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ABSTRACT 

 

The bacterial Type III Secretion System (T3SS) is a complex membrane spanning 

molecular machine comprised of over 20 different proteins. The T3SS is employed by 

pathogenic bacterial species to deliver effector proteins though a hollow needle-like 

structure, providing the mechanism of eukaryotic host cell infection. While effector 

proteins differ between species, the structural components of the T3SS remain largely 

conserved, making the machinery an attractive drug target. However, how secretion 

substrates are selected and transported by type 3 secretion remain unclear. Secretion 

activity and substrate selectivity are thought to be controlled by a sub-complex of the 

system located within the bacterial cytosol, called the sorting platform. Recent work has 

suggested that a dynamic interaction network of cytosolic sorting platform proteins play a 

role in effector protein secretion. To examine the diffusive behavior of sorting platform 

proteins within the bacterial cytosol, I employed 3D single-molecule localization 

microscopy on fluorescently labeled proteins in live Yersinia enterocolitica cells. To 

extract prevalent diffusive states of sorting platform proteins from a large population of 

single-molecule trajectories, I developed and thoroughly tested a diffusion analysis 

framework. By observing the prevalent diffusive states of sorting platform proteins in a 

variety of genetic backgrounds, we were able to construct a model on cytosolic sorting 

platform complex formation, further supporting the hypothesis that secretion is regulated 

through a dynamic interaction network of sorting platform proteins.  
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1.1 Type 3 Secretion System 

1.1.1 Overview 

Bacteria have evolved a variety of specialized secretion systems to transport 

proteins and other molecules from the bacterial cytoplasm to the outside environment, into 

other bacteria, or into eukaryotic cells (1, 2). Secreted proteins play a role in a variety of 

functions, including quorum sensing, cell adhesion, and pathogenicity (2). Some proteins 

are transported out of the cell in a two-step process, first crossing the inner-membrane into 

the periplasm by the Sec or Tat pathway, and then across the outer membrane by a second 

secretion system, while others are transported outside of the cell directly from the 

cytoplasm by a secretion system spanning both the inner and outer membranes. There are 

at least nine secretion systems identified to date, referred to as the Type I through Type IX 

secretion systems, which serve a variety of functions ranging from cell survival to host cell 

infection (1). 

The focus of this work is on the bacterial Type III Secretion System (T3SS), a dual 

membrane spanning molecular machine comprised of over 20 different proteins used by 

Gram-negative bacteria for flagellar biogenesis and for virulence (3, 4). The virulence-

associated T3SS, also called the injectisome, features a long hollow needle that protrudes 

from the bacterial cell surface and ultimately anchors itself into the eukaryotic host cell 

membrane (Fig. 1.1) (5-9). The T3SS is employed by several prominent Gram-negative 

pathogens responsible for a variety of potentially fatal diseases, commonly involving 

intestinal infection, including Salmonella, Yersinia, E. coli, Shigella, and Psuedomonas 
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(10). The injectisome facilitates infection by delivering effector proteins from the bacterial 

cytosol into a eukaryotic host cell via the hollow needle structure. Effector proteins are 

species specific and serve a variety of functions, including re-arranging the host-cell actin 

cytoskeleton,  evasion of the host cell immune response, and invasion of the host cell by 

the bacteria cell (8). While the effector proteins and their respective functions vary between 

bacterial species, the structural proteins of the T3SS are highly conserved. The secretion 

machinery is therefore an attractive drug target for combating infection, as well as potential 

re-programming of the system for various biomedical applications (10, 11). However, 

elucidating the functional mechanisms regarding delivery of effector proteins has been 

challenging due to the complex nature of the system as well as its relatively small size, 

leading to a deficiency in its structural characterization. 

 

Injectisome structure 

The injectisome can be broken into four distinct sub-complexes. The first is the 

membrane spanning rings that extend through both bacterial membranes. Using the 

commonly used universal nomenclature, the membrane rings are comprised of the proteins 

SctC, SctD, and SctJ (12). The membrane rings provide a channel through the membranes 

through which the rest of the machine can be built. The second is the inner membrane 

embedded export apparatus, comprised of SctR, SctS, SctT, SctU, and SctV (12). As its 

name suggests, the export apparatus is responsible for export of effector proteins through 

the third sub-complex, the extracellular needle. This is a hollow, needle-like structure 

approximately 60 nm in length that protrudes from the cell and includes a needle-tip 
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complex necessary for host cell detection and pore formation in the host cell membrane 

(13). The needle structure is primarily composed of SctF, but also includes the inner rod 

protein SctI, the hydrophilic translocase SctA, and the two hydrophobic translocases SctB 

and SctE (12, 14). Finally, there is a cytosolic complex associated with the T3SS at the 

inner-membrane interface, referred to as the sorting platform. As the nomenclature 

suggests, this sub-complex is believed to be responsible for sorting and selection of effector 

proteins for secretion. The sorting platform includes the five proteins SctK, SctL, SctN, 

SctO, and SctQ. 

 

Injectisome assembly and function 

Expression and assembly of the injectisome is triggered by a temperature jump to 

37°C experienced upon entry into mammalian hosts (5). However, the assembly of the 

individual sub-complexes and the full injectisome are not completely understood – here, I 

will give a brief summary of the major assembly steps. A likely starting point of T3SS 

assembly is the construction of the export apparatus. It has been shown that the export 

apparatus can form, and is functional, in the absence of the other T3SS components (15-

17). In the absence of the membrane spanning rings, the export apparatus can diffuse freely 

in the inner membrane (16), suggesting that the next logical assembly step would be 

insertion of the membrane rings around the export apparatus and subsequently embedding 

the complex in the peptidoglycan layer and outer membrane. Nonetheless, several studies 

have shown that the membrane ring complex also forms in the absence of the other T3SS 

proteins (18-21). Finally, the sorting platform associates with the complex, which requires 
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the membrane rings and, to a lesser extent, the export apparatus (22, 23). The sorting 

platform is required for the subsequent secretion of effector proteins. 

A key feature of virulent T3SSs is that substrate selectivity follows a well-defined 

temporal hierarchy of early, middle, and late effectors (8). First, early effectors (SctF) are 

secreted through the system and built upon each other to construct the needle itself (24). 

Once the needle has reached a certain length, selectivity is switched to middle effectors 

(needle tip proteins and translocases). While the exact mechanisms of needle-length control 

and substrate switching is not fully understood, several proteins have been implicated in 

this process including the ruler protein SctP, the substrate switch protein SctU, and the 

inner rod protein SctI (14). Finally, there is a second switch to late effectors, or those 

responsible for host cell disruption, produced by host cell contact (7, 25). Notably, the 

switch to late effectors can be induced chemically by chelation of calcium in the Yersinia 

T3SS (26, 27), which will be utilized in this work to observe the two states of the system 

(i.e. secreting vs non-secreting). The switch arises after the translocases SctB and SctE 

form a pore in the host cell membrane, producing a conformational change in the needle 

which is transmitted to the base of the T3SS (28, 29). The gatekeeper protein SctW (25), 

which also binds effector-chaperone complexes (30), is then released from the cytosolic 

domain of the export apparatus, allowing secretion of late effectors. 

Attempts to structurally characterize the intact injectisome have been stymied by 

its complexity and relatively small size. The entire injectisome is ~30 nm across at its 

widest point, therefore resolving the fine structure requires high resolution imaging 

techniques. Fortunately, a large portion of the intact complex, including the membrane 
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rings, the needle, and the export apparatus, can be purified and structurally characterized 

by cryo-electron microscopy (cryo-EM) (31-34). However, the purification conditions are 

too harsh to allow the sorting platform to remain intact, and therefore it was not possible 

to perform the same in vitro characterization of the cytosolic complex. Recent 

advancements in cryo-electron tomography (cryo-ET) technology, however, have 

permitted in situ visualization of the fully-assembled injectisome in bacterial mini-cells, 

which are small enough to be observed by cryo-ET (35-40). The sorting platform is the 

focus of the work presented in this dissertation and is discussed in detail in the following 

section.  

 

1.1.2 Sorting Platform 

A prominent model of T3SS functional regulation posits that selection of different 

export substrates is enabled through coordinated interactions among the cytoplasmic 

components of the injectisome (Fig. 1.1) (37, 41, 42). The cytosolic complex was termed 

‘sorting platform’ after a complex of SctQ, SctL, and SctK was shown to bind chaperone-

effector complexes in Salmonella in a temporal sequence consistent with the secretion 

substrate hierarchy (41). Furthermore, interactions between SctQ, SctK, SctL, and SctN 

are essential for type 3 secretion (4, 43-47) and for their mutual localization to the 

injectisome (22, 48, 49). As mentioned in the previous section, the precise structure of the 

sorting platform proteins SctK, SctQ, SctL, and the ATPase SctN within fully assembled 

injectisomes has recently been determined by cryo-electron tomography (37-39). The 3D 

tomogram averages reveal a cytoplasmic injectisome complex of hexametric symmetry, 
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which is notably different from the continuous cytoplasmic ring (C-ring) structure observed 

in flagellar T3SSs (50-52). SctQ is a homologue to the flagellar proteins FliM and FliN 

which form the C-ring, which is essential for flagellar rotation. In contrast, in the virulence-

associated T3SS, SctQ localizes into six ‘pods’, but the functional role of such a pod 

structure in the secretion mechanism is not yet understood (36-40). Interestingly, SctQ has 

an internal translation start site, resulting in additional expression of the C-terminal 

fragment SctQc, the homologue to FliN (53, 54). Similar to their flagellar homologues FliM 

and FliN,(55) SctQ and SctQc form complexes in a ratio of 1:2 (54), but reports on the 

requirement of SctQc for T3SS functionality are conflicting (48, 54-57).  

SctK associates with the inner membrane, and is the likely anchor to the T3SS for 

each individual pod (38, 58). Each pod further connects to one of six spokes of a cradle-

like structure formed by SctL that holds in place the central hexameric ATPase SctN. SctL 

has been shown to exist as a dimer, which regulates ATPase activity (59). SctN has been 

shown to detach chaperones and unfold effectors prior to secretion (60).  

In addition to the four main sorting platform proteins, SctO, also referred to as the 

stalk protein, binds to the ATPase SctN (61) and has also been shown to bind to effector 

protein chaperones (62). Little is known about the stalk protein, but its importance may be 

limited as it is not required for assembly of the other sorting platform proteins (22, 23, 38). 

In contrast, assembly of the remaining sorting platform proteins (SctQ, SctQc, SctL, SctK, 

and SctN) requires their mutual presence (22, 23). In Salmonella however, some assembly 

of the other sorting platform complexes was observed even in the absence of SctN and 

SctQc, indicating the possibility of species-specific differences (38, 57). While the exact 
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composition of the pods observed by cryo-ET is currently unknown, it is estimated that 

each pod consists of a SctK:SctQ: SctQc:SctL:SctN  complex with 1:4:8:2:1 stoichiometry 

(23, 38, 49, 55).  

The static in situ morphologies provided unprecedented insight into how SctK, 

SctQ, SctL, and SctN are arranged relative to each other when bound to the injectisome. 

However, recent studies have shown the sorting platform to be a highly dynamic structure, 

with rapid exchange of individual subunits (48). Therefore in vivo imaging techniques are 

required in order to probe beyond the static positioning of the sorting platform proteins and 

obtain insight into its dynamic function, such as how they are assembled and associate with 

the T3SS interface. More specifically, it is unknown whether the full sorting platform 

associates with the injectisome as a pre-assembled complex, or whether pods or even single 

proteins associate individually. We hypothesize that the sorting platform proteins 

participate in a dynamic interaction network of spontaneously forming complexes in the 

cytosol, where they may also interact with secretion substrates and their chaperones as a 

component of secretion regulation. Identifying the cytosolic interactions that functionally 

regulate type 3 secretion may guide future efforts in anti-virulence drug development. The 

work described here focuses on the motion behavior of the sorting platform proteins probed 

by super-resolution fluorescence imaging.  The goal is to utilize single-molecule tracking 

(SMT) to detect diffusive cytosolic complexes of sorting platform proteins, which may 

play a vital role in the secretion process.  
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1.2 Outline 

The primary method utilized here for analysis of T3SS proteins is Single-Molecule 

Localization Microscopy (SMLM), a super-resolution fluorescence imaging technique. 

Briefly, SMLM provides a method for extracting the positions of individual target 

molecules with a precision in the tens of nanometer range. By employing Single-Molecule 

Tracking (SMT) with data collected by SMLM, the motion behavior of individual proteins 

is visualized. This dissertation will detail the properties of SMLM and SMT in Chapter 2, 

and how they were realized in this work by construction of a fluorescence microscope. 

Chapter 3 describes data analysis for SMLM as well as a diffusion analysis framework I 

developed for SMT. The results, Chapters 4-6, are presented in the order in which they 

were published/completed, and focus on both the diffusion analysis framework itself, as 

well as results obtained on T3SS proteins by application of the framework. Finally, the 

overall significance and future direction of the work is described in Chapter 7. 
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Fig. 1.1 The T3SS injectisome spans both the inner and outer bacterial membranes of 

Gram-negative bacteria and features a long hollow needle that protrudes away from the 

cell surface. The injectisome is used to transport effector proteins from the bacterial cytosol 

into the cytosol of eukaryotic host cells. At the cytoplasmic interface of the fully assembled 

injectisome, four interacting proteins (SctK,Q,L,N) are essential for the function of the 

T3SS and together form a so-called sorting platform. SctL forms a cradle-like structure that 

connects the hexameric ATPase SctN to each of the six pods, which contain multiple SctQ 

(and likely SctQC) subunits (38). SctK is an auxiliary protein that resides between the SctQ 

pods and the inner membrane ring of the injectisome. Figure adapted from Ref. (63). 
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2.1 Super-Resolution Fluorescence Imaging 

2.1.1 Single-Molecule Localization Microscopy  

Fluorescence microscopy provides the means to observe molecules of interest in 

their native environment, making it a powerful tool for live cell imaging. However, 

fluorescence imaging techniques have traditionally been limited in their resolution by the 

diffraction limit. In an imaging system, each individual fluorescent emitter produces a 

point-spread-function (PSF) that is captured on a camera detector. Due to the effects of 

diffraction, the width of the observed PSF is much larger than the emitter itself, therefore 

emitters in close spatial proximity can have overlapping PSFs. In this case, it may be 

difficult or impossible to pin-point the exact position of each individual emitter. This limit 

was first described by Ernst Abbe in 1873 and is known as Abbe’s diffraction limit: 

 𝑑 =  
𝜆

2 ∙ 𝑛 ∙ sin 𝜃
  (2.1) 

 

where d is the diameter of the PSF, λ is the wavelength of the emitted light, n is the 

refractive index of the medium the lens is in, and 𝜃 is the maximum half-angle of the cone 

of light entering the lens. The numerical aperture (NA) is equal to  𝑛 ∙ sin 𝜃 , simplifying 

equation 2.1 to: 

 𝑑 =  
𝜆

2 ∙ 𝑁𝐴
  (2.2) 
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Given commonly used wavelengths and NA values of modern fluorescence microscopes, 

this translates to an experimental PSF diameter of ~250 nm. Therefore, it may be 

impossible to extract desirable information about a biological structure of interest with 

features smaller than this limit, as the resulting image would appear blurred.  

To overcome the resolution limit for optical microscopy, several techniques 

achieving ‘super-resolution’ microscopy were conceived starting in 1994 and eventually 

awarded the Nobel Prize in Chemistry in 2014 (64, 65). Stefan Hell developed Stimulated 

Emission Depletion microscopy (STED) (64, 66, 67), while W.E. Moerner and Eric Betzig 

independently developed single-molecule localization microscopy (65, 68, 69). Super-

resolution fluorescence microscopy can be categorized into two main approaches that rely 

on different mechanisms for distinguishing molecules within the diffraction limit. The first 

method relies on using engineered illumination patterns to selectively control and limit the 

emission signal to a specified volume. It was first demonstrated with the development of 

STED microscopy (66, 67). Typically, in STED experiments, the excitation beam is 

focused in the center of a second ‘depletion’ beam that is structured as a donut shape. Due 

to immediate stimulated emission from the excited fluorophores in the volume of the 

depletion beam, only fluorophores located at the very center of the donut shaped beam can 

emit fluorescence when excited by the excitation beam. A super-resolved image is achieved 

by scanning the beams across the sample, similar to laser scanning confocal microscopy. 

The principles of STED microscopy have been extended to other applications such as 

reversible saturable optical linear fluorescence transitions microscopy (RESOLFT) (70). 

Another widely-applied engineered illumination technique is Structured Illumination 
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Microscopy (SIM) (71, 72), which relies on a series of phase-shifted line patterns to obtain 

information at higher spatial frequencies that are not otherwise observable, thereby 

resolving structures with better resolution than the diffraction limit. 

The work described in this dissertation utilizes the second approach, which relies 

on controlling the fluorescent emitter concentration in space and time. A mechanism 

(photophysical, photochemical, or chemical, discussed further below) ensures that only a 

small fraction of the fluorescent emitters are in a fluorescence ‘on’ state at any given time, 

while the majority are in a fluorescence ‘off’ state. In this way, the PSFs of the emitters are 

sparse in space and time and will not overlap. Thus, the localizations of the individual 

emitters can be extracted with a precision better than the optical diffraction limit. This 

technique is termed Single-Molecule Localization Microscopy (SMLM). SMLM offers 

precision in the tens of nanometer range with currently available fluorophores, greatly 

improving upon the diffraction limited resolution of ~250 nm. If sufficient point 

localizations are collected over time, a higher resolution image can be constructed to 

distinguish components that would not be resolvable in the diffraction-limited case. The 

precision of an individual localization, σ, is predominantly determined by the number of 

photons collected (i.e. more fluorescence photons provide higher localization precision) 

(73): 

 𝜎 ≈
𝑠

√𝑁
  (2.3) 

where s is the standard deviation of the PSF and N is the number of photons collected above 

background. The localization precision can also be experimentally estimated by calculating 

the standard deviation of multiple localization measurements of the same stationary 
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fluorescent emitter (74, 75). However, the overall resolution for a structure in a 

reconstructed image also depends on the labeling density (i.e. insufficient labeling can 

result in a ‘missing’ portion of a structure). This spatial resolution is quantified by the 

Nyquist criterion, given by: 

 𝜎𝑁𝑦𝑞𝑢𝑖𝑠𝑡 =
2

𝜌1/𝐷
  (2.4) 

where ρ is the number of localizations per area/volume, and D is the dimensionality of the 

measurement (76, 77). In addition to structural determination, SMLM has been utilized for 

a variety of other quantitative measurements, including protein copy number counting (78), 

stoichiometry estimation in protein complexes (79), and co-localization experiments (80-

82). 

Several methods have been developed in recent years to achieve sparse emitter 

concentrations. For example, in fluorescence photo-activated localization microscopy 

(PALM), a photoactivatable fluorophore is utilized (83). These fluorophores require the 

use of a low intensity activation beam in order to convert a small fraction of fluorophores 

into a state capable of absorbing photons from a second excitation beam of longer 

wavelength and emitting fluorescence photons thereafter. By activating only a small 

portion of the emitter population, the fluorescing emitter concentration can be kept low. 

Another method, STochastic Optical Reconstruction Microscopy (STORM) relies on an 

activator-reporter fluorophore pair (74). The reporter is first switched into a dark state by 

illuminating with a red laser, and can be recovered by illuminating with a wavelength that 

will excite the activator. However, there is a strict requirement of close proximity (1-2 nm) 

between the activator and reporter. Molecular state-switching is also applied in direct 
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STORM (dSTORM), which utilizes organic dyes that exhibit photoswitching without the 

need for an activator dye (84, 85). In yet another approach, Point Accumulation for Imaging 

in Nanoscale Topography (PAINT), the fluorescent probe enters an ‘on’ state only after 

integrating into a membrane. Certain fluorescent proteins, such as eYFP, undergo 

photoinduced activation/blinking when illuminated with high intensity excitation light (68, 

86).  

 

2.1.2 Fluorescent labeling of target molecules 

When designing an experiment for super-resolution fluorescence microscopy, it is 

important to choose an appropriate labeling method and fluorophore for the application. 

Fluorescent proteins and fluorescent dyes each provide several key advantages and 

disadvantages. The most attractive feature of fluorescent proteins is their ability to be 

genetically encoded and covalently linked to a target protein. Fluorescent protein 

expression can be achieved in trans using expression plasmids, or through genetic 

incorporation into the chromosomal DNA. Genetic encoding guarantees high specificity 

and complete labeling of all target protein molecules. A disadvantage of fluorescent 

proteins is their ~10 times lower fluorescence brightness compared to organic dyes. Since 

the resolution of the measurement is proportional to the number of collected photons, as 

given by Eqn 2.3, a lower photon yield results in poorer localization precisions. 

Additionally, fluorescent proteins are much larger than dyes (~25 kDa to <1 kDa 

respectively), producing a higher potential for perturbing the system through steric effects. 

While fluorescent dyes themselves are small, they still require an additional linker to label 
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the target. For example, fluorescent dye-conjugated antibodies or antigen-binding 

fragments (FAB) can be used to label a structure after chemical fixation and 

permeabilization of the sample (87). Live-cell dye staining can be achieved with 

genetically encoded tags such as the SNAP-, CLIP-, and Halo-tags (88-90). However, 

chemical dye labeling may result in incomplete labeling of the target protein and/or high 

background levels if excess dye is not sufficiently removed in one or several wash steps. 

As is the case for fluorescent proteins, the relatively large size (~20-30 kDa) of SNAP-, 

CLIP-, and Halo-tags may also be prohibitive depending on the application.  

 

2.1.3 Emitter Localization by PSF Fitting 

 As mentioned previously, in order to achieve super-resolution levels of imaging, 

the PSFs must not overlap. Several methods have been developed to extract the emitter 

localizations from non-overlapping PSFs, the simplest of which includes simply finding 

the centroid of the intensity profile of the PSF (73). A commonly utilized method involves 

fitting the PSF to a two-dimensional Gaussian profile by a Least Squares (LS) estimation 

(65, 91, 92). A more precise method has been developed that uses Maximum Likelihood 

Estimation (MLE) of the position of a fluorophore (93). MLE is able to achieve the Cramér-

Rao Lower Bound (CRLB), the information theoretical limit of best precision, for the fitted 

parameters, even for non-Gaussian noise distributions. While these methods have been 

developed for non-overlapping emitters, other algorithms have been developed for fitting 

of highly overlapping PSFs (94-97), which relax the experimental requirement of spatially 
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separated emitters and allow for acquisition of more data points in a shorter amount of 

time. 

  

2.1.4 Optical Engineering of the PSF  

Several methods developed using engineered PSFs exhibiting specific shapes to 

allow for extraction of not only the x,y position, but also the z position. Two commonly 

used examples of engineered PSFs include the astigmatic (75) and the double-helix (98, 

99) PSFs. The astigmatic PSF is elliptically elongated in either the x or y direction, 

depending on whether the emitter is located above or below the focal plane. The elliptical 

extent and orientation provides information on the emitter’s z position. Different from the 

astigmatic PSF, the double-helix PSF (DHPSF) exhibits two lobes. The midpoint between 

the two lobes provides the x,y localization of the emitter. The two lobes rotate around the 

mid-point as the emitter moves away from the focal plane, therefore the degree of rotation 

provides the z position. In addition to these examples, there exists several other engineered 

PSFs for 3D localization including the tetrapod (100), corkscrew (101), bisected-pupil 

(102), and a side-lobe free self-bending PSF (103). The microscope used in this dissertation 

employs the DHPSF. 
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2.1.5 Phototoxicity and Photobleaching 

 A major advantage of fluorescence microscopy is the ability to image in live cells, 

because the sample does not necessarily need to be fixed (chemical fixation, frozen, etc). 

However, in live cell imaging, the phototoxic effects of high-intensity excitation light must 

be considered. Damage induced by exposure to light can alter the physiology of the cell or 

even cause cell death (104, 105). The major cause of phototoxic effects is the production 

of reactive oxygen species (ROS), created after naturally occurring molecules within the 

organism absorb visible light and subsequently react with oxygen. ROS can cause a variety 

of issues, including damage to DNA, proteins, and lipids by oxidation. Additionally, 

fluorophores utilized in fluorescence microscopy can also become oxidized and degraded 

in a process known as photobleaching, which may also produce ROS. The effects of ROS 

can be limited with addition of antioxidants such as ascorbic acid to the imaging media 

(106, 107). Another way to reduce production of ROS is by limiting the amount of 

excitation light illuminating the sample. For example, in Adaptive Light-Exposure 

Microscopy, the excitation light is actively adjusted to focus only on areas of the cell where 

there is observed fluorescence (108). In Total Internal Reflection Microscopy (TIRF), the 

excitation laser is brought into the objective at a high angle, so that the laser is totally 

internally reflected, producing an evanescent wave that only excites ~100 nm into the 

sample volume. Not only does TIRF microscopy have the benefit of limiting phototoxic 

effects, but can also increase image resolution by limiting emitter concentration (109). 

Finally, light sheet fluorescence microscopy limits the excitation volume by illuminating 

with a thin sheet of light that sections through the sample (110-117). For the work presented 
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in this dissertation, we limited exposure of the samples to high-intensity excitation laser 

for only a few minutes. We confirmed that living cells imaged under such conditions were 

still able to divide on the coverslip (118). 

 

2.1.6 Single-Molecule Tracking 

In contrast to high resolution imaging methods that require fixed samples, such as 

cryo-Electron Microscopy (cryo-EM), super-resolution fluorescence microscopy provides 

the ability to observe target molecules in live cells. The ability to probe the positions and 

motions of single molecules in living cells has made single-molecule localization and 

tracking microscopy a powerful experimental tool to study the molecular basis of cellular 

functions (65, 74, 83).  Single-Molecule Localization Microscopy has the unique ability to 

probe the motion behavior of individual molecules by combining their spatial and temporal 

information to create a trajectory for each individual molecule. Information such as the 

apparent diffusion coefficient or the molecular displacements between each time point can 

be calculated for each detected single molecule. Single-molecule trajectories, if sampled in 

sufficient numbers, provide the full distribution of molecular motion behavior in cells, and 

statistical analyses of localization and trajectory data can been used to resolve the prevalent 

diffusive states as well as their population fractions. A key benefit of tracking single 

molecules is that individual trajectories can be sorted according to predefined (quality) 

metrics, for example, to include only non-blinking molecules (119), or molecules localized 

in specific subcellular regions of interest (120). These advantages are not shared by 

ensemble-averaged measurements such as fluorescence recovery after photobleaching 
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(FRAP) and fluorescence correlation spectroscopy (FCS) (121). In the simplest case it is 

possible to distinguish stationary from mobile molecules. For example, DNA bound lac 

repressors in  search of their promoter region appear stationary at 10 ms frame rates and 

can thus be clearly distinguished from unbound lac repressors which explore the entire E. 

coli cell volume on the same timescale (122). Similarly, the E. coli chromosome-

partitioning protein MukB forms stationary clusters only when incorporated into the quasi-

static DNA-bound structural maintenance of chromosomes (SMC) complex (123). Single-

molecule tracking provides a tool for observing these different states directly, and 

sophisticated analyses are not required to resolve them. However, other proteins, in 

particular those involved in delocalized regulatory and signaling networks, may not exhibit 

such stationary states. These proteins may instead form oligomeric complexes of varying 

sizes that diffuse at measurably different rates (124-128). A major objective for single-

molecule tracking microscopy is therefore to resolve the different diffusive states that 

manifest in the cytosol of living cells. Extracting this information, however, is difficult in 

the presence of several diffusive states, and there are many factors that must be taken into 

consideration. Such cases require an integrated approach in terms of data acquisition, 

processing and analysis. 

Several methods have been developed for extracting the diffusive states and their 

relative population fractions from single-molecule tracking data (124, 128-135), but there 

is no consensus in the field as to the most effective approach. As part of the work for this 

dissertation research, a diffusion analysis framework was developed for extracting the 

relevant information from short single-molecule trajectories. This approach relies on 
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Monte Carlo simulations of single-molecule trajectories in the confined volume of a 

bacterial cell to build a model for confined Brownian motion that is then fitted to match 

experimental data. A full description of the framework, its applications, and its limitations 

is found in Chapters 3 and 5. 

 

2.2 Instrumentation 

To perform 3D single-molecule localization microscopy, a custom-built 

microscope was constructed. The microscope consists of excitation and emission pathways 

for collection of signal from fluorescent emitters, as well as a phase contrast pathway for 

collecting images of bacterial cell shapes. The following sections will explain the specific 

details of each pathway.  

A custom microscope is advantageous compared to a commercial instrument in 

several key aspects. First, the up-front cost to build the instrument is significantly reduced 

compared to purchasing a similar commercial instrument. Second, the costs in servicing 

the instrument over time are reduced as well, as there is no requirement for external 

maintenance providers. Members of the research group develop a deep working knowledge 

of the instrument, so they can service it themselves and therefore avoid long waiting 

periods for maintenance and alignment otherwise. Third, a custom instrument provides full 

flexibility in terms of its design and use. For example, the microscope constructed for this 

research has superior stability than commercial instruments, because the microscope 

objective is fixed in place while the sample stage itself is scanned by an automated piezo-

electric stage. This is in contrast to commercial instruments, where the stage is fixed and 
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the objective is placed on a height-adjustable objective turret. Such a configuration is more 

prone to sample stage drift. Finally, home-written, customizable software provides the 

ability to tailor the experimental data collection to specific experimental requirements. 

 

2.2.1 Fluorescence Imaging 

 Fluorescence microscopy requires excitation of the sample with an emitter-specific 

wavelength of light (given by the absorption spectrum), and the subsequent collection of 

emitted light from the sample with a longer wavelength than the excitation light due to the 

Stokes shift. Therefore, the fluorescence pathway of the microscope can be broken down 

into the excitation and emission pathways. The microscope contains three lasers with 

different wavelengths in the excitation pathway. A 514 nm laser (Coherent Genesis MX514 

MTM) and a 561nm laser (Coherent Genesis MX561 MTM) is used for excitation of 

fluorescent emitters, while a 405 nm laser (Coherent OBIS 405) is used to ‘activate’ photo-

activatable fluorescent emitters prior to excitation with the 561 nm laser. The configuration 

described here was designed to perform optimally with the fluorescent proteins eYFP 

(excitation with 514 nm laser) and PAmCherry1 (activation with 405 nm laser and 

subsequent excitation with 561 nm laser). Each laser begins in a separate excitation 

pathway. The input laser beam is first expanded by a two lens telescope to create a 

collimated laser beam with a larger size than the input. The beam then passes through a 

wavelength-appropriate zero order quarter wave plate to circularly polarize the excitation 

laser. Additionally, there is a band-pass filter in the 514 nm laser excitation pathway 
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(Chroma ET510/10bp) to limit the excitation wavelength range. All excitation laser lines 

are then combined into the same excitation pathway using a set of dichroic mirrors 

(Chroma T470lpxr and Chroma T525lpxr). Using additional mirrors, the excitation light is 

directed towards another dichroic mirror (Chroma ZT405-440/514/561rpc-UF1) that 

allows excitation light to be reflected into the microscope objective (UPLSAPO 60X 

1.4 NA), which focuses the light onto the sample. The sample is mounted on a xyz nano-

positioning stage (Mad City Labs), which can position the sample with nanometer 

precision. A drop of immersion oil is placed between the objecting and the cover slip (VWR 

#1.5, 22mmx22mm) that the sample is mounted on. The immersion oil has a higher 

refractive index (1.515) compared to air (1) to better match the refractive index of the glass 

cover slip holding the sample. The diffraction-limited resolution, r, is dependent on the 

numerical aperture (NA) of the lens and is generally given by: 

 𝑟 =
0.61 ∙ 𝜆

𝑁𝐴
  (3.5) 

where λ is the wavelength of light. Note that this is similar to Eqn. 2.2, with a different 

multiplication factor (0.61 instead of 0.5), to account for physical limitations and properties 

of the lenses. The NA is given by: 

 𝑁𝐴 = 𝑛 ∙ sin 𝜃  (3.6) 

where 𝜃 is the maximum half-angle of the light that can pass through the lens and 𝑛, is the 

index of refraction of the medium which the light passes through before reaching the 

sample. Therefore, a higher refractive index produces a higher NA, resulting in higher 

resolving power. 
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 After the sample is excited by the excitation laser, the resulting fluorescent signal 

emitted by the fluorophores is collected by the objective lens, entering the emission 

pathway after passing back through the dichroic mirror (Chroma ZT405-440/514/561rpc-

UF1). The emission signal passes through a series of filter sets including a 514 nm long-

pass filter (Semrock LP02-514RU-25, 561 nm notch filter (Semrock NF03-561E-25), and 

a 700 nm short-pass filter (Chroma ET700SP-2P8). The 514 nm long-pass filter and 561 

nm notch filter are used to limit the amount of scattered excitation light entering the 

emission pathway from the 514 nm or 561 nm excitation lasers, respectively. The 700 nm 

short pass filter is simply to limit any additional light outside of the range of the 

fluorescence signal from entering the emission pathway.  

All objective lenses used in this work are infinity corrected objective, meaning the 

image plane is at infinity. Therefore a second lens, referred to as the tube lens, must be 

placed into the optical path to obtain the image plane. Before the image is formed on the 

camera detector, the signal is passed through two more lenses, in a configuration known as 

a 4f system (Fig. 2.1). The 4f lenses are achromatic doublet lenses, which help limit effects 

of chromatic and spherical aberration. The main advantage of inserting a 4f system here, 

however, is the ability to access the Fourier (pupil) plane in between the two lenses. Here 

this advantage is utilized by multiplying the Fourier transform of the image (the first lens 

performs a Fourier transform of the image) by the Double-Helix Point-Spread-Function 

(DHPSF) transfer function. This is achieved by placing an optics piece, the phase mask 

(Double Helix LLC), in the Fourier plane of the 4f system (99, 136).  The second lens 

converts the Fourier transform of the image back into the real image. The image observed 
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on the camera detector now exhibits the DHPSF instead of the normal Gaussian-like PSF. 

As described at the beginning of Chapter 2, the DHPSF is advantageous as it allows for 3D 

localization of a fluorescent emitter, compared to the normal PSF which allows for only 

2D localization. An in-depth description of the DHPSF and a comparison to the 

conventional PSF is given in Section 3.1.  

Fluorescence is recorded on scientific Complimentary Metal-Oxide Semiconductor 

(sCMOS) detectors (Hamamatsu ORCA-Flash 4.0 V2). In the past, it was common practice 

to use electron-multiplying charge coupled device (CCD) cameras for single-molecule 

localization microscopy. However, in recent years sCMOS cameras have become 

increasingly popular due to their quicker read times and larger fields-of-view (FOV) at 

comparable noise levels and detection quantum efficiencies.  

A dichroic beam-splitter (Chroma T560lpxr-uf3), placed in the emission pathway 

after the first 4f lens, divides the emission pathway into a ‘red’ and ‘green’ pathway, each 

with a dedicated camera detector. The microscope was designed in this way for quickly 

switching between color channels or simultaneous dual-color imaging. An additional 

561nm notch filter (Chroma ZET561NF) was inserted into the ‘red’ channel to block 

scattered laser light. 

 

2.2.2 Phase Contrast Imaging 

 In addition to images collected for fluorescence signal, a phase contrast image is 

acquired for each FOV. Phase contrast microscopy has been widely used for decades, with 
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Fritz Zernike first describing the method in 1934 (137). A major advantage of phase 

contrast microscopy is that it permits imaging of structural properties of live cells and does 

not require fluorescent labeling. For the work described in this thesis, phase contrast 

microscopy is used to extract the bacterial cell outlines and positions of cells imaged with 

fluorescence microscopy. The cell outlines are used in post-processing to assign each 

single-molecule localization obtained from the fluorescence pathway to a specific cell.  

A red light-emitting diode (LED) is used as an illumination source for the phase 

contrast pathway, which sits upon an illumination tower above the inverted microscope 

stage. After passing through a set of lenses, the illumination light is then passed through an 

annulus ring, which produces a ring of light. A condenser lens then focuses the ring of light 

onto the sample stage. As the light passes through the sample, light entering the area of the 

biological sample can be scattered, while light passing through the surrounding area is 

unaffected. Importantly, light scattered by the biological material will be phase shifted by 

-90°, and will be scattered in all directions. The light then travels down through the 

objective lens and the tube lens. Now, however, instead of travelling through the 

fluorescence emission pathway, the light is reflecting into a separate pathway by utilizing 

a ‘flip mirror’ that can be electronically raised to switch between fluorescence and phase 

contrast imaging. The light then passes through another 4f system. In this case, an optics 

piece known as the phase ring is placed in the Fourier plane between the two 4f lenses (Fig. 

2.1). Here, light that has not been scattered by the sample will pass through the ring, and 

be phase shifted by +90°, while most of the scattered light will not pass through the ring 

and will not be phase shifted. The total phase shift of 180° will cause destructive 
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interference between the background and scattered light. When viewed on the camera 

detector (Aptina MT9P031), this will result in the sample appearing darker than the light 

background. 
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Figure 2.1. Optical diagram of microscope pathways. The excitation pathway (green) 

directs the excitation laser into the objective lens. Light collected by the objective from the 

sample is directed into the emission pathway (red). A motorized ‘flip-mirror’ is used to 

switch between the fluorescence (red) and phase contrast (grey) pathways. The 

fluorescence pathway is further split into a ‘red’ and ‘green’ fluorescence channel by a 

dichroic mirror. The camera detectors, excitation lasers, LED, and ‘flip-mirror’ are 

controlled remotely by computer. 
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Data collected by the super-resolution fluorescence microscope, detailed in the 

previous chapter, is in the form of raw images, which must pass through a series of data 

processing and analysis techniques to extract meaningful information. As part of the work 

for this dissertation, the author wrote a substantial amount of MATLAB code to perform 

the analysis in this section. With the exception of the Easy-DHPSF code (138), which was 

modified from a published work from the Moerner lab, these programs were written from 

scratch by the author. In a first step, single-molecule localizations are found by analyzing 

the fluorescence intensity signals on the raw images. Each localization has an x, y, z spatial 

coordinate as well as a time stamp of detection. Once localizations are found they are 

further analyzed to obtain additional information, such as their cellular distribution and the 

movement of individual proteins. This chapter will detail the initial image processing steps 

to obtain the localizations, as well as the subsequent analysis steps. The full experimental 

workflow, including data collection, processing, and analysis is found in Ref. (118). 

 

3.1 Point-Spread-Function Fitting 

As described in Chapter 1, single-molecule localization microscopy requires the 

extraction of point localizations from well separated point-spread-functions (PSFs). A 

common approach for localization extraction is fitting of the PSF with a Gaussian model, 

typically utilizing a Least Squares (LS) estimation. However, as detailed in Chapter 2, the 

PSF for the microscope used in this work is altered to the Double-Helix Point-Spread-

Function (DHPSF), therefore simply fitting with a single Gaussian profile is not sufficient. 

Instead, the DHPSF is fit with a double-Gaussian model, fitting each of the two lobes with 
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a Gaussian shape. A MATLAB software package called Easy_DHPSF was released by the 

Moerner laboratory (138). The Easy_DHPSF code fits the DHPSF with a double-Gaussian 

model using a LS estimator. The fitting relies on a calibration of the DHPSF behavior 

obtained by scanning a bright fluorescent bead over a large (~2-3 µm) axial range to create 

a series of template images for different z positions. Potential DHPSF signals are found 

within the full experimental image by performing a template matching step. Finally the 

potential DHPSF signals are fit using the double-Gaussian model. In addition, fit 

localizations are further filtered by certain quality metrics such as lobe distance, lobe 

intensity ratio, lobe diameter, and photons collected. As the work on this software has 

already been published elsewhere, I will not go into further detail here, but will focus on 

the modifications we have implemented for processing our experimental data. 

The first modification we made was incorporation of a Maximum Likelihood 

Estimator (MLE) for the double-Gaussian fitting to extract the single-molecule 

localizations. As stated in Chapter 1, MLE is able to achieve the Cramér-Rao Lower Bound 

(CRLB), the theoretical limit of precision, for the fit parameters (93). As the name suggests, 

the algorithm estimates the most likely value for the fit parameters, such as the width of 

the Gaussian blob used to fit and the x,y positions of the emitter. LS, on the other hand, 

finds the set of parameters that produces the least difference. Generally, MLE has been 

shown to be a more robust estimator for fitting of single-molecule localizations than LS, 

especially when modeling inaccuracies and noise levels are limited (139). In the application 

here, the performance of MLE is enhanced since the appropriate noise and gain statistics 
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for each individual pixel on the sCMOS detector are considered, as described in the 

following sections. MLE is implemented as described in Ref. (140). 

A second modification was an addition of a different background estimation 

strategy. One of the key image processing steps is to subtract a background image from the 

full image. The signal-to-noise ratio produced in SMLM is low (~2), therefore it is crucial 

that the background image is estimated correctly. Sources of background intensity include 

light from the illumination laser, as well as inherent cell auto-fluorescence. The initial 

Easy_DHPSF software utilized a wavelet background estimation. However, a problem that 

may arise in fluorescence imaging of biological samples is the presence of persistent, 

structured background, such as in the case of cellular auto-fluorescence. A wavelet 

background estimation cannot accurately remove this type of background. Therefore, in 

our version we have added the option to use a median background estimator instead (141). 

As the name suggests, the median filter finds the median image for a rolling window of 

100 frames surrounding the frame of interest. Single-molecules only produce signal for an 

average of ~6 frames. Because they are not in a fluorescence state for the majority of the 

100 frame window, single-molecule signals will not be filtered out when the background 

is subtracted, but any persistent background will be. 

The original Easy_DHPSF code was written for processing data collected with a 

Charged-Couple Device (CCD) camera detector, and it implemented a method for handling 

the camera gain. The gain is an amplitude ratio of the input electrons (photons are converted 

to electrons at some probability, termed the Quantum Efficiency) to the output detector 

value (i.e. a gain of 1.5 means that on average 1 electron produced a detector count value 
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of 1.5). For a CCD detector there is only a single gain value for the entire camera. However, 

scientific Complementary Metal–Oxide–Semiconductor (sCMOS) cameras were used for 

the work presented here, due to their high reading rates and larger fields-of-view (140, 142, 

143). For sCMOS detectors, each pixel has its own unique value for the gain, which must 

be carefully calibrated. Therefore we made modifications to the code to load in a calibration 

file and use it to convert units of detector counts to photons. The gain for each pixel was 

estimated as described in Ref. (140). 

 

3.2 Localization Analysis 

3.2.1 Single-Molecule Localization and Cell Registration 

Single molecule localizations were assigned to individual cells based on the 

corresponding phase contrast image. Cell outlines were generated based on the phase 

contrast images using the open-source software OUFTI (144). The outlines are registered 

to the fluorescence data by a two-step 2D affine transformation using the ‘cp2tform’ 

function in MATLAB. In the first step, five control point pairs were manually selected by 

estimating the position of the cell poles based on single-molecule localization data and the 

cell outlines generated by OUFTI. An initial transformation was generated, and cell 

outlines containing less than 10 localizations were removed. The center of mass for all 

remaining cell outlines and single-molecule localizations within them were then used to 

generate a second, larger set of control point pairs to compute the final transformation 

function. A large set of control points (N ~ 100 cells) ensures that cells with few 
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localizations or cells positioned partly outside the field-of-view do not skew the 

transformation. Only localizations that lie within the cell outlines were considered for 

further analysis.  

 

3.2.2 Spatial Analysis of Localizations 

Radial distributions of single-molecule positions were created using a combination 

of the cell outlines found with OUFTI and the localizations themselves. The localizations 

from the full FOV were separated and assigned to specific cells using the cell outlines from 

OUFTI. The localizations from each cell were further assigned to sections along the long 

axis of the cell. The central axis of each section was then found by projecting the 

localizations onto a 2D plane and finding the centroid of the localizations. The localizations 

were grouped into sections in this way to limit effects of cell curvature on the centroid of 

the 2D projected localizations. The radial distances were then found by calculating the 

distance of each 3D localization to the computed central axis. 

 

3.3 Diffusion Analysis 

Assigning a single molecule to a specific diffusive state is challenging, especially 

for fast diffusing cytosolic species. The molecular displacements measured in single-

molecule tracking can be used to compute apparent diffusion coefficients for each detected 

single molecule, but these estimates are prone to large errors, particularly when the 
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trajectories are short and the number of available molecular displacements are low (126, 

145). Short trajectories (<20 displacements) are the norm in live-cell single-molecule 

tracking with genetically encodable fluorescent protein labels. However, genetically 

encoded fluorescent proteins offer unmatched labeling specificity and efficiency and 

therefore remain preferable when off-target labeling with chemical dyes may lead to 

artifacts (146).  

 Additionally, the environment surrounding the diffusive molecule must be 

considered. Particularly relevant to bacterial cell imaging is restriction placed on diffusive 

cytosolic molecules motion by the cell boundaries. For slowly diffusing molecules in 

bacteria, it is possible to resolve multiple diffusive states by fitting the experimentally 

measured distributions of molecular displacements, r, or apparent diffusion coefficients, 

D*, using analytical equations describing Brownian, i.e. normal, diffusion (126, 145, 147-

149). Such analytical approaches produce acceptable results only if biomolecular motion 

is slow enough that confinement effects can be ignored. During the time length of a typical 

trajectory in single-molecule fluorescence microscopy experiments (~100 ms – 1 s), a 

cytosolic molecule undergoing Brownian motion at a diffusive rate of an unbound 

fluorescent protein (~10 µm2/s) is likely to collide with the cell boundary multiple times. 

As a result, observed motion of cytosolic proteins in bacteria is strongly confined by the 

cell boundaries and molecular displacements will, on average, be smaller than those 

expected for unconfined diffusion. Approaches assuming unconfined Brownian motion are 

therefore not suitable when tracking fast diffusing molecules in the cytosol of bacterial 

cells.  In contrast, the confinement effect is less pronounced in the larger volume of a 

eukaryotic cell. However, even utilizing an engineered PSF to allow for 3D localization 
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will only allow imaging through a depth of ~2-3 µm, therefore freely diffusing molecules 

in the cytoplasm of a eukaryotic cells may be lost during the course of a trajectory. 

 Section 3.3 details a diffusion analysis framework that I to extract relevant 

information, such as the prevalent diffusive states and their relative population fractions, 

from short single-molecule trajectories in the confined volume of a bacterial cell. 

  

 

3.3.1 Single-Molecule Tracking 

To determine the apparent diffusion coefficients of single molecules, 3D single-

molecule localizations in subsequent frames were linked into trajectories using a distance 

threshold of 2.2 µm. This threshold was determined by calculating the furthest distance a 

molecule traveling at 20 µm2/s (~2 times the rate of a free fluorescent protein) in 25 ms 

(typical exposure time), with a 25% buffer in case of localization error. Only trajectories 

with at least 4 localizations were considered for further analysis. In addition, if two or more 

localizations were present in the cell at the same time during the length of the trajectory, 

the trajectory was not considered for further analysis. These steps minimized the linking 

problem, in which, due to misassignment, two or more molecules could contribute to the 

same trajectory (150).  

The Mean Squared Displacement (MSD) was calculated according to  

 𝑀𝑆𝐷 =  
1

𝑁 − 1
∑(𝑥𝑛 − 𝑥𝑛−1)2

𝑁

𝑛=2

  (3.3) 
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where N is the total number of time points and xn is the position of the molecule at time 

point n. The apparent diffusion coefficient, D*, of a given single-molecule was then 

computed as  

tm

MSD
D




2
*        (3.2) 

where m is the dimensionality and Δt is the camera exposure time. In our experiments m=3 

and Δt =25 ms. It is important to note that the so-estimated single-step apparent diffusion 

coefficients do not take into account the static and dynamic localization errors (145), or the 

effect of confinement within the bacterial cells. Instead of accounting for these effects 

using analytical models (151, 152), we generated simulated noise and motion-blurred 

images of diffusing molecules in rod-shaped cell volumes, as described in the following 

section. The resulting images were then analyzed in the same manner as experimental data. 

These steps ensured that static and dynamic localization errors and the effect of 

confinement within the bacterial cells were accurately modeled. 

 

3.3.2 Monte-Carlo Simulations 

Calculation of the apparent diffusion coefficients for a large number of tracked 

molecules will result in a distribution of values even if molecular diffusion is governed by 

a single diffusive state. In addition, for confined diffusion within small bacterial cell 

volumes, the movement of molecules is restricted in space. Such confinement results in an 

overall left shift of the apparent diffusion coefficient distributions for a given diffusive 
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state (Fig 3.1a, dashed lines). The shape of the confined distribution is dependent on the 

size and shape of the confining volume.  

To resolve the unconfined diffusion coefficients of predominant molecular 

complexes in living cells based on the experimentally measured distribution of apparent 

diffusion coefficients, we performed Monte Carlo simulations of confined Brownian 

motion inside the volume of a cylinder using a set of 64 diffusion coefficients ranging from 

0.05–20 µm2/s as input parameters. The size of the confining cylinder was chosen to match 

the average size of a Y. enterocolitica cell (radius = 0.4 µm, length = 5 µm). The apparent 

diffusion coefficient distribution for the average cell length and width are not different 

from the distribution arising from a population weighted distribution of cell sizes (Fig. 

3.2a). While a rod-shape bacteria more closely resembles a spherocylindrical shape, the 

apparent diffusion coefficient distributions in a spherocylinder were indistinguishable from 

those in a cylinder of the same length and radius (Fig. 3.2b). The starting position of the 

trajectory was randomly set within the volume of the cylinder and Brownian motion was 

simulated using short time intervals of 100 ns. We assumed a hard sphere reflection at the 

cell boundaries, i.e. if a molecule was displaced outside of the volume of the cylinder within 

a time step, it was redirected back towards the inside of the cylinder at a random angle. 

Choosing a short time step further ensured that the entire volume of the cylinder could be 

sampled by the diffuser, even the interfacial region near the cell boundary. 

To simulate the raw experimental observable, we generated noisy, motion-blurred 

single-molecule images. Specifically, we generated DHPSF images corresponding to 50 

periodically sampled positions of a molecule during the camera exposure time (25ms) and 
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then summed these 50 sub-images to obtain the motion-blurred DHPSF images, which 

when analyzed will produce position estimates with limited accuracy and precision due to 

dynamic localization error (145). The photon count of each simulated image was scaled to 

match the experimentally measured distribution for eYFP photon counts and a laser 

background of ~13 photons/pixel was added. Poisson noise was added to the image based 

on final photon count in each pixel. Finally, a dark offset (50 photons/pixel on average) 

with Gaussian read noise (σ ~1.5 photons) was added to produce the final image. This 

image was then multiplied by the experimentally measured pixel-dependent gain of our 

sCMOS camera to obtain an image in units of detector counts. These simulated images 

were then processed the same way as experimental data to obtain single-molecule 

localizations, which were then linked into trajectories. Simulated trajectories were limited 

to six displacement steps to match the average length of our experimentally measured 

trajectories.  

By explicitly simulating spatially blurred emission profiles with realistic signal to-

noise ratios, we can account for both static and dynamic localization error (Fig 3.3). Static 

localization error is the result of finite numbers of fluorescence signal photons that provide 

an imprecise measure of the PSF shape and thus result in single-molecule localizations of 

limited precision (65). Dynamic localization errors manifest for moving emitters that 

generate motion-blurred images on the detector (Fig 3.1b inset). When analyzed using 

common fitting algorithms (which are based on data fitting to well-defined PSF shapes), 

motion-blurred images provide 2D or 3D position estimates with limited accuracy and 

precision (153). If the motion blur is too severe, then the point-spread-function (PSF) of 
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the molecule may become too distorted to result in a successful fit. Motion blur therefore 

limits the detection efficiency of fast diffusing molecules (Fig 3.1b).  

We simulated N = 5000 trajectories for each of the 64 input diffusion coefficients 

to obtain an array of N apparent diffusion coefficients (Fig. 3.1c). The empirical cumulative 

distribution functions (eCDFs) corresponding to the 64 diffusion coefficients were then 

interpolated using a B-spline (order 25) and normalized individually. The interpolated 

array of 64 CDFs was then interpolated again along the D dimension using the 

‘scatteredInterpolant’ function in MATLAB. This two-step interpolation provides a 

continuous 2-dimensional function that can then be used to compute the apparent diffusion 

coefficient distribution we would observe in our chosen confinement geometry for any true 

diffusion coefficient value in the range of 0.05 and 20 µm2/s. This approach revealed that 

the experimentally measured apparent diffusion coefficients in Y. enterocolitica, are 

systematically decreased by up to 60% compared to unconfined diffusion (Fig. 3.1a). The 

simulated CDFs account for the effects of molecular confinement due to the cell 

boundaries, signal integration over the camera exposure time, as well as experimentally 

calibrated signal-to-noise levels.  

 

3.3.3 Data Fitting 

To estimate the number of diffusive states, their diffusion coefficients, and their 

population fractions, the experimentally measured cumulative distribution functions of 

apparent diffusion coefficients were fit using linear combinations of simulated CDF(D*). 

Using the CDF for fitting instead of a PDF histogram eliminates bin-size ambiguities that 
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can bias the fitting results. To determine the number of diffusive states, a constrained linear 

least-squares fit (using the ‘lsqlin’ function in MATLAB) was performed with a 

periodically sampled array of simulated CDFs. Diffusive states that had diffusion 

coefficient values within 20% of each other were combined into a single diffusive state by 

a weighted average based on their population fractions. The resulting vector of fitting 

parameters, consisting of diffusion coefficients of individual diffusive states and their 

respective population fractions, was used as a starting point to create arrays of trial fitting 

parameter vectors with different numbers of diffusive states, ranging from a single 

diffusive state to a user-defined maximum number of states (five in all cases considered 

here). Trial parameter vectors were generated as follows: adjacent diffusive states were 

either combined through weighted averaging or diffusive states were split into two states 

with equal population fractions and diffusion coefficient 20% above and below the original 

value. All state combination and splitting possibilities were considered. Each trial vector 

was used as a starting point for non-linear least-squares fitting of 5 separate subsets of the 

data (using the ‘fmincon’ function in MATLAB). In each case, the quality of the fit 

(quantified as the residual sum of squares) was found by comparing the quality of the fit 

with respect to the remaining subsets (data cross-validation). The average residual sum of 

squares was used to quantify the quality of the fit corresponding to a given trial vector. 

This method yielded multiple trial vectors given the number of diffusive states.  

For each number of diffusive states, only the trial vector with the best quality of fit 

was retained. The optimal number of states was then determined by identifying the last trial 

vector for which adding an additional state resulted in at least a 5% improvement in the 

quality of the fit. Finally, this trial vector was then used as the starting point to fit the full 
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data set using non-linear least squares fitting. To estimate error in each of the fitted 

parameters, we resampled the dataset 100 times by bootstrapping and then fit them 

individually, initializing the fit with the same starting parameter vector including a small 

offset. To constrain the optimization, the population fractions of diffusive states below 0.5 

µm2/s were not refined through non-linear least-squares fitting, but instead assigned to 

stationary molecules. This choice was made because even completely stationary molecules 

exhibit non-zero apparent diffusion coefficients in single-molecule tracking experiments 

due to finite single-molecule localization precision (static localization error). In our 

experiments, the x, y, and z localization precisions were 10-46 nm, 10-49 nm, and 16-

71 nm, respectively (154). For simplicity, all data and fits are displayed as PDFs instead of 

CDFs throughout this manuscript.  
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Figure 3.1. Monte-Carlo simulations of expected experimental distribution. (a) Probability 

density functions showing the effect of spatial confinement. The apparent diffusion 

coefficients are computed based on the time-integrated (25 ms) center-of-mass coordinates 

of simulated particles undergoing Brownian diffusion in a cylindrical volume 

(radius = 0.4 µm, length = 5 µm). The confined distributions are left-shifted (dashed lines) 

compared to the unconfined distributions.  (b) Fraction of successfully localized single-

molecules. Time-integrated (25 ms) single-molecule fluorescence signals produce images 

that resemble PSFs that are blurred to different extents (insets). Faster moving molecules 

are localized less efficiently due to motion blurring. (c) Expected distributions of apparent 

diffusion coefficients when confinement and motion blur is taken into account. The 
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similarity of the distributions increase for faster diffusion coefficients. Figure panels a and 

c are adapted from Ref. (119). 
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Fig. 3.2. Cell shape and size effect on the apparent diffusion coefficient distribution. (a) 

We simulated 5000 trajectories each for molecules confined in a single overall average cell 

size and molecules confined to a normal distribution of cell sizes centered around the 

average size (length of 4965 ± 880 nm and radius of 470 ± 80 nm). The normal distribution 

was limited to the range of the minimum and maximum experimental cell sizes (3630-6600 

nm for the length and 385-550 nm for the radius). Using a two-sample Komolgorov-

Smirnov test with a 5% significance level, these two distributions were not determined to 

be different. (b) We simulated confined diffusion in the shape of a cylinder and a 

spherocylinder with equal lengths and radii for a quickly diffusing population (5000 

trajectories) with D = 10.0 µm2/s. Using a two-sample Komolgorov-Smirnov test with a 

5% significance level, these two distributions were not determined to be different.   
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Fig. 3.3. 3D localization error for tracking single-molecule in different diffusive states. 

Simulations were performed as described in Materials and Methods. The localization error 

is defined as the Euclidian distance between the center-of-mass position of a diffusing 

molecule in a given camera frame and the fitted position based on the motion-blurred image 

of the same molecule.  
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4.1 Abstract 

In bacterial type 3 secretion, substrate proteins are actively transported from the 

bacterial cytoplasm into the host cell cytoplasm by a large membrane-embedded machinery 

called the injectisome. Injectisomes transport secretion substrates in response to specific 

environmental signals, but the molecular details by which the cytosolic secretion substrates 

are selected and transported through the type 3 secretion pathway remain unclear. Secretion 

activity and substrate selectivity are thought to be controlled by a sorting platform 

consisting of the proteins SctK, SctQ, SctL, and SctN, which together localize to the 

cytoplasmic side of membrane-embedded injectisomes. However, recent work revealed 

that sorting platform proteins additionally exhibit substantial cytosolic populations and that 

SctQ reversibly binds to and dissociates from the cytoplasmic side of membrane-embedded 

injectisomes. Based on these observations, we hypothesized that dynamic molecular 

turnover at the injectisome and cytosolic assembly among sorting platform proteins is a 

critical regulatory component of type 3 secretion. To determine whether sorting platform 

complexes exist in the cytosol, we measured the diffusive properties of the two central 

sorting platform proteins, SctQ and SctL, using live cell high-throughput 3D single-

molecule tracking microscopy. Single-molecule trajectories, measured in wild-type and 

mutant Yersinia enterocolitica cells, reveal that both SctQ and SctL exist in several distinct 

diffusive states in the cytosol, indicating that these proteins form stable homo- and hetero-

oligomeric complexes in their native environment. Our findings provide the first diffusive 

state-resolved insights into the dynamic regulatory network that interfaces stationary 
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membrane-embedded injectisomes with the soluble cytosolic components of the type 3 

secretion system.  

  

4.2 Introduction 

Live-cell compatible approaches revealed that the quaternary structure of the 

cytoplasmic injectisome components is highly dynamic. Fluorescence recovery after 

photobleaching (FRAP) measurements in Y. enterocolitica showed that the sorting 

platform protein SctQ continuously exchanges between an injectisome bound state and a 

freely diffusing cytosolic state and that the exchange rate doubled upon chemical activation 

of protein secretion  (48). Other sorting platform proteins, SctK, SctL, and SctN, also 

exhibit substantial cytosolic populations (49) and fluorescence correlation spectroscopy 

(FCS) measurements revealed that their diffusion coefficients were altered in different 

deletion mutants and between secreting and non-secreting conditions (49). These 

observations suggest that fully-assembled sorting platforms may be natively present in the 

cytosol as freely diffusing complexes that are functionally relevant for secretion. However, 

so far, it was not clear whether well-defined cytosolic complexes are responsible for the 

observed effects.  

Here we show formation of distinct homo- and hetero-oligomeric cytosolic 

complexes of sorting platform proteins using high-throughput 3D single-molecule tracking 

measurements in live Y. enterocolitica. Our results demonstrate that the two central sorting 

platform proteins, SctQ and SctL, interact with each other and with other T3SS proteins 
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not just at the injectisome, but also in the cytosol, resulting in the formation of several 

distinct molecular complexes. We further show that the relative population fractions of 

these complexes is dependent on the presence of other T3SS proteins and changes with 

type 3 secretion activity. These results suggest that functional regulation of T3SS may 

occur away from the membrane-embedded injectisomes through the ordered formation of 

distinct complexes in the bacterial cytosol.  

 

4.3 Experimental Procedures 

4.3.1 Bacterial Strains and Plasmids 

 Yersinia enterocolitica strains were generated by allelic exchange as previously 

described (22, 155). Mutator plasmids harboring 250-500 bp flanking regions, the coding 

sequences of eYFP or PAmCherry1, and a glycine-rich 13 amino acid linker between the 

fluorescent protein and the target protein were introduced into E. coli SM10 λpir for 

conjugation with Y. enterocolitica pIML421asd (35). After sucrose counter-selection for 

the second allelic exchange event, fluorescent Y. enterocolitica were analyzed by PCR to 

confirm target insertion.  

 Plasmids for the inducible exogenous expression of fluorescent and fluorescently-

tagged proteins were derived from IPTG-inducible pAH12 and arabinose-inducible pBAD 

vectors. The coding sequences of eYFP and PAmCherry1 were PCR amplified using Q5 

DNA polymerase (New England Biolabs, Ipswich, Maine) from pXYFPN-2 and 
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pVPAmCHY-popZ, respectively (156). The PCR product was isolated using a gel 

purification kit (Invitrogen, Carlsbad, California) and used as a megaprimer for 

amplification and introduction into a pAH12-derivative containing a kanamycin resistance 

cassette, LacI, and a lac promoter to generate pAH12-eYFP and pAH12-PAmCherry1. The 

pAH12 backbone was a gift from Carrie Wilmot. A series of pBAD expression vectors for 

eYFP, eYFP-SctQ, eYFP-SctQM218A, PAmCherry1-SctL, and PAmCherry1 were 

generated from mVenus-pBAD, originally developed by Michael Davidson (Addgene, 

Cambridge, Massachusetts, plasmid #54845). The coding sequence for eYFP was 

amplified from pAH12-eYFP. The coding sequence for eYFP-SctQ was amplified from 

Y. enterocolitica strain AD4442 [eYFP-SctQ]. The eYFP-SctQM218A coding sequence 

variant was generated using piecewise PCR of AD4442 with both the 5’ and 3’ fragments 

containing sequences overlapping the coding region corresponding to the M218A 

mutation. These fragments were gel purified and combined using outside primers with Q5 

DNA polymerase. The coding sequence for PAmCherry1-SctL was amplified from 

Y. enterocolitica strain AD4459. The coding sequence for PAmCherry1 was amplified 

from pAH12-PAmCherry1. All final PCR products were created with Q5 DNA polymerase 

and gel purified. Purified products were incubated with Taq DNA polymerase (Thermo 

Scientific, Waltham, Massachusetts) and dNTPs at 72C. PCR reactions were TA cloned 

using pCR2.1-TOPO (Invitrogen) according to the manufacturer’s directions. After 

screening for insert using Taq DNA polymerase, plasmids from positive clones were 

isolated using a miniprep kit (Omega Biotek, Norcross, Georgia). mVenus-pBAD and 

pCR2.1 minipreps were digested with EcoRI and XhoI restriction enzymes (New England 
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Biolabs). Digested vector and inserts were ligated using T4 DNA ligase and transformed 

into E. coli TOP10 cells. Colonies were PCR screened for presence of correct insert. All 

plasmids were sequenced by GeneWiz (South Plainfield, New Jersey) prior to 

electroporation into Y. enterocolitica for analysis. A list of all strains and plasmids can be 

found in Table 4.2. 

 

4.3.2 Cell Culture 

Y. enterocolitica cultures were inoculated from a freezer stock in BHI media 

(Sigma Aldrich, St. Louis, Missouri) with nalidixic acid (Sigma Aldrich) [35 µg/mL] and 

2,6-diaminopimelic acid (Chem Impex International, Wood Dale, Illinois) [8 µg/mL] one 

day prior to an experiment and grown at 28°C with shaking. After 24 hours, 300 µL of 

overnight culture was diluted in 5 mL fresh BHI, nalidixic acid, and diaminopimelic acid 

(dap) and grown at 28°C for another 60-90 minutes. For imaging cells in the secretion ON 

state, glycerol [4 mg/mL], MgCl2 [20 mM] and EDTA [5 mM] were added to the culture 

medium. For imaging cells in the secretion OFF state, glycerol, MgCl2, and CaCl2 [5 mM] 

were added to the culture medium. In both cases, the yop regulon was induced by rapidly 

shifting the cultures to 37°C in a water bath(27), and cells were incubated at 37°C with 

shaking for another 3 hours prior to imaging. After induction, cells were harvested by 

centrifugation at 5000 g for 3 minutes and washed 3 times with M2G (4.9 mM Na2HPO4, 

3.1 mM KH2PO4, 7.5 mM NH4Cl, 0.5 mM MgSO4, 10 µM FeSO4 (EDTA chelate; Sigma), 

0.5 mM CaCl2) with 0.2% glucose as the sole carbon source). The remaining pellet was 
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then re-suspended in M2G, dap, MgCl2, glycerol, and EDTA/CaCl2. Cells were plated on 

1.5 – 2% agarose pads in M2G containing dap, glycerol, and MgCl2. 

Plasmids were introduced into Y. enterocolitica cells using electroporation. 

Transformed cells were plated on LB agar [10 g/L peptone, 5 g/L yeast extract, 10 g/L 

NaCl, 1.5% agar] (Fisher Scientific, Hampton, New Hampshire) containing kanamycin 

[50 µg/mL] or ampicillin [100 µg/mL] for cells containing pAH12- or pBAD-derived 

plasmids, respectively. For electroporation of Y. enterocolitica pIML421asd cells, 

recovery media and plates also contained dap. Plasmid containing cells were inoculated 

similarly, except inoculation media also contained kanamycin or ampicillin for pAH12- or 

pBAD-based plasmids, respectively. Prior to imaging cell cultures were rapidly 

temperature shifted to 37C and incubated for 3 hours. Cultures of cells containing pAH12- 

or pBAD-based plasmids were induced with IPTG (Sigma Aldrich) [0.2 mM, final] or 

arabinose (Chem Impex) [0.2%], respectively, for the final 2 hours of incubation. 

 

4.3.3 Secretion Assay and Immunoblot  

Cultures for protein secretion assays and immunoblot analysis were inoculated to 

an optical density at 600 nm (OD600) of 0.15 in BHI supplemented with 35 µg/ml nalidixic 

acid, 80 µg/ml diaminopimelic acid, 0.4% glycerol, 20 mM MgCl2, and 5 mM EDTA. 

Cultures were agitated at 28°C for 90 min. The yop regulon was then induced by shifting 

the temperature to 37°C in a water bath, where cultures were agitated for another 180 min. 

Supernatant and whole cells were separated by centrifugation (5 min, 21,000 g). Secreted 
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proteins were precipitated with 10% trichloroacetic acid overnight at 4°C. An equivalent 

of proteins secreted by 3∙108 bacteria was used for further analysis of the supernatant, 

whereas the lysate of the equivalent of 108 bacteria was loaded onto the gel for analysis of 

total cellular proteins. Proteins were separated on Novex 4–20% gradient SDS–PAGE gels 

and stained using the Coomassie-based ‘Instant blue’ staining solution (Expedeon, San 

Diego, California), or immunoblotted using rabbit polyclonal antibodies against 

Y. enterocolitica SctQ (MIPA235; 1:1,000) (Fig. 4.6). 

 

4.3.4 Super-resolution Fluorescence Imaging  

Experiments were performed on a custom-built dual-color inverted fluorescence 

microscope based on the RM21 platform (Mad City Labs, Inc, Madison, Wisconsin). 

Immersion oil was placed between the objective lens (UPLSAPO 60X 1.4 NA) and the 

glass cover slip (VWR, Radnor, Pennsylvania, #1.5, 22mmx22mm). Single-molecule 

images were obtained by utilizing eYFP photoblinking (86) and PAmCherry1 photo-

activation (157). A 514 nm laser (Coherent, Santa Clara, California, Genesis MX514 

MTM) was used for excitation of eYFP (~350 W/cm2) and 561nm laser (Coherent Genesis 

MX561 MTM) was used for excitation of PAmCherry1 (~350 W/cm2). A 405 nm laser 

(Coherent OBIS 405nm LX) was used to photo-activate PAmCherry1 (~20 W/cm2) 

simultaneously with 561nm excitation. Under these imaging conditions, more than 50 % 

of the imaged cells underwent cell division on the coverslip (Fig. 4.14). Zero order quarter 

wave plates (Thorlabs, Newton, New Jersey, WPQ05M-405, WPQ05M-514, WPQ05M-
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561) were used to circularly polarize all excitation lasers, and the spectral profile of the 

514nm laser was filtered using a band-pass filter (Chroma, Bellows Falls, Vermont, 

ET510/10bp). Fluorescence emission from both eYFP and PAmCherry1 was passed 

through a shared filter set (Semrock, Rochester, New York, LP02-514RU-25, Semrock 

NF03-561E-25, and Chroma ET700SP-2P8). A dichroic beam splitter (Chroma T560lpxr-

uf3) was then used to split the emission pathway into ‘red’ and ‘green’ channels. An 

additional 561nm notch filter (Chroma ZET561NF) was inserted into the ‘red’ channel to 

block scattered laser light. Each emission path contains a wavelength specific dielectric 

phase mask (Double Helix, LLC, Boulder, Colorado) that is placed in the Fourier plane of 

the microscope to generate a double-helix point-spread-function (DHPSF) (99, 136). The 

fluorescence signals in both channels are detected on two separate sCMOS cameras 

(Hamamatsu, Bridgewater, New Jersey, ORCA-Flash 4.0 V2). Up to 20,000 frames are 

collected per field-of-view with an exposure time of 25ms. A flip-mirror in the emission 

pathway enables toggling the microscope between fluorescence imaging and phase contrast 

imaging modes without having to change the objective lens of the microscope. 

 

4.3.5 Data Analysis 

Raw image processing and analysis was carried out as described in section 3.1. 

Single molecule localizations were assigned to individual cells as described in section 

3.2.1. Analysis of high density regions of localizations was carried out using the density 

based clustering algorithm DBSCAN (158), using a distance parameter of 75 nm and a 
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minimum number of points parameter of 15. Single-Molecule Tracking was performed as 

described in section 3.3.1. To resolve the unconfined diffusion coefficients of predominant 

molecular complexes in living cells based on the experimentally measured distribution of 

apparent diffusion coefficients, we performed Monte Carlo simulations of confined 

Brownian motion as described in section 3.3.2.  Experimental distributions of apparent 

diffusion coefficients were fit using a linear combination of simulated distributions as 

described in section 3.3.3. Confidence intervals for all fitting parameters were obtained by 

bootstrapping and are reported in Table 4.3. The radial distributions in Fig. 4.11 and 4.12 

were created as described in section 3.2.2.  

 

4.4 Results and Discussion 

4.4.1 Stationary SctQ localizes near the cell membrane 

We introduced the coding sequence of eYFP in-frame near the translation start site 

of the SctQ coding sequence on the pYV virulence plasmid, which encodes all T3SS 

proteins in Y. enterocolitica, using previously described allelic replacement techniques (22, 

155). In this way, the eYFP-SctQ fusion protein is expressed under the control of its native 

promoter. The cellular levels of eYFP-SctQ were increased compared to the native, 

unlabeled protein; we confirmed that the resulting fusion proteins did not result in 

detectable degradation products and were fully functional in an effector protein secretion 

assay (Fig. 4.6). We then used 3D-single molecule localization microscopy (3D-SMLM) 

to determine the subcellular positions of eYFP-SctQ molecules in live Y. enterocolitica 
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under secreting conditions. The observed single-molecule localizations revealed clustering 

near the cell surface, and, when rendered as an intensity image, these clusters gave rise to 

the bright fluorescent foci (Fig. 4.1a,b), which are similar to those observed by diffraction-

limited and super-resolution microscopy (22, 23, 48). We used DBSCAN (158), a density-

based clustering algorithm, to determine the positions and sizes of each cluster and found 

that clusters are preferentially localized within a 400-450 nm radius from the central cell 

axis (Fig. 4.1c,d). This subcellular preference is consistent with membrane association, 

given the 469 ± 91 nm (mean ± s.d.) radius of Y. enterocolitica cells used in our 

experiments, and clusters have been previously observed to co-localize with other 

membrane-embedded injectisome components in two-color fluorescence imaging 

experiments (22, 23, 48). In contrast, cluster formation was not observed when we 

exogenously expressed eYFP-SctQ in a Y. enterocolitica strain lacking the pYV plasmid 

(pYV-) (Fig. 4.1e). Instead, eYFP-SctQ was uniformly distributed throughout the bacterial 

cytosol.  

Instead of only considering the localized molecules within clustered regions, as 

done by Zhang et al. (23), we additionally quantified the diffusive properties of all 

localized molecules. Single-molecule tracking measurements in wild-type cells showed 

that the eYFP-SctQ population partitioned into a stationary and a mobile fraction (Fig. 

4.1f). As expected, trajectories with slow apparent diffusion coefficients (D* < 0.15 µm2/s) 

spatially co-localize with clusters (Fig. 4.1g and Fig. 4.12a), while the faster diffusing 

molecules (D* > 0.15 µm2/s) localize randomly throughout the cell volume (Fig. 4.1f 

inset, Fig. 4.12a). The D* = 0.15 µm2/s threshold was chosen based on the non-zero 
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diffusion coefficients obtained for stationary emitters that are repeatedly localized with 

limited spatial localization precision (Fig. 4.10). We conclude that stationary membrane-

embedded injectisomes serve as binding sites for SctQ molecules, and we assign the 

observed clusters or foci to injectisome-bound eYFP-SctQ molecules.  

 

4.4.2 SctQ exists in at least 3 diffusive states in the bacterial cytosol  

The majority (~86%) of eYFP-SctQ localizations are not cluster-associated, but 

instead diffuse randomly throughout the cytoplasm (Fig. 4.1a,b,d). To examine the 

diffusive behaviors of unbound eYFP-SctQ, we determined the 3D trajectories of ~100,000 

individual eYFP-SctQ molecules in hundreds of cells and computed the apparent diffusion 

coefficients for each trajectory (4.3 Experimental Procedures). As mentioned in the 

previous section, the resulting distribution of apparent diffusion coefficients shows two 

prominent peaks: one near ~0 µm2/s and the other at ~0.5 µm2/s (Fig. 4.1f). In addition to 

the peak at ~0.5 µm2/s, the distribution also shows a slow decay towards higher apparent 

diffusion coefficients. Using Monte Carlo simulations of anisotropically confined 

Brownian diffusion within rod-shaped bacterial cell volumes, we determined that such a 

distribution shape is only possible when multiple diffusive states manifest in the cell (4.3 

Experimental Procedures, Fig. 4.7).  

To estimate the unconfined diffusion coefficients (D) and population fractions of 

the diffusive states that are present in the cell, we used linear combinations of the Monte 

Carlo simulated apparent diffusion coefficient distributions to fit the experimentally 
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measured distributions (4.3 Experimental Procedures). We found that fitting the eYFP-

SctQ data required three cytosolic diffusive states corresponding to unconfined diffusion 

coefficients D = 1.1, 4.0, and 13.9 µm2/s with population fractions of 17%, 36%, and 22%, 

respectively (Fig. 4.2a,b, Table 4.1). These components are in addition to a stationary 

component (D < 0.5 µm2/s) with population fraction of 24%. Confidence intervals for the 

optimized fitting parameters were obtained by bootstrapping and are reported in Table 4.3.  

As we did not detect any eYFP cleavage products (Fig. 4.6), the eYFP-SctQ 

monomer is the smallest and likely the fastest diffusing molecular species in our cells. 

Control experiments to measure the unconfined diffusion coefficients of eYFP confirmed 

that, when expressed in wild-type Y. enterocolitica, eYFP diffused at a similarly fast rate 

of D = 11.3 µm2/s (Fig. 4.9i, Table 4.1). We also observe a small stationary component 

for this protein suggesting that, even in the absence of known binding partners, the presence 

of immobile proteins cannot be ruled out in living cells. Assigning the fastest diffusive 

eYFP-SctQ state (D = 13.9 µm2/s) to the monomeric eYFP-SctQ fusion protein implies 

that the slower diffusive states at D ~ 1 and 4 µm2/s correspond to two distinct high 

molecular weight complexes, which could be eYFP-SctQ homo- or hetero-oligomers that 

involve additional T3SS proteins. To determine the molecular composition of these high 

molecular weight complexes, we performed further single-molecule tracking 

measurements in different genetic backgrounds. 
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4.4.3 SctQ is capable of forming higher-order oligomers in the absence of other 

T3SS proteins 

To test whether SctQ can form high molecular weight complexes in living cells 

independent of other T3SS proteins, we tracked single eYFP-SctQ molecules in a strain 

lacking all T3SS components (the pYV- strain), for which membrane association was not 

observed (Fig. 4.1e). Fitting the distribution of apparent diffusion coefficients of eYFP-

SctQ in the pYV- strain required four diffusive states (Fig. 4.3a, Table 4.1). The 

predominant diffusive state (D = 3.6 µm2/s, 78%) is similar to the D = 4.0 µm2/s state 

observed for eYFP-SctQ in wild-type cells. These data show that formation of a specific 

oligomeric SctQ species is favored in pYV- cells and does not require any other T3SS 

proteins. Conversely, the oligomerization behavior of eYFP-SctQ changes when other 

T3SS proteins are present, as there is a higher relative abundance of the putative eYFP-

SctQ monomer in wild-type cells (22%) compared to pYV- cells (~5%). If oligomerization 

of SctQ was completely unregulated we would expect a higher fraction of the D ~ 4 µm2/s 

diffusive state in wild-type cells, especially since the eYFP-SctQ fusion is express at 

slightly higher levels compared to the native, unlabeled protein (Fig. 4.6). 

 

4.4.5 Formation of the oligomeric SctQ complex is dependent on expression of SctQC 

Previous work in Yersinia has shown that elimination of the internal translation 

initiation site through a mutation in the sctQ coding sequence that replaces the methionine 

residue at position 218 with an alanine (M218A) results in a secretion-deficient phenotype 
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and that wild-type secretion levels can be restored upon expression of SctQC in trans (48, 

54). We therefore hypothesized that the D ~ 4 µm2/s diffusive state measured for eYFP-

SctQ in wild-type cells and pYV- background is due to a molecular complex containing 

SctQ and its C-terminal fragment SctQC (53-55). To test this hypothesis, we utilized the 

eyfp-sctQM218A coding sequence to express full length eYFP-SctQ, but not SctQC, in the 

Y. enterocolitica pYV- strain (48). 

In the absence of SctQC, the distribution of apparent diffusion coefficients of eYFP-

SctQM218A was best fit with four diffusive states (Fig. 4.3b, Table 4.1). The previously 

observed diffusive state (D ~ 4 µm2/s) of eYFP-SctQ is absent upon elimination of SctQC 

expression. We instead observe a different, faster moving diffusive state (D = 6.8 µm2/s), 

which is not observed for eYFP-SctQ in either wild-type or pYV- genetic backgrounds. We 

therefore assign the D = 6.8 µm2/s diffusive state to a homo-oligomeric SctQ species. 

Indeed, an oligomeric SctQ-only species was previously detected by co-

immunoprecipitation in the absence of SctQC (53). We conclude that the presence of SctQC 

enables the formation of a well-defined oligomeric SctQ:SctQC complex, which diffuses at 

D ~ 4 µm2/s and forms spontaneously in Y. enterocolitica in the absence of other T3SS 

proteins.  

The existence of an oligomeric SctQ:SctQC complex is supported by several reports 

in the recent literature. Bzymek et al. expressed Y. pseudotuberculosis SctQ and SctQC in 

E. coli and co-purified a SctQ:SctQC complex with 1:2 stoichiometry (MW = 52.8 kDa) 

(54). McDowell et al. found that S. flexneri SctQ:SctQC was further able to form higher 

order oligomers consisting of up to six copies of the minimal 1:2 complex and that 
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formation of such higher order oligomers was essential for secretion (55). The quaternary 

structure of in situ injectisomes, recently provided by cryo-electron tomography of Shigella 

flexneri and Salmonella enterica minicells (37-39), allows us to further speculate on the 

stoichiometry of the oligomeric SctQ:SctQC complex. The sub-tomogram averaged 

injectisomes displayed six cytoplasmic “pods” that, on one side, attach to the membrane-

embedded ring of the needle complex and, on the other side, to hexameric SctN. The 

observed protein densities of the pods are large enough to contain a tetramer of SctQ 

proteins, such that 24 SctQ molecules (six tetramers) can be bound to the injectisome at 

any one time. This value agrees with previously estimated numbers of fluorescently-

labelled SctQ proteins within a single diffraction-limited fluorescent focus/cluster 

(N = 22 ± 8, 28 ± 7, ~24 ± 5) (23, 48, 49). Based on the available data to date, we speculate 

that the D ~ 4 µm2/s diffusive state observed in wild-type Y. enterocolitica cells is the 

oligomeric SctQ:SctQC complex that consists of four SctQ and eight SctQC subunits.  

 

4.4.6 SctQ and SctL co-diffuse as a complex in the cytoplasm 

Our single-molecule tracking measurements of eYFP-SctQ in wild-type 

Y. enterocolitica reveal the presence of a slowly diffusing D ~ 1 µm2/s species with a 

population fraction of 17%. The increased abundance of this diffusive state compared to 

pYV- cells could indicate the regulated formation of a slowly diffusing high-molecular 

weight complex. Indeed, high molecular weight complexes with estimated molecular 

weights ~1 MDa containing SctQ, SctL, SctK, and SctN have been previously identified 
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in pull-downs and size-exclusion chromatography (41, 47). Given the established 

interactions between SctK-Q-L-N (43-46), we hypothesized that the D ~ 1 µm2/s diffusive 

state consists, at least partially, of a complex containing not just SctQ:SctQC, but also SctK, 

SctL, and possibly SctN (see Fig. 1.1).  

To test whether the D ~ 1 µm2/s or D ~ 4 µm2/s diffusive states of eYFP-SctQ are 

complexes that contain SctL, we used allelic-replacement of the native SctL coding 

sequence on the pYV virulence plasmid to express the PAmCherry1-SctL fusion protein 

in wild-type Y. enterocolitica. Fitting the apparent diffusion coefficient distribution of 

PAmCherry1-SctL revealed a substantial stationary population (D < 0.50 µm2/s) with a 

population fraction of 56%. Stationary PAmCherry1-SctL trajectories localized 

preferentially near the cell boundary (Fig. 4.12f). Based on the same arguments made for 

eYFP-SctQ, we assign the stationary PAmCherry1-SctL trajectories to injectisome-bound 

molecules. Fitting the non-stationary components of the apparent diffusion coefficient 

distribution revealed the presence of five diffusive states (Fig. 4.4a, Table 4.1). The only 

observed diffusive states in common between eYFP-SctQ and PAmCherry1-SctL in wild-

type Y. enterocolitica is the D ~ 1 µm2/s state. The presence of this common state raises 

the possibility that these two proteins co-diffuse as a high-molecular weight complex in 

the cytosol of living cells.  

To test whether the D ~ 1 µm2/s diffusive state of PAmCherry1-SctL is dependent 

on the presence of SctQ and other T3SS proteins, we expressed PAmCherry1-SctL in the 

pYV- strain. In this genetic background, the apparent diffusion coefficient distribution is 

fit by four diffusive states (Fig. 4.4b, Table 4.1). A majority of the stationary component 



Chapter 4: Single-molecule tracking in live Yersinia enterocolitica reveals distinct cytosolic 
complexes of injectisome subunits 65 
 

 

is lost in the absence of other T3SS proteins and the population fractions are redistributed 

to other cytosolic states. Notably absent is a diffusive state near 1 µm2/s, indicating that the 

presence of other T3SS proteins is required for the formation of this state.  

As an additional control, we analyzed the diffusive states of eYFP-SctQ in a ΔsctL 

background (Figure 4.4c). The obtained diffusive states, closely resemble those found in 

the pYV- background, namely, a predominant population in a D ~ 4 µm2/s diffusive state 

(60%), in addition to two smaller populations, one in a D ~ 12 µm2/s diffusive state (15%), 

and one in a D ~ 1 µm2/s diffusive state (13%). We assign the fast diffusive state to 

monomeric eYFP-SctQ, as before. The molecular species responsible for the limited 

amounts of the D ~ 1 µm2/s diffusive state remains unclear, but the presence of this state 

is consistent with the results obtained for eYFP-SctQ and eYFP-SctQM218A in the pYV- 

backgrounds. The higher population fraction of eYFP-SctQ in wild type cells could thus 

be due to two different high molecular weight complexes that diffuse at the same rates. The 

slightly increased population fraction of the stationary component compared to those in the 

pYV- background could indicate limited binding of eYFP-SctQ to membrane-embedded 

injectisome precursors, which are known to assemble in absence of SctL(38).  

The existence of a high molecular weight complex containing SctQ, SctQC, SctK, 

SctL, and SctN is consistent with previous FCS measurements showing that the population-

averaged diffusion rate of eGFP-SctQ and eGFP-SctL increased when SctN was deleted 

(49). It is therefore possible that the D ~ 1 µm2/s diffusive state observed in our work is 

due to the cytosolic presence of a large supramolecular complex that contains six SctK-Q-

L pods, which are each connected to a central hexameric ATPase. Such a supramolecular 
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complex would have a molecular weight of ~2 MDa, assuming previously estimated 

stoichiometries (23, 38, 39, 48, 49), and could form either through the stepwise assembly 

in the cytoplasm or upon concerted dissociation from membrane-embedded injectisomes. 

An alternative explanation is that the D ~ 1 µm2/s diffusive state represents a single pod 

that is connected to SctL and possibly SctK and SctN. Even though the Stokes-Einstein 

relation is not expected to hold in the crowded cytoplasm of living bacterial cells (159, 

160), it is not clear how the rather modest addition of SctL (2x25 kDa), SctK (24 kDa), and 

SctN (48 kDa) subunits to an existing SctQ4:SctQC8 complex (330 or 220 kDa with and 

without the eYFP tag, respectively) could change its diffusion coefficient by a factor of 

four. Future work to determine the complete molecular composition of the species 

responsible for the D ~ 1 µm2/s diffusive state will help address this question. 

 

4.4.7 Induction of T3SS secretion alters diffusion behaviors of select cytosolic species 

FRAP measurements established that, under secreting conditions, injectisome-

bound eGFP-SctQ was dynamically replaced by new cytosolic proteins within 

t½ ~ 70 seconds (t½ ~ 135 seconds in non-secreting Y. enterocolitica cells) (48). 

Additionally, FCS measurements found that the population-averaged diffusion rates of 

SctK, SctQ, and SctL correlate with the secretion state (49). Our results show that the T3SS 

proteins SctQ and SctL form high molecular weight complexes in the cytosol and that 

formation of these states is dependent on the presence of other T3SS proteins. Together, 

these findings suggest the possibility that the type 3 protein secretion pathway is, at least 
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in part, regulated from within the cytosol. We therefore asked whether the diffusion rates 

or population fractions of SctQ and SctL diffusive states correlate with the secretion state 

of the cells.  

To compare the diffusion behaviors of eYFP-SctQ and PAmCherry1-SctL in 

secretion ON vs. OFF states we used the fact that the Y. enterocolitica T3SS can be 

switched between secretion ON and OFF states by the addition of EDTA or CaCl2, 

respectively (27). We observed that stimulation of secretion increased the mean apparent 

diffusion coefficient for mobile molecules (D* > 0.15 µm2/s) from 1.43 µm2/s to 

1.69 µm2/s for eYFP-SctQ and from 0.86 µm2/s to 1.10 µm2/s for PAmCherry1-SctL, 

which is consistent with recent FCS and earlier 2D-PALM measurements (48, 49). (Table 

4.4). 

The apparent diffusion coefficient distribution of eYFP-SctQ in secretion OFF 

conditions was fit with three diffusive states (Fig. 4.5a, Table 4.1), while that of 

PAmCherry1-SctL was fit with four diffusive states (Fig. 4.5b, Table 4.1). The diffusion 

coefficients obtained for eYFP-SctQ are similar between secretion ON and OFF 

conditions, suggesting that the oligomerization states of SctQ are not altered upon 

induction of secretion. However, the relative population fractions do change, suggesting 

that the relative abundances of SctQ containing complexes are regulated. For 

PAmCherry1-SctL on the other hand, there seems to be a more complex rearrangement 

among diffusive states of low abundance. Nonetheless, the presence of the D ~ 1 µm2/s 

diffusive state for both eYFP-SctQ and PAmCherry1-SctL under secretion ON and 

secretion OFF conditions indicates that the cytosolic interaction between SctQ and SctL is 
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robustly present in both secreting and non-secreting cells. Furthermore, we observe a 

similar decrease in the relative population fractions of the D ~ 1 µm2/s diffusive states upon 

induction of secretion, namely a 26% decrease for eYFP-SctQ and a 24% decrease for 

PAmCherry1-SctL. These results support our conclusion that SctQ and SctL co-diffuse as 

high molecular weight complex in the cytosol and suggest that the strength of the SctQ and 

SctL interaction is not subject to functional regulation of the T3SS ON/OFF switch.  

 

4.5 Conclusions 

While it’s currently unknown how the cytosolic sorting platform proteins exert their 

role in the function of the T3SS, it has become clear that their ability to form dynamic 

cytosolic complexes is linked to function. However, these complexes have remained poorly 

defined. Using high-throughput 3D single-molecule tracking in living bacterial cells, we 

resolved the diffusive states of eYFP-SctQ and PAmCherry1-SctL and quantified their 

respective population fractions. This allowed us to analyze the cytosolic complex 

formation of the two central sorting platform proteins SctQ and SctL. Our data are 

consistent with a model in which cytosolic SctQ undergoes dynamic assembly and 

disassembly steps to interconvert between at least three distinct molecular species that 

diffuse at different rates. SctQ monomers diffuse freely in the cytosol (D ~ 14 µm2/s) or 

self-assemble into oligomeric SctQ:SctQC complexes (D ~ 4 µm2/s) with the help of the C-

terminal fragment SctQC. The self-assembly process does not require the presence of other 

T3SS proteins as evidenced by the observation that a D ~ 4 µm2/s diffusive state is present 
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in both wild-type and pYV- backgrounds. The SctQ:SctQC complexes do not yet contain 

SctL, because SctL molecules tracked in wild-type cells do not exhibit a D ~ 4 µm2/s 

diffusive state. However, it remains a possibility that SctQ:SctQC complexes in wild-type 

cells contain SctK, which has been shown to interact with SctQ (43-46). Ultimately, the 

SctQ:SctQC complexes further associate with SctL, SctK, and possibly SctN to form 

hetero-oligomeric high molecular weight complexes that diffuses at a rate of D ~ 1 µm2/s. 

The presence of a D ~ 1 µm2/s diffusive state in both the eYFP-SctQ and PAmCherry1-

SctL data suggest that SctQ and SctL co-diffuse as part of high molecular weight 

complexes, but it remains to be determined whether these complexes are individual sorting 

platform pods or large supramolecular complexes containing six pods that are each 

connected to a central hexameric ATPase. 

At this stage, it is still unclear which of the defined complexes detected in this 

manuscript plays which role in the secretion process. However, our work reveals two 

distinct fundamental changes in the architecture of the cytosolic complexes upon activation 

of the T3SS: either the relative abundances of diffusive states (for SctQ) or the diffusive 

states themselves (for SctL) are altered upon induction of secretion suggesting a 

delocalized mechanism of T3SS functional regulation. The diffusive-state-resolved 

insights add to a growing body of evidence that points to the existence of a dynamic 

network of cytosolic interactions among structural injectisome proteins and complexes 

thereof. The activity and substrate selectivity of T3SSs may thus not be programmed into 

the quaternary structure of the injectisome itself, but instead established in the cytosol 

through dynamic interactions between T3SS components. Given the in situ morphology of 
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injectisomes, it is tempting to speculate that molecular turnover at the injectisome is the 

result of dynamic binding and unbinding events of individual sorting platform pods and/or 

entire injectisome cytoplasmic complexes. Such dynamics may help regulate the secretion 

activity of the T3SS or enable the shuttling of secretion substrate:chaperone complexes to 

the injectisome. Similar mechanisms might be at play to regulate the structurally similar 

flagellar motor complex. Chaperone:substrate:FliH2-FliI complexes (SctL and SctN 

homologues) have been isolated from cell extracts (161, 162), and FliI, possibly as part of 

such a complex, exchanges between the cytosol and the flagellar basal body (163). The 

bound FliI interacts with the switch complex, which is responsible for controlling the 

direction of the flagellar rotation, through an interaction between FliH and FliN (SctQ 

homologue) (164, 165). Regulated assembly of cytosolic protein may thus be a widespread 

mechanism through which the T3SS and similar bacterial secretion systems are 

functionally regulated. The present work provides a general strategy to resolve and quantify 

cytosolic complex formation in living bacterial cells.  
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Fig. 4.1. Fluorescently labelled eYFP-SctQ localizes throughout the cytosol and forms 

distinct clustered foci near the membrane. (a) Scatter plot of 3D localizations of eYFP-

SctQ in a representative wild-type Y. enterocolitica cell overlaid on a phase contrast image 

of the cell. (b) Super-resolution image of the data shown in (a). Each single-molecule 

localization was rendered as a Gaussian sphere of width σ equal to the average localization 
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precision. Closely overlapping spheres generate high intensity in the reconstructed image. 

An example cell for each data set can be found in Fig. 4.13. (c) Clustered localizations of 

eYFP-SctQ in a single cell, viewed along the central axis of the cell. (d) Radial distribution 

of clusters as determined by the DBSCAN clustering algorithm (158). Clustered 

localizations are enriched near the cell membrane. The distributions are broadened by cell 

width heterogeneity in the bacterial population and uncertainty in defining the central axis 

of the cells (e) 3D radial distribution of clusters for eYFP-SctQ in the pYV- strain. Fewer 

clusters are present and do not preferentially localize near the cell membrane. (f) 

Probability density function of apparent diffusion coefficients for eYFP-SctQ. Two 

visually distinguishable populations emerge: a stationary (D* < 0.15 µm2/s) and a mobile 

population (D* > 0.15 µm2/s). (f inset) Stationary (blue) and diffusive (red) trajectories in 

a single Yersinia cell. (g) Clustered localizations (teal) overlaid on the trajectory plot. 

Across the population (N = 662 cells) 60% of all stationary trajectories co-localized with 

clustered regions (within 100 nm of the cluster center-of-mass). The remaining 40% do not 

co-localize with clusters, because clustering algorithms rely user-defined parameters and 

are not 100% efficient in identifying clusters, especially in the presence of numerous 

diffuse localization, as is the case here.  
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Fig. 4.2. Fit of the distribution of apparent diffusion coefficients for eYFP-SctQ. (a) Fitting 

the distribution of eYFP-SctQ apparent diffusion coefficients required at least three 

diffusive states (D1-3) in addition to a stationary population (Ds). (b) The cumulative 

distribution function (CDF) of eYFP-SctQ apparent diffusion coefficients is fit using the 

indicated CDFs obtained by Monte-Carlo simulation of confined Brownian motion 

characterized by the indicated diffusion coefficients.  
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Fig. 4.3. Fit of the apparent diffusion coefficient distributions for eYFP-SctQ in the 

absence of other T3SS proteins. (A) Fitting of the eYFP-SctQ apparent diffusion 

coefficients distribution in the pYV- strain shows a dominant population at ~3.6 µm2/s. (B) 

A mutation in the SctQ coding sequence that suppresses the expression of SctQc eliminates 

the 3.6 µm2/s state and favors a faster diffusing state at 6.8 µm2/s. 
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Fig. 4.4. Comparison of PAmCherry1-SctL in the wild-type vs the pYV- strain. (a) Fitting 

of the apparent diffusion coefficient distribution for PAmCherry1-SctL shows the majority 

of the population in a stationary state. (b) In the absence of other T3SS proteins the 
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stationary state is depleted, and PAmCherry1-SctL favors faster diffusive states. (c) 

Apparent diffusion coefficient fitting of eYFP-SctL in a ΔSctL background. Note that the 

peak near D*=0 is not fit well in this case due to large bin-sizes used in the histogram. We 

therefore assess the quality of fit using the cumulative distribution function shown in Fig. 

4.8e.  
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Fig. 4.5. Apparent diffusion coefficient distribution fits for eYFP-SctQ and PAmCherry1-

SctL under secretion OFF conditions. (a) Fitting of secretion OFF conditions for eYFP-

SctQ. While the individual diffusion coefficients remain the same as for secretion ON 

conditions, there is an overall population shift towards slower diffusing states. (b) Fitting 

of secretion OFF conditions for PAmCherry1-SctL. As is the case for eYFP-SctQ, there is 

a shift towards slower diffusing states for secretion OFF conditions.  
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Fig. 4.6. The fusion proteins used in this study are stable and functional. (a) Immunoblot 

of total cellular proteins of Y. enterocolitica dHOPEMTasd strains expressing the denoted 

fusion proteins (as well as WT and sctQ controls) probed against Y. enterocolitica SctQ 

(left), GFP (center), or mCherry (right) show expression of the full length fusion proteins 

(expected sizes of WT SctQ, 34.4 kDa; eYFP-SctQ, 62.8 kDa; PAmCherry1-SctL, 
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53.7 kDa) at higher expression levels compared to wild type, but with no detectable 

cleavage products. (b) Secretion profile of the indicated strains under secreting conditions. 

Cells were incubated at 37°C for three hours and the cell culture supernatant was TCA-

precipitated. All samples were run and analyzed on the same gel after Coomassie staining; 

vertical lines indicate omission of intermediate lanes. 
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Fig. 4.7. Monte-Carlo simulation of apparent diffusion coefficient distributions. (a) Left-

shift of apparent diffusion coefficient distributions due to cellular confinement for 

simulated trajectories. (b) Decrease in mean apparent diffusion coefficient for simulated 

trajectories when taking into account cellular confinement and motion blur.  (c) Subset of 

simulated probability density functions when taking into account cellular confinement and 

motion blur. (d) Subset of simulated cumulative distribution functions when taking into 

account cellular confinement and motion blur. Colors are the same as in panel C. 
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Fig. 4.8. Apparent diffusion coefficient distributions measured in live Y. enterocolitica 

cells and corresponding fits (shown as CDFs). (a) eYFP-SctQ Secretion ON, (b) eYFP-

SctQ Secretion OFF, (c) eYFP-SctQ in pYV- background, (d) eYFP-SctQM218A in pYV- 

background, (e) eYFP-SctQ, ΔSctL   (f) PAmCherry1-SctL Secretion ON, (g) 

PAmCherry1-SctL Secretion OFF, (h) PAmCherry1-SctL in pYV- background, (i) eYFP, 

(j) PAmCherry1. 
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Figure 4.9. Apparent diffusion coefficients distributions measured in live Y. enterocolitica 

cells and corresponding fits (shown as PDFs). (a) eYFP-SctQ Secretion ON, (b) eYFP-

SctQ Secretion OFF, (c) eYFP-SctQ in pYV- background, (d) eYFP-SctQM218A in pYV- 

background, (e) eYFP-SctQ, ΔSctL   (f) PAmCherry1-SctL Secretion ON, (g) 

PAmCherry1-SctL Secretion OFF, (h) PAmCherry1-SctL in pYV- background, (i) eYFP, 

(j) PAmCherry1. 
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Fig 4.10. Diffusion coefficient distribution of simulated stationary emitters. Mean 

localization precisions for x, y, and z positions are 30 nm, 30 nm, and 50 nm, respectively. 

A threshold of 0.15 µm2/s (dashed green line) was chosen to score trajectories as 

originating from stationary emitters. 
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Fig. 4.11. Radial distribution functions of clustered vs. non-clustered single-molecule 

localizations. (a) eYFP-SctQ Secretion OFF, (b) eYFP-SctQM218A in pYV- background, (c) 

eYFP-SctQ, ΔSctL   (d) PAmCherry1-SctL Secretion ON, (e) PAmCherry1-SctL Secretion 

OFF, (f) PAmCherry1-SctL in pYV- background. 
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Fig. 4.12. Radial distribution functions of diffusive (D > 0.15 µm2/s) vs. stationary (D < 

0.15 µm2/s) trajectories. (a) eYFP-SctQ Secretion ON, (b) eYFP-SctQ Secretion OFF, (c) 

eYFP-SctQ in pYV- background, (d) eYFP-SctQM218A in pYV- background, (e) eYFP-

SctQ, ΔSctL, (f) PAmCherry1-SctL Secretion ON, (g) PAmCherry1-SctL Secretion OFF, 

(h) PAmCherry1-SctL in pYV- background. 
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Fig. 4.13. Rendering of individual cells for each strain. (a) eYFP-SctQ Secretion OFF, (b) 

eYFP-SctQ in pYV- background,  (c) eYFP-SctQM218A in pYV- background, (d) eYFP-

SctQ, ΔSctL   (e) PAmCherry1-SctL Secretion ON, (f) PAmCherry1-SctL Secretion OFF, 

(g) PAmCherry1-SctL in pYV- background, (h) eYFP, (i) PAmCherry1. 
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Fig. 4.14. Cell Viability Tests. Fields-of-view (FOV) containing ~80-100 cells were 

illuminated with 514 nm laser light at experimental laser intensities (~350 W/cm2) for 

different lengths of time and then observed over the course of 4 hours. At time points of 0, 

2, and 4 hours, a phase contrast image was acquired for each FOV. The phase contrast 

images were compared to quantify cell division occurring between time points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4: Single-molecule tracking in live Yersinia enterocolitica reveals distinct cytosolic complexes of injectisome subunits 92 
 

 

 

 

 

Table 4.1. Fitted diffusion coefficients and relative population fractions. 

eYFP-SctQ 
Secretion ON 

eYFP-SctQ 
Secretion OFF 

eYFP-SctQ 
pYV- 

eYFP-SctQM218A 
pYV- 

eYFP-SctQ 
ΔSctL 

(%) D (µm2/s) % D (µm2/s) % D (µm2/s) % D (µm2/s) % D (µm2/s) 

      24    <0.50      21   <0.50        8     <0.50       5     <0.50      12     <0.50 
17 (±2)  1.1 (±0.05) 23 (±1) 1.0 (±0.05)   8 (±3)   1.0 (±0.2)   3   (±1)   0.8 (±0.2) 13 (±3)    1.1   (±0.1) 
36 (±2)  4.0   (±0.2) 42 (±4) 3.9   (±0.2) 78 (±7)   3.6 (±0.2) 34 (±16)   6.8 (±0.9) 60 (±3)    3.9   (±0.2) 
22 (±3) 13.9   (±1.4) 14 (±7) 15.0   (±2.3)   5 (±5) 10.5 (±1.0) 50 (±26) 10.3 (±1.4) 15 (±2)   11.6   (±0.3) 

      2 (±2) 15.0 (±3.7)   8   (±8) 13.5 (±1.5)   
          

PAmCherry1-SctL 
Secretion ON 

PAmCherry1-SctL 
Secretion OFF 

PAmCherry1-SctL 
pYV- 

eYFP 

 

PAmCherry1 

 

% D (µm2/s) % D (µm2/s) % D (µm2/s) % D (µm2/s) % D (µm2/s) 

      62     <0.50      58   <0.50      14   <0.50                 20     <0.50 
  4 (±4)   0.5 (±0.1) 14 (±7) 0.6   (±0.1)  13    (±5) 0.6 (±0.15) 100 11.3 (±0.2)   13 (±6)   2.7 (±0.6) 
13 (±8)   1.0 (±0.2) 17 (±7) 1.1 (±0.15)  40  (±11) 1.8 (±0.25)   68 (±5) 15.3 (±0.7) 
  9 (±4)   1.7 (±0.4)   6 (±2) 4.0 (±0.75)  25  (±10) 4.0   (±0.8)     
  7 (±2)   6.0 (±0.7)   5 (±1) 15.3   (±3.0)    7    (±3) 15.0   (±3.2)     
  6 (±1) 15.0 (±2.8)         
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Table 4.2. List of strains and plasmids. 

 

Strain Name pYV 

Background 

Characteristics Ref 

Wild-type IML421 pYV40 yopOΔ2-427 yopE21 yopHΔ1-

352 yopM23 yopP23 yopT135 Δasd 

(35) 

pYV- -- Lacking pYV40 plasmid  

AD4085 Wild-type egfp-yscQ (35) 

AD4442 Wild-type eyfp-yscQ This work 

AD4459 Wild-type pamcherry1-yscL This work 

AD4601 Wild-type eyfp-yscQ, ΔyscL This work 

AG0001 pYV- pBAD-eYFP-YscQ This work 

AG0002 pYV- pBAD-eYFP-YscQM218A This work 

AG0003 Wild-type pAH12-eYFP This work 

AG0004 Wild-type pAH12-PAmCherry1 This work 

AG0005 pYV- pBAD-PAmCherry1-YscL This work 

AD4419 Wild-type ΔyscQ (48) 

 ΔyscQ pBAD-eYFP-YscQ This work 

 ΔyscQ pBAD-eYFP-YscQM218A This work 
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Table 4.3: Confidence intervals obtained by bootstrapping.   

 eYFP-SctQ Secretion ON   eYFP-SctQ Secretion OFF 

 

Population 

 Fraction 

Diffusion  

Coefficient   

Population  

Fraction 

Diffusion  

Coefficient 

 min mean max min mean max    min mean max min mean max 

State 1 0.16 0.17 0.19 1.06 1.09 1.14   State 1 0.22 0.23 0.24 0.94 0.97 1.01 

State 2 0.35 0.36 0.37 3.84 3.92 4.21   State 2 0.37 0.41 0.42 3.71 3.92 3.97 

State 3 0.20 0.23 0.24 13.43 13.62 15.00   State 3 0.00 0.01 0.10 6.65 9.61 11.50 

        State 4 0.07 0.14 0.15 15.00 15.16 17.55 

               

 eYFP-SctQ pYV-   eYFP-SctQM218A pYV- 

 

Population  

Fraction 

Diffusion  

Coefficient   

Population 

 Fraction 

Diffusion 

 Coefficient 

 min mean max min mean max   min mean max min mean max 

State 1 0.05 0.08 0.11 0.75 0.96 1.19  State 1 0.03 0.03 0.04 0.71 0.80 1.03 

State 2 0.68 0.76 0.82 3.43 3.57 3.70  State 2 0.15 0.35 0.51 6.53 6.84 7.70 

State 3 0.00 0.07 0.33 8.89 9.91 10.64  State 3 0.24 0.50 0.95 10.06 10.31 11.7 

State 4 0.00 0.00 0.06 11.00 13.72 17.55  State 4 0 0.07 0.19 11.97 13.55 15.1 

               

 

 

PAmCherry1-SctL Secretion ON   

 

 

PAmCherry1-SctL Secretion OFF 

 

Population  

Fraction 

Diffusion  

Coefficient   

Population 

 Fraction 

Diffusion 

 Coefficient 

 min mean max min mean max   min mean max min mean max 

State 1 0.01 0.04 0.09 0.41 0.55 0.65  State 1 0.09 0.14 0.21 0.49 0.56 0.66 

State 2 0.05 0.13 0.18 0.82 1.01 1.09  State 2 0.10 0.17 0.22 0.99 1.09 1.26 

State 3 0.05 0.08 0.12 1.33 1.71 1.97  State 3 0.05 0.06 0.08 3.34 3.93 4.75 

State 4 0.05 0.07 0.09 5.09 5.88 6.00  State 4 0.04 0.05 0.06 13.69 15.21 18.28 

State 5 0.05 0.06 0.07 13.68 14.97 17.88         
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 PAmCherry1-SctL pYV-   eYFP 

 

Population  

Fraction 

Diffusion  

Coefficient   

Population  

Fraction 

Diffusion  

Coefficient 

  min mean max min mean max   min mean max min mean max 

State 1 0.08 0.13 0.18 0.49 0.63 0.75  State 1 1.00 1.00 1.00 11.12 11.26 11.38 

State 2 0.32 0.40 0.51 1.50 1.76 2.00         

State 3 0.15 0.25 0.34 3.57 3.96 4.74         

State 4 0.05 0.07 0.10 11.50 14.73 17.61         

 PAmCherry1   eYFP-SctQ, ΔSctL 

 

Population  

Fraction 

Diffusion  

Coefficient   

Population 

 Fraction 

Diffusion 

 Coefficient 

 min mean max min mean max   min mean max min mean max 

State 1 0.08 0.13 0.19 2.10 2.84 3.90  State 1 0.12 0.13 0.16 1.04 1.12 1.21 

State 2 0.62 0.67 0.72 14.64 15.34 15.89  State 2 0.58 0.60 0.61 3.81 3.89 4.07 

        State 3 0.14 0.15 0.16 11.36 11.57 11.81 
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Table 4.4: Mean apparent diffusion coefficients (D* > 0.15 µm2/s) for all data sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Mean D* (µm2/s) 

eYFP-SctQ Secretion ON 1.69 

eYFP-SctQ Secretion OFF 1.43  

eYFP-SctQ pYV- 1.30 

eYFP-SctQM218A pYV- 2.35 

eYFP-SctQ, ΔSctL 1.33 

PAmCherry1-SctL Secretion ON 1.10 

PAmCherry1-SctL Secretion OFF 0.86 

PAmCherry1-SctL pYV- 1.07 

eYFP 2.87 

PAmCherry1 2.93 
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5.1 Abstract 

The trajectory of a single protein in the cytosol of a living cell contains information 

about its molecular interactions in its native environment. However, it has remained 

challenging to accurately resolve and characterize the diffusive states that can manifest in 

the cytosol using analytical approaches based on simplifying assumptions. Here, we show 

that multiple intracellular diffusive states can be successfully resolved if sufficient single-

molecule trajectory information is available to generate well-sampled distributions of 

experimental measurements and if experimental biases are taken into account during data 

analysis. To address the inherent experimental biases in camera-based and MINFLUX-

based single-molecule tracking, we use an empirical data analysis framework based on 

Monte Carlo simulations of confined Brownian motion. This framework is general and 

adaptable to arbitrary cell geometries and data acquisition parameters employed in 2D or 

3D single-molecule tracking. We show that, in addition to determining the diffusion 

coefficients and populations of prevalent diffusive states, the timescales of diffusive state 

switching can be determined by stepwise increasing the time window of averaging over 

subsequent single-molecule displacements. Time-averaged diffusion (TAD) analysis of 

single-molecule tracking data may thus provide quantitative insights into binding and 

unbinding reactions among rapidly diffusing molecules that are integral for cellular 

functions.     
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5.2 Introduction 

Several approaches have been developed in recent years to extract the diffusion 

rates and population fractions of different diffusive states that manifest for unbound 

molecules in confined cellular environments. These approaches account for confinement 

effects by the cell boundaries either (semi-)analytically (129-132) or numerically through 

Monte Carlo simulation of Brownian diffusion trajectories (124, 128, 133-135). Here, we 

test and experimentally validate a numerical analysis framework based on Monte Carlo 

simulations for both 2D and 3D single-molecule tracking in bacterial cells (Fig. 5.1). By 

explicitly accounting for confinement as well as ‘motion-blur’ of diffusing molecules 

inside small bacterial cells, we extract the unconfined diffusion coefficients for two 

genetically encoded fluorescence proteins, eYFP and mEos3.2, in living Y. enterocolitica 

cells. Using simulated 2D or 3D single-molecule tracking data of known diffusive state 

composition, we quantify to what extent two or more simultaneously present diffusive 

states can be resolved by numerical fitting of the displacement or apparent diffusion 

coefficient distributions. Finally, we consider the influence of dynamic transitions between 

different diffusive states that may manifest upon association and dissociation of freely 

diffusing molecules. We propose a new approach, based on time-averaged diffusion (TAD) 

analysis, to determine the timescales of such association and dissociation dynamics. We 

conclude that quantitative numerical analysis of 2D and 3D single-molecule trajectories 

can provide accurate estimations of diffusion rates, population fractions, and 

interconversion rates of prevalent intracellular diffusive states. Such information is crucial 
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for investigating the dynamic molecular-level events that regulate the functional outputs of 

signaling and control networks in living cells. 

 

5.3 Materials and Methods 

5.3.1 Super-resolution Fluorescence Imaging Setup  

Experiments were performed on a custom-built dual-color inverted fluorescence 

microscope as described in section 4.3.4. 

 

5.3.2 Data Analysis 

Raw image processing and analysis for DHPSF (3D) images was carried out as 

described in section 3.1. Standard (2D) PSF images were analyzed using centroid 

estimation (166). Single molecule localizations were assigned to individual cells as 

described in section 3.2.1. Analysis of high density regions of localizations was carried out 

as described in section 3.2.2. Single-Molecule Tracking was performed as described in 

section 3.3.1. To resolve the unconfined diffusion coefficients of experimentally measured 

apparent diffusion coefficients, we performed Monte Carlo simulations of confined 

Brownian motion as described in section 3.3.2 for 3D simulations. However, the procedure 

in section 3.3.2 was slightly modified for 2D simulations. For 2D simulations, we summed 

50 standard PSFs (approximated as 2D Gaussians with FWHM ~ 325 nm) corresponding 

to 50 periodically sampled positions of a fluorescent emitter during the camera exposure 
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time (25ms). Because the DHPSF has a larger cross section than the standard PSF, fewer 

photons are necessary for localizing emitters in 2D. To match photon counts measured 

experimentally, we scaled the photon count of each simulated image to 500 photons per 

localization for the standard PSF and 1000 photons per localization for the DHPSF. To 

normalize to the total photon budget, we simulated 3D trajectories with 5 displacements 

(3D) and 2D trajectories with 11 displacements. Experimental distributions of apparent 

diffusion coefficients or displacements were fit using a linear combination of simulated 

distributions as described in section 3.3.3.  

 

5.3.6 Simulation of MINFLUX Trajectories 

To simulate experimental tracking data obtained by MINFLUX microscopy, we 

first computed three-dimensional isotropic Brownian motion trajectories, sampled at high 

time resolution and confined within a spherocylinder of length l = 5 μm and radius 

r = 0.4 μm (same as for camera-based tracking). The short time-step for each displacement 

was 1 μs and the total trajectory length was 20 ms. We assumed exponentially distributed 

fluorescence blinking on- and off-times with ton  = 2 ms and toff  = 0.6 ms, in agreement 

with experimental measurements of the fluorescent protein mEos2 (167). As before, we 

simulated 5000 trajectories for 64 diffusion coefficients in the range of 𝐷 ∈ [0.05,15] μm2/s 

to create libraries of distributions used for fitting of simulated experimental data. We then 

projected the 3D motion trajectories onto the xy-plane and tracked the blinking emitters 

using a doughnut intensity profile scanned over the emitter using a 4-step multiplex cycle, 

as described previously (167). The doughnut size parameter was set to fwhm = 800 μm and 
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the field-of-view scanning parameter was set to L = 400 μm. Choosing larger values for 

fwhm and L minimizes the probability of fast moving emitters (D > 5 μm2/s) escaping from 

the MINFLUX observation region during tracking. The multiplex cycle time was Δt = 

200 μs. To account for motion blurring during a multiplex cycle, we considered the 

excitation and emission probabilities from each of the computed emitter positions (sampled 

at 1 μs time steps). The detected photon counts were assumed to follow Poisson statistics. 

Emitter localization was performed with the previously described modified least mean 

squared (mLMS) estimator (167), with 𝑘=2, β0 = 0.96 and β1 = 5.75. The resulting 

trajectories each had 100 localizations, which were sampled every 200 μs.  

 

5.3.7 Modeling State Transition Simulation 

 To address the effect of a dynamic equilibrium between two diffusive states, we 

simulated trajectories for which one or more state transitions take place during a single-

molecule trajectory. 3D state-switching trajectories were simulated with track lengths of 5 

displacements. 2D MINFLUX state-switching trajectories were simulated with track 

lengths of 99 displacements. We considered a two-state system in which molecules spend 

equal amounts of time in each state, resulting in a populations fractions of 50% for each 

state. The average time, T, that a molecule takes to switch from one state to the other and 

back again is 

 𝑇 = 𝑡1 +  𝑡2 (5.1), 

where t1 and t2 are the average time spent in states 1 and 2, respectively. The state-switching 

kinetics were modeled as follows: Each individual molecule trajectory randomly started in 
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one of the two states. The time t spent in a given state before transitioning to the other was 

modeled as the exponential decay 

 𝑝(𝑡) = 𝑒
− 

𝑡

𝑡1 (5.2)  

Thus, the time spent in a given state is given by 

 t =  − ln(𝑝(𝑡)) ∙ 𝑡1 (5.3) 

where the value of p(t) was a value between 0 and 1 randomly chosen from a uniform 

distribution. This process was repeated, allowing the molecule to switch back and forth 

between the two states, until the total amount of time reached the total length of the 

trajectory. State-switching trajectories were then simulated for camera-based or 

MINFLUX-based tracking as described above.  

 

5.3.8 Bacterial Strains and Plasmids  

 Plasmids for the inducible exogenous expression of fluorescent and fluorescently-

tagged proteins were derived from IPTG-inducible pAH12 and arabinose-inducible pBAD 

vectors. The coding sequences of eYFP were PCR amplified using Q5 DNA polymerase 

(New England Biolabs, Ipswich, Maine) from pXYFPN-2 (156). The PCR product was 

isolated using a gel purification kit (Invitrogen, Carlsbad, California) and used as a 

megaprimer for amplification and introduction into a pAH12-derivative containing a 

kanamycin resistance cassette, LacI, and a lac promoter to generate pAH12-eYFP. The 

pAH12 backbone was a gift from Carrie Wilmot. 
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For the pBAD-mEos3.2, the protein coding sequence was amplified from a 

mEos3.2-N1 plasmid, gifted to us by Michael Davidson (Addgene plasmid # 54525). The 

PCR products were gel purified, and both the PCR products and the pBAD-backbone were 

digested with EcoRI and XhoI restriction enzymes (New England Biolabs). Digested 

vector and inserts were ligated using T4 DNA ligase and transformed into E. coli TOP10 

cells. Colonies were PCR screened for presence of correct insert using GoTaq DNA 

Polymerase (Fisher Scientific, Hampton, New Hampshire), and plasmid was isolated from 

positive clones (Omega Biotek, Norcross, Georgia) 

All plasmids were sequenced by GeneWiz (South Plainfield, New Jersey) prior to 

electroporation into Y. enterocolitica for analysis. Transformed cells were plated on LB 

agar [10 g/L peptone, 5 g/L yeast extract, 10 g/L NaCl, 1.5% agar] (Fisher Scientific, 

Hampton, New Hampshire) containing kanamycin [50 µg/mL] or ampicillin [200 µg/mL]. 

For electroporation of Y. enterocolitica pIML421asd cells, recovery media and plates also 

contained diaminopimelic acid (dap). A list of all strains and plasmids can be found in 

Table 5.1. 

 

5.3.9 Cell Culture 

Y. enterocolitica cultures were inoculated from a freezer stock in BHI media 

(Sigma Aldrich, St. Louis, Missouri) with nalidixic acid (Sigma Aldrich) [35 µg/mL] and 

2,6-diaminopimelic acid (Chem Impex International, Wood Dale, Illinois) [80 µg/mL] one 

day prior to an experiment and grown at 28°C with shaking. After 24 hours, 300 µL of 

overnight culture was diluted in 5 mL fresh BHI, nalidixic acid, and diaminopimelic acid 
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(dap) and grown at 28°C for another 60-90 minutes. In addition, inoculation media also 

contained kanamycin or ampicillin for pAH12- or pBAD-based plasmids, respectively. 

Cultures of cells containing pAH12- or pBAD-based plasmids were induced with IPTG 

(Sigma Aldrich) [0.2 mM, final] or arabinose (Chem Impex) [0.2%], respectively, for the 

final 2 hours of incubation. Cells were pelleted by centrifugation at 5000 g for 3 minutes 

and washed 3 times with M2G (4.9 mM Na2HPO4, 3.1 mM KH2PO4, 7.5 mM NH4Cl, 0.5 

mM MgSO4, 10 µM FeSO4 (EDTA chelate; Sigma), 0.5 mM CaCl2) with 0.2% glucose as 

the sole carbon source). The remaining pellet was then re-suspended in M2G and dap. Cells 

were plated on 1.5 – 2% agarose pads in M2G containing dap. 

 

5.4 Results and Discussion 

5.4.1 eYFP and mEos3.2 undergo confined Brownian Diffusion in Y. enterocolitica 

To experimentally validate the numerical analysis framework based on Monte 

Carlo simulations of confined diffusion, we tracked the 3D motion of individual eYFP and 

mEos3.2 fluorescent proteins in living Y. enterocolitica cells. Previous studies in E. coli 

(134, 168) and C. crescentus (169) have established that small cytosolic proteins undergo 

Brownian motion.  Non-specific interactions due to macromolecular crowding reduce the 

diffusion coefficient for small cytosolic proteins, but do not by themselves lead to 

measurable deviations from normal Brownian diffusion (170). In contrast, the motion of 

large macromolecular complexes (>30 nm in diameter) is best described by anomalous 

diffusion due to glass-like properties of the bacterial cytoplasm (171).  
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The experimentally measured distributions of apparent diffusion coefficients are fit 

well using a single diffusive state with D = 11.5 µm2/s (for eYFP, Fig. 5.2a) and D = 15.0 

µm2/s (for mEos3.2, Fig. 5.2b).  The close agreement between simulations and experiment 

confirms that the assumption of spatially confined Brownian diffusion is valid for both 

eYFP and mEos3.2 in Y. enterocolitica under our experimental conditions. These diffusion 

coefficient values are in agreement with previously measured values of GFP in bacteria 

(134, 159, 172-176). The structure and molecular weights of eYFP (27 kDa) and mEos3.2 

(26 kDa) are very similar. The differences in their diffusion coefficients may thus be due 

to differences in non-specific transient interactions with other cellular components. We 

also note that there is a small (6% or less) stationary (<0.5 µm2/s) population for both 

fluorescence proteins. We find small numbers of stationary trajectories in all of our single-

molecule tracking datasets, which indicates that even freely diffusing cytosolic proteins 

may become immobilized. However we did not find that that these stationary molecules 

exhibit any subcellular preference. 

 

5.4.2 2D vs 3D Single-Molecule Tracking to Estimate Diffusion Coefficients 

Most single-molecule tracking results reported to-date utilize the standard PSF for 

2D single-molecule tracking. Acquiring 3D trajectories requires engineered PSFs, such as 

astigmatic, double-helix, or tetra-pod PSFs (99, 101-103, 177, 178). A common feature of 

engineered PSFs is their increased footprint on the detector compared to the standard PSF. 

Due to their increased size, engineered PSFs require higher photon counts to achieve lateral 

localization precisions equivalent to those obtained with the standard PSF. Given the finite 
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photon-budgets of fluorescent labels, 2D tracking can thus yield longer single-molecule 

trajectories that contain roughly twice the number of displacements than 3D trajectories 

acquired with engineered PSFs.  

To determine whether diffusion coefficients are more accurately estimated by 2D 

or by 3D tracking, we repeated the 3D DHPSF simulations using the standard PSF. We 

generated simulated distributions of apparent 2D diffusion coefficients in the same way as 

for the 3D data (5.3 Materials and Methods). However, the simulated 2D trajectories had 

twice as many displacements as the 3D trajectories to provide an equivalent total photon 

count over the course of a trajectory. We found that the resulting 2D apparent diffusion 

coefficient distributions are broader and their peaks are systematically right-shifted 

compared to their 3D equivalents (Fig. 5.3a). The increased left-shift of the 3D distribution 

is due to the additional confinement of the molecule’s motion in the z-dimension that is not 

measured in 2D tracking.   

We then performed numerical fitting of simulated 2D tracking data to estimate the 

diffusion coefficient.  We found that there is a slight increase in accuracy when fitting 2D 

data compared to 3D data for a single diffusive state, particularly for fast diffusion. (Fig. 

5.3b,c). The improved accuracy of 2D tracking may be due to the decreased similarity of 

the 2D distributions for fast diffusion coefficients (Fig. 5.7), which enables more accurate 

parameter estimation.  
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5.4.3 Single-molecule tracking can be used to resolve different diffusive states 

 The free fluorescent proteins examined in the previous section each exhibited a 

single predominant diffusive state, which means that these two proteins do not exhibit 

stable interactions with other cellular components. This property is important for their use 

as non-perturbative labels that do not alter the diffusive behaviors of the target proteins 

beyond an overall reduction in their native diffusion rate. An overall reduction in diffusion 

rate is expected due to the increased molecular weight and hydrodynamic radius of the 

fusion protein. If the target protein stably interacts with cognate binding partners to form 

homo- or heterooligomeric complexes of different sizes, then single-molecule tracking of 

non-perturbatively labeled target proteins may be used to resolve the corresponding 

diffusive states. Examples of different diffusive states reported in the recent literature 

include the cytosolic pre-assembly of the bacterial type 3 secretion system proteins SctQ 

and SctL (119), ternary complex formation of the elongation factor Tu (EF-Tu) which can 

bind to aminoacyl-tRNA, GTP, and translating ribosomes(128), the nucleotide excision 

repair initiation molecule UvrB (125),  and short-lived ribosome binding of EF-P(124).  

To test the resolving capability of single-molecule tracking, we simulated mixed 

distributions of 3D displacements or apparent diffusion coefficients that contain two 

different diffusive states. We then fit these distributions to obtain the unconfined diffusion 

coefficients and relative population fractions of each diffusive state. By systematically 

varying the diffusion coefficients, we assessed the error in the optimized fitting parameters 

for various combinations. We examined both equal (50:50) and unequal population 

fractions (80:20). In all cases, the distributions were based on 5000 trajectories with five 
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displacements each. We found that the errors in the optimized fitting parameters increased 

when the diffusion coefficients were similar, as evidenced by the wedge-shaped diagonal 

(Fig. 5.4a). Slight differences in diffusion rate are thus more readily resolved for slowly 

diffusing molecules than for faster moving ones. We reason that the ability to resolve fast 

diffusive states is further compromised by the confinement effect, which causes the 

distributions of apparent diffusion coefficients to become more similar in the high diffusion 

coefficient limit (Fig. 3.2c). 

Current detector technologies, in particular large field-of-view sCMOS detectors, 

have made it possible to readily acquire single-molecule trajectories in thousands of cells 

in a single imaging session. Thus, 5,000 trajectories can be obtained even for proteins 

expressed at low levels. For highly expressed proteins up to 100,000 trajectories can be 

obtained. We therefore repeated our analysis using distributions based on 100,000 

trajectories. As expected, the errors in the parameter estimates decreased (~7% on average) 

when fitting the now more thoroughly-sampled distributions (Fig. 5.9). Therefore, the 

resolving capability improves when additional measurements are available to sample the 

shape of experimental distributions. However, larger errors persist along the diagonal of 

the error matrices, highlighting the difficulty in resolving states with similar diffusion 

coefficients. When the population fractions are split 80:20, larger errors manifest due to 

the smaller number of proteins in the diffusive state with a 20% population fraction. In 

those cases, the relative error in the smaller fraction can approach 100%, i.e. the smaller 

fraction is completely eliminated when the fitting routine converges on a one-state solution 

(5.3 Materials and Methods).  
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To test whether the above results may be extrapolated to more complex state 

distributions, we simulated a few selected examples of mixed distributions containing three 

and four diffusive states, maintaining N = 5000 total trajectories in each case. We found 

that three states can be simultaneously resolved as long as their diffusion coefficients are 

sufficiently different and their population fractions are similar (Fig. 5.10a). Again, the 

errors in the fitting parameters increase for faster (i.e. more similar) diffusion coefficients 

(Fig. 5.10b). In the case of a 4-state population, the distribution is best fit with a 3-state 

results, even when the values of the diffusion coefficients are well separated (Fig. 5.10c). 

Specifically, the two fastest states are combined into a single state with a correspondingly 

larger population fraction. The 3- and 4- state simulations thus recapitulate the trends 

observed for binary diffusive state mixtures.    

To test whether 2D tracking is also more discriminating when multiple diffusive 

states are present, we constructed simulated 2-state distributions of apparent diffusion 

coefficients based on 2D data. Again, we observed only a slight increase in the accuracy 

of the fitting (~3%) for the 2D fitting compared to 3D for a two state fitting (Fig 5.4b). We 

therefore conclude that 2D and 3D single-molecule tracking are roughly equivalent in their 

ability to resolve different diffusive states. We note however that 3D single-molecule 

localization microscopy has the additional advantage of providing more detailed spatial 

information on the subcellular locations of diffusing molecules, which may provide 

important additional information in select cases. We also note that the above analysis only 

pertains to diffusion of cytosolic proteins. The diffusion of membrane proteins is subject 

to different confinement effects that may make it more appropriate to track in 3D (120).  
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5.4.4 Transitions between diffusive states  

 Thus far, we have only considered diffusive states that do not interconvert on the 

time-scale of a single-molecule trajectory (~100-300 ms on average). Under physiological 

conditions, however, molecules may frequently bind to or dissociate from cognate 

interaction partners and thereby transition between different diffusive states. The time-

resolution for making single-step displacement measurements (~25 ms) is shorter than the 

time resolution for determining apparent diffusion coefficients (~5 ∙ 25 ms = ~125 ms). We 

therefore hypothesized that, in the presence of diffusive state switching, more accurate 

parameter estimates may be obtained by fitting single-step displacement distributions. To 

test this hypothesis, we simulated distributions for two states, D1 = 1 µm2/s and D2 = 10 

µm2/s, that can interconvert on timescales comparable to a single-molecule trajectory. We 

then gradually decreased the average diffusive state switching time T = (k1)
-1 + (k2)

-

1 = t1 + t2 and imposed k1 = k2 to keep the population fractions equal (5.3 Materials and 

Methods). To fit the single-step displacement distributions, we generated a library of 

simulated single-step displacement distributions as described before for apparent diffusion 

coefficients (Fig. 5.8). Both the apparent diffusion coefficient distributions and single-step 

displacement distributions were then fit with their respective library. To quantify the 

overall accuracy of the fit, we averaged the relative errors of all fitting parameters (in this 

case the diffusion coefficients D1 and D2 and the population fractions f1 and f2 = 1 – f1. We 

found that, in the limit of infinitely long switching times (no state transitions), both 

approaches produce parameter estimates with similar accuracy (Fig. 5.5a,b and Fig. 5.11). 

As the average switching time is decreased, the mean relative errors start to increase for 
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both methods. Importantly, fitting distributions of apparent diffusion coefficients produced 

parameter estimates that deviated sooner from the ground truth (as a function of decreasing 

average switching time) than those obtained by fitting single-step displacement 

distributions. In the limit of short switching times, fitting of both the apparent diffusion 

coefficient and single-step displacement distributions produced large errors, because a 

single molecule can sample both diffusive states repeatedly during the timescale of the 

measurement. When using 25 ms exposure times, accurate parameter estimates can be 

made for this two-state system, if T > 75 ms and T > 500 ms for displacement and apparent 

diffusion coefficient fitting, respectively. For accurate extraction of the parameters, the 

time resolution of the measurement should be about three times shorter than the average 

switching time T.   

The above observations suggest that it should be possible to estimate the timescale 

of diffusive state switching by time-averaged diffusion (TAD) analysis, i.e. by varying the 

number of averaged displacements. We therefore evaluated the apparent diffusion 

coefficients for overlapping sub-trajectories having different numbers of 

displacements/localizations. Specifically, within each single-molecule trajectory, we 

define overlapping sub-trajectories with Ni localizations and Ni -1 displacements. The 

number of sub-trajectories for a given Ni is S=N-Ni+1, where N is the number of 

localizations in the full-length trajectory. Defining the first localization in the sub-

trajectories as P, we modified Eqn 3.1 to  

 𝑀𝑆𝐷𝑁𝑖,𝑃 =
1

𝑁𝑖−1
∑ (𝑥𝑛 −𝑥𝑛− 1)2𝑁𝑖+𝑃−1

𝑛=𝑃+1  (5.4), 
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to obtain mean squared displacement values for different sub-trajectory lengths and starting 

points, namely Ni = 2, 3, …, 6 and P=1…S.  

Based on these sets of observables, we generated five new apparent diffusion 

coefficient libraries corresponding to the five different values of Ni (on average our 

experimental 3D trajectories are 5 displacements long). The state-switching trajectories 

were then re-analyzed using Eqn 5.4 and fit with the corresponding library. Again, we used 

the mean relative error over all fitting parameters to quantify the overall accuracy of the fit 

for each value of Ni (Fig. 5.5c). Consistent with the results above, the accuracy of the fitting 

parameters is poor for short switching times and good for long switching times. 

Importantly, the mean relative errors are constant for all Ni in both of these limiting cases. 

Thus, if the state switching time is substantially shorter or longer than the time resolution 

of the measurement, then the mean error does not change. In contrast, the mean errors 

increase for increasing Ni, if switching times are comparable to the timescale of a single-

molecules trajectory (0.05-0.5s). The same trends are also observed when plotting the 

individual parameter fitting results (Fig. 5.5d). Based on these results, we conclude that 

the timescale of diffusive state switching can be estimated by determining the rate of 

change of individual fitting parameters as a function of the number of averaged 

displacements. For example, based on the results in Fig. 5.5c,d, observing a consistent 

increase or decrease of individual fitting parameters as a function of Ni would indicate a 

diffusive state switching time between 20 and 500 ms. We note that the ground truth is 

unknowable in experimental work. We therefore computed an error relative to the 

parameter values obtained when fitting single displacement distributions (i.e. Ni = 2). 

Single displacement distributions offer the best time resolution and thus should be least 
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affected by diffusive state averaging. The parameter deviations relative to the parameter 

estimates at Ni  = 2 displayed similar trends as those referenced to the ground truth 

(Fig. 5.5e).  

 It is clear that the dynamic range of TAD analysis improves if trajectories contain 

a large number of displacements. However, in camera-based tracking of fluorescent fusion 

proteins, only N = 5 or N =12 displacements can be observed on average for 3D and 2D 

tracking, respectively. Longer trajectories can be acquired using chemical dyes (130, 179, 

180) or multiple fluorophores as labels (181), but potential of non-specific labeling or the 

size of multivalent fluorescent tags have to be weighed against this benefit. An important 

advantage of camera-based tracking is that the temporal dynamic range is tunable to access 

slow switching timescales (>500 ms) by adjusting the exposure time and/or by acquiring 

single-molecule trajectories in time-lapse mode (128, 133, 182). On the other hand, 

exposure times shorter than a few milliseconds come at the expense of data acquisition 

throughput, because the full chip of current sCMOS cameras cannot be read out faster than 

100 Hz (128). Thus, faster timescales are difficult to assess by camera-based tracking.  

A solution to access faster time scales is MINFLUX microscopy (167). The time 

resolution of MINFLUX-based single-molecule tracking is two orders of magnitude better 

than camera-based tracking (0.2 ms vs 25 ms) and the number of localizations N is larger 

by one order of magnitude (N~100 vs. N~10). MINFLUX microscopy may thus be able to 

provide access to state switching dynamics on 0.2 ms to 20 ms timescales, whereas camera-

based tracking can cover state switching dynamics on millisecond to minute timescales. To 

test the capability of MINFLUX microscopy to quantify fast state switching times, we 

applied TAD analysis to simulated MINFLUX data. MINFLUX trajectories were 
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generated in the same way as the camera-based trajectories, i.e. through Monte Carlo 

simulations of confined Brownian diffusion, but the MINFLUX localization algorithm was 

used instead of PSF fitting (5.3 Materials and Methods). We then used libraries of  

Ni-fold averaged MINFLUX displacement distributions to fit state-switching trajectories 

for different switching times T (D1 = 1 µm2/s, D2 = 10 µm2/s, k1 = k2). We found that the 

mean % error vs. Ni curves (Fig. 5.6a) displayed two key characteristics that correlate 

linearly with switching time T or with switching rate 1/T. First, for each switching time T, 

there exists a threshold value Ni,T, after which the mean % error increases linearly as a 

function of Ni. Ni,T and T are linearly correlated (Fig. 5.6a,b). Second, the slope of the 

initial linear increase and the switching rate 1/T are linearly correlated as well (Fig 5.6a,c). 

Based on these linear relationships, we conclude that the timescale of state transitions can 

be determined from the position of Ni,T and from the slope of the following linear increase. 

Since the ground truth is not accessible by experiment, we repeated the above 

analysis by referencing all parameter estimates to the parameters obtained at Ni = 3 (Fig. 

5.6d). Ni = 3 corresponds to a time resolution of 600 µs. The curves obtained by plotting 

the mean % deviation from the Ni = 3 parameter estimates vs. Ni displayed the same 

characteristic linear increases as a function of Ni. The onset of the linear increase Ni,T and 

the slope of the linear increase still correlated linearly with T and 1/T, respectively (Fig. 

5.6d,e,f). These results show that the switching rate between two diffusive states can be 

reliably determined by TAD analysis of 2D and 3D single-molecule tracking data. 
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5.5 Conclusions 

 In this work, we present and test a robust analysis method for estimating diffusive 

state parameters of fluorescently labeled biomolecules in confined bacterial cell volumes 

based on single-molecule tracking. We show that it is possible to resolve the unconfined 

diffusion coefficients and the population fractions of multiple diffusive states based on a 

few thousand short single-molecule trajectories obtained by camera-based tracking. The 

numerical analysis framework presented is generally applicable to both 2D and 3D tracking 

and any confinement geometry. We show that 2D and 3D single-molecule tracking are 

roughly equivalent in their ability to resolve multiple diffusive states. To address the issue 

of diffusive state switching during the timescale of measurement, we propose time-

averaged diffusion (TAD) analysis. By averaging over different number of subsequent 

displacements, the timescale of state switching can be determined, if that timescale is 

comparable to the duration of the recorded trajectories. For example, MINFLUX 

microscopy can provide access to state switching dynamics occurring on 2-200 ms 

timescales using data acquisition parameters relevant for fluorescent protein localization 

in living cells. On the other hand, camera-based tracking can be used to detect state 

switching dynamics on 20 ms to seconds timescales either by using longer exposure times 

or by acquiring data in time-lapse mode. TAD analysis of experimental single-molecule 

trajectories thus provides a general and robust approach to quantify the diffusive states and 

diffusive state transitions that manifest in living cells.  
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Figure 5.1. Diagram of numerical diffusion fitting analysis workflow. Experimental and 

simulated data are analyzed using the same data processing routines so that experimentally 

determined apparent diffusion coefficient (or displacement) distributions can be analyzed 

using linear combinations of simulated distributions. 
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Figure 5.2. The 3D diffusion of cytosolic fluorescent proteins eYFP and mEos3.2 in 

Y. enterocolitica can be explained using a single diffusive state. (a) eYFP diffuses at 11.5 

µm2/s (red). (b) mEos3.2 diffuses at 15.0 µm2/s (red). A small fraction (<6%) of stationary 

trajectories is present in both datasets (blue). The total fit is shown as a dashed black line.   
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Figure 5.3. Comparison of 2D and 3D tracking. (a) Comparison of 2D and 3D apparent 

diffusion coefficient distributions corresponding to 1 µm2/s and 10 µm2/s. The distributions 

for 3D tracking are left-shifted to a larger extent due to the additional confinement in the 

3rd dimension. (b,c) Relative errors in determining the diffusion coefficient of a single 

diffusive state using 2D (b) and 3D (c) single-molecule tracking. Shown are the averages 

and standard deviations of four independent simulations containing N = 5000 trajectories 

each resampled 10 times by bootstrapping. 
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Figure 5.4. Multiple diffusive states can be resolved by numerical fitting of single-

molecule tracking data using 2D and 3D tracking. (a,b) Relative errors for determining the 

diffusion coefficients and population fractions of binary mixtures of diffusive states using 

3D (a) and 2D (b) tracking. The relative population fractions in the two state mixtures were 

either 50%-50% (left) or 20%-80% (right). The relative error for each fitting parameter 

(diffusion coefficients D1 and D2, and their corresponding population fractions f1 and f2) is 
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represented as a matrix for different diffusion coefficient combinations. Each pixel 

represents the mean (relative) error of the parameter’s fit value after analyzing ten datasets 

(resampled by bootstrapping) each containing 5000 tracks. 
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Figure 5.5. Resolving diffusive states in the presence of dynamic state transitions. (a) The 

mean relative errors of the fitting parameters for a 2-state mixture (D1 = 1 µm2/s, D2 = 10 
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µm2/s, 50:50 population fraction) as a function of different switching times between two 

diffusive states. The mean % error obtained by fitting the single-step displacement 

distributions diverges for T < 75 ms, whereas the mean % error obtained by apparent 

diffusion coefficient fitting diverges for T < 500 ms. (b) Individual parameter estimates as 

a function of state switching time for the same simulations as in (a). Population fraction 

f2 = 1 – f1 is not shown for clarity.  (c) The mean relative errors of the fitting parameters as 

a function of the number of averaged displacements. The shaded areas represent 10% error 

limits for each parameter. (d) Parameter estimates as a function of averaged displacements 

for the same simulations as in panel c. Color scheme is the same as the legend in panel c. 

Grey lines represent the ground truth. The fitted individual parameter value produces 

horizontal curves for both the very short (2 ms) and very long (104 ms) switching times. 

For intermediate switching times (50 ms), the fitted values trend away from the true value 

as the number of averaged displacements increases. (e) Mean deviation relative to the 

single displacement parameter estimates (Ni  = 2) for different switching times.     
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Figure 5.6. Resolving diffusive states in the presence of dynamic state transitions for 

MINFLUX data. (a) Mean % error in the parameter estimates compared to the ground truth 

for various switching times (D1 = 1 µm2/s, D2 = 10 µm2/s, k1 = k2). Initial slope 

determinations (dashed black lines) are shown for the T = 10, 20, and 40 ms datasets. The 

averaging time is the value of Ni multiplied by the multiplex cycle time Δt = 200 μs. (b) 

Averaging time at which the mean % error begins to linearly increase. (c) Slope of the 

initial linear increase of the mean % error. Switching times of 0.2 and 2 ms are not included 

here, because the linear section of their curves in panel are not sufficiently resolved. (d) 

Mean % deviation in the parameter estimates relative to the parameter estimates at Ni = 3. 

Again, initial slope determinations (dashed black lines) are shown for the T = 10, 20, and 
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40 ms datasets. (e) Averaging time at which the mean % deviation in panel d begins to 

linearly increase. (f) Slope of the initial linear increase of the mean % deviation in panel d. 

Again, switching times of 0.2 and 2 ms are not included. 
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Fig. 5.7. Examples of the apparent diffusion coefficient distribution library for 2D tracking. 
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Fig. 5.8. Examples of the displacement distribution library for 3D displacements. 
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Fig. 5.9. 3D apparent diffusion coefficient distribution fitting of 2-state populations with 

100000 trajectories for 50%-50% population fraction mixtures (left) or 20%-80% 

population fraction mixtures (right). The relative errors decrease compared to Fig 5.4a 

when the distributions are better sampled with more trajectories. 
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Fig. 5.10. Multiple diffusive state fitting examples. (a,b) 3-state distributions were 

simulated with equal population fractions of 33% each. In (a) the diffusion coefficients are 

well separated, and both the diffusion coefficients and respective population fractions were 

accurately fit. However, in (b) the diffusion coefficients were close in value, leading to 

increased error in the fitting parameters. (c) A 4-state distribution was simulated with equal 

population fractions of 25% each. The fitting algorithm determined that the best fit was 
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with a 3-state mixture. In this case, the fastest two diffusive states were combined into one 

state with an intermediate diffusion coefficient.   
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Fig. 5.11. 3D displacement distribution fitting of 2-state populations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5: Resolving Cytosolic Diffusive States in Bacteria by Single-Molecule Tracking 132 
 

 

Table 5.1. List of strains and plasmids. 

 

Strain Name Characteristics Ref 

AG0003 pAH12-eYFP (119) 

AG0006 pBAD-mEos3.2 This work 
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6.1 Introduction 

Our previous work on the T3SS detailed in Chapter 4 proposed cytosolic complex 

formation of sorting platform proteins through high-throughput 3D single-molecule 

imaging (119). Our results suggested that functional regulation of the T3SS may occur 

through formation of distinct cytosolic complexes prior to association with the membrane-

embedded injectisome. By comparing the diffusive behavior of SctQ and SctL in different 

genetic backgrounds, we were able to construct an initial model for cytosolic sorting 

platform complex composition.  

Here we present an expansion to this work, however we note that the results 

presented in this chapter are unpublished as of the writing of this dissertation. We observe 

the diffusive properties of the sorting platform proteins SctQ, SctL, and SctN in a variety 

of additional genetic backgrounds to detect the resulting differences in behavior. We show 

that all three proteins diffuse within the bacterial cytosol as components of different sized 

protein complexes. Furthermore, their diffusive properties are dependent on the secretion 

state of the system, and exhibit greater diffusion rates (and therefore smaller complexes) 

on average under secreting conditions. Our results further add to a body of work suggesting 

that T3SS regulation may occur through a dynamic network of cytosolic complex 

formation, away from the membrane-embedded injectisome. 
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6.2 Experimental Procedures 

6.2.1 Bacterial Strains and Plasmids  

 Yersinia enterocolitica strains were generated by allelic exchange as previously 

described (22, 155). Mutator plasmids harboring 250-500 bp flanking regions, the coding 

sequences of eYFP, and a glycine-rich 13 amino acid linker between the fluorescent protein 

and the target protein were introduced into E. coli SM10 λpir for conjugation with 

Y. enterocolitica pIML421asd (35). After sucrose counter-selection for the second allelic 

exchange event, fluorescent Y. enterocolitica were analyzed by PCR to confirm target 

insertion. The pBAD plasmids containing eYFP-SctN and eYFP-SctL were obtained from 

SynBio Technologies, and were transformed into the pYV- Y. enterocolitica strains 

through electroporation as described in Section 4.3.2. A list of all strains and plasmids can 

be found in Table 6.3. 

 

6.2.2 Cell Culture 

Y. enterocolitica cultures were prepared for imaging under secreting conditions as 

described in Section 4.3.2.  

 

6.2.3 Super-resolution Fluorescence Imaging  

Experiments were performed on a custom-built dual-color inverted fluorescence 

microscope as described in section 4.3.4.  
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6.2.4 Data Analysis 

Raw image processing and analysis was carried out as described in section 3.1. 

Single molecule localizations were assigned to individual cells as described in section 

3.2.1. Analysis of high density regions of localizations was carried out as described in 

section 3.2.2. Single-Molecule Tracking was performed as described in section 3.3.1. To 

resolve the unconfined diffusion coefficients of predominant molecular complexes in 

living cells based on the experimentally measured distribution of apparent diffusion 

coefficients, we performed Monte Carlo simulations of confined Brownian motion as 

described in section 3.3.2.  Experimental distributions of apparent diffusion coefficients 

were fit using a linear combination of simulated distributions as described in section 3.3.3. 

Confidence intervals for all fitting parameters were obtained by bootstrapping and are 

reported in Table 6.1. The radial distributions in Fig. 6.8 were created as described in 

section 3.2.2. 

 

6.3 Results and Discussion 

6.3.1 SctQ exhibits similar diffusive states in the absence of the inner membrane 

protein SctD compared to the wild-type background 

We previously reported that eYFP-SctQ can exist in three different cytosolic 

diffusive states in the wild-type background, with D = 1.1, 4.0, and 13.9 µm2/s and 

corresponding population fractions of 17%, 36%, and 22%  (119). We assigned these states 

to a hetero-oligomer containing SctQ and other T3SS proteins, a homo-oligomer of 
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SctQ:SctQC, and monomeric SctQ, respectively (119). Additionally, there is a stationary 

component (D < 0.5 µm2/s) with population fraction of 24%, which we assign to the 

injectisome-bound fraction of SctQ. 

 Here we observe the diffusive behavior of eYFP-SctQ in a strain lacking the inner 

membrane ring protein SctD. SctD serves as the membrane-embedded attachment site for 

the sorting platform proteins, most likely through interaction with SctK (38, 58). Therefore, 

the sorting platform proteins and complexes should not associate with the membrane-

embedded machine and the T3SS will not secrete proteins. When we tracked SctQ in a 

mutant strain lacking SctD, we observed similar diffusive states as in the wild-type 

background, with unconfined diffusion coefficients of D = 1.3, 3.9, and 13.5 µm2/s (Fig 

6.1a, Table 6.1). However, in this case the relative population fractions of the diffusive 

states were shifted to 36%, 44%, and 8%, respectively. Thus, the majority of SctQ has 

shifted towards the diffusive states with D ~ 1 and 4 µm2/s. In addition, the stationary 

component decreased by half, to 12%. Nevertheless, we do not observe dense clustering of 

SctQ localizations (Fig 6.7b) or a higher prevalence of stationary trajectories near the 

membrane in contrast to WT data sets (Fig. 6.8b). We would expect all diffusive states to 

increase in relative population fraction, since SctQ can no longer associate with the T3SS 

through sorting platform docking with SctD. However, the decrease in the relative 

population fraction for the fastest diffusive state, which we assign as monomeric SctQ, is 

somewhat unexpected. We speculate that this may arise because there is no longer 

molecular turnover of injectisome bound SctQ, as has been observed for secreting T3SSs 

(48). This molecular turnover may play a part in dissociation of monomeric SctQ from 

other sorting platform homo- or hetero-oligomeric complexes. The T3SS does not secrete 
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in the absence of SctD, so SctQ may essentially become ‘stuck’ as part of the larger 

complexes observed with D ~1 and 4 µm2/s in both the wild-type and ΔSctD backgrounds. 

 We observe similar results to the ΔSctD background in a strain lacking the ATPase 

SctN, which also eliminates secretion of effector proteins. In addition to a stationary 

component of 12%, we obtain diffusive states of D = 1.0, 3.1, and 12.0 µm2/s with 

population fractions of 36%, 44%, and 8%, respectively (Fig 6.1b). As was the case for the 

ΔSctD background, in the ΔSctN background diffusion shifts away from the assigned 

stationary and monomeric protein states towards the middle diffusive states. We do note, 

however, that there is a change in the diffusive state of 3.9 µm2/s observed in the wild-type 

background to 3.1 µm2/s in the ΔSctN background. It is possible that this state is slower 

compared to wild-type because SctQ associates with SctL at a higher rate, due to lack of 

competition with SctN. We also observed a diffusive state at D = 1.0 µm2/s. Previously, in 

our model, we assigned the D = 1.0 µm2/s diffusive state to a complex including SctQ, 

SctQc, SctL, and possibly SctK and SctN. As this state persists in the absence of SctN, 

SctN may not be a component of this large molecular weight complex. It is also plausible, 

due to the cradle-like structure of the T3SS sorting platform, the absence of SctN may not 

affect the diffusion of this large molecular weight complex as SctN sits at the center of the 

cradle, and does not increase the hydrodynamic radius of the complex (i.e. a larger 

hydrodynamic radius results in slower diffusion). 

 Interestingly, we observe low levels of eYFP-SctQ localization clustering in the 

ΔSctN mutant (Fig. 6.7c). Additionally, we observe a pronounced shift towards the 

membrane in the radial distribution of stationary trajectories (Fig. 6.8c). These results 
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demonstrate that SctQ, and possibly the rest of the sorting platform, is still able to associate 

with the membrane-embedded injectisome in the absence of the ATPase SctN. This 

interpretation is consistent with cryo-ET experiments showing decreased levels of 

assembled sorting platform proteins in the absence of the Salmonella T3SS ATPase InvC 

(38).  

 

6.3.2 SctQ forms oligomeric complexes in the absence of SctQc 

We have previously observed a diffusive state of D ~ 4 µm2/s for eYFP-SctQ in 

both the Y. enterocolitica wild-type and pYV- (cells lacking all other T3SS components) 

backgrounds (119). However, in the absence of SctQc the C-terminal fragment of SctQ, we 

no longer observed the D ~ 4 µm2/s state for eYFP-SctQM218A in the pYV- background 

(mutation of the internal translation initiation site in the sctQ coding sequence (M218A) 

results in a secretion-deficient phenotype (48, 54)). Instead, a previously unobserved state 

at D ~ 6.8 µm2/s was present, leading us to conclude that the D ~ 6.8 µm2/s state 

corresponds to an homo-oligomeric SctQ complex while the D ~ 4 µm2/s state observed in 

the presence of the C-terminal fragment corresponds to an oligomeric SctQ:SctQC complex 

(119). 

Here we have observed the diffusive behavior of eYFP-SctQM218A in the wild-type 

background (Fig 6.2, Table 6.1). Consistent with our experiment in the pYV- background, 

there is no longer a diffusive state at D ~ 4 µm2/s. The fastest state at 5.8 µm2/s may 

correspond to some homo-oligomeric SctQ complex similar to the results in the pYV- 

background. The D = 2.3 µm2/s state is reduced in speed compared to the D ~ 4 µm2/s state, 
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suggesting this is a larger oligomer than the SctQ:SctQC complex, and indicate that SctQ 

can still associate with other sorting platform proteins in the absence of SctQC. 

Additionally, we do not observe association of eYFP-SctQM218A with the membrane-

embedded injectisome (Fig 6.7a and 6.8a), consistent with the fact that this strain is 

secretion deficient (48, 54).  

 

6.3.3 SctN exists in at least 2 diffusive states in the cytosol 

Localizations obtained for the ATPase SctN in the wild-type background show 

heavy clustering near the bacterial membrane (Fig. 6.7g and 6.8g). When we tracked 

eYFP-SctN we found that a majority of trajectories (55%) were in a stationary state. These 

results together suggest that SctN is primarily associated with the T3SS, with a smaller 

fraction diffusing within the cytosol. In addition to the large stationary population, we 

found that eYFP-SctN existed in three diffusive states with D = 1.0, 2.6, and 12.4 µm2/s 

with population fractions of 16%, 21%, and 8% respectively (Fig. 3a, Table 6.1). As the 

typical error for fitting of the diffusive state parameters is ~10%, we are cautious to place 

importance of any diffusive state with a population <10%, such as the state at D = 12.4 

µm2/s. Therefore, here we will focus on the two diffusive states at D = 1.0 and 2.6 µm2/s. 

Previously we proposed that the D = 1.0 µm2/s state observed for eYFP-SctQ corresponded 

to a large diffusive complex containing SctQ, SctQc, SctL, and possibly SctK and SctN 

(119). The diffusive state seen here at D = 1.0 µm2/s for SctN is in good agreement with 

this hypothesis. In addition to this state, however, we see a state at 2.6 µm2/s. We have not 

previously observed a diffusive state at this rate for SctQ, suggesting a new diffusive 
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complex. If SctQ is not part of this complex, it is unlikely SctK would be found in a 

complex with SctN based on their locations within the sorting platform. This limits 

potential candidates of the D = 2.6 µm2/s state to a homo-oligomeric complex of SctN or a 

hetero-oligomeric complex of SctN, SctL, and potentially effector proteins. In fact, SctN 

and SctL have been shown to form hetero-trimers of SctL2-SctN in vitro (163, 183).  

We performed single-molecule tracking on eYFP-SctN in a strain lacking the inner 

membrane protein SctD. In the ΔSctD background we obtained results with similar 

diffusion coefficients as eYFP-SctN in the wild-type background, with D = 1.0, 2.3, and 

15.0 µm2/s (Fig. 6.3b, Table 6.1). However, the relative population fractions have shifted 

to 27%, 52%, and 5% respectively (from 16%, 21%, and 8%). Additionally, the stationary 

population is largely reduced, from 56% to 15%. These results mirror eYFP-SctQ in the 

wild-type and ΔSctD backgrounds, where we also see the same diffusive states present in 

both backgrounds, with the relative population fractions distributed differently. The 

complexes observed here can therefore assemble spontaneously in the cytosol prior to 

association with the membrane-embedded injectisome. 

Finally, we observed eYFP-SctN in the pYV- background. In this strain we 

observed two different states for eYFP-SctN, with diffusion coefficients of D = 1.4 and 4.3 

µm2/s, with relative population fractions of 37% and 50%, respectively (Fig. 6.3c, Table 

6.1). As we observe in most data sets, we also observe a small stationary population, 

however this fraction is not localized near the membrane (Fig. 6.8i). Assuming SctN does 

not associate with non-T3SS proteins, any observed diffusive states must correspond to 

homo-oligomeric complexes or monomeric SctN, as no other T3SS proteins are present. 

Importantly, we no longer observe the D = 2.6 µm2/s state, suggesting that this state 
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requires the presence of other T3SS proteins, most likely SctL. SctN forms a hexameric 

structure in vitro (184), and the fully assembled injectisome was estimated to contain six 

SctN subunits in situ by fluorescence microscopy (23). Therefore, we posit that the slowest 

diffusive state corresponds to a homo-hexameric complex of SctN. The slower diffusive 

state at 4.3 µm2/s should also correspond to a homo-oligomeric complex of SctN, as it is 

much slower than monomeric protein. In addition to hexamers, soluble SctN has been 

shown to form homo-trimers (185), which may explain this diffusive state. 

 

6.3.4 SctL diffuses as part of a cytosolic complex 

 Previously we observed SctL fluorescently tagged with the fluorescent protein 

PAmCherry1 (119). For consistency between all experiments, and slight differences in 

behavior between PAmCherry1 and eYFP, we repeated our SctL experiments with an 

eYFP label. Similar to SctN, localizations obtained for eYFP-SctL exhibited heavy 

clustering in the wild-type background near the bacterial membrane (Fig. 6.7d and 6.8d). 

We performed single-molecule tracking on eYFP-SctL in the wild-type background, and 

found most molecules to be in a stationary state (71%). Like SctN, SctL primarily exists as 

a T3SS associated component. We found that the remaining population exhibits three 

diffusive states at D = 1.0, 2.6, and 15.0 µm2/s with population fractions of 9%, 14%, and 

7% respectively (Fig. 4a, Table 6.1). Notably, we observe a state at 2.6 µm2/s, which was 

also observed for eYFP-SctN in the wild-type background, suggesting co-diffusion 

between the two proteins. As stated in the previous section, we are cautions to assign 

importance to the other low-abundance states (<10%) due to the error in obtaining the 
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relevant parameters. Nonetheless, the diffusive state at D = 1.0 µm2/s is in good agreement 

with the diffusive state at D ~ 1.0 µm2/s for SctQ and SctN in the wild-type background, 

suggesting a large molecular complex composed of SctQ, SctL, and SctN.  

 Similar to SctQ and SctN, we performed an initial single-molecule tracking 

experiment in the ΔSctD mutant for eYFP-SctL. The diffusive states that we obtain by 

fitting the distribution of apparent diffusion coefficients is found in Fig. 4b and Table 6.1. 

However, these states were extracted from a data set with the fewest single-molecule 

trajectories we have obtained to date from a single experiment (~1500). As we have shown 

previously, the diffusive state fitting is more reliable for higher numbers of trajectories 

(186). Therefore, we will not attempt to interpret these diffusive states at this time. Whether 

these states are real or an artifact of fitting a distribution of few trajectories is yet to be 

determined, and will require additional experiments. Nonetheless, the overall mean 

apparent diffusion coefficient can provide valuable information, and is not prone to error 

in fitting of the distributions. The mean apparent diffusion coefficient (D* > 0.15 µm2/s) 

for non-stationary eYFP-SctL in the ΔSctD background is smaller than in the wild-type 

background (0.85 and 1.46 µm2/s, respectively) (Table 6.2). Assuming our hypothesis that 

dynamic sorting platform complexes play a role in T3SS is correct, we would expect this 

result. Interestingly, in the pYV- background, SctL follows the same trend as SctQ and 

SctN of faster diffusion than in the ΔSctD mutant, at 1.24 µm2/s (Table 6.2). The fact that 

we observe slower diffusion in the ΔSctD background suggests that SctL is diffusing as 

part of a complex with other T3SS components. 
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6.3.5 Sorting platform protein dynamics depend on T3SS secretion 

 If we consider only the mean apparent diffusion coefficients for the data sets we’ve 

obtained for SctQ, SctL, and SctN, it is apparent that SctQ is the most dynamic component 

of the sorting platform. In the wild-type background, the mean apparent diffusion 

coefficient for SctQ, SctL, and SctN is 1.69, 1.46, and 1.14 µm2/s, respectively (Fig 6.5, 

Table 6.2).  In the ΔSctD mutant SctQ also exhibits a higher diffusive rate compared to 

SctL and SctN, with mean apparent diffusion coefficients of 1.15, 0.85, and 0.95 µm2/s, 

respectively. As these proteins are all of comparable size, these results suggest that overall, 

SctQ is diffusing as part of smaller complexes than SctL and SctN. Importantly, all three 

proteins shift to slower diffusion (i.e. larger complexes) in the non-secreting ΔSctD mutant. 

Faster diffusion in the presence of secreting T3SS is consistent with a model in which 

dynamic exchange of sorting-platform complexes plays a role in secretion. Furthermore, 

for all three proteins, diffusion is decreased in the ΔSctD mutant compared to the pYV- 

background (Fig. 6.5), indicating association with the other sorting platform proteins to 

form larger oligomers in the bacterial cytosol.  

 

6.4 Conclusions 

 A growing body of work suggests that dynamic cytosolic complexes of sorting 

platform proteins play a role in T3SS function (48, 49, 119). By utilizing 3D single-

molecule tracking in live bacterial cells, we have made progress towards elucidating the 

dynamic network of cytosolic complex formation. In addition to injectisome bound protein, 
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we have shown that SctQ, SctL, and SctN diffuse within the bacterial cell as part of 

cytosolic complexes. Taking into account the results from Chapter 4 as well as the new 

data presented here, we have constructed a model for T3SS sorting platform cytosolic 

complex formation (Figure 6.6). As before, the data are consistent with a model in which 

cytosolic SctQ undergoes dynamic assembly and disassembly steps to interconvert 

between at least three distinct molecular species that diffuse at different rates. We assign 

the fastest, and therefore smallest, state corresponds to SctQ monomers diffusing freely in 

the cytosol (D > 10 µm2/s). SctQ also self-assembles into oligomeric SctQ:SctQC 

complexes (D ~ 4 µm2/s), which requires the C-terminal fragment SctQC. This oligomeric 

SctQ:SctQC complex (D ~ 4 µm2/s) does not require any other T3SS sorting platform 

proteins, as the state also appears the pYV- strain, but does not appear in either the SctL or 

SctN labeled experiments. We note the possibility that SctQ:SctQC complexes contain SctK 

in wild-type cells, which has been shown to interact with SctQ (43-46). As SctQ is also 

found in a slower diffusive state at D = 1 µm2/s, we posit that SctQ: SctQC complexes 

associate with SctL, SctN, and possibly SctK to form high molecular weight complexes, 

as this state is also present in the eYFP-YscL, and eYFP-SctN data sets. The exact 

composition of the complex is unknown, however it is likely that it may be either an 

individual sorting platform pod or the entire assembled sorting platform itself. Upon 

tracking eYFP-SctN, a previously unobserved diffusive state emerged (D = 2.6 µm2/s). As 

we did not observe this state for eYFP-SctQ, the corresponding complex must not contain 

SctQ or SctK. However, the fact that this state does not appear for eYFP-SctN in the pYV- 

strain suggests that this complex is a hetero-oligomer. Likely binding partners in a sub-

complex containing SctN include SctL or possibly an effector-chaperone complex. Indeed, 
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we observe a small fraction of eYFP-SctL diffusing at D = 2.6 µm2/s in the wild-type strain, 

suggesting that this complex may be comprised of SctN and SctL. This hypothesis is in 

good agreement with the fact that SctN and SctL have been shown to form hetero-trimers 

of SctL2-SctN in vitro (163, 183). 

 While our experiments have provided valuable insight into the dynamic nature of 

the T3SS sorting platform, it is still unclear how this network of cytosolic interactions could 

regulate T3SS function. All sorting platform proteins observed here decreased in overall 

diffusivity in the absence of complete injectisomes, suggesting the proteins essentially 

become ‘stuck’ as part of larger complexes, and T3SS function may rely on association 

and dissociation of smaller complexes with the sorting platform. Such dynamic behavior 

may play a role in effector protein selection and transport to the membrane-embedded 

injectisome. Further experimentation on effector protein/chaperones dynamic behavior is 

necessary to elucidate the role of cytosolic sorting platform complex formation.  
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Figure 6.1. Diffusive behavior of eYFP-SctQ in T3SS non-functional strains. Fitting of 

the apparent diffusion coefficient distribution for eYFP-SctQ in the ΔSctD mutant (a) and 

ΔSctN mutant (b). Both data sets show depleted stationary and monomeric states compared 

to eYFP-SctQ in the wild-type strain.  
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Figure 6.2. Fitting of the apparent diffusion coefficient distribution for eYFP-SctQM218A 

mutant. In the absence of the c-terminal fragment SctQ no longer forms a homo-oligomeric 

complex at D ~ 4 µm2/s. 
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Figure 6.3. Comparison of the diffusive behavior of the ATPase SctN in different genetic 

backgrounds. Prevalent diffusive states for eYFP-SctN in the wild-type (a), ΔSctD, and 

ΔSctN strains. 



Chapter 6: Single-molecule tracking of Sorting Platform Proteins 150 
 

 

 

Figure 6.4. Comparison of the diffusive behavior of SctL in different genetic backgrounds. 

Prevalent diffusive states for eYFP-SctL in the wild-type (a), ΔSctD, and ΔSctN strains. 
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Figure 6.5. Comparison on the mean apparent diffusion coefficient (D*, µm2/s) for SctQ, 

SctL, and SctN in various genetic backgrounds. 
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Figure 6.6. Current model of cytosolic assembly of the T3SS sorting platform proteins. 

Diffusive states: <0.5 µm2/s – T3SS bound protein, 1 µm2/s – individual pods of SctK,Q,L 

and possibly N or fully assembled sorting platforms, 2.5 µm2/s – hetero-oligomer of 

SctN,SctL, 4 µm2/s – homo-oligomer of SctQ:SctQc, >10 µm2/s – monomeric protein. 
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Figure 6.7. POVray renderings of representative cells for each data set. (a) eYFP-

SctQM218A (b) eYFP-SctQ, ΔSctD (c) eYFP-SctQ, ΔSctN (d) eYFP-YscL, WT (e) eYFP-

SctL, ΔSctD (f) eYFP-SctL, ΔSctN (g) eYFP-YscN, WT (h) eYFP-SctN, ΔSctD (i) eYFP-

SctN, ΔSctN 
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Figure 6.8. Radial distribution plots for stationary (D* < 0.15 µm2/s) vs. diffusive (D* > 

0.15 µm2/s) trajectory localizations for each data set. (a) eYFP-SctQM218A (b) eYFP-SctQ, 

ΔSctD (c) eYFP-SctQ, ΔSctN (d) eYFP-YscL, WT (e) eYFP-SctL, ΔSctD (f) eYFP-SctL, 

ΔSctN (g) eYFP-YscN, WT (h) eYFP-SctN, ΔSctD (i) eYFP-SctN, ΔSctN 
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Figure 6.9. Cumulative distribution functions (CDF) for apparent diffusion coefficient 

distribution fitting. (a) eYFP-SctQM218A (b) eYFP-SctQ, ΔSctD (c) eYFP-SctQ, ΔSctN (d) 

eYFP-YscL, WT (e) eYFP-SctL, ΔSctD (f) eYFP-SctL, ΔSctN (g) eYFP-YscN, WT (h) 

eYFP-SctN, ΔSctD (i) eYFP-SctN, ΔSctN 
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Table 6.1. Fitted diffusion coefficients and relative population fractions. 

eYFP-SctQM218A 

WT 
eYFP-SctQ 

ΔSctD 
eYFP-SctQ 

ΔSctN 

(%) D (µm2/s) % D (µm2/s) % D (µm2/s) 

      13    <0.50      12   <0.50        12     <0.50 
13 (±1)   1.0 (±0.1) 36 (±4)   1.3 (±0.1)   29 (±1)    1.0 (±0.1) 
27 (±4)   2.3 (±0.2) 44 (±3)   3.9 (±0.4)   49 (±2)    3.1 (±0.1) 
48 (±4)   5.8 (±0.2)   8 (±2) 13.5 (±0.8)     9 (±1)  12.0 (±0.2) 

      
      

eYFP-SctL 
WT 

eYFP-SctL 
ΔSctD 

eYFP-SctL 
pYV- 

% D (µm2/s) % D (µm2/s) % D (µm2/s) 

      71     <0.50       20     <0.50       15     <0.50 
  9 (±1)    1.0 (±0.2) 63 (±5)    1.6 (±0.1)   38 (±2)    1.5 (±0.1) 
14 (±3)    2.6 (±0.3) 17 (±5)    4.9 (±0.6)   48 (3)    5.5 (±0.2) 
  7 (±3)  15.0 (±0.2)     

      
      

eYFP-SctN 
WT 

eYFP-SctN 
ΔSctD 

eYFP-SctN 
pYV- 

% D (µm2/s) % D (µm2/s) % D (µm2/s) 

56 <0.50 15 <0.50 13 <0.50 
16 (±2) 1.0 (±0.1) 27 (±4) 1.1 (±0.1) 37 (±5) 1.4 (±0.1) 
21 (±1) 2.6 (±0.2) 52 (±4) 2.3 (±0.1) 50 (±5) 4.3 (±0.3) 
  8 (±1)  12.4 (±1.0)   5 (±1)  15.0 (±0.5)   
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Table 6.2: Mean apparent diffusion coefficients (D* > 0.15 µm2/s) for all data sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Mean D* (µm2/s) 

eYFP-SctQM218A, WT 1.31 

eYFP-SctQ, ΔSctD 1.15  

eYFP-SctQ, ΔSctN 1.10 

eYFP-SctL, WT 1.46 

eYFP-SctL, ΔSctD 0.85 

eYFP-SctL, pYV- 1.24 

eYFP-SctN, WT 1.14 

eYFP-SctN, ΔSctD 0.95 

eYFP-SctN, pYV- 1.08 
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Table 6.3. List of strains and plasmids. 

 

Strain 

Name 

pYV 

Background 

Characteristics Ref 

Wild-type IML421 pYV40 yopOΔ2-427 yopE21 

yopHΔ1-352 yopM23 yopP23 

yopT135 Δasd 

(35) 

pYV- -- Lacking pYV40 plasmid  

AG0007 Wild-type eyfp-yscQM218A This work 

AG0008 Wild-type eyfp-yscQ, ΔyscN This work 

AG0009 Wild-type eyfp-yscQ, ΔyscD This work 

AG0010 Wild-type eyfp-yscL This work 

AG0011 Wild-type eyfp-yscL, ΔyscD This work 

AG0012 Wild-type eyfp-yscN This work 

AG0013 Wild-type eyfp-yscN, ΔyscD This work 

AG0014 pYV- pBAD-eYFP-YscL This work 

AG0015 pYV- pBAD-eYFP-YsN This work 
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7.1 Significance 

The Type 3 Secretion System is responsible for cell motility and provides a 

mechanism for bacterial pathogens to infect host cells. This work has focused on the 

virulence-associated injectisome. While the T3SS is found in many Gram-negative 

bacterial species, the machinery remains largely conserved between species, making the 

system an attractive drug target to combat its virulent properties. Despite attempts spanning 

several decades to understand the functional mechanisms of the system, many questions 

remain unanswered due to its complex nature and relatively small size. In particular, little 

is known about the functional importance of the loosely-associated cytosolic component at 

the inner-membrane interface, called the sorting platform. 

Advances in cryo-ET have only recently provided high resolution images of the 

structural composition of the majority of the system, including the sorting platform (36-

40). While much can be inferred about the function of a system by its static structure, any 

dynamic processes cannot be visualized in a fixed sample. Fluorescence microscopy is a 

preferred method for visualizing biological samples due to its ability to observe targeted 

molecules in live cells. Furthermore, the development of super-resolution fluorescence 

microscopy has provided the ability to observe individual fluorescent emitters with a 

precision on the nanometer scale.  The sub-field of single-molecule tracking has therefore 

become a valuable tool to study interactions among freely diffusing proteins in living cells. 

Diffusive state-resolved results are not obtainable with traditional methods that probe for 

protein interactions, such as Foerster resonance energy transfer (FRET) or fluorescence 

recovery after photobleaching (FRAP). Single-molecule tracking has been applied to a 
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large variety of targets, including transcription factors and proteins required for cell wall 

synthesis(187).  

Through super-resolution fluorescence microscopy, specifically single-molecule 

localization microscopy, this work provided insight into the dynamic behavior of proteins 

within the T3SS sorting platform. A major effort went into developing a diffusion analysis 

framework to resolve the prevalent diffusive states of fluorescently labeled proteins in the 

bacterial cytosol. To accomplish this, a variety of simulations were employed with known 

parameters to mimic experimental single-molecule tracking data to create, through forward 

convolution, distributions of apparent diffusion coefficients. Experimental data is then fit 

with these distributions to resolve diffusion coefficients and determine their relative 

population fractions of prevalent diffusive states. These states were used to infer the 

composition of diffusive complexes in the bacterial cytosol. By comparing the diffusive 

states present for the different sorting platform proteins in various genetic backgrounds, 

we were able to build a model for cytosolic complex formation. 

By quantitatively analyzing large amounts of single-molecule tracking data, we 

have developed a novel approach for detecting dynamic protein complexes and potentially 

transient binding interactions in living cells. Recent work has shown that many protein 

complexes, which were initially regarded as stable structures, actually undergo dynamic 

subunit exchange (188). For example, subunit exchange has been observed in the bacterial 

flagellar motor(189-191) and the nuclear pore complex (192). With few modifications, the 

numerical analysis framework developed here can be adapted for the study of these 

systems.    
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7.2 Future Directions 

 In addition to the sorting platform, future work will also focus on the chaperone 

and effector proteins to determine the mechanisms of secretion. However, unlike the 

sorting platform proteins, effector proteins cannot be labeled with fluorescent proteins. 

Effector proteins must be unfolder prior to secretion through the narrow needle channel, 

and fluorescent proteins are too stable to be unfolded by the system. Therefore, any attempt 

to label an effector with a thermodynamically stable fluorescent protein will result in a 

clogged needle, and therefore a non-functional injectisome. Current attempts to observe 

effector proteins are limited to non-secreting strains or strains lacking the other T3SS 

components. It may be possible to label the effector with a fluorescent dye using a labeling 

strategy such as the Halo and SNAP tags, however there are conflicting reports on whether 

these can be secreted through the needle complex. A potential solution to this problem 

would be to utilize an unnatural amino acid labeling strategy that could bind a fluorescent 

dye, which would be small enough to be secreted. However, this approach is very 

challenging, as unnatural amino acid labeling strategies involve inserting the unnatural 

amino acid at all amber stop codon sites that are available on the genome. While this 

labeling strategy may be acceptable for certain in vitro assays, it may not be suitable for 

live cell fluorescence imaging, which requires high labeling specificity. If these concerns 

can be managed however, labeling with unnatural amino acids could provide a viable 

method to observe effector proteins not only in the bacterial cytosol, but in host cells after 

secretion. Current methods of observing effector proteins after secretion into host cells are 

limited to methods such as split GFP, where a single beta strand of GFP molecule is fused 
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to the effector protein in the bacteria, while the rest is expressed in the host cell. When the 

effector is secreted into the host cell, the two portions combine to produce a functional 

chromophore observable by fluorescence. The drawback to this method is the relatively 

long time for the two portions to combine and the GFP chromophore to mature. A labeling 

strategy, such as unnatural amino acid labeling, to observe the behavior of effector proteins 

in real-time would provide optimal insight into their function inside host cells. 

More information can be obtained about the behavior of an individual molecule as 

the trajectory length increases. For example, as was shown in Chapter 5, long trajectories 

can be used to extract information on association and dissociation kinetics. This work 

utilized fluorescent proteins as markers for target proteins due to their ability to be 

genetically encoded, therefore ensuring complete specificity. A drawback to fluorescent 

proteins is their relatively low photon yields compared to other methods such as dye 

labeling. However, dye labeling can lead to artifacts such as incomplete labeling of all 

proteins and high levels of background noise due to insufficient washing of unbound dye. 

Utilizing a labeling strategy with a higher photon yield than fluorescent proteins with high 

labeling specificity would be desirable and potentially lead to more in depth analysis of the 

sorting platform proteins behavior. 

On the computational front, there are several improvements that can be made to the 

diffusion analysis framework. Possibly the most important of these is the implementation 

of methods to account for or extract information on state-switching dynamics. While the 

foundation was laid out to show that information on state switching dynamics can, in 

principle, be extracted from single-molecule tracking in a two-state case using TAD 
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analysis in Chapter 5, a more in depth analysis would be required for more complex 

situations such as the presence of three or more interchanging diffusive states. Another 

assumption in the simulated single-molecule trajectories was that they only exhibited 

Brownian motion, and were not affected by compartmental confinement. It has been 

suggested that diffusion rates in the dense nucleoid region of the bacterial cell are affected 

by molecular confinement, however we have not observed this effect.  

 

7.3 Conclusions 

 The work presented here on T3SS sorting platform proteins has added to a growing 

body of work suggesting a dynamic interaction network of sorting platform proteins plays 

a role in the secretion process. A novel diffusion analysis framework was developed to 

analyze the diffusive behavior of fluorescently labeled proteins. This framework was 

thoroughly tested to determine its potential applications and limitations. Through 

application of the framework to single-molecule localization microscopy data obtained on 

fluorescently labeled sorting platform proteins in live Y. enterocolitica cells, we were able 

to construct a model for cytosolic complex formation of sorting platform complexes. How 

exactly cytosolic complex formation plays a role in secretion is still unclear, however. 

Further study of the sorting platform proteins as well as effector and chaperone proteins 

will provide a more complete look into T3SS function.   
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