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Abstract 

Type 1 Diabetes (T1D) is a chronic ailment afflicting more than 1.25 million patients in the United States alone with 
increasing costs in both direct and indirect care every year. In an attempt to manage diabetes, patients typically undergo 
extreme lifestyle and/or dietary changes. In order for T1D-afflicted patients to maintain proper nutrition, professional 
help in the form of clinicians and deviants is often recommended. However, these professionals require accurate 
patients’ meal records in providing the critical care that T1D patients require. Unfortunately, the meal records provided 
by patients are often incomplete, either lacking in correct time stamps or missing meals altogether. A system that 
retrospectively reviews a patient’s continued glucose monitoring (CGM) data and reconstructs the meal record would 
significantly improve patient outcome and better T1D management. To that effect, we have developed a meal detection 
algorithm that utilizes peak identification alongside first and second derivative curves of the CGM trace to retrospectively 
identify meal occurrences. Similarly, the glucose minimal model is used to quantify the appearance of glucose in the 
bloodstream. Model parameters were compared with the meal’s content using computational techniques to establish 
overall trends and correlations. This pipeline for meal record reconstruction can be further improved to identify meal 
times and meal types with high accuracy, enabling this comprehensive framework to be converted into a real-time tool 
to be implemented within an Artificial Pancreas (AP) systems.  
 
Keywords:  meal detection; type 1 diabetes; physiological modeling; unannounced meals; glucose minimal model

Introduction 

Type I diabetes (T1D) is an autoimmune disorder that results in 
the degradation of pancreatic β-cells, inhibiting an individual’s 
ability to produce insulin, and leading to several chronic health 
implications1. Although T1D accounts for only 10% of all diabetes 
cases, its incidence continues to increase – from 1.25 million 
Americans in 2017 to a predicted patient population of 5 million by 
20502. These trends are especially worrisome as insulin spending 
per patient has increased from $2,900 in 2012 to $5,700 in 2016, 
pointing to not only the physiological, but also the immense 
financial burdens associated with juvenile diabetes. 
 
Currently, T1D management is achieved through various clinical 
and at-home approaches. Although contemporary methods such 
as surgical interventions (i.e. islet transplantation) and novel 
immunotherapeutic methods show promise, these techniques are 
invasive and much more involved than current protocols. Effective 
management of diabetes also requires the patient to continuously 
pay attention to insulin administration, blood glucose monitoring, 
and timely meal planning4. These management techniques are 
burdensome as patients are required to manually interact with their 
insulin delivery system with frequent blood glucose checks and 
daily insulin injections1. Scientific analysis of diabetic patients also 
proves difficult because an accurate meal record alongside a 
complete meal content classification (i.e. nutritional composition, 
macronutrients, micronutrients, etc.) is crucial for reliable clinical 
studies. Unfortunately, the records provided by patients are either 
inaccurate or missing meals entirely, indicating a great need for a 
system that can retrospectively reconstruct patients’ meal records. 
Modern advances in the biotechnological realm have led to 
implementations of computational approaches and meal detecting 

algorithms (MDA) in reconstructing a patients’ meal occurrence 
based solely on continuous glucose monitoring (CGM) data 
collected via wearable sensors5. Various factors such as meal 
quantity, frequency, and especially meal content is being 
considered as studies have indicated limitations in insulin dosing 
based on carbohydrate counting alone6. Therefore, the goals of 
this study are to: 
1. Develop and optimize meal record reconstruction tool by: 

• Identifying peaks utilizing 2nd derivatives of the CGM 
data, correlating to a sharp rise in blood glucose, which 
would indicate a meal occurrence. 

• Optimizing peak identification method by adjusting the 
importance of CGM feature and algorithm parameters 

• Comparing predicted meal occurrence with known 
occurrence to increase accuracy 

2. Determine effect of meal content on CGM trends and post-
prandial peaks by: 

• Fitting a compartmentalized model (DTTM) following 
each meal and optimizing its overall fit 

• Investigating the relationship between each meal’s 
recorded content and optimized model parameters by 
performing linear regression on each model parameter 
individually with different meal content variables 

 
Further fine tuning these algorithms and analysis on improved 
approaches will pave the way for development of a real-time 
system that identifies a meal occurrence and type simultaneously. 
This will hopefully ultimately be culminating with a mock concept 
of an Artificial Pancreas (AP) system offering automated regulation 
of blood glucose concentration among individuals afflicted with 
juvenile diabetes. 
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Introduction to Meal Detection Algorithms (MDA) 

Detecting meals via CGM data is not a novel concept as various 
meal detection algorithms for Artificial Pancreases (AP) systems 
have previously been proposed5,9,10,21,22. The algorithms being 
employed in the development of closed-loop systems in particular 
can be classified into four types of models9,11. Model predictive 
control algorithms attempt to predict glucose levels in the near 
future and attempt to adjust insulin delivery accordingly. 
Proportional integral derivative algorithm is a well-known control 
loop which responds to real-time measured glucose values. 
Similarly, fuzzy logic algorithms determine insulin doses based on 
various parameters to mimic a clinician making real-time 
adjustments based on the CGM data1,11. Lastly, bio-inspired 
mathematical models are also being considered to determine 
dosing based on how β cells would act in response to blood 
glucose activity. These models all have varying degrees of 
success, but typically are able to predict a meal detection with a 
high level of accuracy. Despite the high performance, it should be 
noted that many of these predictive models are generated utilizing 
in silico data, which may not account for the metabolic variability 
observed in clinical settings. Furthermore, many of these models 
fail in instances of small meals and often report false positive rates, 
which would clinically translate to an AP system dosing insulin 
despite little to no spikes in blood glucose levels12. Regardless, the 
proposed meal detection methods for this project do not deviate 
from the current published works, primarily relying on monitoring 
the rate of change in glucose levels and utilizing first and second 
derivative peaks to reach the decision of whether a meal has 
occurred5.  

Introduction to Glucose Models  

The glucose kinetics minimal model is a dynamic system of 
equations used to describe changes in both plasma glucose and 
insulin concentrations in response to rises in blood glucose levels. 
This model can be used to quantify insulin sensitivity, which is the 
ability of insulin to enhance glucose uptake into cells.13 Initial 
model implementations aimed to describe glucose and insulin 
behavior in response to intravenous glucose tolerance tests 
(IVGTT) or oral glucose tolerance tests (OGTT). An IVGTT is used 
to assess glucose tolerance by recording blood glucose levels in 
response to an injection of a glucose bolus.26 Though the test is 
powerful and provides a clear glucose trace in response, this test 
is not physiologically realistic, as glucose injections cause 
immediate and rapid rises in the blood glucose value, while oral 
consumption of glucose is typically delayed. An OGTT model has 
also been used to assess glucose tolerance with the subject 
consuming a glucose solution to determine the bloodstream 
glucose response.28 This model also is not physiologically realistic 
as meal appearances are more delayed than oral glucose 
appearance due to the breakdown of carbohydrates into glucose. 
Thus, in order to quantify parameters that are physiologically 
relevant, the model selected should account for the rate of 
appearance of the meal into the bloodstream.  

Results 

Meal Detection Algorithm  

Initial Algorithm Development 

Our preliminary attempts to design a meal detection tool integrated 
features identified in prior published works. The accuracy of our 
algorithm upon validation with a limited test set was ~75 percent, 

with a false positive rate of ~25 percent (Table 1). However, it 
should be noted the identification window made permissible for 
detection was quite large, which may have biased the accuracy 
rates. In spite of these liberal thresholds, the initial model performs 
poorly relative to published works that boast well over 90 percent 
accuracy5,9,10. This model also relied on an insulin trace as one of 
the parameters in its detection (See Methods). Since the algorithm 
is constrained to retrospectively predict meals solely based on the 
CGM trace, it became readily evident that the approaches in the 
initial algorithm framework 
needed expansion. Due to 
the large variability in 
accuracy among the 10 
subjects in dataset, there 
was a subsequent need to 
personalize the algorithm’s 
parameters to be more 
subject specific (discussed 
below). 
  

  
 

Final Algorithm Development and Tuning  

An updated algorithm solely dependent on CGM trace was 
developed through several iterations (see Methods for rationale). 
On the 10 subjects tested, the designed algorithm performed with 
varying successes when the parameters were held at a constant. 

Figure 1. Optimizing for better predictive performance. The 
designed algorithm and its several parameters were optimized in a 
subject dependent manner. The two parameters optimized was the 
respective threshold setting (orange dashed line) and the degree to 
which the raw data was smoothed. While low thresholding and 
excessive smoothing leads to overprediction of meals (A), the 
opposite is true in cased of under detection (B). Optimizing these 
parameters after several adjustments to the algorithm leads to more 
reasonable and more accurate meal prediction (C).  
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Enabling some of the parameters to vary and depend on the 
subject led to far better performance. Figure 1 demonstrates the 
improvement in the algorithm’s accuracy when the primary 
identified parameters are allowed to vary. The optimal parameter 
values for each subject is reported in Table S1, while the averaged 
mean values from each subject are provided in Table 2. These 
mean parameter levels also serve an important purpose clinically. 
If a patient is newly administered and their optimal parameter 
levels are not known, the mean “population” parameter values 
(Table 2) can be utilized for initialization and adjusted accordingly 
as more data becomes available. 

  
Meal Modeling Analysis  

Model Performance 

The model used in this study is known as the double triangular 
minimal model, containing two triangular subsystems to model the 
meal and insulin rate of appearances in the bloodstream. (Figure 
2). These subsystems contain two state compartments that the 
input travels through to reach the rate of appearance 
compartment. For example, when a carbohydrate meal input 
enters state Q1, the input can go directly to Ra or to Q2 then Ra. 
Each of these state-to-state travels is described by a rate constant 
that, when optimized, improves the shape of the resulting glucose 
appearance in the bloodstream. The insulin subsystem functions 
similarly to the meal subsystem. There are six rate parameters:  
three for the meal subsystem and three for the insulin subsystem. 
We chose to optimize the meal rate parameters as they modulate 
the meal input and adjust the shape of the resulting glucose 
appearance. We also chose to vary insulin sensitivity (SI) as 
insulin sensitivity is subject specific. We varied the fraction of 
intestinal absorption (f), in order to adjust the magnitude of the 
meal rate of appearance to be as close to the actual glucose data 
as possible.  

Our initial attempts to model the glucose appearance had many 
errors, such as the arbitrarily set initial parameters appeared to 
better fit the model than the model optimized towards the glucose 
data itself. While the shape of the meal was better described by 
the optimized parameters, the model optimization was not 
functioning to decrease the distance between the actual glucose 
response and simulated glucose response. (Figure 3A) We 
performed several experiments to improve the optimized model fit 
(see Methods). We adjusted initial parameters and conditions of 
the model to be more accurate and reflective of physiological 
conditions. We also implemented a Bayesian prior on insulin 
sensitivity to reduce the deviation of SI from a historic mean of 
6*10-4 +/- 8*10-5 mg/dL.29 Following all model improvements, we 
observed a 20-fold decrease in the resulting squared normal 
residual of the model fit, decreasing from approximately ~20,000 
to 1017.21 across all subjects, indicating significant improvement 
in our algorithm performance. (Figure 3B). 

A)  

B)  

 

 

 
  

Figure 2: Glucose Kinetics Model with a Double Triangular System 
Set-Up. This model contains seven differential equations, and two 
inputs: m(t), the rate of carbohydrates consumed in milligrams per 
minute (3) and J(t), the rate of exogenous insulin infusion delivered (5). 
G is the rate of glucose appearance in the bloodstream in mg/dL (1). X 
described the rate of insulin action in the bloodstream in mU/L (2). Q1 
and Q2 (3 and 4) describe the states in mg of carbohydrates that the meal 
input can travel through to feed into the meal rate of appearance, Ra. Isc1 
and Isc2 (5 and 6) describe the states in mU that the insulin infusion 
travels through to feed into the insulin rate of appearance, IRa. I 
describes the insulin concentration in the bloodstream in mU/L using the 
insulin rate of appearance (7). 

Figure 3. Initial vs Final Model Performance. Blood glucose levels 
collected every five minutes from the CGM device are represented by 
the blue data points. The red curve displays the simulated model 
performance with the initial parameter guess. The yellow curve 
displays the final model performance after parameter optimization. The 
resulting normal residual of the initial model (A) was approximately 
2*105. The resulting normal residual of the final model (B) was 519.08, 
indicating a 40-fold improvement of the model in this case 

Table 2: Optimized Parameter Values 

Parameter Mean ± Std Deviation  

Threshold: thresh 2.19 * 10
-3  

± 1.11 * 10
-3 

 

Smoothing: n
l
 21.5 ± 7.2 
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Carb Alignment Utilizing MDA 

As meal times were patient-recorded in this study, human error 
was present in the meal input for the model (Figure 4A). The 
carbohydrate input was initially set at the time the meal was 
recorded, which rarely corresponded with the time that the meal 
propagation would begin. In order to overcome this barrier, the 
MDA was utilized to detect an accurate meal time in the CGM trace 
for every given meal. We proceeded to identify the closest 
carbohydrate input time to the detected meal time and shifted the 
input accordingly. This pushed the propagation of the simulated 
glucose bump following the meal input forward by approximately 
40 minutes (Figure 4B). The squared normal residual decreased 
from 1.219*104 to 1.829*103, thus decreasing the squared error 
ten-fold and improving the overall fit of our model.  

 

Optimized Parameters 

Once the final model performance was thoroughly optimized, the 
final algorithm was run on all 107 pre-screened meals to calculate 
estimates for the five varied parameters: Si, km1, kmd, km2, and f. 
(Table 3). Before computing the average and standard deviation 
of the parameter estimates, we removed all estimates for which 
the squared normal residual was over 4000 in order to only 
analyze the values for which the model optimization was 
successful. This step removed 25 meals from analysis due to poor 
fit. The resulting parameter estimates are computed over 82 meals 
across 11 subjects. The resulting SI value was found to be slightly 
smaller than historic values, in comparison to 0.0006 +/- 0.000087 
mg/dL. Average values of kmd were much larger than the averages 
found for both km1 and km2. As kmd describes movement from state 

Q1 to Q2, the large value for kmd relates to faster movement from 
Q1 to Q2. It does not have as significant of an impact on the 
resulting Ra as Ra is more dependent on km1 and km2. indicating 
that the faster component of the model is not as relevant, and the 
slow movement is more relevant (km1). Lastly, the fraction of 
intestinal absorption, f, has the largest value with the most 
variation. As f acts as a gain on the rate of appearance, Ra, f 
adjusts the meal rate of appearance to push the simulated glucose 
response towards the glucose data during the model optimization.  
 

Table 3: Model Parameter Estimates Following Optimization. 

MODEL PARAMETER MEAN +/- STD DEVIATION 

Insulin Sensitivity: Si 4.2089 E-4 +/- 5.33 E-4 
{L*mU-1*min-1} 

Meal Rate Parameter: km1 0.006972 +/- 0.0348 {min-1} 

Meal Rate Parameter: kmd 0.2443 +/- 0.439 {min-1} 

Meal Rate Parameter: km2 0.01840 +/- 0.0198 {min-1} 

Fraction of Intestinal Absorption: f 3.667 +/- 7.42 

 

Meal Content Analysis 

Preliminary studies were performed to investigate the effect meal 
content on the qualitative appearance of the resulting glucose 
trace. (Figure 5) Data collected for each meal also contained meal 
content information i.e. amount of carbohydrates, fat, protein, fiber, 
and sugar. Content data was normalized within each content 
variable to quantitatively identify which meals had a higher than 
normal presence of carbohydrates, fat, and protein to classify a 
meal as high carbohydrate, protein, or fat. Three meals were 
selected to be qualitatively analyzed with respect to the glucose 
appearance. High carb meals can be seen to follow the traditional 
glucose appearance, with an even increase and decrease of 
glucose values with respect to time. High protein meal profiles 
contain a rapid increase of blood glucose levels, followed by a 
short postprandial peak and slow decay of the BG value back to 
the initial BG level. High fat meal profiles are characterized by long 
plateaus at the peak value of the postprandial glucose response. 

Discussion 
Meal Detection Algorithm Analysis 

Although we were able to establish a general framework for our 
meal detection algorithm, accurately utilizing the meal detection 
tool for validation purposes remains a challenge. Continual 
improvements on our meal detection tool stagnated primarily due 
to a lack of access to larger datasets (n = 10). Furthermore, the 
recorded data for these 10 subjects were over a 2-day period--an 
extremely small sample size as most patients did not consume 
more than 5 “meals” per day. Limitations in the size of the data 
also implied that traditional machine learning methods could not 
be appropriately applied. Since most of the samples were initially 
required in “training” the model, there was limited data to fully test 
and validate the model and its assumption. To mitigate this issue, 
we attempted to test the algorithm on the complementary dataset 
(Launchpad) utilized in meal content analysis. Unfortunately, the 
meal times provided and classified within Launchpad may not be 
accurate as those are manually-inputted meal times. Without an 
accurate classifier for the actual conditions (i.e. actual meal times), 
testing the accuracy of the model and validating its results become 
practically impossible. In the future, more data should be 
integrated into the system to test the viability of our algorithm in 
accurately predicting a meal occurrence across a wide range of 
patient scenarios. Instances of constant snacking as opposed to 
complete meals as well as fluctuating dietary states are interesting 

Figure 4: Carbohydrate Alignment using Meal Detection 
Algorithm. Initial model implementation without carbohydrate 
alignment began meal propagation approximately 50 minutes after 
the first CGM value, while the CGM data was still decreasing in value. 
(above) Final model implementation with carbohydrate alignment 
began meal propagation 90 minutes after the first CGM value while 
the CGM value was beginning to rise. (below) 
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test cases that may further highlight some flaws in the currently 
built meal detection tool. 

A)  

B)  

C)  

 

 

Meal Modeling Analysis  

The primary goal for the glucose minimal model is to quantify a 
subject-specific insulin sensitivity value. Insulin sensitivity provides 
insight on glucose utilization that occurs within each subject. In this 
study, we found that insulin sensitivity did not vary greatly over 
subjects, with standard deviations typically being the same 
magnitude as the mean value itself. In order to increase the clinical 
relevance of the identified value of insulin sensitivity, further model 
improvement is necessary. Future studies could investigate the 
effects of imposing additional constraints on SI within the 
optimization cost function that take into account all previously 
determined SI values for that specific subject.  
 
Theoretically, km1, the meal rate parameter describing movement 
from state Q1 to Ra, correlates with the total amount of 
carbohydrates in a given meal. In order to test this theory, we ran 
a basic linear regression model to predict carbohydrate content 
based on a given km1 value. This model produced a p-value of 
0.446, indicating that the km1 values observed in this study did not 
have a significant impact on the amount of carbohydrates in the 
given meal. Imposing a larger constraint on km1 within the 
optimization function might allow this value to be less varied and 
have a more significant impact on carbohydrate content.  
 
The final algorithm significantly improved the characterization of 
model parameters for meals where the CGM data was 
prescreened to be well defined with minimal anomalies. However, 
in clinical usage, not all data will be pre-screened for usability. 
Improving the algorithm’s performance to optimize the model fit for 
data that may be classified as messy or unclean is essential to 
increase clinical usability. Future work could include any method 
of filtering the CGM data prior to running any sort of model analysis 
to smooth out resulting data.  
 
Another study conducted to determine the impact of meal content 
on postprandial glucose control correlated meals with higher fat 
and protein content with increased more insulin dosing in 
comparison to meals with lower fat and protein, but identical 
carbohydrate content.6 The meal profiles generate in our study 
displayed similar findings, such as delayed postprandial 
hyperglycemia for high fat meals. Further investigation into the 
relationship between varied model parameters and meal content 
can be helpful in eventually identifying the meal type based on 
resulting parameters from the optimized minimal model.  
 
Clinical Relevance: Artificial Pancreas System 
The artificial pancreas system strives to closely mimic the 
regulatory function of the pancreas in blood glucose management. 
In an idealized model, AP systems utilize closed-loop control, 
which enables the designed algorithm to automatically adjust 
insulin delivery based on continuous glucose monitoring (CGM) 
trends8. Due to limitations in design, current AP systems primarily 
utilize hybrid closed-loop systems, which require users to check 
glucose values at least twice daily to calibrate the CGM 
device1,12,15. Furthermore, the greatest barrier to an efficient AP 
system lies in regulating glucose levels following a meal23. Current 
controller systems have attempted to combat the meal detection 
dilemma using the feed-forward approach, where a user informs 
the controller of a meal occurrence, initiating an insulin bolus. In 
contrast, a feedback control only boluses after sensing an increase 
in glucose levels. This method is limited, however, due to a delay 
in insulin absorption, placing the patient at risk for postprandial 

Figure 5: Meal Content CGM Profiles with Optimized Model 
Fits. A: High carb meal profile with 41 grams of carbohydrates, 
7 grams of fat, and 11 carbohydrates. B: High protein meal 
profile with 33 grams of carbohydrates, 5 grams of fat, and 21 
grams of protein. C: High fat meal profile with 21 grams of 
carbohydrates, 8 grams of fat and 3 grams of protein. 
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hyperglycemia. The discrete meal detection is a more novel 
approach, which attempts to trigger an insulin bolus as part of an 
algorithm using continuous feedback from a CGM device, enabling 
a more real-time controller system5. The transition from a hybrid 
closed-loop systems to fully closed-loop systems that implement 
discrete meal detection strategies is contingent on a well-tested 
meal detection tool5,18. The algorithmic frameworks proposed here 
and in existing literature therefore serves two critical and 
innovative functions: 1)  MDA will automate the AP system 
controllers to accommodate for meals and bolus without the 
assistance of any patient input and 2) Retracing of meals that 
patients are unable to accurately record allows clinicians and 
dietitians access to significantly more data for preventive diabetes 
medicine and intervention. 
 
Materials and Methods 
Data Collection 

Meal Detection Algorithm: GV2 Dataset 

The dataset considered in the development of the algorithm was 
collected by the Center for Diabetes Technology (CDT) in a clinical 
study that attempted to reduce patients’ glucose variability24. T1D 
subjects were included based on various inclusion criteria in a 
randomized crossover 48-hour visit. Although 15 total subjects 
were administered in the study, only 10 data sets were deemed 
complete and compatible for this study. The CGM data was 
collected through the Dexcom Share AP CGM device, while an 
accurate meal record was simultaneously recorded for the 48 
hours that subjects remained at the CDT research house. Since 
the meal records for these patients are known and accurately 
recorded, this dataset is ideal in testing the accuracy of our meal 
detection algorithm.  
 
Meal Content and Modeling Analysis: Launchpad Dataset 

The dataset considered in the development of the meal modeling 
and meal content analysis was also collected by the Center for 
Diabetes Technology (CDT) in a separate clinical study that 
attempted to study the underlying glycemic variability across the 
menstrual cycle in women with T1DM. This study enrolled 
premenopausal women for approximately three-month outpatient 
study where the subject wore CGM devices and self-monitored 
blood glucose levels utilizing insulin pump to capture insulin 
dosing. The Launchpad set had longitudinal data with many 
separate recorded meals, making it an ideal set for meal content 
and meal modeling analysis.25  

Meal Detection Algorithm: Model Development  

Initial Algorithm Development  

The raw CGM curve was filtered utilizing a moving average 
window filter over 2 hours for each data point and smoothed. A 
peak was subsequently identified in the filtered CGM data by 
finding the local maxima with the largest prominence (Fig. S1A). 
Potential instances when insulin was delivered to the patient was 
also plotted under the assumption that insulin levels twice greater 
than the basal rate indicated a bolus (Fig. S1B). Upon filtering the 
collected CGM data, peaks in the 2nd derivative was identified to 
isolate sharp rises in the raw data (Fig. S1C). The separated peaks 
were subsequently analyzed by studying the postprandial effect on 
CGM features, including: the blood glucose value, prominence of 
2nd derivative peak, and the trend of the 1st derivative of the raw 
CGM following a meal. Since the 2nd derivative of CGM values tend 
to fluctuate significantly, a prominence of 0.1 was selected due to 

its ability to best capture all large 2nd derivative peaks that are 
typically indicative of a meal occurrence. Each identified 2nd 

derivative peak was predicted as a meal if the following 
circumstances were met (Fig. S1D):  

• If an insulin peak (bolus) occurred within 3 hours of the 
identified 2nd derivative peak 

• CGM value at peak time was recorded to be <= 95 mg/dL 

• Postprandial peak in the CGM data occurred between the 
identified peak and the next 2nd derivative peak 

Final Algorithm Development 

In the redesigned approach, the detection of meal is based solely 
on the CGM values and no longer dependent on an insulin trace. 
The algorithm inputs patient’s CGM data (collected at 5-minute 
intervals), interpolates it over time point of every minute. A non-
causal filter is utilized to smooth out the data, which allows the 

algorithm to more easily observe the changes of blood glucose 
concentrations caused by potential meals. Filtering also helps to 
reduce the effects of CGM sensor noise. Meal information is 
subsequently extracted from the filtered CGM signal; however, 
filtering the data disrupts the original trace—the larger the filtration 
parameter, the larger the disruption. Identifying the appropriate 
smoothing parameter was thus one of the values optimized in the 
re-developed algorithm.  
 
The possible changes (i.e. derivative) in blood glucose levels that 
is representative of the unique 1st and 2nd derivative combinations 
are expressed in Figure 6. In particular, the possibility of a meal is 
most likely to occur in instances of case D—an accelerating 
increase in the glucose profile (positive 1st, ‘dx’, and positive 2nd, 
‘ddx’, derivative). Therefore, only time points with positive trend in 
both the 1st and 2nd derivative were flagged as potential meal 
options. If the product of the 1st and 2nd derivative crossed an 
arbitrarily defined threshold (another parameter optimized in the 
study), the algorithm proceeds to identify the maximum peak of the 
2nd derivative within the vicinity (± 20 mins) of the timepoint, 
pinpointing that timestamp as a potential meal. Figure S2 shows a 
more comprehensive flowchart of the designed algorithm. 
  
In optimizing the fit, a parameter sweep was conducted on the two 
most sensitive parameters—threshold and smoothing. Due to the 
algorithm responding at different accuracy rates across subjects, 
these parameters were allowed to vary and a ROC curve analysis 
was conducted at several different values—threshold values 

Fig. 6. Trends in the CGM Trace. The seven possible unique 1st and 
2nd derivative combinations in describing CGM trends. The algorithm 
designed herein operates under the assumption that meals are most 
prevalent in instances of positive 1st and 2nd derivative (Schema D)   

Figure adapted from: Samadi et al., IEEE Biomedical and Health Informatics 
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ranging from 0.0001 to 0.1 and the smoothing filter parameter 
ranging from 1 to 100. Based on the optimally identified values, 
these parameters were re-adjusted per subject, resulting in a far 
more refined algorithm than the initial implementation.  

Development of Minimal Model  

Data Preprocessing 

Data from the Launchpad study was preprocessed and screened 
prior to performing model optimization. Each subject in this study 
recorded given an array of patient recorded meal times, we aligned 
CGM data, insulin infusion data, carbohydrate data with the 
datetime values from 30 minutes before the given meal time to 4 
hours following the meal time or until the next meal. This was done 
for all 613 meal times across 13 subjects. The resulting pre-
processed data was then qualitatively screened in order to isolate 
meals with a clean CGM trace on which model performance would 
be successful. A maximum of 10 meals were identified per subject 
based on the following criterion: 1) there was a clear initial state 
prior to the consumption of a meal, 2) the consumption of a meal 
could be clearly identified by a sharp rise in glucose value, 3) the 
propagation of the CGM value following a meal was smooth and 
began to trend downwards by the end of the time series, and 4) 
there were no anomalies in the CGM trace that couldn’t be 
remedied by computational methods. A total of 107 meals across 
11 subjects were identified as suitable for further analysis. Two 
subjects were found to have zero usable meals. Further data 
analysis was performed to account for CGM values that may not 
have been obtained properly, resulting in a BG value of 0. For 
these cases, the average of data points before and after the loss 
of signal was applied to these BG values of 0.  
 

Model Development 

The model used is known as the double triangular minimal model. 
The traditional glucose minimal model is described by equation 1 
for glucose modeling, and equation 2 for insulin action. The first 
input to the model is m(t) which is fed into the state equations for 
the meal rate of appearance. The second input is J(t) which is fed 
into the state equations for the Insulin rate of appearance, which 
is fed into equation 7, the insulin concentration equation. Ra and I 
are then fed into equations 1 and 2 to generate a simulated 
glucose response. The fixed model parameters for this study are 
Sg (the fraction of glucose effectiveness), Vg (distribution volume 
of glucose), BW (subject body weight), p2 (rate constant of insulin 
action), the rate constants for the insulin state equations (k1, kd, 
and k2), Vi (distribution volume of insulin), n (clearance rate of 
insulin concentration). Gb and Ib were initially fixed as well, but 
were adjusted dependent on the data in the final model 
implementation. Gb was set as the calculated average of all 
glucose values prior to the beginning of meal propagation. Ib was 
set as the calculated average of all basal insulin injection 
concentrations divided by n, Vi and BW in order to adjust the units 
from mU/min into mU/L. The initial parameters of the ODE are set 
as seen in Table S2. The initial conditions of the model for the ODE 
are set based on the steady state solutions of the model;  

G = Gb. X =  0, I = Ib, Q1 = 0, Q2 = 0 

Isc1 =
n ∗ I

Vi ∗ BW ∗ (k1 + kd)
 

Isc2 = Isc1 ∗
kd

k2
 

Model Adjustments 

 We adjusted the lower and upper bounds of varied parameters 
within the cost function from 0 to 1 to 1/100 and 100 times the initial 
parameter estimates. We also adjusted the calculation of the 
model input values within the model script to improve the models 
fit. The initial model implementation used MATLAB function interp1 
to calculate the input value at each increment of t within the 
differential equation solver (ode45). Though interp1 functioned 
well for the meal input, it forced the insulin input to be interpolated 
across both basal and bolus injections. We changed this function 
from interp1 to find to find the last datetime value within the input 
data that is less than the current increment of t. This improved the 
model performance as the insulin action curve was impacted more 
by boluses.  
 

Carb Alignment 

We used the MDA we developed to identify potential meal times. 
In the case that there was more than one detected meal time, we 
chose the meal time that occurred earliest as this model 
performance is geared towards identifying the meal type of one 
meal. Once the meal time was ascertained, the closest carb input 
was shifted to the detected meal time. In the case that no meal 
time was detected, we made no changes to the carbohydrate 
input. 
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Supplemental Figures  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  

Fig S1. Initial Meal Detection Algorithm Development. Raw CGM data was filtered and 

peak was identified based on local maxima (A). Bolus was identified under the presumption 

that insulin levels doubling relative to basal concentrations was indicative of insulin being 

delivered to patient (B). 2
nd

 derivative peaks were identified to isolate sharp rise in CGM 

(C), with only peaks meeting the required thresholds being identified as meals. (D) shows 

filtered CGM trace, overlapped with instances of both actual meal (green) and predicted 

meal (red) occurrence.  

Subject 17 
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Supplemental Tables  
  
 
Table S1: Optimized Parameter Values in  
Meal Detection Algorithm Across Patients 

Subject Threshold Smoother 

1 0.00285 22 

2 0.00185 18 

4 0.0011 36 

7 0.00115 25 

11 0.00215 19 

13 0.00015 27 

16 0.00275 27 

17 0.00315 13 

20 0.0031 19 

23 0.0036 9 

 
  
 
 
 
 

Fig S2. Flowchart of Revised Meal Detection Algorithm. We took patient’s CGM data which collects blood 

glucose levels every 5 minutes, interpolating it over a time point of every minute and applying a non-causal filter 

that smooths out the data. As expected, smoothing the data disrupts the original signal, but becomes necessary to 

derive smoother and more prominent 1
st
 and 2

nd
 derivative curves. The derivative curves serves as the primary 

rationale behind our meal detection algorithm (see methods). Only timepoints where both the 1
st
 and 2

nd
 derivatives 

of the CGM trace are positive and the product of those two derivatives crosses an arbitrarily set threshold are 

identified as potential meal flags. The algorithm then proceeds to identify the max second derivative near the vicinity 

of where threshold is crossed, identifying that as a possible meal. The red star indicates parameters in the algorithm 

(thresholding and filtering settings) that were allowed to be varied across patients. 

 
Although the model performs fairly well, there are more adjustments that could be made including (but not limited 

to): further optimizing the parameters, incorporation of different numerical methods in derivative calculations, 

surveying different windowing options, and altering filtering techniques. 
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Table S2: Initial Parameter Estimates  

Symbol Meaning Value Units 

Sg 
Fractional glucose effectiveness 0.01 

min-1 

Gb 
Basal glucose Calculated 

mg*dL-1 

Vg 
Distribution volume of glucose 1.7 

dL*kg-1 

Si 
Insulin sensitivity 

0.0001 L*mU-1*min-

1 

p2 
Rate constant of the remote insulin compartment 0.02 

min-1 

Ib 
Basal insulin Calculated 

mU*L-1 

km1 
Rate constant of meal transport 0.02 

min-1 

kmd 
Rate constant of meal transport 0.015 

min-1 

km2 
Rate constant of meal transport 0.01 

min-1 

k1 
Rate constant of nonmonomeric insulin absorption 0.0018 

min-1 

kd 
Rate of constant insulin dissociation 0.0164 

min-1 

k2 
Rate constant of monomeric insulin absorption 0.0182 

min-1 

n 
Insulin clearance   

Calculated 

from BSA 

min-1 

Vi 
Distribution volume of insulin 

Calculated 
from BSA L*kg-1 

BW 
Body weight specific 

kg 

f 
Fraction of intestinal absorption 0.9 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


