xn are
the information bearing symbols from some alphabet.

Minimum Distance

The development of FTN began with Mazo’s study of minimum distance
between Nyquist pulse modulated signals at rates faster than the Nyquist
limit [29]. Mazo found that the minimum squared Euclidean distance, which
is defined as

d2
min = min

x(1)N
1 ,x

(2)N
1

∫ ∞
−∞

(
x

(1)
ftn(t)− x(2)

ftn(t)
)2

dt (4.3)

where x(1)N

1 6= x(2)N

1 (4.4)



remained the same even for some values of s > 1, i.e. when ISI is allowed.
Mazo found that for sinc pulse shaping s could be increased by 25% without
changing d2

min. Since there is a direct relation between dmin and the uncoded
error rate, this suggests that for uncoded sequences, the symbol rates could
be increased by 25% without significantly affecting the uncoded error rate.
This comes at a cost of increased receiver complexity as ISI exists and a
more complicated receiver such as a Viterbi detector is needed to resolve
the ISI.

Increased Number of Dimensions

While the minimum distance is useful to compute a lower bound for un-
coded error rates, it is not useful in predicting coded information rates.
Codes by design increase the distance between transmit sequences as not
all possible transmit sequences are used, and the squared distance between
valid sequences is greatly increased. Thus the minimum distance sequences
x1(t) and x2(t) found by the minimization in (4.3) would typically not both
appear in a codebook, and thus the minimum distance as defined here would
not apply in a coded system.

One could however compute the minimum distance between codewords
in a codebook. Even then some codes with poor minimum distance have
been shown to have good performance; and the performance of a code
depends more on distance properties among all the codewords rather than
just the worst pair [28]. Thus while error probabilities based on minimum
distance are a tight lower bound for uncoded sequences, this does not extend
to coded sequences. So the advantage of FTN signalling for coded sequences
operates on a different mechanism than the minimum distance argument.

The reason for improved information rates with FTN over Nyquist sig-
nalling is that for a given transmission length, FTN signalling can generate
signals that span more dimensions than signals at the Nyquist rate, as long
as the pulse used is not the sinc. At the Nyquist rate, the number of dimen-
sions equals the number of pulses in the sequence as the train of Nyquist
pulses are themselves an orthonormal basis BN for Nyquist rate signalling.
When the same pulse is used with FTN signalling, BN can no longer span
the new set of FTN signals, and a new basis BFTN can be formed from BN
using the Gram-Schmidt procedure such that BN ⊂ BFTN . The additional
dimensions infer a faster information rate.



For the sinc pulse BN = BFTN , and there is no advantage for FTN with
the sinc pulse. This reconciles FTN concepts with Shannon’s limit for spec-
tral efficiency given in (4.2). Shannon’s derivation is based on the sampling
theorem where the sinc pulse spaced at the Nyquist rate is an orthonormal
basis for all signals constrained to the square mask with width B. Thus the
codewords based on the sinc pulse are able to span the full signal space
defined by the ideal rectangular spectrum and average power constraint.
This explains why FTN with the sinc pulse does not lead to faster infor-
mation rates since any waveform based on FTN sinc signaling could still be
represented at the Nyquist rate as a consequence of the sampling theorem.
In other words FTN transmission with the sinc pulse does not generate any
new dimensions. A formal presentation of the forgoing ideas is given in
Section 3.3 of [40].

More Distance Between Codewords

There is another way to understand how FTN increases the information
rate. Let us consider an orthonormal basis BNsinc which is the sinc pulse at
the Nyquist rate over the bandwidth B for some time interval T which we
set to the length of a codeword. BNsinc represents the maximum number of
dimensions over T which is equal to the number of sinc pulses at the Nyquist
rate that fit in T . Ignoring the transients at the edges of T , BNsinc = 2BT

Now consider a root-Nyquist pulse p(t) with excess bandwidth param-
eter β where the Nyquist rate of the pulse is B/(1 + β). The occupied
bandwidth is B and therefore BNsinc is able to span any signal generated
by p(t) at any symbol spacing T/s.

Based on the arguments of dimensionality above, speeding up the pulse
rate allows codewords to use points in the signal space spanned by BNsinc
under the same spectral and power constraints that are not available at the
Nyquist rate. This allows a better spacing of codewords which give a higher
performance than is possible at the Nyquist rate.

FTN Performance

Here we give an example of the performance benefit of FTN signalling. In
Figure 4.2 are plots of the frequency spectrum for three baseband signals.
The first is that of a sinc pulse shaping at the Nyquist rate with a bandwidth
of B = 1/2. The plot of capacity as a function of Es/N0 is shown on 4.3.



This signal represents the optimal performance theoretically obtainable for
an AGWN channel with bandwidth B = 1/2 (see Section 2.5).

Figure 4.2: FTN Spectrum

Figure 4.3: FTN Capacity

However pulse shaping with the sinc pulse is impractical because the
pulse decays slowly and truncation produces significant spectral leakage.
Also, significant ISI is generated when there is a timing error in the sampling
of the matched filter output [21]. For these reasons the RRC pulse is often
used in practice.

The RRC pulse is also root-Nyquist, and when used at the Nyquist rate
it gives the same performance as the sinc pulse at the same symbol rate.
However it uses more spectrum as stipulated by an excess bandwidth pa-
rameter β. In Figure 4.2 the frequency spectrum of an RRC pulse designed



at the same symbol rate with β = 0.3 as the sinc pulse with B = 1/2 is
shown. The occupied bandwidth for this signal is B = 1/2(1.3) = 0.65.
When used at the Nyquist rate, the information rate for this system is the
same as that of the sinc pulse with B = 1/2. However if we use FTN
with s > 1 for this pulse we can approach the FTN constrained capacity
calculated by (4.1) using the RRC spectrum shown in Figure 4.3. However
to take advantage of these higher bit rates, the incurred ISI needs to be
decoded with a more complex receiver.

Finally, to show that Shannon’s expression for capacity is not violated,
the capacity of an AWGN channel with B = 1/2(1.3) = 0.65 is also plotted.
Thus the FTN rates is upper bounded by this ultimate limit, but shows an
improvement over Nyquist rate signalling.

4.2 FTN Implementation Issues
There are several significant implementation difficulties that FTN research
tends to overlook. We list

• Receiver complexity to decode the ISI, at least for optimal processing,
grows exponentially with the memory length of the induced ISI chan-
nel, which in turn is proportional to the over-clocking factor s. The
optimal processor is a Viterbi processor for uncoded signaling, and
a BCJR-style MAP soft decoder for coded FTN operation, followed
by an outer decoder. Attainment of high spectral efficiency normally
requires larger alphabet, making the optimal receiver complexity even
larger. There has been work on reduced complexity receivers to ei-
ther equalize or to shorten the channel response, [19],[49] but some
attendant loss in information rate is implied.

• Synchronization, both for symbol timing and carrier phase tracking,
is complicated by the lack of a well-defined receiver eye pattern, hence
the inability to make tentative decisions to drive symbol timing loops
and/or decision-directed carrier tracking loops. Nonlinear operations
on the received FTN signal can produce spectral lines that contain
timing information, but performance is certainly worse than with
Nyquist transmission.



• As the overclocking parameter s increases, the QAM signal’s peak-to-
average power ratio (PAPR) grows, making linear transmitter design
more problematic. (This is also an issue with OFDM discussed below.)

• Most of the work on FTN to data has focused on binary inputs to
the transmitter, with s sufficiently large that the constrained capac-
ity (associated with Gaussian codebooks) can be achieved. Increasing
s implies a rather long effective channel response that implies large
receiver complexity. For example, if we hope to attain capacity of
say 4 bits/Nyquist rate interval with binary FTN, the overclocking
parameter must be at least 5, complicating the receiver design (syn-
chronization and decoding.)

• Operation on non-ideal channels will change the end-to-end ISI char-
acteristic, and make optimal receiver complexity even larger, assuming
ISI can be learned.

• In a coded transmission scenario, the FTN decoder must produce
soft-outputs to the outer channel decoder, with iterative exchange
between decoders to operate near channel capacity limits. For these
practical reasons, we revisit OFDM, popular for many bandwidth-
efficient applications (LTE, WiFi, ADSL, etc.).

• We proceed to show that OFDM can achieve the constrained capacity
implied by any spectral mask. The design requires careful selection of
the number of OFDM subchannels, along with band-edge engineer-
ing of the energy profile to satisfy the mask. OFDM does not have
the primary difficulty of FTN, namely exponentially-growing receiver
complexity, but instead relies on FFT hardware for a reasonably sim-
ple implementation that provides ISI-free operation and easy interface
with coding hardware. Furthermore another OFDM advantage is low
complexity equalization at the cost of the cyclic prefix (CP).

4.3 OFDM Background
In OFDM [39] the transmitter accepts blocks of N data symbols per OFDM
symbol duration Tf seconds, and forms the inverse FFT to produce a
discrete-time complex sequence which is then converted to continuous-time
and upconverted, or vice versa. Our formulation employs frequency-domain



zero-padding with (M − 1)N zeros prior to the IFFT, to allow easier CT
reconstruction free of aliasing. We refer to this as M -fold padding.

The discrete-time domain signal for a single OFDM frame is then

xofdm[n] =
N−1∑
k=0

xke
j2πkn/MN , n ∈ {0, ...MN − 1} (4.5)

where xk are the message symbols. The time domain sequence has a rate
fs = MN/Tf . At this point practical designs will prepend a CP to allow
for easy channel equalization, but we omit this step for simplicity.

The DTFT of this time-domain signal is

Xofdm(ejΩ) =
N−1∑
k=0

xk

MN−1∑
n=0

e−jn[Ω− 2πk
MN

]

=
N−1∑
k=0

xke
−jMN−1

2
[Ω− 2πk

MN
] sin[MN

2
(Ω− 2πk

MN
)]

sin[1
2
(Ω− 2πk

MN
)]

(4.6)

A continuous stream of OFDM symbols is merely a concatenation of
such signals. Using this DTFT and defining the power spectrum as the
limiting expected value of the magnitude-squared of the DTFT, normalized
by time, it is fairly easy to show that the power spectrum for the DT signal
is proportional to

P(ejΩ) ∝
N−1∑
k=0

σ2
k

sin2[MN
2

(Ω− 2πk
MN

)]

sin2[1
2
(Ω− 2πk

MN
)]

(4.7)

where σ2
k is the energy profile in frequency assigned to the various subchan-

nels. A typical profile is constant with zero guard bands on either band
edge; alternatively we might adopt a flat central zone with a taper near the
band edge.

The power spectral density (PSD) in (4.7) is simply the sum of translated
squared ‘digital sinc’ functions, with spacing in Ω given by 2π/MN and null-
to-null width π/MN . The latter is smaller as N increases for a given overall
bandwidth, which explains why the PSD drops more sharply out-of-band
as N increases, as seen below.

It is this PSD that we focus on below, but one should realize that the
final PSD for the CT signal is, assuming an ideal interpolator from DT to
CT,



PCT (f) ∝ Tf
MN

|H(ej2πfTf/MN)|2

×
N−1∑
k=0

σ2
k

sin2[π(fTf − k)]

sin2[π(fTf − k)/MN ]
, |f | ≤ MN

2Tf
(4.8)

where H(ejΩ) is the frequency response of a DT digital filter to reduce
high-frequency sidelobe content without introducing significant distortion.

Sidelobes of a Tone: the ‘Digital Sinc’ versus the Ideal
Sinc

In this and the next section we study the behavior of the spectral properties
of the sidelobes produced by an individual tone as well as the overall mod-
ulated OFDM symbol. These sidelobes are relevant to fitting the transmit
signal under a spectral mask.

The M -fold padding effectively oversamples the time-domain waveform
by M. The digital sinc function representing a tone in (4.6) is a close to the
ideal sinc function whenM and N are sufficiently large. The ideal sinc func-
tion would be the spectral density of a tone if the ideal rectangular window
of length Tf were applied to the reconstructed IFFT output. Because the
ideal rectangular function has an infinite range of frequencies, it is impos-
sible to represent it in discrete time. However with sufficient oversampling,
the difference can be mitigated. The sidelobes of the digital sinc are worse
than the ideal sinc, but the differences only become evident farther away
where the sidelobes have already been significantly attenuated.

The digital sinc power spectrum has the following form when the peak
power spectral density is normalized to 0 dB:

Ptone,dsinc(f) =
1

(NM)2

sin(πTff)2

sin
(
πTff

MN

)2 (4.9)

With the same normalization the ideal sinc has the following spectrum:

Ptone,sinc(f) =
sin(πTff)2

(πTff)2
(4.10)



The denominators of the above expressions give the envelope of the side-
lobes. The sidelobes touch the envelope at f = (1

2
+m)∆f where ∆f = 1/Tf ,

and m signifies the m-th sidelobe. Figure 4.4 shows Ptone,dsinc(f) and its
sidelobe envelope 1

(NM)2
1

sin
(
πTf f

MN

)2 plotted against the frequency normalized

by ∆f . At these frequencies close to the tone there is no difference between
the digital sinc and ideal sinc and their related envelopes regardless of M.

Figure 4.4: Single-Tone Sidelobe Envelope

Figure 4.5 shows the sidelobe envelopes of various values of M, the over-
sampling rate compared to the envelope of the ideal sinc for N = 1024 and
B = 22 MHz. For M = 4, the point at which the digital sinc envelope dif-
fers 1 dB from the ideal happens at 20 MHz away from the tone frequency
and at a power level of around -70 dBc. With M ≥ 2 the digital sinc is
virtually identical to the ideal for frequencies within 5 MHz of the tone.

Furthermore the digital sinc spectrum has a cyclic nature where the
sidelobes wrap around at the folding frequency and appear at the other end.
The sinc function has an infinite spectrum, while the digital sinc is limited
by the sampling theorem to half the sampling rate. This behavior can also
be understood as the cyclic convolution due to windowing in the discrete
time domain. Again this is mitigated by oversampling as the sidelobes decay
over the nulled frequencies of the M -fold padding before appearing at the
other side.



Figure 4.5: Single-Tone Sidelobe Envelope vs. M (N = 1024, B = 22
MHz)

Another difference is that the sidelobes of the digital sinc are limited to
half the sampling rate as a consequence of the sampling theorem. Thus if
the IFFT of the modulator is taken over a bandwidth B, then the sidelobes
are limited to a bandwidth of MB. In practice these sidelobes will be
filtered by some by some H(ejΩ) as in (4.8) or perhaps by some analog
filter.

OFDM Sidelobes

Since we are studying information rates under spectral mask constraints,
we analyze the PSD characteristics of OFDM sidelobes. If we assume inde-
pendence of the data X1

k in (4.5), the power spectral density of the sidelobes
of the entire OFDM symbol is a summation of that of the tones comprising
the symbol. We begin with the ideal sinc from (4.10), where the peak PSD
of each tone is normalized to 0 dB:

Pofdm,sinc(f) =
N−1∑
k=0

(
sin[πTf (f −∆fk)]

πTf (f −∆fk)

)2

(4.11)

The envelope of OFDM sidelobes can be calculated from the envelope
of the individual tones. For convenience, we center the frequency axis on



the last tone of the OFDM symbol:

Penv,sinc(f) =
N−1∑
k=0

1

(πTf (f + ∆fk))2 (4.12)

=
1

(πTf )2

N−1∑
k=0

1

(f/∆f + k)2
(4.13)

Taking N →∞, the above series converges as

lim
N→∞

Penv,sinc(f) =
1

(πTf )2

∞∑
k=0

1

(f/∆f + k)2
(4.14)

=
1

(πTf )2
ψ(1)(f/∆f ) (4.15)

where ψ(1) is the polygamma function of order 1, defined as the second
derivative of the logarithm of the gamma function:

ψ(1)(z) ,
d2

dz2
ln Γ(z) (4.16)

=
∞∑
k=0

1

(z + k)2
(4.17)

Thus we have a closed-form expression of the sidelobe envelope of a
complete OFDM symbol as N → ∞. For finite N the sidelobe envelope
can be calculated as:

Penv,sinc(f,N) =
1

(πTf )2

(
ψ(1)(f/∆f )− ψ(1)(f/∆f +N)

)
(4.18)

For large N the second term can be neglected and the expression in
(4.14) is a tight upper bound of the sidelobe envelope. The correction for
finite N becomes more necessary when an accurate estimate is needed for
sidelobes further away from the OFDM symbol.

As in Section 4.3, the points at which the sidelobes touch the envelope
are at f = (1

2
+m)∆f for the m-th sidelobe.

This analytic expression for the sidelobe envelope is useful in determin-
ing the number of tones that need to be deleted or filtered to meet a certain



spectral mask or requirement. When designing a sidelobe filter, the side-
lobe envelope can be determined using this method instead of by brute force
calculation via (4.11).

The use of a CP lowers the sidelobes. Calculation of the sum of the
sidelobe envelopes gives

Penv,cp(f) =
N−1∑
k=0

1

(π(Tcp + T0)(f + ∆fk))2 (4.19)

=
1

(πT0)2

(
ψ(1)(f/∆f )− ψ(1)(f/∆f +N)

)
(4.20)

where Tcp is the length of the CP, Tcp + T0 is the length of the complete
OFDM symbol, and ∆f = 1/T0.

However for OFDM with a CP, summing the envelope of the tones is no
longer a tight bound on the envelope of the OFDM symbol since the sine
numerators of the tone sinc functions are no longer exactly in phase and do
not add constructively over all frequencies. However this expression may
still be useful for situations where Tcp is much less than T0.



Chapter 5

Mask Constrained Information
Rates

In the following sections we investigate the application of FTN and OFDM
to increase the information rates under mask constraints. Figure 5.1 shows
the constrained capacities of the two WiFi masks compared to various prac-
tical implementations.

Figure 5.1: Constrained Capacities of the Mask Compared with Single
Carrier Nyquist Signalling

The constrained capacity for the b mask was calculated using (4.2) using
only the central zone 22 MHz bandwidth. Similarly the capacity for the g
mask was calculated over the same central bandwidth using (4.1). In prac-

60



tical systems we would expect adjacent channels beyond the central zone
which makes use of spectrum beyond this zone impractical. The allowance
of the masks for spectral leakage beyond the central zones are mainly to
account for OFDM sidelobes and amplifier non-linearity.

The capacity for Nyquist signalling is shown for root raised cosine (RRC)
pulse designs for excess bandwidth parameters of β = 2/9 and β = 3/8.
Both of these represent practical single carrier designs over an occupied
bandwidth of 22 MHz. The symbol rate for these designs are Rs = 18 Msps
and Rs = 16 Msps respectively. The PSD for RRC β = 2/9 lies within the
b mask but violates the tapering in the central zone of the g mask, while
the PSD for RRC β = 3/8 complies with the g mask.

Finally, the constrained capacity of an OFDM system specified accord-
ing to the WiFi g standard is plotted as well. It has N = 64 over a 20 MHz
bandwidth with 52 active subcarriers. The PSD of this system obviously
lies beneath the g mask for which it was designed. The constrained capacity
curve of this system lies between that of the above single carrier designs.

5.1 The WiFi 802.11g Spectral Mask
First we investigate the use of FTN and OFDM with a more aggressive
design to approach the capacity implied by the g mask. Both these tech-
niques are able to close the gap to capacity from the information rates for
the single carrier designs and the standard WiFi g implementation.

FTN Approach

The FTN approach to the spectral mask constraint is to pick a pulse shape
to shape the PSD to the mask. The PSD is dependent only on the pulse
shape, and not on the transmission rate, assuming independent input sym-
bols. In Figure 5.2, we show a transmit pulse (linear-phase choice) whose
QAM signal meets the g mask, independent of signaling rate. This pulse
was obtained by numerical conversion of the mask to the time-domain.
The pulse is constrained to a 22 MHz bandwidth since adjacent channels
are presumed to exist beyond this bandwidth.

This pulse shape will not in general be a root-Nyquist pulse at any
signaling rate, so FTN is somewhat a misnomer in this case. However
the same principles apply: By accelerating, or over-clocking the modulator



Figure 5.2: Pulse Meeting 802.11g Mask, Suitable for FTN, Truncated to
2 Duration

relative to some typical, small-ISI rate, and properly decoding the resulting
ISI, the G Mask constrained capacity shown in Figure 5.1 can be obtained
with sufficiently large over-clocking factor s. Based on the flat portion of the
mask we somewhat arbitrarily assign a nominal rate R∗ = 18 Msps. Then
we overclock this nominal rate by the factor s in attempt to approach the
mask constrained capacity. Whatever the signaling rate, a filter matched to
this pulse and sampled at the appropriate rate provides sufficient statistics
for optimal processing in uncoded or coded scenarios.

The information rate for a Gaussian alphabet using a pulse p(t) with
Fourier transform H(f) is [40, 54]

I = sR∗
1

2π

∫ π

−π
log2

(
Pr

sN0R∗
P (ejΩ)

)
dΩ

where P (ejΩ) is the DTFT of g[n]:

P (ejΩ) =
∑
n

g[n]e−jΩn

and g[n] is the autocorrelation of p(t) sampled at the FTN rate sR∗:

g[n] =

∫ ∞
−∞

p(t)p(t− n/sR∗)dt



Figure 5.3 shows these information rate calculations for various values of
s. For s ≥ 22/18 = 1.22 we find that the information rates have converged
to the mask constrained capacity. This corresponds to the fact that the
nominal symbol rate is 18 Msps while the bandwidth of H(f) was chosen
to be 22 MHz. Similarly, given a root-Nyquist pulse with some excess
bandwidth factor β, overclocking by a factor s = 1+β is sufficient to attain
the constrained capacity limit in bits/second, at least if large alphabet
codebooks are allowed [40] [54].

Figure 5.3: WiFi g FTN Information Rates

For high performance decoding of FTN signals, a soft input soft output
(SISO) equalizer can be used such as the BCJR algorithm which can be
combined with an iterative decoder. The standard BCJR algorithm uses
metrics that expect white noise. To this end a noise whitening filter can be
used before processing by BCJR. The noise whitened channel response f [n]
can be calculated from g[n] by minimum phase spectral factorization, and
is shown in Figure 5.4 out to 30 coefficients.

Figure 5.5 shows the signal to residual ISI ratio (SRISIR) due to trun-
cation of f [n] for use in the BCJR algorithm. The number of states in the
BCJR trellis is ML where M is the number of constellation points and L is
the memory order, where L = Nf−1 where Nf is the number of coefficients
in f [n]. If we would like to operate at an SNR of 30 dB and 40 dB we would
could only truncate down to L = 14 and L = 27 respectively.

The impractical complexity of the full BCJR to approach the con-
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Figure 5.4: Mask Pulse Noise Whitened Channel Response

strained capacity of the g mask is shown in table 5.1. As seen in Figure 5.1,
FTN shows its greatest absolute advantage over Nyquist signalling at high
SNR. At 30 dB and 40 dB SNR, the FTN information rates are 18% and
19% greater than Nyquist signalling at 18 Msps respectively. At s = 1.22
with a symbol rate of 22 Msps, large constellation sizes M are needed to en-
code the required number of bits. The M shown are minimum sizes as even
larger constellations are necessary to accommodate channel coding. It may
be possible to increase s and thereby lower the M required, however this
induces higher ISI and increases the L necessary to maintain an acceptable
SISIR. Clearly straight-forward implementation of BCJR with truncation
of f [n] is impractical.

Aside from truncating f [n], there are other ways of reducing the com-
plexity. It is possible to use an impulse-shortening filter, however this will
color the noise causing a mismatch with the metrics of the BCJR algorithm
and incur a performance penalty [1]. [2] proposes a reduced complexity
M-BCJR algorithm, but only considers binary alphabets.

Thus straightforward FTN techniques to approach the constrained ca-
pacity of the WiFi-G at high SNR are impractical, and at lower SNR, the
advantages of FTN diminish. While reduced complexity FTN methods are
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Table 5.1: Mask Pulse FTN BCJR Complexity

SNR Information Symbol Bits Minimum Memory BCJR
Rate Rate per Constellation Order States

Symbol Size M L
30 dB 211 Mbps 22 Msps 9.59 210 14 1.4× 1042

40 dB 284 Mbps 22 Msps 12.9 213 27 4.6× 10105

an active area of research, we will show in the next section that the well un-
derstood techniques of OFDM can approach the mask constrained capacity
with relative ease.

OFDM Approach

The design for OFDM requires choice of N and the power profile such
that the PSD falls under the mask. Typically the first corner in the side-
lobe region is the most difficult to meet, and traditional design defines null
channels at both band edges so the sidelobe sum in (4.8) is within the mask.
(The parameter M is also a design choice, but assuming M ≥ 2 the effect
is rather minor, and is only chosen to help with DT to CT conversion.)



Flat Profile

It is evident from study of (4.8) that for a given design bandwidth in Hz,
use of a larger N (and thus larger Tf ) is helpful in that the power spectrum
for each subchannel becomes narrower. With equal-energy profiles, (what
we call flat profiles) this in turn possibly allows more active subchannels
to crowd the band edge while still meeting the mask. More active tones
obviously increases capacity, for a given overall power, or alternatively, the
OFDM PSD is more closely approaching the continuous-frequency PSD
mask1.

When adopting a design bandwidth 22 MHz, Figure 5.6 illustrates the
PSD for N = 64, 128, and 256 with flat profile. In each case edge channels
have been trimmed so that the PSD meets the mask. The allowed number
of active subchannels in these cases is Na = 46, 104, and 208. Na can be
accurately estimated using (4.18) instead of iteratively graphing (4.11) and
manually checking that PSD meets the mask.

Notice that with flat profile designs, the ratio Na/N cannot increase
when N exceeds 128, as meeting the first (-20 dB) mask corner dominates
the constraint. In other words, once the density of subcarriers reaches a
critical value, the continuous-frequency PSD no longer changes, and fixed-
interval guard bands must be maintained so that the sum of subchannel
sidelobes meets the mask2.

Tapered Profile

The fact that the mask is not vertical in the main-lobe region allows ta-
pering of the energy profile near the band edges to admit even more active
subchannels while still meeting the mask. Numerical maximization of the
information rate with the mask PSD constraints can be used to determine
the tone power allocations. Due to the symmetry of the mask, half of the
tones N/2 − 1 representing the positive frequencies were subject to the
maximization. The constraints were taken at steps of half the tone spacing
∆f/2 from 0 to 13 MHz. Beyond 13 MHz it is assumed that a transmit
filter would be employed to guarantee compliance to the mask.

1We note that attaining the constrained capacity also requires near-Gaussian (large
alphabet) constellations for high rates

2The mask constraint is not met at ±20 MHz frequencies, but this can be easily
solved with a non-distorting digital filter following the IFFT



Figure 5.6: PSD for DT OFDM Signal with N = 64, 128, 256, M = 4,
Flat Profile

It turns out that the optimal power profile is a function not only of the
mask but also the SNR. Figure 5.7 shows the optimized PSD profiles of an
N = 64 OFDM signal. The peak PSD of the mask has been normalized
to unity. Without loss of generality, interpreting the mask as the PSD
constraints at the receiver, optimization for two extreme SNR cases are
shown: one with a noise power spectral density of N0 = 0 dB (SNR = -1.44
dB) and N0 = -40 dB (SNR = 38.0 dB)3.

While water-filling gives the solution to maximizing the information rate
subject to an average power constraint [12], here the constraint is not power
but rather the PSD as stipulated by the mask. Furthermore water-filling
does not involve a tradeoff between bandwidth and power, and is free to
allocate a fixed amount of power over the entire bandwidth. Maximization
of information rates subject to a mask on the other hand involves a power
versus bandwidth tradeoff that is a function of SNR.

The tradeoff between power and bandwidth in relation to SNR can be
understood in terms of operation at high SNR in the bandwidth limited
region where the bitrate R > B, and at low SNR in the power limited region
where R < B [38]. The log function in (4.2) results in diminishing returns
as power is increased. At high SNR in the bandwidth limited region, these
marginal gains are so low that trading off power for bandwidth becomes

3The noise power in the SNR calculation is taken as N0B, where B = 22 MHz



G Mask

N0=0 dB

N0=-40 dB

2 4 6 8 10 12
MHz

-30

-20

-10

0
PSD (dB)

Figure 5.7: OFDM N = 64 M = 4 PSD for Tapered Low SNR (N0 = 0
dB) and High SNR (N0 = -40 dB) Profiles

attractive. Similarly at low SNR in the power limited region trading off
bandwidth for power results in higher performance. The optimization of
power profiles subject to a mask constraint involves these tradeoffs.

Notice that in the high SNR profile the optimization results in a higher
bandwidth usage at the cost of power. The power output of the high SNR
profile is 0.52 dB below the low SNR profile, and 1.3 dB below the maximum
power implied by the mask. Table 5.2 summarizes the relative powers of
the different profiles considered in this section.

Table 5.2: Relative Power of Tapered Profiles

N Profile Power Relative to Mask
64 Low SNR - 0.77 dB
64 High SNR - 1.30 dB
128 Low SNR - 0.07 dB
128 High SNR - 0.15 dB

The low SNR profile favors greater power over bandwidth. It forgoes
the spectrum allowed at the lower corners of the mask since using this area
of the mask precludes power allocation at the upper mask corner. At low
SNR, any power allocated to the lower mask corner is buried far below the
noise floor, and little is lost by excluding this allocation. Allocating power



to the upper corner increases the total power since the mask allows greater
power here than at the lower corner. Furthermore this actually increases the
effective bandwidth seen at the receiver since the power density at the top
of the mask is close enough to the noise PSD to make a difference, whereas
the high SNR profile drops the bandwidth across the top to allocate power
to the lower corner.

The resulting channel capacity for different power profiles is easily com-
puted by taking the capacity available per orthogonal subchannel, and sum-
ming over the active subchannels, accounting for any possible taper on the
energy profile. The capacity plots below assume Gaussian 2-D variables
for the input message symbols to the IFFT, but this can be approached at
higher rates with progressively larger alphabets.

Plotting the information rate verses actual SNR shows that rates for the
high SNR profile is always better than the low SNR profile at a given SNR.
However this is not a fair comparison since the optimization constraints
were not based on average power but rather the mask constraint. We want
to allow certain profiles to tradeoff bandwidth for power without penalizing
these optimizations. To this end we compare the two profiles based on on
a nominal SNR:

SNRnom =

∫ 11MHz
−11MHzM(f)df

N0(22MHz)
(5.1)

where the signal power is taken to be the maximum power implied by the
mask PSD M(f). Since everything is constant in this equation except
N0, this amounts to comparing the two profiles at the same noise PSD.
This could also be interpreted as comparing the two profiles that are con-
strained to the same mask PSD at the transmitter and received over the
same pathloss. Figure 5.8 shows this plot. Notice that at low SNR, the low
SNR profile performs ever so slightly better. However the differences are
obvious at high SNR.

The differences between the high and low SNR profiles diminish as N is
increased as the optimization is able to better hug the mask with smaller
tones. Figures 5.9 and 5.10 show similar profiles for N = 128. The power
versus bandwidth tradeoff is still evident between the upper and lower cor-
ners, but their effect on information rates is less pronounced than atN = 64.
In fact the low SNR profile is only 0.08 dB greater in power than the high
SNR profile. At N = 256 there is hardly any difference between high SNR
and low SNR optimizations.
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Figure 5.8: OFDM N = 64 M = 4 Mask Constrained Capacities for
Tapered Low SNR (N0 = 0 dB) and High SNR (N0 = -40 dB) Profiles

Figure 5.11 compares the performance of the flat and tapered profiles
under the g mask. Only the high SNR profiles are shown for the tapered
cases. The information rates are again plotted against the nominal SNR
in (5.1). Note the superiority of the tapered designs, with the increased
slope of the tapered OFDM capacity reflecting the more efficient use of
the mask-constrained spectrum. The tapered N = 64 design (optimized
for high SNR) performs better than even the flat N = 128 profile at high
SNR. Even at a modest levels of N = 128, the optimized tapered profile
has approached the mask constrained capacity. Advantages of lower values
of N include lower complexity and more immunity to Doppler frequency
shift due to motion.

For high SNR, the increase in achievable information rate is about 20%
in a fair power and noise level comparison. Flat profiles benefit from in-
creasing N to 128, but no further gains are possible for this mask; with
this design the number of active subcarriers must be kept significantly less
than N, however, to meet the mask, reflected in the poorer capacity in 5.11.
There seems no good reason not to adopt a more aggressive tapered OFDM
recipe, since the spectral emission constraint is satisfied.
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5.2 The WiFi 802.11b Spectral Mask

FTN Approach

For the FTN case the b mask implies the sinc function. Speeding up the sinc
pulse beyond the Nyquist rate does not lead to higher information rates.
Furthermore difficulties in using the sinc pulse are well known. This leads
to the adoption of an excess bandwidth pulse shape such as the RRC in
practice. Thus FTN is not a good approach for this spectral mask.

OFDM Approach

OFDM is a practical way to approach the capacity implied by the mask.
As with the g mask, we first explore the flat profile. Then we go on to
the numeric optimization techniques which results in tapered profiles that
tradeoff power and bandwidth at different levels of SNR.

Flat Profile

In deriving flat profiles for the b mask, we can use the polygamma formu-
lation of the OFDM sidelobe envelope in Section 4.3. We calculated that
approximately 101 subcarriers need to be deleted from each side such that
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Figure 5.10: OFDM N = 128 M = 4 Mask Constrained Capacities for
Tapered Low SNR (N0 = 0 dB) and High SNR (N0 = -40 dB) Profiles

the sidelobes fall beneath the -30 dB corner of the b mask. This number of
sidelobe deletions holds for large N. This suggests that the constrained ca-
pacity increases as a function of N since the percentage of sidelobes deleted
decreases as N increases. The fraction of active subcarriers due to the
deletion of 204 subcarriers4 is tabulated as a function of N below.

N Fraction of active subcarriers
1024 0.801
2048 0.9
4096 0.95
8192 0.975
16384 0.988
32768 0.994

The fraction of active subcarriers also represents the fraction of the mask
constrained capacity attained by the OFDMmodulation. Thus OFDM with
large N is able to approach the mask capacity. N = 32768 is an FFT size
that is already being used in the DVB-T2 standard.

4101 subcarriers deleted from both sides, and tones at DC and the folding frequency
are not used
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Figure 5.11: Capacity Comparison for OFDM Designs

Tapered Profile

While the mask resembles a brick wall spectrum, optimizing the information
rate subject to the mask at different SNR as done in Section 5.1 still results
in a tapered profile that features a tradeoff between power and spectrum.
In fact these tradeoffs are even more pronounced than for the b mask.
Repeating the same optimizations for N = 64 and N = 128 we obtain the
results in Figures 5.12, 5.13, 5.14, and 5.15

The tradeoff of power for spectrum at high SNR is evident which results
in a similar vacancy of the upper corner for occupancy at the lower corner,
resulting in greater bandwidth. Table 5.3 shows the relative power of each of
the profiles with respect to the full power implied by the mask. Compared
to the relative powers of the less aggressive G Mask in Table 5.2, these
results are much lower. The trend of profiles converging to the mask power
as N increases can be seen here, but it is clear that much higher N is needed
for convergence. The convergence of the low SNR and high SNR profiles
with increasing N is also apparent.

While the results from this section and Section 5.2 show that the B Mask
capacity can be approached with increasing N, in the following section we
propose some additional techniques that could be investigated in future
research.
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Figure 5.12: OFDM N = 64 M = 4 PSD for Tapered Low SNR (N0 = 0
dB) and High SNR (N0 = -40 dB) Profiles

Table 5.3: Relative Power of Tapered Profiles

N Profile Power Relative to Mask
64 Low SNR - 8.53 dB
64 High SNR - 11.19 dB
128 Low SNR - 5.73 dB
128 High SNR - 8.27 dB

5.3 Future Research
Deleting tones at the edges in the flat profiles is perhaps the most simple
way of mitigating OFDM sidelobes. We also have explored tapered profiles
that converge to the mask constrained capacity more quickly. In addition
to avoiding spectral leakage outside of the mask, it is also possible to filter
the sidelobes at the transmitter.

A filter with a flat gain and linear phase over the desired signal band-
width can filter the sidelobes while passing most of the signal undistorted.
However OFDM is well suited to equalize linear distortion, this being per-
haps one of its greatest features. Thus a general filter could be used over
OFDM signal which can be combined with tone scaling to meet some mask
constraint.

This more aggressive filtering will introduce some inter-tone interfer-
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Figure 5.13: OFDM N = 64 M = 4 Mask Constrained Capacities for
Tapered Low SNR (N0 = 0 dB) and High SNR (N0 = -40 dB) Profiles

ence. However standard OFDM equalization can be used to combat this
distortion and a CP the length of the filter impulse response would ensure
good performance of the equalizer. The overhead of the CP can be mit-
igated by increasing N or even using a channel shortening filter as done
in digital subscriber lines. A potential problem with channel shortening in
single carrier communications such as in Nyquist and FTN signalling is the
coloring of the noise which creates a mismatch with the well known receiver
structures that assume white noise (see Section 5.1). However noise coloring
is not a problem with OFDM, again due to the ease of equalization. There
are also even more advanced techniques where sidelobes are canceled [11].

Thus OFDM has a whole host of properties and techniques that can be
exploited to approach the capacity under a mask constraint. While we have
shown that tapering at even modest N can attain to the mask capacity of
the g mask, these other techniques could be explored for the more aggressive
brick wall allocations like the b mask. The combination of these techniques
with our method of optimized tapering profiles may allow convergence to
the mask capacity at lower N than shown with the flat profiles in Section
5.2.
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Figure 5.14: OFDM N = 128 M = 4 PSD for Tapered Low SNR (N0 = 0
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5.4 Conclusion
In meeting a spectral mask constraint, two possible transmission strategies
are FTN (single-carrier QAM) and OFDM with aggressive energy profile
and sufficiently large FFT size N that sharpens the spectral rolloff to help
meet mask constraints. Considering complexity of implementation, espe-
cially the receiver complexity and synchronization difficulties of FTN, it
seems clear that OFDM is a preferred choice. We believe this conclusion
holds for other masks than the ones considered here.

For OFDM, large N , combined with power tapering, is suggested by our
study, which has a small (factor of log2N) complexity penalty per message
symbol. Also, larger N will increase the peak-to-average power ratio and
the sensitivity to Doppler offset. Nonetheless solutions exist for both. On
the other hand, larger N helps amortize the cyclic prefix overhead (not
considered here). As usual, channel equalization for non-ideal channels
is greatly simplified with OFDM. Finally, coupling channel coding with
OFDM is much easier as well.
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Figure 5.15: OFDM N = 128 M = 4 Mask Constrained Capacities for
Tapered Low SNR (N0 = 0 dB) and High SNR (N0 = -40 dB) Profiles
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Chapter 6

Introduction

The optimization of communication systems involves the tradeoff of com-
plexity for efficiency. Power and spectral efficiency are two common goals in
communications engineering. Given limitations in power and spectrum, we
would like to maximize the amount of information transfer over the system.
This of course comes at a cost in complexity, and the greatest performance
at the least marginal cost in complexity is of interest.

In the past, improvements at the physical layer have been responsible
for most of the gains in communications efficiency. The integrated circuit
was invented in 1958, and since then Moore’s Law has accurately modeled
exponential growth in computing power. As computing power has become
cheaper, more elaborate and complex signal processing schemes were de-
veloped to push physical layer performance closer to the Shannon limit,
which dictates the absolute limit in the efficiency of reliable communica-
tions. Modern error correcting codes such as Low-density Parity Check
Codes (LDPC) and Turbo Codes have been able to approach within 1 dB
of the Shannon limit. This monumental achievement raises the question
of how to continue trading off complexity for communications efficiency, as
the fundamental limit bars any further significant increase in efficiency.

While advances in the physical layer have approached the fundamental
limit, it is well known that the layered approach to protocol design and the
end-to-end principles of Internet architecture, while providing benefits of
modularity and abstraction, limit communications efficiency [4]. In partic-
ular protocol layering precludes application specific optimization1 where the

1We need to distinguish between the word application with respect the application
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functionality traditionally associated with the lower layers can be optimized
based on the application.

Some of the performance enhancing techniques made possible by ASO
are:

Optimizing Channel Coding, Modulation, and Media Access
Control

Functions of the physical layer such as channel coding and modulation as
well as the media access control (MAC) can be tailored to the applica-
tion, and thereby achieve performance and efficiency gains. For example,
streaming recorded video should be handled differently than gaming traffic.
Recorded video streaming is a high bit rate application that also has a high
tolerance to latency, while real-time gaming typically has relatively low data
rates but demands low latencies. This suggests the use of a channel code
with long codewords for video streaming, while the gaming traffic would use
shorter codewords. This could be implemented in an orthogonal frequency
division modulation (OFDM) system where most of the tones would be al-
located high throughput traffic where the codeword spans multiple OFDM
symbols, while a few tones could be dedicated to low latency traffic that
could be decoded at the reception of each OFDM symbol. Furthermore the
media access control (MAC) function could intelligently schedule the traffic
and tone allocation based on the application requirements.

Optimizing Source Coding

Another important feature of ASO is that the source coding at the ap-
plication layer[fn::In information theory, can be adapted to the channel
conditions known at the physical layer. Today’s Internet video streaming
depends on the client software to estimate the speed of the connection to
decide between different bitrate representations of the video. Poor esti-
mates of the bandwidth causes content already downloaded to be wasted as
the client switches between different representations. In a study of mobile
clients more than 35% of the downloaded content was discarded [31, 30] due

layer of a protocol stack and a software application which may be a commercial software
package. Later we will consider the partitioning of a software application as a means to
implement ASO. At present we are concerned with the optimization of different protocol
applications such as voice, video, and web traffic.



to this reason. In an ASO system, the source coding can be dynamically
adjusted with intimate knowledge of the channel conditions and this kind
of waste could be avoided.

Joint Source Channel Coding and Decoding

Joint source channel coding (JSCC) is the joint design of the source coding
and channel coding. Typically these two functions are designed indepen-
dently. Shannon’s separation theorem states that the optimal performance
theoretically attainable can be achieved by using optimal source coding in-
dependent of optimal channel coding. However optimal source coding and
channel coding is difficult, and a joint design can result in less complexity
[14]. Furthermore this separation results in designs that are not resilient
to occasional errors. An example of joint source channel coding is unequal
error protection in video where more important parts of the compressed
data are protected with more redundancy in the channel coding.

Joint source channel decoding (JSCD) is closely related. Practical com-
pression algorithms leaves residual redundancy at the output of the source
coder which can then be exploited by the decoder in conjunction with the
injected redundancy of the channel coding. This can be implemented as
part of an iterative decoder which is used in modern error correcting codes.

Thus ASO allows the functions of the lower layer to adapt to the ap-
plication at the highest layer, and also allows the source coding at the
application layer to be tuned to the channel conditions known at the low-
est layers. It also allows for JSCC and facilitates JSCD which can provide
further performance and efficiency gains not yet seen in practical systems.

6.1 Background Information
In this section we discuss access networks and protocol layering, giving a
motivation and background to ASO.

Access Networks

Access networks such as digital subscriber line (DSL), digital cable, and
cellular wireless are the bottlenecks to faster broadband Internet access.
This challenge has been called the last mile problem as the access network
is responsible for the last leg of the transmission link from the core network



to the end terminal. The medium for access networks is predominantly
based on copper lines and wireless transmission, which have less bandwidth
than the core network which is based on fiber optic communications. There
is excess capacity in the core network [22], and the core network can handle
more traffic than the access network can generate or receive. Therefore
faster Internet speeds depend on better access network performance. Our
ASO solution focuses on improving the efficiency of the access network.

TCP/IP and Protocol Layering

TCP/IP is the dominant networking protocol today. Like many other com-
munications protocols, it is based on a layered architecture. The layered
architecture is not unique to protocol design. The concept of layering in
telecommunications protocols was probably borrowed from operating sys-
tem architecture. It is simply a method to implement abstraction and
encapsulation in the design of complex systems, and is not central to the
solution of the engineering problem. In fact object-oriented design – an-
other means of providing modularity and abstraction – superseded layering
in operating system research and development.

In a layered architecture, layers are only allowed to interact directly with
the layers immediately above or below it. The advantage of such a design
is so that layers can be designed, implemented, and tested more indepen-
dently of one another. Although this provides convenience in the design
and verification process, it also results in a performance degradation due
to overhead and preclusion of ASO. Because the lower layers are separated
from the highest level application layer, the network which only operates
on the lower protocol layers does not know what application is related to
the data it is transporting. Because it does not know the application, it
cannot optimize the traffic accordingly. That is it cannot perform ASO.
This shortcoming of the network architecture was well understood from the
outset of the Internet. The end-to-end argument [15] promoted a “dumb”
network solely responsible for routing packets the their destination without
any knowledge of the application. This was a conscious engineering trade
off to simplify the network.

While this architecture has worked well to form the Internet over dis-
parate link layer technologies, the ever increasing demand for higher data
rates has drawn attention to these inherent inefficiencies. Research such as
cross layer optimization, JSCC, and JSCD attempt to address these issues.



Surprisingly, while these inefficiencies are widely known to exist, there is
scarce data quantifying how much could be gained by ASO. This may be
because of the widespread opinion that TCP/IP has become entrenched as
the protocol of the Internet, and there is nothing that can be done. Our
research challenges this notion.

As will be explained, there is a confluence of technologies and trends
that will allow such optimization to be made over both wireless and wire-
line access networks. These trends across computing and networking will
enable ASO while still supporting backward compatibility to the ubiquitous
TCP/IP protocol.

6.2 Organization
We present a holistic and multidisciplinary approach to ASO. Our concern
is not just ASO in and of itself, but also how such optimization can be done
and yet maintain backward compatibility with the Internet. Furthermore
we consider how these techniques can reach economies of scale necessary
for successful commercialization and adoption.

In Section 7 we consider practical methods to circumvent protocol layer-
ing over the access network, while maintaining Internet connectivity through
support of TCP/IP. While most of the literature on cross layer design seeks
to modify the existing protocol stack, we consider approaches [4] which
completely eliminates the existing stack over the access network.

Three methods are investigated here: 1) the performance enhancing
proxy (PEP), 2) new ASO application programming interfaces (API), and
3) subscriber and application partitioning across the access network. The
subscriber partitioning method of circumventing protocol layering is to our
knowledge a novel application of data centers and network function virtu-
alization.

In Section 8 we consider an ASO enabled replacement of TCP/IP over
the access network. However this is not a formal proposal of a new protocol.
Instead, in Section 8.2 we consider the possibility that the time may be ripe
for a turning point in telecommunications history where strictly defined
protocols give way to a new age of malleable software defined protocols.
While active networks and the notion of programmable networks have been
in the literature since the 90’s [16], recent trends in cloud computing and



network function virtualization (NFV) may pave the way to translate these
old ideas into new practices for ASO.

Finally in Section 9 we analyze the potential performance improvement
that ASO could provide to the ADSL access network in the case of recorded
video streaming, which comprises the majority of Internet traffic.



Chapter 7

Practical Approaches to ASO

In this section we investigate architectures that provides ASO and other
benefits by circumventing protocol layering over the access network, while
maintaining Internet connectivity through support of TCP/IP. While most
of the literature on cross layer design seeks to modify the existing protocol
stack, we propose a revolutionary approach [4] which completely eliminates
the existing stack over the access network.

7.1 Approach 1: Performance Enhancing
Proxies

Performance enhancing proxies (PEP) [8] can be used to intercept and op-
timize TCP/IP traffic destined for an endpoint. This technique is used, for
example, in satellite communications where the long latency due to prop-
agation delay causes problems with the TCP acknowledgment mechanism.
Figure 7.1 shows a PEP situated between the network and the satellite link.
The PEP is used to send acknowledgments back to the Internet while the
satellite link uses a modified protocol to account for the latency. This is
known as a split connection implementation of a PEP.

By using a similar topology, a proxy located in the infrastructure side of
the access network can use a full protocol stack to decode the application
using techniques such as deep packet inspection. Deep packet inspection
is a technique which allows an intermediate node in the route to decode
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information at the session and application layers of the TCP/IP stack1.
This is done by implementing parts of the stack on the intermediate node.
With knowledge of the application, the proxy can allow ASO over the access
network.

Figure 7.2 shows a radio access network with a performance enhancing
proxy which is able to decode the application of the traffic intended for
the mobile terminal (MT). The software on the terminal would need to be
modified to receive the optimized communications as well as translate the
inbound traffic from its optimized form back to normal TCP/IP interface
that the software applications expect.

This solution violates the end-to-end principle of TCP/IP since it in-
volves breaking the TCP/IP link into two segments: one from the terminal
to the proxy, and from the proxy to the destination in the Internet. However
this is unavoidable if ASO is to be incorporated.

Another issue is the termination of encryption at the proxy. Thus if the
proxy is compromised, then the communications link is no longer secure.
It is however possible to encrypt the link from the proxy to the terminal
where the two segments are encrypted separately.

1Typically an intermediate node only operates up to the network layer
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Custom Access Network Protocol

It is possible to use a custom protocol in the link from the proxy to the
terminal, while maintaining backward compatibility since the link from the
proxy to the Internet destination is still TCP/IP. In Figure 7.2, the wireless
protocol does not need to be restricted to TCP/IP. It could be a custom
ASO protocol. Since the bottleneck is in the access network, we should
perform ASO over this last link. Since the proxy is in the infrastructure of
the access network, the communications between the proxy and the Internet
destination remains unoptimized TCP/IP which is not critical since it is over
the high speed optical core network2

Video Optimization

In the case of video optimization, the proxy would be responsible for identi-
fying video traffic and potentially transcoding it for optimized transmission
over the access network. Currently HTTP Adaptive Streaming (HAS) is
the dominant means to transport video over the Internet. The proxy could

2Here we assume that the Internet destination is a commercial server residing on
either the core network or at least an optical access network, and not on a slower copper
based or wireless access network. This is typical of commercial servers and content
delivery networks.



detect HAS traffic and then transcode it for optimal transport. Once the
application is known, the techniques listed in Section 1 can be applied.

Challenges and Problems with the PEP Approach

In the case of video optimization the PEP proxy would need to implement a
full TCP/IP protocol stack as well as parts of the client application, such as
video decoding if transcoding is done. The complexity of the proxy would
probably be on the same order of magnitude as the subscriber endpoint
itself. However the proxy could be implemented using cloud computing
and virtualization techniques where a virtual machine could be dedicated
as a proxy for the endpoint. However given this architecture, we propose
in Section 7.3 a better approach to ASO.

Another drawback to this PEP approach is the need to convert the ASO
traffic back to TCP/IP at the subscriber terminal for existing TCP/IP
based software applications. Some optimization is inevitably lost in this
conversion. For example, if the subscriber is using HAS for video streaming,
the software application is responsible for estimating the network speed and
selecting the video bitrate. There is not a direct mechanism for the channel
conditions to be relayed to the application. Thus to take full advantage of
ASO, software applications need to use ASO APIs. This is described in the
following section.

7.2 Approach 2: ASO APIs
Instead of using deep packet inspection in a PEP, another way for the net-
work to discern the application is the use of ASO APIs that application
developers could use to take advantage of ASO. Figures 7.3 and 7.4 shows
the use of ASO APIs at the infrastructure side and subscriber side respec-
tively.

The use of these APIs by software applications would signal to the net-
work requests for particular ASO transmission schemes. In addition, the
Internet destination could also use a corresponding API to optimize the
source coding right at the origin. This would avoid the need to transcode
at the proxy, which would reduce the burden on the infrastructure as well
as provide some ASO benefit over the core network.
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Protocol multiplexing could be used to support TCP/IP concurrently
with ASO protocols. An example of protocol multiplexing can be seen in
the EtherType field of the Ethernet frame where different network layer
protocols can be specified over the same link. Here, traditional TCP/IP
and different ASO protocols enhancing different applications can be con-
currently supported.



Challenges and Problems with the ASO API Approach

There is a question of whether a service such as YouTube or Netflix would
be motivated to use ASO APIs on their servers to optimize video delivery
to a particular access network. While these services may be less motivated,
content delivery networks (CDN) who provide their services to the access
networks, would perhaps be willing to support this optimization3 There is
an interesting solution to this problem if cloud computing techniques were
used to provide the ASO interface. In this case the CDN could be collocated
in the same data center as the ASO interface. In this case the access service
provider could run its own CDN using the ASO APIs.

A major drawback to the ASO API approach is that software applica-
tions seeking to improve would need to be rewritten to use the APIs. The
following Section 7.3 seeks to address this issue.

7.3 Approach 3: Subscriber and Application
Partitioning

This technique of ASO addresses some of the weaknesses in the more
straightforward approaches to ASO considered above. As will be explained
in Section 8.2, this approach leverages some recent trends in cloud comput-
ing, software defined networks (SDN), and network function virtualization
(NFV).

Here we propose partitioning the subscriber and user applications across
the access network infrastructure. This is known in the literature is known
asmobile cloud computing (MCC) where virtual machines in the cloud assist
resource constrained mobile terminals [25, 42]. Although the idea of MCC
was originally conceived for wireless terminals, we apply the same concept
to other access networks to support ASO.

Mobile Cloud Computing

Figure 7.5 shows the architecture of a typical cellular network. The cellu-
lar network interfaces with the Internet using TCP/IP, and the TCP/IP
endpoint is located at the MT.

3We thank Professor Kamin Whitehouse for this idea
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Figure 7.6 shows a cellular network that is assisted by a mobile cloud,
with the link between the terminal and mobile cloud (MC) still being tradi-
tional TCP/IP. The advantages of MCC stem from computational offload-
ing: better battery life for the end terminal, faster execution in the cloud,
and potentially less traffic over the access network since traffic from the
MC to the Internet does not pass through the access network. Thus the
subscriber unit now consists of an end terminal and a virtual machine com-
ponent running in the MC joined together through the access network and
Internet.

Mobile Cloudlet for ASO

While the literature regarding MCC typically construes the communica-
tion between the terminals and cloud as TCP/IP, this is not necessary if
the cloud is collocated with the access network. A cloudlet perhaps more
accurately describes this configuration. This definition is given by [42]:

A cloudlet is a trusted, resource-rich computer or cluster of com-
puters that’s well-connected to the Internet and available for use
by nearby mobile devices.

Figure 7.7 shows a radio access network that has ASO facilitated by
with mobile cloudlet assistance. By partitioning the subscriber across the
access network and placing the TCP/IP stack in the infrastructure in the
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mobile cloudlet, we are free to perform ASO over the access network. To the
rest of the Internet, this device appears to be a typical TCP/IP endpoint.
However all the techniques of ASO can be implemented over the access
network for performance gains.
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Figure 7.7: Application Specific Optimization with Mobile Cloudlet



The Cloud Radio Access Network (C-RAN)

This combination of an access network with a cloudlet is already happening
with the cloud radio access network (C-RAN), which has advantages aside
from ASO [55] which are discussed in Section Network Functions on General
Purpose Computing Hardware. In the C-RAN architecture, the baseband
processing traditionally done in the base stations (BS) are pushed further
back into the network infrastructure.

Figure 7.8 shows a simplified diagram of a traditional radio access net-
work (RAN). The antennas are connected to the base station by what is
called fronthaul. Then there is a backhaul carrying user traffic to the ac-
cess network provider’s core network. Thus the base station which does the
baseband signal processing is located at the edge of the network.

Figure 7.8: Traditional Wireless Network Infrastructure

The C-RAN pushes the baseband processing further into the network
as shown in Figure 7.9. Instead of the RF fronthaul to the base station,
the C-RAN uses an optical fronthaul to bring the signal further back into
the network infrastructure. The baseband signal processing is done in the
cloud within a data center running virtualized base stations.

Thus the RAN itself is evolving towards a cloud based architecture, and
adding a mobile cloudlet to it simply amounts to provisioning additional
virtual machines within the same data center. Thus the connection between
the C-RAN and mobile cloudlet could just be the same local high speed



Figure 7.9: Cloud Radio Access Network (C-RAN)

network, such as Infiniband [26] connecting the nodes of the data center.
Thus the access network, cloudlet, and ASO enabled CDNs could all be
collocated within the same data center.

To our knowledge this use of MCC in this way to support ASO of the
access network is novel. It seems that the MCC literature all assume that
the communication between the mobile terminal and the MC is TCP/IP.

ASO with Access Network Traffic Reduction

ASO in this architecture is not only able to provide ASO performance gains
for different types of traffic, but also is able to eliminate some traffic over the
access network. For example file sharing traffic could be eliminated from
the access network if the files were stored in the infrastructure cloudlet.
The end terminal could then be configured as an ASO enabled thin client
which only uses the access network to relay the data necessary for operation
of the graphics user interface. Different partitionings of the subscriber and
application across the access network results in different combinations of
device energy usage and bandwidth utilization [25].

Section Partitioning the Web Browser shows how such a partitioning
can avoid a particularly inefficient operation in the Hyper-text Transport
Protocol (HTTP).



Legacy Applications

The partitioning of the subscriber unit involves a new distributed operating
system which can run partitioned applications involving at least two pro-
cessors: one on the end terminal and another in the infrastructure cloudlet.
Likewise it may seem that this partitioning of the software application re-
quires rewriting it, however dynamic partitioning of existing software ap-
plications is an active area of research in MCC [48, 47].

Furthermore ASO could be supported in legacy applications by inter-
cepting certain operating system calls. System calls to output audio or
video serve to identify the application. The implementation of these calls
in the operating system could then be rewritten to support ASO. Because
the virtual machine is running in the resource rich cloud, real-time audio
and video transcoding to support JSCC is possible. Thus while ASO par-
titioning requires a new operating system, legacy applications could enjoy
ASO by rewriting the implementation of certain application specific oper-
ating system calls.

New ASO Applications

While this subscriber partitioning scheme may potentially support ASO for
legacy applications, new applications can be written using an ASO API.
This will provide advantages in the dynamic partitioning of the software
application. We consider this topic in Section 8.1.

Other Advantages

Because the subscriber unit exists on the cloud, this decouples its existence
from the end terminal. If the end terminal is lost, the service provider
can disconnect it from the account while preserving the state and private
information stored on the mobile device. This makes the end terminal easy
to replace. Furthermore if left at home, it is conceivable that one can log
into the mobile device from a computer connected to the internet. Or even
one could borrow or rent another end terminal.

Partitioning the Web Browser

To illustrate application partitioning we consider the partitioning of a web
browser and show how this leads to traffic reduction and higher performance



via ASO.
HTTP was designed initially to convey static web pages. The protocol

is text based and was not originally designed for communications efficiency.
As the protocol evolved with the Internet, mechanisms were added to sup-
port interactive web pages. This evolution ushered in the so-called Web
2.04. One of the mechanisms employed to support dynamic web pages is
Asynchronous Javascript and XML (AJAX).

One dynamic feature implemented by AJAX is automatic text comple-
tion when using a search engine. This feature drops down suggested search
options as individual key presses are transmitted as they are typed. Use of
this feature on the New York Times website5 shows 1.4 kilobytes used to
transmit each key press. An optimized protocol would use only a few bytes
at the most.

Although this is a very specific use case, it serves a good illustration of
the inefficiencies presented by the evolution of legacy protocols to provide
new features for which they were not originally designed. These issues
compound with the fact that the original protocol was not designed for
spectral and power efficiency. Perhaps it was assumed that the Internet
would be mainly composed of wireline terminals connected to the electrical
grid where bandwidth and power are at less of a premium than for battery
powered wireless terminals. This assumption clearly does not hold with the
rise of smartphones and tablets, and will prove altogether false with the
Internet of Things on the horizon.

One way to significantly reduce the inefficiencies due to AJAX in the
access network is to partition the web browser application. If the web
browser can be partitioned between the terminal and a cloudlet in the access
network infrastructure, then this partition can be strategically chosen to
minimize the traffic between the terminal and network6. Once partitioned,
source coding methods such as entropy coding can be used to compress the
function calls between modules that are on opposite ends of the partition.

Figure 7.10 shows the use of this technique to reduce the number of
bytes from 1.4 kilobytes to a few bytes to encode a dynamic keypress. Here

4According to Wikipedia, Web 2.0 describes World Wide Web sites that emphasize
user-generated content, usability, and interoperability. [53]

5As of 5/10/2015
6Note that this is but one possible form of optimization with mobile cloud computing.

It is also possible to partition to minimize processing on the end terminal which saves
battery power in the case of mobile terminals [25]
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Figure 7.10: Web Browser Partitioning

we assume an object-oriented software architecture which is common with
graphics user interfaces. The text field object on the end terminal has
a registered event handler located in the mobile cloudlet. When a key
press is detected at the user terminal, the event handler is invoked by a
structure representing the function call and its argument. These structures
can then be compressed using entropy coding techniques such as Huffman
or arithmetic coding. A few bytes should be sufficient for this transfer.

Note that traffic over the access network has in this case been reduced by
roughly two orders of magnitude, but the traffic from the mobile cloudlet to
the web server is still dictated by the HTML and TCP/IP protocols. How-
ever since the bottleneck and resource constraint is in the access network,
we achieve our goal of optimizing over the access network and yet maintain
backward compatibility with the Internet protocols.



Chapter 8

The ASO Access Network
Protocol

Having shown that it is possible to circumvent TCP/IP and protocol lay-
ering over the access network, in this chapter we propose a mechanism for
an ASO enabled access network protocol. Furthermore in Section 8.2 we
examine the possibility of software defined protocols where the access net-
work protocol can evolve with the malleability of software, and a possible
departure from strictly defined protocol standards.

8.1 RPC Based ASO Protocol
Now we consider the design of the ASO protocol over the access network in
our subscriber partitioning approach. Since we are partitioning the operat-
ing system and software application the obvious choice would be a remote
procedure call (RPC) based protocol that ties together the partitioned sub-
scriber unit over the access network.

The Remote Procedure Call

An RPC is simply a function call to a remote system. The following RPC is
a function call that has parameter objects that are sent to the remote system
with the call, and return objects that are returned at the completion of the
call:

[return_object1, return_object2, ...]
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= rpc(param_object1, param_object2, .. );

RPC calls can represent function calls and memory access. An RPC with
no return objects could represent an unacknowledged packet.

In fact some popular Internet application layer protocols are designed as
RPC calls. For example HTTP uses the GET and POST methods – which
are essentially RPC requests – to a web server which return with a value
containing the HTTP content. However HTTP is a text-based protocol
which is relayed over the byte-oriented TCP connection.

The RPC Packet

Instead of using a lower layer byte-oriented protocol to convey ASO RPC
calls, we could use packet structures that are directly based on RPC calls.
[52] uses an RPC based protocol to implement application partitioning over
an infrared link, and [51] proposes something similar for wireless devices.
Figure 8.1 shows an example of a calling packet and return packet imple-
menting an RPC call.

RPC
ID

Parameter
Object 1

Parameter
Object 2

Calling Packet

RPC
ID

Return
Object 1

Return Packet

Figure 8.1: RPC Based Packets

All RPC calls of a software application are generated when the applica-
tion is partitioned. The RPC ID is a field denoting a specific RPC and can
be assigned when the application is loaded. An RPC ID can uniquely define
the packet structure and no length fields are necessary if the definition of
the RPC packets are present on both sides when the software application
loads.

The RPC parameters and return objects represent the payload of the
RPC packets. The type of object – or class in the parlance of object oriented
programming – indicates the application. Thus the ASO API would include
a standardized library of classes such as video, music, voice, text, and binary
data. And the objects of an RPC packet would be coded based on their
application classes.



ASO Hardware Architecture

Figure 8.2 shows the hardware architecture of an ASO interface which may
be at the end terminal or access network.
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Figure 8.2: Hardware Architecture

Some objects could be passed to the modem uncompressed, and the
source coding, channel coding, and scheduling are done by the modem with
intimate knowledge of the channel conditions. In the case of recorded video,
it is possible to avoid transcoding on the fly by passing pointers of different
bitrate representations to the modem and have it obtain the appropriate
representation via direct memory access based on the channel conditions.
CRC checksums are usually set fields in protocol data units, however the
error detection mechanism could be delegated to each individual object.
For example channel codes such as LDPC have inherent error detection
capabilities, and objects using an LDPC channel code could simply invoke
this property. Thus error detection could be handled in an ASO way.

The RPC packets are the fundamental units of our ASO transmission
scheme. For streaming applications, certain RPC packets need to be sched-
uled at a regular rate. Thus provisions for stream scheduling need to be
present in the ASO API.



ASO RPC Scheduler

The ASO RPC scheduler functions as an application aware media access
control. Not only is possible to know the application, but also the expected
duration of the transmission which can be used to optimize the scheduling.
Control of scheduling can be centralized by the access network, which turns
out provide performance benefits when we analyze ASO for ADSL (see
Section 9). The scheduler can provide fairness between software applications
and different users as well as quality of service.

Software Architecture

In Section 7.3 we showed how ASO could be provided for legacy applications
by rewriting the operating system libraries to use an ASO API. However
new applications should directly use the ASO API which provides more
information to the processes of dynamic software application partitioning
and linking. Usage of ASO API objects and classes will clearly identify the
application and allow the automatic software partitioning to better opti-
mize the partitioning to reduce traffic over the access network and improve
performance.

8.2 Software Defined Protocols
In Section 7 several ways to circumvent TCP/IP in the access network were
discussed. These methods provide backward compatibility for applications
running on the terminal that were originally written for TCP/IP while at
the same time provide ASO over the access network which is not limited
by the layering imposed by TCP/IP. Although these are possible ways to
circumvent TCP/IP, in order for such solutions to be commercially viable we
need to consider how access network infrastructure and end user terminals
can be switched over from TCP/IP to support new cross layer protocols
that supports ASO.



Background

Active Networks

At first glance the shift away from TCP/IP over the access network may
seem contrary to the packet convergence movement [22] where infrastructure
equipment in the access and core networks are transitioning from being
circuit switched to TCP/IP packet switched. However if we consider several
other trends in telecommunications research and practice, the time may
be ripe for the software defined protocols as envisioned in active network
research from the 90s [16]. While the vision of active networks encompassed
the core network, perhaps ASO in the access network will provide the use
case to drive the development of network platforms with software defined
protocols.

Software Defined Networks

Feamster in [16] describes the evolution of ideas that lead to the Software
Defined Networks (SDN) which is a recent trend in networking. In tradi-
tional IP networks, the routing tables are setup and maintained by routing
protocols that are used between routers. These protocols were not able
to support the automatic configuration of virtual networks in data centers
where virtual machines are distributed dynamically among processor nodes
spanning the intranet. The adoption of SDN was driven by this need [24].
The SDN solves this problem by establishing APIs that allow the necessary
network functionality to be implemented by software.

While the idea of network functions that could be implemented via soft-
ware on open network elements were areas of research even as the Internet
was being commercialized, the pressing need for such functionality was not
there for these ideas to gain traction. Instead TCP/IP with its layered
design and end-to-end principle filled the immediate need of reliable data
transmission across disparate link layer networking technologies.

However with the advent of cloud computing and the proliferation of
data centers, decade old ideas originating with active network research fi-
nally found a problem big enough to drive its commercialization and adop-
tion. While SDN today is mainly concerned with software defined network
functions above the link layer, we believe that this trend will continue and
eventually touch the lower layers.



Network Function Virtualization and Data Center
Technology

Often concomitant with SDN in the literature is Network Function Virtual-
ization (NFV). In NFV certain network functions traditionally implemented
by standalone network devices called middleboxes are virtualized and run
on general purpose hardware. The idea is that general purpose computing
hardware is now fast enough to implement these functions and therefore it
is cheaper to implement and maintain such functionality in software than
on specialized hardware. Furthermore these functions can be run on virtual
machines in a data center architecture.

While currently NFV is primarily associated the virtualization of mid-
dlebox functionality, there is activity in the industry and research in virtu-
alizing the functionality of access network infrastructure. Specifically there
has been a spate of recent activity in the C-RAN (see Section The Cloud
Radio Access Network (C-RAN))

Network Functions on General Purpose Computing Hardware

There are several advantages of using a cloud data center architecture for
access network infrastructure. The advantages here are similar to the ad-
vantages that cloud computing lends to IT infrastructure.

In cloud computing, economies of scale are leveraged for computing
resources. Large centralized server farms can host infrastructure, platforms,
and applications more economically than if these resources were handled
privately by organizations that need them. Therefore instead of purchasing
the infrastructure to support their computing needs, organizations can more
economically purchase service agreement contracts with cloud computing
providers such as Amazon and Google.

In addition to economies of scale in purchasing, installing, and maintain-
ing data centers, as opposed to the aggregate cost of many private facilities
providing the same functionality, there is also the effect of statistical mul-
tiplexing: when more users share a resource with random access patterns,
the average cost of providing a given level of service is reduced.

In the same way access networks stand to benefit from the economies of
scale and statistical multiplexing by leveraging a cloud architecture. Fur-
thermore, instead of distributed specialized hardware, the data center archi-
tecture consists of centralized general purpose computing hardware running



the network functions in software. [55] recognizes that despite the power of
modern general purpose processors used in data centers, accelerator banks
with specialized hardware may be needed to accommodate the baseband
signal processing.

The point of mentioning these trends is that access network infrastruc-
ture is moving towards an open cloud based data center architecture where
much more of the functionality is implemented in software. This also means
that the protocols supported by the access network can be modified by
changing the software. In other words this architecture can support soft-
ware defined protocols that can evolve with the malleability of software.
Combined with one of the methods in Section 7, a platform that can sup-
port ASO with backward compatibility to TCP/IP may soon become com-
mercially available. And this development is in line with the recent trends
of cloud computing, SDNs, and network function virtualization that have
already gained a full head of steam.

End-Terminal Architecture

We have shown that a platform for access network infrastructure may be
available in the near future to support software defined protocols. How-
ever the question remains whether custom programmed end terminals that
depart from the established standards can be made economically. The im-
portance of standards lie in creating a competitive marketplace where in-
teroperable equipment and their components can reach economies of scale
and pass on these savings to the end customer.

The advent of open source software such as Linux, and open source
hardware such as the Arduino and BeagleBoard may portend the availability
of open devices that are at the same time mass manufactured and yet fully
custom programmable. This brings up the exciting possibility of defining
interoperability not as the conformance to a strictly defined standard, but
rather whether two devices can be programmed to be interoperable. This
may usher in a bold new age of telecommunications where standards are not
rigidly defined, but loosely suggested with broad consensus on the necessary
custom hardware to accelerate computationally intensive signal processing,
with an open programmable platform that allows protocols to evolve with
the malleability of software.

It is interesting that in most modern modem hardware designs of end
terminal equipment use specialized hardware to accelerate baseband signal



processing while the media access control (MAC) and higher layer network
functionality run on a general purpose processor [32]. Although a general
purpose processor is used for this, the computing environment of these
subsystems are generally not open and cannot be programmed except by
the manufacturer. Therefore the hardware architecture for software defined
protocols – where at least the network processing from the MAC layer and
above can be software defined – is already commonplace. There is only the
need for the closed general purpose processing environment to be opened
and standardized.

A Dichotomy Instead of Layers

A possible approach to software defined protocols may be a dichotomy
of signal processing and network processing in lieu of the layers of the
traditional protocol stack. The signal processing may need to be strictly
standardized to accommodate the specialized hardware needed to support
it. These include processing traditionally associated with the physical layer
such as channel coding and modulation.

However the functionality traditionally provided by the media access
control and even network layer could remain unspecified, or exist simply as
a reference design. This functionality can be provided by software which
can be modified by the network operator to support ASO and to evolve as
demand for new applications and classes of service arise.

The General Purpose Network Processor

Instead of specifying the exact operation of these networking functions, the
performance of the computing environment of the general purpose network
processor executing these functions could be specified.

Today’s protocol standards seek to enable interoperability by strictly
defining all aspects of the communications protocol. In the spirit of ac-
tive networks we propose a more flexible approach where interoperability
is enabled by standardizing the signal processing and its performance re-
quirements, but leaving the network processing software defined. Instead
of defining the network processing as part of the standard, we standardize
the performance requirements and programming interface of the network
processor. We envision a standardized API and development environment
for the network processor in much the same way the Portable Operating



System Interface (POSIX) has made UNIX code portable across different
platforms and processors.

We believe that such a specification will still provide the interoperability
and ultimately the economies of scale that traditional telecommunications
standards provide. But at the same time this allows for the flexibility to
optimize the network for specific applications and even the evolution of the
network to accommodate demand for new applications.

A Confluence of Trends

In conclusion to this section, we believe there is a confluence of trends,
technologies, and architectures that will facilitate software defined protocols
and ASO in access networks. We were surprised at the lack of data on how
much can be gained by ASO over access networks that are currently based
on TCP/IP. In the next section we attempt to quantify the performance
gain of ASO when applied to the ADSL access network.



Chapter 9

ASO for DSL

In this section we make a cursory investigation of the potential of ASO over
DSL, and compare this with other optimization techniques that only involve
the physical layer. This serves not only to illustrate the potential impact of
ASO for DSL, but may also portend significant performance gains for ASO
over other communication channels. In the following subsection we review
the channel characteristics of DSL which are pertinent to our ASO design
for DSL.

9.1 DSL
DSL provides digital data services over the venerable telephone network
that was originally designed for analog voice signals over a century ago.
Each line consists of a pair of copper wires, known as an unshielded twisted
pair (UTP). An information bearing signal is embodied as a differential
voltage across the pair.

There are an entire family of standards that implement DSL:

Integraded Services Digital Network (ISDN)
High Bit Rate DSL (HDSL)
Symmetrical DSL (SDSL)
Asymmetrical DSL (ADSL)
Very High Bit Rate DSL (VDSL)

Here we study the specific case of ASO for ADSL. ADSL is the most widely
deployed DSL service, and is used for providing internet access for individual
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consumers rather than businesses.
The DSL line is for the most part an interference limited communications

channel. In addition to the thermal and shot noise that originate form the
electronics of the receiver, the DSL line suffers from crosstalk from the other
pairs it is bundled together with. This crosstalk tends to dominate the other
impairments on the line.

Figure 9.1 shows the far end crosstalk (FEXT) and near end crosstalk
(NEXT) originating from Pair 2 and affecting the B terminal. FEXT seen
at terminal B originates from the signal generated at C intended for D but
couples from Pair 2 to Pair 1 and interferes with the signal originating from
A intended for B. NEXT seen at B is generated from the near end terminal
D and couples onto Pair 1, also interfering with the intended signal from
A.

There is likewise FEXT and NEXT affecting the other terminals but
not shown in the figure. In a typical DSL deployment there are more than
two pairs that affect one another with crosstalk. Groups of pairs that are
bundled together are a binder group which in many cases contain 25 pairs.

Pair 1

Pair 2

FEXT NEXT

A B

C D

Central
Office

Subscribers

Figure 9.1: FEXT and NEXT on a DSL Line

In a typical ADSL implementation, NEXT is mitigated by frequency
division duplexing (FDD), where upstream and downstream traffic are sent
on separate frequency bands. In this case, the NEXT generated by terminal
D in Figure 9.1 does not affect the downstream traffic from terminal A
since they are on separate frequency bands, and NEXT can be eliminated
by filtering. FEXT however is present in typical ADSL deployments and is
factored into the ADSL link budget.

Figure 9.2 shows the average FEXT power expected in one pair of a 25-
pair binder group for different lengths of 26 AWG1 UTP. These calculations
were based on the 1% worst case FEXT parameters from Table 2 (300kHz

1American wire gauge



– 40 MHz) of [50]. The power spectral density of FEXT is

PFEXT (f) = PTX (f) |S21(f)| 10−5/10 2.62× 10−19 L f 1.85 3.28

where PTX (f) is the ADSL transmit PSD which is nominally -40 dBm,
S21(f) is the UTP transfer function expressed as a scattering matrix coef-
ficient as a function of frequency, L is the UTP length in kilometers, and
f is the frequency in Hz. A 5dB offset from the 1% worst case FEXT was
obtained by finding the median of the plots in Figure 5, which corresponds
to the average FEXT value [7]. These average values are important for the
calculation of bit rates in Section 9.2.

Figure 9.2: Average FEXT on 26 AWG UTP in 25 Pair Binder Group

9.2 Optimizing ADSL
Next we consider various optimization techniques to increase the perfor-
mance of ADSL. Channel coding and vectoring are two physical layer tech-
niques that can be used to increase ADSL performance. We compare these
techniques to ASO. Figure 9.3 compares the bit rates of standard ADSL
with these different optimization schemes. The following subsections de-
scribe these optimization schemes and the method used to calculate their
respective bit rates.
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Figure 9.3: Bit Rates of DSL Optimization Schemes

ADSL Baseline

The baseline bit rate represents the downlink performance of a standards
compliant ADSL system. An estimate of the bitrate is given by(

1− OH

100%

)∫ f1

f0

log2

(
1 +

SNR(f)

Γ

)
df (9.1)

where f0 and f1 are the bounds on the frequency band, SNR(f) is the
signal to noise ratio (SNR) of the channel, and Γ is the gap to capacity of
the coded system. This equation is just Shannon’s formulation for channel
capacity for an additive white Gaussian noise (AWGN) channel subject to
the SNR constraint SNR(f) and discounted by a gap to capacity Γ, to
account for realistic coding and modulation. For the baseline case we used
the following parameters:

24This stands for IP over Ethernet over ATM Adaption Layer 5 using an ATM virtual
circuit



Table 9.1: Baseline Parameters
Parameter Value Notes
OH 13% The overhead given in [46]

for IP/Eth/AAL5 VC2in Table 2
This is a typical configuration
in ADSL deployment and represents
the protocol overhead.

f0 140.156 kHz Beginning of downlink ADSL bandwidth
f1 1.10184 MHz End of downlink ADSL bandwidth
Γ 10.5dB =9.5dB-5dB+6dB

9.5dB = uncoded gap to capacity
5dB = coding gain of standard ADSL
6dB = typical ADSL link budget margin

SNR(f) was calculated as

SNR(f) =
PRX (f)

PAWGN (f) + PFEXT (f)
(9.2)

PRX (f) = PTX (f) |S21(f)|2

PTX (f) = −40 dBm/Hz, the transmit PSD
S21(f) = transfer function of the 26 AWG UTP line
PAWGN = −140 dBm/Hz, the assumed receiver white noise PSD (9.3)

S21(f) is the port 1 to port 2 transmission coefficient of the S-parameter
scattering matrix representing the twisted pair transmission line as a func-
tion of frequency given by the so called British Telecom Models [19].

The upper frequency limit of 1.1 MHz in our calculation matches that of
standard ADSL. There is a provision in the ADSL2+ standard to double this
limit to 2.2 MHz, and VDSL pushes the frequency to as high as 30 MHz.
In these cases the bit rates would be much higher for short line lengths
because of the expanded bandwidth. However for longer line lengths such
as 4 km and beyond, these additional frequencies will not make a difference
since the transmitted signal will be attenuated below the noise floor of
the receiver. While this significantly boosts the bit rates for short line
lengths, the effect should not be substantial on our comparison of different
optimization techniques since the baseline would include this performance
boost.



Figure 9.4 shows the bit rate improvement factor of the different opti-
mization techniques over the baseline.
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Figure 9.4: Factor of Improvement for DSL Optimization Schemes

Channel Coding

The ADSL standard mandates an inner trellis coded modulation (TCM)
code with an outer Reed-Solomon code. This concatenated code gives a
coding gain of about 5 dB at a target bit error rate of 10−7 [59]. Modern
capacity approaching codes such as low density parity check (LDPC) codes
and turbo codes can give greater coding gain of around 7 dB, which is within
1dB of the capacity without shaping [37]. Thus the improvement of using
an LDPC code is about 2dB. The marginal effect on bit rates of upgrading
the channel coding to LDPC over the current standard baseline can be seen
in Figures 9.3 and 9.4. The parameters used to calculate the LDPC bitrates
are the same as in Table 9.1, except Γ = 8.5 dB.
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Figure 9.5: 2 km+ Bit Rates of DSL Optimization Schemes

Vectoring

Vectoring, also known as vectored multiple input multiple output (MIMO),
is a physical layer technique that can mitigate crosstalk. In a typical point-
to-multipoint3 DSL deployment, vectoring can mitigate FEXT and NEXT
at the central office, as well as FEXT at the subscriber side [9]. This is
because the vectored MIMO device is at the central office (CO), while the
NEXT generated at the subscriber side as shown in Figure 9.1 cannot be
canceled since since the subscribers are not collocated and do not have the
necessary side information.

The potential bit rate performance of a vectored MIMO system can be
calculated by removing the FEXT from the SNR which is then calculated
as

SNR(f) =
PRX (f)

PAWGN (f)

In practical systems it may not be possible to remove all the FEXT4, so
this serves as an upper bound on vectoring bitrates.

3Central office to multiple subscribers
4For example if there is significant FEXT originating from a line or source that is

not part of the vectored MIMO system



Using this expression for the SNR, the integral in (9.2) with the same
parameters from Table 9.1 gives the vectoring bit rates in Figure 9.3 and
factor of improvement in Figure 9.4. Notice that while vectoring provides
the largest gains for short line lengths up to 2km, it provides hardly any
benefit beyond 3km. The reason is that there is hardly any FEXT present in
these longer lines at the outset (see Figure 9.2), and hence no performance
gain from FEXT cancellation.

ASO

Here we consider the ASO of ADSL for video streaming, which is the pre-
dominant form of consumer Internet usage. In 2014 consumer internet video
traffic was 64% of all consumer internet traffic, and is projected to increase
to 80% in 2019 [10]. Our optimization involves maximizing the downlink
bandwidth while recognizing that there will be the occasional need to de-
liver moderate to high rate uplink traffic in the case of uploading files or
two-way video conferencing. This optimization also applies to web surfing
where the traffic is disproportionately in the downlink direction.

ADSL stands for asymmetric digital subscriber line, and the asymmetry
in uplink and downlink bandwidths was designed to accommodate video
[45]. However because the lower layers5 do not have real-time knowledge of
the application, a tradeoff was made to permanently demarcate the uplink
and downlink frequencies. More bandwidth was allocated to the downlink in
anticipation of the demand for video, but enough uplink was reserved for the
occasional applications that demand bulk uploads. To complicate matters
further, the upstream and downstream bitrates are also a function of the
length and geometry of the UTP line. Thus the bandwidth allocation that
may serve one line well may not be so optimal for another line. In fact the
largest performance gain for ASO happens over longer lines which implies
that the standard ADSL bandwidth allocation is not well suited for longer
lines.

Our simple approach to ASO is to assume that the lower layers have real-
time knowledge of the application and can dynamically adjust the uplink
and downlink bandwidths to accommodate the application. The optimal
allocation for the application of video streaming would be to give the entire
downlink to the video. In practice it would make sense to reserve a small

5Namely the physical and link layers



amount of uplink bandwidth for messaging6, but we calculate the bit rate of
the entire bandwidth as an upper bound on ASO bitrates and improvement.
Thus for the calculation of the ASO bit rate we change make the following
changes to the baseline parameters in 9.1: f0 = 2156.25Hz which is half the
tone spacing of the ADSL DMT modulation7, and OH = 0%. We assume
that the ASO protocol does not include any of the overhead associated
with traditional layered protocols, and any protocol overhead would be
insignificant for large packet sizes.

The permanent division between upstream and downstream bandwidths
in standard ADSL is like a divided highway where although the traffic in
either direction is a function of the time of day, the highway configuration
remains static regardless of the asymmetric demands of the rush hour. Our
ASO design allows the divider to be dynamically reconfigured based on the
collective demand for different kinds of applications.

In a lightly-loaded ASO system, users could enjoy access to the full
spectrum for both uplink and downlink at the ASO rate most of the time
as the system dynamically configures the spectrum allocation per user and
per application. Actually this scenario is not so far fetched if we consider all
the users in a binder group. Most of the time a user will not be generating
traffic8. When more than one user is active, chances are that there will
not be a conflict as the users will tend to be engaging in applications that
demand downlink bandwidth while only generating sporadic uplink activity.

However as the ADSL access network becomes more heavily loaded,
there will eventually be a conflict in application where one user will require
some kind of bulk upload requiring more significant uplink bandwidth while
most of the other users are engaging in downlink applications such as watch-
ing videos or surfing the web. An obvious approach to this problem would

6Such as uplink RPC calls
7We do not include frequencies starting from 0 Hz since the ADSL signal excludes

DC
8This is actually quite different from standard ADSL where a signal is constantly

being transmitted regardless of whether there is meaningful data to be sent. This is done
so that the network can converge to a steady state where FEXT is factored into the bit
allocations at each tone. If each line is constantly turning on and off depending on the
traffic conditions, then the distributed channel sounding and bit allocation mechanism
would not converge properly to a steady state. Therefore for ASO to work properly in this
case, a centralized channel sounding and bit allocation mechanism needs to implemented.
This is already a necessity for vectored MIMO and would be a natural design if ASO
were to be merged with vectoring, as explored in Section 9.2



be to divide the uplink and downlink bandwidths as a compromise between
the users during the times of conflict. However if we combine vectored
MIMO with ASO we can do much better.

Combined Performance Gains

The potential performance gains of vectored MIMO and ASO are quite com-
plimentary. Vectoring provides the highest gains at the shorter line lengths,
while ASO provides its greatest improvements for longer lines. Furthermore
if we can dream of a next generation DSL deployment based on data center
technology and network function virtualization, we would expect to include
vectoring, capacity approaching channel coding, and ASO. The performance
of such a system is shown as the combined plots in both Figures 9.3 and
9.4. The parameters for this system is shown in Table 9.2.

Table 9.2: Combined Parameters
Parameter Value Notes
OH 0% Protocol overhead for ASO is assumed

to be negligible, especially for
high speed transfers

f0 2156.25 Hz Half of the tone spacing
f1 1.10184 MHz End of downlink ADSL bandwidth
Γ 10.5dB = 9.5dB-7dB+6dB

9.5dB = uncoded gap to capacity
7dB = coding gain of LDPC at $10ˆ{-7} BER
6dB = typical ADSL link budget margin

If we combine the merits of vectoring with ASO, our calculations show
that we can simultaneously allow a significant uplink rate for one user in a
binder group with little effects in the maximum downlink rates of the rest
of the users.

Vectored MIMO can cancel NEXT at the CO. This allows reception of
NEXT-free upstream traffic while delivering downlink traffic to the other
users at the full bandwidth. Without this feature, the upstream traffic rate
would be degraded by NEXT due to downlink transmission. Figure 9.6
shows the uplink rate of the combined design using an uplink bandwidth
of 130 kHz, which is the same uplink bandwidth of standard ADSL. Also



shown is the full downlink or uplink rate when the system allocates the full
bandwidth to either uplink or downlink direction. The 1% worst case and
pair-to-pair are the plots of degradation to all downlink users enjoying the
full downlink bandwidth while one user is performing an upload across the
traditional 130 kHz uplink bandwidth. Figure 9.7 shows the same calcula-
tion in terms of degradation to the downlink rate.
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Figure 9.6: Uplink Rates for One User and Downlink Rates of Full Band-
width Users

The phenomena of NEXT between two UTP lines across the frequency
band is inherently a Rayleigh distribution in magnitude. As a result, on
the power scale this distribution is exponential [13]. However the parame-
ter of this exponential distribution is random across different UTPs. Thus
the pair-to-pair NEXT power transfer function is a mixture of exponen-
tial distributions which has been empirically characterized as a log-normal
distribution9.

In our calculations we used the 1% worst-case NEXT model from the
ADSL2 standard [23] with one interfering user operating in the traditional
uplink frequency band. The 1% worst case NEXT was formulated by em-

9However [27] argues that the log-gamma distribution is a better fit
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Figure 9.7: Downlink Decrease of Full Bandwidth Users with One Simul-
taneous Uplink User

pirical studies where the 1% worst case tail is calculated from estimated
parameters of a normal distribution in the decibel domain.

The 1% worst-case worst case NEXT allows downlink users to establish
an SNR estimate with knowledge of the channel and the fact that one other
user is transmitting in the uplink. Typical ADSL operation estimates the
SNR independently of the activity of other lines. However with ASO, the
network knows the application as well as an estimate of the duration of the
usage. With this knowledge the network can notify subscriber terminals so
that they can back off the SNR estimate and establish the correct channel
coding and modulation scheme to account for the expected NEXT for the
duration of the uplink usage.

However it is possible to do even better if the NEXT pair-to-pair power
transfer functions are estimated by a centralized training procedure as is
done with vectoring. Each downlink user can know the pair-to-pair NEXT
characteristics at each subcarrier for each potential interferer. The bit rates
of this design is based on the NEXT pair-to-pair log-normal loss distribution
given in [27]. The advantage of this design, like the ASO performance gains
in Section 9.2, is more noticeable at longer line lengths as seen in Figures
9.7 and 9.8.

Thus with this combined ASO scheme all users can operate at the full
ASO downlink bandwidth without too much disturbance when only one
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Figure 9.8: Uplink Rates for One User and Downlink Rates of Full Band-
width Users

user in the binder group is using an application that demands high uplink
bandwidth. Since these occasions are rare in relation to high downlink
bandwidth applications, it may be possible to support these high ASO
downlink rates with little interruption. And at times of excess capacity the
full bandwidth could be switched to the uplink direction for to facilitate file
uploads that have been queued, such as in sync operations. Furthermore
since the subscriber device has been partitioned between the access network,
most of the storage is maintained in the data center cloudlet, obviating the
need for much of the uplink traffic through the access network. This would
alleviate much of the file sharing traffic over the access network.

9.3 Conclusion
ASO over ADSL provides significant performance advantages, especially for
26 AWG lines over 2 km long. Lines over 2 km actually represent 50% of all
telephone lines in the United States [45]. For a 26 AWG line at 2 km, ASO
provides the same improvement in performance as vectoring. Beyond this
length, ASO provides performance increases that far surpasses the other



purely physical layer optimizations considered here. It is notable that the
change from the standard channel coding used in ADSL to a capacity ap-
proaching code such as LDPC offers a rather marginal improvement. The
invention of practical capacity approaching codes and their associated iter-
ative decoding techniques is considered a monumental achievement in com-
munications engineering. However in terms of optimizing DSL, the practical
impact is not as impressive. This supports our suspicion that efforts to im-
prove performance at the physical layer alone come with a high cost in
complexity and are already approaching a fundamental limit. MIMO tech-
nology continues to provide promise of further increase of DSL performance,
as it also does in the wireless communications. However the ASO techniques
examined here require less signal processing complexity and these schemes
could be implemented with changes to the MAC functionality on a general
purpose processor. And it turns out that for ADSL, vectored MIMO and
these ASO techniques are very complementary, offer their respective advan-
tages over different line lengths, and can be combined to support nearly full
downlink ASO speeds concurrent with high bandwidth uplink use.

Our proposed ASO architecture provides not only raw performance gains
in bitrate, but also a mechanism for quality of service and quality of expe-
rience. In the case of video streaming, the application aware network can
attempt to schedule a constant bitrate for a good video experience while
packing data that is less sensitive to timing around the video traffic.

ASO also allows the source coding can be adjusted with intimate knowl-
edge of the channel conditions, and joint source channel coding techniques
where the source and channel coding and can be jointly optimized to match
the application. For the video applications, this means that the source cod-
ing can be operate with intimate knowledge of the channel conditions, and
the decoding process can take advantage not only of the channel coding
redundancy but also the residual redundancy in the source coding. This is
an interesting area of research that has not received its due attention since
it is assumed that there is no easy way around the layering construct of
protocols [14] – an assumption that our ASO design challenges. This can
provide additional performance gains that was not analyzed in our example
of ASO over ADSL.

ASO design allows the physical layer and media access control function-
ality to be optimized based on intimate knowledge of the application. As
exemplified with our study of ASO over ADSL, these changes can achieve
significant performance gains with relatively low complexity costs. ASO



may provide the greatest performance gains at the least marginal complex-
ity costs. This seems to be the case with ADSL, and we suspect this to be
true with other communications channels.



Chapter 10

Conclusion and Future Work

This dissertation on optimizing communications systems seeks to find the
greatest performance gain at the least marginal cost in signal processing
complexity. By targeting well known inefficiencies due to protocol layering,
significant performance gains at low complexity costs are possible simply by
allowing application visibility into the functions of the lower layers. Though
its benefits are well known, ASO is assumed to be difficult due to the en-
trenched TCP/IP protocol. We have proposed Subscriber and Application
Partitioning along with an RPC-Based Software Defined Access Network
Protocol as an architecture which leverages current trends to provide ASO
over the access network while still maintaining a TCP/IP stack in the sub-
scriber for Internet connectivity.

Future work may include:

• Calculating a better estimate of Subscriber Partitioning based ASO
performance benefit by using statistical models of Internet traffic. Per-
tinent topics are the amount of traffic over the access network can be
eliminated by Subscriber Partitioning, and how much ASO improves
the efficiency of access network traffic across all significant applica-
tions.

• Determining the advantages of Subscriber Partitioning based ASO for
access networks other than ADSL. such as radio access networks or
coaxial cable networks.

• Determining the advantage of JSCC and JSCD for different applica-
tions . JSCC in particular has not received adequate attention due
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to assumptions about entrenched layered protocols. However itera-
tive receivers, which are popular due to capacity approaching codes,
can be extended to incorporate side information due to residual re-
dundancy left over from source coding in JSCD. Furthermore JSCC
which jointly designs the source coding and channel coding may pro-
vide even greater benefits in performance and complexity reduction.

• Determining what to standardize when protocols can be software de-
fined. The ASO APIs and the network processor should probably be
standardized. The performance of certain signal processing routines
should also probably be standardized since application specific inte-
grated circuit (ASIC) hardware acceleration is necessary for power
constrained devices.
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