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Abstract

We define a method by which one can search the weights of existing neural networks for 

weights that could be useful for a developing neural network, as well as a way in which these 

weights can be incorporated into a neural network during the training process. 

Introduction

An artificial neural network can be thought of as a network of functions. Many small 

functions, put together, create a large function that solves complex problems. In past years, we 

have seen the rise of “transfer learning” where one retrains part of an existing neural network to 

solve a different problem than it was originally intended to solve. This is possible because the 

functions which make up a neural network are useful for more than just one problem.

What this project attempts to do is transfer learning at a more granular scale. Rather that 

importing an entire neural network to start with, we wish to import only the pieces that matter. 

By breaking up a neural network into smaller pieces, we become more capable of repeating 

patterns in the data, and can use that to our advantage. For example, if a similar kernel of a 

convolution operation appears in multiple neural networks, and in each network is preceded by 

the same pattern, one might be able to infer from seeing those patterns in another network that 

that convolution operation would be useful in that place.

Part of the inspiration for this research was analogical reasoning in humans. An analogy 

is an “inference that if two or more things agree with one another in some respects they will 

probably agree in others” (Woolf 1971). Given knowledge of one system, a human can make 

guesses about an unrelated yet structurally similar system (Kedar-Cabelli 1988). Using 



analogical reasoning it is often possible to find a solution to a problem much more quickly, as it 

allows humans to skip a lot of trial and error learning.

Related Work

Cognitive and computer scientists have been fascinated by analogical reasoning for 

decades. The concept is simple, in theory, but in practice it is often hard to replicate due to 

complexity (Halford, 1992). While modern language models have significantly improved a 

computer’s ability to recognize and parse analogies (Hoshen, 2018), analogical reasoning 

remains hard to grasp.

Implementation

There are two parts to this problem: finding repeating patterns, and using them. To find 

them, we need a lot of neural network data. This data must be well-organized and easy to 

traverse. Finding patterns is difficult even with organized data, and we stick mostly to standard 

clustering techniques.

There are several ways we could use this data, but here we define a way to test various 

kernels against the data to find the best ones, as well using existing weights to find relevant 

convolutions. (We focus mainly on convolutional neural networks here because of the 

availability of large networks, but the ideas could be applied to any neural network.)

Data Collection

Collecting weight data from a sufficient number of large neural networks was 

surprisingly difficult. Neural networks are rarely held in convenient formats. Most deep learning 

projects have custom-built programs to import the weights from databases of h5 or checkpoint 



files. In those cases, the structure of the network can only be determined by parsing or running 

the code. While this is possible, most frameworks provide no good way of easily traversing their 

networks.

ONNX is a format designed to store neural networks for the purpose of easily converting 

them between frameworks. It therefore contains both the weights and the structure of the 

network. It also comes with a convenient python library that can be used to observe its internal 

structures. Because of this transparency, we parsed ONNX files to generate our library of neural 

networks.

Function Mapping

Knowing the structure of a neural network as a deep learning framework understands it, 

however, is insufficient for our purposes. The problem is that normally neural networks are 

represented as layers of functions. A convolution layer, for example, is usually composed of 

many convolution operations, each of which has a different kernel and outputs its own channel. 

Entire layers are unlikely to bear similarities across networks, as each channel is trained to detect

a different feature, and the ordering of these features within the layer is not at all guaranteed to 

be the same between networks. Therefore, layers must be broken up into their component 

functions.

This is not a trivial task. Modern deep learning frameworks including ONNX don’t have 

a way to do this, because it’s not normally how one would use a neural network. So, each layer 

had to be taken apart function by function, mapping each to its inputs and outputs. The resulting 

expanded networks were stored in a Neo4j database, most having tens of millions of nodes.

Pattern Mining



In this paper we only apply a primitive method of pattern mining to the data, though in 

the future this can be traded out for more sophisticated methods.

Here we focus only on specific shapes of subgraphs: in particular, convolution trees of 

specific depths, where the outputs of child nodes are used as input for parent nodes (disregarding

activation and normalization functions which may lie in-between). By looking at a set of child 

nodes, we can then attempt to predict a useful parent node based on similar subsets in our 

database.

It would be very slow to check against every possible subset of nodes, so instead we rely 

on grouping subsets using a combination of clustering and linear classification algorithms. First, 

we used clustering to create a set of classes for all kernels that are parents. In this case, it is a K-

Means algorithm, though this can be swapped out easily if further experimentation proves 

another to yield superior groups. Then, we trained a linear classifier to predict the class of the 

parent based on the kernels of its children. This, we can send the classifier queries of convolution

kernels, and the classifier can return the central point of the associated K-Means group, which 

the querier can use for the value of the next kernel.

Note that we use a classifier here instead of a regressor. Why not directly guess the 

values within the kernel? There are multiple reasons for this. It is also faster to train, for one. For 

the other, the clustering algorithm creates an interesting set of “standard kernels” that can be 

observed by data scientists. This lends its self towards the potential for more transparent machine

learning algorithms if the behaviors of the common kernels can be identified.



Function Building

There is one fault in this design: it only works as intended if part of the neural network is 

known to be well-trained and another part is not. If the entire network is untrained, the kernels 

you query with could change to something more useful, making the results of the query 

irrelevant. If the whole network is trained, then it’s also irrelevant. So, to get into a situation 

where we can use the knowledge of the database, we have to do something a bit contrived.

In our implementation, we “grew” a neural network from the ground up. We started with 

a single convolution layer, a single linear layer, and a very thick pooling layer. The weights of 

the convolution were initialized to those of a set in the database with no children nodes. Then, 

only the linear layer was trained. Once it finished, the convolution weights were swapped out for 

a different set. This was done dozens of times. Finally, the set that had resulted in the least loss 

was chosen. Thus, we found a bottom layer with relatively useful features.

Then we added a second layer of convolutions, this time querying the classifier for good 

classes of kernels based on the first layer. The linear layer trained on top of this for a while 

before it was swapped out for the next suggestion given by the classifier. Once the third 

convolution layer was added, the network was allowed to train naturally.

Results

Naturally, this process of constantly swapping out weights and retraining took a lot 

longer than letting the control, a three-layered convolutional neural network, just training its self 

to begin with. Of course, that doesn’t say much. Deep learning frameworks have been designed 

to work a certain way for  years. This mechanism was built in the last few months. Perhaps it 

could work with more optimizations.



Further Research

There are many directions in which one can go with this project. Would other clustering 

algorithms do better?  Or a different way of classifying patterns entirely? Could one find a better 

way of integrating it into existing frameworks? Could analysis of the patterns found reveal 

anything about the inner workings of a neural network?

The implementation may not have appeared to do so well, but that could likely be solved 

with incremental improvement. It’s too intriguing an idea to give up on just yet.
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