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ABSTRACT

Mucins are present in mucosal membranes throughout the body and play a key role in the

microbe clearance and infection prevention. Understanding the metabolic responses of pathogens

to mucins will further enable the development of protective approaches against infections. We

update the genome-scale metabolic network reconstruction (GENRE) of one such pathogen,

Pseudomonas aeruginosa PA14, through metabolic coverage expansion, format update,

extensive annotation addition, and literature-based curation to produce iPau21. We then validate

iPau21 through MEMOTE, growth rate, carbon source utilization, and gene essentiality testing to

demonstrate its improved quality and predictive capabilities. We then integrate the GENRE with

transcriptomic data in order to generate context-specific models of P. aeruginosa metabolism.

The contextualized models recapitulated known phenotypes of unaltered growth and a

differential utilization of fumarate metabolism, while also revealing an increased utilization of

propionate metabolism upon MUC5B exposure. This work serves to validate iPau21 and

demonstrate its utility for providing biological insights.
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FIGURES

Figure 1: Characteristics and MEMOTE benchmarking of iPau21. (a) Properties of iPau21

as compared to iPau1129. (b) MEMOTE scores of iPau21, iPau1129, and iML1515, a

high-quality reconstruction of E. coli.
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Figure 2: Updated reconstruction of P. aeruginosa enables accurate growth rate, gene

essentiality, and carbon source utilization predictions. (a) Model doubling time predictions

compared to experimental results gathered from literature. Gray bar represents the experimental

range. (b) Model carbon source utilization predictions compared to results gathered from

literature.
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Figure 3: Contextualization of updated reconstruction shows shifts in P. aeruginosa

metabolism in response to mucins and mucin components. (a) NMDS analysis of flux

samples (n = 500) from each contextualized model. (b) Comparison of non-consensus reactions

present within models displays subsets of reactions that are shared by groups of contextualized

models.
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Figure 4: Network utilization does not correlate with network structure. The distance

between median NMDS coordinates for each pair of networks was calculated as a metric of

difference in network utilization, while the Jaccard distance of network reactions for each pair of

networks was calculated as a metric of structural difference. Spearman's correlation shows an

insignificant relation between the two metrics (p = 0.92).
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Figure 5: Random forest analysis between ABTGC and MUC5B shows the networks differ

most in terms of propionate and fumarate metabolism utilization. The top seven most

discriminating reactions between the two models belong to propionate and fumarate metabolism.

MUC5B utilizes these two types of metabolism more highly than the ABTGC model.
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CHAPTER 1: INTRODUCTION

The mucosal barrier is a hydrated mucus gel that lines wet epithelial cells throughout the

body, including eyes, mouth, lungs, and the gastrointestinal and urogenital tracts1,2. It serves as a

key mechanism of protection against pathogens. The component responsible for the gel-like

properties of the mucosal layer is the glycoprotein mucin3. The dysregulation of mucins

underlies diseases like cystic fibrosis4 and chronic obstructive pulmonary disorders2. As mucins

are involved in the clearance of microbes5, dysregulation of mucins can result in pathogen

overgrowth and severe infections6. While some bacterial species, including pathogenic strains of

Pseudomonas3, are capable of residing within the mucosal layer, mucins typically impair the

formation of biofilms and surface attachment7. Furthermore, mucins are reported to

downregulate virulence genes involved in siderophore biosynthesis, quorum sensing, and toxin

secretion1. By disturbing these key mechanisms of infection, mucins attenuate the virulence and

infective potential of P. aeruginosa.

Elucidating the metabolic responses of P. aeruginosa to mucins can enable the

development of protective approaches against infection8. Genome-scale metabolic network

reconstructions (GENREs) and associated genome-scale metabolic models (GEMs) are well

suited for this purpose as they can enable the prediction of cellular behavior under different

biological conditions such as the absence or presence of different mucins in an environment9. A

GENRE can also be used to contextualize high-throughput data, such as transcriptomics or

proteomics data10. Gene expression data can, for example, be used to constrain specific predicted

metabolic fluxes11 and thereby increase the predictive value of the model. Metabolically active

pathways under different conditions can be identified by integrating high-throughput data with a

metabolic network12.
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P. aeruginosa is a critical bacterial species in the ‘Priority Pathogens List’ for research

and development of new antibiotics published by the World Health Organization (WHO)13.

However, the lack of novel antibiotics14,15 emphasizes the need for the development of innovative

and protective therapeutic approaches. This pressing need for protective strategies coupled with

new insights from recent research present an opportunity to further refine the GENRE of the

highly virulent strain UCBPP-PA14 by Bartell et al.16. An updated GENRE can be used to better

understand the metabolic underpinnings of P. aeruginosa infections and ultimately develop new

therapeutic strategies from those insights.

Here, we present iPau21, an updated GENRE of P. aeruginosa strain UCBPP-PA14

metabolism. We improve predictions of carbon source utilization and growth yields in order to

better recapitulate the behavior of the pathogen. Metabolic network coverage is expanded

through the addition of genes, reactions, and metabolites supported by literature evidence. The

quality of the reconstruction was improved through an update of standardized formatting,

improved annotation, and the addition of binning metabolites representing macromolecular

categories to assist with analysis. The metabolic network model was validated by comparing

phenotypic predictions to experimental datasets16–21 and the quality of the reconstruction was

assessed with the MEMOTE benchmarking software22. This updated reconstruction was further

contextualized with recently published transcriptomic data1 in order to demonstrate its utility in

elucidating the metabolic shifts of P. aeruginosa after exposure to mucins. The validated

reconstructions will serve as a key resource for the Pseudomonas and microbial metabolic

modeling communities and the insights into mucin-driven metabolic shifts in P. aeruginosa may

serve to inform the future development of therapeutic strategies.
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CHAPTER 2: METHODS

Genome-scale Metabolic Reconstructions and Models (GENREs and GEMs)

GENREs are network reconstructions that represent the metabolic capabilities of an organism

and can be analyzed for various applications. An organism’s genes are connected to the proteins

they code for and the reactions that those proteins catalyze. These associations are stored as

gene-protein-reaction (GPR) relationships with the reactants and products of each reaction

catalogued in a stoichiometric matrix. Metabolites in the reconstruction are assigned to

compartments that mirror biologically discrete spaces such as the cytosol and the extracellular

space. Exchange and transport reactions allow metabolites to flow between the compartments in

the reconstruction. A GENRE is turned into a GEM (Genome-Scale Metabolic Model) by adding

reaction bounds that capture the flux constraints and the reversibility of reactions. The flux

bounds dictate the amount and direction of flux that a reaction can carry. Objective functions

(OFs) that represent metabolic goals are added to the model to simulate biological processes.

GEMs can be analyzed using flux balance analysis (FBA)-based methods to investigate and gain

insights into the metabolic state of a network42. The updated GENRE was named iPau21

according to the community standard naming convention43.

Adding annotations

Initially, the PA14 reconstruction did not contain extensive annotations for metabolites,

reactions, or genes. ModelPolisher44 can be used to annotate metabolites and reactions of a

metabolic model. To do so, identifiers of the BiGG database45 (BiGG-IDs) are required as

metabolite or reaction identifiers, respectively. Since the identifiers of the model were obtained
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from the ModelSEED database30, BiGG-IDs needed to be determined. For each metabolite, the

BiGG-IDs were assessed manually. Since this is a very time-consuming procedure, the

BiGG-IDs for the reactions were resolved in a semi-automated way: The cross-references of the

ModelSEED database to other databases, such as BiGG or KEGG28, were used to automatically

obtain the BiGG-IDs for the respective ModelSEED reaction identifier. If more than one

BiGG-ID was returned, the correct identifier was determined by manual inspection of the

respective reaction. The BiGG-IDs of the metabolites and reactions were added as biological

qualifier (‘BQB_IS’) annotations to the model using libSBML Version 5.17.046. The annotations

were added in accordance with the MIRIAM guidelines47. After adding the BiGG-IDs to the

model, ModelPolisher was used for further annotations of the model’s reactions and metabolites

for references to other databases, such as KEGG, MetaNetX48, or MetaCyc44.

For the reactions, the obtained KEGG annotations were used to further add all pathways that are

associated with the respective reaction to the model. The pathways were obtained using the

KEGG-ID and KEGG API to request all associated pathways. The pathways were then added to

the respective reactions using the biological qualifier ‘BQB_OCCURS_IN’ in libSBML.

The identifiers of the model genes are from the KEGG database. With the help of libSBML, the

KEGG gene annotation was added to the model. For further gene annotations, the KEGG API

was used to request NCBI49 Protein IDs and Uniprot50 IDs, which were subsequently added as

respective annotations to the model. Additionally, the ID mapper from PATRIC51 was used to

request RefSeq and NCBI49 gene identifiers, as well as identifiers of the ASAP database.

Systems Biology Ontology (SBO)52 terms can give semantic information or be used for

annotation purposes. In our network reconstruction, all genes were labelled as genes with the
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SBO-term ‘SBO:0000243’. All metabolites without a valid SBO-term were labelled as simple

chemicals with the SBO-term ‘SBO:0000247’. Transport reactions were divided into (1) active

transport if ATP is required for the respective transport reaction (SBO:0000657), (2) passive

transport if no external energy is required (SBO:0000658), (3) symporter-mediated transport if

two or more molecules are transported into the same relative direction across a membrane

(SBO:0000659), or (4) antiporter-mediated transport if two or more molecules are transported in

relative opposite directions across a membrane (SBO:0000660). All metabolic reactions were

labelled as biochemical reactions with the SBO-term SBO:0000176.

Upgrading SBML version

The initial PA14 reconstruction was represented in SBML Level 2 Version 153. The current

reconstruction was updated to the latest SBML edition (Level 3)54. With the help of libSBML,

both the fbc-plugin55 and the groups-plugin56 were enabled. Initially, the chemical formulas and

charges of the metabolites were stored in the notes field. With the fbc-plugin, the charges were

added as features of the metabolites to the reconstruction. The fbc-plugin also enables the

addition of gene products to the reconstruction. In the initial reconstruction, the subsystems of

the reactions were saved in the notes field. With libSBML and the groups-plugin, the subsystems

were extracted from the notes field and added as groups to the reconstruction. For each

subsystem, a list of reactions associated with that pathway according to the notes was created and

added to the subsystem as members.

Correcting charge and mass imbalances
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A list of all mass- and charge-imbalanced reactions was extracted from the reconstruction. From

this list, all exchange, sink, demand and biomass reactions were excluded. Each remaining

reaction was manually checked by looking up the reaction-ID in ModelSEED29: (1) If the

reaction status in ModelSEED was balanced (‘OK’), but differed from the reaction equation in

the reconstruction, the reaction was adapted according to ModelSEED and again checked for

imbalances. (2) If the reaction in ModelSEED also had an imbalanced reaction status, other

databases like MetaCyc57, BiGG45, or KEGG28 were explored and the reactions were adapted

according to the respective reactions in the external databases. Where required, chemical

formulas, charges, and coefficients were corrected, or chemical compounds were added or

subtracted from the reactions according to the respective database reaction.

Assessing the quality of the reconstruction

MEMOTE is an open-source software that provides a measure for model quality22. Every

change and improvement of the model was continuously documented and quality-assessed using

MEMOTE Version 0.9.11. Gene essentiality predictions were compared to a published dataset

that was originally used to validate iPau112916. This dataset is comprised of the overlap of

essential genes identified through the growth of PAO1 and PA14 transposon insertion mutants in

LB media20,21. Carbon source utilization predictions were compared to previously collected

experimental results16. Prediction accuracy was calculated as the number of correction

predictions divided by the number of total predictions. Matthews correlation coefficient (MCC)

was calculated in order to assess the quality of predictions58. Biomass flux and subsequent
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doubling time predictions in lysogeny broth (LB), synthetic cystic fibrosis media (SCFM), and

glucose minimal media were compared to experimental values found in literature (Fig. 1c)17–19.

Literature-based updates

Previous work identified multiple areas where the original reconstruction (iPau1129) was unable

to accurately recapitulate experimental data. This assessment included 18 incorrect carbon source

predictions16 and several incorrect gene essentiality predictions59. Pathways and

gene-protein-reaction rules related to each incorrect prediction were manually curated to reflect

the most recent evidence from literature, KEGG, and MetaCyc. In the absence of sufficient

evidence, no changes were made, even if this absence of a change meant a prediction would

remain uncorrected.

Evaluating and updating the BOF

Macromolecular categories represented in the dry weight of P. aeruginosa were identified

through a literature survey. Metabolites in the biomass objective function (BOF) were organized

into these macromolecular categories in order to better represent the components required for

growth. During organization, no additional metabolites were added and the ratios of metabolites

in the BOF were kept the same.

The BOF was also updated to include lipopolysaccharide (cpd17065) to reflect its presence in

Gram-negative bacteria60. A metabolite representing biomass was also added to the products of

the BOF to represent the accumulation of biomass.
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Addition of exchange reactions

A list of all extracellular metabolites in the reconstruction was compiled and compared to a list

of all exchange reactions in the reconstruction. Exchange reactions were added for 33

extracellular metabolites that previously did not have one.

Removal of energy generating cycles

Exchange reactions were closed and the objective function was set to energy dissipation

reactions for electron carriers (ATP, NADH, NADPH, FADH2, and H+). The model was able to

generate flux for only the ATP energy dissipation objective function, which indicated that an

energy generating cycle existed. The cycle was resolved through the addition of a periplasm

compartment to contain hydrogen involved in the electron transport chain and correcting the

reversibility of four participating reactions.

RIPTiDe Contextualization & Analysis

Published transcriptomic data was integrated with the model using RIPTiDe36. The

transcriptomic data was normalized then translated from PAO1 genes to the orthologous PA14

genes prior to integration61. ABTGC medium was simulated in silico and applied to the model

(Appendix I). Then, RIPTiDe was used to produce the contextualized models for in vitro media

conditions.

NMDS analysis was conducted on flux samples from each contextualized model (n = 500

samples per model) using the Vegan package in R62. Only consensus reactions across all four

17
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contextualized models were included in the flux sample data set and a constant was added to

each flux value in the data set to make all data points positive to facilitate comparison.

Random forest analysis was conducted on flux sampling data (n = 500 samples per model) from

the consensus reactions of the ABTGC and MUC5B models using the randomForest package in

R63. Reactions that were differentially present in contextualized models were identified and

connected to their corresponding metabolic pathways manually.

The Jaccard distance of network structures was calculated by comparing the reactions contained

in pairs of networks64. The NMDS distance was calculated as the distance between the median

NMDS coordinates of network pairs. Spearman's correlation was used to calculate a p-value for

the relationship between network structure and network utilization across all pairs of networks.

18



CHAPTER 3: RESULTS

An updated network reconstruction of Pseudomonas aeruginosa metabolism:

A metabolic network reconstruction of P. aeruginosa PA14 (iPau1129) was previously

published16 and served as a starting point for an updated reconstruction (iPau21). The metabolic

coverage of the reconstruction was expanded, the format and annotations were updated, and an

ATP-generating loop was resolved in order to produce a refined model with improved accuracy

and extensive annotation.

We expanded iPau1129 by 40 genes, 24 metabolites, and 76 reactions (Fig. 1a) through manual

curation based on literature evidence. Many of these additions served to increase the utility of the

reconstruction for simulation (such as the addition of 33 exchange reactions), while others

expanded metabolic pathways for amino acid metabolism and glycerophospholipid metabolism.

A periplasmic compartment containing hydrogen was added to the reconstruction to better

represent the electron transport chain and ATP synthase, which eliminated all ATP-generating

loops in the metabolic network. The format was updated from SBML Level 223 to Level 324,

which enables additional functionality such as the utilization of several extension packages and

the transfer of information content to dedicated new data structures. Annotations from various

databases were added to metabolites, reactions, and genes where possible.

The overall quality of the updated reconstruction was assessed using MEMOTE22, a recently

developed GENRE test suite. The MEMOTE score of iPau21 improved in all subcategories

when compared to iPau1129 resulting in an increase of the overall score from 30% to 89% (Fig.

1b). The scores in annotation subcategories were increased by adding annotations and SBO terms

to metabolites, reactions, and genes in the updated GENRE. The consistency of the metabolic
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network was improved through the correction of imbalanced reactions and the resolution of

energy generating cycles that were present in iPau1129.

The biomass objective function (BOF) was updated to better reflect the macromolecular

components found experimentally in P. aeruginosa including the inclusion of

lipopolysaccharide25–27. BOF substrates were organized into corresponding macromolecular

categories (i.e. DNA, RNA, protein, lipid) to better represent the categories of components that

are required for growth.

Model validation:

Validation of iPau21 was performed by comparing in silico predictions of biomass flux, carbon

source utilization, and gene essentiality to experimental data. Biomass flux and subsequent

doubling time predictions in simulated lysogeny broth (LB), synthetic cystic fibrosis media

(SCFM), and glucose minimal media were compared to experimental values found in literature

(Fig. 2a, Appendix I)17–19. Doubling time predictions of iPau21 were 25%, 19%, and 22% more

accurate than those of iPau1129 in simulated LB, SCFM, and glucose minimal media,

respectively. Compared to the original model, iPau21 doubling times are higher, which reflects

the resolution of the ATP-generating loop that previously allowed the model to costlessly convert

ADP to ATP. The iPau21 doubling time prediction on glucose minimal media of 40.2 minutes

showed agreement with experimental data, falling within the range of experimentally determined

values19. Model doubling time predictions on LB and SCFM were faster than observed

experimentally, which is consistent with metabolic network models that are structured to predict

the optimal growth of an organism.
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Carbon source utilization predictions were compared to previously collected experimental results

across 91 carbon sources16. Utilization was predicted by iPau21 with an accuracy of 89% and

Matthews correlation coefficient (MCC) of 0.78, while iPau1129 demonstrated an accuracy of

80% and MCC of 0.62 (Fig. 2b and Appendix II). This increase in accuracy was achieved

through the completion of pathways that allow for the utilization of more carbon sources and the

removal of an unsupported reaction that previously allowed for the utilization of D-malate.

Carbon source predictions of iPau21 remain incorrect for 10 carbon sources. Five of the incorrect

predictions are due to the absence of metabolic pathways required for growth on certain carbon

sources. When addressing these predictions, our literature survey was unable to provide

sufficient evidence for these pathways so the predictions remain incorrect and we opted to not

gapfill without that additional evidence. To correct these predictions, summary reactions could

be added to the reconstruction, but these reactions would lack the mechanistic granularity of

associated genes and could have negative impacts on other aspects of the reconstruction. The

other five incorrect predictions were caused by the presence of metabolic pathways that allow for

the erroneous growth on the associated carbon sources. In each of these cases, the pathway was

investigated and the corresponding genes were verified through the KEGG28 and ModelSEED29

databases, but there was not strong enough evidence to warrant changes in the reconstruction28,30.

Some of these discrepancies may be due to considerations that are outside of the scope of the

network, such as transcriptional processes. For example, in the case of D-serine, PA14 has the

ability to metabolize this carbon source but expression of this gene is not triggered by the

presence of D-serine so it is unable to grow on this single carbon source in vitro31. These

inaccurate predictions could be improved by modifying constraints in the metabolic network

model. However, since the gene-protein-reaction (GPR) rules were found to be valid and the
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prediction error could be due to unaccounted for regulatory control, we opted to leave the

pathways intact. Overall, we were able to increase carbon source utilization prediction accuracy

by 9% in comparison to the previously published model.

Gene essentiality predictions were compared to a published dataset comprised of the overlap of

essential genes identified through the growth of strains PAO1 and PA14 transposon insertion

mutants in LB media20,21. The number of genes accounted for by iPau21 was expanded to 1169

and the gene essentiality prediction accuracy was maintained at 91%, which is equivalent to

iPau1129 (Appendix III). Gene essentiality was predicted by iPau21 with a MCC of 0.50,

compared to a value of 0.44 by iPau1129. Three genes labeled as "SPONTANEOUS,"

"unassigned," and "Unassigned'' were removed from the reconstruction given that these labels

did not correspond to genes belonging to P. aeruginosa. Gene essentiality data was not used for

curation of the metabolic network given the variability in gene essentiality screens and the

resultant challenges with data interpretation32. Instead, model predictions were compared to gene

essentiality data as one facet of validation. As a reference, iPau21 has a gene essentiality

prediction accuracy of 91%, which is near the 93% accuracy of iML1515, a well-curated

reconstruction of Escherichia coli33.

Transcriptome-guided modeling of P. aeruginosa metabolism in the presence of human mucins:

Mucins are the primary macromolecules in mucosal layers known to modulate microbial

phenotypes2. In order to investigate how the metabolism of P. aeruginosa shifts when it comes

into contact with mucins, in vitro transcriptomic data was integrated with iPau21 to generate

contextualized models that offer more biologically accurate representations of associated
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metabolic phenotypes. Analysis of the structure and pathway utilization in these

transcriptome-guided models offers insights into the metabolic shifts that arise when

P. aeruginosa is exposed to mucins.

Transcriptomic profiles of P. aeruginosa PAO1 grown in agrobacterium minimal medium with

thiamine, glucose, and casamino acids (ABTGC) medium supplemented with either MUC5AC,

MUC5B, or mucin-glycans were collected from literature1,34. MUC5AC and MUC5B are mucin

types found both individually and together at different sites of the human body that P. aeruginosa

is known to infect8. The mucin-glycans used in the published experiments were isolated from the

backbone of MUC5AC. The experiments were performed with strain PAO1, which has a highly

similar genome to strain PA1435. The main difference between the strains is the presence of

additional gene clusters in PA14 (most linked to virulence) that we would not expect to have a

large effect on overall metabolism. PAO1 genes in the transcriptomic dataset were mapped to

PA14 orthologs and then the data was integrated with the iPau21 using the RIPTiDe algorithm36.

RIPTiDe uses transcriptomic evidence to create context-specific metabolic models representative

of a parsimonious metabolism consistent with the transcriptional investments of an organism.

This analysis resulted in four contextualized models that more accurately represent the

metabolism of P. aeruginosa when grown without mucin exposure (ABTGC) and when exposed

to MUC5AC, MUC5B, and glycans.

Flux samples were generated for each model and BOF flux did not vary significantly among the

contextualized models (less than five percent change), recapitulating the phenotype that was

observed experimentally1. The flux distributions underlying the BOF values were compared

across models using non-metric multidimensional scaling (NMDS) in order to compare the

metabolic mechanisms of growth utilized by the condition-specific metabolisms (Fig 3a). The
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fluxes from the 378 consensus reactions (shared across all models) were used for this analysis.

NMDS analysis revealed that among the tested conditions, the sampled flux distributions from

the MUC5B model clustered the furthest from the ABTGC condition. This result indicates that

although there was not a significant difference in the BOF value, exposure to MUC5B caused the

largest shift in the metabolic pathways utilized for growth. MUC5AC clustered the second

furthest away, while Glycans clustered most closely to the ABTGC model, showing that there

was a variable metabolic response to different mucins and glycans by P. aeruginosa.

Mucin-glycans do not contain the same level of structural and biochemical complexity as

MUC5AC and MUC5B, which may account for the slight metabolic shift observed in the

Glycans model relative to the MUC5AC and MUC5B models. MUC5AC and MUC5B are

known to differ from each other in terms of charge, shape, and glycosylation37. These differences

could explain the variable metabolic response they elicit in P. aeruginosa. Additionally, of the

two only MUC5B has been shown to be critical for murine mucociliary transport and

antibacterial defense38. One mechanism of MUC5B antibacterial effects could be through

modulation of pathogen metabolism, which would explain the larger shift in metabolism

observed when P. aeruginosa was exposed to MUC5B. The conserved BOF flux values and

separation observed between clusters of flux samples suggest that while P. aeruginosa

metabolism is modulated by the presence of mucins, its versatility allows for the utilization of

alternative metabolic pathways in order to avoid a growth defect.

The differences between networks were further investigated through the metabolites that were

produced and consumed by models in silico. This analysis offers a snapshot of the substrates

used and byproducts of particular metabolic states, which can be informative of the metabolism

underlying that state. All models were found to consume the same metabolites with some small
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differences in specific flux values however, there were key differences in the metabolites that

models produced (Appendix IV). The graded differences between models seen in NMDS were

highlighted by the production of formate by the models. The ABTGC and Glycans models

produced substantially higher amounts of formate than the MUC5AC model, while the MUC5B

model did not contain the formate exchange reaction. Therefore, with our model, we are able to

predict subtle shifts in P. aeruginosa metabolism in response to different environmental mucins.

Human mucins shift P. aeruginosa metabolism

Further analysis was conducted on the contextualized models to better understand the shifts in

metabolism that resulted in the observed dissimilarities in the NMDS analysis. Reactions not

shared across all models (non-consensus reactions) were identified and compared to investigate

how network structure varies across models (Fig. 3b). This analysis revealed a set of 13 reactions

shared by the ABTGC, MUC5B, and Glycans models but absent from the MUC5AC network.

This result suggests that while MU5B displayed the largest functional differences in metabolism,

MUC5AC is the most structurally unique of our models. Additionally, we found that there was

no correlation between network structure and utilization among our contextualized models (Fig.

4, p-value = 0.92). Since the NMDS analysis revealed that the ABTGC and MUC5B models had

the largest difference in functional metabolism, these two models were further investigated to

find key attributes that underlie these large differences. Random forest analysis was conducted

on the flux samples from consensus reactions of the ABTGC and MUC5B models to find which

reactions were most differentially utilized between the two cases (Fig. 5). Two reactions

corresponding to fumarate transport were in the top seven most discriminating reactions between
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models, suggesting that there was a differential utilization of reactions involved in fumarate

metabolism. The MUC5B model utilized the fumarate reactions more highly than the ABTGC

model and contained a fumarase reaction that was not present in the ABTGC model, which

further suggests that fumarate metabolism is a key point of difference between the models. This

observation recapitulates what was noted in the original paper that produced the transcript data

used for contextualization1. Of the top six most discriminating reactions, five corresponded to

propionate metabolism and were more highly utilized by the MUC5B model than the ABTGC

model. While there was no propionate in the simulated (or in vitro) media, it is a known

byproduct of mucin fermenters and has anti-lipogenic and anti-inflammatory properties in

humans39,40. This analysis revealed that the exposure to MUC5B elicited the largest shift in

metabolism compared to MUC5AC and Glycans. Further, an increased utilization of fumarate

and propionate metabolism during simulated growth was responsible for this shift.
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CHAPTER 4: DISCUSSION

We generated an updated network reconstruction of P. aeruginosa PA14 metabolism with

considerable improvements in model annotation and accuracy of growth rate and carbon source

utilization predictions. The metabolic reaction coverage of the reconstruction was expanded, the

format and annotations were updated to be consistent with current best practices, and an

ATP-generating loop was resolved. Model improvements were quantified through various

metrics such as accuracy of growth yield and carbon source utilization predictions as well as

MEMOTE benchmarking22.

The updated network reconstruction was contextualized using transcriptomic data in order to

investigate the shifts in metabolism that occur when P. aeruginosa is exposed to mucins present

in the human body. This analysis recapitulated an unaltered growth rate and differential fumarate

metabolism that has been reported in literature and also revealed an increased utilization of

propionate metabolism in the presence of mucins. Propionate is a short chain fatty acid with

beneficial effects to human health such as anti-lipogenic, anti-inflammatory, and

anti-carcinogenic action39,41. While propionate is not present in the ABTGC medium, it is known

to be produced by bacteria such as Akkermansia muciniphila when they come into contact with

and catabolize mucins40. This shift of P. aeruginosa metabolism towards propionate metabolism

may indicate a cross-feeding mechanism where MUC5B mucins signal to Pseudomonas to

prepare to metabolize the propionate produced by other microbes as they break down the mucins.

Once validated, this insight could be used to develop therapeutic strategies for P. aeruginosa

infections of body sites containing MUC5B such as the lung, oral cavity, and middle ear1.

Antibiotics could be designed to target proteins for propionate metabolism in order to combat

drug-resistant strains that cannot be treated with traditional antibiotics.
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While the updates made to the model broadly improved the model accuracy, there were incorrect

predictions about carbon source utilization, gene essentiality, and growth rate that were not able

to be addressed. Some incorrect predictions are due to a lack of literature evidence, such as

incorrect carbon source utilization predictions that are due to the absence of metabolic pathways

in the model. Other incorrect predictions are due to factors that are outside of the scope of the

model, such as the incorrect prediction of growth on D-serine that is caused by the transcriptional

regulation of dsdA31. There are other opportunities for further curation that would result in

additional improvements to the MEMOTE score, which can be further interrogated by uploading

the iPau21 reconstruction to the MEMOTE website (MEMOTE.io).

The transcriptomic data that was used to contextualize the model was collected through

experiments with P. aeruginosa strain PAO1. Therefore, the genes in the transcriptomic data set

were mapped to their PA14 orthologs before being integrated with the network reconstruction.

While the genomes of PAO1 and PA14 are highly similar, the PA14 (6.5Mb) genome is slightly

larger than PAO1 (6.3Mb) and contains gene clusters that are not present in PAO135. The genes

absent in PAO1 therefore would not be accounted for in the transcriptomic dataset. However,

since most of these genes are linked to virulence, they should not have large effects on whole

metabolism as simulated here. Therefore, we expect that this application of the model would

allow the identification of broad shifts in metabolism due to exposure to mucins irrespective of

the specific strain simulated.

The improvements in the P. aeruginosa metabolic network reconstruction were made to reconcile

key disagreements between in silico predictions and in vitro results, ultimately producing a

higher quality metabolic network reconstruction. Through the update process, we identified key

predictions that remain incorrect and offer targets for further curation. The application of the
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model to investigate metabolic shifts that occur upon exposure to mucins recapitulated

phenotypes observed in literature and offered mechanistic insights that would be difficult to

delineate experimentally. This application of the reconstruction serves as an example of how the

reconstruction and associated models can provide insights into context-specific metabolism.

Ultimately, this reconstruction can serve as a resource for investigating the metabolism of

P. aeruginosa in a variety of settings and conditions.

A logical next step in this work would be the experimental validation of the insights gained

through model analysis. An initial validation could be performed in a bacterial culture

experiment in order to validate the role of propionate metabolism in P. aeruginosa growth in the

presence of mucins. Antibiotics targeting propionate metabolism could be applied to P.

aeruginosa grown in the presence of mucins and then optical density measurements could be

taken to measure growth. The growth rates of cultures growing without antibiotics could be

compared to cultures growing with antibiotics to test whether the antibiotics affect the growth

rate. The observation of a growth defect would serve as an initial validation of the role of

propionate metabolism in P. aeruginosa growth in the presence of mucins. This could be further

validated through an animal infection model (e.g. murine lung infection model65,66) to ensure that

the same principle holds once other aspects of infection such as host-pathogen interactions and

complex nutrient conditions are taken into account. Further validation in this more complex

environment could be an indication that antibiotics targeting propionate metabolism may be an

alternative therapeutic approach to treating P. aeruginosa infections that are resistant to

traditional antibiotics.

Another interesting future direction would be to construct an in silico model that captures the

metabolic interactions of P. aeruginosa and other microbes that take place during lung infection.
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It has been shown that other microbes such as Prevotella melaninogenica and Streptococcus

parasanguis are often present during lung infections and enhance P. aeruginosa growth in

lung-like environments67. While these microbes are not well-studied, their genomes could be

utilized by tools like CarveMe to generate GENREs that capture their metabolic capabilities68.

An in silico community model that contains both Pseudomonas and these other microbes could

then be constructed by placing each model in a discrete cytosolic compartment and allowing

them to share an extracellular compartment for the exchange of metabolites. This community

model could then be analyzed in order to gain insights into the metabolic interactions occurring

within this community. These insights could provide valuable information about how members

of this community contribute to the success of lung infections.

Data availability:

All data for this project is available on GitHub (github.com/dawsonpayne/iPau21). The

genome-scale metabolic model iPau21 is available in the BioModels Database69 as an SBML

Level 3 Version 154 file within a COMBINE Archive OMEX file70 including the contextualized

models and metadata71 at identifiers.org/biomodels.db/MODEL2106110001.

Code availability:

Code used for the GENRE update and analyses have been archived in a GitHub repository

(github.com/dawsonpayne/iPau21).
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APPENDIX II: SUBSTRATE UTILIZATION PREDICTIONS AND EXPERIMENTAL

DATA

Metabolite ID Carbon Source Name In Vitro iPau1129 iPau21

cpd00489 4-Hydroxyphenylacetate Growth No growth Growth

cpd00266 Carnitine Growth No growth Growth

cpd00222 GLCN Growth No growth Growth

cpd11592 gly-glu-L Growth No growth Growth

cpd11588 gly-pro-L Growth No growth Growth

cpd00477 N-Acetyl-L-glutamate Growth No growth Growth

cpd00141 Propionate Growth No growth Growth

cpd00851 trans-4-Hydroxy-L-proline Growth No growth Growth

cpd00024 2-Oxoglutarate Growth Growth Growth

cpd00136 4-Hydroxybenzoate Growth Growth Growth

cpd00029 Acetate Growth Growth Growth

cpd00182 Adenosine Growth Growth Growth

cpd00162 Aminoethanol Growth Growth Growth

cpd00137 Citrate Growth Growth Growth

cpd00117 D-Alanine Growth Growth Growth

cpd00082 D-Fructose Growth Growth Growth

cpd00027 D-Glucose Growth Growth Growth

cpd00314 D-Mannitol Growth Growth Growth

cpd00106 Fumarate Growth Growth Growth

cpd00281 GABA Growth Growth Growth

cpd00100 Glycerol Growth Growth Growth

cpd00080 Glycerol-3-phosphate Growth Growth Growth

cpd00033 Glycine Growth Growth Growth

cpd00380 Itaconate Growth Growth Growth

cpd00035 L-Alanine Growth Growth Growth

cpd00051 L-Arginine Growth Growth Growth
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cpd00132 L-Asparagine Growth Growth Growth

cpd00041 L-Aspartate Growth Growth Growth

cpd00023 L-Glutamate Growth Growth Growth

cpd00053 L-Glutamine Growth Growth Growth

cpd00119 L-Histidine Growth Growth Growth

cpd00322 L-Isoleucine Growth Growth Growth

cpd00159 L-Lactate Growth Growth Growth

cpd00107 L-Leucine Growth Growth Growth

cpd00130 L-Malate Growth Growth Growth

cpd00066 L-Phenylalanine Growth Growth Growth

cpd00129 L-Proline Growth Growth Growth

cpd00054 L-Serine Growth Growth Growth

cpd00308 Malonate Growth Growth Growth

cpd00064 Ornithine Growth Growth Growth

cpd00118 Putrescine Growth Growth Growth

cpd00020 Pyruvate Growth Growth Growth

cpd00036 Succinate Growth Growth Growth

cpd00386 D-Malate No growth Growth No growth

cpd01949 (SS)-23-Butanediol No growth No growth No growth

cpd00094 2-Oxobutyrate No growth No growth No growth

cpd03320 3-Hydroxyphenylacetate No growth No growth No growth

cpd00142 Acetoacetate No growth No growth No growth

cpd00361 ACTN No growth No growth No growth

cpd00361 ACTN No growth No growth No growth

cpd01262 Amylotriose No growth No growth No growth

cpd00158 CELB No growth No growth No growth

cpd00072 D-fructose-6-phosphate No growth No growth No growth

cpd00280 D-Galacturonate No growth No growth No growth

cpd00609 D-Glucarate No growth No growth No growth

cpd00079 D-glucose-6-phosphate No growth No growth No growth
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cpd00138 D-Mannose No growth No growth No growth

cpd00652 D-Mucic - acid No growth No growth No growth

cpd00294 dAMP No growth No growth No growth

cpd00047 Formate No growth No growth No growth

cpd00089 Glucose-1-phosphate No growth No growth No growth

cpd00164 Glucuronate No growth No growth No growth

cpd11589 gly-asp-L No growth No growth No growth

cpd00155 Glycogen No growth No growth No growth

cpd00139 Glycolate No growth No growth No growth

cpd00040 Glyoxalate No growth No growth No growth

cpd00224 L-Arabinose No growth No growth No growth

cpd00227 L-Homoserine No growth No growth No growth

cpd00121 L-Inositol No growth No growth No growth

cpd00060 L-Methionine No growth No growth No growth

cpd00156 L-Valine No growth No growth No growth

cpd00179 Maltose No growth No growth No growth

cpd00599 salicylate No growth No growth No growth

cpd00588 Sorbitol No growth No growth No growth

cpd00666 Tartrate No growth No growth No growth

cpd00666 Tartrate No growth No growth No growth

cpd00666 Tartrate No growth No growth No growth

cpd00184 Thymidine No growth No growth No growth

cpd01242 Thyminose No growth No growth No growth

cpd00794 TRHL No growth No growth No growth

cpd00154 Xylose No growth No growth No growth

cpd00477 N-Acetyl-L-glutamate Growth No growth Growth

cpd11592 gly-glu-L Growth No growth Growth

cpd11588 gly-pro-L Growth No growth Growth

cpd00851 trans-4-Hydroxy-L-proline Growth No growth Growth

cpd00266 Carnitine Growth No growth Growth
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cpd00222 GLCN Growth No growth Growth

cpd00489 4-Hydroxyphenylacetate Growth No growth Growth

cpd00141 Propionate Growth No growth Growth

cpd01502 Citraconate No growth No growth Growth

cpd00105 D-Ribose No growth Growth Growth

cpd00550 D-Serine No growth Growth Growth

cpd00246 Inosine No growth Growth Growth

cpd00161 L-Threonine No growth Growth Growth

cpd00797 (R)-3-Hydroxybutanoate Growth No growth No growth

cpd00211 Butyrate Growth No growth No growth

cpd11585 L-alanylglycine Growth No growth No growth

cpd00039 L-Lysine Growth No growth No growth

cpd00249 Uridine Growth No growth No growth
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APPENDIX III: GENE ESSENTIALITY PREDICTIONS COMPARED TO

EXPERIMENTAL DATA
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APPENDIX IV: MEDIAN EXCHANGE FLUXES OF CONTEXTUALIZED MODELS
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