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ABSTRACT 

Traumatic brain injuries (TBI) are one of the least understood injuries to the body. Finite 

element (FE) models of the brain are crucial for understanding brain injury and developing 

injury mitigation countermeasures, and these models have predicted that the magnitude of 

human brain deformation (and the resulting brain strain and injury risk) is dependent on 

magnitude, duration, and direction of the angular velocity of the human head. However, this 

hypothesis has never been demonstrated experimentally. Furthermore, the computational 

models lack the experimental data necessary to validate the brain’s response to a controlled 

dynamic rotation that is consistent with exposures in sports and automotive crashes. Therefore, 

the goal of this dissertation was to improve the experimental understanding of brain 

deformation under rotational loading and to improve the biofidelity of FE brain modeling 

capabilities. The goal was achieved using both experimental and computational aims. The 

experimental aims focused on developing a methodology to measure in-situ human brain 

motion under rotational loading, and on using the methodology to build a dataset of brain 

deformation. The computational aims focused on developing a methodology to evaluate FE 

brain models in comparison to experimental data, and a framework to optimize the material 

properties of the models to improve their biofidelity.  

A new method was developed to collect dynamic brain motion data using 

sonomicrometry. Small, neutrally-dense ultrasound crystals were embedded into human 

cadaveric brain tissue, and point-to-point distance measurements between crystal pairs were 

recorded during head impact. This method provided highly accurate and repeatable data that 

allowed for the measurement of brain deformation at various locations within the brain and for 

multiple severities for each specimen. A total of six cadaveric human specimens were tested 

and combined into a brain deformation dataset, containing approximately 5,000 displacement 
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curves. The dataset was aggregated into average response corridors that represent the variance 

in brain deformation response among the tested specimens.  

To encourage a consistent method of validating FE brain models, two widely used models 

were evaluated using various techniques of comparing the FE nodal motion to the experimental 

brain deformation data. A sensitivity analysis of the effect of the models’ material properties 

on brain motion was conducted to identify parameters that could be calibrated to improve the 

biofidelity of the model. The sensitivity analysis results were then used to predict improved 

material properties for the FE brain models. Overall, the computational aims provide an 

overarching framework for FE model developers to evaluate and optimize models based on the 

experimental dataset.  

This dissertation advances the understanding of human brain deformation through the 

development of a methodology and dataset quantifying in situ human brain deformation. The 

contribution of a dataset of brain deformation, including average data corridors, will have a 

broad impact on the TBI biomechanics field, allowing researchers to develop and evaluate the 

next generation of FE brain models. An improved experimental understanding and modeling 

of brain mechanics will be an important step towards mitigating the incidences and 

consequences of TBI, thereby helping to reduce the societal burden of brain injuries. 
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CHAPTER 1: INTRODUCTION 

STATEMENT OF PROBLEM 

Traumatic brain injuries (TBI) are one of the most common yet least understood 

injuries to the body. According to the World Health Organization, there has been an 

increase in global TBI incidences, and it is expected to become the third leading cause of 

death by 2020 (Meaney et al., 2014). In the United States, an estimated 1.7 million TBIs 

occur annually, and TBI is a contributing factor in one-third of all injury-related deaths 

(Taylor et al., 2017). Multiple causes have been implicated in TBI, including falls (35%), 

motor vehicle crashes (17%), and impacts against or from an object (17%), such as in sports 

and recreational activities (Faul et al., 2010). Motor vehicle accidents are the leading cause 

of TBI-related fatalities (Coronado et al., 2012). While TBI is a major public health concern 

for the general population, it is also a prominent factor in the injuries and deaths of soldiers 

(Tanielian et al., 2008), where over 310,000 TBI cases were reported during Operation 

Iraqi Freedom and Operation Enduring Freedom (Helmick et al., 2015).  

A majority of TBI cases occur from head impacts without skull fracture, and their 

effects range on the spectrum from mild to severe (Santiago et al., 2012). Seventy-five 

percent are classified as mild TBI, or concussion (Faul et al., 2010). Brain injuries can also 

be classified as either diffuse, including concussion and diffuse axonal injury (DAI), or 

focal injuries, such as contusion or hemorrhage (Gennarelli, 1993). The reported 

epidemiology, however, is an underestimate of the actual rate of TBI occurrence in the 

United States (McCrea et al., 2004; Langlois et al., 2006). It is estimated that half of all 

TBI cases are not reported due to fluctuating criteria for the diagnosis of concussion, lack 
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of methods to diagnose concussion shortly after impact, and the competitive nature of 

sports (Coronado et al., 2012; Harmon et al., 2013).  

The study of the biomechanics of the brain and associated tools to predict injury is 

important for understanding and mitigating brain injuries. Various tools for the assessment 

of brain injury risk and the evaluation of safety gear, such as computational models of the 

brain, have been developed in the past two decades. Anatomically-detailed finite element 

(FE) brain models allow for investigations into brain mechanics that are not possible with 

dummies or physical models when evaluating the risk of injury. There is, however, a need 

for the improvement of the biofidelity of these models under impact conditions relevant to 

diffuse TBI. To reduce the societal burden of TBI, it is necessary to develop improved and 

more accurate tools to understand what happens to the brain during an impact, and to help 

assess the effectiveness of safety countermeasures.  

MOTIVATION 

Biofidelity of FE Brain Models 

FE models have been vital to investigating TBI mechanisms, assessing injury risk and 

safety gear, and developing brain injury criteria based on head impact kinematics (Gabler 

et al., 2016a, 2017; Sanchez et al., 2017; Takhounts et al., 2013a). Improvements in 

computational capabilities and the generation of datasets of human brain deformation, 

namely by Hardy et al. (2001, 2007), have allowed for the creation of numerous FE brain 

models. Since 2001, there have been at least sixteen models developed, twelve within the 

past five years (Figure 1-1). Given the importance of these models in influencing standards 

of safety and product development across multiple industries, it is essential to validate the 

brain deformation predicted by these models using human brain motion under repeatable 
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loading conditions that are causative of injury. Current brain deformation datasets are 

limited and cannot be used to validate FE models for TBI-relevant loading conditions.  

 

Figure 1-1: The availability of brain deformation experiments and the development of FE brain 
models (Alshareef, 2019).  

Most of the depicted FE models are validated based on two datasets available for brain 

models consisting of two types: the Hardy brain motion datasets (Hardy et al., 2001, 2007) 

and preceding brain pressure datasets by Nahum (Nahum et al., 1977) and Trosseille 

(Trosseille et al., 1992). While the pressure datasets provide a reasonable metric to verify 

the correct implementation of the brain materials, they are not useful as a validation dataset 

for brain deformation, nor are they useful from an injury standpoint. The Hardy dataset 

provides validation data for human brain deformation under impact conditions, but there 

are many limitations associated with the study, which will be discussed in Chapter 2.  

Deformation of the Brain under Rotational Loading 

Recently, there has been a breadth of work to identify which head loading conditions 

and directions cause mild and moderate TBI. Takhounts et al. (2013) found that brain injury 
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risk depends on angular velocity, with axial rotations of the head being most sensitive to 

injury. Gabler et al. (2017) examined brain deformations from nearly 1,000 reconstructed 

sled and crash tests using a human FE brain model. The reconstructed cases, including 

automotive and sports scenarios, span a range of plausible head kinematics for real-world 

injury assessment, from non-injury to concussion to moderate and severe TBI, based on 

brain injury criteria (Rowson and Duma, 2013; Takhounts et al., 2013a; Gabler et al., 

2016a; Sanchez et al., 2017). The Gabler study found that in most real-world impact 

environments, maximum brain deformation depends on the magnitude of angular velocity 

and duration (or angular acceleration) of the signal. When isolated, the linear acceleration 

of the head had minimal effects on brain deformation (Gabler et al., 2016a).  

The study of human brain deformation predicates the development of biofidelic FE 

brain models and the assessment of TBI using brain injury criteria. Previous studies of 

human brain deformation used constant-energy methods to drive impact loading to the 

head, resulting in primarily linear acceleration, to study brain motion. Additionally, the 

focus of the tests on linear acceleration limits their use in validating models and tools aimed 

at predicting diffuse TBI caused by rotation of the head. To correlate the kinematics of the 

head to brain deformation, the kinematic input conditions imparted to the head need to be 

as consistent as possible between test subjects and must be representative of the rotational 

kinematics that cause injury.  

SCOPE 

Hypothesis 

The overarching hypothesis of the research performed in this dissertation is that the 

magnitude of brain deformation is dependent on magnitude, duration, and direction of 
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angular velocity applied to the human head. This hypothesis has been the framework for 

numerous computational and analytical brain injury metrics. The dependence has been 

previously tested using computational models (Gabler et al., 2016a), but has never been 

tested using experimental methods in humans. To test this hypothesis, the overall goal of 

this dissertation is to improve the field’s understanding of brain injury risk by generating 

an experimental dataset of human brain deformation under rotational loading.  

Goal and Specific Aims 

The goal will be accomplished through two phases, each with a set of specific aims 

(Figure 1-2). The experimental phase will focus on the development of a methodology to 

measure brain deformation using sonomicrometry under pure, repeatable, and controlled 

rotational loading. After the development of the methodology in Aim 1, the second aim 

will focus on acquiring a dataset of human brain deformation. The dataset will allow for 

an in-depth investigation into the factors that affect brain deformation, such as kinematic 

severity, rotation direction, and region of the brain. The third aim of the experimental phase 

will focus on combining the data from all specimens into average displacement corridors 

that can be used to understand population trends and to validate FE models more 

efficiently.  

The computational phase aims to develop a methodology to evaluate and improve 

human FE brain models. The first aim will investigate different methods of comparing the 

models to the experiments, based on the geometry of each specimen. The second aim 

includes a sensitivity analysis of the material properties of FE brain models to identify 

materials that could improve biofidelity. The last aim of the computational phase will focus 
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on improving the biofidelity of an FE brain model to the experimental dataset. The specific 

tasks for each phase are outlined in Figure 1-2.  

 

Figure 1-2: Specific aims for the experimental and computational phase of this dissertation.  

The focus of the dissertation will be to improve the understanding of brain deformation 

under rotational loading and the associated FE model implementation - this research does 

not assess or quantify the extent of brain injury from rotational loading. The bulk of the 

work will be conducted on human cadaveric specimens, and therefore, the regional and 

spatial deformation cannot be extrapolated to injury risk. Although diffuse injuries such as 

concussion and DAI cannot be readily measured in cadaveric specimen, this dissertation 

will focus on studying the biomechanical response of the brain during rotational loading. 

The availability of this dataset and methodology will result in future studies that will 

correlate deformation to risk through methods such as scaling, kinematic injury criteria, 

and in vivo animal experiments.  
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Chapters and Dissertation Content 

The tasks of this dissertation will be completed through several steps, each presented 

in a separate chapter. A background and literature review will be presented in Chapter 2. 

The development of the methodology for sonomicrometry and rotational loading will be 

presented in Chapter 3 (experimental, aim 1), along with pilot data for the first specimen. 

Chapter 4 will contain an investigation into algorithms of trilateration required to convert 

sonomicrometry data into dynamic displacements (experimental, aim 1). The full dataset 

will be presented in Chapter 5, along with an analysis of the factors that affect the severity 

of brain deformation (experimental, aim 2). Chapter 6 will contain a methodology and 

results for aggregate data corridors developed from the experimental dataset (experimental, 

aim 3). The computational aims will be presented in Chapters 7 and 8. Additional data, 

methods, results, and analyses are presented in the appendices. 

EXPECTED CONTRIBUTIONS 

This dissertation will address gaps in the understanding of human brain deformation 

through the development of a methodology and dataset quantifying in situ human brain 

deformation under rotational loading. The methodology provides a unique technique that 

can be used to further study human brain deformation, as well as directly measure brain 

deformation in pre-clinical animal injury models. The contribution of a digital dataset of 

brain deformation, including average data corridors, will have a broader impact on the TBI 

biomechanics field, allowing researchers to develop and evaluate the next generation of FE 

brain models using recommended practices identified in the computational phase. It will 

also provide experimental evidence for theories of brain deformation, such as the 
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importance of rotational kinematics and the dependence of brain deformation on loading 

severity and direction. 

Ultimately, this work will improve the tools available to investigate brain injury. The 

experimental and computational framework will assist in the investigation of the mechanics 

of the brain during injurious conditions and prediction of TBI injury risk. An improved 

experimental understanding and modeling of brain mechanics will be a necessary step in 

improving safety standards and the assessment of safety countermeasures, which will 

mitigate the incidences and consequences of TBI and help reduce the societal burden of 

brain injuries. 
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 BACKGROUND 

Human Brain Anatomy 

The brain is the organ responsible for controlling all functions and actions as well as 

storing memory and influencing emotion and intelligence. It is part of the central nervous 

system, working in conjunction with the spinal cord. The brain controls autonomous 

functions, such as the cardiovascular system, as well as voluntary functions, like the 

movement of limbs or the processing of thoughts (Purves et al., 2011). The brain is 

approximately 1227 ± 135  cm3 in volume (Matsumae et al., 1996). It is encompassed by 

the skull, a hard material made of cortical and trabecular bone. The cranium is 

approximately 1384 ± 139  cm3 in volume (Matsumae et al., 1996). Between the skull 

and the brain are the meninges: three layers that cover and protect the brain (Purves et al., 

2011). All other spaces in the cranial cavity, including hollow channels within the brain 

called ventricles and areas between the meninges, are filled with cerebrospinal fluid (CSF). 

CSF is a clear, watery substance that is constantly being absorbed and replenished (Purves 

et al., 2011) (Figure 2-1).  

The meninges serve to protect and nourish the brain. The outermost layer, the dura, is 

an approximately 0.3-0.8 mm thick, firm membrane made primarily of collagen fibers. It 

lines the inside of the skull and covers the brain (Bashkatov et al., 2003). The dura folds 

into the two halves of the cerebrum, where it is referred to as the falx. It also folds into the 

inferior regions covering the cerebellum and the brainstem, where it is referred to as the 

tentorium. The middle layer, the arachnoid, is a 0.035-0.04 mm thick membrane that covers 

most of the brain (Reina et al., 2010). The arachnoid contains blood vessels, some of which 

span the subdural space between the dura and arachnoid to reach the brain. The layer closest 
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to the brain, the pia mater, is a 0.015 mm thick membrane that follows the folds of the brain 

and contains a large number of blood vessels (Reina et al., 2004). The subarachnoid space, 

between the pia mater and arachnoid, is the main path of CSF flow around the brain.  

 

Figure 2-1: Anatomy of the human head and brain (Source: NIH National Cancer Institute 
Dictionary (2011). 

Macroscopically, the brain is composed of three main parts: the cerebrum, cerebellum, 

and brainstem (Purves et al., 2011) (Figure 2-2). The cerebrum comprises the largest 

volume of tissue in the brain and is divided into two halves, the left and right. A groove, 

the longitudinal fissure, separates the two halves until they are joined at the inferior side 

by the corpus callosum. The outer surface of the cerebrum, the cerebral cortex (or gray 

matter), is wrinkled in appearance. The presence of sulci and gyri results in folds and 

grooves in the tissue surface. Beneath the cortex is the white matter, which is composed of 

connecting fibers between the neurons of the brain. The cerebrum is divided into four lobes: 

frontal, parietal, temporal, and occipital (Purves et al., 2011). The frontal lobe is the largest 
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and is responsible for motor skills, including motion, speech, and behavioral function. This 

lobe also plays a part in memory, intelligence, and personality. The parietal lobe interprets 

signals from other parts of the brain, including hearing, vision, and memory. The temporal 

lobe is in charge of visual and verbal memory, allowing humans to recognize objects and 

understand language. The occipital lobe enables the processing of visual information such 

as shapes and colors (Purves et al., 2011).  

 

Figure 2-2: Macroscopic anatomy of the human brain with the three major regions: the 
cerebrum, cerebellum, and brainstem (Source: Idaho Public Television (“The Brain: Facts 

(Science Trek: Idaho Public Television),”). 

At the microscopic scale, the brain consists of two cell types: neurons and glia. 

Neurons serve to process and send information throughout the brain and the rest of the 

human body. The neuron is divided into three parts: soma or cell body, dendrites, and an 

axon (Figure 2-3). The soma houses the nucleus of the cell and typically has many dendrites 

and one axon stemming from either side. The dendrites are filaments that branch out and 

receive electrical signals from other neurons. The axon, commonly surrounded by a lipid-

rich wrapping called the myelin sheath, serves to transmit electrical signals from the soma 

to other neurons using the terminals. The myelin sheath serves to maintain efficient 
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conduction of electrical signals (Purves et al., 2001). Axons are typically 0.01 to 0.05 mm 

in diameter and vary from inches to several feet in length (Purves et al., 2011).  

 

Figure 2-3: Anatomy of the neuron (VectorStock). 

Glial cells are the most common type of cell in the brain, with an approximate count 

ratio of 3 to 1 to neurons. Although they do not participate directly in synaptic signaling, 

glia are essential to brain function. They provide support and nutrition to the brain by 

maintaining ionic hemostasis, forming myelin, and facilitating signal transmission across 

the nervous system (Purves et al., 2001). There are three types of glia in the brain: 

astrocytes, oligodendrocytes, and microglia. Astrocytes are star-shaped cells that help 

maintain the chemical environment for signaling in neurons and help form the blood-brain 

barrier. Oligodendrocytes construct the myelin sheath around neuronal cells. Microglia 

serve as scavenger cells to remove debris during normal function and injury (Purves et al., 

2001).  

Brain Injury 

Brain injuries typically result from trauma to the head. There are various types of brain 

injuries within TBIs that fall on the spectrum from mild to severe, and are usually classified 

under one of two categories: closed or penetrating. In a penetrating TBI, a sharp object, 



13 
 

such as a bullet, fractures the skull and punctures through the meninges and brain, 

lacerating the brain and exposing it to the external environment (Santiago et al., 2012). 

Penetrating trauma usually results in higher severity focal injuries. Closed head trauma 

involves blunt or inertial loading of the head that can cause focal injuries (e.g., hematomas, 

contusions, and lacerations) and diffuse injuries, such as concussion and diffuse axonal 

injury (DAI) (Gennarelli, 1993). Closed brain injuries from blunt impact can also result in 

skull fracture under severe loading conditions. This dissertation will focus only on brain 

deformation caused by closed head injuries from blunt and inertial impact.  

  

Figure 2-4: Depiction of focal injuries in the brain (Crandall, 2015). 

Focal and diffuse injuries to the brain can occur as a result of similar loading types. 

Typically, focal injuries are identified using standard clinical imaging such as Computed 

Tomography (CT) or Magnetic Resonance Imaging (MRI) because of the locally disruptive 

nature of the injury. The most common focal injury is bleeding in the brain, such as cerebral 
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hematomas, cerebral contusions, or tissue lacerations. Focal injuries can also occur on the 

surface of the brain between the meningeal layers, such as subdural hematomas, 

subarachnoid hemorrhage, or extradural hematomas. Focal injuries usually result from 

moderate to severe TBI loading conditions, except for subarachnoid hemorrhage which, in 

rare cases, can be present in mild TBI (Gennarelli, 1993; Ommaya, 1984). 

Diffuse injuries to the brain are characterized by a distributed pattern of microscopic 

damage to neurons in the brain and are not typically present with visible injury locations. 

Unlike focal injuries, which are associated with moderate to severe TBI, diffuse injuries 

can be mild to moderate (concussion) or moderate to severe (DAI). While mild TBI 

accounts for almost 80% of all TBI cases in the United States, DAI is often more costly 

due to the chronic and deadly pathological mechanisms of the injury (Meaney et al., 2014). 

Diffuse brain injuries primarily cause damage to the white matter of the brain, specifically 

the axonal fibers. DAI symptoms are commonly localized in the subcortical white matter, 

gray-white matter interface, and corpus callosum (Gennarelli et al., 1982; Ommaya, 1984; 

Smith and Meaney, 2000), as well as at points of attachment, such as cranial nerves (Viano 

et al., 1997). During high-severity impacts associated with DAI, stretching of the axons in 

the white matter can lead to rupture or gradual degeneration of axonal tracts. DAI usually 

presents with loss of consciousness as well as gross, often irreversible damage to many 

regions in the brain, most prominently in the brainstem and corpus callosum. The 

magnitude of symptoms associated with diffuse brain injuries, including physical 

symptoms, physiological changes, and mechanical injury are associated with the severity 

of the injury (Gennarelli, 2015) (Figure 2-5).  
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 Figure 2-5: Magnitude of the effect of TBI from diffuse injuries (adapted from Gennarelli 2015). 

The effects of a concussion are much more variable and complex than severe injuries 

like DAI. Although cerebral concussion has been mentioned in medical literature as far 

back as Hippocrates (McCrory and Berkovic, 2001), the definition and clinical symptoms 

have changed. The consistent trend in the definition of concussion is that a blow or impact 

to the head causes damage (typically reversible) that results in an altered mental or 

behavioral state. Concussions can include a loss of consciousness for a short period of time, 

but it is not necessary to have any external physical symptoms during or after a head 

impact. As stated in Ommaya 1974, “cerebral concussion would then be defined as a 

graded set of clinical syndromes following head injury wherein increasing the severity of 

disturbance in level and content of consciousness is caused by mechanically induced strains 

affecting the brain in a centripetal sequence of disruptive effect on function and structure” 

(Ommaya, 1984). In the field of sports medicine, a concussion is defined as a TBI that is 

caused by either a direct or indirect impact to the head, and often “results in the rapid onset 
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of short-lived impairment of neurological function that resolves spontaneously (McCrory 

et al., 2017).” 

Brain Mechanics and Material Properties 

The study of the mechanics of the human brain, including its shape, structures, and 

material properties, is critical in developing accurate tools to predict and assess injury. 

Parallel to its complex structure and function, the mechanics of the brain are challenging 

to assess. The material properties of the brain have mostly been estimated through ex situ 

mechanical experiments, including tensile (Miller and Chinzei, 2002), compressive 

(Laksari et al., 2012; Prevost et al., 2011), shear (Garo et al., 2007, 2007; Jin et al., 2013; 

Prange and Margulies, 2002; Thibault and Margulies, 1998), and indentation (Alshareef et 

al., 2015; Gefen et al., 2003; Shafieian et al., 2009). The brain is non-linearly viscoelastic, 

incompressible, and anisotropic, with differences across different regions of the brain 

(Arbogast and Margulies, 1998; Budday et al., 2018; Jin et al., 2013; Prange and Margulies, 

2002). The material properties of the brain are also dependent on age (Finan et al., 2012; 

Gefen et al., 2003; Thibault and Margulies, 1998) and sex (Sack et al., 2009).  

There have been many studies on the material properties of the brain, and there is a 

broad range of reported values: the complex shear modulus spans three orders of magnitude 

ranging from 0.1-100 kPa, and the damping coefficient (tan-delta) ranges from 0.1-4 

(Meaney et al., 2014). The lack of a defined set of material properties stems from many 

factors, including spatial differences in the tissue, experimental methods, and the 

constitutive models used to describe the material response. The spatial differences in brain 

tissue can account for some variation in the material properties. The white matter regions 

of the brain, such as the corpus callosum or the cerebellum, contain axonal fibers that are 
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highly organized, forming a preferred fiber direction. This structural anisotropy makes their 

response stiffer and varies depending on the direction of loading. Conversely, the gray 

matter regions of the brain are typically softer, mechanically isotropic, and can have region-

dependent variation in material properties (Arbogast and Margulies, 1998; Hrapko et al., 

2008; Jin et al., 2013).  

Differences in experimental testing methods of human brain tissue have also 

contributed to the variations in reported mechanical properties. The mechanical properties 

of brain tissue were dependent on temperature during testing (Arbogast and Margulies, 

1998; Hrapko et al., 2008), the magnitude and rate of the loading (Hrapko et al., 2008; Jin 

et al., 2013), the type of loading (e.g., shear or compression) (Hrapko et al., 2008; Jin et 

al., 2013), tissue perfusion, and storage conditions (Fallenstein et al., 1969). Additionally, 

there were differences in the post-mortem time the tissues were tested, with a range of 48 

hours to 12 days (Garo et al., 2007). Brain tissue mechanical properties were dependent on 

time post-mortem (Garo et al., 2007), supporting physiological studies that indicate that 

nerve tissue autolyzes shortly after death (Fountoulakis et al., 2001). 

The mechanical characterization of the brain has also led to the derivation of 

constitutive models that mathematically relate stress (or loading magnitude) and strain (or 

deformation) across multiple loading severities or regimes. Constitutive models are useful 

for the creation of analytical or computer models that predict human brain mechanics 

during injury. The most common constitutive formulation implemented in FE brain models 

is a linear viscoelastic model. This model demonstrated applicability for small 

deformations (up to 20% strain); a quasilinear viscoelastic model is required for up to 50% 

strain, and a nonlinear viscoelastic model is required after that point (Takhounts et al., 
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2003). For finite element implementation of brain material properties, most models utilize 

a linear viscoelastic constitutive model with one time constant (Madhukar and Ostoja-

Starzewski, 2019) and these models have reasonable validation with existing brain 

deformation datasets (Mao et al., 2013; Miller et al., 2016; Takhounts et al., 2008a).  

Mechanisms of Brain Injury 

Various mechanisms for TBI have been studied for decades in an attempt to link 

external head kinematics (linear and rotational motion) to the injurious macroscopic and 

microscopic deformations of brain tissue. The focus on correlating external head 

kinematics to brain injury risk has been motivated in part by the goal of developing TBI 

risk functions for assessing the efficacy of helmets and automotive countermeasures 

(Newman et al., 2000; Rowson and Duma, 2013; Takhounts et al., 2013a; Versace, 1971). 

Much of the early work in TBI biomechanics focused on the mechanism of injury and 

understanding what aspects of loading contributed to the disruption of the brain tissue.  

Although controversy regarding the mechanism of TBI exists, recent studies have 

suggested that rotational head motion, not linear, is the primary cause of brain deformation, 

and this motion leads to diffuse injuries ranging from mild concussion to diffuse axonal 

injury (DAI). This theory was initially hypothesized by Holbourn (1943) using 

fundamental mechanics to describe the motion of the brain relative to the skull (Holbourn, 

1943). Holbourn used photoelastic materials to highlight areas of high shear strain in a 

physical brain surrogate during rotational motion. The models predicted that cortical 

regions were most susceptible to sagittal plane rotations, while deeper brain structures were 

more susceptible to coronal plane rotations. Holbourn hypothesized that the shear strains 

were proportional to the rotational acceleration for long duration impacts and the rotational 
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velocity for short duration impacts. He also noted that the linear acceleration of impacts 

did not significantly contribute to deformations in the brain.  

Experimental work on animal models in the decades after Holbourn’s study confirmed 

his hypothesis. In seminal papers by Gennarelli and Ommaya (Gennarelli et al., 1972, 

1987; Ommaya, 1984), primates were subjected to pure linear and rotational loading of the 

head. While the rotational motion caused diffuse TBI, linear accelerations up to 1400 g 

failed to produce cerebral concussion or other symptoms of diffuse injury.  The TBI 

biomechanics field, however, gravitated towards experimental work showing a relationship 

between linear acceleration and cerebral injuries (Nusholtz et al., 1984; Ono et al., 1980; 

Stalnaker et al., 1977). These experiments were successful in predicting skull fracture and 

certain focal injuries associated with severe TBI; however, the relevance of the rotational 

mechanisms of injuries associated with mild and moderate TBI was sidelined. The studies 

using linear acceleration to cause head injury led to the development of injury criteria for 

head and brain injury that are still used in government and protective equipment safety 

standards (e.g., the Head Injury Criterion [HIC]) (Versace, 1971).  

Given that water is the major constituent of brain tissue (Carey, 1990), the brain 

mechanically behaves like an incompressible material. Its bulk modulus (~2.1 GPa) is a 

million times larger than its shear modulus (~5 kPa) (Shuck and Advani, 1972), making it 

more susceptible to shearing deformations that change its shape rather than volumetric 

loads that would change its size. Furthermore, the coupling of the brain to the skull, which 

is a much stiffer material, and the anatomical structure of the head and cervical spine make 

rotational deformation dependent on the direction of loading. The significance of axis-

dependent rotational motion has been corroborated through numerous experimental 
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(Gennarelli et al., 1972, 1987; Margulies et al., 1990; Ommaya et al., 1971; Smith et al., 

1997) and computational studies (Gabler et al., 2016a; Kleiven, 2007; Rowson and Duma, 

2013; Takhounts et al., 2013a) since the original animal studies by Ommaya and 

Gennarelli. There are no experimental studies that confirm the dependence of human brain 

deformation on axis-dependent, controlled rotational motion. 

Human Brain Deformation Experiments 

Various techniques have been utilized to study in vivo, in situ, and in vitro human brain 

motion in response to motion of the head (Bayly et al., 2005; Hardy et al., 2001; Stalnaker 

et al., 1977). One approach for investigating in situ brain motion has been high-speed X-

ray imaging of radio-opaque objects implanted in the brains of post mortem human 

surrogates (PMHS). Stalnaker (Stalnaker et al., 1977) used lead markers to quantify brain 

motion during the repressurization of the vasculature and ventricles and showed that the 

coupling between the brain and skull increased with the increased pressure. Nusholtz 

(Nusholtz et al., 1984) injected a neutral-density radio-opaque gel into the brain to measure 

brain motion in PMHS using high-speed cineradiography. Frontal impacts using a padded 

linear impactor on the specimen resulted in head linear accelerations ranging from 25-450 

g, head rotational velocities ranging from 18-52 rad/s, and durations ranging from 8-50 ms. 

Minimal brain distortion was observed during these tests, except for the displacement of 6 

mm in a specimen that also sustained skull fracture.  

After these early tests using X-ray, the focus of the biomechanics field shifted towards 

using kinematic sensors to measure brain motion. Trosseille et al. (1992) used 

accelerometers implanted in the brains of cadavers to conduct validation tests for an FE 

model (Trosseille et al., 1992). A subsequent study by Hardy et al. (1997) used similar 
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triaxial neutral density accelerometers designed to move with the brain tissue and measure 

tissue motion (Hardy et al., 1997). The measured acceleration was then compared to skull-

mounted accelerometers to compare relative motion, with 3-5 mm of peak displacement 

observed in the brain. Although the method was validated against X-ray measurements of 

brain motion, the accelerometers do not directly measure brain displacement, and errors 

were introduced in the displacement calculations. 

In the early 2000s, the accelerometer method was abandoned with improvements in 

digital X-ray imaging technology. A large dataset of in situ human brain deformation was 

generated by Hardy et al. (2001, 2007)(Hardy et al., 2001, 2007). The experimenters used 

high-speed bi-planar X-ray to track the 3D motion of neutrally-dense targets (NDT) made 

from tin granules embedded in polystyrene tubing and were implanted in columnar and 

cluster arrays in the brains of post-mortem human subjects (PMHS) head-neck specimens. 

The head-neck specimens were inverted and subjected to frontal, occipital, and coronal 

impacts. The impacts were imparted on the head using a padded linear impactor which 

caused resultant head linear accelerations ranging from 38-291 g, rotational velocities 

ranging from 4-30 rad/s, and head rotational accelerations ranging from 2,370 to 24,206 

rad/s2. The markers in the brain were observed to follow figure-eight patterns with peak-

to-peak excursions as high as 13.4 mm. The observed deformation was largest in the 

inferior regions of the brain.  

Other imaging modalities have also been used to characterize brain motion. Mallory 

et al. (Mallory, 2014) conducted low-severity sagittal head rotations (2 rad/s, 120-140 

rad/s2) on repressurized cadavers and measured brain deformation using B-mode 

ultrasound at the surface of the dura. The study was useful in identifying relative localized 



22 
 

motion between the brain and surrounding anatomical structures but was limited by the 

penetration depth of ultrasound waves and the substantial disruption of the brain-skull 

boundary condition. Bayley et al. (Bayly et al., 2005), Feng et al. (Feng et al., 2010), Sabet 

et al. (Sabet et al., 2008), and Knutsen et al. (Knutsen et al., 2014) used tagged MRI to 

quantify in vivo brain deformation in human volunteers during low-severity, repeated 

sagittal head accelerations (2-3 g, 40 ms) and coronal rotations (300 rad/s2, 40 ms). The 

tagged MRI method has the potential to measure dynamic deformation of the human brain 

in a living person, but the technology is still in development. Limitations of this technique 

are also a potential barrier for high-rate, injurious loading conditions: The subjects must be 

tested multiple times to capture each “frame” of the motion using MRI. Thus, the tests must 

be very repeatable, and small variation can alter the results. Additionally, the sampling rate 

is approximately 15-20 Hz, which is not high enough to capture the deformation of the 

brain relevant to brain injury (500-1000 Hz required). The tests were also conducted on 

human volunteers, and the loading was not large enough to cause deformations that would 

be valuable for injury simulation using an FE model.  

Brain Biomechanics 

Brain biomechanics is a research field that focuses on understanding brain mechanics 

during inertial loading to the head. Injuries to the brain are elusive and complex because it 

is difficult to quantify or assess what the brain experiences during an impact. There have 

been many experimental and computational studies that have attempted to link the external 

motion of the head to the biomechanical effects on brain tissue. One of the most common 

and readily available methods to predict injury risk is through injury criteria, which are 

usually developed based on tolerances derived from a combination of experimental and 
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computational studies. Brain injury criteria typically consist of a biomechanical metric, 

such as head angular velocity, and a related injury risk function. The injury risk function 

relates the biomechanical metric to some probability of TBI such as the risk of concussion. 

Such injury criteria have been used to evaluate the protective efficacy of automotive 

countermeasures (National Highway Traffic and Safety Administration, 2015; Takhounts 

et al., 2013) and to predict the possibility of injury to football players using helmet-

mounted kinematic sensors (Duma et al., 2005). Biomechanical injury criteria have been 

developed either as kinematics criteria, based on the motion of the head or as tissue-level 

criteria, based on the mechanics of the brain tissue.  

Kinematics-based injury criteria have been widely used to assess automotive and 

helmet safety. It is relatively easy to collect information on the head motion, using 

anthropomorphic test devices, helmet sensors, or video. The injury criteria are typically 

analytical equations, which can be solved relatively quickly. Kinematic injury criteria are 

based on head kinematics: linear, rotational, or both. Tissue-level injury criteria delve 

deeper into brain mechanics by assessing the relationship between the biomechanics of the 

brain (with metrics such as strain) to injury. Direct measurement of tissue-level 

deformation of the brain during head impact, however, remains elusive and challenging. 

Anatomically-detailed finite element (FE) models provide a valuable alternative and have 

been vital to investigating TBI mechanisms, assessing injury risk and safety gear, and 

developing brain injury criteria based on external head kinematics (Gabler et al., 2016a; 

Sanchez et al., 2017; Takhounts et al., 2013a). FE models are typically used in engineering 

design and optimization to predict the mechanical response of an object under various 

loadings. The models implement the finite element method to divide a complex object into 
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finite elements for which the mechanical response can be individually solved using 

continuum mechanics (Madhukar and Ostoja-Starzewski, 2019). With sufficiently small 

finite elements, the response and interaction of the elements can predict the macroscopic 

mechanical response of the object.  

FE models provide an advantage over kinematics-based metrics because of their 

ability to measure complex patterns in the response of the brain instead of using a 

relationship between peak kinematics and brain deformation (Figure 2-6). By applying 

known six degree-of-freedom (DOF) head kinematics to the FE models, the temporal and 

spatial mechanical behavior of the brain can be approximated. These models allow for the 

in-depth investigation of brain response under various loading conditions at a level that is 

not possible using cadaveric or human experiments. They have been created to predict 

injury using summary strain-based injury metrics such as maximum principal strain (MPS) 

and the cumulative strain damage measurement (CSDM) (Gabler et al., 2016a; Kleiven, 

2007; Sanchez et al., 2017; Takhounts et al., 2013a; Zhang et al., 2004). Although these 

injury metrics and models are computationally-based, they are considered the state-of-the-

art method for evaluating a large number of head impacts and kinematics in an attempt to 

relate to injury (Deck and Willinger, 2009).  

A limitation of FE models is the computational time, with typical simulation times of 

several hours for a ~100 ms impact. The computational cost and time prevent their use in 

real-time or field analysis. An additional consideration for the use of FE models is their 

biofidelity in comparison to experimental human brain deformation. To make significant 

conclusions about tissue-level deformation, the biomechanical response of the model must 

match closely to physical human brain deformation. Although many of the models are 



25 
 

validated using the same single dataset of human brain deformation, the results of the 

models can vary significantly for the same kinematic inputs. An analytical review of FE 

brain models suggests that the factors affecting the output of these models include material 

properties, geometric differences, the mesh (size, type, and quality), and FE parameters 

such as hourglass control (Giudice et al., 2018a). Additionally, the models are often 

simulated under conditions that vary from the head kinematic impacts they were validated 

against, raising questions about the applicability of the models and what conclusions can 

be drawn from the results.  

 

Figure 2-6: Sagittal view of the Simulated Injury Monitor (SIMon) FE brain model. Different 
regions are shown, along with the finite element mesh (Takhounts et al., 2008a). 

Sonomicrometry 

There are various techniques in the field of biomechanics that have been used to track 

deformation of soft biological tissue. In the cardiac biomechanics field, bi-planar X-ray 
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was the method of choice from the 1920s to the 1980s to track heart motion, quantify 

volume, and measure deformations relevant to cardiac disease. In the 1980s, a new 

technique called sonomicrometry was introduced. Sonomicrometry utilizes an array of 

small, implantable piezoelectric crystals to dynamically measure distances between points 

in the tissue by recording ultrasound time-of-flight between crystal pairs. The technology 

has been extensively used for the past 30 years for various in vivo and in situ biomedical 

research applications, including joint biomechanics and tissue testing. It provided an order 

of magnitude-improved accuracy and did not need external tracking or radiation (Figure 

2-7). 3D digital sonomicrometry had a high degree of agreement with measures derived 

from a materials testing machine (displacement difference of 0.037 ± 0.0137 mm) 

(Stonecash, 2005), a Kuka robot (displacement difference of 0.04 ± 0.001 mm) (Sipes et 

al., 2005), single-plane fluoroscopy (absolute difference of 1.06 ± 0.27 mm) (Meyer and 

Wolf, 1997), and bi-planar X-ray (absolute difference of 0.63 ± 0.46 mm) (Meoli et al., 

1998). The studies comparing sonomicrometry to bi-planar X-ray found an order-of-

magnitude improvement in displacement accuracy, with spatial resolutions of 0.024 mm 

for sonomicrometry versus 0.24 mm for high-speed X-ray (Dione et al., 1997; Hardy et al., 

2001).  

After two decades of vetting the technology in comparison to fluoroscopy and bi-

planar X-ray, sonomicrometry has largely replaced biplanar X-ray as the preferred method 

for high-rate internal motion tracking in cardiac mechanics experiments (Dione et al., 1997; 

Van Trigt et al., 1981; Sarazan and Schweitz, 2009; Fomovsky et al., 2012; Holmes, 2004). 
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Figure 2-7: Bi-planar X-ray and sonomicrometry in cardiac biomechanics (Alshareef, 2019). 

In addition to improved accuracy, sonomicrometry crystals do not have line-of-sight 

imaging requirements, allowing for a larger array of crystals that can be distributed 

throughout all regions of the brain, and each specimen can be tested in multiple loading 

severities and directions. Bi-planar X-ray has been the method of choice in brain 

deformation experiments, but sonomicrometry has the potential to improve the state of 

brain deformation research. The use of sonomicrometry to measure brain deformation 

provides a more accurate and robust technique to generate a dataset of brain deformation.  

Summary 

The motivation and background of this dissertation can be summarized in the 

following points: 

• TBI is a leading cause of injury, with a substantial societal burden.  

• Most brain injuries are closed-head injuries, with focal or diffuse injury patterns.  
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• In sports and automotive environments, diffuse injuries, including concussion and 

DAI, are the most common. Biomechanical assessments of TBI contribute to the 

evaluation of protective equipment and automotive crashworthiness.  

• The biomechanics of TBI is typically assessed using kinematic-based metrics, such 

as brain injury criteria, and tissue-level tools, such as FE brain models, to relate the 

motion of the head to the deformation and correlated injury risk of the brain.  

• The biofidelity of FE brain models is essential to their use in biomechanics. 

Currently, models have limited brain deformation validation datasets, and there is 

no consensus on the method of validation. 

• Sonomicrometry provides a promising technique to measure brain deformation in 

comparison to the standard technique of X-ray imaging.  

•  A dataset of human brain deformation will provide an important validation tool, as 

well as insight into the biomechanics of the human brain under rotational loading.  
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 METHODOLOGY DEVELOPMENT 

The measurement of in situ human brain deformation under rotational loading will 

provide necessary data for understanding the mechanics of TBI and validation of FE brain 

models. The techniques of applying a pure rotation to the head, as well as accurately 

measuring brain deformation under multiple loading conditions, however, are complex and 

require the development of a new test device. The objective of this chapter was to develop 

a methodology for the investigation of three-dimensional (3D) brain deformation during 

pure rotational loading of the head.  The first goal was to devise a well-defined test method 

to apply rotational loading to the head. The second aim was to demonstrate 

sonomicrometry as a tool for quantifying brain deformation. The contributions of this 

chapter will provide a framework for quantifying in situ brain deformation using 

sonomicrometry under pure rotational loading of the head. Portions of this chapter were 

published previously (Alshareef et al., (2018). A Novel Method for Quantifying Human In 

Situ Whole Brain Deformation under Rotational Loading Using Sonomicrometry. Journal 

of Neurotrauma, 35(5), 780-798), and were adapted for this dissertation. 

INTRODUCTION 

Various mechanisms for TBI have been studied for decades in an attempt to link 

external head kinematics (linear and rotational motion) to the macroscopic and microscopic 

deformations of brain tissue that leads to injury. The focus on correlating external head 

kinematics to brain injury risk has been motivated in part by the goal of developing TBI 

risk functions for assessing the efficacy of helmets and automotive countermeasures 

(Newman et al., 2000; Rowson and Duma, 2013; Takhounts et al., 2013a; Versace, 1971). 

Although controversy regarding the mechanism of TBI still exists, recent studies have 
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suggested that rotational head motion, not linear, is the primary cause of brain deformation, 

and leads to diffuse injuries ranging from mild concussion to DAI. The significance of 

axis-dependent rotational motion has been corroborated through numerous experimental 

(Gennarelli et al., 1972, 1987; Margulies et al., 1990; Ommaya et al., 1971; Smith et al., 

1997) and computational studies (Gabler et al., 2016a; Kleiven, 2007; Rowson and Duma, 

2013; Takhounts et al., 2013a). 

Various FE models of the head have been created to predict injury using strain-based 

injury metrics (Kleiven, 2007; Takhounts et al., 2013a; Zhang et al., 2004). These models 

allow for the in-depth investigation of the brain response under various loading conditions 

at a level that is not possible using cadaveric or human experiments. Since brain strain is 

the primary outcome measure typically used to predict brain injury, it is essential to validate 

the brain deformation predicted by these models using human brain motion observed in 

laboratory experiments.  

Various techniques have been utilized to study human brain deformation (Bayly et al., 

2005; Hardy et al., 2001; Stalnaker et al., 1977). One approach for investigating in situ 

brain motion has been high-speed X-ray imaging of radio-opaque objects implanted in the 

brains of post mortem human surrogates (PMHS). Hardy (Hardy et al., 2001, 2007) used 

high-speed bi-planar X-ray to track the 3D motion of neutrally-dense targets (NDT), made 

from tin granulas embedded in polystyrene tubing, implanted in columnar and cluster 

arrays in the brains of PMHS head-neck specimens. The head-neck specimens were 

inverted and subjected to frontal, occipital, and coronal impacts. Impacts were imparted on 

the head using a padded linear impactor which resulted in resultant head linear 

accelerations ranging from 38-291 g, rotational velocities ranging from 4-30 rad/s, and 
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head rotational accelerations ranging from 2,370 to 24,206 rad/s2. The markers in the brain 

were observed to follow figure-eight patterns with peak to peak excursions as high as of 

13.4 mm. The results obtained from this study provided a valuable validation dataset for 

FE model development but included several limitations. Bi-planar X-ray requires that each 

implanted NDT be continuously viewable in each frame, and each must be consistently 

distinguishable and identifiable from the other surrounding NDTs. This constraint limits 

the number of NDTs that may be used in a given test, as too high of a concentration of 

markers in any area would confound consistent identification of the NDTs (Hardy et al., 

2007). High-speed X-ray also has a discretization limitation in tracking the positions of the 

NDTs, providing an inherent error of 0.24 mm on all measurements (Dione et al., 1997; 

Hardy et al., 2001). The method also limits test fixture design to prevent interference with 

X-ray videos and constrains loading conditions such that the head trajectory is confined 

within the field of view of the X-ray system. 

Many of the limitations of the existing methodologies for measuring brain deformation 

can be remedied using sonomicrometry. Sonomicrometry utilizes an array of small, 

implantable piezoelectric crystals to dynamically measure distances between points in the 

tissue by recording ultrasound time-of-flight between crystal pairs. Sonomicrometry 

crystals do not have line-of-sight imaging requirements, which allows for a more extensive 

array of crystals that can be distributed throughout all regions of the brain and allows each 

specimen to be tested in multiple loading conditions and directions. 

The objective of this study was to develop and test a methodology for the investigation 

of three-dimensional (3D) brain deformation during pure rotational loading of the head. 

The methodology development includes design and fabrication of the test device and 
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mounting hardware, the sonomicrometry deformation measurement methodology, the 

specimen selection criteria, design and assembly of the perfusion system, the specimen 

preparation procedure, selection and procurement of instrumentation, and the testing 

procedure. The methodology development is followed by results from a set of pilot tests 

performed with a single cadaveric human specimen, to validate the reliability and 

repeatability of the testing methods and the sonomicrometry technique. 

METHODS 

TEST DEVICE AND PREPARATION HARDWARE 

Fixture Design and Fabrication 

The fixture design and fabrication included three mechanical systems: the rotational 

loading test device (RTD), a jig to facilitate consistent installation of instrumentation and 

mounting hardware on the test specimen, and a coupling mechanism to attach the head 

specimen to the RTD and allow testing about the three axes of the head.  

Rotation Test Device (RTD) 

The RTD is driven by a DSD Single Intrusion Cylinder (Dr. Steffan Datentechnik 

GmbH, Linz, Austria). This multi-purpose drive system uses a pneumatically-driven, 

servo-hydraulically controlled active feedback control system to generate dynamic linear 

loading with controlled acceleration, velocity, and displacement pulse characteristics. This 

system was chosen for its ability to deliver user-defined acceleration pulses with high 

repeatability and accuracy. The RTD uses a cable-drive system to translate the linear output 

of the DSD into a rotational pulse that can be applied to rotate a specimen rapidly. The 

device includes two cables - a drive cable and deceleration cable - attached to a drive drum 

to allow for controlled rotational acceleration and deceleration. The drive drum was 
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connected to a 1:1, heavy-duty bevel gearbox with two perpendicular output shafts, to 

allow for rotation in three directions while maintaining a consistent (inverted) initial head 

position. For sagittal and coronal rotations, the specimen was mounted to the through-shaft 

of the gearbox. For axial rotation, the specimen was mounted to the perpendicular output 

shaft. In all cases, the head was initially oriented in an inverted position before the initiation 

of the test, approximately perpendicular to the ground. An illustration of the CAD assembly 

for the RTD is shown in Figure 3-1. 

 

Figure 3-1: CAD assembly of the dynamic rotation test device (RTD). The RTD uses a linear, 
pneumatic actuator and converts its linear motion into pure rotation through a cable-drum-

gearbox assembly. The gearbox allows for efficient mounting of the specimen in all three 
anatomical directions. 

Specimen Prep Jig 

A specimen prep jig was developed to ensure consistent installation of instrumentation 

and mounting hardware on each specimen. The specimen was aligned within the jig based 

on the specimen’s anatomically-identified center of gravity (CG) (refer to “Specimen 
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Preparation” section below for details) and alignment pins were used to guide the fixation 

of plates to all sides of the head. Illustrations of the CAD assembly for the specimen prep 

jig are shown in Figure 3-2.  

 

Figure 3-2: Head specimen preparation jig. This jig was designed to ensure consistent placement 
of the mounting hardware and instrumentation relative to the anatomically-defined head CG. 

Rotation Coupling 

A set of mounting plates were designed to couple the head to the output shafts of the 

RTD gearbox. They are attached to the mounting plates fixed to the head, with an attached 

collar to interface with the gearbox. An isometric view of the head specimen mounted to 

the rotation coupling can be seen in Figure 3-3. The collars have three possible mounting 

positions, one for each axis of rotation. This assembly also had a mounting location for a 
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multi-degree of freedom kinematic sensor package to record the head kinematics during 

testing.  

 

Figure 3-3: Rotation coupling hardware. Collar position A was for axial rotation, B for coronal 
rotation, and C for sagittal rotation. Note: Only one collar was attached at a time. 

Pulse Tuning 

To obtain the desired pulse magnitude and duration, both the linear acceleration input 

curve to the DSD and the DSD feedback control were tuned. The tuning process involved 

optimization of the duration and magnitude of the input curve as well as the PID control. 

An instrumented plate with a variable moment of inertia (MOI) was fabricated and used to 

conduct speed runs on the RTD. The blocks were adjusted to yield approximately the same 

calculated MOI as the head and mounting fixture (derived from the CAD assemblies). For 

pulse tuning, the MOI plate was mounted in the axial test configuration. The DSD input 

curve was tuned by calculating the linear input required to produce a specified downstream 

angular velocity. Iterations to this input curve were made to account for variations in the 

MOI, the coupling between the linear cylinder and rotational components, and the 

mechanical resonance frequency of the RTD. 
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SONOMICROMETRY 

Sonomicrometry crystals were employed to quantify brain deformation in response to 

the dynamic rotation pulses. The 2-3 mm crystals are capable of transmitting and receiving 

ultrasonic pulses, which have a frequency of 100 MHz. The crystals weigh approximately 

0.02 grams and are neutrally dense. The crystal wires are ultra-thin, flexible, and neutrally 

dense. For each transmitter-receiver crystal pair, the time of flight of the ultrasound pulse 

is captured by a central data acquisition system. By assuming a speed of sound through the 

tissue, a segment distance can then be calculated between the two crystals. With the 

inclusion of at least three crystal pairs, trilateration can be used to determine the 3D 

coordinates of each receiving crystal in the array. Sonomicrometry offers the advantages 

of being minimally invasive, neutrally dense relative to brain tissue, and capable of 

measuring 3D deformation. 

Initial testing of the crystals was performed in situ using porcine brain tissue to confirm 

that the crystals could be easily inserted, functioned properly, recorded accurate data, and 

caused no gross disruption of the brain tissue. The following sections describe the 

verification of the sonomicrometry technique in brain tissue, the selection of transmitter 

and receiver crystal positions, crystal modification and insertion procedure, identification 

of the maximum sampling rate, and the development of the brain crystal insertion 

procedure. 

Verification of Sonomicrometry Performance in Brain Tissue 

Trials were performed on two post-mortem porcine head specimens to verify the 

performance of the sonomicrometry system in an inhomogeneous, in situ brain 

environment and to practice insertion and port-sealing techniques. The specimens were 
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obtained from the UVA Department of Comparative Medicine. Specimen procurement, 

handling, and disposal were performed in accordance with the protocols of the UVA 

Department of Comparative Medicine and the UVA Institutional Animal Care and Use 

Committee. Tests were performed within 48 hours of death. 

Two specimens were procured and tested. The first specimen was used to verify 

sonomicrometry signal transmission in the inhomogeneous brain tissue environment. First, 

the dorsal surface of the dura and the brain was exposed via 2” diameter craniotomy (Figure 

3-4). Care was taken to minimize disruption to the dura. Once the area was exposed, four 

sonomicrometry crystals were inserted into the brain (two in each hemisphere) via the 

cannula insertion technique (see “Specimen Preparation”). Good signal quality was 

observed between each of the pairs, with no discernable signal transmission or noise issues. 

      

Figure 3-4: (Left) In situ sonomicrometry signal transmission test. Four crystals were inserted 
into a porcine brain in situ via craniotomy. (Right) The craniotomy field was flooded with saline, 

and then a crystal was placed in the saline outside of the dura. 

Signal transmission through the dura was also checked using the same specimen. The 

brain within the cranial vault was filled with saline solution, and a 5th crystal was placed in 

the fluid outside of the dura (Figure 3-4). The signal quality between this extradural crystal 

and the implanted brain crystals was then checked as the extradural crystal was moved to 
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various distances outside of the dura. In all cases, good signals were assessed, without noise 

or transmission problems. 

A second porcine specimen was used to determine crystal distance accuracy via planar 

X-ray for a quantitative comparison to sonomicrometry. A series of crystals were inserted 

into the brain in a line coplanar with the planned X-ray image to facilitate distance 

measurement using planar X-ray. A sagittal plane X-ray was then captured using a StatScan 

machine (Figure 3-5). The measured X-ray distances were then compared to the crystal 

pair distances measured via sonomicrometry. This comparison was performed with the 

speed of sound in the sonomicrometry system set to the default setting (1590m/s). The 

crystal pairs exhibited good agreement with the measured X-ray distances, consistently 

within approximately 0.5mm. 

   

Figure 3-5: An in situ porcine experiment was conducted compare distances between 
sonomicrometry and planar X-ray. The distance measurements were all within 0.6 mm of the 

sonomicrometry measurements. 

Maximum Transmission Distance 

To track the 3D motion of sonomicrometry crystals within the brain, sonomicrometry 

uses trilateration based on distance measurements between the brain crystals and 

transmitting crystals affixed to the inner surface of the skull (which function as a fixed 

reference frame; Figure 3-6). A set of crystals is fixed to points on the interior surface of 
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the skull, and a set of crystals is placed within the brain. The skull crystals primarily act as 

“transmitters,” and the brain crystals act as “receivers.” An ultrasound wave is emitted 

from a given transmitter and is received by all other crystals, giving the distances from the 

transmitters to all receivers. The next transmitting crystal emits a pulse that is received by 

all other crystals to acquire pair-to-pair distances. This process is then repeated for all 

transmitting crystals. After determining the distance of each receiver from each transmitter, 

trilateration is used to determine the position of the receiving crystal in the skull reference 

frame. Redundant distance measurements are available to quality-check the resulting data. 

 

Figure 3-6: Illustration of the use of sonomicrometry to track the 3D position of locations within 
the brain relative to the skull.  

Each receiver needs to be able to receive at least three transmitter signals to be able to 

perform trilateration, with more transmission signals yielding a more accurate trilateration 

solution. The maximum transmission distance through brain tissue is needed to identify an 
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ideal transmission crystal array that maximizes transmission overlap. A test with a porcine 

brain was performed to determine the maximum transmission range of the crystals. Minced 

porcine brains, purchased frozen, were thawed and placed within a translucent plastic 

anatomical skull model. A transmitter was affixed to the inner skull, and an insertion 

cannula was utilized to push a 2-mm receiving crystal very close to the transmitter. Data 

were collected at a sampling rate of 1000 Hz while the receiving crystal was slowly 

retracted away from the transmitter. On average, the maximum transmission distance was 

117.6 ± 8.12 mm through the porcine brain (Figure 3-7). A maximum transmission distance 

of 100 mm (mean minus two standard deviations) was used to determine the transmitter 

crystal array to ensure reliable transmission.  

 

Figure 3-7: Retraction test results using a sampling rate of 1000 Hz. The trials showed a mean 
signal dropout distance of approximately 117 mm. 

Transmitter Array Geometry 

The positions of the fixed transmitting crystals are crucial to obtaining accurate 

trilateration data. Therefore, it was necessary to optimize the transmitter positions to 
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maximize regions of transmission overlap with a minimum number of transmitters. The 

transmission crystal array geometry was designed using the Global Human Body Model 

Consortium (GHBMC) M50 v4.4 skull and brain finite element model. Eight nodes on the 

outer surface of the skull part were identified as possible locations for transmitter crystals, 

and the distances from each of these nodes to every node in the brain were calculated. For 

each node in the brain, the number of transmitting nodes within the transmission radius 

(100 mm) was recorded. Ultimately, ten different transmission crystal arrays, with eight 

transmission crystals each, were investigated. Compared to the other iterations, the 

finalized array with eight transmission crystals had the greatest amount of brain nodes 

receiving four or more transmission signals (Figure 3-8). In general, the brain regions 

receiving the least amount of transmission signals were limited to the outer edges of the 

brain. 

 

Figure 3-8: Transmission overlap in the brain. Fringe levels correspond to the number of 
transmission signals received at each node in the brain for the finalized transmission crystal 

array.  

The final transmitter array included crystals in the in posterior, anterior, left, and right 

at or a short distance above the Frankfurt plane. The last four transmitters were placed 
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symmetrically in the left and right posterior and anterior portions of the top of the skull. 

The coordinates of each transmitter relative to the anatomically-defined head CG are 

identified using computed tomography (CT) scans. 

Receiver Crystal Array 

The primary goal of the receiver crystal array design was to maximize the coverage of 

recorded brain deformation throughout the volume of the brain. Nonetheless, the brain 

anatomy imposes several limiting areas where crystal placement was avoided. These areas 

include included the ventricles within the midbrain, and cortical tissue no closer than 20 

mm from the skull surface.  

The GHBMC M50 v4.4 finite element model was used to identify the target locations 

of the receiving crystals relative to the skull geometry. First, the geometry of the instrument 

guide plate (designed for crystal insertion during specimen preparation) was imported into 

LS-PrePost along with the GHBMC skull and brain model. The plate was aligned such that 

its center was located halfway between the occiput and crown of the skull. Next, all parts 

the brain parts except the ventricles were hidden, and insertion holes on the plate were 

selected based on whether they avoided the ventricles (Figure 3-9). For the selected holes, 

nodes (representing receiver locations) were evenly spaced throughout the brain on the 

projected path of the selected holes. The majority of selected holes in the cerebrum had 

three crystals inserted through them. The remaining selected holes, in the cerebellum and 

brainstem, had one crystal inserted. Finally, the position of each of the selected receiver 

nodes was normalized by the maximal length of the skull (anterior-posterior) to determine 

their position relative to the size of the skull.  
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Figure 3-9: Hole selection in the instrument insertion plate, shown relative to the skull. Blue and 
black circles indicate whether one or three crystals were inserted through each hole, respectively. 

Insertion Procedure and Crystal Modifications  

Monofilament barbs were glued to the 2-mm receiver crystals (which are inserted into 

the brain) to anchor the crystals within the brain tissue. The 10-mm barbs were attached to 

the crystals with Loctite 382 epoxy which has a specific gravity of 1.05 (Figure 3-10). 

Crystal transmission tests were conducted in a water bath to confirm that the process of 

gluing barbs to the crystals did not damage or interfere with the crystals’ ability to receive 

the transmitted signals. Furthermore, insertion tests using gelatin and porcine brains 

demonstrated that crystals with barbs maintained their position during the insertion process 

much more effectively than those without any modifications.  

The transmitting crystals were also modified to ensure a rigid connection between the 

crystal and skull. Two inch long epoxy-lined heat shrink tubing was applied to the wires at 

the interface with the crystal to increase the effective wire diameter. The heat shrink tubing 

was cut to different lengths based on the approximate skull thicknesses where the 

transmitting crystals were to be inserted. This modification allowed the transmitter crystals 
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to be rigidly positioned at the end of the skull surface, close to the dura, with adjustability 

in the depth of insertion. M8-sized cord grips (Sealcon, CO, USA) were used to secure the 

modified transmitters to the skull and seal the drilled ports. The transmitters located on the 

left, right, and posteriorly passed through fixation plates attached to the skull at those 

locations. The transmitters located anteriorly and along the crown were secured in threaded 

holes tapped directly into the skull. All transmitter assemblies were tested after fabrication 

to ensure full functionality. 

 

Figure 3-10: Monofilament barbs installed on a 2-mm receiver crystal. Barbs were constructed of 
10-mm length monofilament fishing line, glued to the crystal head using epoxy. 

A custom-built insertion mechanism was designed to insert the receiving crystals into 

the brain without coring or otherwise grossly disrupting the tissue. This mechanism 

included three parts: a needle, a 4.6 mm diameter slotted cannula, and a push rod (Figure 

3-11).  

Ports were drilled into the skull based on the selected insertion plate hole layout 

(Figure 3-9). To introduce a crystal, the needle was placed within the 4.6 mm diameter 

slotted cannula and together were inserted into the brain, through the port, to the desired 

depth. The inclusion of the needle within the cannula prevented coring of the brain tissue. 
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Next, the needle was removed, and the rod was used to push the crystal down the length of 

the cannula. The insertion cannula was slotted to facilitate the removal of the crystal wires. 

Once the cannula was removed, a piece of slotted tubing was placed around the crystal 

wire, and an M8-sized cord grip (threaded into the selected insertion hole) was used to 

tighten around the crystal wire, sealing the hole and providing strain relief from external 

tractions. Before sealing the port, a length of the crystal wire was pushed into the hole to 

ensure that adequate slack was present inside the hole to avoid constraining the crystal 

motion. 

 

Figure 3-11: Insertion mechanism parts. A) Full length of all three parts. B) Close-up of all three 
parts. C) Needle inserted through a slotted cannula. 

In the case where three crystals were inserted through a hole, the needle and cannula 

were inserted to the maximum desired depth through that hole to insert the farthest crystal 

first. The cannula was then retracted to the next depth and the second crystal was placed. 

The third crystal on the string was then placed in the same manner. Figure 3-12 illustrates 

the receiver crystal insertion procedure for one set of crystals. This insertion procedure was 
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validated using gelatin, Sylgard 527 gel (Dow Corning, MI, USA), and porcine brains. In 

all cases, no gross peripheral material disruption or coring were observed. 

 

Figure 3-12: Summary of the crystal insertion procedure. A) The cannula was inserted to the 
required depth, and the crystal was pushed down the length using a rod. B) The cannula was 

retracted, and the next crystal was placed. The ports were sealed using cord grips. C) During the 
test, the transmitters sequentially sent ultrasound pulses, while the receivers recorded the signals. 

D) A minimum of three crystal pairs was necessary to find 3D coordinates using trilateration. 

SPECIMEN ACQUISITION AND INFORMATION 

Specimen Acquisition 

All tissue donation, testing, and handling procedures were approved by the University 

of Virginia Center for Applied Biomechanics (UVA-CAB) Institutional Review Board – 

Human Surrogate Use (IRB-HSU) Committee. UVA-CAB is a Biosafety Level II (BSL-

II) post-mortem human subject (PMHS) test facility regulated by the standards set by the 

UVA Institutional Biosafety Committee. All test procedures were approved by the UVA 
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Institutional Review Board prior to any testing. All research personnel involved in the 

experiments are annually trained in bloodborne pathogen prevention, and all follow 

guidelines adopted by UVA-CAB for the safe and ethical handling of biological tissue. 

PMHS specimens were screened for HIV, for Hepatitis B and C, and for pre-existing 

pathologies that may influence the cranial or intracranial properties.  

Since the brain autolyzes more rapidly than other tissues and degenerates under 

freezing (Fountoulakis et al., 2001), a time limit was set, so all tests were performed within 

72 hours after death with the tissue kept in a fresh (unfrozen and unembalmed) state. Pre-

test radiographs were taken at the UVA-CAB using an on-site multi-planar StatScan X-ray 

system to screen the specimen for acute fractures or other pre-existing cephalus trauma that 

would exclude it from the study. The specimen was then prepared on-site, and the locations 

of all installed instrumentation and mounting hardware were documented using a CT scan. 

After the completion of testing, another CT scan was performed. The instrumentation and 

mounting hardware were then removed, and the head and brain were examined under 

dissection. 

Specific PMHS Inclusion and Exclusion Criteria  

Exclusion criteria for the acquisition of the specimens included any factors that may 

compromise the anatomy or material properties of the skull or brain tissue. These criteria 

included diagnosed skull lesions or trauma, neurological disease, or neurological lesions. 

The medical history information provided by the donation source was also reviewed for 

common known risk factors for any diffuse disease of the brain that could alter brain 

function/structure such as sudden onset dementia, Alzheimer’s disease, ischemic or 
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hemorrhagic cerebrovascular accidents, encephalopathy, and other degenerative nervous 

system diseases.  

Specimens were selected per the final selection criteria below. In summary, the final 

priorities for specimen selection were (in this order): 

1. Age (≤70 years preferred) and any exclusion criteria (cause of death / pre-existing 

neurodegenerative conditions) 

2. Stature - 172-180 cm preferred, though flexible to meet age and c.o.d. targets 

3. Sex – male (female permissible if within stature target) 

Specimen Information and Anthropometry 

Specimen acquisition occurred on an “on-call” basis, with the preparation, testing 

equipment, and personnel, ready when a specimen was available and passed all of the 

inclusion criteria and blood work. The specimens were unembalmed and never frozen. 

Since the goal was to complete all testing within 72 hours post-mortem (p.m.), specimens 

had to be acquired within 36 hours post-mortem to allow sufficient time for the preparation 

and experiments. The specimen was disarticulated through the T1 vertebral body before or 

shortly after delivery.  

This chapter will include details from the first specimen (specimen 846) to highlight 

the acquisition and preparation procedure. Specimen 846 was a male specimen and was 

received 14 hours p.m. The donor was 53 years old at the time of death. Height and mass 

were 173 cm and 255 lbs., respectively. Cause of death was congestive heart failure. 

Preliminary planar X-ray imaging of the head revealed no abnormalities of the skull, and 

the brain was noted to be intact and in excellent condition (Figure 3-13). All serology tests 

(including quick-tests and laboratory-based tests) were non-reactive. 
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Figure 3-13: StatScan images of the head-neck specimen upon reception from the supplier. No 
skull abnormalities were revealed, and the brain was in excellent condition.  

Relevant anthropometric measurements are included in Figure 3-14, and the 

measurements for the pilot specimen are provided in Chapter 4. 

 

Figure 3-14: Anthropometric measurements of the skull. A) circumference, B) length (anterior-
posterior), C) breadth (lateral-medial), D) height (vertex-mentum), E) height (vertex-occiput), F) 
brow-to-occiput arc length. Note: the measurements depicted in this figure were taken for both 

the head (before specimen preparation) and skull (after denuding).  
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SPECIMEN PREPARATION 

The overall goal of this study was to measure brain deformation under highly controlled 

loading conditions that could be readily repeated across specimens. As such, precision was 

required to ensure that specimen preparation was performed in a controlled manner relative 

to the center of gravity (CG) of the specimen’s head. Specimen prep is summarized as 

follows: 

1. Attachment of perfusion ports 

2. Identification of head anatomical CG 

3. Attachment of fixation plates 

4. Instrumentation (sonomicrometry and pressure transducers) 

5. Attachment of rotation coupling hardware 

Perfusion System 

A perfusion system was designed to apply a static pressure head of artificial 

cerebrospinal fluid (aCSF) to the brain utilizing ports located at the left and right carotid 

arteries, left and right jugular veins, dura of the spinal cord, and transcranial ports at the 

sagittal sinus and occiput. These ports were allocated as either inlets or outlets (Table 3-1). 

The aCSF recipe was used by Sugawara et al. (1996)(Sugawara et al., 1996). CT imaging 

demonstrated that the cranial cavity was fully perfused with the proposed configuration 

(Figure 3-15). During testing, the specimen was continuously perfused with a static 

pressure head via a fluid reservoir hung approximately 102 cm above the specimen to 

achieve a target intracranial pressure of approximately 75 mmHg. As fluid drained from 

the specimen, it was collected in a catch basin underneath the specimen and recirculated to 
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the overhead reservoir via a recirculating pump. Light perfusion was also applied during 

prep with refrigerated aCSF to maintain a low temperature within the specimen. 

Table 3-1: Perfusion port configurations. aCSF was introduced to the cranial cavity via inlets 
and drained via outlets.  

Port Location Inlet or Outlet 

Carotid Arteries Inlet 

Jugular Veins Outlet 

Spinal Cord Outlet 

Sagittal Sinus (Transcranial) Inlet 

Occiput (Transcranial) Inlet 

 

 

Figure 3-15: Cranial cavity without (left) and with (right) aCSF perfusion. Red arrows show air 
pockets.  

Identification of Anatomical Center of Gravity 

The head CG was identified to ensure that rotation was applied through the anatomical 

CG with the axes of rotation oriented orthogonal to the principal anatomical planes of the 

head. The anatomical head CG was also used as the basis for the local head coordinate 

system to which all brain deformation and head kinematic data were transformed. A multi-
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step process was utilized to identify the approximate anatomical CG (Figure 3-16), based 

on (Robbins et al., 1983). 

 

Figure 3-16: Identification of lateral anatomical center of gravity markers. 

1. The Frankfort plane was identified by marking a line between the inferior margin 

of the orbit and the notch above the tragus. 

2. The distance between the Frankfort plane and the vertex of the head was calculated. 

3. The lateral CG marker was drawn 8 mm anterior to the tragus on the Frankfort 

plane, and 25% of the distance vertically from the Frankfort plane to the vertex. 

4. The z-axis is identified to be perpendicular to the Frankfort plane, with the positive 

direction pointing from the CG to the neck. 

5. The x-axis is identified to be perpendicular to the line connecting the left and right 

CG reference points, with the positive direction pointing from the CG to the face. 
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6. The y-axis is the cross product of the z and x axes, with positive direction pointing 

from the CG to the right ear.  

7. Steps 1-3 were repeated on the opposite side of the head. 

8. The posterior CG marker was defined at the midpoint of the circumferential line 

connecting the two lateral markers, parallel to the Frankfort plane. 

Attachment of Fixation Plates 

After the anatomical CG was identified and marked, the skull was denuded by 

removing the head soft tissue from the nose to the occiput. Fixation plates were attached 

to the superior, lateral, and posterior surfaces of the skull. A custom built fixation jig was 

designed and assembled to ensure that all fixation plates were centered upon the desired 

axes of rotation (through the CG) and were orthogonal to each other (Figure 3-2). Mounting 

pins were used to align the skull CG within the jig (Figure 3-17) and a combination of 

Bondo and #6 size wood screws were used to rigidly couple the fixation plates to the skull. 

Wood screw lengths were carefully selected for each hole such that they would not 

penetrate the cranial cavity. Any wood screws that penetrate the cranium (checked during 

the pre-test CT scan) were removed or replaced with shorter screws.  

 

Figure 3-17: Mounting pins were used to align the skull CG within the head preparation jig. 
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Figure 3-18: Skull fixation plates. Left-to-right: superior, anterior, lateral (left and right), and 
posterior instrumentation plate. 

Sonomicrometry Crystal Insertion 

Following attachment of the posterior instrumentation insertion plate, sonomicrometry 

crystals were inserted into the brain using the procedure outlined in Figure 3-12. A total of 

32 crystals was utilized in this pilot test, with transmitting crystals affixed to the inner skull 

and receiving crystals inserted in the brain tissue. Twenty-four receivers were inserted 

through twelve of the holes on the posterior guide plate (Figure 3-19). To introduce a 

crystal, the needle was first inserted into the cannula, and both pushed to the desired depth 

within the brain. Once all crystals were inserted, the ports were sealed using cord grips. 

Wire slack was intentionally introduced for each receiver to allow the crystals to move with 

the brain and not introduce any tethering effects. 

The crystals inserted into the brain parenchyma were 2 mm in diameter and were 

barbed with thin pieces of monofilament wire. Eight transmitters were rigidly attached to 

the skull. M8-sized holes were drilled and tapped at the eight transmitter crystal locations. 

M8 cord grips were screwed into the holes, and the transmitters were passed through and 

secured using the cord grips. Care was taken to ensure that the transmitting crystals did not 

penetrate the dura or brain.  
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Figure 3-19: Posterior instrumentation plate post-sonometric crystal insertion. The posterior 
transmitter was passed through the hole highlighted in red. 

 

Figure 3-20: Four skull mounted transmitting crystals. Shown are the left anterior (LA), anterior 
(A), right anterior (RA), right posterior (RP), left posterior (LP), and left anterior (LA) 

transmitters. 

The projection of all receiver crystals in the three anatomical planes is shown in Figure 

3-21. Before testing, the signals from each receiver were qualitatively assessed to ensure 

functionality. During this process, it was discovered that the signals from five receivers 

(marked red, Figure 3-21) were excessively noisy for the pilot specimen. It was speculated 

that during the insertion process, these crystals or wires were damaged. Throughout data 

processing, the signals from these crystals were neglected. For future specimens, six extra 

receivers and two extra transmitters were placed in the brain and skull in the case that they 
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need to be swapped for non-functioning crystals. The positions of the eight transmitters 

projected to the three anatomical planes are depicted in Figure 3-22. 

 

Figure 3-21: Receiver crystal projections in the three anatomical planes (left-to-right): axial, 
sagittal, coronal. Red dots indicate receivers that were unused due to damage to the crystal. 

 

Figure 3-22: Transmitter crystal projections in the three anatomical planes (left-to-right): axial, 
sagittal, coronal. 

The coordinates of each receiver, transformed to the head coordinate system, as 

determined from the pre-test CT scan, are shown projected to the anatomical planes in 

Figure 3-23. The head coordinate system for these measurements followed the SAE J211 

(SAE, 2007) standard. Note that receivers were numbered from 9 – 32 according to which 

channel they were plugged into in the sonomicrometry data acquisition box. 
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Figure 3-23: Receivers projected to the sagittal (top), coronal (mid), and axial (bottom) planes. 
All coordinates are in the head coordinate system. 

Pressure Transducers 

Pressure transducers were used in the pilot specimen to confirm that the rotation of the 

brain causes significant deformation of the brain without causing a considerable magnitude 

of intra-cranial pressure. Two types of pressure transducers were utilized: Endevco 8530B 

(surface mounted) and MSI EBP-100 (suspended in the cranium). The surface mounted 

pressure transducers were screwed into manually drilled and tapped holes into the skull 

and sealed with silicone glue. The single MSI pressure transducer was passed through and 

fastened to an M8 cord grip screwed into a hole on the posterior fixation plate (Figure 3-19, 

Figure 3-24).  
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Figure 3-24: Endevco, surface mounted, pressure transducers (green arrows) were attached 
directly to the skull. The MSI, suspended, pressure transducer (red arrow) was passed through an 

M8 cord grip on the posterior fixation plate. 

Attachment of Rotation Coupling Hardware 

The rotation coupling hardware (Figure 3-3) facilitated the attachment of the head 

specimen to the RTD (Figure 3-25). Note that the hardware was designed such that the 

head began initially inverted (perpendicular to the ground) for all rotation direction 

conditions. 

 

Figure 3-25: Sagittal, coronal, and axial mounting configurations. 
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Preparation and Testing Timeline 

Specimen preparation and testing for the pilot specimen was completed within 60 

hours p.m., well within the goal of 72 hours. A post-test autopsy was conducted to 

investigate the specimen physically after each test, typically 6-8 days p.m. 

INSTRUMENTATION 

Sonomicrometry 

Sonomicrometry data was recorded using a 32-channel TRX-USB Acquisition System 

(Sonometrics Corporation, London, Ontario, Canada). The associated SonoLab software 

was used to monitor and collect all crystal pair differences, and to set the acquisition 

parameters. Data were collected from 50 ms before to 500 ms after the trigger signal and 

were collected at a sampling rate of 560 Hz for the sagittal and coronal rotations, and a rate 

of 709 Hz for the axial rotations.  Before and after each test, static sonomicrometry data 

was collected to confirm that all receivers returned to their original position and that the 

crystals did not damage the brain tissue during testing or slip out of position. 

Kinematic Measurements 

Six degree-of-freedom (DOF) head kinematic measurements were acquired using a 

sensor array consisting of three Endevco 7264B-500 linear accelerometers (Meggitt 

Sensing Systems, Irvine, CA) and three ARS PRO-8k angular rate sensors (Diversified 

Technical Systems Inc., Seal Beach, CA), which was rigidly mounted to the head. An 

angular rate sensor was mounted to the drive drum for system diagnostic purposes. A 

SlicePRO data acquisition system (Diversified Technical Systems Inc., Seal Beach, CA) 

was used to acquire the data at a sampling rate of 10 kHz with an anti-aliasing filter of 2900 

Hz. A summary of the kinematic instrument list is in Table 3-2. 
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Table 3-2: Head kinematic sensor list 

 

 
Figure 3-26: The sensors affixed to the head fixture and RTD include: DTS ARS-8k (left), 

Endevco 7264B-500 (right). 

Pressure Measurements 

Intracranial pressure was measured using five surface-mounted pressure transducers 

fixed to the skull and two insertable pressure transducers suspended in the cranial cavity 

(Table 3-3).  

The pressure transducer measurements were collected with the same data acquisition 

system and parameters as the kinematic measurements. The pressure transducers were 

automatically debiased to 0 psi during diagnostics after already being inserted in the 

perfused head.  
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Table 3-3: Pressure sensor list 

Channel Measurand Units Manufacturer Model # 

11 Pressure psi Endevco 8530B 

12 Pressure psi Endevco 8530B 

14 Pressure psi Endevco 8530B 

15 Pressure psi Endevco 8530B 

17 Pressure psi MSI EPB-100 

 

Figure 3-27: The pressure transducers used in the head included: Endevco 8530B (left) and MSI 
EBP-100 (right).  

High-Speed Video 

High-speed video was obtained using a NAC MEMRECAM GX1 monochromatic 

cameras (NAC Image Technology, CA, USA). The camera was placed orthogonal to the 

through-shaft of the RTD to capture head sagittal and coronal rotations. The video was 

collected at 1000 frames per second for a period of 50 ms before to 250 ms after the onset 

of the rotation pulse.  

A trigger output from the DSD was used to trigger data acquisition, video capture, and 

sonomicrometry data. A custom made trigger box was used to send signals to SlicePro, the 

camera, and the sonomicrometry device simultaneously.  
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DATA ANALYSIS 

Sonomicrometry 

Data for each transmitter to receiver crystal pair was visualized and processed with 

SonoSOFT software (Sonometrics Corporation, London, Ontario, Canada). In total, for 

eight transmitter crystals and 24 receiving crystals, there are 192 possible distance traces 

for each test. The data is trimmed to the proper time range and manually examined for 

artifacts and signal error. The largest source of error sonomicrometry is noise in the form 

of outliers or level shifts (Figure 3-28). A processing method recommended by the 

manufacturer was used to correct both of these artifacts for each data channel.  

 

Figure 3-28: Outliers (top) and level shifts (bottom) in raw (left) and corrected (right) distance 
traces. Outliers were removed, and level shifts were corrected by manually shifting the data. 

In several cases, the distance traces were either too noisy or not available because the 

transmitted pulse was not received (this was expected for transmitter-receiver pairs that 

exceeded the maximum distance previously determined). These traces were marked as 

“bad” and not considered for trilateration (Figure 3-29). 
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Figure 3-29: “Good” (top, green) and “bad” (bottom, red) traces. Bad traces were omitted when 
performing trilateration. 

Once the data was processed and all “good” traces were identified, trilateration was 

utilized to determine the 3D coordinate time-history of each receiver crystal relative to the 

reference frame defined by the fixed transmitting crystals. Trilateration uses the geometry 

of spheres to determine the absolute location of a point based on distance measurements. 

The speed of sound was defined as 1540 m/s for all computations. This value was found 

by optimizing the static sonomicrometry distances measured at the beginning of testing to 

those observed from CT images. This value is consistent with the speed of sound values 

reported in the literature for brain tissue (Kremkau et al., 1981).  

In preliminary work, the software package SonoXYZ (SonoXYZ, Sonometrics 

Corporation, London, Ontario, Canada) was used for the trilateration of receiving crystals 

(Alshareef et al., 2018). This software uses a multidimensional scaling algorithm to 

optimize the calculated crystal coordinates based on the measured distances, with an 

internal optimization routine to incorporate redundant information (i.e., when more than 

three signals are available for a receiver). The algorithm, however, was developed for 

cardiac biomechanics experiments and was not suitable for the brain deformation dataset 

as a result of different assumptions and boundary conditions. An investigation into various 
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trilateration algorithms is presented in Chapter 4, to identify the most suitable algorithm 

for brain deformation sonomicrometry experiments. The specific application of the 

identified algorithm to the brain deformation dataset is presented in Chapter 5.  

Kinematic Measurements 

The head kinematics data were processed in MATLAB using a custom script. The data 

were imported and de-biased by subtracting the average of the first 50 pre-trigger points. 

All data were transformed to the local head coordinate system as defined by SAE J211 

(SAE, 2007) standard. The linear acceleration was filtered with a CFC 1000 filter, and the 

angular velocity was filtered with a CFC 60 filter. Angular acceleration was calculated by 

differentiating the filtered angular velocity data using a central difference with a time step 

equal to that of the sampling rate. 

The data was transformed to the CG of the head, as defined anatomically using the 

rectangular fixation plates during the preparation procedure. The procedure is as follows: 

1- The linear acceleration of the 6 DOF cube was converted to units of m/s2 and was 

then transformed to the center of the cube by accounting for the off-axis angular 

velocities.  

2- The 6 DOF cube was affixed to an instrumentation plate, located on the outside of 

the head fixture. A transformation matrix, P, was computed to transform the 

kinematic data from the 6 DOF cube to a common point on the instrumentation 

plate.  

3- To transform the data from the instrumentation plate to the head CG, a ROMER 

Arm was used to measure points outlining the left, right, and anterior linkage plates 

and the points outlining the position of the instrumentation plate. The head CG was 
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determined as the intersection between the normal vector of the anterior plate 

midpoint and the vector connecting the midpoints of the left and right linkage 

plates. In this global ROMER Arm coordinate system, a transformation matrix was 

computed defining the head coordinate system at the head CG, K, and the common 

point on the instrumentation plate, B.  The final transformation matrix to transform 

data from the cube center to the head CG is defined as 𝑴𝑴 = 𝑲𝑲−1 ∗ 𝑩𝑩 ∗ 𝑷𝑷. The 

following matrices are an example for the pilot specimen, 846.  

𝑷𝑷 = �
−1 0 0
0 −1 0
0
0

0
0

1
0

    
0.0152
0.0152
−0.0197

1

� 

𝑩𝑩 = �
0.0118 0.0114 0.999
−0.7645 0.6447 0.0017
−0.6446

0
−0.7644

0
0.0163

0

    
−0.0155
0.2641
0.9082

1

� 

𝑲𝑲 = �
0.0236 −0.0008 0.9997
−0.7616 0.6477 0.0185
−0.6476

0
−0.7619

0
0.0147

0

    
0.1067
0.1842
0.7907

1

� 

𝑴𝑴 = �
−0.999 −0.004 0.012
0.004 −0.999 −0.012
0.012

0
−0.012

0
0.999

0

    
−0.1245
−0.0222
−0.1387

1

� 

4- The data was transformed by first transforming the angular velocity, angular 

acceleration, and linear acceleration using the 3x3 rotational component of 𝑴𝑴,𝑴𝑴𝑹𝑹. 

The linear acceleration data was then calculated using rigid body motion equations 

using the 3x1 translational component of 𝑴𝑴,𝑴𝑴𝒙𝒙.  

𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑴𝑴𝑹𝑹 ∗ 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒 

𝜔𝜔ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑴𝑴𝑹𝑹 ∗ 𝜔𝜔𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒 

𝛼𝛼ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑴𝑴𝑹𝑹 ∗ 𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒 
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𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒 − 𝜔𝜔ℎ𝑒𝑒𝑒𝑒𝑒𝑒 × (𝜔𝜔ℎ𝑒𝑒𝑒𝑒𝑒𝑒 × 𝑴𝑴𝒙𝒙) −  𝛼𝛼ℎ𝑒𝑒𝑒𝑒𝑒𝑒 × 𝑴𝑴𝒙𝒙 

Statistical Methods 

Repeatability and comparisons between signals were assessed using a cross-

correlation analysis tool (CORA) (Gehre et al., 2009) which scores the similarity of two 

signals based on phase, shape, and magnitude (equally weighted). A perfect correlation 

(i.e., two equal signals) results in a score of 1, which a score of 0 corresponds to a bad 

match between the two signals. A root mean squared (RMS) difference was also calculated 

for the repeatability of the applied head kinematics. 

TARGET TEST MATRIX 

Tests were performed by applying pure rotational kinematics directly to the 

specimen’s head about the three orthogonal axes defined by the local head coordinate 

system. The target rotational velocity pulses were approximately sinusoidal, with four 

different combinations of pulse magnitude (20 and 40 rad/s) and duration (30 and 60 ms). 

The pulses were chosen to reflect magnitudes and duration associated with injurious brain 

deformation in automotive impact environments, resulting in twelve test conditions, 

consisting of three directions and four pulses. For the current chapter, which only includes 

a pilot specimen, a single specimen was tested in all 12 test conditions (Table 3-4). 

Following positive results in the first set of tests, it was decided to perform repeats of each 

of the 40 rad/s, 30 ms tests to observe repeatability. 
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Table 3-4: Target Test Condition Matrix* 

 

* Note: Following positive results in the first set of tests,  repeats of each of the 40 rad/s, 30 ms 
tests in the pilot specimen were performed to observe repeatability. 

RESULTS 

All preparation and testing of the pilot PMHS specimen were completed within 56 

hours post mortem. The static sonomicrometry data was used to calculate the difference in 

transmitter-receiver pair distances before and after every test to ensure that the crystals 

returned to their initial state. On average, all crystal pairs returned to a position measuring 

within 0.075 ± 0.032 mm of the pre-test distance. The following results include data from 

pilot specimen to highlight aspects of the methodology. All other data and summary 

analyses are presented in Chapter 5. 

Head Kinematics 

There were minimal linear acceleration and off-axis rotation of the head for all 

loading severities. The angular velocity and angular acceleration traces for the primary 

plane of rotation for all of the loading cases are shown in Figure 3-30. The average CORA 
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score for the repeated tests was 0.93 with a standard deviation of 0.05. The root mean 

squared differences for those applied angular velocities was 1.3 rad/s ± 0.68 rad/s for the 

40 rad/s (nominal) tests. The angular velocity pulses for the axial rotations are depicted in 

Figure 3-30. 

 

Figure 3-30: Angular velocity for the four cases of the test matrix for the axial head rotations. 

Plots of the 6DOF kinematics for the sagittal 20 rad/s, 60 ms test tests, including linear 

acceleration, angular velocity, and angular acceleration transformed to the local head 

coordinate system is shown in Figure 3-31.  

 

Figure 3-31: Six degree of freedom linear acceleration (left), angular velocity (middle), and 
angular acceleration (right) transformed to the local head coordinate system for specimen 846 

for the sagittal 20 rad/s, 30 ms case. 
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Intra-Cranial Pressure 

Plots of intra-cranial pressure measurements for the sagittal tests for the pilot specimen 

presented in Figure 3-32. Pressure changes observed in the first specimen were negligible 

(less than 20 kPa) regardless of rotation severity. Pressure transducers were also used in 

the second specimen (Chapter 5) but were omitted in subsequent tests due to insignificant 

magnitudes of pressure. 

  

  

Figure 3-32: Intra-cranial pressure measurements for all sagittal cases for specimen 846. 

Sonomicrometry  

The initial coordinates for each receiver and transmitter were obtained from the CT 

images and transformed to the head coordinate system following sonomicrometry 

instrumentation. During insertion, receivers 19, 21, 22, 26, and 32 were damaged, and 



71 
 

signals obtained from these receivers were unusable, yielding a total of 19 usable receivers. 

Figure 3-23 shows the positions of each receiver projected to the three anatomical planes. 

Select processed distance-time histories are shown for illustration in Figure 3-33 for the 

repeated 40 rad/s, 30 ms tests in all three directions. The average CORA score for the 

repeatability of the crystal responses was 0.999 ± 0.001.  
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Figure 3-33: Select distance traces for the repeated axial 40 rad/s, 30 m/s pulses.  
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Trilateration was used to calculate the 3D displacement-time histories for each 

receiver. Crystal trajectories in the coronal plane during each coronal test are shown in 

Figure 3-34. Figure 3-35 depicts the trilaterated displacement plots for receivers 9, 16, and 

13 for each coronal test.  

 

Figure 3-34: Trilaterated receiver trajectories in the coronal plane for the coronal tests. Dots 
indicate the initial receiver and transmitter positions. A detailed view of receivers 9 and 31 are 

shown on the top.  
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Figure 3-35: Trilaterated displacement results for receivers 9, 16, and 31 for the coronal tests. 
The applied angular velocity pulses (dashed line) are overlaid. 
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DISCUSSION 

A reliable and repeatable methodology to measure human brain deformation is 

essential to understanding the biomechanics of the brain and validating FE brain models. 

In this chapter, a new methodology using sonomicrometry has been developed for 

quantifying dynamic, 3D brain deformation during rotational loading of the head. This 

study is the first to capture whole brain deformation fields due to controlled, pure rotational 

loading in multiple directions using a human PMHS specimen. While brain deformations 

at injurious levels have been quantified in the past using bi-planar X-ray, the 

sonomicrometry method presents substantial improvements.  

The primary disadvantage of bi-planar X-ray is the requirement for constant line-of-

sight of the embedded NDT. Not only does this have implications on mounting hardware 

and test fixture design, but also on the number and placement of the NDTs throughout the 

brain. As such, only a planar alignment or regional cluster of all NDTs can be used in bi-

planar X-ray tests and specific NDT configurations are required for each direction of 

rotation or impact. Therefore, the utility of each specimen is limited. Sonomicrometry is 

capable of measuring brain deformation without these line-of-sight limitations. Provided 

that the sonomicrometry crystals can communicate with one another, a large number of 

them can be distributed in multiple, overlapping planes throughout the brain volume 

facilitating the mapping of 3D whole brain deformation. There is no line-of-sight limitation 

with the fixation hardware. The use of sonomicrometry does not impose constraints on the 

loading conditions and ensuing head trajectories, as long as there is enough slack in the 

crystal wires to remain plugged into the data acquisition system. The ability to test in all 

directions increases the utility of each specimen, reducing the cost and time needed to 
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obtain the 3D experimental data required to develop model validation targets. Furthermore, 

sonomicrometry is an improvement on the spatial accuracy of the displacement 

measurements and is not subject to limitations with camera resolution, image distortion, 

parallax, and errors encountered in coordinate system transformation. 

In the pilot study, a total of 15 tests in three directions were performed on a single 

specimen, spanning a range of angular velocities and durations. The rotational pulses 

applied to the head-neck specimen were informed by work done by Gabler et al. (Gabler 

et al., 2017), which examined brain deformation from nearly 1000 reconstructed sled and 

crash tests using a human finite element brain model. The reconstructed cases span a range 

of plausible head kinematics, from non-injury to concussion to moderate and severe TBI, 

based on kinematic injury criteria (Rowson and Duma, 2013; Takhounts et al., 2013a; 

Gabler et al., 2016a, 2017; Sanchez et al., 2017). Gabler et al. found that in most real-world 

impact environments, maximum brain deformation depends on the magnitude of angular 

velocity and angular acceleration (or rotation duration). From the deformation profiles, two 

peak angular velocities (20 and 40 rad/s) and two impact durations (30 and 60 ms) were 

chosen to cover loading conditions observed in automotive and sports impacts associated 

with mild-to-moderate risk of injury. 

Experiments seeking to produce reference data for FE model validation should use 

well-controlled, repeatable input conditions that are readily implementable in FE models. 

Results from inconsistent loading conditions (e.g., impactor tests where the pulse is 

dependent on the mechanical behavior of the specimen) using multiple specimens cannot 

be readily combined into an average dataset. The RTD was designed to apply pure, 

controlled, and repeatable rotational motion directly to the skull with the intent of 
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comparing the biomechanics across different PMHS. A cross-correlation analysis of the 

repeat kinematic traces using CORA (Gehre et al., 2009) found a score of 0.93 ± 0.05, 

showing excellent repeatability of the RTD input kinematics.  A root mean squared 

difference across time for the repeated pulses in all directions yielded an average of 1.3 

rad/s ± 0.68 rad/s for the 40 rad/s tests. While the motion was constrained to the rotation in 

one direction, the system is a physical one with eccentricities, including the neck mass 

(with inconsistent inertias for each specimen and each loading direction) and an estimated 

axis of rotation of the head-neck specimen, that lead to off-axis loads and small linear 

accelerations.  The off-axis rotations were 3-12% of the maximum angular velocity in the 

primary loading directions (an average of 6.75%). Linear acceleration time-histories 

contained noise spikes reaching up to 100g. However, since these linear accelerations 

occurred over small durations (1-2ms), and when filtered at an appropriate frequency (300 

Hz), the magnitude of linear accelerations was below 15g for all tests.  

For all static data acquired before and after tests, the receivers returned to within 0.075 

± 0.032 mm of their original location. This result indicates two key findings. First, the 

sonomicrometry crystals did not slip relative to the surrounding tissue they were embedded 

in, and thus were representative of the displacement of the surrounding tissue. This finding 

also validates the crystal insertion methodology, which allowed for significant slack in the 

wires connected to the crystals to allow for freedom of movement with the brain. If 

tethering had occurred due to the wires, the crystals would slip relative to the brain and not 

return to the original position. Second, the loading conditions applied to the PMHS head, 

although at potentially injurious levels, did not result in gross structural damage to the 

parenchyma or supporting tissues. This lack of damage confirms that the cadaveric tissue 
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integrity remained intact throughout testing and that the techniques used to embed the 

crystals did not result in a loss of brain elasticity. It is important to clarify that the lack of 

structural damage does not necessarily mean that these loading conditions would not result 

in physiological brain injury in a living human. Mild TBI injuries typically present without 

observable physical damage or gross tissue disruption (Gennarelli et al., 1972).  

The return of the crystals to their original position allowed for the testing of multiple 

rotation severities in all three planes, indicating the tissue was not damaged, and each test 

began with the same initial brain position. A second 40 rad/s, 30 ms test was conducted for 

each axis of rotation to assess the repeatability of the proposed test conditions and 

sonomicrometry methods. Excellent repeatability, with an average CORA cross-

correlation score of 0.999 ± 0.001, was observed in the distance measurements and both 

sets of results were nearly identical in shape, phase, and magnitude (Figure 3-33). This 

repeatability also translated to the trilaterated displacements and receiver trajectories 

(Figure 3-35).  

Trilateration was used to determine three dimensional displacement time histories for 

each receiver. While the algorithm provided excellent results for most tests (Figure 3-35 

and Figure 3-34), there were one or two cases where the trilateration solution failed to 

converge properly despite the availability of good distance traces for that receiver. This 

uncertainty was evident when the final trilaterated displacement did not return to its 

original position (~ 0 mm) despite that the individual distance traces between pairs of 

sensors returned to zero. These errors are likely indicative of a limitation in the trilateration 

algorithms utilized in the SonoXYZ software for this particular application of the 

sonomicrometry instrumentation. A more robust trilateration methodology was 
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investigated in Chapter 4, and the data from the pilot specimen were re-analyzed using the 

updated algorithm in Chapter 5.  

Three-dimensional whole brain deformation data is critical for understanding the 

fundamental mechanical response of the brain. A diffuse array of crystals in the brain 

allows for the quantification of parameters describing the motion of individual crystals, 

such as peak-to-peak displacement, duration, and frequency of the transient motion, and 

the lag time between the head and brain motions as well as regionally-dependent trends. 

The ability to test one head in all directions and loading severities also allows for 

comparisons of these parameters for the same crystals across head angular velocity 

magnitude, duration, and direction of head motion without preparation or specimen 

variability. For example, peak-to-peak displacements, defined as the maximum point-to-

point displacement during the trajectory of each crystal, as large as 11, 12, and 23 mm were 

observed in the coronal, sagittal, and axial tests, respectively. The transient response of the 

brain was observed to last between 100 – 200 ms after the initiation of rotation, suggesting 

a mechanical vulnerability of the brain to additional superimposed loading. The crystal 

trajectories typically formed an arcing path in the plane of rotation (Figure 3-34). While 

some regions experienced large deformations, others saw little to no movement of the brain 

crystals, which suggests the brain deforms around an axis that is not coincident with the 

axis of rotation applied to the head. These observations suggest the potential for regions of 

vulnerability of the brain, which may be sensitive to direction, magnitude, and duration of 

loading.  

While Hardy (Hardy et al., 2001, 2007) was able to quantify brain deformation, it is 

difficult to conduct any comparison of the two datasets. The applied head kinematics in 



80 
 

this study were purely rotational, while Hardy conducted a series of impacts with resulting 

linear and rotational head kinematics. This study also utilized a single specimen to test all 

head directions, while Hardy needed multiple specimens to test in different directions. The 

brain markers in the Hardy tests were at different locations compared to this study, and 

they were clustered within limited volumes of the brain. Additionally, the neck was 

constrained in the Hardy studies while the head was impacted, whereas this study allows 

the neck to move with the head. A constrained boundary condition at the neck could 

potentially influence the deformation of the inferior regions of the brain due to pulling 

through the cervical spine and spinal cord. This constraint may be representative of 

injurious impacts, but may not be ideal for controlled tests designed for FE model 

validation.  

An important consideration in the methodology development was the measurement of 

the deformation of the brain relative to the skull. The use of sonomicrometry crystals 

affixed to the inner skull allows for the trilateration of crystal dynamic displacements 

independent of the rigid body motion of the head. While the quantified deformation of  the 

brain may contain rigid body motion (of the brain relative of the skull) at low magnitudes 

of deformation (Laksari et al., 2012), the confinement of the brain with pressurized CSF in 

the skull is unlikely to result in any rigid body motion of the brain at the loading rates 

applied. As mentioned in Chapter 2, the brain’s shear modulus is much lower than its bulk 

modulus, leading to a higher likelihood of shearing deformation than bulk motion of the 

tissue, especially under rotational loading.  Regardless of whether the brain exhibits rigid 

body motion within the skull, the brain displacement data is still applicable for validation 

of FE brain models. 
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CONCLUSION 

The availability of accurate, 3D deformation data of the human brain will help improve 

the biofidelity of FE brain models and will lead to better techniques for predicting and 

mitigating concussion risk. This chapter provides a comprehensive methodology utilizing 

controlled mechanical input and sonomicrometry to measure 3D whole brain motion in 

dynamic head rotation tests. This methodology provides significant advantages over 

previous experiments, including: 

• 3D motion capture of up to twenty-four sonomicrometry crystals within the brain 

without the need for bi-planar X-ray 

• Ability to prepare and test a PMHS specimen rapidly post-mortem, preserving 

tissue integrity 

• Ability to test all three planes of rotation with no sensor adjustment, and minimal 

mechanical adjustments  

• Repeatable, pure rotational inputs to vary the magnitude and duration of the head 

kinematics 

• Repeatable brain motion measurements, as evidenced by the return of the crystals 

to their initial position and matching responses in the repeated test case. 

The ability to apply a pure rotation to the head and accurately measure 3D brain 

deformation in a repeatable and timely manner for various loading severities and directions 

allows for the collection of an extensive dataset of human brain deformation. The pilot 

specimen was used to validate and refine the methodology, in order to conduct experiments 

on additional specimens. The trilateration algorithm implemented for the pilot specimen, 

however, resulted in uncertainties in the calculated 3D motion of the crystals. Since 
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trilateration has not been used for brain deformation using sonomicrometry, an 

investigation and optimization of the trilateration technique were required to ensure the 

accuracy of the experimental brain deformation data.  
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 TRILATERATION METHODOLOGY 

The sonomicrometry technique is a reliable, accurate, and repeatable methodology to 

acquire in situ human brain deformation. The acquired distance data, however, has to be 

converted to dynamic position and displacement to be able to draw conclusions about the 

biomechanics of the brain and provide an FE validation dataset. Trilateration is typically 

used to convert a set of distances of a point to spatial coordinates. The objective of this 

chapter was to compare eight trilateration and Kalman filtering algorithms to determine the 

most suitable method for sonomicrometry trilateration. The algorithms were tested using 

experimental brain deformation sonomicrometry data in which random measurement 

errors were intentionally introduced to evaluate the effect on position error. A parameter 

sensitivity study was also conducted to optimize the algorithms to the simulated data. The 

Kalman filtering method was the most suitable for tracking dynamic brain deformation 

using sonomicrometry because it provided an accurate estimation of dynamic position and 

the estimated position was insensitive to the choice of initial parameters. The contributions 

of this study will provide a set of algorithms that can be implemented in positioning 

applications and a recommendation for an algorithm for use in other sonomicrometry 

experiments. Portions of this chapter were published previously (Alshareef et al., 2019. 

Application of Trilateration and Kalman Filtering Algorithms to Track Dynamic Brain 

Deformation Using Sonomicrometry. Biomedical Signal Processing and Control), and 

were adapted for this dissertation. 

INTRODUCTION 

Sonomicrometry has become a proven technique in the field of biomechanics to track 

the dynamic motion of tissue or other objects. The technology has been extensively used 
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for various in vivo and in situ biomedical research applications for the last 30 years for 

high-rate internal motion tracking in cardiac mechanics (Dione et al., 1997; Van Trigt et 

al., 1981; Sarazan and Schweitz, 2009; Fomovsky et al., 2012; Holmes, 2004), animal 

biomechanics (Augustyniak et al., 2001; Carroll, 2004; Kaya et al., 2002), and clinical 

applications (Bebek and Cavusoglu, 2007; Brown Jr et al., 1999; Horiuchi et al., 2012; 

Larsson et al., 2015). In this dissertation, sonomicrometry has been extended to measure 

human brain deformation using a human cadaveric head specimen instrumented with an 

array of 32 small, neutrally-dense sonomicrometry crystals. The sonomicrometry 

technique was found to generate good quality signals between crystal pairs, demonstrated 

excellent repeatability, and captured accurate displacement measurements. While the 

quality of the sonomicrometry distance measurements was excellent, the preliminary 

trilateration algorithm used to find the spatial motion of each receiver crystal from a set of 

measured point-to-point distances resulted in uncertainties in the 3D motion dataset.  

Trilateration has become ubiquitous in many applications including wireless 

positioning (Yim et al., 2008; Xu et al., 2016; Li et al., 2017), global positioning systems 

(GPS) (Bajaj et al., 2002; Fang, 1986; Rahman, 2012), and robotics (Borenstein et al., 

1997; Thomas and Ros, 2005; Zhou, 2009). The method uses the measured distances from 

a set of reference points (with known positions) to a mobile point of interest (with unknown 

position) and uses the intersection of spheres created using the distances to determine the 

position of the mobile point. There are many algorithms, some as simple as finding a 

geometric intersection using equations of a sphere, and more complex ones that involve 

the minimization of error in the measured distances to find the most likely solution 

(Murphy and Hereman, 1995). 
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Additional work in positioning and position tracking has utilized Kalman filtering 

(Grewal, 2011), especially in wireless position estimation (Yim et al., 2008; Subhan et al., 

2013; Kotanen et al., 2003), GPS positioning (Crassidis, 2006; Hide et al., 2004), and 

clinical applications (Bader et al., 2007; Senesh and Wolf, 2009; Shakarami et al., 2018). 

Kalman filtering is an algorithm that uses measurements (such as distances) associated with 

a variable (such as position) over time, which contain inherent errors or inaccuracies, to 

determine an estimate of the unknown variable. While Kalman filtering cannot find the 

spatial position of a point independent of time history like conventional trilateration 

algorithms, it holds an advantage in that it considers measurement error in the estimated 

variable across time in its tracking algorithm instead of treating each time point 

independently. Kalman filtering has not been implemented in the published literature for a 

sonomicrometry trilateration application.  

The objective of this study was to find the most suitable method for determining the 

spatial position of sonomicrometry crystals embedded in a dynamically deforming brain. 

The first aim was to implement various algorithms involving trilateration and Kalman 

filtering that are currently used in positioning and tracking technology. The second aim 

was to investigate the effectiveness of these algorithms in calculating crystal position 

across time. These aims were accomplished using simulated brain deformation data in 

which various types and magnitudes of errors were introduced intentionally.  

METHODS 

Sonomicrometry 

Previous biomechanics applications of sonomicrometry typically utilize transmitters 

to measure the distance between tissue-embedded receiving crystals to quantify the motion 



86 
 

of the tissue. The use of sonomicrometry in the brain presents unique challenges for the 

setup of transmitters and receivers, as well as for the conversion of individual transmitter-

receiver distances to position and motion in 3D (Alshareef et al., 2018). Transmitting 

crystals are located at the surface of the skull, and move rigidly with the skull so that they 

are fixed in the skull coordinate system. Receiving crystals are implanted into brain tissue 

and move with the deforming brain relative to the skull coordinate system. Absolute 

distance errors in the sonomicrometry method are typically 2% - 6% of the measured 

distance (Meoli et al., 1998), which is approximately the diameter of a crystal. Errors in 

the absolute distance are usually due to errors in the assumed acoustic speed of sound, 

which underscores the importance of calibrating the initial position in trilateration, which 

can be accomplished using computed tomography (CT) scans (Alshareef et al., 2018). The 

absolute error is not prominent in receiver displacement measurements, where the 

sonomicrometry resolution is ±0.024 mm (Dione et al., 1997).  

Trilateration 

Trilateration is used to determine the position of the mobile receiver crystal using the 

sonomicrometry distance measurement between the receiver and a set of the fixed 

transmitter crystals. By utilizing spheres with radii of each distance from the receiver to all 

transmitters, the common intersection point of all spheres can be found to determine the 

spatial position of the receiver (Figure 4-1). For a given system, there are M receivers (𝑅𝑅1 

– 𝑅𝑅𝑀𝑀) located at a position (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖 for 𝐴𝐴 =  1:𝑀𝑀) that can move in time with the brain 

tissue. Additionally, there are 𝑁𝑁 transmitting crystals (𝑇𝑇1 – 𝑇𝑇𝑁𝑁) with known positions (𝑋𝑋𝑗𝑗-

, 𝑌𝑌𝑗𝑗, 𝑍𝑍𝑗𝑗 R, for 𝑗𝑗 =  1:𝑁𝑁) that are fixed to the skull. At a given moment in time, the point-to-

point distance between the receiver 𝑅𝑅𝑖𝑖 and the transmitter 𝑇𝑇𝑗𝑗 is recorded (𝑟𝑟𝑖𝑖𝑗𝑗). The position 
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of receiver 𝑅𝑅𝑖𝑖 is located at the intersection of the spheres with radius 𝑟𝑟𝑖𝑖𝑗𝑗 R and satisfies the 

distance measurements between the receiver and each transmitter. 

 

Figure 4-1: The trilateration algorithm depicted using three transmitting points and one receiver 
point in the same plane. Three transmitters are shown (𝑇𝑇1,𝑇𝑇2,𝑇𝑇3) with their associated positons 

and distances away from the receiver.  

A minimum of four transmitter distances is needed for trilateration to find the 3D 

position of each receiver. Each point-to-point measurement can contain error in the 

distances, which can result in multiple or no intersection points among the spheres. 

Measurement errors are propagated to the estimated position solution, and a substantial 

error in at least one distance can have a significant effect on the calculated trilateration 

position. In cases where a receiver has more than four transmitter distances, the redundant 

measurements can reduce the effect of measurements errors, using probabilistic or 

predictive algorithms. 

Linear Trilateration Methods 

The following algorithm equations will include the solution for each receiver 

independently. For each receiver, the square distance to each transmitter at each time step 

is defined by: 
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𝑟𝑟𝑗𝑗2 =  �𝑥𝑥 − 𝑋𝑋𝑗𝑗�
2
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2
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2
 (4-1) 

Equation (4-1) can be linearized into the matrix form 𝑨𝑨�⃗�𝑥 = 𝑏𝑏�⃗  for each receiver by 

subtracting the squared distance for each transmitter-receiver (𝑗𝑗 = 2:𝑁𝑁) from the first pair 

(𝑗𝑗 = 1): 

𝑨𝑨 = 2 �
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� 

(4-2) 

The location of the receiver, �⃗�𝑥, can be found independent of the other receivers through 

a linear least squares (LLS) solution, which uses the minimum of the sum of square 

residuals (Murphy and Hereman, 1995). This method yields (4-3), which can be solved at 

each time step independently to find the dynamic spatial position of each receiver during 

its motion.  

�⃗�𝑥 = (𝑨𝑨𝑇𝑇𝑨𝑨)−1𝑨𝑨𝑇𝑇𝑏𝑏�⃗  (4-3) 

In the case that the [𝑨𝑨𝑇𝑇𝑨𝑨] matrix is singular or poorly conditioned, other techniques 

can be employed. The normalized QR decomposition of 𝑨𝑨 can be used to find the solution, 

as seen in (4-4) and (4-5). This technique is abbreviated as LLS-QR.  

𝑨𝑨 = 𝑸𝑸𝑹𝑹 (4-4) 

�⃗�𝑥 = (𝑹𝑹)−1𝑸𝑸𝑇𝑇𝑏𝑏�⃗  (4-5) 

An enhancement to the linear least squares approach in this case could also be 

employed in the form of a weighting factor representing the covariance of the 𝑏𝑏�⃗  vector 

(Guvenc et al., 2008). The solution becomes the form given in (4-6), where 𝑾𝑾,  the 
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weighting factor, is a diagonal matrix that contains the distances, 𝑟𝑟𝑗𝑗, from the receiver to 

all transmitters. This technique is abbreviated as LLS-W. 

𝑾𝑾 = 𝑑𝑑𝐴𝐴𝑡𝑡𝑑𝑑(𝑟𝑟𝑗𝑗) 

�⃗�𝑥 = (𝑨𝑨𝑇𝑇𝑾𝑾−1𝑨𝑨)−1𝑨𝑨𝑇𝑇𝑾𝑾−1𝑏𝑏�⃗  

(4-6) 

Non-Linear Trilateration Methods 

A non-linear least squares (NLLS) approach can account for measurement errors by 

assuming an inherent error in the signals. Letting 𝑟𝑟𝑗𝑗 denote the measured distance between 

the receiver and transmitter j containing some error, and �̂�𝑟𝑗𝑗 denote the true distance, the 

sum of square errors between the true and measured distances, defined as 𝐹𝐹, can be 

minimized (4-7).  

𝐹𝐹(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = ���̂�𝑟𝑗𝑗 − 𝑟𝑟𝑗𝑗�
2

𝑁𝑁

𝑗𝑗=1

=  �𝑓𝑓𝑗𝑗(𝑥𝑥,𝑦𝑦, 𝑧𝑧)2
𝑁𝑁

𝑗𝑗=1

 

Where,𝑓𝑓𝑗𝑗(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = �̂�𝑟𝑗𝑗 − 𝑟𝑟𝑗𝑗 

(4-7) 

The solution to minimize the sum of squared errors can be implemented in many ways. 

An iterative Newton method was implemented in this study, which requires an initial 

position guess and either a number of maximum iterations or an error threshold. By 

differentiating (7) with respect to each coordinate (𝑥𝑥, 𝑦𝑦, 𝑧𝑧), (4-8) was obtained (with similar 

equations for y and z). Note that only the differential in the x-direction is shown below. 

𝜕𝜕𝐹𝐹
𝜕𝜕𝑥𝑥

= 2�𝑓𝑓𝑗𝑗
𝜕𝜕𝑓𝑓𝑗𝑗
𝜕𝜕𝑥𝑥

𝑁𝑁

𝑗𝑗=1

 (4-8) 

Introducing the vectors 𝑓𝑓 and �⃗�𝑑, and the Jacobian matrix 𝑱𝑱, lead to the following 

formulation in (4-9).  
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�⃗�𝑑 = 2𝑱𝑱𝑇𝑇𝑓𝑓 (4-9) 

Where, 

𝑱𝑱 =

⎣
⎢
⎢
⎡
𝜕𝜕𝑓𝑓1
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓1
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓1
𝜕𝜕𝜕𝜕

⋮ ⋮ ⋮
𝜕𝜕𝑓𝑓𝑁𝑁
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓𝑁𝑁
𝜕𝜕𝜕𝜕

𝜕𝜕𝑓𝑓𝑁𝑁
𝜕𝜕𝜕𝜕 ⎦
⎥
⎥
⎤
 , 𝑓𝑓 =  �

𝑓𝑓1
⋮
𝑓𝑓𝑁𝑁
� , �⃗�𝑑 =   

⎣
⎢
⎢
⎢
⎡
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕⎦
⎥
⎥
⎥
⎤
 

The Newton method approximation iteratively finds a solution by using the previous 

iteration solution and the matrices defined above. 𝑥𝑥� is defined as the approximate solution 

and 𝑘𝑘 is the iteration count (4-10). 𝑥𝑥�{1} is the initial guess.  

Maximum Likelihood Estimate (MLE) Trilateration Method 

While the three linear trilateration methods (LLS, LLS-QR, LLS-W) and the nonlinear 

method (NLLS) can yield a good estimation given a low level of noise in the signals, they 

do not take into account the type or distribution of noise present in the signals. For example, 

the NLLS method assumes that there is noise in the estimated position �⃗�𝑥, but does not 

assume a noise in the individual distances between the receiver and each transmitter. In 

biomechanics experiments, this noise can result from many sources, including acoustic 

reflections or tissue discontinuities. Maximum likelihood estimation (MLE) methods have 

been developed to address this problem, by assuming that each distance between a 

transmitter-receiver pair contains an error with a Gaussian normal distribution 𝑁𝑁(0,𝜎𝜎2), 

such that the error has a mean of 0 and a constant variance, 𝜎𝜎2. A major distinction between 

MLE and the previous methods is that it assumes that each distance from the transmitters 

to a receiver are independent of one another. There are many MLE algorithms in the 

𝑥𝑥�{𝑘𝑘+1} = 𝑥𝑥�{𝑘𝑘} − �𝑱𝑱{𝑘𝑘}
𝑇𝑇 𝑱𝑱{𝑘𝑘}�

−1
𝑱𝑱{𝑘𝑘}
𝑇𝑇 𝑓𝑓{𝑘𝑘}  (4-10) 
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literature, with certain conditions and error assumptions. The one used in this study was a 

distance-based MLE method devised by Xu et al. (2016) adapted to three dimensions. 

Using the same transmitter-receiver scenario and the above assumptions, the marginal 

probability density function (denoted by 𝑚𝑚) for the error in the distances is defined in 

(4-11). 

𝑚𝑚𝑗𝑗�𝑟𝑟𝑗𝑗� =  
1

√2𝜋𝜋𝜎𝜎�̂�𝑟𝑗𝑗
𝑒𝑒𝑥𝑥𝑒𝑒 �−

�𝑟𝑟𝑗𝑗 − �̂�𝑟𝑗𝑗�
2

2𝜎𝜎2�̂�𝑟𝑗𝑗2
� (4-11) 

The corresponding likelihood function is shown in (4-12). 

𝑙𝑙𝑡𝑡[𝑚𝑚(𝑟𝑟1, 𝑟𝑟2,⋯ , 𝑟𝑟𝑁𝑁)] =  −�𝑙𝑙𝑡𝑡��̂�𝑟𝑗𝑗�
𝑁𝑁

𝑗𝑗=1

 −  �
�𝑟𝑟𝑗𝑗 − �̂�𝑟𝑗𝑗�

2

2𝜎𝜎2�̂�𝑟𝑗𝑗2
− 𝑁𝑁𝑙𝑙𝑡𝑡�√2𝜋𝜋𝜎𝜎�

𝑁𝑁

𝑗𝑗=1

 (4-12) 

MLE finds the position of the receiver by maximizing the likelihood function (12). 

There are multiple ways to solve the function. However, a method based on the first-order 

optimality method will be used in this study (Xu et al., 2016). This method begins by 

minimizing the following objective function in (4-13).  

𝑚𝑚(𝑥𝑥,𝑦𝑦, 𝑧𝑧) =  𝑙𝑙𝑡𝑡 ��(𝑥𝑥 − 𝑥𝑥�)2 + (𝑦𝑦 − 𝑦𝑦�)2+(𝑧𝑧 − �̃�𝑧)2�

+
�𝑟𝑟 − �(𝑥𝑥 − 𝑥𝑥�)2 + (𝑦𝑦 − 𝑦𝑦�)2+(𝑧𝑧 − �̃�𝑧)2�

2

2𝜎𝜎2((𝑥𝑥 − 𝑥𝑥�)2 + (𝑦𝑦 − 𝑦𝑦�)2+(𝑧𝑧 − �̃�𝑧)2)2  

(4-13) 

By taking the partial derivative of (4-13) with respect to x, y, and z, and then setting 

the partial derivative equal to 0 yields (4-14-(4-16). These equations can be minimized to 

find the receiver position.  
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��
𝑥𝑥 − 𝑥𝑥�𝑗𝑗

�𝑥𝑥 − 𝑥𝑥�𝑗𝑗�
2

+ �𝑦𝑦 − 𝑦𝑦�𝑗𝑗�
2

+�𝑧𝑧 − �̃�𝑧𝑗𝑗�
2

𝑁𝑁

𝑗𝑗=1

+
𝑟𝑟𝑗𝑗(𝑥𝑥 − 𝑥𝑥�𝑗𝑗)��(𝑥𝑥 − 𝑥𝑥�)2 + (𝑦𝑦 − 𝑦𝑦�)2+(𝑧𝑧 − �̃�𝑧)2 − 𝑟𝑟𝑗𝑗�

𝜎𝜎2((𝑥𝑥 − 𝑥𝑥�)2 + (𝑦𝑦 − 𝑦𝑦�)2+(𝑧𝑧 − �̃�𝑧)2)2 � 

(4-14) 

��
𝑦𝑦 − 𝑦𝑦�𝑗𝑗

�𝑥𝑥 − 𝑥𝑥�𝑗𝑗�
2

+ �𝑦𝑦 − 𝑦𝑦�𝑗𝑗�
2

+�𝑧𝑧 − �̃�𝑧𝑗𝑗�
2

𝑁𝑁

𝑗𝑗=1

+
𝑟𝑟𝑗𝑗(𝑦𝑦 − 𝑦𝑦𝑗𝑗)��(𝑥𝑥 − 𝑥𝑥�)2 + (𝑦𝑦 − 𝑦𝑦�)2+(𝑧𝑧 − �̃�𝑧)2 − 𝑟𝑟𝑗𝑗�

𝜎𝜎2((𝑥𝑥 − 𝑥𝑥�)2 + (𝑦𝑦 − 𝑦𝑦�)2+(𝑧𝑧 − �̃�𝑧)2)2 � 

(4-15) 

��
𝑧𝑧 − �̃�𝑧𝑗𝑗

�𝑥𝑥 − 𝑥𝑥�𝑗𝑗�
2

+ �𝑦𝑦 − 𝑦𝑦�𝑗𝑗�
2

+�𝑧𝑧 − �̃�𝑧𝑗𝑗�
2

𝑁𝑁

𝑗𝑗=1

+
𝑟𝑟𝑗𝑗(𝑧𝑧 − 𝑧𝑧𝑗𝑗)��(𝑥𝑥 − 𝑥𝑥�)2 + (𝑦𝑦 − 𝑦𝑦�)2+(𝑧𝑧 − �̃�𝑧)2 − 𝑟𝑟𝑗𝑗�

𝜎𝜎2((𝑥𝑥 − 𝑥𝑥�)2 + (𝑦𝑦 − 𝑦𝑦�)2+(𝑧𝑧 − �̃�𝑧)2)2 � 

(4-16) 

Other methods can be used to find the MLE solution, such as weighting specific 

transmitter-receiver pairs if certain pairs contain higher levels of noise. However, the 

proposed solution presented in the equations above will be used by optimizing only one 

parameter, the 𝜎𝜎2error assumption.  

Kalman Filtering Trilateration Method 

The five trilateration methods presented thus far (LLS, LLS-QR, LLS-W, NLLS, 

MLE) do not consider the motion of the receiver in time when determining the position 

(i.e., the solution to the current position is independent on the previous position). While 

some of the methods, such as MLE and NLLS, consider an error in the physical distance, 

they ignore any temporal errors in the motion of the receiver. Kalman filtering differs in 

that it iteratively estimates the spatial position of the receivers based on the position at the 

previous time step. Therefore, it assumes an error in the initial guess (from the previous 
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time point) and an error in the measured distances (at the current time point), allowing for 

as a more reliable estimation across time. The disadvantage of using a Kalman filter is that 

it cannot localize or trilaterate the crystal position at the first time step. Therefore, the 

receiver position at the first time step has to be known, or it has to be found using another 

trilateration method, such as NLLS or MLE.  

The basic Kalman filter assumes a linear form of the prediction and measurement 

variables. Since trilateration is a non-linear problem (4-1), local linearization has to be 

applied within the Kalman filter process. This linearization changes the filter to an 

extended Kalman Filter (EKF) (Julier and Uhlmann, 2004), which contains real-time 

linearization of the prediction and allows the measurement to be able to update the 

estimated position iteratively. The following process, which was derived from Yim et al. 

(Yim et al., 2008, 2010), explains EKF applied to the sonomicrometry distance data. 

Let 𝑥𝑥, 𝑥𝑥�, and 𝑋𝑋𝑖𝑖 denote the 3D position of the true location of the receiver, the 

estimated location of the receiver, and the position of each transmitter, 𝐴𝐴, respectively. Each 

iteration in the Kalman filter will be denoted by the subscript 𝑘𝑘. Since the transmitters are 

fixed, their position does not depend on time or the EKF iteration.  

𝑥𝑥𝑘𝑘  ~ (𝑥𝑥𝑘𝑘,𝑦𝑦𝑘𝑘, 𝑧𝑧𝑘𝑘) 

𝑥𝑥�𝑘𝑘 ~ (𝑥𝑥�𝑘𝑘,𝑦𝑦�𝑘𝑘, �̃�𝑧𝑘𝑘) 

𝑋𝑋𝑖𝑖 ~ (𝑋𝑋𝑖𝑖,𝑌𝑌𝑖𝑖,𝑍𝑍𝑖𝑖)  

 

Assume that the estimated position of the receiver has an error, 𝑤𝑤, and that the distance 

measurements, r, contain an error, 𝑣𝑣. Both of these errors are assumed to be normally-

distributed Gaussian white noise with a mean of zero and assumed variance.  

𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑘𝑘−1 + 𝑤𝑤𝑘𝑘 (4-17) 
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𝑟𝑟𝑘𝑘 = ℎ𝑘𝑘(𝑥𝑥𝑘𝑘) + 𝑣𝑣𝑘𝑘 

Where, 

ℎ𝑘𝑘(𝑥𝑥𝑘𝑘) = ��𝑥𝑥𝑘𝑘 − 𝑋𝑋𝑗𝑗�
2

+ �𝑦𝑦𝑘𝑘 − 𝑌𝑌𝑗𝑗�
2

+ �𝑧𝑧𝑘𝑘 − 𝑍𝑍𝑗𝑗�
2
 (4-18) 

Let the distributions of w and v be defined as 𝑒𝑒(𝑤𝑤) ~ 𝑁𝑁(0,𝑄𝑄) and 𝑒𝑒(𝑣𝑣) ~ 𝑁𝑁(0,𝑅𝑅). If 

the receiver was fixed and not moving over time, the value of Q would be 0 and there 

would only be error in the measurement (R). This is similar to the assumption that other 

positioning algorithms, like MLE or NLLS, utilize. The linearization for the EKF occurs 

to convert the estimated position 𝑥𝑥�𝑘𝑘 to distances, using (4-19): 

ℎ(𝑥𝑥𝑘𝑘) ≈ ℎ(𝑥𝑥�𝑘𝑘) + 𝑯𝑯𝑘𝑘𝑤𝑤𝑘𝑘𝑥𝑥𝑘𝑘 (4-19) 

Where 𝑯𝑯𝑘𝑘 is the Jacobian of the estimated distances (4-20). 

𝑯𝑯𝑘𝑘 = �
𝜕𝜕ℎ
𝜕𝜕𝑥𝑥
�
𝜕𝜕=𝜕𝜕�𝑘𝑘

 (4-20) 

Each row of 𝐻𝐻𝑘𝑘 corresponds to the associated transmitter, as defined in (4-21): 

𝐻𝐻𝑘𝑘𝑗𝑗 =
𝑥𝑥�𝑘𝑘 − 𝑋𝑋𝑗𝑗
ℎ𝑗𝑗(𝑥𝑥�𝑘𝑘)

 (4-21) 

For each iteration in the EKF procedure, initial values must be defined for the position 

(𝑥𝑥�𝑘𝑘) and the two error variances (𝑅𝑅 and 𝑄𝑄). The variance 𝑅𝑅 will be chosen as a constant 

value and will not change with each EKF iteration. The variance 𝑄𝑄 is used to calculate the 

matrix 𝑷𝑷 at the first iteration of the EKF.  Since 𝑃𝑃, which represents the error of the 

prediction, is updated at every EKF iteration, an initial value of the diagonal values of 𝑷𝑷 

will be chosen. For each iteration of the EKF, the initial known position 𝑥𝑥�𝑘𝑘 will be updated 

and used as the initial estimate for the next iteration. These variables are used to calculate 

the Kalman Gain (𝑲𝑲), which is equivalent to a weighting function that changes the 
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estimated position 𝑥𝑥�𝑘𝑘 depending on the errors in the prediction and measurement. The 

following steps are taken at each iteration: 

Step 1:  𝑥𝑥�𝑘𝑘 = 𝑥𝑥�𝑘𝑘−1 , 𝑷𝑷𝑘𝑘 = 𝑷𝑷𝑘𝑘−1 

Step 2: 𝑲𝑲𝑘𝑘 = 𝑷𝑷𝑘𝑘𝑯𝑯𝑘𝑘
𝑇𝑇 (𝑯𝑯𝑘𝑘𝑷𝑷𝑘𝑘𝑯𝑯𝑘𝑘

𝑇𝑇 + 𝑹𝑹𝑘𝑘)−1 

Step 3:  𝑥𝑥�𝑘𝑘 = 𝑥𝑥�𝑘𝑘 + 𝑲𝑲𝑘𝑘�𝑟𝑟𝑘𝑘 − ℎ(𝑥𝑥�𝑘𝑘)� 

Step 4: 𝑷𝑷𝑘𝑘 = (𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑯𝑯𝑘𝑘)𝑷𝑷𝑘𝑘(𝑰𝑰 − 𝑲𝑲𝑘𝑘𝑯𝑯𝑘𝑘)𝑇𝑇 + 𝑲𝑲𝑘𝑘𝑹𝑹𝑘𝑘𝑲𝑲𝑘𝑘
𝑇𝑇 

Step 5: 𝑥𝑥�𝑘𝑘−1 = 𝑥𝑥�𝑘𝑘 ,   𝑷𝑷𝑘𝑘−1 = 𝑷𝑷𝑘𝑘 

The steps are repeated until either the maximum number of iterations (𝑘𝑘) or a tolerance 

threshold is achieved. For this study, the maximum number of iterations was set to 100. A 

tolerance using the sum of all matrix components of the Kalman Gain (𝑲𝑲) being less than 

0.01 was also implemented.  

The initial guess for the EKF algorithm can either be a known position, a predicted 

position from a trilateration algorithm, or a prediction position based on the physical 

system. For this study, three EKF algorithms will be analyzed based on the different initial 

guesses. The Kalman-MLE method will use the estimate from the MLE algorithm for the 

initial estimate in the first time step and use the position from the previous step as the initial 

estimate for subsequent time steps. The Kalman-CT method will use the receiver position 

observed in the pre-test CT scan as the initial estimate in the first time step and use the 

position from the previous step as the initial estimate for subsequent time steps. The 

Kalman-V method will use the CT position as the initial estimate for the first two timesteps 

and use an estimate of the receiver velocity calculated by the change in position between 

previous two steps to calculate the initial position estimate for all subsequent timesteps.  
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3D Receiver Motion Simulation 

To test out the trilateration and Kalman filtering methods using real biomechanical 

data, one receiver embedded in a brain during a coronal rotation of the head (Alshareef et 

al., 2018) was used to simulate the proposed methods (data from the pilot specimen, 

Chapter 3). The 3D displacement of the receiver is shown in Figure 4-2, and for this 

analysis, was considered to be the motion related to the true position of the receiver, 𝑥𝑥(𝑡𝑡). 

The fixed positions of the eight transmitters and the initial position of the receiver are given 

in Table 4-1. Positions are based on the skull anatomical reference frame. 

 
Figure 4-2: Simulated 3D displacement of an arbitrary receiver  

Table 4-1: Positions for all transmitters (Tx) used in the trilateration simulation. The initial 
position of the receiver is listed in the last row.  

Crystal X (mm) Y (mm) Z (mm) 
Tx-1 0.11 -55.10 -1.32 

Tx-2 65.74 4.56 -48.45 

Tx-3 40.32 -38.77 -53.87 

Tx-4 -34.06 53.19 -49.69 

Tx-5 -0.018 68.52 -0.70 

Tx-6 -22.97 -49.06 -59.51 

Tx-7 26.82 49.95 -50.32 

Tx-8 -56.14 0.33 37.99 

Receiver (t=0) 14.03 -30.99 -45.79 
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The true distance measurements were then intentionally modified to account for 

measurement errors potentially encountered in sonomicrometry signals to obtain a set of 

hypothetical measurements, �̃�𝑟𝑗𝑗(𝑡𝑡). Two types of measurement errors were introduced: 

noise error and bias error. Noise errors can occur in sonomicrometry data from electrical 

noise, acoustic reflections, or delayed wave front triggering (Dione et al., 1997; Van Trigt 

et al., 1981; Meoli et al., 1998). Noise error was introduced in the simulated measurement 

data by multiplying each data point across time, for each transmitter-receiver pair, by a 

random variable of up to 5% (-2.5% to +2.5%) of the initial magnitude of the true distance. 

Bias error can occur in sonomicrometry data from an error in the speed of sound defined 

for the tissue, CT measurement of the initial position, and in level shifts that occur as a 

result of the chosen receiver wavefront triggering sensitivity (Dione et al., 1997; Van Trigt 

et al., 1981; Meoli et al., 1998). Bias error was introduced by adding a constant random 

value to the entire distance signal of up to 10% (-5% to 5%) of the initial magnitude of the 

true distance. It is important to note that the magnitude of the errors introduced into this 

simulated sonomicrometry data was typically an order of magnitude larger than what was 

seen in the experimental signals (noise errors of 0.2-0.8% and bias errors of 2-6%) in order 

to test each of the trilateration algorithms. 

Simulations were conducted with either noise error only, bias error only, or a 

combination of both error types. Example distance traces for all transmitter (Tx) for the 

receiver (Rx) with both error types are shown in Figure 4-3. 
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Figure 4-3: Example distance traces from select transmitters (Tx) to the receiver (Rx) with the 
true distance (black), and distance with the error introduced (red) for noisy only (left), bias only 

(middle), and both types of error (right). 

A total of eight methods will be compared for the sonomicrometry trilateration 

scenario presented, including LLS, LLS-QR, LLS-W, NLLS, MLE, Kalman-MLE, 

Kalman-CT, and Kalman-V. For methods with a user-defined parameter, a sensitivity 

analysis will be conducted to determine suitable ranges of values for the combined noise 

and error condition. For the MLE method, the variance 𝜎𝜎 will be varied from 0.01 to 0.5. 

For the Kalman methods, 𝑅𝑅 will be varied from 0.0001 to 0.5, and P will be varied from 

0.01 to 200 mm.  

To simulate the effectiveness of each trilateration and Kalman filtering algorithm, 

MATLAB (Mathworks Inc., MA, USA) was used to implement the positioning algorithms 

and calculate the estimated position. Random error (noise only, bias only, or noise and 

bias) was added to each of the eight transmitter distances to the receiver for each 

simulation. Each technique was then used to calculate the estimated position of the receiver 

across time, 𝑥𝑥�. The estimated position and the true position, 𝑥𝑥, were compared using four 

error metrics. For all trilateration methods (except Kalman filtering), an initial position 

error was found by calculating the distance between the estimated initial position (at the 
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first time point) and the true initial position. For all methods, the other three error metrics 

were the root mean squared (RMS) errors for the position (𝑥𝑥� −  𝑥𝑥), displacement (∆𝑥𝑥� −

 ∆𝑥𝑥), and distance error for all transmitters (𝑟𝑟𝚤𝚤� −  𝑟𝑟𝑖𝑖). The error calculations for all methods 

are included in (4-22-(4-25). Errors were calculated for 100 iterations of simulated data, 

and a mean and standard deviation was calculated for all error types for each method. The 

number of iterations (100) was chosen based on a convergence study with iteration counts 

ranging from 5-1000.  

𝐸𝐸𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖 = 𝑥𝑥�𝜕𝜕,𝜕𝜕,𝜕𝜕 − 𝑥𝑥𝜕𝜕,𝜕𝜕,𝜕𝜕 (4-22) 

𝐸𝐸𝑟𝑟𝑟𝑟𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑝𝑝𝑖𝑖 = �𝑚𝑚𝑒𝑒𝑡𝑡𝑡𝑡 ��𝑥𝑥�𝜕𝜕,𝜕𝜕,𝜕𝜕(𝑡𝑡) − 𝑥𝑥𝜕𝜕,𝜕𝜕,𝜕𝜕(𝑡𝑡)�
2
� (4-23) 

𝐸𝐸𝑟𝑟𝑟𝑟𝑒𝑒𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖𝑒𝑒𝑐𝑐𝑒𝑒𝑑𝑑𝑒𝑒𝑖𝑖𝑖𝑖 = �𝑚𝑚𝑒𝑒𝑡𝑡𝑡𝑡 ��∆𝑥𝑥�𝜕𝜕,𝜕𝜕,𝜕𝜕(𝑡𝑡) − ∆𝑥𝑥𝜕𝜕,𝜕𝜕,𝜕𝜕(𝑡𝑡)�
2
� (4-24) 

𝐸𝐸𝑟𝑟𝑟𝑟𝑒𝑒𝑖𝑖𝑝𝑝𝑖𝑖𝑒𝑒𝑖𝑖𝑐𝑐𝑒𝑒𝑝𝑝 =
1
𝑁𝑁
��𝑚𝑚𝑒𝑒𝑡𝑡𝑡𝑡 ���̃�𝑟𝑖𝑖(𝑡𝑡) − 𝑟𝑟𝑖𝑖(𝑡𝑡)�

2
�

𝑁𝑁

𝑖𝑖=1

 (4-25) 

RESULTS 

Parameter Sensitivity Analysis  

A combined noise and bias error were introduced into the sonomicrometry signals to 

optimize the parameters. For MLE, the σ value sensitivity results are given in Figure 4-4. 

All of the errors were relatively constant until a σ=0.15. The Kalman-MLE method was 

not affected by the choice of σ. A value of σ=0.15 was chosen as a result of the 

optimization. The optimization of the Kalman parameters included P (the error in the 

prediction/initial guess) and R (the error in the distance measurements). For both 

parameters, the trilateration solutions and errors were insensitive to their chosen values 
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across the three Kalman methods. Therefore, values of P=100 mm and R=0.1 were chosen 

as a result of the optimization. 

 

Figure 4-4: Parameter optimization for 𝜎𝜎2 for the MLE (left) and Kalman-MLE algorithm 
(right).  

Initial Position Error 

The trilateration algorithms were investigated for accuracy in determining initial 

position, with the known position (based on CT) as the initial guess. For the five algorithms 

capable of calculating the initial position (LLS, LLS-QR, LLS-W, NLLS, MLE), a 

depiction of the results from one simulation and mean error for all three error conditions 

are shown in Figure 4-5. The MLE method had the least error for all cases. The error for 

the MLE method ranged from an average of 0.88 mm for the ‘noise only’ condition to 2.23 

mm for the ‘noise and bias’ condition. The three LLS methods performed the poorest 

among the different methods and had similar errors across all conditions.  
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Figure 4-5: The initial positions estimation for the LLS methods, NLLS, and MLE are shown for 
one iteration (left). The average error (right) is lowest for the MLE and NLLS methods.  

Dynamic Error Analysis 

The trilateration and Kalman filtering algorithms were simulated under three error 

conditions. The results from one simulation with the ‘noise and bias’ error condition is 

shown in Figure 4-6 for the LLS, MLE, and Kalman-CT methods. The remaining methods 

resulted in estimates that were identical to the other LLS or Kalman methods.  

 

Figure 4-6: Distance results from one iteration of a simulation with the ‘noise and bias’ error 
condition. The plots show the distance from each transmitter to the receiver with the true distance 
(sono), noisy distance (sono-noisy), and the LLS, MLE (after tuning), and Kalman-CT methods.   
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To quantify which algorithms estimated the closest position to the true receiver 

position, all algorithms were compared using the three dynamic error metrics (position, 

displacement, and distance error) under the three simulated measurements error conditions. 

The three LLS methods had similar results across all error metrics, with consistently higher 

errors than the other algorithms (Figure 4-7). MLE performed the best across the error 

metrics and conditions, with the NLLS and Kalman methods approximately having the 

same values. All of the Kalman methods, regardless of initial guess, had the same average 

error, close in value to the NLLS method. 

Under the applied measurement errors in this analysis, the displacement error ranged 

from 0.1 mm to 0.9 mm, which represents 0.7% - 6.9% of the peak-to-peak displacement 

of the receiver. The position and distance errors were approximately the same across all 

algorithms, with the NLLS, MLE, and Kalman filtering algorithms having the least error. 

The input noise was quantified using the same distance RMS error metrics and is shown in 

Figure 4-7. The level of error using the LLS methods was approximately the same as the 

level of error introduced into the measurement signals, while the NLLS, MLE, and Kalman 

filtering algorithms provided demonstrated a reduced solution error relative to the input 

signal error (40% - 72%).  
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Figure 4-7: Comparison of trilateration and Kalman filtering algorithms for position error (top), 
displacement error (middle), and distance error (bottom) for the three error metrics. 
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DISCUSSION 

Application of Trilateration Algorithms to Sonomicrometry 

Trilateration algorithms are typically used in applications related to large-field 

tracking and positioning, such as a GPS or wireless positioning within a building. While 

trilateration algorithms have been used with sonomicrometry data, this is the first study to 

compare various algorithms to the trilateration problem in biomechanics to determine their 

accuracy. The sonomicrometry environment is unique in that distances are small (20-200 

mm), and the types of signal error differ from traditional positioning applications. This 

chapter investigated three signal error conditions, including ‘noise only,’ ‘bias only,’ and 

‘noise and bias’ to create a representative set of dynamic signals with error much higher 

than typically encountered for brain sonomicrometry signals. It is important to note that 

the errors introduced in the simulated curves in this study are an overestimate of the noise 

in the sonomicrometry brain signals. The initial position error, Figure 4-5, ranged from 0.5 

- 10 mm, representing a 1-10% error in the magnitude of the true distances. The dynamic 

RMS errors metrics for all algorithms ranged from 0.1 mm to 3 mm, which is similar to 

the diameter of the receivers. Even when simulating data with high amounts of noise in the 

simulated data, the average RMS error was less than the diameter of the receiver.  

While all of the algorithms yielded results within a reasonable percentage of the true 

values, the non-linear methods provided much better estimates across all metrics. The 

different linear methods (LLS) provided comparable results, with the weighted LLS (LLS-

W) showing improved estimates than the original LLS or the QR decomposition. The 

NNLS, MLE, and Kalman methods showed similar error results, with the MLE having 

slightly lower mean values across all error metrics. For the Kalman methods, there were 
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no differences across the three methods with different choices of initial guesses. This result 

indicates that the choice of initial guess for the Kalman filtering algorithm is not important 

for the simulated application. 

Parameter Sensitivity 

The parameter sensitivity for the MLE and Kalman filtering methods was conducted 

to identify if the trilaterated solution was sensitive to the initial parameters and to determine 

the best parameters for this application. The 𝜎𝜎 value for the MLE method, which is the 

variance of the assumed error in the distances, can be thought of as a radius around the 

initial guess for where the estimated MLE position may be. If the value is too small, the 

solution may be incorrect and may be unstable across time points when estimating the 

position of dynamic data. If the value of 𝜎𝜎 is too large, the result will be inaccurate and 

may drift further from the true solution. The sensitivity study supports this observation by 

showing that there is a slight decrease as 𝜎𝜎 increases to a value of 0.15 (Figure 4-4). Above 

this threshold, the errors rise in magnitude across all metrics. This trend may be specific to 

the particular data used in this study. When applied to a larger dataset of similar 

sonomicrometry data, the convergence point was found to differ across signals. Therefore, 

𝜎𝜎 needs to be optimized for the errors in each distance signal. While a value of 0.15 was 

suitable for most sonometric brain deformation data, an optimization should be done for 

representative signals in each dataset.  

The parameter sensitivity for the Kalman filtering algorithm included 𝑃𝑃, which 

represents the error in the prediction, and 𝑅𝑅, which represents the measurement error. The 

sensitivity analysis showed that neither parameter affected the predicted solution of the 

Kalman filter and the error metrics were insensitive to changes in 𝑃𝑃 and 𝑅𝑅 across a wide 
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range of values. This is likely due to the way the algorithm uses and updates these 

parameters in the steps outlined in the methods. The value of 𝑃𝑃 is updated for every 

iteration of the Kalman filter based on how close the prediction or initial guess was to the 

value predicted by the distance measurements. In previous studies that use Kalman filtering 

for wireless positioning, it was recommended that the initial choice of P is a value much 

higher than the estimated error in the prediction (Yim et al., 2008). Although the value of 

𝑅𝑅 was not updated in the Kalman filter for each iteration, it is used to calculate the Kalman 

gain (𝐾𝐾, step 2) and to update the value of 𝑃𝑃 (step 4). The Kalman gain is similar to a joint 

probability distribution between the prediction and the measurement errors, and it was used 

to update the estimated position based on the data and the values of 𝑃𝑃 and 𝑅𝑅. While a 

change in 𝑅𝑅 does not change the final solution, it may take more EKF iterations to reach 

the same solution with a higher value of 𝑅𝑅.  

Optimal Algorithms for Brain Sonomicrometry 

Estimating dynamic position for crystals using sonomicrometry is very important to 

the field of brain injury biomechanics, as it provides a reliable and robust approach to 

measure brain deformation caused by head impact to quantify head impact severity. The 

displacements of the embedded crystals are used as a benchmark to validate computational 

models of the brain, which are then used in injury prediction, helmet development, and the 

development of injury risk curves. This study was performed to find the most accurate and 

suitable algorithm given the scarcity and importance of this experimental dataset.  

While all of the algorithms, except for the LLS methods, yielded similar results in 

terms of error, Kalman filtering (using the CT position as the initial guess) was the 

recommended method for trilaterating brain sonomicrometry data. The MLE and NLLS 
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methods were similarly accurate but needed a priori optimization or constraint for each 

test or set of tests. Additionally, these two methods treat each time point independently, 

while the Kalman filter considers temporal variations in error. The sonomicrometry signals 

in the brain are usually smooth and do not have spikes in magnitude across time, as a result 

of the compliance and viscoelastic mater properties of the brain. Kalman filtering can help 

alleviate the uncertainties in the measurement introduced by outliers or magnitude spikes 

at individual time points that can result in non-physical position estimates. The Kalman 

filter was also insensitive to user-defined initialization parameters, so the algorithm does 

not have to be optimized before every dataset. If the initial position at the first time point 

is not known, it is recommended that the MLE or NLLS method be used to determine the 

initial position for the Kalman filter. 

CONCLUSION 

Trilateration and Kalman filtering algorithms have been used in many fields, including 

sonomicrometry, to find the dynamic position of objects given redundant distance data that 

often include noise. Eight trilateration and Kalman filtering methods were evaluated to 

identify the one most suitable for trilaterating dynamic brain sonomicrometry data. While 

the non-linear, MLE, and Kalman filtering trilateration methods yielded the least error 

(40% - 72% reduction in input distance error), the Kalman filtering algorithm was 

recommended for use in sonomicrometry due to its accuracy and insensitivity to initial 

parameters. 

The brain deformation data acquired using sonomicrometry for the pilot specimen 

(chapter 3) contained uncertainties in the 3D solution. After optimizing the trilateration 

solution, the data from the pilot specimen can be accurately converted to spatial brain 
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deformation data. The experimental methodology and the optimized trilateration 

algorithms allow for the collection of a comprehensive dataset of human brain deformation.  

An additional five specimens will be tested with the same test matrix. The dataset of six 

specimens will be used to investigate the dependence of brain deformation on rotation 

severity, loading direction, and brain region.   
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 HUMAN BRAIN DEFORMATION DATASET 

The development of a robust trilateration algorithm to determine the dynamic position 

of sonomicrometry crystals embedded in the brain allows for large-scale investigations into 

the biomechanics of the brain. Along with the methodology developed in chapter 3, the 

trilateration method can be used to generate a dataset of human brain deformation with 

multiple specimens to be able to investigate the dependence of brain deformation on input 

kinematics and brain anatomy. The brain deformation dataset is also crucial to the 

validation of FE brain models, which have been instrumental in understanding brain injury 

and developing injury mitigation systems. The objective of this study was to apply the 

sonomicrometry methodology to measure brain deformation by generating a 

comprehensive dataset of human brain deformation under rotational loading. Dynamic 

brain deformation was measured for six specimens with four loading severities in the three 

directions of rotation, for a total of twelve tests per specimen. Testing for all specimens 

was completed 42-72 hours post-mortem. The final dataset contains approximately 5,000 

individual crystal displacement curves. The data presented in this chapter will provide 

valuable insight into fundamental brain biomechanics that has only been theorized using 

computational models. Additionally, the data will provide a comprehensive set of 

experimental targets for more rigorous model validation during the development of the 

next generation of finite element brain models. A paper titled “Human Brain Deformation 

During Dynamic Rotation of the Head” is currently in draft, with a target journal of 

“Journal of Neurotrauma.” 
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INTRODUCTION 

In the past two decades, there have been numerous FE models of the brain developed 

in the literature (Giudice et al., 2018a). The models allow for regional and macroscopic 

investigations into the brain response under a wide variety of loading conditions and 

severities that would not otherwise be possible experimentally. The biofidelity of these 

models in predicting the deformation of the brain is requisite for their role in predicting 

and mitigating TBI. Verifying the fidelity of these models relies on comparing the 

deformation responses to reference data measuring brain motion during dynamic 

experiments. 

 Most of the original injury criteria, such as the Head Injury Criterion (Versace, 1971), 

were developed using only linear acceleration loading. As a result, most previous attempts 

to quantify brain motion biomechanics under impact loading have focused on impacts 

resulting in linear translation of the head. Such studies have formed the basis of current 

tools for evaluating the safety protective equipments such as helmets (Giudice et al., 2018b; 

Panzer et al., 2018) and automotive restraint systems (Newman et al., 2000; Rowson and 

Duma, 2013; Takhounts et al., 2013a; Versace, 1971). Despite the historical focus on linear 

head acceleration, rotational impact has long been theorized to be a primary mechanism of 

TBI (Holbourn, 1943).  

Few methods are available to measure 3D motion of the brain during dynamic rotation 

of the head. Measuring human brain deformation has been explored using magnetic 

resonance imaging (MRI)  (Bayly et al., 2005; Feng et al., 2010; Knutsen et al., 2014; 

Sabet, Christoforou, Zatlin, Genin, & Bayly, 2008), and bi-planar X-ray imaging (Hardy 

et al., 2007; Nusholtz et al., 1984; Stalnaker et al., 1977). While the bi-planar X-ray 
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methodology provided good quality data for FE model validation, the method has inherent 

limitations arising from line-of-sight requirements and other factors (Alshareef et al., 

2018).  

A new methodology using sonomicrometry was described in Chapter 3 as an 

alternative to high-speed radiography. Sonomicrometry uses ultrasound time-of-flight to 

dynamically measure distances between pairs of small piezoelectric crystals implanted 

within a tissue. Sonomicrometry does not have line-of-sight limitations, which allows for 

a larger number of crystals to be tracked in the brain, and it allows for testing under multiple 

directions and loading conditions for each specimen.  This methodology was demonstrated 

using a pilot specimen. The specimen was subjected to dynamic rotation tests that were 

applied about the three principal directions (sagittal, coronal, axial), with angular velocity 

pulses ranging from 20-40 rad/s, with durations of 30-60 ms and angular accelerations from 

600-5500 rad/s2. The sonomicrometry and experimental techniques were able to reliably 

and repeatedly capture three-dimensional dynamic in situ whole brain deformation during 

the dynamic head rotation tests.  

The objective of this study was to apply the methodology of sonomicrometry and 

trilateration developed in Chapter 3 and 4 to generate a reference dataset of human brain 

deformation under rotational loading with multiple specimens, to form the basis for 

biofidelity evaluation of human FE brain models. A secondary aim was to examine the 

relationship between brain deformation, loading magnitude and duration, and the direction 

of rotation. The data presented in this study will provide valuable insight on fundamental 

brain biomechanics that has only been theorized using computer models and will provide 
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a comprehensive set of experimental targets for more rigorous model validation during the 

development of the next generation of finite element brain models.  

METHODS 

Six head/brain specimens of post mortem human surrogates (PMHS, cadavers) were 

tested using the methodology described in Chapter 3. A comprehensive description of the 

methodology used to measure brain deformation, including the test device, specimen 

preparation, and use of sonomicrometry can be found in the referenced chapter. A concise 

explanation of the methods that include any changes relevant to the full dataset of six 

specimens is presented below.  

Specimen Acquisition and Information 

All tissue donation, testing, and handling procedures were approved by the 

University of Virginia Institutional Review Board – Human Surrogate Use (IRB-HSU) 

Committee. Exclusion criteria for the acquisition of the specimens included any factors 

that may have compromised the anatomy or material properties of the skull or brain tissue, 

and included any diagnosed skull lesions or trauma, neurological disease, or neurological 

lesions. All specimens were also screened for bloodborne pathogens (HIV, Hepatitis B & 

C). The donated PMHS were acquired unembalmed, never frozen, 10-24 hours post-

mortem. General PMHS information is presented in Tables 5-1 and 5-2. 

 Pre-test radiographs of the specimens confirmed no abnormalities of the skull and 

cranial space. For four of the specimens (896, 900, 902, 904) T1-weighted Magnetic 

Resonance Imaging (MRI) scans of the brain were also obtained to acquire subject-specific 

brain anatomy (Table 5-1). Head-neck specimens were then procured at or around the first 

thoracic vertebra for specimen preparation.  
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Table 5-1: Specimen information and identification number (ID) for all tested PMHS. 

 
* Indicates hour post-mortem 

Table 5-2: PMHS anthropometry and mass measurements. 

 
* Brain mass measured post-test during specimen dissection 

Specimen Preparation 

All instrumentation and hardware installation were performed relative to the head 

center of gravity (CG) which was estimated based on anatomical landmarks according to 

the protocol outlined by Robbins (Robbins et al., 1983). The skull was denuded and secured 

to the head rotation fixture by plates that were attached to the superior, lateral, and posterior 

surfaces using a custom-built fixation jig. Artificial cerebrospinal fluid (aCSF), with a 

constant pressure of approximately 78 mmHg (Hardy et al., 2001) was used to provide 

constant perfusion (Sugawara et al., 1996) throughout testing. The perfusion inlets were 
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through the carotid arteries and ports at the sagittal sinus and occiput, and the fluid drained 

through the jugular veins and the spinal cord.  

Sonomicrometry crystals (Sonometrics Corporation, London, Ontario, Canada) were 

implanted to quantify brain deformation in response to head rotations. A total of 40 crystals 

were utilized, with transmitting crystals affixed to the inner skull and receiving crystals 

inserted in the brain tissue. An array of 30 crystals were inserted into the brain using a 

stereotactic cannula system. The positions of the crystals were controlled by a guide plate 

that was fixed to the posterior surface of the skull. Only 24 of the 30 receivers were used 

during the tests (acquisition system capacity), with the additional six serving as backups in 

the case of noisy or non-functioning crystals. The chosen crystal positions were designed 

to avoid skull boundaries and ventricles while maximizing dispersion throughout the brain. 

Wire slack was intentionally introduced during insertion to ensure crystals do not displace 

during the testing relative to the brain tissue.  

An array of 10 sonomicrometry crystals were rigidly coupled to the inner surface of 

the skull with the primary function of transmitting ultrasound pulses. The transmitters were 

fixed to the skull in locations that were designed to encompass all the receivers while 

ensuring that all receivers measured at least four transmitting signals. Only 8 of the ten 

transmitters were used during testing, with backups in the case of improperly placed or 

non-functioning crystals. After the installation of the sonomicrometry sensors, computed 

tomography (CT) images were acquired at a resolution of 0.625 mm to determine the initial 

coordinates of each receiver and transmitter relative to the head CG (Figure 5-1). Perfusion 

was applied during CT scans to ensure that the intracranial space was fully perfused and to 

obtain an accurate measurement of the initial position of all implanted sensors. A post-test 
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CT scan was also collected without mounting hardware to obtain a clean image of the 

cranium. An autopsy was also conducted for each specimen 6-8 days p.m. to investigate 

structural and anatomical variation among specimens (summary observations are presented 

in Appendix A). 

 

Figure 5-1: Representative CT images following the specimen preparation and crystal insertion 
procedure. Specimen 903 (left) includes the mounting plates and instrumentation plate. Specimen 
904 (right) shows the transmitters affixed to the skull, the receivers in the brain (note that slack is 

intentionally introduced in the wires during insertion), and the perfusion ports in the carotid 
arteries and occipital skull.  

Test Fixture and Matrix 

A custom-built rotational test device was designed to apply controlled and repeatable 

rotations to the head in the sagittal (posterior to anterior rotation), coronal (right to left 

rotation), and axial directions. The RTD used a cable-drive system to translate the linear 

output of the actuator into a rotational pulse. In all rotation directions, the head was inverted 

at the initiation of every test to allow for consistent perfusion. The rotation was applied 

through the head CG, and the specimen returned to its initial position after every test.  

Four rotational severities were tested and consisted of haversine pulses with a peak 

angular velocity of 20 or 40 rad/s and duration of 30 or 60 ms. Peak angular accelerations 

ranged from 600 to 5500 rad/s2. The four severities were applied in each of the three 

anatomical axes for a total of twelve tests per specimen.  
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Head Kinematics 

The 6DOF kinematics of the head were measured using an array consisting of three 

Endevco 7264B-500 linear accelerometers (Meggitt Sensing Systems, Irvine, CA) and 

three angular rate sensors (ARS), ARS PRO-8k angular rate sensors (Diversified Technical 

Systems Inc., Seal Beach, CA). The sensor array was rigidly mounted to the head mounting 

plates. The array kinematics were transformed to the head coordinate system according to 

SAE J211 standards (1995). A SlicePRO data acquisition system (Diversified Technical 

Systems Inc., Seal Beach, CA) was used to acquire the data at a sampling rate of 10 kHz 

with an anti-aliasing filter of 2900 Hz. The linear acceleration data were filtered with a 

CFC 180 filter, and the angular velocity was filtered with a CFC 60 filter. Angular 

acceleration was calculated by differentiating the filtered angular velocity data. The peak 

angular velocity and pulse duration of every test for each specimen was calculated from 

the measured head kinematics.  

Sonomicrometry Acquisition and Data Processing 

Sonomicrometry data was recorded using a 32-channel TRX-USB Acquisition System 

(Sonometrics Corporation, London, Ontario, Canada). Unfiltered data were collected at a 

sampling rate of 600 Hz for all tests, except for the pilot specimen. There were a total of 

192 distance traces for each test. Before and after each test, static sonomicrometry data 

were collected to confirm that all receivers had returned to their original position. 

Sonomicrometry data were processed according to the manufacturer’s recommendation to 

remove outliers and level shifts in the signals. Excessively noisy signals were removed and 

not included in subsequent analyses.  

Sonomicrometry Trilateration 
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Trilateration was utilized to determine the 3D coordinate time-history of each receiver 

crystal relative to the reference frame defined by the fixed transmitting crystals. The 

method uses the geometry of spheres to determine the absolute location of a point based 

on multiple distance measurements from fixed transmitters. Each distance trace was 

adjusted using an offset distance such that the initial position matched the corresponding 

distance measured in the CT images.  

Once the data were processed and all ‘good’ traces were identified, trilateration was 

utilized to determine the 3-D coordinates of the receiving crystals relative to the reference 

frame defined by the fixed skull crystals. A custom script was written in MATLAB 

(Mathworks Inc., MA, USA) to trilaterate the displacement of each crystal using Kalman 

filtering. Kalman filtering iteratively estimates the position of receivers based on the 

distances at the next time step, assuming errors in the measured distances, allowing for a 

more accurate and reliable solution. The Kalman filtering algorithm was investigated for 

use in brain sonomicrometry among eight trilateration methods and yielded the most 

accurate and robust results (Chapter 4). All analyses were performed using a brain tissue 

speed of sound of 1540 m/s, which was chosen by optimizing distances in the static 

sonomicrometry data compared to those measured from the pre-test CT images. 

The initial position (𝑥𝑥�𝑘𝑘) at the first timestep was defined at the initial CT position of 

each receiver. For each subsequent time step, the initial estimated position was the position 

predicted by EKF at the previous time step. After the EKF algorithm predicted the position 

of the receiver in the brain, a set of quality control procedures were used to ensure that the 

estimation was accurate and that no “bad” signals were present in the data. For each 

receiver, the estimated distances to each transmitter were calculated and compared to the 
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experimental sonomicrometry distances. The root mean square error (RMSE) between the 

predicted and measured distances for each transmitter-receiver pair was found. If the 

RMSE was greater than 0.5 mm, the pair was marked as “bad.” In addition to the RMSE 

calculation, each prediction was manually reviewed to check for large deviations, as 

compared to the experimental data. If any receiver-transmitter pairs were removed, the 

EKF algorithm was run again and a new solution was checked. If any receiver fell below 

4 transmitter-receiver pairs, it was removed from the analysis.  

The processing and trilateration workflow can be summarized in the following steps: 

1. Traces were processed for outliers and level shifts and marked as “good.” 

a. Traces that were too noisy or did not receive transmission were marked as 

“bad.” 

2. Data were adjusted to a speed of sound of 1540 m/s (original, 1590 m/s). 

3. The initial distances in the sonomicrometry data were shifted to the CT-determined 

distance. 

4. The initial guess of the first time step in the EKF was defined as the CT receiver 

position. 

5. Trilateration algorithm was executed using processed, “good” traces with adjusted 

initial distances at each time step. The prediction of the previous time step was used as 

the initial guess for the next time step. 

6. The predicted distances to each transmitter were calculated across time and compared 

to the experimental distance measurements.  

7. Any transmitter-receiver pair that had an RMSE greater than 0.5 mm was removed if 

there were more than four pairs used.  
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a. Any receivers that had less than 4 “good” transmitter-receiver pairs were 

removed from the analysis. 

8. The EKF algorithm was re-run with adjusted data, and the final solution was found.  

Peak-to-Peak Deformation Statistics 

The peak-to-peak deformation of every crystal for each test and specimen was 

calculated using the maximum point-to-point displacement during the trajectory of each 

receiver. The maximum and average peak-to-peak were calculated for each test and 

specimen for a total of 72 data points. The dependence of brain deformation on head 

kinematics was found using a multiple regression analysis. For each axis (sagittal, coronal, 

and axial), a regression fit was found using the 24 data points in that axis. The multiple 

linear regression model is shown below and includes an interaction term. 

𝑃𝑃𝑘𝑘 − 𝑃𝑃𝑘𝑘 = 𝐴𝐴 ∗ 𝜔𝜔𝑝𝑝𝑒𝑒𝑒𝑒𝑘𝑘 + 𝐵𝐵 ∗ ∆𝑡𝑡 + 𝐶𝐶 ∗ 𝜔𝜔𝑝𝑝𝑒𝑒𝑒𝑒𝑘𝑘 ∗ ∆𝑡𝑡 + 𝐷𝐷 (5-1) 

where ‘𝜔𝜔𝑝𝑝𝑒𝑒𝑒𝑒𝑘𝑘’ denotes the peak angular velocity (rad/s), ∆𝑡𝑡 denotes the measured duration 

(ms), and A, B, C, and D are the regression coefficients.  

Comparison to Kinematic Injury Criteria 

The peak-to-peak deformation of the crystals was also used to compare the predictions 

of various kinematics-based head and brain injury metrics. Thirteen injury metrics were 

evaluated in this analysis, which were selected based on their dependence on various linear 

and rotation hear kinematics, including both acceleration and velocity. Some of the metrics 

were developed based on mechanics theory or computational methods, but most of them 

were formulated based on phenomenological experimental fits. Head kinematics were 

described by the directionally-dependent, time history vectors of linear acceleration, 

angular acceleration, and angular velocity.   
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The translational only injury criteria evaluated include the Gadd Severity Index (GSI) 

and the Head Injury Criteria (HIC). The combined translational and rotational kinematics 

metrics include the Combined Probability of Concussion (CPC), Generalized Acceleration 

Model for Brain Injury Threshold (GAMBIT), Head Impact Power (HIP), and Kleiven’s 

Linear Combination (KLC). The rotational kinematic metrics include the Brain Injury 

Criteria (BrIC), Power Rotational Head Injury Criterion (PRHIC), Rotational Injury 

Criterion (RIC), Rotational Velocity Change Index (RVCI), Universal Brain Injury 

Criterion (UBrIC), Convolution of Impulse response for Brain Injury Criterion (CIBIC), 

and Diffuse Axonal Multi-Axis General Evaluation (DAMAGE). Brief descriptions of 

each metric and the head kinematics utilized are specified in Table 5-3; specific 

formulations and critical values can be found in the referenced literature. 

The injury criteria were evaluated using the 6DOF kinematics from each test (twelve 

tests total) for each specimen, for a total of 72 points. The maximum peak-to-peak 

deformation for each test was associated with the prediction of the kinematics-based injury 

criteria. For all injury criteria, a higher score is either associated with a higher percent 

chance of injury or an increase in brain strain. For all 72 points, a linear regression (without 

an intercept) was evaluated to assess the correlation between the injury criteria and the 

experimental peak-to-peak deformation. The 𝑅𝑅2 value was used to assess the correlation.  

 

 

 

 

 

 



121 
 

Table 5-3: Overview of existing head kinematics-based brain injury criteria. 

Injury 
Metric Type Development 

Method 
Type of 
Injury 

Direction 
Dependence 

Reference 

GSI T Experimental Skull 
Fracture, TBI No (Gadd, 1966) 

HIC T Experimental Skull 
Fracture, TBI No (Versace, 1971) 

CPC T, R Experimental Concussion No 
(Rowson and 
Duma, 2013) 

GAMBIT T, R Theoretical Concussion No (Newman, 1986) 

HIP T, R Theoretical Concussion Yes 
(Newman et al., 

2000) 

KLC T, R Computational Concussion No (Kleiven, 2007) 

BrIC R Computational DAI Yes 
(Takhounts et al., 

2013a) 

PRHIC R Experimental Concussion No 
(Kimpara et al., 

2011) 

RIC R Experimental Concussion No 
(Kimpara and 

Iwamoto, 2012) 

RVCI R Computational DAI Yes 
(Yanaoka et al., 

2015) 

UBrIC R Computational DAI Yes 
(Gabler et al., 

2018a) 

CIBIC R Computational DAI Yes 
(Takahashi and 
Yanaoka, 2017) 

DAMAGE R Theoretical DAI Yes 
(Gabler et al., 

2018b) 

* T = Translational. R = Rotational. 

 

RESULTS 

All specimen preparation and testing were completed within 72 hours post-mortem. 

There were a total of 72 tests conducted on a total of six specimens. The dataset included 

three-dimensional displacements for 1652 receivers, which corresponded to approximately 

5000 response curves for motion in the orthogonal directions of motion (x, y, z). 
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Rotational Head Kinematics 

The target maximum rotational velocities were 20 rad/s and 40 rad/s, with durations 

of 30 and 60 ms. There were minimal linear accelerations and off-axis rotations of the head 

for all loading severities.  Due to differences in the inertia of each specimen, there were 

slight variations in the head kinematics, predominantly in the sagittal and coronal 

directions. Measured head kinematics of all specimens for the axial 40 rad/s – 30 ms target 

rotations are shown in Figure 5-2. The average peak linear acceleration, angular velocity, 

angular acceleration, and duration are given in Table 5-4. A summary of the measured head 

kinematics for every test is included in Appendix C.  

 

Figure 5-2: Angular velocity (a) and angular acceleration (b) plots for the axial – 40 rad/s – 30 
ms rotation for all specimens. 
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Table 5-4: Summary of peak linear and angular head kinematic for all specimens. Means and 
standard deviations are shown. 

 
LAC = Linear Acceleration. ARS = Angular Velocity. AAC = Angular Acceleration 

Brain Motion (Sonomicrometry) 

The trilaterated trajectories of the sonomicrometry crystals in the brain, similar 

temporally and spatially to the traces of the pilot specimen, are given in Appendix D. A 

digital data archive of the dataset, which includes Excel files with six DOF head 

kinematics, sonomicrometry crystal initial position in the head coordinate system, and 

sonomicrometry crystal displacements, are available through the National Highway and 

Traffic Safety Administration (NHTSA) biomechanics database.  

Trajectories of all receivers for the 20 rad/s – 30ms and 40 rad/s – 30ms tests for 

specimen 900 in the axial and sagittal directions, overlaid on an outline of the brain in the 

direction of rotation, are given in Figure 5-3. The brain motion in the plane of rotation 

follows a circular trajectory about a point, independent of the head CG. There was a larger 

magnitude of deformation for the 40 rad/s test as compared to the 20 rad/s rotation.  
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Figure 5-3: Trajectory plot for the 20 rad/s – 30ms (a-b) and 40 rad/s – 30ms (c-d) sagittal and 
axial tests for specimen 900. The red dots symbolize the initial position of each receiver. The 

black dot represents the CG of the head, about which the rotation was applied. Blue dots 
represent the transmitter crystals in the skull. 

The peak-to-peak deformations for the 40 rad/s – 30 ms tests for each receiver for all 

specimens are shown in Figure 5-4. There was a spatial dependence of brain deformation, 

with receivers in the inferior brain regions, including the cerebellum and brainstem, 

experiencing low deformations across all rotation directions. There was also a directional 

dependence for the peak-to-peak motion of different regions of the brain. The peak-to-peak 

deformation of all receivers across all specimens and tests was quantified and is shown in 

a box plot in Figure 5-5. The maximum peak-to-peak deformation for every test for each 

specimen is included in Appendix C.  
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Figure 5-4:  Peak-to-peak deformation of all crystals for all specimens for the axial – 40 rad/s – 
30 ms tests in the sagittal (A), coronal (B), and axial (C) directions.  

 

Figure 5-5:  Box plots of peak-to-peak deformation for all specimens for each test. The blue 
boxes represent the 25th and 75th quartile values, the red line represents the median, and the 

dashed lines represent the maximum and minimum values. 

Peak-to-Peak Deformation Statistics 

The maximum and mean peak-to-peak deformation for every test was utilized in a 

multiple linear regression to determine the dependence of brain deformation on angular 

head kinematics. For the maximum peak-to-peak deformation regression (Figure 5-6), the 
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model fits had an R2 ranging from 0.69-0.79. Coefficient values are presented in Table 5-5. 

The regressions showed a dependence of brain deformation on angular kinematics, with 

increasing angular velocity and decreased duration causing non-linear increases in 

maximum peak-to-peak deformation. The sagittal and coronal rotation directions had 

similar trends and magnitudes of peak-to-peak deformation, while the axial direction 

resulted in larger deformation for the same input kinematics.   

For the mean peak-to-peak deformation regression (Figure 5-7), the model fits had an 

R2 ranging from 0.67-0.78. Coefficient values are presented in Table 5-6. The regressions 

showed a dependence of brain deformation on angular kinematics, with increasing angular 

velocity and decreased duration causing increases in maximum peak-to-peak deformation. 

Unlike the maximum peak-to-peak regression, the mean peak-to-peak showed similar 

deformations for the axial and coronal rotations and lower deformations for the sagittal 

rotation.  

Table 5-5: Regression coefficients, standard, and p-value for the regression of maximum peak-to-
peak deformation to the varying head kinematic severities. 
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Figure 5-6:  Surface plots depicting the results of the multiple linear regression of maximum 
peak-to-peak deformation using the maximum angular velocity (ARS) and duration for the 

sagittal (a), coronal (b), and axial (c) tests. The black dots correspond to the data points used in 
the regression fit. The sagittal regression model had an R2 of 0.691. The coronal regression 

model had an R2 of 0.693. The sagittal regression model had an R2 of 0.795.  

Table 5-6: Regression coefficients, standard, and p-value for the regression of mean peak-to-peak 
deformation to the varying head kinematic severities. 
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Figure 5-7:  Surface plots depicting the results of the multiple linear regression of mean peak-to-
peak deformation using the maximum angular velocity (ARS) and duration for the sagittal (a), 

coronal (b), and axial (c) tests. The black dots correspond to the data points used in the 
regression fit. The sagittal regression model had an R2 of 0.692. The coronal regression model 

had an R2 of 0.780. The sagittal regression model had an R2 of 0.675. 

Comparison to Kinematics-Based Injury Criteria 

 Thirteen kinematics-based injury criteria were compared to the maximum peak-to-

peak deformation of all the specimens to assess their efficacy in predicting experimental 

brain deformation severity (Table 5-7). The translational injury criteria (GSI and HIC) had 

low correlations to the deformation. The combined rotational and translational criteria had 

good results for GAMBIT and HIP, but KLC had the lowest correlation of all injury 

criteria. For the rotational kinematics criteria, PRHIC had the lowest score, similar in 

magnitude to the translation criteria. RIC and RVCI (which was compared using its 

development with MPS and CSDM) performed similarly to the combined rotational and 

translational metrics. The best performing metrics were the most recently developed 

rotational kinematic metrics, including UBrIC (MPS-based), DAMAGE, and CIBIC. The 

best performing metric was CIBIC with an 𝑅𝑅2 of 0.744.  

 The injury criteria were also compared to mean peak-to-peak deformation, which 

takes into account the deformation of all receivers in the brain for all tests, instead of only 
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the maximum deformation. The correlation to the mean deformation was similar or lower 

for all injury criteria.  

Table 5-7: Correlation of kinematics-based injury criteria to maximum and mean peak-to-peak 
deformation. For criteria that include an associated risk of mTBI (AIS2+),  a regression analysis 

is also conducted for the injury risk and deformation metrics. 

 Criteria Value 
Criteria Injury Prediction 

(AIS2+) 

Criteria 
Max Peak-

to-Peak 
𝑹𝑹𝟐𝟐 

Mean Peak-
to-Peak 
𝑹𝑹𝟐𝟐 

Max Peak-
to-Peak 
𝑹𝑹𝟐𝟐 

Mean Peak-
to-Peak 
𝑹𝑹𝟐𝟐 

GSI 0.558 0.582 N/A N/A 

HIC 0.557 0.580 0.459 0.468 

CPC 0.093 0.097 0.560 0.570 

GAMBIT 0.640 0.686 0.594 0.608 

HIP 0.660 0.660 0.499 0.519 

KLC 0.454 0.492 N/A N/A 

BRIC 0.585 0.556 0.652 0.630 

PRHIC 0.573 0.559 N/A N/A 

RIC 0.649 0.654 0.502 0.506 

RVCI (MPS) 0.649 0.682 N/A N/A 

RVCI (CSDM) 0.619 0.606 N/A N/A 

U-BRIC (MPS) 0.700 0.630 N/A N/A 

U-BRIC (CSDM) 0.623 0.587 N/A N/A 

CIBIC 0.744 0.695 N/A N/A 

DAMAGE 0.705 0.643 N/A N/A 

 

DISCUSSION 

An understanding of the biomechanics of the brain during injurious loading of the head 

is essential to predicting and mitigating injury. A human brain deformation dataset with 

accurate, repeatable, and well-defined loading conditions has represented a significant need 
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in the TBI biomechanics field. Expanding on a methodology developed in Chapter 3, this 

study generated a dataset of human brain deformation with six subjects varying in sex, age, 

and anthropometry. The dataset contains approximately 5000 brain motion traces that can 

each be used to improve and validate FE brain models.  

Brain Biomechanics 

An extensive dataset of human brain deformation allows for insight into brain 

biomechanics that has previously relied on animal experiments and FE models. While 

previous human brain deformation experiments conducted a breadth of tests and severities 

with different specimens (Hardy et al., 2007), this is the first dataset to produce data for 

multiple loading directions and severities for the same set of specimens. This dataset allows 

for comparisons for the same point in the brain across different angular velocity, loading 

duration, and rotation direction. As observed in Figure 5-5, the axial rotation direction 

caused the largest maximum and average Pk-Pk deformation for all four loading severities. 

The sagittal and coronal directions had similar Pk-Pk deformation magnitudes, with the 

sagittal direction resulting in slightly greater maximum deformations. The spatial 

distribution of Pk-Pk deformations also differed across rotation axes, with the sagittal and 

coronal directions causing larger deformation in the inferior regions of the brain than the 

axial direction (Figure 5-4). All rotation directions experienced the largest deformations in 

the mid-cerebrum. The brain deformations also depended on the angular velocity and 

duration of the head rotation pulse (Figure 5-6). Increasing angular velocity and decreasing 

pulse duration resulted in larger maximum Pk-Pk deformations across all loading 

directions. 
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The regression analysis used to investigate the dependence on brain deformation on 

head angular velocity is simplistic, and was used in this study only to show a dependence 

on head rotational kinematics, not to predict or interpolate brain deformation at various 

magnitudes and duration of angular velocity. Although each regression had a high 𝑅𝑅2 

value, only 24 data points were used to create each regression fit. Additionally, a more 

complex model could be used to fit the data, such as using a multi-body model (Gabler et 

al., 2018b), but these were not investigated in this study. The quantification of peak-to-

peak deformation was also limited to the spatial distribution of crystals in each specimen. 

Since there was variability in crystal placement, differences in peak-to-peak deformation 

could be attributed to the sampled brain regions, and not the angular kinematics. These 

limitations prevent the use of the regression surface (Figure 5-6) to interpolate brain 

deformation or to predict injury risk. 

Rotational Pulse Severities 

The rotational severities applied to the specimens were chosen to represent head 

impact conditions observed in automotive and sports impacts associated with mild-to-

moderate risk of TBI. Based on a rotational brain injury criterion that utilizes head 

kinematics as the predictor (Brain Rotational Injury Criteria – BrIC (Takhounts et al., 

2013a), the risk of AIS 2+ brain injury for the pulses in this study ranged from 4.3% to 

99.3% risk. The correlation between human brain deformation and associated head impact 

severity has only been investigated using FE models. While this study provides a limited 

set of four severities across three loading directions, it is a valuable initial step into 

improving the link between head kinematics, brain deformation, and clinical injury risk. 

Statistically significant conclusions that relate rotational severity to brain deformation can 
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be made (Figure 5-6), but a wider range of severities is needed to allow for a better 

understanding of the link between rotational pulse severity and human brain deformation.  

Finite Element Model Validation 

Direct measurement of tissue-level deformation of the brain under head impact, 

outside of controlled laboratory experiments, remains elusive and challenging. 

Anatomically-detailed FE models provide a valuable alternative and have been vital to 

approximating the temporal and spatial mechanical behavior of the brain. These models 

allow for a cost-effective investigation of the brain response under various loading 

conditions at a level that is not possible using cadaveric or human experiments. They have 

been created to predict injury using strain-based injury metrics, influencing governmental 

automotive safety standards and product development across multiple industries.  It is 

essential to validate the brain deformation predicted by these models using human brain 

motion under repeatable injurious loading conditions. The availability of this digital dataset 

of human brain deformation with precise measurement location and six DOF loading 

conditions, as well as similar loading conditions for multiple specimens, allows for 

thorough and rigorous validation of FE models. The biofidelity of these models is of utmost 

importance to the TBI field, and meticulous comparison of model-simulated brain motion 

to this human experimental brain motion is essential.  

Extension of Sonomicrometry Method 

One of the most prominent debates in the field of TBI injury biomechanics has been 

on the roles of linear and rotational kinematics on brain injury. However, due to the 

incompressible nature of the brain tissue and closed volume of the skull, the prevailing 

hypothesis is that rotational, not linear, kinematics are responsible for the shear 



133 
 

deformations of the brain tissue that lead to the diffuse injuries associated with TBI. While 

this concept has been demonstrated using computational brain models (Gabler et al., 2018a; 

Giudice et al., 2018a; Takhounts et al., 2013a), this is the first experimental dataset to 

demonstrate large magnitudes of brain deformation during dynamic head rotation. The 

sonomicrometry methodology developed in this project provides a unique platform for 

investigating the influence of head kinematics on the ensuing brain deformation in a 

controlled and repeatable manner. To expand this line of research, future investigations 

may be performed in pure linear loading conditions or combined rotational and linear 

loading conditions using the platform developed in this study to examine the relative 

contributions of each type of loading to brain deformation. 

One of the major questions in the field of brain biomechanics is the response of the 

brain due to multiple impacts. The results of this study show that the brain remains in 

transient motion up to 100-200 ms after the onset of head rotation. In automotive and sports 

impacts, the head is often impacted multiple times in the span of 100 – 200 ms due to the 

chaotic nature of these environments. It is unclear how the brain responds to second 

impacts while it is still in transient motion. Such impacts could have a superposing effect 

on brain deformation, leading to exacerbated injury risk. The experimental methodology 

presented here provides a potential opportunity to study such events in a controlled, 

repeatable manner.  

The sonomicrometry method can also be extended to animal models, allowing 

correlation of brain deformation to clinical injury. Matched-pair testing may then be 

performed with sonomicrometry and survival cohorts receiving identical loading to 

identify injury prediction metrics and pathological outcomes. Such studies would help to 
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“close the loop” that has existed between biomechanical input, brain deformation, and 

injury.  

CONCLUSION 

The sonomicrometry method was utilized to generate a dataset of human brain 

deformation containing six specimens, twelve test severities, and approximately 5000 

individual brain deformation traces. The peak-to-peak deformation of the brain 

demonstrates the dependence of brain deformation on rotation severity, loading direction, 

and location within the brain. This brain deformation dataset can be used to investigate 

fundamental brain mechanics, create kinematics injury criteria for safety standards, and 

develop and re-validate FE brain models. 

The availability of a dataset of human brain deformation with specimens tested with 

repeatable loading conditions allows for the aggregation of the data into an average 

specimen response. Average data corridors are typically used in biomechanics to aggregate 

the data from multiple specimens into an average that describes the intra-population 

variability. Since this is the first series of experiments to test the same specimens under 

multiple severities, aggregated data corridors can be created with the six specimens in the 

dataset. The average response is also useful to the validation of FE brain models; FE models 

created to represent population average, such as a 50th percentile male, could be validated 

using the corridors.  
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 AVERAGE DATA CORRIDORS 

 The in situ human brain deformation dataset generated in this dissertation provides a 

valuable tool for understanding the mechanics of the brain and validating FE models of the 

brain based on individual specimen response. However, typical FE models are constructed 

to represent a specific anthropometry or subset of a population, such as a 50th percentile 

male. The experimental data used to validate the response of FE models are often combined 

into average data corridors that represent the population response by taking into account 

variations among the individual specimens. An aggregation of the data into average 

response corridors will also provide insight into intra-population variances in the dataset, 

given the range of specimen anthropometry, anatomy, and biological characteristics. There 

are currently no reported average data corridors for human brain deformation. To create 

the first brain deformation average response corridors, new techniques are required to 

aggregate this type of data given some differences in the tests among the specimens. This 

chapter will focus on the development of the brain deformation average data corridors from 

the six specimens available in the dataset from Chapter 5.  

INTRODUCTION 

Average data corridors are commonly developed in injury biomechanics to represent 

a population response from a set of experimental tests. They are used primarily in the 

development of physical models for injury, such as anthropomorphic test devices or 

dummies, and in the validation of FE models. The experimental response is typically two-

dimensional (e.g., force or displacement versus time) and includes variations in the 

magnitude, shape, and temporal behavior of the signal (Lessley et al., 2004). Much like 

one-dimensional data that uses an average and a standard deviation to represent the 
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variability of a response, average data corridors use a dynamic average and standard 

deviation to incorporate population difference into the corridor response. The creation of 

average data corridors is difficult for dynamic biomechanics data due to variations in the 

response spatially and temporally (Ash et al., 2012; Kim et al., 2013). There are also 

variations in the testing procedure and specimen characteristics that can exacerbate the 

difficulties in creating an average dataset. The variation stems from specimen anatomy and 

anthropometry as well as the experimental variation inherent to complex preparation and 

testing procedures.  

Corridors are typically used in the validation of FE models to provide a reasonable 

target for comparing a specific model to an aggregate set of data. Ideally, the data 

represents a population response, by incorporating samples from the target population. FE 

models of the brain are used to simulate the response of the brain under a variety of loading 

conditions and for a wide range of subjects (Giudice et al., 2018a). Most of the developed 

FE models of the brain are generated to represent the response of a specific gross 

anthropometry (e.g., a 50th percentile male), even though there are differences in 

neuroanatomy, age, sex, and material response across individuals. Of the sixteen FE brain 

models developed in the last two decades, only two have been models created with a 

subject-specific framework that allows for the reconstruction of impacts specific to an 

individual (Ghajari et al., 2017; Giudice et al., 2018a; Miller et al., 2016).  

The FE models created to represent a target population based on a specific 

anthropometry, such as the GHMBC (Mao et al., 2013) and SIMon (Takhounts et al., 

2008b) models representing a 50th percentile male, are typically validated using data from 

multiple tests, with each test representing the response of a single specimen from the Hardy 
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et al. (2007) dataset. Only three to five individual tests from the 62-test Hardy dataset have 

been used in the validation of most of these models (Miller et al., 2016; Takhounts et al., 

2008b). While the models can arguably be validated to the specimen with the closest 

anthropometry or target population characteristics, they must also be compared to an 

average population response. Previous brain deformation datasets could not aggregate data 

from multiple specimens into a population response because of the inconsistent loading 

conditions and differences in impact direction associated with the Hardy et al. (2001) 

methodology (Alshareef et al., 2018).   

An extensive amount of preliminary work for the sonomicrometry brain deformation 

dataset was done to match loading kinematics, crystal placement, and experimental 

procedures. Despite these considerations, variation across specimens was inevitable. The 

techniques typically used in injury biomechanics to generate corridors (Kim et al., 2013; 

Lessley et al., 2004) are insufficient for the sonomicrometry brain deformation data 

because they do not account for differences in loading condition or sensor placement. New 

techniques are required to aggregate the sonomicrometry brain deformation dataset into 

average response corridors. 

The objective of this chapter is to combine the dataset of six specimens to generate 

average data corridors for brain deformation. The methods section will focus on using 

various numerical and statistical procedures to account for inherent variation in the 

specimens, as well as variation introduced in the experimental procedure. The contribution 

of this study will be an average response of human brain deformation, consisting of twelve 

loading conditions that can be used to validate FE brain models and to better understand 

intra-population variations in brain response. 
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METHODS 

The three major categories of variation across the specimens include head loading 

kinematics, cranial geometry, and initial crystal position (or placement). The following 

sections will explain the techniques used to account for the effect of each of the three 

sources on the average brain deformation response. The techniques were implemented in 

sequential order, starting with the variation in head kinematics to ensure that all loading 

severities were matched to a common severity of head rotation. Next, the differences in 

subject anthropometry and geometry were accounted for using a position and displacement 

registration technique. Finally, the initial positions of the crystals were interpolated using 

an inverse weighting method to generate brain deformation corridors using the six 

specimens. While the presented method was intended to remove testing differences across 

specimens, the final corridors included the inherent specimen variability caused by 

population differences, such as internal neuroanatomy, age, sex, and brain material 

properties.  

Variation in Loading Kinematics 

During the specimen testing procedure (Chapter 3), each head-neck specimen was 

procured at the spinal T1 level to maintain similar size and mass of each specimen. There 

were differences in specimen inertial properties, however, because of the denuding 

procedure and specimen anthropometry variations. Although the RTD runs on a closed-

loop feedback, the PID for this device was tuned to a specific inertia. Thus, deviations from 

the tuned inertia resulted in differences in the input rotational kinematics controlled by the 

RTD, which varied by 6.26% ± 4.78% in the magnitude of the peak angular velocity and 

4.72% ± 2.61% in pulse duration across all specimens except 846. The inertial properties 
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of each specimen also governed the overshoot present in the deceleration phase as the head 

comes to a stop, which ranged from 0.5-8% of the magnitude of the maximum angular 

velocity, most prominently in the 30 ms duration tests. The RTD was re-tuned after the 

first specimen (846) to allow for better control of inertial differences and to minimize 

overshoot, which resulted in similar input kinematics for the remaining five specimens. 

Summaries of head kinematics for all specimens are presented in Appendix C.   

To account for the variation in loading kinematics, linear state-space transfer functions 

were generated in MATLAB (Mathworks Inc., MA, USA) to adjust each crystal 

displacement time-history to common loading input. The transfer function was generated 

by creating a data object in MATLAB (function “iddata”) using the angular velocity in the 

direction of motion as the input and the sonomicrometry trilaterated displacement as the 

output. Next, the “tfest” function was used to predict a transfer function between the input 

and output data. The default “tfest” function was modified to fit the numerator and 

denominator of the transfer function using a non-linear least squares fitting function with 

enforced stability (“lsqnonlin” with “Levenberg-Marquardt” algorithm.). The choice of the 

number of zeros and poles in the predicted transfer function was optimized for a number 

of poles and zeros between 2 and 4, with a constraint that the number of zeros could not be 

greater than the number of poles. The final number of poles and zeros was the combination 

with the minimum normalized root mean square error (NRMSE) between the original 

displacement data and the predicted displacement using the transfer function (with original 

kinematics) normalized by the maximum magnitude of the signal. The NRMSE is 

substracted from a value of 1 so that the metric ranges from a value of negative infinity 

(bad fit) to a value of 1 (perfect fit). A unique transfer function was created for every 
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direction of motion (x, y, z) for every crystal for all tests. In addition to the sum of square 

error, a Correlation and Analysis (CORA) (Gehre et al., 2009) score was used to assess the 

quality of the simulated response of the transfer function. 

Although the transfer function yielded a good fit for most brain deformation 

displacements, there were cases with unstable transfer functions or a low NRMS. An 

unstable transfer function may drastically alter the shape and magnitude of the brain 

deformation response. A threshold was used to determine whether the transfer function 

should be used instead of the original data. To ensure the quality of data, an NRMSE 

threshold of 60% was used to determine if the normalized data (using the transfer function) 

was used. If the NRMS was below the threshold, the original, unscaled brain deformation 

response was used. 

A common set of head kinematics was required for the corridors to normalize the brain 

deformation response of each specimen. For each of the five specimens after the RTD was 

re-tuned (896, 900, 902, 903, and 904), each kinematic pulse was scaled in magnitude to 

match either 20 rad/s or 40 rad/s and scaled in time duration to match either 30 or 60 ms.  

The two scale factors were applied to each of the twelve kinematic severities for each test. 

The common kinematic input was chosen to be the average of the scaled kinematics of the 

five specimens. The scaled traces were averaged for each test severity for a total of twelve 

common scaled kinematic curves. The common kinematic input for each severity was used 

as the input to the transfer function for every crystal in each direction for each specimen. 

Variation in Head Anthropometry 

There were variations among the specimens in the shape and size of the brain and 

cranium. Even in specimens with similar whole-body anthropometry, differences were 
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present in the volume, length, width, and height of the intra-cranial space. The specimen 

anthropometry information and head measurements are presented in Chapter 5. 

While simple linear scaling techniques can be utilized to account for variations in the 

head across specimens, they will not account for shape differences in skull geometry. A 

morphing technique was developed to account for these differences and normalize the 

locations and displacements of all crystals to a common brain anthropometric space. This 

procedure is similar to normalization spaces used to register images in Magnetic Resonance 

Imaging (MRI) (Avants et al., 2011).  The common normalization space used in this study 

was the inner cranial geometry of the GHBMC M50 v4.4 finite element model, although 

any common parametric space could be utilized (such as another FE brain model). An 

overview of the registration methodology for the receiver positions and displacement for 

each specimen is shown in Figure 6-1. An in-depth explanation of the morphing 

methodology is presented in Appendix B.  

The technique used to morph each skull to the common space was based on a morphing 

technique by Park et al. (2018). First, the geometry of the inner skull of the specimen was 

created by segmenting the skull from the CT scan. Then, the segmented geometry was 

aligned and linearly scaled to the target geometry of the GHBMC skull manually, and then 

the two surfaces were aligned using an iterative closest point approximation (Besl and 

McKay, 1992). Next, the segmented specimen CT inner skull was mapped to the GHBMC 

skull surface using an iterative registration method (Burr’s elastic registration, Bryan et al. 

2010) to match the external geometry of the two surfaces. The same transformation in this 

step was then applied to the initial crystal positions and the crystal displacement (at each 

time point) using a thin-plate spline method with a radial basis function. The method 
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interpolates the 3D morphing function based on the surface registration (Rohr et al. 2001) 

to obtain the receiver positions and displacements in the GHBMC brain registration space. 

This normalization process was applied to the data that had already been adjusted using the 

kinematic transfer function, yielding data that had been normalized to the same input 

kinematics and the same anthropometric space.  

 

Figure 6-1: A morphing registration method was used to account for anthropometric differences 
among specimens. The cranium shape of each specimen was registered to a common 3D 
parametric space, chosen to be the GHBMC brain model, using a surface registration 

methodology. The registration parameters in each direction (𝐴𝐴, 𝐵𝐵, and 𝐶𝐶) are used to map the 
position and displacement to the parametric space. 

Variation in Initial Crystal Position 

After normalizing the initial position of every receiver to a common anthropometric 

space, there were still differences in the initial positions of each receiver among specimens 

due to differences in placement during specimen preparation or due to the use of extra 

crystals to replace non-functioning crystals. To generate average displacement corridors 

that combine the brain deformation results of all specimens, the responses of equivalent 



143 
 

receivers for each specimen must be combined.  Ideally, the same receiver (e.g., Rx-9) 

would be combined for all specimens to calculate the average response. The normalized 

positions of all receivers relative to the outline GHBMC brain are shown in Figure 6-2.  

 

Figure 6-2: Normalized crystal position for all specimens. 

Three methods were investigated to aggregate the responses of the various crystal 

positions in the registered brain space: an organized grid method (grid), a cluster method 

using all receivers (cluster-all), and an optimized cluster method after removing outliers 

(cluster-optimized). The grid method utilized an iterative grid of points to span the range 

of receiver positions in all three dimensions. The grid was composed of 50 points dispersed 

throughout the normalized anthropometric space, encompassing the location of all crystals 

used in all of the tested specimens. The grid is shown in Figure 6-4. An advantage of using 

the grid point approach is the ability to generate reliable corridors at a large number of 

discrete points in the brain while still utilizing information from a majority of the crystals 

and all of the specimens. The disadvantage of this method is the non-unique nature of the 

solutions at each discrete point. Depending on the spatial interpolation method used to 

determine the response at each grid point, the displacements may represent the response of 

a region of points, not only the discrete point chosen for this analysis.  
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The cluster methods utilized the initial receiver positions of all specimens to generate 

24 points that represent the average position of the receiver. In the cluster-all method, the 

positions for the equivalent receivers of all specimens were averaged to find a mean 

position. The cluster-all points are shown in Figure 6-4. The advantage of this method is 

that the points used in the corridor development represent the variation in the placement of 

the receivers during the experiments. The disadvantage is that an outlier or large variance 

in receiver placement can cause cluster point positions to be in positions with no nearby 

receivers. A solution to this problem was implemented in the third method (cluster-

optimized) by manually removing up to two outlier receivers (based on position), if 

necessary, from the calculation of the average position in every cluster. An example of this 

process is shown in Figure 6-3. For the receiver in Figure 6-3A, the position of the receiver 

for all specimens was within a tight cluster of points. The receiver in Figure 6-3B, however, 

included one outlier for specimen 904. The position of the receiver from specimen 904 was 

removed and the average position was calculated for the remaining five specimens. This 

process is only employed to calculate the average position, not to discard the displacement 

data from that receiver. The corridor points generated using the cluster-optimized method 

are shown in Figure 6-4. An advantage of the cluster-optimized method is a set of cluster 

points that have a tight set of experimental points surrounding them, which will allow for 

a more reliable corridor calculation. A disadvantage is that, unlike the grid method, there 

are only 24 discrete points used to generate corridors.  
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Figure 6-3: Depiction of the optimization of the cluster positions. For cases where all specimens 
had a tight clustering of normalized positions (A), no receivers were removed. For cases where 
there are outliers (B), up to two receivers were removed from the cluster point average position. 
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Figure 6-4: Methods of generating discrete points for brain deformation corridor development. 
In the grid method, points were generated using a spatial grid. Normalized receiver locations are 
indicated in red. Sample points for the corridors are shown in blue. For the cluster-all method, 
an average of equivalent receivers was taken for all specimens to generate the corridor points. 

For the cluster-optimized method, outliers from the cluster-all method were removed to generate 
average positions based on a subset of specimens.  

Scattered Data Interpolation 

For each of the twelve test conditions, the response of each corridor point to the 

common kinematic input was calculated by aggregating the response of nearby crystal 

responses. For each corridor point, the nearest six crystals from all subjects, by distance, 

were found and their response was aggregated using an inverse distance weighting (IDW) 

approach. IDW has been used as an interpolation technique at discrete points with unknown 

responses for irregularly spaced data in climate map estimation (Babak and Deutsch, 2009; 

Nalder and Wein, 1998) and computational mechanics (Li et al., 2000; Lukaszyk, 2004). 

The distance metric used in IDW is usually the Minkowski metric, given in (6-1, describing 

the distance (𝑑𝑑𝑖𝑖) between the unknown point (𝑀𝑀) and each of the known experiment points 

(𝑁𝑁𝑖𝑖). The Euclidean distance is a special case of the Minkowski metric where 𝑒𝑒 = 2.  

𝑑𝑑𝑖𝑖
(𝑝𝑝) = ��(𝑀𝑀(𝜕𝜕,𝜕𝜕,𝜕𝜕) − 𝑁𝑁𝑖𝑖(𝜕𝜕,𝜕𝜕,𝜕𝜕))𝑝𝑝 �

1 𝑝𝑝�
 (6-1) 
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In the simplest formulation, introduced by Shepard (1968) (Shepard, 1968), the 

weighting factor is the inverse of the distance from the corridor point to the nearby 

experimental data points. An exponent is applied to the distance term (𝑢𝑢) and must be 

optimized to the given data ((6-2). The Liszka (1984)(Liszka, 1984) weighting factor 

includes an error term (𝛿𝛿) derived through a taylor series expansion of assumed errors at 

the experimental points ((6-3). In Lukaszyk (2004)(Lukaszyk, 2004), the experimental 

points are presumed to contain an error with an assumed distribution ((6-4). 

𝑤𝑤𝑖𝑖 =
1

�𝑑𝑑𝑖𝑖
(𝑝𝑝)�

𝑐𝑐 (6-2) 

𝑤𝑤𝑖𝑖 =
1

�𝑑𝑑𝑖𝑖
(𝑝𝑝) + 𝛿𝛿2�

3 (6-3) 

𝑤𝑤𝑖𝑖 = 1

�𝐷𝐷𝑁𝑁𝑁𝑁
(𝑝𝑝)�

𝑢𝑢 , where 

   𝐷𝐷𝑁𝑁𝑁𝑁
(𝑝𝑝) = 𝑑𝑑𝑖𝑖 +  2𝑝𝑝

√𝜋𝜋
exp �− 𝑒𝑒𝑖𝑖

2

2𝑝𝑝2
� − 𝑑𝑑𝑖𝑖erfc �𝑒𝑒𝑖𝑖

2𝑝𝑝
�   

(6-4) 

 

The distance weights (𝑤𝑤) is a vector describing the weighted contribution of each of 

the experimental points. In this study, the six closest receivers to each corridor point were 

chosen to calculate the weighted response, representing the number of specimens in the 

dataset. A distance-weighted average ((6-5) and standard deviation ((6-6) were used to 

generate an average response and standard deviation corridor for each grid or cluster point. 

The corridor response for each of the twelve kinematic test conditions was defined as the 

average response with a +1 and -1 standard deviation corridor for each of the corridor 

points.  
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𝑋𝑋𝑒𝑒𝑎𝑎𝑎𝑎 =  
∑ 𝑋𝑋𝑖𝑖6
𝑖𝑖=1 ∗ 𝑤𝑤𝑖𝑖 
∑ 𝑤𝑤𝑖𝑖
6
𝑖𝑖=1

 (6-5) 

𝑋𝑋𝑝𝑝𝑖𝑖𝑒𝑒 =  �
∑ (𝑋𝑋𝑖𝑖 − 𝑋𝑋𝑒𝑒𝑎𝑎𝑎𝑎)2 6
𝑖𝑖=1 ∗ 𝑤𝑤𝑖𝑖 

5 ∗ ∑ 𝑤𝑤𝑖𝑖
6
𝑖𝑖=1

 (6-6) 

Validation and Optimization 

The GHBMC FE brain model was utilized to validate and optimize the parameters of 

the IDW methodology as well as the choice of the corridor point method (grid or cluster). 

The normalized receiver locations of all specimens, a total of 144 receivers, were compared 

to the position of the nodes of the FE model, relative to the CG. The corresponding nodes 

for the corridor points, for the grid and cluster methods, were determined in the same 

manner. The models were simulated under three rotation conditions, 40 rad/s – 60 ms for 

the sagittal, coronal, and axial directions.  

The data aggregation was conducted on the three simulated models for all of the 

corridor point methods (grid, cluster-all, and cluster-optimized) and the three IDW 

methods, including an optimization of the variables 𝑒𝑒 and 𝑢𝑢. An RMS error was quantified 

between the true FE brain deformation result at the corresponding corridor points, and the 

predicted FE brain deformation result using the IDW methods. The maximum standard 

deviation across the dynamic brain deformation signal was also used as a metric of corridor 

fit. An average of the RMS error and maximum standard deviation was taken across all 

corresponding corridor points to determine the best method or optimize the parameters.  

RESULTS 

Kinematic Transfer Functions 
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The common head kinematics generated from the average, scaled kinematics (in both 

magnitude and time) were smooth and yielded a representative curve for every rotation 

direction. An example of the axial 40 rad/s, 30 ms case is presented in Figure 6-6. All of 

the common head kinematic loading cases are presented in Appendix E.  

The numerical transfer functions used to predict the displacement of each 

sonomicrometry brain deformation signal in response to the common scaled kinematics 

were simulated with the original data to ensure the stability and reliability of each transfer 

function. Any transfer functions with an NRMS error less than 60% were not used and the 

original sonomicrometry data was not altered. An example of the transfer function 

prediction for two receivers is given in Figure 6-5. 

 The average CORA score for all receivers for all test for each specimen was calculated 

and is shown in Figure 6-7. Overall, all transfer functions had an average score of 0.88-

0.92, indicating an excellent transfer function prediction to the original data. Once the 

transfer functions were created and validated, they were used to generate scaled responses 

for each crystal for each test for every specimen.  

  

Figure 6-5: The transfer function prediction for the x-axis deformation two receivers for the 
sagittal 40 rad/s – 60 ms (left) and the sagittal 40 rad/s – 30 ms (right) tests. 
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Figure 6-6: The common input of the scaled kinematics for the axial – 40 rad/s – 30 ms test, with 
the original pulses (left) and the scaled pulses (right). The average common loading kinematics is 
denoted by the dashed red curve, denoted by “SCALED”. The red dotted lines indicate the target 

magnitude and duration of the rotation. 

 

 

Figure 6-7: Average CORA scores for the simulated transfer function brain deformation response 
using the original kinematics. Data was averaged (± 1 SD) across all axes for all crystals for all 

loading severities.  
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Normalized Position and Displacement Registration 

The normalization of the initial position of all receivers for each specimen was 

conducted through a registration process to account for shape and geometric differences 

among specimens. Generally, the registration process did not significantly alter the initial 

position of crystals (Figure 6-8). All of the receiver initial positions were shifted by less 

than 10 mm.  

 

Figure 6-8: Original (blue) and registered (red) initial positions of all receivers for all 
specimens. The cranium outline is the GHBMC inner skull outline, which used the parametric 

space for the registration. 

The registration process was also applied to the dynamic displacement response of 

each receiver. Comparable the initial position registration, the registration process did not 

significantly alter the brain deformation response of each receiver (Figure 6-9). 
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Figure 6-9: The normalized displacement for receiver (Rx) 24 for specimen 900 under the axial – 
40 rad/s – 30 ms tests did not change significantly from the original displacements (left). The 

trajectory of receivers 16 and 24 are shown in the axial plane (right).  

Validation and Optimization of Corridor Methods 

The GHBMC brain model was used to validate and optimize the average data 

corridor creation methods. For the IDW methods, the 𝑒𝑒 parameter was optimized using the 

average RMS error between the true FE response and the predicted response. The lowest 

RMS error was for 𝑒𝑒 = 2, which is the Euclidean distance. An optimization was also 

conducted for the power (𝑢𝑢) term of the weighting factor (𝑤𝑤). The power optimization 

results for the grid and cluster-optimized methods are depicted in Figure 6-10. The RMS 

error in the x-deformation was largest, followed by y and z. There were few differences 

between the Shepard and Lukaszyk IDW algorithms. The minimum RMS error occurred 

at approximately 𝑢𝑢 = 3, which is the power value used in the Liszka method if 𝛿𝛿 = 0. An 

optimization of the assumed error (𝛿𝛿) showed that 𝛿𝛿 = 0 resulted in the lowest RMS error.  
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Figure 6-10: Optimization of the power (𝑢𝑢) parameter for the Shepard and Lukaszyk IDW 
methods using the grid (left) and cluster-optimized (right) methods. 

Using the Shepard IDW method with 𝑒𝑒 = 2 and 𝑢𝑢 = 3, the GHBMC model was 

simulated for the three corridor point generation methods under the sagittal, coronal, and 

axial 40 rad/s – 60 ms rotation severity. The RMS error for each axis of deformation is 

shown in Figure 6-11. For each loading severity and axis of deformation, the cluster-

optimized method resulted in the lowest average RMS error. The grid and cluster-all 

methods had similar error magnitudes across the loading directions and axes of 

deformation.  
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Figure 6-11: Average RMS error between the true FE brain deformation response at the corridor 
points and the predicted response using the IDW interpolation. The error in each motion axis (x, 
y, and z) is shown for rotational loading in each direction (sagittal, coronal, and axial) for the 40 

rad/s – 60 ms tests.  

Aggregated Displacement Corridors 

After validation and optimization of the IDW and discrete point distribution method, 

the final displacement corridors were generated using the Shepard IDW method with 𝑒𝑒 =

2 and 𝑢𝑢 = 3, and using the cluster-optimized method. The final corridors are calculated 

after scaling the data using the kinematic transfer function, then normalizing to a common 

anthropometric space (GHBMC brain), and lastly using the IDW method to average nearby 

data points. The displacement corridors for the Axial – 40 rad/s – 30 ms for selected cluster 

points are depicted in Figure 6-12. 
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Figure 6-12: The final corridors for selected grid points for the Axial – 40 rad/s – 30 ms case. 
The final corridors are calculated after scaling the data using the kinematic transfer function, 

then normalizing to the common anthropometric space. 

DISCUSSION 

The generation of a dataset of human brain deformation with multiple specimens under 

consistent loading conditions and loading severities for each specimen allows for the 

aggregation of in situ human brain deformation data. There were differences in each 

specimen, arising from anatomical differences such as inertia and anthropometry as well 

as dissimilarities in test setup due to specimen preparation procedures. The three major 

areas of variation addressed in this study are differences in loading kinematics, cranial 

anthropometry, and sonomicrometry receiver initial position. Several techniques were 

introduced and validated in this study that are not typically implemented in the generation 

of biomechanical data corridors. The use of these techniques allows for the aggregation of 

a dataset that contains some inconsistencies and allows for the generation of the first 

average displacement corridors of human brain deformation. Refinement and extension of 

these methods are possible for their application to brain deformation data or other 

biomechanical experiments.  
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The use of transfer functions, through physical representations such as a multi-body 

(e.g., spring-damper) model, to extrapolate the response of a mechanical system is common 

for engineered materials with highly characterized responses. The use of analytical multi-

body models has also recently been used to model the maximum strain response of FE 

brain models (Gabler et al., 2017, 2018b). In most cases, these linear transfer models were 

an efficient and accurate approach to represent the response of the crystals to head motion, 

and the transfer functions were able to simulate the original brain deformation response 

with average CORA scores of approximately 0.9. Each transfer function was inspected to 

ensure the accuracy and stability of the simulated response. However, the use of transfer 

functions in this study to normalize data to a common kinematic input was limited to small 

changes between the original and scaled kinematics, primarily due to the linear nature of 

the transfer function. Thus, each transfer function was only applicable to the specific crystal 

under the kinematic severity that was used to develop it, and could not be applied to 

dissimilar kinematics. Future work should investigate non-linear techniques to fit the 

response of each specimen or each receiver across a range of severities. These non-linear 

techniques can include physics-based approaches such as quasi-linear viscoelastic multi-

body models.  

The registration and morphing method was used to account for differences in the initial 

position and dynamic displacement due to the variation in cranial anthropometry. The 

morphing technique was adopted from similar work to create subject-specific models of 

the human femur (Bryan et al. 2010; Park et al. 2017) and was used in this dissertation to 

account for subject variability when evaluating FE brain models (Chapter 6). The 

application of this technique to register the position and displacement of each receiver is a 
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new approach to normalizing human brain deformation data based on anthropometry. 

Similar techniques are used in the registration of human brain MRI images to a common 

‘space’ or template (Avants et al., 2011), which allows for geometric evaluations across a 

population. The approach employed in this study uses the GHBMC brain model as the 

template or registration space for all of the specimens. The choice of this template is 

arbitrary, and the methodology could be applied to any FE model or parametric space. The 

registration and morphing techniques utilized the segmented CT scans of each specimen to 

map the deviations in the initial position and Cartesian displacement to the normalized 

space. While there were small differences in the initial position and smaller differences in 

the displacement, after normalization, this step was important for removing any bias in the 

data due to specimen anthropometry.   

Although the preparation procedures included many precautions to ensure similar 

placement of crystals within every specimen, differences in initial position after 

normalization complicate the averaging of the deformation response across the specimens. 

These differences could have occurred from the specimen anthropometry as well as 

experimental error associated with the insertion process.  The creation of discrete points 

within the range of receivers for all specimens allows for an averaging of the deformation 

response as well as the initial crystal position. Three methods of discrete corridor point 

generation were studied: grid, cluster-all, and cluster-optimized methods. While each 

method has its advantages and drawbacks, the cluster-optimized method resulted in the 

best visual distribution of corridor points as well as the lowest RMS error when the methods 

were simulated using the GHBMC brain model.  
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The other aspect of predicting the response at discrete points from a dataset of 

irregularly scatted data is the averaging method. IDW has been used since its introduction 

by Shepard (1968) in many fields spanning mechanics to climate and geology using a 

simple and computationally efficient approach. The method has been evaluated and 

adapted to include error assumptions and parameters (Liszka, 1984; Lukaszyk, 2004). 

Three IDW methods were evaluated in this study, but the original Shepard formulation was 

the most accurate. The parameters of the formulation were optimized using the GHBMC 

FE brain model. While any technique used to interpolate data can include non-unique 

solutions because of regions that have similar distances to the same experimental points, 

IDW provides a valuable approximating method for averaging brain displacement data. 

Other interpolation approaches, such as finite element methods, may be applicable, but the 

sparsity of the spatial distribution of the receivers introduce errors in the predicted 

response.  

The GHBMC FE brain model was used to validate and optimize the discrete corridor 

point generation and the IDW method. There are a few limitations to this approach, namely 

the assumption that the mechanics and interpolation results of the model match that of the 

human brain. It was documented that the response of the GHBMC brain model (Chapter 

6) may not be entirely representative of the human brain, with some notable differences in 

simulated material properties and internal anatomy. The use of the model in the context of 

this study, however, was only to inform the choice of several techniques and parameters. 

The model was not used in the creation of the aggregate corridors or the averaging method. 

This provides an aggregated dataset that was validated with a mechanically-based FE 

model but does not use the model response to bias the data. The lack of metrics to evaluate 
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the goodness-of-fit of a biomechanical data corridor makes it challenging to validate the 

methodology in other ways. This approach could be incorporated in future work regarding 

the recommended procedures for validating or optimizing the methodology for creating 

average data corridors.  

CONCLUSION 

Average data corridors are typically used in biomechanics to represent an aggregated 

population response and to validate FE models. This study introduced the first average data 

corridors for in situ human brain deformation, using a dataset of six specimens and twelve 

rotational severities. Several techniques were introduced to account for specimen and 

experimental differences, and to normalize the average data corridors to a common 

kinematic input and common anthropometric space. The validation of these techniques 

provides a reliable set of brain deformation corridors as well as methods for more robust 

and reliable biomechanical corridor creation.  

The generation of the sonomicrometry brain deformation dataset and average data 

corridors presents an opportunity to evaluate and validate FE brain models. There is no 

standard method to account for anatomical differences between the models and individual 

specimens. The variation in skull geometry can cause inconsistencies when choosing 

corresponding nodal points in the model to compare to the sonomicrometry crystal 

responses. It can also cause differences in brain motion and strain metrics. An investigation 

into the appropriate methods to evaluate models is needed to ensure consistent and 

objective validation of FE brain models.  
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 FINITE ELEMENT MODEL EVALUATION 

One of the difficulties of validating the biofidelity of FE brain models to brain 

deformation data is the variation of geometry between the model and the specimens in the 

experimental dataset. This variation can cause inconsistencies when validating FE models, 

and there is no consensus on a standard method to evaluate the biofidelity of computational 

brain models. This chapter will focus on using the experimental dataset from Chapter 5 and 

the average data corridors from Chapter 6 to identify best practices when validating FE 

brain models. The focus will be on geometry, with four different evaluation methods used 

to assess the biofidelity of two commonly used FE brain models.  

INTRODUCTION 

The study of the biomechanics of the brain during impact is essential to understanding 

and preventing TBI. Kinematic injury criteria that utilize the motion of the head to predict 

injury to the brain have typically been employed to evaluate the effectiveness of vehicles 

(2015) and helmets (Hodgson, 1975) as well as predict brain injury during real-time events 

(Duma et al., 2005). Many recent kinematic brain injury criteria have been developed using 

a combination of reconstructed impacts in FE models, using tissue-level metrics as 

correlates to injury (Gabler et al., 2018b; Takhounts et al., 2013a). Tissue-level injury 

criteria delve deeper into brain mechanics by assessing the relationship between the 

biomechanics of the brain, with a metric such as strain, to injury. Direct measurement of 

tissue-level deformation of the brain during head impact is challenging, and anatomically-

detailed FE models provide a valuable alternative. FE brain models have been vital to 

investigating TBI mechanisms, assessing injury risk and safety gear, and developing brain 
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injury criteria based on external head kinematics (Gabler et al., 2016a, 2017; Sanchez et 

al., 2017; Takhounts et al., 2013a).  

FE models provide an advantage over kinematics-based metrics because of their 

ability to measure complex patterns in the temporal and spatial mechanical response of the 

brain instead of using a relationship between peak kinematics and brain deformation (Elkin 

et al., 2018; Sanchez et al., 2017). These models allow for the in-depth investigation of the 

brain response under various loading conditions at a level that is not possible using 

cadaveric or human experiments. They have been created to predict injury using summary 

strain-based injury metrics such as maximum principal strain (MPS) and the cumulative 

strain damage measurement (CSDM) (Gabler et al., 2016a; Kleiven, 2007; Sanchez et al., 

2017; Takhounts et al., 2013a; Zhang et al., 2004). Although these injury metrics and 

models are computationally-based, they are considered the state-of-the-art method for 

evaluating a large number of head impacts and kinematics in an attempt to relate head 

motion to injury (Deck and Willinger, 2009).  

To be able to make significant conclusions about tissue-level deformation, the 

biomechanical response of the model must match as closely as possible to real-world 

human brain deformation. Although many of the models are validated using the same 

single dataset of human brain deformation, the results of the models can vary significantly 

among models (Giudice et al., 2018a). A recent analytical review of FE brain models 

suggests that the factors affecting the output of these models include material properties, 

geometry differences, the size, type, and quality of the mesh, and FE parameters such as 

hourglass control (Giudice et al., 2018a). Additionally, the models are often simulated 

under conditions that vary from the head kinematic impacts they were validated against 
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(direct impact versus rotational loading), raising questions about the applicability of the 

models and what conclusions can be drawn from the results.  

Improvements in computational capabilities and the availability of early brain 

deformation datasets (Hardy et al., 2001, 2007) have allowed for the creation of multiple 

FE brain models. Given the importance of these models in influencing standards of safety 

and product development across multiple industries, it is essential to validate the brain 

deformation predicted by these models using human brain motion under repeatable loading 

conditions that are causative of injury. Most of the FE models in the literature are validated 

based on one or two datasets available for brain models consisting of two types of response: 

the Hardy brain motion datasets (Hardy et al., 2001, 2007) and the preceding brain pressure 

datasets by Nahum (Nahum et al., 1977) and Trosseille (Trosseille et al., 1992). While the 

pressure datasets provide a reasonable metric to validate the volumetric loading 

experienced by the brain, they are not useful as an injury correlate (as shown for the 

pressure data collected in Chapter 3).  

Additionally, there is no standard method for evaluating FE brain models. While most 

of the models use a small subset of the Hardy dataset, there is a lack of consistency in how 

the models are evaluated. Miller et al. (2017) (Miller et al., 2017) performed evaluations 

of several FE brain models in comparison to a subset of the Hardy dataset. The Miller study 

found that the models yielded a cross-correlation score (CORA) (Gehre et al., 2009)) 

between 0.26-0.41. The study did not account for differences in specimen geometry and 

picked nodal points that were closest to the absolute marker location. Displacement was 

only compared in the plane of testing (x-z or y-z) with each test in the Hardy dataset 

conducted on a different specimen, preventing the validation of the models across different 
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impact directions using the same specimen. There is a need for a standard method to 

evaluate and score the response of the FE brain models to a consistent and more substantial 

dataset. 

The objective of this chapter is to evaluate the brain deformation response of widely 

used FE models of the brain in comparison to the experimental dataset collected in Chapter 

5. The models will be compared to each specimen individually using four techniques of 

geometric normalization. Finally, the models will be evaluated using the average data 

corridors developed in Chapter 6. The contribution of this study will be a recommended 

method of evaluating the biofidelity of FE brain models.  

METHODS 

Two FE brain models, the GHMC detailed M50 (Mao et al., 2013) (v4.3) and SIMon 

(Takhounts et al., 2008a), were evaluated to assess the biofidelity of brain deformation 

(Figure 7-1). All experimental test cases were simulated by prescribing the experimental 

kinematics collected in reference to the head center of gravity (CG) to the FE model 

through a rigidized dura (Gabler et al., 2016a). The response of the brain models was 

assessed by comparing the motion of the receivers from the sonomicrometry experiments 

(Chapter 5) to the motion of the corresponding model nodes. The x, y, and z displacements 

of all implanted brain crystals were compared for each test for a total of approximately 

5000 individual trace validation comparisons.  
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Figure 7-1: Depiction of the GHBMC and SIMon FE brain models, with geometric and 
anatomical characteristics as well as computational efficiency for each model.  

Comparison Methods 

Given the anatomical differences between the FE brain models and the cadaveric 

specimens (Table 7-1), four methods were implemented for model evaluation:  

1) Using the absolute coordinates of the initial crystal position relative to the 

head CG to identify the corresponding model node. 

2) Using the relative coordinates based on the maximum length (x), width (y), 

and height (z) of the head to identify the corresponding node. 

3) Geometrically scaling the dimensions of the FE models to those of the 

cadaveric head and using the initial crystal positions to identify the 

corresponding model node.  
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4) Morphing the FE model based on the CT of the inner skull to match the 

anthropometry of each specimen and using the initial crystal positions to 

identify the corresponding model node.  

The absolute method utilized the baseline GHBMC and SIMon models. The 

coordinates of the receivers for each specimen were found in the model relative to the 

model center of gravity (CG). The absolute comparison method did not account for the 

geometry of the specimen, with each node identified as the closest by distance to the 

corresponding sonomicrometry receiver position. The relative method also utilized the 

baseline FE model but used a scaled position for each receiver position to find the 

corresponding node. The coordinate (x, y, z) of each receiver was scaled by the ratio of 

length (x), width (y), and height (z) of the model and specimen (Table 7-1) to obtain scaled 

positions. The scaled receiver positions were then compared to the baseline model 

coordinates to find the closest corresponding nodes. The scaled receiver positions were 

generated for each specimen for both GHBMC and SIMon. 

Table 7-1: Specimen anthropometry relative to the GHBMC and SIMon FE models. 

 

The scaled method utilized modified, scaled versions of the FE models, which were 

obtained by geometrically scaling the original model in each direction (x, y, z) by the ratios 

used in the relative comparison methods for each coordinate. A total of twelve scaled 

models were generated for each specimen for both GHBMC and SIMon. The 

Measurement
Specimen 

846
Specimen 

896
Specimen 

900
Specimen 

902
Specimen 

903
Specimen 

904
Specimen 
Average

GHBMC SIMon

Length x (mm) 159.6 169.6 169.2 168.3 164.5 176.5 168.0 ± 5.6 164.9 166.5
Width y (mm) 133.4 126.6 124.2 137.3 123.3 130.6 129.2 ± 5.5 134.4 135.3
Height z (mm) 138.7 134.3 146.7 135.5 137.9 148.6 140.3 ± 5.9 143.7 135.6
Volume (cm3) 1442 1435 1558 1481 1298 1692 1484 ± 132 1569 1527
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corresponding nodes from the ‘absolute’ comparison method were used to compare the FE 

response to the sonomicrometry experiments.  

A morphing technique was implemented to precisely match the external geometry of 

the FE brain models to the target specimen. A technique utilized and adapted by Park 

(2017) (Park et al., 2017) was extended to the brain and included four main steps: 1) 

Surface preparation and segmentation, 2) rigid body alignment and scaling, 3) surface 

registration, and 4) volume morphing and evaluation. An in-depth explanation of the 

morphing methodology is presented in Appendix B.  

The FE models were prepared by extracting the outermost layer of the model: the dura 

for GHBMC and the inner skull for SIMon. This surface will be used to match to the 

segmented specimen geometry. The morphing method was applied to generate a 3D model 

mesh that matches the external surface of each specimen. After the morphed model was 

obtained, the normalized Jacobian ratio of all elements was quantified to ensure 

comparable element quality of the morphed model to the original FE brain models. A 

depiction of the specimen 846 morphed GHBMC model along with the normalized 

Jacobian ratio is shown in Figure 7-2. The nodes corresponding to each receiver in the 

experimental dataset were chosen by finding the node with the least distance away from 

the crystal position relative to the CG. 

The morphing process for the SIMon model required an additional step. Due to the 

coarser mesh (larger element size) for SIMon, the registration and 3D morphing process 

resulted in inverted elements, penetration across different parts, and negative volume errors 

when simulated. To fix this problem, each hexahedral element in the mesh was split into 

eight elements to generate a hex-split model with an average element size of 1.07 ± 0.39 
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mm (original: 2.07 ± 0.77 mm). The hex-split model was then used to generate a morphed 

surface and 3D model. The extra nodes from the hex-split model were then deleted, and 

the morphed model contained only the nodes (now morphed) and elements from the 

original model. A depiction of the specimen 902 morphed SIMon model along with the 

normalized Jacobian ratio is shown in Figure 7-2. A specimen-specific model was 

generated for each specimen for both GHBMC and SIMon for a total of twelve models. 

 

 

Figure 7-2: The original (blue) and morphed (red) GHBMC FE model for specimen 846 (top) 
and the SIMon FE brain model for specimen 904 (bottom).  
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Model Evaluation 

Model biofidelity was quantified using a signal cross-correlation score, CORA (Gehre 

et al., 2009). The CORA score, depicted in Figure 7-3, uses an average of three ratings 

between 0 and 1, for the phase, size, and progression comparison between the two signals. 

A separate corridor rating is discarded for the individual specimen comparisons.  

 

Figure 7-3: Depiction of the CORA cross-correlation metric to evaluate the similarity between 
two signals. The phase, size, and shape are equally weighted for an overall maximum score of 1. 

The corridor rating is discarded for the individual specimen evaluations.  

A weighted averaging was applied to obtain a single representative objective rating 

for each 3-D signal (Wu et al., 2019). The weighted CORA score was calculated by 

weighting the component CORA scores (𝐶𝐶𝐶𝐶𝑅𝑅𝐴𝐴𝜕𝜕,𝜕𝜕,𝜕𝜕) by the maximum peak-to-peak 

displacement in the three axes (𝑑𝑑𝜕𝜕, 𝑑𝑑𝜕𝜕, 𝑑𝑑𝜕𝜕), formulated in the equation below. For each 

validation case, an overall score was computed by averaging the individual weighted 

CORA scores for each receiver.  
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𝑊𝑊𝑒𝑒𝐴𝐴𝑑𝑑ℎ𝑡𝑡𝑒𝑒𝑑𝑑 𝐶𝐶𝐶𝐶𝑅𝑅𝐴𝐴 =
𝑑𝑑𝜕𝜕 × 𝐶𝐶𝐶𝐶𝑅𝑅𝐴𝐴𝜕𝜕 + 𝑑𝑑𝜕𝜕 × 𝐶𝐶𝐶𝐶𝑅𝑅𝐴𝐴𝜕𝜕 + 𝑑𝑑𝜕𝜕 × 𝐶𝐶𝐶𝐶𝑅𝑅𝐴𝐴𝜕𝜕

𝑑𝑑𝜕𝜕 + 𝑑𝑑𝜕𝜕 + 𝑑𝑑𝜕𝜕
 

FE Model Evaluation to Corridors 

In addition to evaluating the models in comparison to each specimen, the two FE 

models were evaluated for biofidelity against the brain deformation corridors developed 

from the six specimens (Chapter 5). For each model, the corresponding cluster points were 

found by finding the nearest node in the FE brain model to each grid point. The head 

kinematics were simulated by applying the common scaled kinematics in the same manner 

as the individual evaluation method. The x, y, and z displacements of all grid points were 

compared for each test for a total of approximately 850 corridor comparisons. Model 

corridor biofidelity was quantified using the weighted CORA metric by comparing the 

average response of the grid point to the FE model response. The corridor rating was 

quantified by comparing the model response within the corridor boundaries, defined by the 

standard deviation of the average response. A detailed description of this calculation can 

be found in Gehre et al. (2009) (Gehre et al., 2009). The overall CORA score for each 

cluster point is the mean of the weighted CORA score and the corridor score. For each 

loading case, an overall score was computed by averaging the individual signal overall 

scores for all cluster points. 

Strain Calculation 

Tissue-level strain metrics are often used to correlate FE model simulations to injury 

outcome (Gabler et al., 2018b). The most common strain metrics are maximum principal 

strain (MPS) and the cumulative damage strain measure (CSDM). The MPS was calculated 

using the maximum value of maximum principal strain for all elements in the brain over 

the entire kinematic time history (Takhounts et al., 2008a). Although many studies have 
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used the maximum element MPS value (Kleiven, 2007; Takhounts et al., 2013a; Yanaoka 

et al., 2015), the 95th percentile value (ranked by element) was used as a correlate to 

maximum brain strain to avoid computational instabilities that may arise from the element 

with the maximum principal strain (Gabler et al., 2016a; Panzer, 2012). The 50th percentile 

value (ranked by element) was also calculated to serve as mean strain value, similar to the 

mean peak-to-peak deformation calculated in Chapter 5. CSDM is the cumulative volume 

fraction of elements that sustain an MPS that exceeds a threshold value. A threshold of 

25% MPS was used for CSDM in this study because it was shown by Takhounts et al. 

(2013) (Takhounts et al., 2013a) to be the best indicator of DAI. A depiction of the 

calculation of the percentile MPS values and CSDM are shown in Figure 7-4. 

 

Figure 7-4: Distribution of the maximum MPS across elements for a single head rotation. Solid 
red lines indicate the 95th and 100th percentile MPS. The green highlighted region indicates the 
elements that have achieved an MPS of at least 25% during the impact, which are included in the 

CSDM calculation.  

The 50th and 95th percentile MPS and CSDM strain metrics were calculated for each 

kinematic severity for all models (absolute/relative, scaled and morphed) to compare the 

effect of each method on tissue-level strain. The strain metrics were also compared to the 

maximum and mean peak-to-peak deformation (Chapter 5) to investigate the effectiveness 

of the strain metrics in predicting in situ human brain deformation. 
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RESULTS 

Individual Specimen Evaluation 

The nodal response of each simulated specimen loading condition was compared to 

the corresponding sonomicrometry data. An example of this response is given in Figure 

7-5. The weighted CORA scores for the GHBMC simulations for all loading conditions for 

specimen 900 are depicted in Figure 7-6. The CORA scores for the other specimens are 

presented in Appendix F.  

The weighted CORA scores for all loading conditions for each specimen were 

averaged to determine differences between the comparison methods. The averages and 

standard deviations are shown in Figure 7-7. 

 

Figure 7-5: Response of the GHBMC model for receiver 13 for the sagittal, 40 rad/s, 60 ms case. 
All four comparison methods are shown with the sonomicrometry experimental data.  
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Figure 7-6: The weighted CORA for all rotational loading conditions in the sagittal (sag), 
coronal (cor), and axial (axi) directions for specimen 900 for GHBMC. 

 

Figure 7-7: The average weighted CORA in the GHBMC simulations for all specimens. 
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For the SIMon FE brain model, the nodal response of each simulated specimen loading 

condition was compared to the corresponding sonomicrometry data. An example of this 

response is given in Figure 7-8. 

 

Figure 7-8: Response of the SIMon model for receiver 16 for the sagittal, 40 rad/s, 30 ms case. 
All four comparison methods are shown with the sonomicrometry experimental data.  

The weighted CORA scores for the GHBMC simulations for all loading conditions for 

specimen 900 are depicted in Figure 7-9. The CORA scores for the other specimens are 

presented in Appendix F. The weighted CORA scores for all loading conditions for each 

specimen were averaged to determine differences between the comparison methods. The 

averages and standard deviations are shown in Figure 7-10.  
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Figure 7-9: The weighted CORA for all loading conditions for specimen 900 for the SIMon model. 

 

Figure 7-10: The average weighted CORA for all specimens for the GHBMC model. 
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The performance of the GHBMC and SIMon models did not significantly depend on 

the comparison method, except for the morphed SIMon model, which had a lower average 

weighted CORA score for all specimens. The performance of the GHBMC and SIMon 

models were compared relative to each other (Figure 7-11). The GHBMC model had a 

larger average CORA score across all specimens, and the difference was more pronounced 

for the ‘morphed’ comparison method. 

 

Figure 7-11: The average weighted CORA for all specimens for GHBMC and SIMon for the 
‘absolute’ and ‘morphed’ comparison methods. 

Corridor Evaluation 

The response of each model simulated with the scaled loading kinematics was 

compared to the cluster point corridor responses. The weighted CORA was calculated as 

well as a weighted corridor response. An overall weighted score was calculated as the 

average of these two scores. For both models, the weighted CORA scores in all loading 

conditions are shown in Figure 7-12. The overall CORA scores for the corridors were of 

similar magnitudes to the average overall CORA scores from the individual comparisons, 

with scores ranging from 0.45-0.64 for GHBMC and 0.42-59 for SIMon. 
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Figure 7-12: The weighted CORA, weighted corridor score, and the weighted overall score for 
the GHBMC (top) and SIMon (bottom) models compared to the brain deformation corridors.  
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Strain Results 

The MPS-95th, MPS-50th, and CSDM were quantified for all of the individual 

specimen simulations for the three geometries (original, scaled, and morphed models). The 

MPS for the different geometries for specimen 904 for the axial, 40 rad/s – 30 ms 

simulation are depicted in Figure 7-13. The strain results of the scaled and morphed model 

were compared to the original model by calculating the difference in strain then averaging 

the difference across all test severities for all specimens. The average and standard 

deviation for each metric for the GHBMC and SIMon models are presented in Figure 7-14. 

The scaled models experienced some difference in strain, likely depending on the size 

difference between the model and specimen. The morphed models experienced more 

significant deviations in strain values, most prominently for the MPS-95th and CSDM 

results. The results were similar for both the GHBMC and SIMon models. 

 

Figure 7-13: The maximum principal strain for the original, scaled, and morphed models for 
specimen 904 for the axial, 40 rad/s – 30 ms simulation. 
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Figure 7-14: The difference in strain for the scaled and morphed (relative to the baseline) 
GHBMC and SIMon FE brain models. The 95th percentile MPS (MPS95), 50th percentile MPS 

(MPS50), and CSDM are shown for each model. 

The strain results for all tests and specimens were also correlated through a linear 

regression analysis to the maximum and mean peak-to-peak results presented in Chapter 5. 

Based on the theoretical underpinnings of the MPS and CSDM calculation, the MPS-95th 

value should correlate to the maximum peak-to-peak deformation, while the MPS-50th and 

CSDM values should correlate to the mean peak-to-peak deformation. The regression 

results for the GHBMC and SIMon models are presented in Figure 7-15. The 𝑅𝑅2 values 

ranged from 0.46-0.74 for all pair-wise comparisons of the three strain metrics and two 

peak-to-peak metrics. The best fit occurred between the SIMon model MPS-95th and 

maximum peak-to-peak deformation. While the CSDM regressions had reasonable 𝑅𝑅2 

values, many simulations had CSDM values close to 0 due to the 25% strain threshold.  
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Figure 7-15: The correlation between tissue-level strain metrics (MPS-95th, MPS-50th, and 
CSDM) and experimental peak-to-peak brain deformation was investigated using linear 
regression for the GHBMC and SIMon models. The resulting best fit line (dashed) and 

correlation coefficient (𝑅𝑅2) are plotted along with the data points (red). 

DISCUSSION 

In this chapter, the evaluation of FE brain model biofidelity was investigated using 

various techniques to account for differences between specimen anthropometry and model 

geometry. Two widely used FE brain models, GHBMC and SIMon, were evaluated using 

the methods to determine best practices when evaluating FE models. The brain deformation 
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results of the models were compared to the sonomicrometry brain deformation dataset and 

the average response corridors generated in this dissertation. The strain results of the 

models were also used to compare the geometric comparison methods, and were compared 

to the experimental peak-to-peak brain deformation results. In general, there were no 

significant differences in the geometric methods, except for the morphed SIMon model. 

The average weighted CORA scores for all specimens ranged from 0.4-0.61 for GHBMC 

and from 0.34-0.53 for SIMon. The strain results showed some differences for the morphed 

models as compared to the original models, indicating the importance of a geometric match 

between the model and validation data. The correlation between FE model maximum strain 

metrics and the experimental peak-to-peak deformation was reasonable, with correlation 

coefficients as high as 0.74.  

The four comparisons implemented to account for specimen anthropometry when 

evaluating FE models have not been used in the brain biomechanics field. The only 

previous dataset included many specimens, but there were no 3D brain or cranial scans 

available to study the effects of brain anthropometry on the biofidelity evaluations. The 

advantages of the sonomicrometry dataset also include the availability of CT, and in some 

cases, MRI scans of the tested specimen, in addition to digitally available 3D brain 

deformation data for each specimen under multiple severities. These scans allow for a 

thorough comparison of model evaluation methods. The GHBMC model showed small 

differences in the average weighted CORA across comparison methods, which could be 

because of small differences in geometry between the model and the specimens (Table 7-1, 

Figure 7-2). The SIMon model had similar results for the absolute, relative, and scaled 

comparison methods, but had lower average weighted CORA scores for the morphed 
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model. This difference is likely due to the height (z) of the model, which is smaller than 

most of the specimens (Table 7-1, Figure 7-2). In specimens 900 and 904, where there were 

the largest differences in height between SIMon and the specimens, the morphed model 

had the poorest results.  

Although the comparison methods were similar in overall average CORA scores, there 

may be local differences in motion that lead to better regional matches of brain 

deformation. The differences may inform predictions of brain deformation through tissue-

level strain metrics. As shown in Figure 7-14, there were differences as large as 0.1 strain 

for the morphed models. The average CORA score may not reflect differences in 

deformation or strain, but the difference in strain emphasizes the importance of matching 

the FE brain model to the specimen or subject. To remove the effects of geometric 

differences between the model and experiments, the recommended method to evaluate 

models is to match the geometries through morphing. If morphing is not possible, the 

scaled model comparison method is recommended to account for size differences.  

The morphing methodology implemented to account for specimen anthropometry 

provides an important advancement in FE brain modeling. The technique facilitates 

matching the exact inner cranium shape of the model and specimens, not only the size and 

volume. The average minimum distance between the surface of the FE model and surface 

of each specimen CT was less than 1 mm. While morphing has been attempted through 

conventional control point morphing (Horgan and Gilchrist, 2004; Li et al., 2011) and the 

generation of new voxel models (Ghajari et al., 2017; Miller et al., 2016), the use of an 

automated process of picking and registering control points is essential in generating an 

accurate specimen-specific model. The researcher does not have to manually select control 
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points, which can be laborious and error-prone. Instead, all of the nodes of the specimen 

geometry and model are used as control points, to automatically generate a smooth, 

accurate morphed model. A limitation of the morphing methodology for FE brain models 

is that it does not address the differences in internal anatomy between subjects, such as 

ventricle size, regional organization of brain regions, and size of the brain. The morphing 

methodology only registers the outside surface, consequently the internal anatomy is scaled 

according to the surface. Future methods that incorporate subject-specific morphing or 

model development of the brain using MRI scans are needed to accurately model and 

predict subject-specific brain injury. 

The biofidelity of the models, with CORA scores as high as 0.6, could be improved. 

While the GHBMC model had slightly larger CORA values, it was difficult to assign a 

recommendation for either model in their performance as compared to the experimental 

data. It was also challenging to comment on a threshold value for a ‘good’ score in FE 

brain modeling. While a CORA value of 0.9 is typically used in biomechanics to assign an 

excellent match between the model and the experimental data (Gehre et al., 2009), such a 

high CORA value can be achieved when comparing metrics with low subject variability. 

FE models of the brain have variations in population differences, material differences, and 

FE implementation. A material sensitivity study will be presented in Chapter 8 to elucidate 

some of these differences, as well as a regional investigation of material changes that can 

improve the CORA scores of the models.  

In addition to the individual specimen evaluations, the models were compared to the 

average data corridors in order to investigate their biofidelity to data that includes 

population variances in brain deformation. The models performed similarly to the 
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individual specimen data, with overall CORA scores ranging from 0.38-0.64. This result 

indicates that the corridors may be used as a supplement to individual specimen evaluations 

to assess the response to the population. If the corridors were the only method of evaluating 

the biofidelity of FE brain models, the scores may be inflated because many of the corridor 

displacements are around 0 mm displacement. This inflation can cause a model with an 

overly stiff response (low displacement) to have a large CORA corridor score, thus, 

inflating the overall CORA score. 

A limitation in the evaluation of the FE brain models is the use of CORA to evaluate 

FE brain model biofidelity. CORA and similar cross-correlation tools have become 

standard in injury biomechanics to quantify FE model biofidelity to experimental results. 

While the CORA scores are beneficial in providing a generalized cross-correlation rating 

that includes magnitudes, phase, and slope differences between the two signals, it has 

limitations for evaluating differences between signals with small differences. When the 

CORA scores are averaged, the score may not capture subtle variation in brain deformation 

response as compared to the experimental data. Thus, CORA may, on average, be similar 

across multiple tests, but other metrics like peak-to-peak deformation or the transient 

duration of brain deformation may capture variations in biofidelity. An investigation into 

an optimal biofidelity rating or a set of parameters to evaluate model response is needed to 

minimize the confounding effects of the CORA rating.  

The relationship between the models and experimental data extends to the strain 

metrics typically used to relate FE model results to clinical or real-world prediction of 

injury and product safety. Ideally, the strain metrics would match the experimental peak-

to-peak brain deformation results. While there were good agreements between these 
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metrics, there were still discrepancies in the experimental deformation and the strain 

metrics (Figure 7-15). While it is not currently possible to conclude why the strain metrics 

are not very predictive of in situ brain deformation based on the linear regression results, 

the correlation provides a baseline for investigating the relationship between strain and 

brain deformation. The discrepancies are most likely due to the limited spatial sampling of 

the sonomicrometry experimental points within the brain, but model biofidelity and any 

computational methods confound those limitations. A regional analysis of largest strain, 

along with regions of largest peak-to-peak deformation may help explain differences or 

contribute to improving the model through a localized analysis of biofidelity.  

CONCLUSION 

Two widely used FE brain models were evaluated in comparison to the experimental 

brain deformation dataset using four comparison methods to account for specimen 

anthropometry. The morphing method provided a reliable and accurate technique for 

morphing FE brain models. There were minimal differences across the comparison 

methods, but there were differences in strain metrics. The morphed model is recommended 

for use in biomechanics evaluation of FE models to minimize the differences between the 

model and specimen. Individual evaluations of each specimen are recommended to 

accurately measure the biofidelity of the models, with the corridor assessment used as a 

supplementary validation method. 

The biofidelity scores for the models provided mixed results, with a need for further 

improvement of model response in comparison to the sonomicrometry brain deformation 

dataset. The material properties of the model can be optimized to improve the model 

response. To efficiently predict the optimal material properties of the brain models, a 
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sensitivity analysis can be used to investigate the spatial distribution of the effects of 

material property changes on brain deformation. The sensitivity analysis can then be used 

to predict calibrated material properties in an attempt to improve model biofidelity.  
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 FE MODEL MATERIAL SENSITIVITY 

The focus of this chapter is on understanding the sensitivity of the deformations of the 

GHBMC and SIMon brain models when changing their baseline material parameters. 

These models were partially validated using previous experimental datasets and were 

evaluated in this dissertation (Chapter 7) in comparison to the sonomicrometry brain 

deformation dataset. The models showed mixed validation results. There are methods to 

improve the models, such as adjusting the material properties of the brain and surrounding 

structures. The goal of this chapter is to identify the first order sensitivity of all materials 

in the GHBMC and SIMon FE brain models. The contributions of the sensitivity analysis 

will assist in the secondary goal of improving the biofidelity of the SIMon model by 

calibrating its material properties. 

INTRODUCTION 

FE models of the brain are used extensively for TBI prediction, safety assessment, and 

mechanical investigations of brain trauma (Gabler et al., 2018b; Ji et al., 2015; Sanchez et 

al., 2017; Takhounts et al., 2008a). The limiting factor of FE brain models, however, is the 

validation data used to evaluate their biofidelity. The sonomicrometry experimental data 

generated in this dissertation provides a valuable tool for evaluating and improving the 

biofidelity of FE brain models. Two models, GHBMC (Mao et al., 2013) and SIMon 

(Takhounts et al., 2008a), were evaluated in Chapter 7 to determine a baseline biofidelity 

evaluation for each model. The models provided CORA scores ranging from 0.42 to 0.64, 

indicating an adequate fit to the brain deformation data and the need for improvement.  

While the geometric comparisons did not significantly change the validation scores, 

changes to the material properties could improve the biofidelity of these models. The 
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properties implemented in FE brain models are typically chosen through a combination of 

ex situ mechanical tests of brain tissue (Kleiven, 2007; Mao et al., 2013; Wu et al., 2019) 

and a calibration of the FE brain material properties to the Hardy (2007) brain deformation 

dataset. Although there have been many studies on the mechanical properties of the brain, 

there is a large range of values reported in the literature: the complex shear modulus spans 

three orders of magnitude and ranges from 0.1 to 100 kPa, and the damping coefficient 

(tan-delta) spans 0.1 to 4 (Figure 8-1).  

The sonomicrometry dataset generated in this dissertation provides an accurate 

measurement of brain deformation at numerous locations within the brain. The regional 

distribution of crystals embedded in the brain and the plethora of data available present an 

opportunity for the calibration of material properties of various brain regions to the 

experimental dataset. Some FE brain model developers have attempted to tune the material 

properties of the model to match experimental brain deformation. Deck and Willinger 

(2009) conducted simulations of a model with six different material implementations to 

study their effects on brain deformation and intra-cranial pressure (Deck and Willinger, 

2009). Miller et al. (2016) partially calibrated the material properties of an FE brain model, 

with the brain modeled as one material, to the brain deformation response of three brain 

deformation tests from the Hardy dataset (Miller et al., 2016). The final calibrated 

properties resulted in a CORA score of 0.426. Other studies have calibrated specific brain 

FE materials such as the brain’s bulk modulus (Ganpule et al., 2018).   
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Figure 8-1: Reported material properties for brain tissue for the complex modulus and tan-delta 
(Panzer, 2012).  

Before optimizing the material properties of FE brain models, it is important to 

investigate the effect of the material parameters on brain deformation response. Parts of 

the brain may be more sensitive to specific material property changes, and understanding 

the spatial distribution of the effects of those changes can assist in predicting calibrated 

material properties. Additionally, multiple parameters within each material model could 
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potentially be calibrated in an FE model. An optimization of all parameters to experimental 

data with multiple loading directions and severities is computationally expensive. A 

material sensitivity analysis will provide an informed choice of material parameters to 

optimize the model instead of using an unstructured calibration of all material parameters. 

This approach will reduce computational cost and will provide a methodology for 

improving already developed FE models.  

The first aim of this chapter is to identify material parameters that affect brain motion 

and the spatial distribution of that effect. Two FE models, GHBMC and SIMon, will be 

used in this study to conduct a material sensitivity analysis on all parts used to model the 

brain. A linear regression model will be developed to identify the significance of each 

material property on the brain deformation response throughout the brain. The second aim 

will be to use the regression model to predict a set of new material parameters that will 

improve the accuracy of the model response. The models will then be calibrated with the 

new material properties to improve their biofidelity in comparison to the sonomicrometry 

dataset.  

METHODS 

A computational study for the GHBMC and SIMon FE brain models was performed 

to determine the effect of material property changes on brain deformation. There were two 

material constitutive models used for all brain parts that were analyzed in this study, linear 

elastic or linear viscoelastic (VE). The linear VE constitutive model used in the GHBMC 

and SIMon models is the standard linear solid (SLS), which contains one time constant in 

the viscoelastic formulation. A single order parametric analysis (changing only one 
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material property for each simulation) of the materials was conducted under loading 

conditions representative of the sonomicrometry dataset.  

Material Parameters 

For the linear elastic FE brain material parts, three parameters define the material 

response, including the density, Poisson’s ratio, and the stiffness (Young’s modulus). It is 

often assumed that the density and Poisson’s ratio do not vary significantly for different 

brain parts due to the high water content and incompressible nature of brain tissue. The 

only parameter that is believed to contribute to the tissue deformation response is the 

material stiffness, which was varied to determine its effect on the brain deformation 

response. Two simulations were run for each elastic material, one with 200% stiffness and 

the other with 50% stiffness as compared to the baseline model (Table 8-1). The baseline 

model is defined as the original GHBMC brain model with no geometric or material 

changes.  

For the linear viscoelastic materials, the parameters that govern the material response 

include the bulk modulus and the viscoelastic parameters. The bulk modulus was not 

altered in this analysis due to its relative magnitude (three orders of magnitude larger than 

the shear modulus) and high water content of brain tissue. A recent study of the bulk 

modulus of the brain showed that brain deformation was insensitive to changes in the 

parameter within an order of magnitude (Ganpule et al., 2018). Three material parameters 

control the stiffness and viscoelasticity of the SLS constitutive model: the short-term shear 

modulus (𝐺𝐺0), the time constant (𝜏𝜏), and the long-term shear modulus (𝐺𝐺∞). These three 

parameters were combined into the storage (𝐺𝐺′) and loss (𝐺𝐺′′) moduli, which depend on 

the frequency of deformation (𝜔𝜔). The storage and loss moduli were then used to calculate 
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the complex modulus (𝐺𝐺∗) and tan-delta (tan [𝛿𝛿]). The complex modulus represents the 

shear stiffness of the viscoelastic material, while tan (𝛿𝛿) represents the damping of the 

linear viscoelastic material. The formulations are given in the equations below. 

𝐸𝐸′ =
𝐺𝐺∞ + (𝐺𝐺∞ + 𝐺𝐺0)𝜔𝜔2𝜏𝜏2

1 + 𝜔𝜔2𝜏𝜏2
  (8-1) 

𝐸𝐸′′ =
𝜔𝜔𝜏𝜏𝐺𝐺0

1 + 𝜔𝜔2𝜏𝜏2
 (8-2) 

𝐺𝐺∗ = �𝐺𝐺′2 + 𝐺𝐺′′2 (8-3) 

tan(𝛿𝛿) =
𝐸𝐸′′
𝐸𝐸′

 (8-4) 

To determine the sensitivity of brain deformation to the linear VE parameters, the 

complex modulus was varied from its baseline value to a ‘high’ value that is 200% of the 

baseline and ‘low’ value that is 50% of the baseline. The same percentage changes were 

applied to the damping (tan[𝛿𝛿]).  Nine sensitivity conditions were simulated for each linear 

VE material, with a combination of low, baseline, and high complex modulus and tan[𝛿𝛿]. 

The simulation matrix for each linear VE material can be found in Table 8-1. A depiction 

of the material sensitivity for the white matter viscoelastic material of the GHBMC model 

is shown in Figure 8-2. 

Table 8-1: Material sensitivity matrix for each the FE model materials. The elastic materials 
have one parameter, the Young’s modulus or stiffness of the material. The viscoelastic materials 

have two parameters, the complex modulus (𝐺𝐺∗) and damping coefficient (𝑡𝑡𝑡𝑡𝑡𝑡 [𝛿𝛿]). 
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Figure 8-2: The material sensitivity parameters for the cerebrum white and cerebellum parts of 
the GHBMC model, with the complex modulus (left) and tan(𝛿𝛿) (right). Gray dots indicate 

literature material properties.  

For the GHBMC model, there were six parts with linear elastic material properties 

with two simulations each. These include the dura, falx, pia mater, arachnoid, tentorium, 

and the brainstem cap. There were eight parts with LVE material properties with eight 

simulations each: cerebrum gray, cerebrum white, cerebellum, thalamus, brainstem, basal 

ganglia, corpus callosum, and the CSF/ventricles. For the SIMon model, there were two 

parts with elastic material properties: the falx-tentorium and the foramen. There were four 

parts with VE material properties: cerebrum, cerebellum, brainstem, and CSF. The original 

material properties and the range of properties used in the sensitivity analysis are shown in 

Figure 8-2.  

The kinematic loading conditions used in the sensitivity study simulations were the 40 

rad/s, 60 ms pulses from specimen 846. To evaluate the material sensitivity in all three 

directions, simulations were run in the sagittal, coronal, and axial directions, using the 

respective 40 rad/s, 60 ms pulses from specimen 846. The final simulations matrix included 

231 simulations for GHBMC and 111 for SIMon for a total of 342 sensitivity analysis 

simulations (Table 8-3). 
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Table 8-2: Original material properties for the GHBMC and SIMon models. The range of 
material properties used in the sensitivity analysis are given in parentheses. 

 

Table 8-3: Simulation matrix for each of the GHBMC and SIMon FE brain models. GHBMC 
included fourteen parts, and SIMon included six parts for the sensitivity analysis for a total of 

342 simulations. 

 

Sensitivity Evaluation 

To investigate the effects of the sensitivity of changes in material properties on brain 

deformation, peak-to-peak deformation of all of the nodes of each model was quantified. 

The peak-to-peak deformation of every node for each sensitivity simulation was calculated 

using the maximum point-to-point displacement during the trajectory of each node. The 

change in peak-to-peak deformation, as compared to the baseline model, was quantified to 

Model Part Material Type
Short-term Shear 

Modulus (kPa)
Long-term  Shear 

Modulus (kPa)

Time 
Constant 

(ms)

Young's Modulus 
(MPa)

Cerebrum Gray, Cerebellum, 
Thalamus, Brainstem, Basal Ganglia

Linear VE 6 (1 - 48) 1.2 (0.6 - 2.4) 0.0125 --

Corpus Callosum, Cerebrum White Linear VE 7.5 (1.25 - 60) 1.5 (0.75 - 3) 0.0125 --
CSF, Ventricles Linear VE 0.5 (0.16 - 4) 0.1 (0.05 - 0.2) 0.0125 --

Dura, Tentorium, Brainstem Cap Elastic -- -- -- 31.5 (15.75 - 63)
Falx, Pia Mater Elastic -- -- -- 12.5 (6.25 - 25)

Arachnoid Elastic -- -- -- 12 (6 - 24)
Cerebrum, Cerebellum, Brainstem Linear VE 1.66 (0.6 - 15.73) 0.928 (0.46 - 1.86) 59 --

CSF Linear VE 100 (16.7 - 800) 20 (10 - 40) 10 --
Falx, Tentorium Elastic -- -- -- 31.5 (15.75 - 63)

Foramen Elastic -- -- -- 6933 (3467 - 13867)

GHBMC

SIMon
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determine the effect of material changes on the models. The inclusion of all nodes in this 

analysis, not just the corresponding nodes to the sonomicrometry experiments, allows for 

a spatial sensitivity analysis that determined which materials affect specific regions of the 

brain. There were a total of 72,564 brain nodes in the GHBMC model and 33,445 brain 

nodes in the SIMon model. 

To determine the effect of each material on the model response, a multiple linear 

regression was conducted for each node in each model. The regression model used the 

change in peak-to-peak deformation of the node as the output, and each material was used 

as an input to the linear regression. The material properties were assigned a value of 0 for 

the baseline model, a value of 1 for the model with a 200% increase (high), and a value of 

-1 for the model with a 50% decrease (low). The change in peak-to-peak deformation was 

0 mm for the baseline model. It was calculated relative to the baseline for the low and high 

sensitivity models. The multiple linear regression included one term for each linear elastic 

material (the stiffness) and two terms for each linear viscoelastic material. The GHBMC 

model had 22 terms in the regression, and SIMon had 10 terms. A generalized equation for 

each node (𝐴𝐴) in response to each material parameters (𝑥𝑥𝑑𝑑), with coefficients (𝐴𝐴𝑑𝑑), is given 

in the equation below. The intercept term was set to 0. 

[𝑃𝑃𝑘𝑘 − 𝑃𝑃𝑘𝑘]𝑖𝑖 = �𝐴𝐴𝑑𝑑𝑥𝑥𝑑𝑑 (8-5) 

Threshold values for the input peak-to-peak deformation, the regression p-value, and 

the coefficients were used to remove insignificant terms from the analysis. All changes in 

peak-to-peak deformation less than 0.25 mm were excluded, and no regression was 

conducted for that node. The 0.25 mm threshold was chosen to remove nodes with small 

changes in brain motion relative to the changes in material properties. If the regression was 
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calculated, any coefficient that was not significant (with a p-value greater than 0.05) was 

assigned a value of 0. Additionally, any coefficient magnitude (𝐴𝐴𝑑𝑑) less than 0.1 was not 

meaningful due to the small effect of brain deformation in the range of the material property 

changes, and was assigned a value of 0. The regression analysis was conducted for each of 

the three loading directions (sagittal, coronal, and axial).  

Model Material Calibration 

The sensitivity regression model was utilized to optimize the results of the models to 

better fit the experimental brain deformation data. The following method was applied to 

the data from a single specimen only. The model was optimized by finding the 24 

corresponding nodes, using the absolute comparison method (Chapter 7) for the specimen. 

The regression equations for each of the 24 nodes were then used to construct a linearized 

matrix form of the formulation, where the vector 𝑏𝑏�⃗  is the change in peak-to-peak 

deformation. 

𝑨𝑨�⃗�𝑥 = 𝑏𝑏�⃗  (8-6) 

The sizes of 𝑨𝑨 and 𝑏𝑏�⃗  depend on the data used to predict the optimal material properties. 

If all three rotations (sagittal, coronal, and axial) were used for the optimization of a single 

specimen, the 𝐴𝐴 was a 72x22 matrix and 𝑏𝑏�⃗  was a 72x1 vector. The vector �⃗�𝑥 represents the 

number of materials and was a 22x1 vector. The equation was solved using the following 

equation to predict the optimal material properties.  

�⃗�𝑥 = 𝑨𝑨−𝟏𝟏𝑏𝑏�⃗  (8-7) 

The tuned material properties incorporated in the model and simulations were run for 

the 40 rad/s, 60 ms loading condition in all three directions to verify the model 
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improvement. Once the model parameters were calibrated to the three loading conditions, 

the remaining nine rotations were simulated and evaluated.  

RESULTS 

GHBMC Material Sensitivity 

The brain deformation sensitivity to each material was investigated using the loading 

kinematics from specimen 846. The 40 rad/s, 60 ms loading condition was simulated in the 

three loading directions (sagittal, coronal, and axial), and each material was simulated with 

either two material changes for elastic properties or eight material properties for LVE 

materials. The change in peak-to-peak deformation for all nodes experiencing a peak-to-

peak deformation difference greater than 0.25 mm is presented in Figure 8-3 for the 

cerebrum gray and brainstem parts of the GHBMC model for the high damping, high 

stiffness case.  

 

Figure 8-3: The sensitivity of the cerebrum gray and brainstem parts of the GHBMC model for 
the high damping, high stiffness case under sagittal rotation. The change in peak-to-peak 

deformation, relative to the baseline model is shown in color for all nodes with a magnitude 
greater than 0.25 mm. 

The regression analysis of the sensitivity study allows for the compilation of data from 

the material changes (two cases for each elastic material and eight cases for each 

viscoelastic material) into a single coefficient for each node. The regression coefficient 
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indicates the magnitude and increase or decrease of the peak-to-peak deformation of each 

node in response to the material change. An example of the coefficients for the cerebrum 

gray in response to changes in the complex modulus (𝐺𝐺∗) is shown in Figure 8-4. The 

regression plots of all the materials are presented in Appendix G. To investigate whether 

each material parameter affected the model, the maximum of the absolute value of 

regression coefficients across all nodes for each material parameter was calculated and is 

depicted in Figure 8-5.  Some materials, including the dura, spinal cap, CSF, and thalamus 

had very low or insignificant regression coefficients, indicating small contributions to the 

deformation response. Certain membranes, including the arachnoid and pia, had a 

significant effect on peak-to-peak deformation. Most of the brain parts affected the nodes 

within the specific parts, such as the brainstem or cerebellum, with the most significant 

effects stemming from changes in the cerebrum gray and white matter.  

 

Figure 8-4: The absolute value of the significant regression coefficients (p-value < 0.05 and |𝐴𝐴𝑖𝑖| 
> 0.1) of the cerebrum gray of the GHBMC model for the sagittal rotation are shown for all 

nodes in response changes in the complex modulus (left). A superior-inferior slice view (𝑧𝑧 = −20 
mm) of the distribution of the regression coefficients is shown on the right.  
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Figure 8-5: The maximum of the absolute value of the regression coefficients across all nodes of 
the GHBMC model are shown for each of the three rotation directions. For viscoelastic material, 

the damping (D) and complex modulus (E) are separated for each material.  

SIMon Material Sensitivity 

A similar analysis was conducted for the SIMon brain model materials. The 

differences in peak-to-peak deformation for the CSF and the cerebellum under the baseline 

damping, high stiffness condition for the sagittal rotations are depicted in Figure 8-6.  

 

Figure 8-6: The sensitivity of the CSF and cerebellum parts of the SIMon model for the baseline 
damping, high stiffness case under sagittal rotation. The change in peak-to-peak deformation, 
relative to the baseline model is shown for all nodes with a magnitude greater than 0.25 mm. 
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The regression analysis showed similar results to the GHBMC models. For the 

brainstem, cerebellum, and brainstem parts, the regression coefficients were significant for 

nodes within the corresponding parts for each material. The cerebrum regression results 

for the complex modulus parameters are depicted in Figure 8-7. The regression plots of all 

the materials are presented in Appendix G. The CSF and falx/tentorium materials also 

affected the deformation response at brain regions neighboring those parts. The foramen 

did not have any significant regression coefficients. The maximum of the absolute value of 

regression coefficients across all nodes for each material parameter was calculated and is 

shown in Figure 8-8. 

 

Figure 8-7: The absolute value of the significant regression coefficients (p-value < 0.05 and |𝐴𝐴𝑖𝑖| 
> 0.1) of the cerebrum of the SIMon model for the sagittal rotation are shown for all nodes in 
response changes in the complex modulus (left). A superior-inferior slice view (𝑧𝑧 = 30 mm) of 

the distribution of the regression coefficients is shown on the right.  
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Figure 8-8: The maximum of the absolute value of the regression coefficients across all nodes of 
the SIMon model are shown for each of the three rotation directions. For viscoelastic material, 

the damping (D), and complex modulus (E) are separated for each material.  

Model Improvement 

The calibration procedure was initially implemented using the GHBMC model, but it 

was discovered that the linear VE time constant implemented in the model (0.0125 ms) is 

three order of magnitude lower than the report time constant of 12.5 ms (Mao et al., 2013). 

Thus, the damping parameters in the sensitivity analysis exhibited little to no effect on the 

peak-to-peak deformation due to the wrong time constant. The regression fit, consequently, 

was not able to correctly predict the calibrated material properties.  

Nevertheless, the prediction of the linear regression was used to calibrate the stiffness 

of the model using the data from specimen 846. The predicted normalized parameters for 

the pia (-4.0), cerebrum gray (-0.2) and cerebrum white (2.4) were changed in the model, 

with all other material parameters remaining the same. An example trace for the axial 

rotation (40 rad/s – 60 ms) with the original and calibrated FE response shown in 
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comparison to the sonomicrometry data in Figure 8-9. The CORA scores of the calibrated 

model were within 0.1 of the original model. Although the CORA score did not show any 

differences, the difference in peak-to-peak deformation between the FE models and the 

sonomicrometry brain deformation data showed an improved regression prediction. The 

averages of the absolute value of the peak-to-peak deformation differences are depicted in 

Figure 8-10. 

 

Figure 8-9: The effect of the calibrated material properties for specimen 846 for the axial – 40 
rad/s – 60ms rotation.  
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Figure 8-10: The difference in peak-to-peak deformation between the GHBMC model and 
sonomicrometry data for the three rotation directions. The calibrated model resulted in lower 

average differences in peak-to-peak deformation for the sagittal and axial rotations.  

 The calibration procedure could not be fully validated using the GHBMC model due 

to an issue in the linear VE time constant. The SIMon model was calibrated using the same 

procedure for specimen 900 in an attempt to predict material properties that will improve 

the CORA validation score. The improvement in weighted CORA from the calibrated 

material properties is shown in Figure 8-11. CORA scores increased by 0.05 – 0.1 across 

all directions of rotation for the tests used to calibrate the material properties. For the 

remaining tests, there were improvements in the sagittal and coronal tests, while the axial 

rotations had approximately similar scores to the original model. 
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Figure 8-11: The weighted CORA score of the original and calibrated SIMon model in 
comparison to the specimen 900 brain deformation data for all tests. The tests used to calibrate 

the material properties are shown with red boxes. 

DISCUSSION 

The biofidelity of the deformation response of FE brain models is essential to their 

predictions of TBI. Calibration of the material parameters can improve model performance 

relative to the sonomicrometry brain deformation dataset. Since there was a broad range of 

reported mechanical properties for brain tissue, the parameters implemented in any model 

must be validated for that model based on the computational methods. A first-order 

sensitivity study was conducted in this chapter to elucidate the effects of brain and 

meningeal material parameters on the brain deformation response. The sensitivity provides 

valuable information on what parameters can be changed to optimize the model. An 
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example of this optimization was conducted using the GHBMC and SIMon model, and the 

sensitivity results provided an informed guess into the optimal material properties. The 

optimized GHBMC/SIMon model yielded a better biofidelity score, with CORA scores 

increases up to 0.1 for the axial 40 rad/s, 60 ms rotation. 

FE Sensitivity 

The results of the sensitivity analyses provide insight into the parameters that have a 

significant effect on the model response. For the GHBMC model, most of the significant 

material parameters affected the parts using that material, and the effect did not extend to 

nodes in other regions. For example, the brainstem stiffness parameter affects a subset of 

nodes within the brainstem part and does not affect any nodes in the cerebellum or 

midbrain. There were minimal effects on brain deformation for smaller regions of the brain, 

including the thalamus, corpus callosum, and basal ganglia, possibly due to the magnitude 

of stiffness chosen and the small volume of those parts. The SIMon model exhibited similar 

trends, with the cerebrum, brainstem, and cerebellum affecting a majority of the nodes 

within the respective parts.  

The CSF material properties showed contrasting trends in the models. For the 

GHBMC model, the CSF and ventricle spaces did not affect brain deformation. The CSF 

of the SIMon model had a significant effect on the surrounding regions. The difference was 

likely due to the computational methods implemented for the CSF part. The GHBMC CSF 

and ventricles were modeled as a solid part with a Young’s modulus, while SIMon employs 

a fluid material (with zero stiffness) for the ventricles. The CSF in SIMon was modeled as 

a linear viscoelastic solid to represent the effective stiffness of the pia-arachnoid complex 

(Takhounts et al., 2008a). The SIMon ventricles were not analyzed in the sensitivity 
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analysis, but the effect of the CSF on brain deformation was likely a consequence of the 

modeling approach of the CSF layer, which includes the influence of the meninges.  

The meningeal layers of the models affect regions that were close to the surface of the 

part, with no effect on nodes deep within the brain parenchyma. These membranes serve 

to encompass and link parts of the brain to the inner skull and other brain regions. The 

contribution of the meninges on brain deformation can be explained by the interfaces 

between the meninges and brain modeled as tied nodes. The pia and arachnoid of the 

GHBMC model, for example, may have a small tethering effect on nearby brain nodes 

depending on their stiffness and direction of motion. The falx of the GHBMC model affects 

only in axial rotation, while the tentorium contributed in all three rotation directions. The 

SIMon model also exhibits contributions from the meninges, with the falx-tentorium parts 

affecting the brain deformation of nearby regions. The effect of the arachnoid and pia was 

included in the CSF component. For both models, the membrane at the inferior edge of the 

brainstem (the foramen/spinal cap) was a necessary modeling technique to create an 

accurate boundary condition for the model without including the spinal cord. The stiffness 

of this membrane did not affect the brain deformation of either model.  

A multiple linear regression elucidated the effects of the material parameters on brain 

deformation. A regression consolidated the effects of the sensitivity study into a simple 

and computationally efficient analysis of the significant material parameters. Instead of 

analyzing each of the eight cases associated with a linear viscoelastic material, the 

significant material properties can be statistically determined for each node of the model. 

Peak-to-peak deformation was the chosen output of this analysis to match the deformation 

response of the models, although different parameters could be utilized, such as peak-to-
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peak deformation in each direction (x, y, z) or the duration of brain motion. The regression 

delves deeper into the material properties of the brain, providing insight into future avenues 

of experimental and FE model optimization. One of the least characterized tissues in the 

brain is the meninges, especially the pia and arachnoid. The bovine pia-arachnoid complex 

has been characterized under tensile (Jin et al., 2006) and shear (Jin et al., 2011) loading, 

with Young’s moduli of 6.75-40.19 MPa shear moduli of 11.73-22.37 kPa under various 

strain rates. Recent experiments on the spinal cord and pia-arachnoid complex showed a 

viscoelastic response of the meninges with a much stiffer response of the meninges then 

the spinal cord (Ramo et al., 2018). A better characterization of the human brain pia-

arachnoid complex will improve its FE representation in human brain models.  

A limitation of this analysis is the specificity of the results to each model, given the 

differences in boundary conditions and computational methods utilized for each FE brain 

model. The results of the sensitivity analysis cannot be used to make conclusions about the 

contributions of specific material properties to brain deformation or injury, only to the 

predicted brain deformation of the model. This distinction is important due to the methods 

used to create FE brain models, where differences in mesh size, hourglass control, and 

various other parameters can have an effect on the brain response (Giudice et al., 2018a). 

One example of a modeling choice that may affect the response of the brain is how the 

skull-brain boundary is simulated. The two models used in this study used a continuous 

mesh with shared nodes to model the meninges and brain. This layer is typically modeled 

as a solid with a low stiffness to allow the brain to slide relative to the skull (mimicking 

the CSF and arachnoid space). Other approaches to model the skull-brain boundary are 

available including sliding contact boundaries with or without a friction coefficient (Dixit 
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and Liu, 2017). Although more computational parameters are introduced when changing 

the internal boundary conditions, a sliding interface should be investigated in future 

optimization of FE brain models to more accurately represent the mechanics of brain 

motion. 

FE Model Improvement 

The regression analysis can identify experimental needs as well as predict properties 

based on biofidelic brain deformation. The results for each node allow for an optimization 

of the model response to the peak-to-peak deformation response. A simple linear matrix 

form of the optimization was utilized to predict the change in material properties that will 

tune the model to match the sonomicrometry data. This optimization may not be perfect 

depending on the chosen regression output (peak-to-peak deformation), but it allows for an 

informed prediction of material parameters. This method of optimization reduces the 

computational cost and provides future techniques of optimizing the model based on 

various regression outputs.  

FE model optimization using the results of the sensitivity analysis was demonstrated 

in this study with the GHBMC and SIMon models. In the first calibration of material 

parameters using the regression model for the GHBMC model, the difference in peak-to-

peak deformation between the model and sonomicrometry dataset was used to predict 

calibrated material properties. While the CORA scores did not increase, there was a 

reduction in the difference in peak-to-peak deformation between the model and data. The 

lack of change in the CORA scores was likely due to the choice of peak-to-peak 

deformation as the regression output. Other parameters should be investigated to align 
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more closely with the desired CORA biofidelity rating, such as peak-to-peak deformation 

in each direction or the duration of brain deformation for each crystal.  

Another limitation in improving the models was the use of CORA to evaluate FE brain 

model biofidelity. CORA and similar cross-correlation tools have become standard in 

injury biomechanics to quantify FE model biofidelity to experimental results. While the 

CORA scores are beneficial in providing a generalized cross-correlation rating that 

includes magnitudes, phase, and slope differences between the two signals, it has 

limitations for evaluating differences between signals with small differences. When the 

CORA scores of multiple signals are averaged, the score may not capture subtle 

improvements in the model’s response. Thus, a material property calibration may yield a 

better match in peak-to-peak deformation, but the average CORA scores may remain the 

same. An investigation into an optimal biofidelity rating or a set of parameters to evaluate 

model response is needed to minimize the confounding effects of the CORA rating.  

An issue with the published version of the GHBMC model prevented an ideal 

calibration using the regression analysis. While Mao et al. (2013) report a time constant of 

12.5 ms for all linear viscoelastic materials, the model files contain a time constant of 

0.0125 ms, three orders of magnitude lower. The short time constant means that the 

mechanical behavior of the brain is essentially elastic and governed only by the long-term 

shear modulus (𝐺𝐺𝑖𝑖). This error was observed in the sensitivity analysis, where the damping 

parameters exhibited little to no effect on the peak-to-peak deformation due to the wrong 

time constant. The regression fit, consequently, was not able to predict calibrated material 

properties with an improved CORA score. It is unclear what the correct time constant 

should be, as a preliminary evaluation of the model response using the reported time 
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constant of 12.5 ms yields lower CORA scores in comparison to the sonomicrometry 

dataset than 0.0125 ms. Once the correct parameter is identified by the developers, the new 

model can be evaluated and a sensitivity analysis can be conducted. Alternatively, more 

advanced versions of this model (Wu et al., 2019) can be used for material calibration. 

CONCLUSION 

A sensitivity analysis of the mechanical properties of the GHBMC and SIMon models 

elucidated the influence of material parameters on brain deformation at every node in the 

FE brain. A linear regression provided a statistical method to determine and visualize the 

significant material properties. The sensitivity results can inform future experiments of 

brain mechanical properties, in addition to optimizing the material parameters of existing 

models. The GHBMC and SIMon models were calibrated based on the regression analysis 

of the nodes corresponding to the sonomicrometry experiments. The optimization was 

expedient in predicting the material properties of the model and improved the biofidelity 

score of the SIMon model. 
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 CONCLUSIONS 

Traumatic brain injuries (TBI) are one of the most common but least understood 

injuries to the body, with an estimated 1.7 million TBIs occur annually in the United States. 

Finite element (FE) models of the brain have been crucial for understanding brain injury 

and developing injury mitigation systems; however, the experimental brain deformation 

data currently used to validate these models are limited. The objective of this dissertation 

is to advance the current state of research of TBI mechanics by improving the experimental 

understanding of brain deformation under rotational loading and improving the biofidelity 

of FE brain modeling capabilities. This dissertation will include research using both 

experimental and computational methods. The experimental phase will focus on 

developing a methodology to measure in-situ human brain motion under rotational loading, 

and on using the methodology to build a dataset of brain deformation. The computational 

phase will focus on developing a methodology to evaluate FE brain models in comparison 

to experimental data, and on a framework to optimize the material properties of the models 

to better match the brain deformation data.  

SUMMARY AND MAJOR CONTRIBUTIONS 

Accurately quantifying brain motion is crucial for understanding and modeling the 

mechanics of the human brain. Our understanding of human brain mechanics is primarily 

informed by animal models, mechanical property experiments of brain tissue, and 

computational models. In particular, FE models of the brain have become ubiquitous in 

research aimed at predicting and mitigating TBI. The validation of FE brain models to 

human brain deformation data is requisite for their efficacy and capacity to predict injury 
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and assist in the design of safety equipment. Some datasets of human brain deformation 

exist, but they include limitations that preclude their use for FE model validation.   

There has been a need in the field of TBI biomechanics for a dataset of brain 

deformation under dynamic rotational loading, as well as recommended methods for 

evaluating FE model biofidelity for brain deformation response. The goal of this 

dissertation was to address these needs by improving the understanding and modeling of 

human brain deformation under rotational loading. This dissertation addresses not only 

gaps in experimental work by the meticulous development of a methodology and dataset 

quantifying in situ human brain deformation but also addresses uncertainties in FE model 

biofidelity by introducing recommended methods of model evaluation and optimization. 

The main contribution of this work will be a digital dataset of brain deformation, including 

average data corridors, that facilitates and outlines best practices for the evaluation of FE 

brain models (available through the NHTSA database). 

A major contribution of this dissertation is the methodology for measuring human 

brain deformation under rotational loading. The experiments represent the first test series 

to use sonomicrometry to quantify three-dimensional brain deformation during rotational 

loading of the head. Sonomicrometry presents numerous advantages over bi-planar X-ray. 

First, sonomicrometry is capable of recording data in three dimensions with no line-of-

sight limitations, and no constraints on the direction or type of motion that is applied during 

the test. Additionally, it can record the entirety of the event, as long as necessary to capture 

the whole transient response. This was an improvement over bi-planar X-ray, which 

constrains the observable results to a very limited test volume, often limiting the duration 

over which target trajectory data may be collected.  
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The dataset of six specimens under various loading conditions represents another 

significant contribution of this dissertation. In addition to FE model evaluation and 

optimization, the dataset allows for the experimental investigation of brain mechanics. 

Several analyses were conducted in this dissertation, such as quantifying peak-to-peak 

deformation and its dependence on loading severity and direction. Future investigations 

should include metrics such as the duration of brain deformation, the lag between skull and 

brain motion, and the natural frequency of brain deformation. There are also interesting 

features of the data, such as the center of rotation of the brain relative to the head CG, 

which can elucidate regions of risk relevant to TBI. 

The average data corridors serve as an extension of the dataset to show intra-

population differences in brain response and to provide a supplemental set of FE model 

evaluation targets. The various techniques employed in creating the first reported brain 

deformation data corridors provide a new approach to averaging biomechanical data. With 

the presumption that the data contains discrepancies from population and experimental 

differences, techniques typically used in other scientific fields were optimized and 

validated for their use in the corridor creation, including linear transfer functions, position 

and displacement registration, and inverse distance weighting. While these techniques may 

not apply to every experiment, they provide opportunities for enhancing current averaging 

methods for other biomechanics studies. An FE model was used to validate the procedures, 

but its use was limited to optimization of the parameters and validation of the methods.  

The computational phase of this dissertation provided an opportunity for the direct 

translation of experimental procedures to FE models, without digitization of data or 

uncertainties about the test procedure or data analysis. The contributions of the 
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computational work were a method of evaluating models to this dataset, given differences 

in specimen and model anthropometry. The morphing of FE models to match the exact 

inner skull anatomy of the specimens was a valuable contribution for model development 

and evaluation. The morphing method allows researchers to minimize discrepancies in the 

model response due to differences in specimen geometry, without the need to manually 

choose control points.  The technique can be used for existing FE models, such as its use 

in the creation of a GHBMC model with embedded axons (Wu et al., 2019), as well the 

development of subject-specific FE brain models. Additionally, a sensitivity analysis and 

model optimization was conducted to demonstrate methods for identifying and optimizing 

material properties to match the brain deformation data. While only two models were 

utilized in this analysis, the method should be applied to every existing model, as well as 

any newly developed FE brain models.  

A summary of the methodological and technological advancements that have resulted 

from this dissertation are presented below:  

• Demonstrated that sonomicrometry is capable of capturing the 3D motion of the 

brain in a highly repeatable manner, with spatial and temporal precision sufficient 

to fully capture both the short-term and long-term transient mechanical response of 

the brain in these tests. 

• Developed and verified a method to record 3D brain motion at numerous points 

throughout the brain using trilaterated sonomicrometry.  

• Recorded 3D brain motion data (and accompanying head kinematics) for 12 test 

conditions (varying direction, magnitude, and pulse duration) for six specimens.  
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• Generated a substantial dataset of in situ brain deformation for individual validation 

of finite element models, totaling 5000 brain deformation time-histories. 

• Developed the first set of brain deformation average data corridors for the 

validation of generalized finite element models.  

• Evaluated the biofidelity of the GHBMC and SIMon FE brain models to the dataset 

by accounting for geometric differences between the specimens and model, 

including the development of a brain morphing methodology. 

• Conducted a sensitivity analysis and linear regression of the brain material 

properties for the GHBMC and SIMon models. 

• Calibrated the GHBMC/SIMon model using a computationally-efficient approach, 

by using the results of the FE model.  

LESSONS LEARNED  

Measuring Brain Deformation 

The dataset generated from this test series demonstrates that the displacement 

measurements obtained using sonomicrometry were highly repeatable, exhibit consistently 

high quality in spatial precision and the signal to noise ratio, and were able to record 3D 

motion data at a sampling rate that was more than adequate to capture the dynamic and 

transient response of the brain in these tests. These results suggest that sonomicrometry 

was a robust and reliable tool for quantifying 3D brain deformation in dynamic loading 

conditions, and is recommended for future tests to quantify brain deformation. 

A limitation of any method used to measure brain deformation at discrete locations is 

the inability to quantify strain across the brain. The sonomicrometry dataset yielded a 

sufficient spatial resolution of crystals, but the data is too dispersed to be able to accurately 
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measure 3D strain. The scope of this work was to measure brain deformation, which has 

typically been used to validate FE brain models. Since most studies use strain as the 

primary correlate to injury, future methods to quantify strain may provide improved 

validation targets. Currently, no methods exist with a sufficient sampling frequency to 

quantify brain deformation or strain in cadaveric specimens. 

Intracranial Pressure Measurements 

Intracranial pressure was relatively low in the loading conditions used in this study. 

Also, there was little variation in pressure response with increasing loading severity 

(Chapter 3). For these reasons, and given the added complexity and preparation time 

associated with the pressure transducers compared to the limited information gained, it is 

recommended that future tests studying pure rotational loading do not include intracranial 

pressure transducer measurements. There were also head injury criteria and FE models that 

utilize brain pressure either as an injury metric or validation target. While pressure can be 

correlated with focal injuries occurring from impact loading, this study demonstrates that 

rotational loading associated with diffuse TBI does not generate appreciable intra-cranial 

pressures.  

Validating Finite Element Models 

One of the main objectives of this study was to develop brain deformation data for the 

validation of FE models of the brain. The brain deformation data was delivered and 

presented in two forms as individual test data (specific to each specimen with respect to 

anatomy, receiver locations, and input kinematics) and aggregated corridors (data 

normalized to the same anatomy, receiver locations, and input kinematics). While either 

data set could be used for FE model validation, the individual test data should be the first 



216 
 

choice for model validation. Although this requires simulating each experiment separately, 

the individual data is the most accurate due to possible errors introduced in the data 

aggregation method. Furthermore, using a morphed brain model is recommended when 

evaluating the specimens tested. A morphed model reduces variability in brain deformation 

and stain measurements introduced due to differences in the size and shape of the skull 

(Chapter 7). If morphing is not possible, simply scaling the brain model dimensions (x, y, 

z) separately to roughly match the specimen anthropometry is preferred in the case that 

there are significant differences between model and specimen anthropometries. It is 

recommended that a comparison of the model response to the average data corridors be 

used as a final verification of the model validation procedure, not in lieu of using the 

individual specimen data. To summarize, the various model validation procedures are: 

A. Comparing the morphed model response to individual test data 

• This requires many simulations (for full validation, 12 tests x 6 specimens 

= 72 simulations) 

• Minimizes the influence of model geometry  

B. Comparing the scaled model response to individual test data 

• This requires many simulations (for full validation, 12 tests x 6 specimens 

= 72 simulations) 

• Influence of model geometry compared to the tested specimens can be 

moderate 

C. Comparing the unscaled/unmorphed model response to the individual test data 

• This requires many simulations (for full validation, 12 tests x 6 specimens 

= 72 simulations) 
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• Influence of model geometry compared to tested specimens can be large 

D. Comparing the model response to the response corridors 

• Requires fewer simulations (12 tests x 1 normalized specimen = 12 

simulations) 

• Influence of model geometry compared to the normalized geometry 

(GHBMC brain model) can be moderate 

• Possible error introduced by the steps required to aggregate data may 

introduce error into the corridors and influence model validation 

• Model can be morphed or scaled to the GHBMC brain geometry to 

minimize the influence of geometric differences 

The Hardy dataset has been used in the validation of most published FE brain models. 

The dataset provides an alternative brain deformation dataset to validate FE models, but is 

limited to blunt impacts to the head and to a small set of tests per specimen. It is 

recommended only as a supplementary check of the validation conducted using the 

sonomicrometry dataset, or if validating the use of an FE model in different injury 

mechanics, such as coup-countercoup or impact cases. The Hardy dataset is not 

representative of diffuse brain deformation caused by rotational loading, and FE model 

developers should be cautious in optimizing such a model to that dataset. 

FUTURE WORK 

This work represents the first test series to use sonomicrometry to quantify three-

dimensional brain deformation during rotational loading of the head. The objectives set 

forth in this dissertation have been satisfied, and this work represents a necessary 

improvement to the TBI mechanics field. However, other questions remain in this field that 
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were not addressed in this study. Through a better understanding of brain deformation, 

improvements to computational modeling capabilities will be made. These improvements, 

however, are limited by the uncertain relationship between the deformation of the brain 

and the associated injury. Future work must investigate such relationships to better 

correlate brain deformation to pathological and clinical outcomes.  

Animal Models 

One of the main benefits of animal models of TBI is the possibility of performing in 

vivo survival studies under injurious loading conditions that cannot be performed in human 

volunteers. By extending the sonomicrometry technique to animal models, it will be 

possible to empirically quantify the brain deformation under injurious loading. Matched-

pair testing can then be performed with sonomicrometry and survival cohorts receiving 

identical biomechanical loading. Brain deformation in a sonomicrometry cohort can then 

be matched to injury seen in the survival cohort, which can be assessed using functional 

behavioral examinations, advanced imaging techniques (fMRI, PET) as well as post-

mortem histological analyses. These studies would help to “close the loop” that has existed 

between biomechanical input, brain deformation, and injury.  

The animal models most appropriate for the application of sonomicrometry are the 

ferret and pig because smaller animals lack an appropriate brain size for instrumentation 

with transmitters and receivers. The pig model is especially attractive as a next step as it 

would be possible to adapt the existing rotational test device setup for a porcine model. 

While the rotational rates needed for a pig model (>80 rad/s) are higher than that of the 

human due to the pigs smaller brain, the lower cephalus mass means it may be possible to 

achieve the higher kinematics using the current device with some modifications. The 
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smaller brain of the ferret would require the development of a smaller system to achieve 

the correspondingly higher rotational velocities for injurious loading (>150 rad/s), but 

require lower torque to generate those speeds. The future development of these animal 

models offers a pathway to direct linkage of brain deformation and injurious outcomes. 

Translational and Combined Rotational/Translational Loading 

One of the most prominent debates in the field of TBI injury biomechanics has been 

the roles of linear and rotational kinematics on brain injury. However, due to the 

incompressible nature of the brain tissue and closed volume of the skull, the prevailing 

hypothesis is that rotational kinematics, and not linear, are responsible for the shear 

deformations of the brain tissue that lead to the diffuse injuries associated with TBI. While 

this concept has been demonstrated using computational brain models (Gabler et al., 2016c, 

2016b, 2018a; Giudice et al., 2018c; Takhounts et al., 2013b), there are currently no 

experimental data to directly rule out the influence of linear kinematics on brain 

deformation. However, due to the robust nature of the sonomicrometry method developed 

and utilized in this project, the role of linear kinematics on brain deformation could be 

investigated using a modified test apparatus. The sonomicrometry methodology developed 

in this project provides a unique platform for investigating the influence of head kinematics 

on the ensuing brain deformation in a controlled and repeatable manner. 

Multiple Impact Loading 

One of the major questions in the field of brain biomechanics is the response of the 

brain to multiple impacts. In automotive and sports impacts, the head is often impacted 

multiple times in the span of 100-200 ms due to the chaotic nature of vehicle collisions and 

sports environments. It is unclear how the brain responds to secondary impacts, while it is 
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still in transient motion. Such impacts could have an exacerbated effect on brain 

deformation, leading to worse injuries. Additionally, multiple impacts happening with 

larger time differences, such as a few hours or days, could also be investigated using 

sonomicrometry. If the first impact affects the mechanical properties of the brain, 

secondary impacts could result in higher deformations, even for the same input kinematics. 

The sonomicrometry brain deformation methodology presents a unique opportunity to 

study such events in a controlled, repeatable manner to be able to understand the complex 

mechanics of the brain. 
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APPENDIX A: POST-TEST AUTOPSY NOTES 

The head-brain specimens were dissected 6-8 days p.m. All the Fiberglas-embedded 

polyester resin (Bondo) was removed, and a craniectomy was performed along the axial 

plane. The average mass of the brain and all associated membranes was 1.28 ± 0.13 kg. 

For all specimens, the brain and dura were intact. No visible holes were observed in 

the brain due to crystal insertion or the experiments. No other gross damage was observed 

around the crystal insertion sites. Once the brain was extracted, the parenchyma remained 

intact. The brains were then dissected to examine the major brain structures (Figure A-1).  

 

Figure A-1: Brain regions and white/gray matter regions can be identified after brain extraction. 

The connection between the inner table of the skull and the dura varied among the 

specimens, with some having an inseparable attachment and others having a very loose 

attachment (Figure A-2). The dura was very well attached to the inferior skull regions in 

all specimens. 
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Figure A-2: The dura attachment to the skull was very loose (left) or inseparable (right).  

There were differences in the dura’s connection to the Crista Galli. In four specimens, 

the dura was well attached to the Crista Galli anteriorly and had to be cut with a scalpel. In 

two specimens, there was little to no connection, with the falx easily separable from the 

Crista Galli (Figure A-3). 

 

Figure A-3: The dura was either very well connected to the Crista Galli (left) or not connected 
(right). 

Blunt dissection revealed a loose connection between the dura and the brain, with 

minimal disruption needed to separate the layers in all specimens (Figure A-4).  
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Figure A-4: There was a loose connection between the dura and brain, except at the midline. 

There were also differences in the bony anatomy of the inner skull, with various 

regions exhibiting bone degeneration or bony spurs/protrusions (Figure A-5). 

 

Figure A-5: Differences in bony anatomy. Specimen 902 shows prominent bony 
spurs/protrusions, some of which were sharp to the touch. Specimen 903 and 896 show bone 

decay along the sagittal sinus.  
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APPENDIX B: MORPHING 

A morphing technique was implemented to match the geometry of the specimens to a 

target geometry. A technique utilized and adapted by Park (2017) (Park et al., 2017) for 

the subject-specific FE modeling of human femurs was extended to the brain in order to 

accurately match the geometries. The morphing methodology involved four steps: FE 

model and specimen geometry preparation, rigid body alignment, surface registration, and 

3D volume morphing (Figure B-1). The steps are applied below to morph a specimen 

geometry to the GHBMC brain model, but the same method can be applied to any FE 

model or parametric space. 

 

Figure B-1: Representation of the morphing process, with GHBMC as an example. The morphing 
process includes four main steps: 1) Surface preparation and segmentation, 2) rigid body 
alignment and scaling, 3) surface registration, and 4) volume morphing and evaluation. 

In the preparation stage, the inner cranial geometry of the specimen was segmented 

from the computed tomography (CT) scans using Mimics 19.0 (Materialise, Plymouth, 



229 
 

MI). The segmented geometry included everything in the cranial vault up to the inner skull. 

A thresholding value was used to apply a mask to the desired geometry, followed by 

manual editing of the mask in areas with low-density trabecular bone and the inferior 

regions of the cranium and brainstem. The edited mask was used to extract the 3D brain 

geometry for each specimen. The target geometry can be prepared similarly. In the case of 

FE brain models, the target geometry was prepared by extracting the outermost layer of the 

model (the inner skull). This surface will be used to match to the segmented specimen 

geometry.  

To align the two surfaces, the specimen geometry was first rotated and centered to 

match the coordinate system of the FE model. Once the two surfaces were close using 

manual rigid body rotation, an iterative closest point approximation (ICP, Besl and McKay, 

1992) was used to match the initial rigid body position of the surfaces. The specimen 

geometry was then scaled to the target external geometry of the FE model in all three 

directions (x, y, z) to minimize volume differences between the two geometries. The 

scaling factors were used to scale back the target geometry after the surface registration as 

to not affect the 3D volume morphing. 

Next, control points were selected to map the FE model surface to the specimen 

surface. In typical biomechanical morphing techniques, control points were chosen based 

on automated spatial segmentation or a manual assignment based on prominent anatomical 

features. These methods were difficult for segmented brain CT scans because the shape of 

the brain may vary significantly and manual assignment of landmarks may lead to large 

user error. An example of this process is shown in Figure B-2. To minimize errors in the 

choice of landmarks, an iterative registration method based on the 3D generalization of 
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Burr’s elastic registration (Bryan et al., 2010), was used to match the external geometry of 

the two surfaces. All of the points in each model, which were mapped in the registration, 

were utilized as landmarks to convert the FE model geometry to the specimen geometry 

using the registration algorithm. The accuracy of the registration method was evaluated 

using an average minimum distance error, the average distance between nodes on the target 

surface and the surface of the specimen geometry. 

 

Figure B-2: Control points for the morphing process can be chosen manually if the shape of the 
target and template geometry are similar or there are prominent landmarks available (left). 

Deviations in shape between the two surfaces can result in variability in the choice of surface 
landmarks (right). 

The transformations used to match the control points in the registration step were then 

applied to the internal nodes of the FE brain model to morph the 3D volume to the external 

geometry of the specimen using a thin-plate spline method with a radial basis function 

(Rohr et al., 2001), an extension of the original thin-plate spline proposed by Bookstein 

(1989) to take into account landmark localization errors. If the morphing is applied to an 

FE brain model, the normalized Jacobian ratio of all elements was quantified to ensure 

comparable element quality of the morphed model to the original FE brain models.  

The morphing methodology implemented to account for specimen anthropometry 

provides an important advancement in FE brain modeling. The technique facilitates 

matching the exact inner cranium shape of the model and specimens, not only the size and 
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volume. The average minimum distance between the surface of the FE model and surface 

of each specimen CT was less than 1 mm. While morphing has been attempted through 

conventional control point morphing (Horgan and Gilchrist, 2004; Li et al., 2011) and the 

generation of new voxel models (Ghajari et al., 2017; Miller et al., 2016), the use of an 

automated process of picking and registering control points is important in generating an 

accurate specimen-specific model. The researcher does not have to manually select control 

points, which can be laborious and error-prone. Instead, all of the nodes of the specimen 

geometry and model are used as control points, to generate a smooth, accurate morphed 

model automatically. A limitation of the morphing methodology for FE brain models is 

that it does not address the differences in internal anatomy between subjects, such as 

ventricle size, regional organization of brain regions, and size of the brain. The morphing 

methodology only registers the outside surface. Consequently the internal anatomy is 

scaled according to the surface. Future methods that incorporate subject-specific morphing 

or model development of the brain using MRI scans are needed in order to accurately model 

and predict subject-specific brain injury. 
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APPENDIX C: DATASET SUMMARY 

This appendix provides a summary of the kinematics and peak-to-peak deformation of 

the sonomicrometry dataset collected in Chapter 5. The following plots depict the angular 

velocity and angular acceleration traces for all specimens for each test condition. 
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Figure C-1: Angular velocity and angular acceleration for each test severity. 
 

The summary data include the peak linear acceleration (LAC), peak angular velocity 

(ARS), angular velocity duration, peak angular acceleration (AAC), and maximum/mean 

peak-to-peak deformation (Pk-Pk).  

Table C-1: Summary of peak head kinematics and brain deformation for specimen 846. 

Specimen 
846 Test Max 

LAC (g) 
Max ARS 

(rad/s) 
Duration 

(ms) 
Max AAC 

(rad/s2) 

Max 
Pk-Pk 
(mm) 

Mean 
Pk-Pk 
(mm) 

Sagittal 

20rps-60ms 4.34 23.16 53.9 1499.87 6.74 3.89 
20rps-30ms 4.25 21.29 63.0 2520.53 7.87 4.53 
40rps-60ms 10.12 39.64 56.4 2817.65 9.86 5.94 
40rps-30ms 11.89 35.80 35.2 4546.77 13.15 8.02 

Coronal 

20rps-60ms 4.65 21.89 57.4 1383.83 7.80 4.43 
20rps-30ms 1.73 13.63 53.8 1476.63 6.24 3.58 
40rps-60ms 8.04 36.88 57.1 2695.45 10.69 6.45 
40rps-30ms 7.26 33.97 36.9 4342.96 14.06 7.78 

Axial 

20rps-60ms 2.02 21.90 50.1 1793.82 10.71 5.13 
20rps-30ms 4.87 19.18 61.9 1958.62 11.40 5.44 
40rps-60ms 4.13 39.54 49.1 3233.82 17.00 8.08 
40rps-30ms 12.86 40.00 28.2 4860.52 21.78 10.55 
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Table C-2: Summary of peak head kinematics and brain deformation for specimen 896. 

Specimen 
896 Test Max 

LAC (g) 
Max ARS 

(rad/s) 
Duration 

(ms) 
Max AAC 

(rad/s2) 

Max 
Pk-Pk 
(mm) 

Mean 
Pk-Pk 
(mm) 

Sagittal 

20rps-60ms 3.01 23.75 57.1 2060.53 7.17 3.45 
20rps-30ms 8.37 18.83 31.3 2492.08 9.37 4.56 
40rps-60ms 9.35 44.99 49.8 4546.46 14.76 7.81 
40rps-30ms 28.67 42.28 30.0 5828.44 19.18 10.29 

Coronal 

20rps-60ms 6.09 22.89 61.2 1947.05 6.96 4.47 
20rps-30ms 9.97 16.48 38.0 1909.51 7.69 4.80 
40rps-60ms 13.65 42.11 58.3 4532.36 13.05 8.13 
40rps-30ms 23.59 39.65 30.9 5372.49 16.74 10.34 

Axial 

20rps-60ms 7.18 22.97 67.3 1737.99 10.41 6.04 
20rps-30ms 10.18 19.01 29.5 2456.05 12.80 7.62 
40rps-60ms 14.01 43.94 63.2 3329.44 17.59 9.85 
40rps-30ms 38.09 37.62 28.9 4622.71 19.71 11.86 

 

Table C-3: Summary of peak head kinematics and brain deformation for specimen 900. 

Specimen 
900 Test Max 

LAC (g) 
Max ARS 

(rad/s) 
Duration 

(ms) 
Max AAC 

(rad/s2) 

Max 
Pk-Pk 
(mm) 

Mean 
Pk-Pk 
(mm) 

Sagittal 

20rps-60ms 2.78 21.56 60.6 1865.24 4.10 2.39 
20rps-30ms 5.07 14.55 33.6 1751.78 5.18 2.94 
40rps-60ms 10.79 45.53 51.5 4599.98 12.40 6.66 
40rps-30ms 19.33 38.89 33.5 5098.65 17.55 8.94 

Coronal 

20rps-60ms 3.84 23.42 65.0 1244.02 5.60 3.13 
20rps-30ms 5.60 13.23 39.2 984.28 6.16 3.26 
40rps-60ms 11.44 43.04 63.2 4098.11 11.34 6.66 
40rps-30ms 17.80 30.26 37.3 3884.38 13.63 7.58 

Axial 

20rps-60ms 2.11 23.02 61.6 1840.71 8.18 4.22 
20rps-30ms 6.62 15.82 31.8 2118.13 10.62 5.07 
40rps-60ms 12.19 44.04 64.2 3447.11 13.99 7.33 
40rps-30ms 18.31 36.15 29.5 4182.85 17.13 9.02 
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Table C-4: Summary of peak head kinematics and brain deformation for specimen 902. 

Specimen 
902 Test Max 

LAC (g) 
Max ARS 

(rad/s) 
Duration 

(ms) 
Max AAC 

(rad/s2) 

Max 
Pk-Pk 
(mm) 

Mean 
Pk-Pk 
(mm) 

Sagittal 

20rps-60ms 3.65 21.19 58.6 1684.21 2.41 1.45 
20rps-30ms 8.68 17.04 32.2 2128.14 3.00 1.83 
40rps-60ms 12.23 40.69 52.8 3569.87 5.34 3.14 
40rps-30ms 12.66 40.26 31.9 5330.47 8.33 4.72 

Coronal 

20rps-60ms 5.11 23.58 63.1 1324.22 2.84 2.05 
20rps-30ms 10.56 18.03 35.3 1822.26 3.59 2.66 
40rps-60ms 10.95 41.97 61.6 3980.45 6.97 5.00 
40rps-30ms 24.63 33.34 35.6 4430.91 7.73 5.50 

Axial 

20rps-60ms 6.79 23.95 72.0 1982.61 5.39 2.65 
20rps-30ms 7.10 16.45 31.0 2224.06 7.55 3.64 
40rps-60ms 13.88 43.65 62.0 3355.58 10.07 4.82 
40rps-30ms 30.89 38.24 29.1 4323.94 14.77 6.89 

 

Table C-5: Summary of peak head kinematics and brain deformation for specimen 903. 

Specimen 
903 Test Max 

LAC (g) 
Max ARS 

(rad/s) 
Duration 

(ms) 
Max AAC 

(rad/s2) 

Max 
Pk-Pk 
(mm) 

Mean 
Pk-Pk 
(mm) 

Sagittal 

20rps-60ms 3.93 24.29 60.4 1484.73 3.50 1.69 
20rps-30ms 5.95 12.37 34.7 1099.36 3.12 1.54 
40rps-60ms 7.87 44.89 55.7 3464.63 8.17 3.77 
40rps-30ms 14.96 40.54 35.0 5740.37 12.95 6.28 

Coronal 

20rps-60ms 5.25 26.33 64.0 1556.98 4.15 2.53 
20rps-30ms 9.49 15.29 41.9 1266.71 4.34 2.48 
40rps-60ms 12.03 45.31 60.8 4458.26 9.41 5.59 
40rps-30ms 21.51 33.05 36.3 4215.42 10.68 6.26 

Axial 

20rps-60ms 6.02 22.93 74.0 1774.65 7.49 3.74 
20rps-30ms 7.87 18.51 31.4 2351.43 10.86 5.08 
40rps-60ms 10.77 43.97 64.4 3365.98 15.38 7.18 
40rps-30ms 26.67 37.61 29.7 4460.66 19.68 9.14 
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Table C-6: Summary of peak head kinematics and brain deformation for specimen 904. 

Specimen 
904 Test Max 

LAC (g) 
Max ARS 

(rad/s) 
Duration 

(ms) 
Max AAC 

(rad/s2) 

Max 
Pk-Pk 
(mm) 

Mean 
Pk-Pk 
(mm) 

Sagittal 

20rps-60ms 3.44 24.75 62.5 1253.24 3.18 1.65 
20rps-30ms 9.33 16.15 34.2 1458.64 3.81 2.25 
40rps-60ms 5.76 45.83 60.9 3517.51 6.86 4.11 
40rps-30ms 12.60 41.59 32.8 4711.59 11.52 6.41 

Coronal 

20rps-60ms 2.46 24.09 62.7 1271.00 4.85 2.96 
20rps-30ms 9.16 18.70 34.4 1702.66 6.79 4.41 
40rps-60ms 7.84 43.93 62.3 3193.39 8.59 6.02 
40rps-30ms 13.40 32.79 36.9 3805.60 11.40 7.24 

Axial 

20rps-60ms 3.48 22.14 62.9 1689.06 6.57 3.22 
20rps-30ms 5.12 17.28 32.7 2048.48 9.66 4.19 
40rps-60ms 8.87 45.39 63.8 3444.38 13.33 6.12 
40rps-30ms 17.02 37.40 29.0 4455.03 17.62 8.01 

 

  



240 
 

APPENDIX D: BRAIN DEFORMATION PLOTS 

This appendix provides depictions of the trilaterated trajectories of all crystals for each 

specimen. The plots are shown in the plane of rotation for each rotation direction, and all 

severities are included for each specimen.  
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Figure D-1: Sonomicrometry trajectory plots for specimen 846. 
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Figure D-2: Sonomicrometry trajectory plots for specimen 896. 
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Figure D-3: Sonomicrometry trajectory plots for specimen 900. 
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Figure D-4: Sonomicrometry trajectory plots for specimen 902. 
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Figure D-5: Sonomicrometry trajectory plots for specimen 903. 
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Figure D-6: Sonomicrometry trajectory plots for specimen 904. 
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APPENDIX E: CORRIDOR SCALED KINEMATICS 

This appendix provides a depiction of the scaled kinematics used in the data corridor 

aggregation procedures (Chapter 6). The common scaled kinematics were calculated by 

scaling the kinematics of each specimen to match the desired angular velocity (20 rad/s or 

40 rad/s) and pulse duration (30 ms or 60 ms). The scaled kinematics of the five specimens, 

excluding the pilot specimen (846), were averaged to acquire the corridor scaled 

kinematics, presented below. 
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Figure E-1: Original and scaled angular velocity traces each test severity. The maroon dashed 
angular velocity trace indicates the common scaled corridor kinematics. The dotted red lines 

indicate the target peak angular velocity and pulse duration. 
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APPENDIX F: FE EVALUATION SCORES 

This appendix provides the FE brain model evaluation results for every specimen 

(Chapter 7). The following table provides the average and standard deviation of the 

weighted CORA score for all corresponding nodes to the sonomicrometry experiments.  

Table F-1: Average weighted CORA values for the GHBMC and SIMon models. 

  846 896 900 902 903 904 

GHBMC 

Absolute 0.434 ± 0.027 0.486 ± 0.031 0.554 ± 0.027 0.489 ± 0.049 0.498 ± 0.039 0.505 ± 0.050 

Relative 0.432 ± 0.029 0.499 ± 0.041 0.557 ± 0.030 0.497 ± 0.050 0.511 ± 0.043 0.505 ± 0.049 

Scaled 0.430 ± 0.025 0.483 ± 0.029 0.555 ± 0.028 0.503 ± 0.052 0.502 ± 0.029 0.506 ± 0.053 

Morphed 0.436 ± 0.027 0.512 ± 0.035 0.561 ± 0.048 0.517 ± 0.063 0.529 ± 0.045 0.500 ± 0.048 

SIMon 

Absolute 0.389 ± 0.029 0.407 ± 0.041 0.490 ± 0.024 0.472 ± 0.053 0.460 ± 0.031 0.425 ± 0.015 

Relative 0.372 ± 0.041 0.404 ± 0.034 0.481 ± 0.017 0.471 ± 0.054 0.433 ± 0.041 0.417 ± 0.017 

Scaled 0.390 ± 0.026 0.405 ± 0.041 0.492 ± 0.031 0.467 ± 0.051 0.457 ± 0.030 0.419 ± 0.025 

Morphed 0.344 ± 0.034 0.349 ± 0.037 0.437 ± 0.016 0.427 ± 0.029 0.411 ± 0.031 0.366 ± 0.024 

 

The following plots depict the average weighted CORA scores for each comparison 

method for each specimen for the GHBMC (Figure F-1) and SIMon (Figure F-2) models. 
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Figure F-1: The weighted CORA for all rotational loading conditions in the sagittal (sag), 
coronal (cor), and axial (axi) directions for all specimens for GHBMC. 
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Figure F-2: The weighted CORA for all rotational loading conditions in the sagittal (sag), 
coronal (cor), and axial (axi) directions for all specimens for SIMon.  
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APPENDIX G: FE SENSITIVITY RESULTS 

This appendix provides the model material sensitivity results for the GHBMC (Figure 

G-1) and SIMon (Figure G-2) FE brain models (Chapter 8). The following plots depict the 

absolute value of the regression coefficients for every node in the models for the three 

rotation directions. The viscoelastic materials have two plots, for the complex modulus (E) 

and damping (D). The depicted nodes must have a regression coefficient greater than 0.1 

and a p-value less than 0.05. For materials that depict no highlighted nodes, brain 

deformation was not sensitive to the change in the material parameter for the given 

thresholds. 
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Figure G-1: GHBMC material sensitivity regression for the sagittal, coronal, and axial rotations 

for all materials. 
 

 

 

 

 



265 
 

 
Sagittal Coronal Axial 
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Figure G-2: SIMon material sensitivity regression for the sagittal, coronal, and axial rotations for all 

materials. 
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