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Introduction

Let G be a semisimple simply connected algebraic group over a field k of charac-

teristic p > 0. We also assume p 6= 2. Consider G-mod, the category of rational

G-representations. Let R be the root system of G. Let Uζ be the Lusztig quan-

tum group associated to the root system R, over a field K of characteristic zero,

specialized at a root of unity ζ ∈ K. Consider Uζ-mod, the category of finite dimen-

sional weight Uζ-modules of type 1. The two cases are closely related if the root of

unity ζ has the order equals to p. The modules in the two cases have weights in the

same weight lattice X; they are both highest weight categories with the poset X+

of dominant weights (note, however, that G -mod does not have projectives and has

enough (infinite dimensional) injectives, while Uζ -mod has both enough injectives

and projectives); the standard modules in two cases, indexed by the same highest

weight γ ∈ X+, have the same character χ(γ) given by Weyl’s formula; we have, in

both cases, the linkage principle involving the affine Weyl group action; the trans-

lation functors between two orbits are defined in the same way and share similar

properties in the two cases; the standard modules in both cases have certain filtra-

tions satisfying a sum formula (Jantzen filtration); the Frobenius kernel G1 and the

small quantum group u provide infinitesimal versions (G1T -mod and uU0
ζ -mod) of

G -mod and Uζ -mod. General theories including most of these can be found in [16,

II] for the algebraic group representations and in [4] or [16, II.H] for the quantum

group representations. In case p is large enough, the infinitesimal versions of G-mod

and Uζ-mod are even described using a common combinatorial category (Andersen-

Jantzen-Soergel [2]), which implies that the multiplicities of an irreducible module in

a standard module (hence the irreducible characters) in the two cases are the same if

the weights involved are small.

For general p, we have a better understanding on the quantum case than on the

algebraic group case. Since the Kazhdan-Lusztig correspondence (see §1.5) provides,
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under little restriction on p, an equivalence between Uζ-mod and a certain subcate-

gory of the affine Lie category O, most of what is known for the affine Lie algebra

representations directly applies to the quantum case. On the affine Lie algebra side:

(1) The characters of the irreducible modules are calculated in terms of the

Kazhdan-Lusztig polynomials Px,y(t) associated to the affine Weyl group.

(Kashiwara-Tanisaki [17, 18] and Kazhdan-Lusztig [21])

(2) We have a standard Koszul grading. (Shan-Varagnolo-Vasserot [40])

By (1), the characters for the irreducible Uζ-modules in a regular orbit are explicitly

expressed as follows. Writing regular weights as w.λ with λ in the top antidominant

(p-)alcove C− and w in the affine Weyl group Wp,

(0.0.1) chLζ(w.λ) =
∑

y.λ∈X+

(−1)l(w)−l(y)Py,w(−1)χ(y.λ),

where Lζ(w.λ) is the irreducible Uζ-module of highest weight w.λ ∈ X+.

The formula (0.0.1) (the Lusztig character formula) also give a homological inter-

pretation of the Kazhdan-Lusztig polynomials as the dimensions of Ext between a

standard module and an irreducible module

(0.0.2)
∞∑
n=0

dim ExtnUζ(∆ζ(y.λ), Lζ(w.λ))tn = tl(w)−l(y)Py,w(t−1),

and between irreducible modules

(0.0.3)
∞∑
n=0

dim ExtnUζ(Lζ(y.λ), Lζ(w.λ))tn =
∑
z∈Wp

tl(w)+l(y)−2l(z)Pz,w(t−1)Pz,y(t
−1),

for all y.λ, w.λ ∈ X+. (The weight λ is still regular.)

The regular condition in (0.0.1) is not a real restriction, because applying the trans-

lation functor to the formula (0.0.1) provide irreducible characters in the orbit of a

singular weight µ with no difficulty. However, we cannot do the same for the homolog-

ical formulas (0.0.2), (0.0.3) because the degree information adds much uncertainty
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in putting the regular formulas together. This can be done using the grading result

(2) above. We do this in Part II. The result proves a conjecture of Parshall-Scott

([36, Conjecture III]) and is similar to the finite dimensional semisimple Lie algebra

result of Soergel [41].

How about the algebraic group case? We don’t have (1) in the algebraic group

case in general (see §3.2 for more discussion). We need two significant restrictions,

even in the regular case, when interpreting the Kazhdan-Lusztig polynomial: The

weights need be small, the prime p needs be large. We don’t know, in particular,

the dimensions of Ext spaces between arbitrary irreducible G-modules. A possible

solution is to consider the “reduction mod p” from the quantum case to the algebraic

group case (see §1.3). If one replaces the irreducible modules in the homological

formulas (0.0.2), (0.0.3) by appropriate reduction mod p modules (and, of course,

replace ExtUζ by ExtG), then the formula, for all (regular) weights, is shown in [9]

to be valid for p � 0. This gets rid of the “small weights” restriction. A conjecture

of Parshall-Scott ([36, Conjecture II]) is that this should work for any p (under the

Kazhdan-Lusztig equivalence), which will get rid of the other restriction. “One half”

of this conjecture follows from Proposition 12.2.

Note here that there still remains the problem of “translating” the regular result

to singular blocks. In fact, [36, Conjecture II] has no restriction on the singularity

of the weights. Similarly to the quantum case, this will follow from the regular

formula if we have an analogue of (2) for the algebraic group case. This is related to

[36, Conjecture I], where a particular associated graded algebra of a finite dimensional

(quasi-hereditary) algebra A, where A-mod is equivalent to a subcategory (truncation

by a finite poset ideal) of G -mod, is conjectured to be “(standard) Q-Koszul”. (We

explain this sentence in §4.2.)

Now we consider a pr-th root of unity ζ instead of a p-th root of unity. Everything

in the previous paragraphs makes sense since we can still reduce mod p from the
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quantum side to G -mod. This reduction mod p method, in fact, is not new and was

studied by Lin in [25]. Part III concerns the reduction mod p from quantum groups at

pr-th roots of unity. We check that the r > 1 analogues of the conjectures above are

not true. We also prove that the extensions in Uζ-mod reduces mod p to extensions

in G -mod. To be more precise, the dimension of Extn in G between reduction mod

p modules is greater than the dimension of Extn between the corresponding modules

in Uζ -mod. As a corollary, we obtain a result similar to that of Franklin [14] on the

maps between standard modules.

The thesis starts with a preliminary part (Part I), where we explain our settings (§1

and §2.1, §2.2); review the translation functors in §2.3; discuss the Lusztig conjectures

(§3.2) and the Parshall-Scott conjectures (§4) we have mentioned in the introduction.
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Part I. Preliminaries

We assume that p is an odd prime.

1. The representation categories

This section introduces the main categories appearing in the thesis and explain

how they are related.

Uζ-mod (§1.2.1)

G-mod(§1.1)

Ũζ-mod (§1.2.2)

O

Od
∪

§1.2

⊗K

§1.3

⊗k

(§1.5)

KL-corresp. (§1.4)

Figure 1. Character map with the two protagonists in the middle

1.1. The algebraic group case. Let G be a semisimple simply connected algebraic

group over a field k of characteristic p. We also assume that G is defined and split

over Fp ⊂ k. Fix a maximal (split) torus T ⊂ G and a Borel subgroup B ⊃ T in G.

Let R be the root system of G, Σ be the set of simple roots, R+ the set of positive

roots, X = X(T ) be the set of weights, X+ = X+(T ) be the set of dominant weights.

A general theory for the algebraic group G and its representations is well explained

in [16, II].

Our interest is on G-mod, the category of rational G-modules. The category G-

mod is abelian, has enough injectives, and is a highest weight category in the sense of

Cline-Parshall-Scott [6] with the infinite poset (X+, ↑). (See §2.1 for the ordering ↑.)

For each γ ∈ X+, we denote the standard object of highest weight γ by ∆(γ) (which

is the Weyl module often denoted by V (γ)), the costandard object by ∇(γ) (which

is the induced module and is denoted by H0(γ) in [16]), the simple object by L(γ),

and the tilting object by X(γ).
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1.2. The quantum case and the integral case. Let R be a semisimple simply

connected (finite classical) root system as in §1.1. Let (−,−) be a scalar product on

X(T )⊗Z R such that the smaller one among the integers (α, α) for α ∈ R is 2. The

quantum enveloping algebra Uv = Uv(R) is defined over the function field Q(v) by

generators Eα, Fα, Kα, K
−1
α (α ∈ Σ) and relations

KαKα = 1 = K−1
α Kα, KαKβ = KβKα,

KαEβK
−1
α = v(α,β)Eβ,

KαFβK
−1
α = v−(α,β)Fβ,

EαFβ − FβEα = δαβ
Kα −K−1

α

vdα − v−dα
1−aαβ∑
s=0

(−1)s
[
1− aαβ

s

]
α

E
1−aαβ−s
α EβE

s
α = 0,

1−aαβ∑
s=0

(−1)s
[
1− aαβ

s

]
α

F
1−aαβ−s
α FβF

s
α = 0,

where dα = (α,α)
2

(which can be 1, 2, or 3) and aαβ = 〈β, α∨〉 = (β,α)
dα

for α, β ∈ Σ.

The coefficients in the last two relations are defined as follows. Set for each α ∈ Σ

and n ∈ Z

[n]α =
vndα − v−ndα
vdα − v−dα

,

and define the Gaussian binomial coefficients for (n ∈ Z and) m ∈ Z≥0 as[
n

m

]
α

=
[n]α[n− 1]α · · · [n−m+ 1]α

[m]α[m− 1]α · · · [1]α

if m > 0 and [
n

0

]
α

= 1.

Letting U0
v denote the subalgebra of Uv generated by {K±1

α }, U+
v the subalgebra

generated by {Eα}, U−v the subalgebra generated by the {Fα}, we have the triangular
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decomposition

(1.2.1) U−v ⊗Q(v) U
0
v ⊗Q(v) U

+
v

∼−−→
mult

Uv

induced by the muliplication in Uv.

The algebra Uv has an integral form UA over A := Z[v, v−1]. It is defined as the

A -subalgebra of Uv generated by the elements K±1
α and the v-divided powers

E(n)
α =

En
α

[n]!α
, F (n)

α =
F n
α

[n]!α

for n > 0, where [n]!α = [n]α[n− 1]α · · · [1]α. It is shown in [26, 28] that UA also has a

presentation by generators and relations compatible with the presentation for Uv. In

particular, the triangular decomposition (1.2.1) restricts to UA , giving

U−A ⊗A U0
A ⊗A U+

A
∼−→ UA .

Now, given an A -algebra B, one can take the tensor product UA ⊗A B to define the

quantum group over B.

Let r be a positive integer and ζ ∈ C be a primitive pr-th root of unity. Then

specializing v to ζ will give quantum algebras UA ⊗ Z[ζ] and UA ⊗ Q(ζ) at the

root of unity ζ. For our purpose of relating the quantum group representations to

G-mod, a modification on the base rings is necessary: Instead of considering the

above specializations, we take the quantum algebras over a discrete valuation ring

O with the maximal ideal (π), so that the residue field O/(π) is isomorphic to a

field k of characteristic p and the quotient field of O is a field K of characteristic

zero. Such a triple (K,O, k) is called a p-modular system. For example, we take

the localization O := Z[ζ](ζ−1) in C. (If we don’t want to start with taking some

ζ ∈ C, we can set this up as follows. Consider the localization A(v−1,p) and let

O = A(v−1,p)/(1 + v+ · · ·+ vp
r−1). Then the image of v in O is a primitive pr-th root
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of unity, which we rename to ζ. In this case, the residue field k of O is the prime field

Fp, and the quotient field K of O is contained in C.

We denote by Uζ the quantum group Uv ⊗Q(v) K = (Uv ⊗v 7→ζ Q(ζ)) ⊗Q(ζ) K thus

obtained. The integral form UO will be denoted by Ũζ .

1.2.1. The quantum case. The quantum case in this thesis refers to Uζ-mod, the

category of finite dimensional weight Uζ-modules of type 1. We say a (weight) Uζ-

module M has type 1 if the central elements Kpr

α act on M as an identity. The weight

lattice X(U0
ζ ) for Uζ-mod is identified with the weight lattice X(T ) of G, whence we

write X for this common weight lattice. Then Uζ -mod is a highest weight category

with the poset X+ of dominant weights. We denote its standard objects by ∆ζ(γ),

costandard objects by ∇ζ(γ), simple objects by Lζ(γ), and tilting objects by Xζ(γ)

where γ ∈ X+. Another important point is that Uv, and hence Uζ , is a Hopf algebra.

Thus, Uζ-mod has a tensor product. A general theory for Uζ is developed in [4]. See

also [1].

1.2.2. The integral case. The integral version of the category Uζ-mod is Ũζ-mod,

the category of finitely generated (over O) weight Ũζ-modules of type 1. As in the

algebraic group case and the quantum case, the highest weights of highest weight

modules are indexed by the dominant weights. Also as in the two cases, we have a

tensor product of Ũζ-modules using the Hopf algebra structure of Ũζ .

1.3. Reduction mod p. We explain how the integral case provides a direct connec-

tion between the representation theory of G and that of Uζ . Recalling

Ũζ/({Kα − 1}α∈Σ)⊗O k ∼= Dist(G)

from [28], we see that a module M̃ in Ũζ-mod “reduces mod p” to a module M̃ ⊗O k

in G-mod. (Note here that Kα acts as 1 on the type 1 module M̃k.)
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We first relate the standard and costandard modules in G -mod and Uζ -mod. An

O-submodule M̃ of a Uζ-module M is called an admissible lattice if M̃ is O-free, Ũζ-

invariant and K-generates M (i.e., M̃ ⊗O K ∼= M). The admissible lattice M̃ has a

decomposition into weight O-free modules such that M̃γ ⊗O K ∼= Mγ for each γ ∈ X.

Choose a minimal admissible lattice ∆̃ζ(γ) in ∆ζ(γ). This is done simply by picking

a highest weight vector v in ∆ζ(γ) and letting ∆̃ζ(γ) := Ũζv. For the costandard

modules, we dualize1 this to take an admissible lattice ∇̃ζ(γ) in ∇ζ(γ) rather than

dealing with the problem of what is a maximal lattice. Then we have

∆̃ζ(γ)K ∼= ∆ζ(γ), ∇̃ζ(γ)K ∼= ∇ζ(γ).

and

∆̃ζ(γ)k ∼= ∆(γ), ∇̃ζ(γ)k ∼= ∇(γ).

(Write MK := M ⊗O K, Mk := M ⊗O k for an O-module M .) So far we don’t get

any new G-modules. The irreducible Uζ-modules will give rise to the new modules of

our interest. Let’s do that.

Take a minimal admissible lattice L̃min
ζ (γ) in Lζ(γ) and its dual L̃max

ζ (γ) in Lζ(γ)

(Note that Lζ(γ) is self-dual if we take the “τ -dual”. See footnote 1) Then define

∆red
r (γ) := (L̃min

ζ (γ))k, ∇r
red(γ) := (L̃max

ζ (γ))k.

These modules are not irreducible in general. In fact, they can be pretty big, as we

see in the second sentence of the following observation.

Proposition 1.1. Let γ ∈ X+. There is a surjective map ∆(γ) → ∆red
r (γ) (in

G -mod) for all r ∈ N. It is an isomorphism if ∆ζ(γ) ∼= Lζ(γ) (in Uζ -mod).

1We take the “τ -dual” as in [16, II.2.12]. The action of G on the dual module is twisted by the
antiautomorphism τ : G→ G that swaps the positive roots and the negative roots. See [16, II.1.16]
for details on τ . Alternatively, we can use a linear dual in defining the maximal lattice as follows.
Since the linear dual of ∇(γ) is isomorphic to ∆(−w0λ), where w0 is the longest element in the finite

Weyl group W , we can let ∇̃(γ) to be the dual of ∆̃(−w0γ) in ∆ζ(−w0γ).
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Proof. We may assume that L̃min
ζ (γ) = Ũζv where v is the image of a highest weight

vector v in ∆ζ(γ) under the surjective map ∆ζ(γ) →→ Lζ(γ). We also take ∆̃ζ(γ) =

Ũζv. Now the map

∆̃(γ)→→ L̃min(γ)

given by v 7→ v induces the desired surjection

∆(γ)→→ ∆red
r (γ)

if we apply the exact functor −⊗O k. The second claim is trivial. �

Corollary 1.2. For γ ∈ X+, we have

∆(γ)→→ ∆red
r (γ)→→ L(γ)

and

L(γ) ↪→ ∇r
red(γ) ↪→ ∇(γ).

Proof. By Proposition 1.1 and its dual, it is enough to check that ∆red
r (γ) and ∇r

red(γ)

are not zero. But they arise from (nonzero) O-free lattices, hence cannot be zero. �

1.4. The affine case. Let g = gK be the Lie algebra associated to R. It contains a

Cartan subalgebra h, and a Borel subalgebra b ⊃ h. The affine Kac-Moody algebra ĝ

is defined as ĝ = (g⊗K[t, t−1])⊕Kc⊕Kd. We do not give the multiplication here

but refer to [5, Ch.18]. Its (affine) Cartan is ĥ = h ⊕Kc ⊕Kd and the affine Borel

is b̂ = b ⊕ g ⊗ tK[t] ⊕ Kc ⊕ Kd. The category O for ĝ is defined to consist of the

ĝ-modules that are weight and locally b̂-finite. We denote this category O by O. The

algebra g̃ is defined as g̃ = [ĝ, ĝ]. We have g̃ = g⊗K[t, t−1]⊕Kc. Denoted by O is

the category O for g̃.

The category O, as well as O, is a highest weight category (as in [6]). Since the

(integral) weight lattices X̃, for g̃ and X̂ for ĝ are different from the weight lattice X
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for G and Uζ , the highest weights for O, O live in different posets X̃+, X̂+. Therefore,

it should not be confusing if we denote the standard, costandard, irreducible objects

in O by ∆(γ′),∇(γ′), L(γ′) with γ′ ∈ X̃+, the standard, costandard, irreducible

objects in O by ∆(γ′′),∇(γ′′), L(γ′′) with γ′′ ∈ X̂+. Though the notation is not very

satisfying for the moment, the distinction between the different cases becomes more

transparent when we replace γ′ by γ̃ in §1.5 and γ′′ by γ̂ in Part II (both defined in

terms of γ ∈ X).

1.5. Kazhdan-Lusztig correspondence. We quote Tanisaki’s summary in [42] of

Kazhdan-Lusztig’s work and refer the reader to the references therein. Consider Od,

the category O for g̃ at the level d, i.e., the full subcategory of O consisting of the

modules on which the central element c acts as d ∈ Q.

Let D be 1 for type An, Dn, En; 2 for type Bn, Cn, F4; 3 for type G2. Let g be the

dual Coxeter number, that is, the integer g − 1 is the sum of all coefficients of the

highest short root. The KL-functor

Fl : O−l/2D−g → Uζ-mod

was defined by Kazhdan and Lusztig in [22, 23, 24]. Here l = pr is the order of ζ.

It is often an equivalence of categories. In that case, Fl maps standard, costandard,

irreducible modules to the standard, costandard, irreducible modules of the same

index (see [42, Theorem 7.1]). To be more precise, note that any γ ∈ X determines

γ̃ = γ + dχ, a weight for Od, where χ is the dual of the central element c. Fixing

d = −l/2D−g the standard, costandard, irreducible objects in Od are indexed by X+

and denoted efficiently by ∆(γ̃),∇(γ̃), L(γ̃). If Fl is an equivalence, then we have

Fl(∆(γ̃)) = ∆ζ(γ), Fl(∇(γ̃)) = ∇ζ(γ), Fl(L(γ̃)) = Lζ(γ).

The following terminology will be useful.



14

Definition 1.3. A positive integer l is KL-good (for R) if the KL-functor Fl is an

equivalence of categories.

Some known conditions for l to be KL-good are found in [42]. For type An, there

is no restriction. For other simply laced cases, l is KL-good if it is greater than or

equal to 3 for Dn, 14 for E6, 20 for E7, and 32 for E8. In non-simply laced cases,

l is KL-good above a bound depending on the type, but they are not known. See

also [27, Conjecture 2.3], which suggests there is always an equivalence between the

quantum case and the affine case.

2. The linkage principle and translation functors

2.1. Linkage on the weights. We have identified the weight lattices for the alge-

braic group case, the quantum case, and the integral case. This subsection defines

the affine Weyl group action and linkage classes on the common weight lattice X.

Consider the R-space X ⊗Z R. For α ∈ R and m ∈ Z, denote by sα,m the reflection

with respect to the hyperplane in X ⊗Z R defined by the equation 〈λ, α∨〉 = m. That

is,

sα,m(γ) = γ − (〈γ, α∨〉 −m)α

for γ ∈ X ⊗Z R. Let W be the finite Weyl group of R. It is the reflection group

generated by the simple reflections:

W = 〈sα = sα,0 | α ∈ Σ〉

For any l ∈ Z, we define the affine Weyl group Wl to be

Wl = 〈sα,ml | α ∈ R, m ∈ Z〉 ∼= lZRoW.

Remark 2.1. The affine Weyl group in the quantum case (defined in [1]) is, in fact,

slightly different. Let lα := l
gcd(l,dα)

for each α ∈ R, where dα = (α,α)
2

. Then the affine
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Weyl group for the qunatum case is defined as

WD,l = 〈sα,mlα | α ∈ R, m ∈ Z〉.

Since we assume that l = pr is odd, we have sα,mlα = sα,ml except the case where

p = 3 and α is a long root in type G2. We denote this affine Weyl group by Wl

(abusing notation in the G2 situation above) in the thesis. See [15, §2.4.3] for a

remark regarding the dual root system.

Let ρ be the sum of all fundamental weights, or equivalently, ρ is the half sum of

all positive roots. We almost always shift the action of Wl on X ⊗Z R by ρ, that is,

we use the dot action given by

w.γ = w(γ + ρ)− ρ

for w ∈ Wl, γ ∈ X ⊗Z R.

The standard (antidominant) l-alcove is by definition

lC− := {γ ∈ X ⊗Z R | − l < 〈γ + ρ, α∨〉 < 0 for all α ∈ R+}.

We call each w.lC− an (l-)alcove. We call each set of the form

F = {γ ∈ X ⊗Z R | l(nα − 1) <〈γ + ρ, α∨〉 < lnα for all α ∈ R+
0 (F ),

〈γ + ρ, α∨〉 = lnα for all α ∈ R+
1 (F )}

an (l-)facet, where R+ = R+
0 (F )tR+

1 (F ). Then the closure w.lC− = w.lC− (for any

w ∈ Wl) is a union of facets and is a fundamental domain for the Wl-action. Given

γ ∈ X ⊗Z R, there is a unique facet F such that γ is contained in the upper closure

F̂ , where we define the upper closure of F as

F̂ = {γ ∈ X ⊗Z R | l(nα − 1) <〈γ + ρ, α∨〉 ≤ lnα for all α ∈ R+
0 (F ),
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〈γ + ρ, α∨〉 = lnα for all α ∈ R+
1 (F )}.

We write a weight γ (i.e., an element of X) as w.λ for some w ∈ Wl and a unique

λ in lC−Z := lC− ∩X. (A more correct notation for this will be lC−Z, but lC−Z looks

better.) We call a weight γ = w.λ regular if λ ∈ lC−. We call γ ∈ X singular if it is

not regular. If γ is dominant, the orbit containing γ is represented by this λ ∈ lC−.

(λ is not in X+, but it does not matter.) The choice of w ∈ Wl is unique if and only

if λ is regular. If λ is regular, this identifies X+ ∩Wl.λ with the subset

W+
l := {w ∈ Wl | w.λ ∈ X+}

of Wl. For a general weight λ, we have preferred representatives. Recall that Wl is

generated by the subset Sl, which we choose to correspond to the simple reflections

through the walls of lC−. Furthermore, (Wl, Sl) is a Coxeter system which has a

natural ordering and a length function l : Wl → Z. Let I := {s ∈ Sl | s.λ = λ},

WI = (Wl)I := {w ∈ Wl | w.λ = λ}, and let W I = (Wl)
I be the set of shortest

coset representatives in Wl/WI . Then for w ∈ W+
l , we have w ∈ W I if and only if

w.λ ∈ ŵ.lC−. Now define

W+
l (λ) := W I ∩W+

l .

We identify W+
l (λ) with the set of dominant weights in the orbit of λ. The uparrow

ordering of X+ is defined to agree with the Coxeter ordering of Wl (restricted to

W+
l (λ)) when restricted to W+

l (λ).λ ⊂ X+. (There is no order relation between two

weights from two different Wl orbits.) See [16, II.6, 8.22] for more discussions on this.

We call γ subregular if λ belongs to a codimension one facet in lC−. The existence

of a regular weight is equivalent to l ≥ h, where h is the Coxeter number. For the

existence of subregular weights, we have the following elementary fact.

Proposition 2.2. [16, II.6.3] Suppose a regular weight exists, and l is not 30 if the

type of R is E8; not 12 if F4; not 6 if G2. (These are the Coxeter numbers.) Then
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any wall of lC− contains a weight, that is, for any s ∈ Sl there exists ν ∈ X with

StabWl
(ν) = {e, s}. This is the case, for all types, in particular, if l ≥ h is a prime

power.

2.2. The orbit decomposition. Now we consider the categories G -mod, Uζ -mod,

and Ũζ-mod. Take l = p when we are in the algebraic group case. Take l = pr when

we talk about the other two cases. By the linkage principle [16, II.6], [4, §8], the

G-modules and Uζ-modules decomposes into the submodules (which are summands)

whose composition factors have highest weights in the same Wl-orbits. Using our

notation, we can write this as the decomposition

G -mod =
⊕
µ∈pC−Z

(G -mod)[W+
l (µ).µ]

and

Uζ -mod =
⊕
µ∈lC−Z

(Uζ -mod)[W+
l (µ).µ].

(Given a highest weight category C with a poset Λ and an ideal ΓEΛ, we set C[Γ] to

be the Serre subcategory of C generated by the irreducibles in {L(γ)}γ∈Γ. See §4.1

for more details.) We call the category summand (G -mod)[W+
l (µ).µ] the orbit of µ

in G -mod (similarly for orbits in Uζ -mod).

2.3. Translation functors. We simultaneously define the translation functors on

G -mod and Uζ -mod. Denoted here by C ′ is either G -mod or Uζ -mod. To specify

and emphasize the tensor structure, we say here that we are taking either (C ′,⊗) =

(G -mod,⊗k) or (C ′,⊗) = (Uζ -mod,⊗K). Let C ′µ be the orbit C ′[W+
l (µ).µ] for each

µ ∈ lC−Z . Set l = p if C ′ = G -mod and l = pr if C ′ = Uζ -mod. When denoting the

distinguished objects in C ′, we use the notation with not subscripts (the algebraic

group notation). For example, by ∆(γ) we mean ∆ζ(γ) if C ′ = Uζ -mod. We have the
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projection

prµ : C ′ → C ′µ

of C ′ to the orbit of µ. Now fix two weights λ, µ ∈ lC−Z . The translation

T µλ : C ′µ → C ′λ

is defined as

(2.3.1) T µλ = prµ(−⊗∆(ν)),

where ν is the unique element in W (µ − λ) ∩ X+. (We can of course define the

translation to be an endofunctor on C ′ as T µλ = prµ(prλ(−) ⊗ ∆(ν)). This is what

Jantzen [16, II.7] does. The translation functors in the quantum case appear in [4].)

Remark 2.3. Replacing ∆(ν) by L(ν) or ∇(ν) in (2.3.1) yields the same translation

functor. In fact, (2.3.1) only depends on the extremal weights of ∆(ν).

The translation functors form adjoint pairs (T µλ , T
λ
µ ) and (T λµ , T

µ
λ ), are exact, and

preserve projectives (if exist) and injectives.

The functors T µλ and T λµ are better studied in case µ is in the closure of the facet

containing λ. Assume that this is the case. We keep this convention throughout the

thesis. Set

(2.3.2) I = {s ∈ Sl | s.λ = λ}, J = {s ∈ Sl | s.µ = µ}.

Then WI = StabWl
(λ), WJ = StabWl

(µ) are the Coxeter subgroups (parabolic sub-

groups) inWl generated by I and J respectively. Our convention can now be expressed

simply as I ⊂ J .

Proposition 2.4. Let y ∈ W+
l (µ). In particular, y.µ is in the upper closure of the

facet containing y.λ.
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(1) T µλ ∆(yx.λ) = ∆(yx.µ) = ∆(y.µ), for any x ∈ WJ .

(2) T λµ∆(y.µ) has a ∆-filtration whose sections are exactly ∆(yx.λ) where each

x ∈ WJ/WI occurs with multiplicity one, and we have

hd(T λµ∆(y.µ)) ∼= L(y.λ).

(3) T µλL(y.λ) = L(y.µ), and T µλL(yx.λ) = 0 for any nontrivial element x ∈

WJ/WI .

(4) [T λµL(y.µ) : L(y.λ)] = |WJ/WI |, and we have

hd(T λµL(y.µ)) ∼= L(y.λ), soc(T λµL(y.µ)) ∼= L(y.λ).

(5) T µλX(ywJ .λ) = X(y.µ)⊕|WJ/WI |, where wJ is the longest element in WJ .

(6) T λµX(y.µ) = X(ywJ .λ), where wJ is the longest element in WJ .

Proof. See [16, II.7.11, 7.13, 7.15, 7.20] for (1)-(4) and [16, II.E.11] for (5),(6). They

are stated and proved in the context of algebraic groups, and some of them are less

general. But all of them are proved in the same way for the quantum case and in the

generality of the statement. �

3. The Lusztig conjectures

3.1. Weyl’s character formula. Consider the group algebra Z[X] of X. It has a

basis {e(γ)}γ∈X with the multiplication e(γ)e(γ′) = e(γ + γ′). For γ ∈ X, the Weyl

character

(3.1.1) χ(γ) :=

∑
w∈W det(w)e(wγ + wρ)∑

w∈W det(w)e(wρ)
=

∑
w∈W det(w)e(w.γ)∑
w∈W det(w)e(w.0)

is defined as an element in the fraction field of Z[X]. This element, while written as

a fraction, belongs to Z[X]. We have for each w ∈ W and γ ∈ X,

(3.1.2) χ(wγ) = det(w)χ(γ).
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If γ ∈ X+, the formula (3.1.1) gives the characters of standard and costandard

modules in many module categories, including G -mod and Uζ -mod. That is, we have

(3.1.3) ch ∆(γ) = ch∇(γ) = ch ∆ζ(γ) = ch∇ζ(γ) = χ(γ).

See, for example, [16, II.5.10].

3.2. Lusztig’s character formula. Let Px,y ∈ Z[t, t−1] be the Kazhdan-Lusztig

polynomial defined for each x, y ∈ Wl. The polynomial Px,y is, in fact, in Z[t2].

Assume for the moment that λ ∈ lC−Z . As conjectured by Lusztig, the characters of

irreducible Uζ-modules in the orbit of λ are given by the Lusztig character formula

(3.2.1) chLζ(w.λ) =
∑
y∈W+

l

(−1)l(w)−l(y)Py,w(−1)χ(y.λ),

assuming l is KL-good. This follows from the Kazhdan-Lusztig correspondence since a

similar character formula in the affine case is proved by Kazhdan-Lusztig [21], Lusztig

[29] and Kashiwara-Tanisaki [17, 18]. See [16, II.H.12] for details and more references.

Lusztig has also conjectured that the characters of irreducible G-modules of small

highest weights are given by the same formula, that is,

(3.2.2) chL(w.λ) =
∑
y∈W+

l

(−1)l(w)−l(y)Py,w(−1)χ(y.λ).

By “small highest weight”, we mean w.λ is in the Jantzen region

ΓJan := {λ′ ∈ X+ | 〈λ′ + ρ, α∨〉 ≤ p(p− h+ 2), ∀α ∈ R}.

This condition arises from the difference between the Steinberg tensor product theo-

rems in the quantum case (with r = 1) and in the algebraic group case. Compare

(3.2.3) L(γ0 + pγ1) ∼= L(γ0)⊗ L(pγ1) ∼= L(γ0)⊗ L(γ1)[1]
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and

(3.2.4) Lζ(γ0 + lγ1) ∼= Lζ(γ0)⊗ Lζ(lγ1) ∼= Lζ(γ0)⊗ V (γ1)[1],

where γ0 ∈ X1 := {γ ∈ X+ | 〈γ + ρ, α∨〉 < l, ∀α ∈ Π}, γ1 ∈ X+. (Here l = p.) We

need to explain the terms: The Frobenius twist −[1] for G is equivalent to the map

f 7→ fp on the coordinate algebra k[G]. (See [16, I.9,II.3].) The Frobenius twist −[1]

for Uζ (see [16, II.H.6]) is of a different nature because it is a map between Uζ and

U(g) the universal enveloping algebra of the Lie algebra g = gK . Since the field K is

of characteristic zero, the Weyl module V (γ1) for g is irreducible and has the Weyl

character χ(γ1).

One now sees that the irreducible characters need to be different for the two cases

when γ1 above is such that chLζ(γ1) 6= χ(γ1)(= ch ∆ζ(γ1)).The Jantzen region is

where the weight γ1 is in the bottom dominant alcove, which is an obvious sufficient

condition for ∆ζ(γ1) ∼= Lζ(γ1) ∼= ∇ζ(γ1). The tensor product theorem (3.2.3), how-

ever, provides all irreducible G-characters if we know the irreducible G-characters in

the region X1.

The Lusztig conjecture for the algebraic group case is proved for p� 0 by Andersen-

Jantzen-Soergel [2] (explicit but very large bounds later given by Fiebig [13]). But

for smaller (yet, possibly, very large) primes, the Lusztig conjecture has many coun-

terexamples found by Williamson [43]. Riche-Williamson [39] then formulate a new

conjecture, which they prove for type A. We don’t state here the new conjecture

which involves the p-Kazhdan-Lusztig polynomials.

For singular weights, one can use the translation functor from a regular orbit to

a singular orbit. Applying the exact functor T µλ to (3.2.1), (3.2.2), Proposition 2.4

(1) provides the irreducible character formula for a general dominant weight w.µ
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(µ ∈ lC−, w ∈ W+
l (µ)) as an alternating sum of the regular character formula:

chLζ(w.µ) =
∑

y∈W+
l (µ)

∑
x∈WI

(−1)l(w)−l(yx)Pyx,w(−1)χ(y.µ)(3.2.5)

chL(w.µ) =
∑

y∈W+
p (µ)

∑
x∈WI

(−1)l(w)−l(yx)Pyx,w(−1)χ(y.µ)(3.2.6)

The formulas (3.2.5), (3.2.6) are, therefore, valid whenever (3.2.1), (3.2.2) are valid.

4. Finite dimensional algebras

4.1. Highest weight categories with finite posets. Given a highest weight cat-

egory C ′ with poset Λ, a truncation C = C ′[Γ] by a poset ideal Γ ⊂ Λ is defined to be

the Serre subcategory of C ′ generated by {L(γ) | γ ∈ Γ}. Its objects are those with

composition factors of the form L(γ), γ ∈ Γ. The category C satisfies

(4.1.1) ExtnC(X, Y ) ∼= ExtnC′(X, Y )

for X, Y ∈ C by the general theory of highest weight categories [6, Theorem 3.9].

This justifies our (abuse of) notation ExtnG(X, Y ) := ExtnC(X, Y ) when X, Y ∈ C =

G -mod[Γ] for some ΓEX+, ExtnUζ(X, Y ) := ExtnC(X, Y ) whenX, Y ∈ C = Uζ -mod[Γ],

etc.

It is also a general fact from Cline-Parshall-Scott [6] that the highest weight cate-

gory C with the finite poset Γ is equivalent toA-mod, the category of finite dimensional

modules over some finite dimensional algebra A. Another way to say that C = A-

mod is a highest weight category is to say that A is a quasi-hereditary algebra. We

apply this to the case C ′ = G -mod and Uζ -mod. Let Γ E X+ be finite. There is a

finite dimensional (quasi-hereditary) k-algebra A such that A-mod is equivalent to

(G-mod)[Γ]; there is a finite dimensional K-algebra Aζ such that Aζ-mod is equivalent

to (Uζ -mod)[Γ]. We denote the standard, costandard, irreducible A-modules (resp.,
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Aζ-modules) by the same notation as when we are in G -mod (resp., Uζ -mod). Trun-

cation with a finite ideal further provides finite dimensional projective A-modules

which did not exist before we truncate. We denote by P (γ) the projective cover of

L(γ) in A-mod and by I(γ) the injective envelope in A-mod of L(γ) with γ ∈ Γ.

Similarly, Pζ(γ) and Iζ(γ) denote projective and injective Aζ-modules. (These exist

already in Uζ -mod.)

The Kazhdan-Lusztig correspondence identifies the algebra Aζ with a certain finite

dimensional algebra arising in a similar way in the affine case. In the affine case, we

have standard Koszulity (of the finite dimensional algebras associated to truncations

of the affine category O) as proved by Shan-Varagnolo-Vasserot [40]. The standard

Koszul grading then is carried over to the quantum case to grade the algebra Aζ (see

[37, §6]).

We want to relate the two algebras A and Aζ as we did in §1.2.2, §1.3. The integral

case corresponds to an algebra Ã which is a free O-module of finite rank. We can

and do choose the algebras A, Ã, Aζ so that

(4.1.2) A ∼= Ã⊗O k and Aζ ∼= Ã⊗O K,

where the O-algebra Ã corresponds to Ũζ . For example, take Aζ as a quotient of the

algebra Uζ and let Ã be the image of Ũζ in Aζ . We also see that Ã-modules reduces

mod p to A-modules as Ũζ-modules reduced mod p to G-modules.

By §2.2, we have

(4.1.3) A =
⊕
µ∈pC−Z

Aµ, Aζ =
⊕
µ∈lC−Z

Aµζ .

Here it should be clear what the algebra summands are: For example, Aµ-mod is

equivalent to (G -mod)[Γ ∩Wp.µ]. The translation functors in G -mod and Uζ -mod

give translation functors for A-mod and Aζ-mod.
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We may assume that Γ is chosen to make the poset ideal of Aµ-mod compatible

with that of Aλ-mod for any two weights λ, µ ∈ pC−Z . By compatibility we mean that

the translations between Aλ-mod and Aµ-mod satisfy Proposition 2.4. For example,

we take Γ to satisfy Γ ∩Wp.λ = {w.λ | w ∈ W+, w ≤ vw0} for some v ∈ W+(µ) :=

W+ ∩W J , where w0 is the maximal element in the finite Weyl group W . Letting λ

be regular, Γ is determined by this condition, so we may assume this to be the poset

ideal we use.

4.2. Forced grading and three conjectures of Parshall-Scott. The setting

(4.1.2) enables us to define a new graded algebra associated to the algebra A. We

introduce some of Parshall-Scott’s works on this “forced grading” method. The forced

grading comes from the natural grading on Aζ , where ζ is a p-th root of unity. The

definition goes as

g̃rA =
⊕
n∈Z≥0

(Ã ∩ radnAζ/Ã ∩ radn+1Aζ)k.

In other words, g̃rA is the associated graded of the filtered algebra A, where the

filtration is {Fn = (Ã∩ radnAζ)k}. We emphasize here that we do not know whether

the algebra A itself is graded (i.e., g̃rA ∼= A). By the decomposition (4.1.3), the

forced graded algebra g̃rA decomposes into g̃rAλ where λ runs through the weights

in pC−.

We restrict ourselves to the case r = 1, (i.e., ζ is a p-th root of unity) and assume

that p is KL-good in this subsection. (All three conjectures from [36] does assume

this.)

4.2.1. The first conjecture of Parshall-Scott in [36] expects g̃rA to be standard Q-

Koszul.
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A positively graded finite dimensional k-algebra B is called Q-Koszul if the grade

zero part B0 is quasi-hereditary and

(4.2.1) extnB(∆0(γ),∇0(γ′)〈m〉) = 0 for all γ, γ′ ∈ Γ unless n = m,

where Γ is the poset for the highest weight category B-mod, extB(−,−) is the Ext

in the category of graded B-modules, ∆0(γ) (resp., ∇0(γ)) is the standard (resp.,

costandard) B0-module of highest weight γ ∈ Γ viewed as a graded B-module con-

centrated in grade 0, and 〈m〉 is the grade shift by m ∈ Z. A positively graded

quasi-hereditary algebra B is called standard Q-Koszul if it satisfies

extnB(∆(γ),∇0(γ′)〈m〉) = 0 for all γ, γ′ ∈ Γ unless n = m,

extnB(∆0(γ),∇(γ′)〈m〉) = 0 for all γ, γ′ ∈ Γ unless n = m,

(4.2.2)

where ∆(γ) (resp., ∇(γ)) is the standard B-module whose head (resp., socle) is in

grade 0. Note that the grade zero part of a positively graded quasi-hereditary algebra

is quasi-hereditary. A standard Q-Koszul algebra is Q-Koszul. A standard Koszul

algebra is standard Q-Koszul; a Koszul algebra is Q-Koszul. (For Koszul and standard

Koszul, We use the definitions that require the algebra to be finite dimensional.) We

refer the reader to [36] for further discussion.

Assuming λ is regular and p � 0, the standard Q-Koszulity of g̃rAλ is proved

in [35]. As another nontrivial example, the forced grading on the Schur algebra

S(5, 5) for p = 2 is standard Q-Koszul [36, §6]. The standard (resp., costandard)

modules in (g̃rAλ)0-mod are the reduction mod p modules ∆red(γ) (resp., ∇red(γ)).

More generally for p ≥ 2h − 2, [32] proves that (g̃rAλ)0 is quasi-hereditary (the

reduced modules playing the role of standard/costandard modules in the highest

weight category (g̃rAλ)0-mod), where λ is still regular. In fact, what [32] proves is
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that the algebra

grÃλ =
⊕
n≥0

(Ãλ ∩ radnAλζ/Ã
λ ∩ radn+1 Aλζ )

is integral quasi-hereditary. See [38, Corollary 3.2].

4.2.2. The second conjecture [36, Conjecture II] says:

dimK ExtnUζ(∆ζ(w.λ), Lζ(y.λ)) = dimk ExtnG(∆(w.λ),∇red(y.λ)),

dimK ExtnUζ(Lζ(w.λ),∇ζ(y.λ)) = dimk ExtnG(∆red(w.λ),∇(y.λ)),

dimK ExtnUζ(Lζ(w.λ), Lζ(y.λ)) = dimk ExtnG(∆red(w.λ),∇red(y.λ)),

(4.2.3)

where λ ∈ pC−Z and w, y ∈ W+
p (λ). Here ∆red(w.λ) is an abbreviation for ∆red

1 (w.λ)

and ∇red(w.λ) is an abbreviation for ∇1
red(w.λ).

The conjecture is, in fact, stated in terms of the finite dimensional algebras in [36,

Conjecture II] (that is, the Ext-spaces are ExtA, ExtAζ in [36]), and is closely related

to the forced grading on the algebra A. If p � 0, then the conjecture is proved by

Cline-Parshall-Scott [9]. The condition on p, as one expects, comes from the Lusztig

conjecture on algebraic groups.

4.2.3. Then, the third conjecture [36, Conjecture III] provides explicit formulas for

the left hand sides of (4.2.3):

∞∑
n=0

dim ExtnUζ(∆ζ(y.λ), Lζ(w.λ))tn =
∑
x∈WJ

(−1)l(x)tl(w)−l(y)P̄yx,w,

∞∑
n=0

dim ExtnUζ(∆ζ(y.λ), Lζ(w.λ))tn =
∑
x∈WJ

(−1)l(x)tl(w)−l(y)P̄yx,w,

∞∑
n=0

dimK ExtnUζ(Lζ(w.λ), Lζ(y.λ))tn =
∑

z∈W+(λ)
x,x′∈WJ

(−1)l(x)+l(x′)tl(w)+l(y)−2l(z)P̄zx,wP̄zx′,y,
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for y, w ∈ W+
p (λ), where P̄y,w(t) = Py,w(t−1). Rather than discussing it further here,

let us move on to Part II where we prove the conjecture.



28

Part II. Ext computations in the quantum case

We are now in the quantum case. Though the setting of the thesis is l = pr,

everything in this part works for any (KL-good) integer l.2

5. Kazhdan-Lusztig theory in regular blocks

We start the part with recalling some known facts in regular blocks. Suppose l is

KL-good for the root system R. A consequence of §1.5 is the dimension formula for

certain cohomology in a regular block.

Let Px,y ∈ Z[t, t−1] be the Kazhdan-Lusztig polynomial associated to x, y ∈ Wl.

Take λ ∈ lC−Z . Then we have

(5.0.1)
∞∑
n=0

dim ExtnUζ(∆ζ(y.λ), Lζ(w.λ))tn = tl(w)−l(y)P̄y,w

for all y, w ∈ W+(λ)(= W+
l , since λ is regular). The bar on the polynomial is the

automorphism on Z[t, t−1] that maps t to t−1.

The formula (5.0.1) follows from the Lusztig character formula (3.2.1) by a chain

of equivalent conditions [16, II.C], independently to the KL-good assumption.

While the character formula in singular blocks readily follows by translating from a

regular block (see §3.2), the homological information does not translate easily between

regular and singular orbits. This is because we cannot determine how to “sum” the

formula (5.0.1). We need a certain parity vanishing property to make it work.

6. More on the translation functors

We prove some more properties of the translation functors that are important in

the proof of Theorem 8.10. Most statements (all except the last proposition) in this

section are valid both in the algebraic group case and in the quantum case for any

2Note that [4] assumes that l is an odd prime power, but the restriction is unnecessary since we have
the linkage principle for all l [1]. See also [15, §2.5].
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positive integer l. We drop the subscript ζ from the notation whenever that is the

case.

Proposition 6.1. Let λ, ν, µ ∈ lC−Z be such that ν is contained in the closure of the

facet containing λ, and µ is contained in the closure of the facet containing ν. Then

for any y ∈ W+, T λµ∆(y.µ) ∼= T λν T
ν
µ∆(y.µ).

Proof. Let I, J as in (2.3.2). We may assume that y ∈ W J .

Consider the tilting module X(ywJ .λ). We check that T λµ∆(y.µ) and T λν T
ν
µ∆(y.µ)

are both submodules of X(ywJ .λ). Since ∆(y.µ) is a submodule of the tilting module

X(y.µ), by exactness of translation T λµ∆(y.µ) is a submodule of T λµX(y.µ). But

T λµX(y.µ) is isomorphic to X(ywJ .λ) by Proposition 2.4 (6). For the same reason

T λν T
ν
µ∆(y.µ) is a submodule of T λν T

ν
µX(y.µ). The latter is isomorphic to X(ywJ .λ),

applying Proposition 2.4 (6) twice.

Now note that T λµ∆(y.µ) and T λν T
ν
µ∆(y.µ) have ∆-filtrations with the same set of

sections, i.e, for each x ∈ W I
J = W I ∩WJ the section ∆(yx.λ) appears exactly once.

It remains to show that there is only one submodule in X(ywJ .λ) which has such a

∆-filtration.

We first determine which standard modules appear in a ∆-filtration of X(ywJ .λ).

The module X(y.µ) has a ∆-filtration exactly one of whose sections is isomorphic

to ∆(y.µ). Any other ∆(z.µ) appearing in the filtration satisfies z < y. Translating

to the λ block gives the multiplicities of all ∆(γ) in a ∆-filtration of T λµX(y.µ) =

X(ywJ .λ) in terms of the ∆-multiplicities of X(y.µ). By Proposition 2.4(2), the

multiplicity of ∆(zx′.λ), for each x′ ∈ WJ ∩ W I , in a ∆-filtration of X(ywJ .λ) is

the same as the multiplicity of ∆(z.µ) in a ∆-filtration of X(y.µ). Since ∆(y.µ) 6∼=

∆(z.µ) implies zWJ ∩ yWJ = ∅, we have in that case ∆(yx′.λ) 6∼= ∆(zx′′.λ) for all

zx′ ∈ zWJ 6= yWJ 3 zx′′. Therefore, each ∆(yx′.λ) for x′ ∈ WJ ∩W I appears exactly

once in the ∆-filtration of X(ywJ .λ).
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Suppose M,M ′ are two submodules of X(ywJ .λ) which have ∆-filtrations with the

same set of sections {∆(yx.λ)}x∈W I
J
. The proposition is proved if we show M = M ′.

The weight ywJ .λ is maximal in M,M ′ and X(ywJ .λ). Also, ywJ .λ appears with

multiplicity one in all three modules. HenceM andM ′ contains the unique submodule

of X(ywJ .λ) isomorphic to ∆(ywJ .λ). Then M/∆(ywJ .λ) and M ′/∆(ywJ .λ) are

submodules of X(ywJ .λ)/∆(ywJ .λ). Here, each ywJs.λ for s ∈ J is maximal with

multiplicity one. In this way, we can show that M ∩ M ′ has a ∆-filtration with

sections {∆(yx.λ)}x∈W I
J
. So M = M ′. �

Composing two opposite translation functors, we get an endofunctor T λµT
µ
λ : C ′λ →

C ′λ. In a special case where λ is regular and µ is subregular, the functor T λµT
µ
λ is

commonly called the s-wall crossing functor and denoted by Θs, where s is the unique

nontrivial stabilizer of µ.

Let λ be regular, and consider the module T λµT
µ
λ ∆(y.λ). By Proposition 2.4.(2),

there is a filtration

T λµT
µ
λ ∆(y.λ) = V0 ⊃ V1 ⊃ · · · ⊃ Vn = 0

such that Vi/Vi+1 = ∆(yxi.λ). Then {x0 = e, · · · , xn} = WJ/WI . Since

(6.0.1) Ext1
C′(∆(ν),∆(ν ′)) = 0 for ν 6< ν ′,

we can arrange the filtration in a way that l(xi) ≤ l(xi+1) holds. Now consider the

subfiltration

T λµT
µ
λ ∆(y.λ) = U0 ⊃ U1 ⊃ · · · ⊃ UN = 0

of {Vi} where the i-th section contains all ∆(yx.λ) with l(x) = i. Using (6.0.1) again,

we have

Ui/Ui+1
∼=

⊕
l(x)=i,x∈WJ/WI

∆(yx.λ).
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For example, if WJ/WI is the symmetric group S3, then the filtration is illustrated in

the following picture.

∆(y.λ)

∆(ys.λ) ∆(yt.λ)

∆(yst.λ) ∆(yts.λ)

∆(ysts.λ)

U1

U0

U2

U3

The filtration {Ui} is maximal, in some sense, among the filtrations of T λµT
µ
λ ∆(y.λ)

whose sections are direct sums of standard modules. To say in what sense it is so, we

prove the following lemma.

Lemma 6.2. Let λ ∈ lC−Z = lC− ∩X, µ ∈ lC−Z , and J be as in (2.3.2). Then

Θs∆(y.λ), whenever defined, is a subquotient of T λµT
µ
λ ∆(y.λ) for any y ∈ W+, x ∈

WJ , s ∈ J .

We actually state and prove the lemma more generally. The only difficulty it adds

is notational. We generalize the s-wall crossing functors to define the facet crossing

functor ΘI
J\I := T λµT

µ
λ with I, J as in (2.3.2). This is compatible with the wall crossing

functor notation as Θs = Θ∅{s}. This notation is useful here because there are many

different facets in play. In the other sections we will go back to using T λµT
µ
λ . Note

that the functor ΘI
J ′ is defined for J ′ ⊂ J \ I if and only if there exists a weight ν

such that {s ∈ Sl | s.ν = ν} = I ∪ J ′. For the wall-crossing functors as in Lemma

6.2, this is always the case by Proposition 2.2.

Lemma 6.3. Let λ, µ, I ⊂ J as in (2.3.2). For any J ′ ⊂ J \ I, y ∈ W+, the module

ΘI
J ′∆(y.λ), whenever defined, is a subquotient of ΘI

J\I∆(y.λ) = T λµT
µ
λ ∆(y.λ).
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A less formal but more illustrative way to state the lemma is to say that the facet

crossings of a standard module are realized in a deeper facet crossing (of the same

standard module).

∆(y.λ)

∆(ys.λ) ∆(yt.λ)

∆(yst.λ) ∆(yts.λ)

∆(ysts.λ)

We provide a simple example as another illustra-

tion. Let R be of type A, I = ∅ and J =

{s, t} ⊂ Sl (i.e., λ regular, µ subsubregular). Then

for any y ∈ W J , the module T λµT
µ
λ ∆(y.λ) has six ∆-

sections. They are ∆(y.λ), ∆(ys.λ), ∆(yt.λ), ∆(yst.λ),

∆(yts.λ), ∆(ysts.λ) = ∆(ytst.λ). The lemma shows

that Θs∆(y.λ) = Θs∆(ys.λ), Θt∆(y.λ) = Θt∆(yt.λ),

Θs∆(yt.λ) = Θs∆(yts.λ), Θt∆(ys.λ) = Θt∆(yst.λ), Θs∆(yst.λ) = Θs∆(ysts.λ),

Θt∆(yts.λ) = Θt∆(ytst.λ) are subquotients of T λµT
µ
λ ∆(y.λ).

Proof of Lemma 6.3. Suppose ΘI
J ′ is defined, that is, there is a weight ν such that

{s ∈ Sl | s.ν = ν} = I ∪ J ′. Since ∆(y.ν) is a subquotient of T νµ∆(y.µ), T λν ∆(y.ν) =

ΘJ ′∆(y.λ) is a subquotient of T λν T
ν
µ∆(y.µ). But by Proposition 6.1, T λν T

ν
µ∆(y.µ) is

isomorphic to T λµ∆(y.µ) = ΘJ\I∆(y.λ). �

Let λ, µ, J be as in (2.3.2) with λ regular (that is, I = ∅).

Corollary 6.4. Let y ∈ W+(µ). Then ΘJ∆(y.λ) = T λµT
µ
λ ∆(y.λ) has a filtration each

of whose sections is isomorphic to Θs∆(yx.λ) for some s ∈ J , x ∈ WJ .

Proof. By Proposition 2.2, for any s ∈ J the functor Θs is defined on C ′λ. We can

construct a desired filtration using Lemma 6.2. �

The following corollary explains the “maximality” of the filtration Ui.

Corollary 6.5. We have for all i

(6.0.2) hdUi =
⊕

l(x)=i, x∈WJ

L(yx.λ).
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Proof. By construction, the head of Ui contains all L(yx.λ) for l(x) = i, x ∈ WJ . This

shows the “⊃” part. Since the head of any Θs∆(γ) is irreducible, Lemma 6.2 shows

that it does not contain anything other than those irreducibles. This shows that the

inclusion “⊃” is an equality. �

In the quantum case when l is KL-good, we further have the following. It requires

the Lusztig conjecture and its consequences.

Proposition 6.6. For each i, we have

(1) Ui ⊂ radi T λµT
µ
λ ∆ζ(y.λ);

(2) radUi = radi+1 T λµT
µ
λ ∆ζ(y.λ) ∩ Ui.

In other words, the submodule Ui of U0 = T λµT
µ
λ ∆ζ(y.λ) has its head in the i-th radical

layer radi T λµT
µ
λ ∆ζ(y.λ)/ radi+1 T λµT

µ
λ ∆ζ(y.λ) of T λµT

µ
λ ∆ζ(y.λ).

Proof. This is clear by Corollary 6.5 and the fact that the ∆ζ-sections in T λµT
µ
λ ∆ζ(y.λ)

extends at their heads, that is,

Ext1
Uζ

(∆ζ(yxs.λ),∆ζ(yx.λ))
∼=←− Ext1

Uζ
(Lζ(yxs.λ),∆ζ(yx.λ))

∼=−→ Ext1
Uζ

(Lζ(yxs.λ), Lζ(yx.λ)),

(6.0.3)

where s ∈ J , xs < x ∈ WJ . Here the first isomorphism is induced by the nonzero map

∆ζ(yxs.λ)→ Lζ(yxs.λ) and is a consequence of the Lusztig character formula. See [7,

Theorem 4.3]. The second isomorphism is induced by the nonzero map ∆ζ(yx.λ) →

Lζ(yx.λ) and is a general fact, which also tells us that the Ext spaces in (6.0.3) are

one dimensional. See for example [16, II.7.19 (d)]. Jantzen’s proof for G-modules

works the same for Uζ-modules.

We provide, nevertheless, a more formal proof. We prove (1), (2) together by

induction on i. If i = 0, then

(1) U0 = T λµT
µ
λ ∆ζ(y.λ) = rad0 T λµT

µ
λ ∆ζ(y.λ);

(2) radU0 = radT λµT
µ
λ ∆ζ(y.λ) = radT λµT

µ
λ ∆ζ(y.λ) ∩ U0.
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Now suppose (1), (2) is true for i−1. By Corollary 6.5, we have Ui ⊂ radUi−1. And

induction hypothesis Ui−1 ⊂ radi T λµT
µ
λ ∆ζ(y.λ) implies radUi−1 ⊂ radi+1 T λµT

µ
λ ∆ζ(y.λ).

Thus (1) holds for Ui. The inclusion radUi ⊂ radi+1 T λµT
µ
λ ∆ζ(y.λ) ∩ Ui in (2) now

follows from Ui ⊂ radi T λµT
µ
λ ∆ζ(y.λ).

For the other inclusion in (2), suppose for contradiction that

radUi 6⊃ radi+1 T λµT
µ
λ ∆ζ(y.λ) ∩ Ui.

This means that there is a surjective map f : Ui → ∆ζ(yx.λ) for some x ∈ WJ whose

restriction to Ui ∩ radi+1 T λµT
µ
λ ∆ζ(y.λ) is still surjective. We call the restriction f ′.

Now recall the ∆ζ-filtration {Vj} of T λµT
µ
λ ∆ζ(y.λ). Take j to be such that Vj = Ui.

Pick s ∈ J with xs < x. We may assume that (switching the order of the filtration if

necessary) there is a short exact sequence

0→ Ui = Vj → Vj−1 → ∆ζ(yxs.λ)→ 0,

and by Lemma 6.2 there is a surjective map g : Vj−1 → Θs∆ζ(yx.λ) whose restriction

to Ui is the map f . By (6.0.3), there is a map h : Θs∆ζ(yx.λ) � N , where N

represents a nontrivial element in Ext1
Uζ

(Lζ(yxs.λ), Lζ(yx.λ)), and the restriction of

h to the submodule ∆ζ(yx.λ) ⊂ Θs∆ζ(yx.λ) has image (isomorphic to) Lζ(yx.λ).

Thus h ◦ g is surjective and h ◦ f , h ◦ f ′ have image Lζ(yx.λ) ⊂ N . But this implies

that the map h ◦ g induces the following two surjective maps

Vj−1 ∩ radi T λµT
µ
λ ∆ζ(y.λ)→ N/Lζ(yx.λ)

and

Vj−1 ∩ radi+1 T λµT
µ
λ ∆ζ(y.λ)→ N/Lζ(yx.λ),

which is a contradiction. This proves (2) for Ui and completes the induction step. �
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7. Grading and parity vanishing

This section is devoted to proving some lemmas in a more general setting of graded

and ungraded highest weight categories and their derived categories. To apply these

lemmas to Uζ -mod, just let the length of the weight w.µ (w ∈ W+
l , µ ∈ lC−Z ) be the

integer l(w). We call w.µ even if l(w) is even, odd if l(w) is odd.

7.1. Parity vanishing. Let D be a triangulated category.

Definition 7.1. Let A,B be classes of objects in D.

(1) We say A is (left) B-even (respectively, B-odd) if Homn
D(X, Y ) = 0 for all odd

(resp., even) n and all X ∈ A, Y ∈ B. Then A is said to have (left) B-parity

if it is either (left) B-even or B-odd.

(2) We say A is right B-even (resp., B-odd) if Homn
D(Y,X) = 0 for all odd (resp.,

even) n and all X ∈ A, Y ∈ B. Then A is said to have right B-parity if it is

either right B-even or right B-odd.

Note that A is B-even if and only if B is right A-even. In case A = {X}, B = {Y },

we simply say that X is Y -even if Homn
D(X, Y ) = 0 for all odd n.

Proposition 7.2. Let

X ′ → X → X ′′ →

be a distinguished triangle in D. If X ′ and X ′′ are Y -even, then X is Y -even. If X ′

and X ′′ are Y -odd, then X is Y -odd. The same is true for right Y -parity.

Proof. This is obvious applying Hom(−, Y ) and Hom(Y,−) to the distinguished tri-

angle. �

Definition 7.3. Let A be a class of objects in D. We define the even closure of A as

EA := {X ∈ D | X is A-even}.
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Similarly we define the right even closure as

AE := {X ∈ D| A is X-even}.

For an object Y ∈ D, we set EY := E{Y } and Y E := {Y }E.

Remark 7.4. We identify a class A with the full subcategory of D with objects in A.

Though E−, −E are not functors, their images are to be seen as full subcategories of

D. By definition the closures are strict subcategories (i.e., a subcategory such that all

objects isomorphic to one of its objects belong to it) that contains 0. By Proposition

7.2, they are also closed under extension.

Proposition 7.5. Let A ⊂ B be classes of objects in D. We have

(1) AE ⊃ BE.

(2) DE = 0, 0E = D.

(3) (EA)E ⊃ A.

(4) E((EA)E) =EA.

The same relations hold for the right closure.

Proof. (1), (2), (3) are immediate from the definition, and (4) follows from (3). �

It is not true in general E(AE) = (EA)E. An easy example is found when D a

derived category of a highest weight category: Take A to consist of a single standard

object.

The proof of the following proposition is left to the reader.

Proposition 7.6. Let D, D′ be triangulated categories and A be a class of objects in

D, B be a class of objects in D′. Let L : D → D′ be a functor and R : D′ → D be its

right adjoint. Then

(1) (LA)E = R−1(AE).

(2) E(RB) = L−1(EB).
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Example 7.7. Consider D = Db(Uζ-mod). Let F be a facet in lC− and λ ∈ F ∩X.

Suppose µ is a weight in F \ F . Let M ∈ (Uζ -mod)[W+
l .µ] ⊂ D. If T λµM ∈ ER

(defined in §7.2), then M = 0.

This is proved as follows. By Proposition 7.6 and Proposition 7.10 below, we have

(T µλ E
L
0 )E = (T λµ )−1((EL0 )E) = (T λµ )−1ER.

But since

T µλ ∆(y.λ)[l(y) + 2m] = ∆(y.µ)[l(y) + 2m],

T µλ ∆(ys.λ)[l(y) + 1 + 2m] = ∆(y.µ)[l(y) + 1 + 2m]

for y ∈ W J , s ∈ J \ I, m ∈ Z, all shifts of ∆(y.µ) for all (dominant) y.µ belong to

T µλ EL0 . So if T λµM ∈ ER, then Homn(∆(y.µ),M) = 0 for all n, which implies M = 0.

7.2. Parity vanishing in a highest weight category. Let C be a highest weight

category with a finite poset Λ of weights. It has standard objects ∆(λ), costandard

objects ∇(λ), irreducible objects L(λ) for λ ∈ Λ. We sometimes call the objects in C

modules. Let us also assume that EndC(L(λ)) is one dimensional for all λ ∈ Λ. Take

the bounded derived category Db(C). An object in C is identified via the obvious

inclusion C → Db(C) with an object in Db(C) concentrated in degree 0. Note that for

X, Y ∈ C, we have ExtnC(X, Y ) = HomDb(C)(X, Y [n]). We omit the subscripts and use

the notation Homn(−,−) = HomDb(C)(−,−[n]).

We further assume that the set Λ is equipped with a length function l : Λ →

Z. Set E0 to be the full subcategory of Db(C) whose objects are the direct sums

of ∇(λ)[l(λ) + 2m] for λ ∈ Λ, m ∈ Z. Then Ei is defined inductively as the full

subcategory of Db(C) such that

X ∈ Ei ⇔ ∃ a distinguished triangle X ′ → X → X ′′ → with X ′ ∈ Ei−1, X
′′ ∈ E0.
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Set E to be the union
⋃
i Ei. This is by construction a subcategory of ER defined

in [7], whose defining condition is

X ∈ Ei ⇔ ∃ a distinguished triangle X ′ → X → X ′′ → with X ′, X ′′ ∈ ERi−1,

with E0 = ER0 . In fact, it is implicit in (the proof of) the recognition theorem [7, (2.4)

Theorem] that ER = E . We make it explicit.

Proposition 7.8. Let A be a class of objects in Db(C). Then the following conditions

are equivalent.

(1) A ⊂ ER.

(2) A ⊂ E.

(3) For each X ∈ A, we have Homn(∆(λ), X) = 0 for all λ ∈ Λ and all integers

n 6≡ l(λ) mod 2.

Proof. It is enough to consider the case in which A consists of a single object X.

The implications (2) ⇒ (1) ⇒ (3) are clear. (3) ⇒ (2) is the only nontrivial step.

Although it is proved in the proof of [7, (2.4) Theorem], we provide a full proof

because it contains an important construction.

Suppose Homn(∆(λ), X) = 0 for n 6≡ l(λ) mod 2. Let Y0 = X. We show that

we can construct Y0, · · · , Yi ∈ Db(C) inductively. It is enough to show that we can

find a distinguished triangle Yi+1 → Yi → ∇(λi)[ni] → such that (i) ni ≡ l(λi) mod

2; (ii) the cohomology H•(Yi+1) has composition factors with lower highest weights

compared to the composition factors in H•(Yi) (the meaning of this condition will

become clearer in the course of the proof); (iii) Homn(∆(λ), Yi+1) = 0 for n ≡ l(λ)+1

mod 2. Pick a maximal weight λi among the highest weights of the composition factors

in H•(Yi). Say it is in Hni(Yi). Since λi is maximal, by universal property of ∇(λi),

there is a nonzero map from Hni(Yi) to ∇(λi). This map lifts to a morphism from

Yi to ∇(λi)[ni] in the derived category Db(C). So we get a distinguished triangle
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Yi+1 → Yi → ∇(λi)[ni]→. Since we took a map to ∇(λi) whose preimage contains a

composition factor of H•(Yi) isomorphic to L(λi), we have

[H•(Yi+1) : L(λi)] < [H•(Yi) : L(λi)],

and all the other differences between H•(Yi) and H•(Yi+1) involve only the compo-

sition factors in ∇(λi)/L(λi) which only has weights lower than λi. Thus we have

the condition (ii). Since Homn(∆(λi), Yi) = 0 for n ≡ l(λi) + 1 mod 2, the ni should

satisfy the condition (i). Finally (i) and the right ∆(λ)-parity of Yi implies (iii). �

Remark 7.9.

(1) In fact, the construction of the distinguished triangle in the proof does not use

the right ∆(λ)-parity of X. The same induction in the proof works removing

the conditions (i), (iii). This shows that all complexes are filtered by shifts of

costandard modules. A complex belongs to the category E when there appear

the “correct shifts” only. For example, let C be (a truncation of) G-mod or Uζ-

mod with l ≥ h. So 0 is a regular weight, and L(0) = ∆(0) = ∇(0). Denoting

by s the reflection through the upper wall of C, we have short exact sequences

0 → L(0) → ∆(s.0) → L(s.0) → 0 and 0 → L(s.0) → ∇(s.0) → L(0) → 0

of Uζ-modules in the orbit of the weight 0. Then ∆(s.0) is not in ER, even up

to shifts, because both ∇(0) and ∇(0)[−1] appear when one applies the above

construction of distinguished triangles:

∇(0)⊕∇(0)[−1] = L(0)⊕ L(0)[−1] ∼= Y1 → Y0 = ∆(s.0)→ ∇(s.0)→,

∇(0)[−1] ∼= Y2 → Y1 → ∇(0)→,

0 = Y3 → Y2 → ∇(0)[−1]→ .

(2) If the Yi, λi, ni are as in the proof, the character of X is given by Σi(−1)ni [∇(λi)].

By (1) this is true for any X ∈ Db(C). Then X is in ER if and only if there is no
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cancellation in the character formula. In the example above, ∇(0) and ∇(0)[−1]

cancel each other in characters, hence are invisible in the character formula.

(3) The construction of “realizations” in the proof can be used in describing birth

and death of extensions. Suppose N ∈ ER and Y• is a sequence of distinguished

triangles as above that realizes N . Then the “difference” between each adjacent

terms in the sequence {Hom•(M,Yi)}i is Hom•(M,∇(λi)[mi]). Further descrip-

tion involves many uncertainties, since usually do not know Ext•(M,∇(λ′)) or

the induced maps between Ext spaces. But, for example, if M = ∆(λ), then

we know everything: {Hom•(M,Yi)}i increase at i in degree mi when λi = λ.

More generally, suppose M has a ∆-filtration such that no ∆(λ) appears in

the filtration more than once. (We are thinking of the wall-crossing module

T λµT
µ
λ ∆(λ) in G -mod or in Uζ -mod.) Then Hom•(M,∇(λi)[mi]) is zero ex-

cept in degree 0 where it is either zero or one dimensional. Once we know

these homomorphisms, we can find Hom•(M,Ym), · · · , Hom•(M,Y0) succes-

sively. The first terms Hom•(M,Yi) are 0 until we reach the first i = i0 such

that Hom(M,∇(λi)) = Hom0(M,∇(λi)) = Hommi(M,∇(λi)[−mi]) is nonzero

(we know that λi0 = y.λ); then the nonzero map from Vi to ∇(λi0) adds a

dimension to Hom•(M,Yi0) at degree mi0 ; then Hom•(M,Yi) is isomorphic to

Hom•(M,Yj+1) until we reach the second i = i1 such that Hom(M,∇(λi)) 6=

0; this time the nonzero map from Vi to ∇(λi1) either adds a dimension to

Hom•(M,Yi1) at degree mi1 or subtract a dimension from Hom•(M,Yi1) at de-

gree mi1 + 1; and it goes on. That is, Hom•(M,Yi) changes, by dimension one,

in one degree, precisely at such i’s. Whether it adds an extension or it kills one

depends on the maps in the long exact sequence

→ Hommi(M,Yi)→ Hommi(M,∇(λi)[−mi])→ Hommi+1(M,Yj+1)→ .
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If the second map is nonzero and the third map zero, Hom•(M,Yi) increases at

degree mi. If the third map is nonzero then Hom•(M,Yi) decreases at degree

mi + 1 (we are going from i+ 1 to i). These two are the only possibilities since

Hommi(M,∇(λi)[−mi]) cannot have dimension more than one.

We are mostly interested in the case in which A in Proposition 7.8 is the set

{L(λ)[l(λ)] | λ ∈ Λ}. We say that M ∈ C has parity if it has L-parity for any

irreducible L ∈ C. This is equivalent to M having a parity projective resolution, i.e.,

a projective resolution P• such that

P (λ) is a direct summand of Pi ⇒ i ≡ l(λ) + ε mod 2,

where ε is either 0 or 1 (depending on M). Then {L(λ)[l(λ)] | λ ∈ Λ} ⊂ EL ∩ ER if

and only if all standard modules have parity. (The ε in a parity projective resolution

of ∆(λ) is determined by the equality ε ≡ l(λ) mod 2.) Following [7], we say that C

has a Kazhdan-Lusztig theory if the set {L(λ)[l(λ)] | λ ∈ Λ} is contained in ER (and

EL, but the two conditions are the same under duality).

In the case of Uζ-modules, each L(w.λ)[l(w)] for λ ∈ lC−Z does belong to EL ∩ ER.

(The length function we use in defining EL and ER is, of course, the usual length

function on Wl.) This follows from Proposition 7.8 and (5.0.1) (and its dual), since

Px,y is a polynomial on t2.

Letting D = Db(C), the recognition theorem can be formulated in our notation

from §7.1 as follows.

Proposition 7.10. We have

(EL0 )E = ER and E(ER0 ) = EL.

An immediate consequence of this (and Proposition 7.5) is that ER, EL are closed

in the sense that (E(ER))E = ER and E((EL)E) = EL.
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7.3. Linearity and parity. In this section, we consider positively graded highest

weight categories. Let C be a highest weight category as in §7.2. Identify C with

the category of (finite dimensional) A-modules for some (finite dimensional quasi-

hereditary) algebra A. What we assume now is that A is a positively graded algebra

and A0 is semisimple. We let Ĉ be the category of graded A-modules. So we have the

“forget the grading” functor F : Ĉ → C with F 〈1〉 ∼= F . Here 〈1〉 is the grade shift

defined by (M〈1〉)i = M i−1 where M i denotes the grade i component of M ∈ Ĉ.

We call a graded module M̂ ∈ Ĉ a (graded) lift of M ∈ C if F (M̂) ∼= M . For any

irreducible L(λ) ∈ C, let L̂(λ) ∈ Ĉ be the irreducible of highest weight λ concentrated

in grade 0, let ∆̂(λ) be the lift of ∆(λ) whose head is L̂(λ), let ∇̂(λ) be the lift of

∇(λ) whose socle is L̂(λ), let P̂ (λ) be the projective cover of L̂(λ) in Ĉ, and let Î(λ)

be the injective envelope of L̂(λ) in Ĉ. Of course, P̂ (λ) lifts P (λ) and Î(λ) lifts I(λ).

Recall that M ∈ Ĉ is called linear if it has a projective resolution P = P• such

that the head of P−i is homogeneous of grade i, in other words, extn(M, L̂(λ)〈i〉) =

0 unless i = n for any λ ∈ Λ. We call such a projective resolution a linear projective

resolution. By definition, Ĉ is Koszul if each irreducible L̂(λ) is linear for any λ ∈ Λ.

It is standard Koszul if each standard module ∆̂(λ) for λ ∈ Λ is linear and each

costandard module is colinear, i.e., has an injective resolution I• such that the socle

of Ii is homogeneous of grade −i. If C has a duality, then the condition on costandard

modules follows from the one on standard modules.

Compare the following with Proposition 7.2.

Proposition 7.11. Suppose there is a short exact sequence

0→M →M ′ →M ′′ → 0

in Ĉ. Suppose M ′,M ′′ are linear. If M is concentrated in grades ≥ 1, then M〈−1〉 is

linear.
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Proof. Let P, P ′, P ′′ ∈ Db(Ĉ) be minimal projective resolutions of M,M ′,M ′′ respec-

tively. Automatically, P ′, P ′′ are linear. There is a distinguished triangle

P → P ′ → P ′′ → P [1]→ .

Positivity of grading and the assumption on M implies that the degree n term of Pn

of P is generated by grade n + 1 or greater. By linearity, the kernel of P ′ → P ′′ in

degree n should be generated by grade n, but the image of P → P ′ is in grades n+ 1

or greater. This shows that the map P → P ′ is zero (in each degree). So we have a

short exact sequence

0→ P ′ → P ′′ → P [1]→ 0.

It follows that P [1] is linear, and so is P 〈−1〉 = P [1][−1]〈−1〉. Hence M〈−1〉 is

linear. �

Corollary 7.12. Suppose there is a short exact sequence

0→M →M ′ →M ′′ → 0

in Ĉ, and M ′,M ′′ linear. If M is concentrated in grades ≥ 2, then M is 0.

Proof. By Proposition 7.11, there is a surjective map P0 → M where P0 ∈ Ĉ is

generated by its components in grade 1. Since M is concentrated in grades ≥ 2, the

image of the map P0 →M is zero, and hence M = 0. �

There are analogues of the categories ER, EL for Db(Ĉ). The category ÊR (denoted

by ER in [36]) is defined as the union of ÊRi where ÊRi is defined inductively as follows.

Set ÊR0 to be the full subcategory of Db(Ĉ) whose objects are the direct sums of

∇̂(λ){m} for λ ∈ Λ, m ∈ Z. Here {−} is the shift defined as {1} = 〈1〉[1]. Then we

define ÊRi to be the full subcategory of Db(Ĉ) such that

X ∈ ÊRi ⇔ ∃ a distinguished triangle X ′ → X → X ′′ → with X ′ ∈ ÊRi−1, X
′′ ∈ ÊR0 .
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The dual category ÊL is defined dually. There is also a version of the recognition

theorem (Proposition 7.8), which is proved in a similar way.

Proposition 7.13. [36, Theorem 3.3] Let X ∈ Db(Ĉ). Then

X ∈ ÊR ⇔ Homn
Db(Ĉ)(∆̂(λ), X〈m〉) 6= 0 implies m = n (for all λ ∈ Λ).

Thus, standard Koszulity (and its dual) is equivalent to that ÊR (and ÊL) contains

all irreducibles in Db(Ĉ). We can combine ÊR and ER to define a category studied in

[8]. We will call it ERgr, following [8, §1.3]. Let ERgr,0 := Ê0 ∩ ER0 , where we view ER0
a subcategory of Db(Ĉ), pulling back via the forgetful functor. Thus ERgr,0 consists of

direct sums of ∇̂(λ){l(λ) + 2m}, m ∈ Z, λ ∈ Λ. The category ERgr is the union of all

ERgr,i, where ERgr,i is inductively defined as

X ∈ ERgr,i ⇔ ∃ a distinguished triangle X ′ → X → X ′′ →

with X ′ ∈ ERgr,i−1, X
′′ ∈ ERgr,0.

Using this, the notion of a graded Kazhdan-Lusztig theory is introduced in [8]: C is

said to have a graded Kazhdan-Lusztig theory if ERgr contains {L(λ){l(λ) + 2m} | λ ∈

Λ,m ∈ Z}.

We have the third recognition theorem.

Proposition 7.14. [8, Theorem 1.3.1] Let X ∈ Db(Ĉ). Then

X ∈ ERgr ⇔ Homn
Db(Ĉ)(∆̂(λ), X〈m〉) 6= 0 implies m = n and n ≡ l(λ) (for all λ ∈ Λ).

This shows that ERgr = F−1ER ∩ ÊR, where F is the forgetful functor from Db(Ĉ)

to Db(C) induced by the forgetful functor from Ĉ to C. Therefore, C has a graded

Kazhdan-Lusztig theory if and only if C has a Kazhdan-Lusztig theory and is standard

Koszul.
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We conclude the section by presenting a relation between linearity and parity. It

will apply to the quantum case.

Proposition 7.15. Suppose we have Ext1
C(L(λ1), L(λ2)) = 0 whenever l(λ1) ≡ l(λ2)

mod 2. If M ∈ C has a linear lift M̂ ∈ Ĉ, then M has parity. In particular, standard

Koszulity implies a Kazhdan-Lusztig theory.

Proof. Let P• be a linear projective resolution of M̂ . Then Pi → Pi+1 maps the head

of Pi, which is in grade −i, to the second radical layer of Pi+1. Then by Lemma 8.7

below, Pi and Pi+1 have opposite parity. In other word, P• is a parity resolution of

M̂ . Let L be any irreducible object in C. Then ExtnC(M,L) = HomC(P−n, L) can

be nonzero only when P−n and L have the same parity, thus M has L-parity. The

claim follows. The last sentence of the Proposition is obtained by taking M to be a

standard module. �

8. Koszulity and singular Kazhdan-Lusztig theory

Let for J ⊂ Sl and y, w ∈ W J

P J
y,w :=

∑
x∈WJ

(−1)l(x)Pyx,w.

This is called a parabolic Kazhdan-Lusztig polynomial [10, 20].

Our goal is to show that the formula

(8.0.1)
∞∑
n=0

dim ExtnUζ(∆ζ(y.µ), Lζ(w.µ))tn = tl(w)−l(y)P̄ J
y,w

holds for all µ ∈ lC−Z , y, w ∈ W+(µ), where J = {s ∈ Sl | s.µ = µ}. Assuming

that l is KL-good, it is enough to prove the formula (8.0.1) in O at the negative level

d = −l/2D − g. Recall that we let γ̃ = γ + dχ. Identifying the affine Weyl group for

Uζ with the one for g̃ as in §1.5, we have w.µ̃ = w̃.µ.
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To apply [40] more easily, we bring the formula into O. Given a weight µ̃ = µ+ kχ

for g̃, we fix a weight

µ̂ := µ+ kχ+ bδ

for ĝ, where δ is the imaginary part and b is some number we don’t care as long as

it makes µ̂ lie out of the critical hyperplanes. Recall that the integral Weyl group of

ξ ∈ ĥ∗ (resp., h̃∗) is defined to be generated by the simple reflections corresponding

to the simple roots α such that (α, α) divides 2(ξ + ρ, α), where (−,−) is a non-

degenerate bilinear form on ĥ∗ (resp., h̃∗) extending one on h∗. Since µ̂ lies out

of the critical hyperplanes, the integral Weyl group of µ̂ is isomorphic to Wl as a

Coxeter group, and is denoted by Wl for convenience. (We can also use the (Coxeter)

ordering on W+(µ) as the poset ordering in the affine cases. See [33, Appendix I].)

By [33, Corollary 3.2] and the preceding footnote in [33], the orbit of µ̃ in O (i.e., the

truncation O[Wl.µ̃] of O, which is a direct summand) is isomorphic to the orbit of µ̂ in

O+. Here O+ is the full subcategory of O consisting of the modules whose composition

factors are of integral dominant highest weight (dominant for the subalgebra g).

In this setting, the formula (8.0.1) is equivalent to

(8.0.2)
∞∑
n=0

dim ExtnO+(∆(y.µ̂), L(w.µ̂))tn = tl(w)−l(y)P̄ J
y,w

for µ ∈ lC−Z , y, w ∈ W+(µ).

Applying the truncation of highest weight category (§4.1) to C ′ = O+, it is enough

to prove (8.0.2) in C = O+[Γ] for a finite ideal Γ containing y.µ̂, w.µ̂.

8.1. Koszul grading and parity vanishing. We assume in this subsection that

the level d is an integer. This is in order to use the result of [40]. We also assume

that l > h. We see in (the proof of) Theorem 8.10 below that these restrictions are

not necessary for our result.
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Let Cλ̂, Cµ̂ be truncations of λ̂ and µ̂ orbits as in [40, §3.4]. That is, there is some

v ∈ Wl, which we do not keep track of, such that Cλ̂ = O+[Λ] where Λ = {w.λ̂ ∈

W+.λ̂ | w ≤ v}. And Cµ̂ is similarly defined. (In the notation of [40], Cλ̂ =vO∅I,−

and Cµ̂ =vO∅J,−.) We assume that λ̂ is regular.3 Then we have the following result of

Shan-Varagnolo-Vasserot.

Theorem 8.1. [40, Theorem 3.12, Lemma 5.10] The categories Cλ̂, Cµ̂ are standard

Koszul. Letting Ĉλ̂, Ĉµ̂ be the corresponding categories of graded modules, there is

a graded translation functor T̂ µλ : Ĉλ̂ → Ĉµ̂ which lifts the (ungraded) translation

functor T µλ : Cλ̂ → Cµ̂. (See [40, Proposition 4.36] and the remark below.) That is,

F ◦ T̂ µλ ∼= T µλ ◦ F where F is the functor (on both Ĉλ̂ and Ĉµ̂) that forgets the grading.

The functor T̂ µλ satisfies T̂ µλ L̂(w.λ̂) = L̂(w.µ̂) for w ∈ W J .

Remark 8.2. The condition “d+N > f” in [40, Lemma 5.10] or a similar condition

in [40, Proposition 4.36] says that the difference between the level of µ̂ and the level

of λ̂ is less than the dual Coxeter number g. (The dual Coxeter number is denoted

by N in [40]. The numbers d, f in [40] are such that −d − N and −f − N are the

levels of the weights.) But to use the translation in [19], as the beginning of the

proof of [40, Proposition 4.36] does, a different assumption on the weights is required:

Given two integral affine weights ν, ξ of (not necessarily the same) negative levels, the

translation

T ξν : Oν → Oξ

from the orbit of ν in O (called Oν) to the orbit of ξ in O (called Oξ) as in [19, §3]

is defined as

T ξν = prξ(−⊗ L(ω))

3We need neither fix the level d nor assume l > h, as the translation functors can move the level. But
we make this assumption anyway, because it is easy to take care of the restriction on d altogether
when we treat the case of non-integer d. See the proof of Theorem 8.10.



48

when there exist a weight ω ∈ P+∩Wa(ξ−ν) where P+ is the set of integral dominant

(affine) weights for ĝ and Wa is the (affine) Weyl group of ĝ (see [19, §2 ,3]). Since

ω ∈ P+, the irreducible module L(ω) is integrable, and we are in the situation very

similar to the algebraic group case or the quantum case. (See also Remark 2.3.) The

requirement, which is equivalent to ξ − ν ∈ WaP
+, is different from and not implied

by the condition “d+N > f”.

We can instead construct the desired translation in two steps as follow. As in [40],

it is enough to define a translation T ξν : Oν → Oξ where ν is a regular (antidominant

integral) weight. Then we can restrict, as usual, to truncated categories (having finite

poset ideals) to view the functor as T ξν : Cν → Cξ and take T νξ : Cξ → Cν to be its

left adjoint. Let ρ̂ := ρ + gχ be the “affine ρ”. Then, given any integral weight ξ

in the closure of the antidominant alcove, the weights ξ + nρ̂, ν + nρ̂ are integral

for each n ∈ Z. They are dominant if n is sufficiently large. Take such an n. Now

ξ − (−nρ̂), ν − (−nρ̂) ∈ P+ ⊂ WaP
+ defines the translations T ξ−nρ̂ and T ν−nρ̂. Note

that ν and −nρ̂ are in the same facet, the antidominant alcove. This implies the

translation functor T ν−nρ̂ is an equivalence (see for example [19, Propositions 3.6, 3.8]

and the comparison theorem [31, Theorem 5.8], or see [33, §6]). We fix an inverse

and call it T−nρ̂ν . Since T−nρ̂ν is an inverse of a translation functor, it behaves just

like a classical translation functor. Finally, let T ξν := T ξ−nρ̂ ◦ T−nρ̂ν . The functor T ξν

has all the properties that the classical translations have. Therefore, the rest of [40,

Proposition 4.36, Lemma 5.10] works.

Let

T̂ λµ : Ĉµ̂ → Ĉλ̂

be a left adjoint of T̂ µλ . Its existence follows from the adjoint functor theorem because

we are dealing with finite number of irreducible objects and End(L) = K for each

irreducible L.
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We want the translation functors in Theorem 8.1 for ĝ (restricted to Ok) to agree

with the translation functors for Uζ-mod via the Kazhdan-Lusztig correspondence.

To avoid discussing this problem, we redefine the translation T µλ : Cζλ → Cζµ to be

Fl(T
µ
λ ) and T λµ : Cζµ → C

ζ
λ to be Fl(T

λ
µ ), where the category Cζλ is the truncation of

Uζ-mod by the ideal corresponding to the poset of Cλ̂ and Cζµ is the truncation by the

ideal corresponding to the poset of Cµ̂. Then everything we need from §6 is still true

by the same proof using the basic properties in [40, Proposition 4.36]. We denote

ExtnĈ(−,−) by extnC(−,−) and HomĈ(−,−) by homC(−,−).

Corollary 8.3. The module T̂ λµ T̂
µ
λ ∆̂(y.λ̂) is linear for any y ∈ W J .

Proof. Adjunction gives for all n, i

extnC
λ̂
(T̂ λµ T̂

µ
λ ∆̂(y.λ̂), L̂(w.λ̂)〈i〉) ∼= extnC

λ̂
(T̂ µλ ∆̂(y.λ̂), T̂ µλ L̂(w.λ̂)〈i〉)

∼= extnCµ̂(∆̂(y.µ̂), L̂(w.µ̂)〈i〉),

which is 0 unless n = i by standard Koszulity of Cµ̂. Thus T̂ λµ T̂
µ
λ ∆̂(y.λ̂) is linear. �

Remark 8.4. In fact, a linear projective resolution of T̂ λµ T̂
µ
λ ∆̂(y.λ̂) = T̂ λµ ∆̂(y.µ̂) is

obtained by applying the translation to a linear projective resolution of ∆̂(y.µ̂). Let

P• be one. It is obvious that T̂ λµP• is a projective resolution of T̂ λµ ∆̂(y.µ̂). For linearity,

we check

T̂ λµ P̂ (w.µ̂) ∼= P̂ (w.λ̂).

This is true up to grading shift by [16, II.7.16], and we only need to check that the

head of T̂ λµ P̂ (w.µ̂) is in grade 0. But this is the case because

homC
λ̂
(T̂ λµ P̂ (w.µ̂), L̂(z.λ̂)〈i〉) ∼= homCµ̂(P̂ (w.µ̂), L̂(z.µ̂)〈i〉)

is zero unless i = 0.
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Fix y, w ∈ W J where J is associated to µ ∈ lC−Z . Recall the filtration Ui from §6.

We still denote by Ui the ĝ-module F−1
l Ui embedded in O. Our new definition of the

quantum translation gives U0 = T λµ∆(y.λ̂). Lemma 6.2, 6.3 and Corollary 6.5 are still

valid. Using the graded translations, we construct a graded lift of Ui starting from

Û0 = T̂ λµ T̂
µ
λ ∆̂(y.λ̂). We have

0→ Ûi+1 → Ûi →
⊕

x∈WJ , l(x)=i

∆̂(yx.λ̂)〈nx〉 → 0,

for some nx ∈ Z depending on x. In fact, we know what the shifts nx are.

Proposition 8.5. The filtration {Ûi} of T̂ λµ T̂
µ
λ ∆̂(y.λ̂) satisfies the short exact se-

quences

0→ Ûi+1 → Ûi →
⊕

x∈WJ , l(x)=i

∆̂(yx.λ̂)〈i〉 → 0

for all i.

Proof. Since Û0 has an irreducible head, its radical filtration agrees with its grading

filtration by Koszulity. So this follows from Proposition 6.6. �

Corollary 8.6. For all i, Ûi〈−i〉 ∈ C̃λ̂ is linear.

Proof. It follows by induction on i. The base case is proven in Corollary 8.3, and

Propositions 8.5, 7.11 does the induction step. �

We need the following in order to apply Proposition 7.15.

Lemma 8.7. For µ ∈ lC−Z and y, z ∈ W+(µ) with l(y) ≡ l(z) mod 2, we have

Ext1
Cµ̂(L(y.µ̂), L(z.µ̂)) = 0.

Proof. First note that the statement is true for a regular weight λ. (For example,

it follows from (5.0.1), its dual, and [7, Corollary (3.6)].) Also, Koszulity implies

that the radical filtration and the grade filtration of a standard module ∆(y.λ̂) are
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the same. So the grade filtration of ∆(y.λ̂) has alternating parity. Since T̂ µλ is exact

and preserves the parity of irreducibles, the module T̂ µλ ∆̂(y.λ̂) = ∆̂(y.µ̂) also has a

grade filtration with alternating parity. Hence ∆(y.µ̂) has a radical filtration with

alternating parity. Now suppose

0→ L(z.µ̂)→M → L(y.µ̂)→ 0

represents a non-trivial element in Ext1
Cµ̂(L(y.µ̂), L(z.µ̂)). The linkage principle rules

out any possibilities other than the cases z > y or y > z. We may assume y > z

by duality. Then there is a surjective map from ∆(y.µ̂) to M . This contradicts the

assumption that z and y are of the same parity and that ∆(y.µ̂) has a radical filtration

with alternating parity. �

We now obtain a key property of the modules Ui ∈ Cλ̂. Recall that (for a general

highest weight category C) an objectM ∈ C is said to haveN -parity if Ext2n+1
C (M,N) =

0 for all n ∈ Z and is said to have parity if it has L-parity for all irreducible L ∈ C.

Corollary 8.8. For each i, Ui has parity.

Proof. This is an immediate corollary of Corollary 8.6, Lemma 8.7, and Proposition

7.15. �

Example 8.9. Consider the quotient Û ′i := Û0/Ûi of Û0. We have

T̂ λµ T̂
µ
λ ∆(y.λ̂) = Ũ ′N →→ Ũ ′N−1 →→ · · · →→ Ũ ′1 � Ũ ′0 = 0,

where N = l(wJ). By Corollary 7.12 Û ′i is not linear, even up to shift, for 1 < i < N ,

while U ′i = F (Ũ ′i) has parity if i is odd. (If i is odd, then Ui has L-parity opposite of

U0 with respect to any irreducible L. Lemma 7.2 shows that U ′i has L-parity.)

8.2. Cohomology in singular blocks. We are ready to prove our main theorem

using that Ui has parity. Note that the statement of Corollary 8.8 does not involve
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any grading. We now forget the grading and prove our main theorem. Recall the

definition

P̄ J
y,w =

∑
x∈WJ

(−1)l(x)P̄yx.w.

Theorem 8.10. [36, Conjecture III] Suppose l is KL-good for the root system R. Let

µ ∈ lC−Z and J = {s ∈ Sl | s.µ = µ}. We have

∞∑
n=0

dim ExtnUζ(∆ζ(y.µ), Lζ(w.µ))tn = tl(w)−l(y)P̄ J
y,w

for y, w ∈ W J .

Proof. As we discussed in the beginning of this section (§8), this follows if we show

∞∑
n=0

dim Extnĝ (∆(y.µ̂), L(w.µ̂))tn = tl(w)−l(y)P̄ J
y,w

for y, w ∈ W J .

We first reduce the statement to the case where the assumptions in §8.1 are satisfied.

If we pick a large integer l′ ≥ h that is divisible by 2D, there is a regular weight λ̂

and a weight ν̂ of level k′ with k′ = −l′/2D−g ∈ Z such that the integral Weyl group

of λ̂, ν̂ are both isomorphic to Wl′ and StabWl′
(ν̂) is isomorphic to StabWl

(µ̂) under

the Coxeter group isomorphism (Wl, Sl)
∼−→ (Wl′ , Sl′). By Fiebig’s combinatorial

description [12, Theorem 11], it is enough to prove the theorem for ν̂ instead of µ̂.

The problem of the full category O in [12] and the categories of [40] being different

is treated in [37].4 So we may assume that we are in the situation in §8.1.

Let λ̂ be a regular weight. We translate from λ̂ to µ̂ as in §8.1. Corollary 8.6 and

Proposition 7.15 show that each Ui has parity. In particular it has L = L(w.λ̂)-parity,

that is, Extnĝ (Ui, L) is zero in every other degree. To be more precise, Ui is L-even

4In [37], it is similarly shown that Uζ-mod is Koszul. Using that we could have worked entirely
in the quantum case to prove the theorem. But then, if l < h, there is no regular weight we can
translate from, and we will anyway have to use the affine category O to obtain our result for small
(KL-good) l.
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(resp., odd), if and only if
⊕

l(x)=i,x∈WJ
∆(yx.λ̂) is L-even (resp., odd), if and only

if Ui+1 is L-odd (resp., even). Therefore, half the terms in the long exact sequence

induced by applying Homĝ(−, L) to each short exact sequence

0→ Ui+1 → Ui →
⊕

l(x)=i, x∈WJ

∆(yx.λ̂)→ 0

vanish, and the sequence splits into the short exact sequences

0→ Extn−1
ĝ (Ui+1, L)→ Extnĝ (

⊕
l(x)=i, x∈WJ

∆(yx.λ̂), L)→ Extnĝ (Ui, L)→ 0.

They give

∞∑
n=0

dim Extnĝ (Ui, L)tn =
∞∑
n=0

dim Extnĝ (⊕l(x)=i∆(yx.λ̂), L)tn

− t
∞∑
n=0

dim Extnĝ (Ui+1, L)tn

for all n.

Putting them together, we get

∞∑
n=0

dim Extnĝ (∆(y.µ̂), L(w.µ̂))tn =
∞∑
n=0

dim Extnĝ (T λµT
µ
λ ∆(y.λ̂), L(w.λ̂))tn

=
∑
i

(−t)i
∞∑
n=0

dim Extnĝ (⊕l(x)=i∆(yx.λ̂), L(w.λ̂))tn

=
∑
i

(−t)i
∑
l(x)=i

∞∑
n=0

dim Extnĝ (∆(yx.λ̂), L(w.̂λ))tn

=
∑
x∈WJ

(−t)l(x)

∞∑
n=0

dim Extnĝ (∆(yx.λ̂), L(w.λ̂))tn

=
∑
x∈WJ

(−t)l(x)tl(w)−l(yx)P̄yx,w
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= tl(w)−l(y)
∑
x∈WJ

(−1)l(x)P̄yx,w

= tl(w)−l(y)P̄ J
y,w,

and we are done. �

For the next corollary, we make statements in Uζ-mod rather than in O or in O in

order to simplify the notation. In particular, Ui is in Uζ-mod again. In Theorem 8.10,

we computed the dimensions of ExtnUζ(Ui, L(w.λ)), for w ∈ W+(µ). But we don’t

need w to be in W+(µ):

Corollary 8.11. Fix an integer i. We have for y ∈ W+(µ) and w ∈ W+,

∞∑
n=0

dim ExtnUζ(Ui, Lζ(w.λ))tn = tl(w)−i
∑

x∈WJ , l(x)≥i

(−1)l(x)−iPyx,w.

In particular, this polynomial has non-negative coefficients.

Proof. Since all Uj have Lζ(w.λ)-parity, we obtain the formula as in the proof of

Theorem 8.10. �

If w 6∈ W J , then T λµLζ(w.µ) is 0 and ExtnUζ(U0, Lζ(w.λ)) is 0. This shows an identity

in Kazhdan-Lusztig polynomials (which might have been known for any y ∈ Wl and

w 6∈ W J).

Corollary 8.12. If w ∈ W+ \W+(µ) and y ∈ W+(µ), then

∑
x∈WJ

(−1)l(x)Pyx,w = 0.

8.3. Graded enriched Grothendieck groups. We present another proof of The-

orem 8.10. We are still in the setting of §8.1. In particular, w ∈ W J . Our plan

is to apply the translation functor T̂ µλ : Ĉλ̂ → Ĉµ̂ to a sequence of distinguished

triangles that realizes L̂(w.λ̂) in ÊR(Ĉλ̂). Recall the construction in the proof of
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Proposition 7.8. Replacing ∇(λ̂i)[ni] by ∇̂(λi){ni}, we obtain the graded complexes

L̂(w.λ̂) = Y0, · · · , YN = 0 in ÊR. Writing λi = wi.λ̂, there is a distinguished triangle

Yi+1 → Yi → ∇̂(wi.λ̂){ni} →

for each 0 ≤ i ≤ N . We know by Lemma 8.7 and Proposition 7.15 that ni ≡

l(w) − l(wi) mod 2. Since the translation functors are exact, applying T̂ µλ to the

sequence Y0, · · · , YN produce the sequence L̂(w.µ) = T̂ µλ Y0, · · · , T̂ µλ YN = 0 of objects

in Db(Ĉµ̂) and distinguished triangles

T̂ µλ Yi+1 → T̂ µλ Yi → T̂ µλ ∇̂(wi.λ̂){ni} →

in Db(Ĉµ̂).

Proposition 8.13. We have

T̂ µλ ∇̂(yx.λ̂) ∼= ∇̂(y.µ̂)〈−l(x)〉, T̂ µλ ∆̂(yx.λ̂) ∼= ∆̂(y.µ̂)〈l(x)〉

for y ∈ W J , x ∈ WJ .

Proof. We show only the assertion for ∆̂(yx.λ̂). Let l(x) = i. Recall that

T̂ µλ L̂(yx.λ̂) ∼= δyx,yL̂(y.λ̂).

Since T µλ ∆(yx.λ̂) ∼= ∆(y.µ̂) and ∆(y.µ̂) has only one composition factor isomorphic

to L(y.µ̂), it is enough to show that ∆̂(yx.λ̂) has L̂(y.λ̂)〈i〉 as its composition factor.

By the Brauer-Humphreys reciprocity, this is equivalent to ∆̂(yx.λ̂)〈i〉 appearing in

a ∆̂-filtration of P̂ (y.λ̂). But we saw in Proposition 6.6 that this is true for Û0

instead of P̂ (y.λ̂), because Koszulity implies that the radical filtration of Û0 agrees

with the grading filtration. Since P̂ (y.λ̂)→→ Û0, and since the kernel of this map has

a ∆-filtration, this is enough. �
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Writing wi = yixi with yi ∈ W J , xi ∈ WJ uniquely, Proposition 8.13 tells us that

the distinguished triangles are

T̂ µλ Yi+1 → T̂ µλ Yi → ∇̂(yi.µ̂){ni}〈−l(xi)〉 = ∇̂(yi.µ̂)[l(xi)]{ni − l(xi)} → .

These are not distinguished triangles in ÊR. But we know by Theorem 8.1 that there

exists a sequence L̂(w.µ̂) = X0, · · · , XN ′ = 0 in ÊR with distinguished triangles

Xj+1 → Xj → ∇̂(zj.µ̂){mj} → .

Let us compare these two sequence to determine the (unordered) multiset {(zj,mj)}.

Consider the enriched Grothendieck group KR = KR
0 (Cµ̂) and the graded enriched

Grothendieck group K̂R = KR
0 (Ĉµ̂) defined in [7]. The two sequences provide two

expressions of [L̂(w.µ̂)] ∈ K̂R with respect to the Z[v, v−1]-basis {[∇̂(y.µ̂)]}y∈WJ .

The sequence T̂ µλ Yi provides

(8.3.1)
∑

0≤i≤N

(−1)l(xi)tni−l(xi)[∇̂(yi.µ̂)],

and the sequence Xj provides

∑
0≤j≤N ′

tmj [∇̂(zj.µ̂)].

Let cy,n be the Z-coefficient of t−n[∇̂(y.µ̂)] in the expression, thus

cy,n = |{j ∈ [0, N ′] | zj = y, −mj = n}|.

(Recall thatmj are negative integers.) This is the dimension of extnCµ(∆̂(y.µ̂)〈−n〉, L̂(w.µ̂))

which is the same as ExtnCµ(∆(y.µ̂), L(w.µ̂)) by standard Koszulity.
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The expression (8.3.1) determines cy,n. It remains to write down the relation ex-

plicitly. We have

cy,n = |{i ∈ [0, N ]| yi = y, ni − l(xi) = −n, l(xi) even}|

− |{i ∈ [0, N ]| yi = y, ni − l(xi) = −n, l(xi) odd}|.

Letting cxy,n := |{i ∈ [0, N ] |yi = y, xi = x, −ni = n}|, we can write

cy,n =
∑
x∈WJ

(−1)l(x)cxy,n−l(x).

Note also that

cxy,n = |{i ∈ [0, N ] |wi = yx, −ni = n}|.

Since we started from the realization Yi of L̂(w.λ̂), the number cxy,n is the dimension

of

extnC
λ̂
(∆̂(yx.λ̂)〈−n〉, L̂(w.λ̂)) ∼= ExtnC

λ̂
(∆(yx.λ̂), L(w.λ̂)).

Combining all this, we obtain the identity

dim ExtnC
λ̂
(∆(y.µ̂), L(w.µ̂)) =

∑
x∈WJ

dim Ext
n−l(x)
C
λ̂

(∆(yx.λ̂), L(w.λ̂)).

This is equivalent to the formula (8.0.1) by the formula (5.0.1). Finally, we transfer

this to the quantum case as in the first proof.

8.4. Ext-groups between irreducibles. Dualizing Theorem 8.10, we obtain

∞∑
n=0

dim ExtnUζ(Lζ(w.µ),∇ζ(y.µ))tn = tl(w)−l(y)P̄ J
y,w

for y, w ∈ W J . Then [7, Corollary (3.6)] combined with the fact that P J
y,w is a

polynomial on t2 shows that the dimension for Ext•Uζ(Lζ(w.µ), Lζ(z.µ)) is given as

dim ExtnUζ(Lζ(w.µ), Lζ(z.µ))
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=
∑

i+j=n, y∈W+(µ)

dim ExtiUζ(Lζ(w.µ),∇ζ(y.µ)) dim ExtjUζ(∆ζ(y.µ), Lζ(z.µ)).

This is a finite sum as the right hand side is 0 unless y ≤ w, z. We have proved the

following.

Theorem 8.14. Suppose l is KL-good. Let µ ∈ lC−Z , J = {s ∈ Sl | s.µ = µ}, and

w, z ∈ W+(µ). Then we have

∞∑
n=0

dim ExtnUζ(Lζ(w.µ), Lζ(z.µ))tn =
∑

y∈W+(µ)

tl(w)+l(z)−2l(y)P̄ J
y,wP̄

J
y,z.

9. Cohomology for q-Schur algebras

The above results provide calculations of Ext-groups between irreducible modules

for important families of finite dimensional algebras associated to quantum enveloping

algebras.

Consider first the type A quantum groups Uζ(sln). Any positive integer l is KL-good

in this case. As explained in [34, §9], a classical q-Schur algebra over K (or C) with

q = ζ2 arises as a truncation of Uζ(sln)-mod by a certain ideal Γ of dominant weights.

Thus, Theorem 8.10 and Theorem 8.14 compute the corresponding cohomology for

q-Schur algebras.

A generalized q-Schur algebra arises in a similar way. In fact, they are the algebras

Aζ = Aζ(Γ) that appear in §4.1 when identifying (Uζ -mod)[Γ] with Aζ-mod (for finite

ideals ΓEX+). The algebra Aζ(Γ) is only determined up to Morita equivalence. But,

by abuse of language, it is often called “the generalized q-Schur algebra” associated

to Γ. This defines the generalized q-Schur algebras for all other types as well. Now,

in any type (assuming l is KL-good), Theorem 8.10 and Theorem 8.14 provide the

corresponding cohomology dimension for the generalized q-Schur algebras.
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Part III. Reduction mod p to the algebraic group

case

Let us revisit the conjectures from [36, Conjecture I, Conjecture II] stated in §4.2

above. Since [36, Conjecture III] is proved in Theorem 8.10 for arbitrary KL-good

integers l = pr, it is natural to ask whether [36, Conjecture I, Conjecture II], or a part

of them, work in this generality. There is, at least, no difficulty in generalizing the

statements: The forced grading is defined using Uζ (or Aζ) where ζ is a pr-th root of

unity; the reduced modules ∆red(γ), ∇red(γ) are simply replaced by ∆red
r (γ), ∇r

red(γ).

We examine the higher reduced modules ∆red
r (γ), ∇r

red(γ) (and ∆(γ),∇(γ)!) in

this part and explore the question above. We answer positively one direction of [36,

Conjecture II] (see §4.2.2) in Proposition 12.2. Other than this, however, we provide

examples that disprove the r > 1-analogue of the second conjecture as well as some

other r = 1 result in [35].

In this part, ζ is always a primitive pr-th root of unity for some positive integer r

and an odd prime p.

10. Reducing modules modulo p

Recall from §1.3 the reduced modules

∆̃(γ)k ∼= ∆(γ), ∇̃(γ)k ∼= ∇(γ)

and

∆red
r (γ) := (L̃min

ζ (γ))k, ∇r
red(γ) := (L̃max

ζ (γ))k.

Also recall

(10.0.1) ∆(γ)→→ ∆red
r (γ)→→ L(γ)
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and

(10.0.2) L(γ) ↪→ ∇r
red(γ) ↪→ ∇(γ).

By Proposition 1.1, the first epimorphism and the last monomorphism are isomor-

phisms if γ ∈ prC+
Z , where prC+

Z is the bottom dominant pr-alcove

prC+ := {γ ∈ X ⊗Z R | 0 < 〈γ + ρ, α∨〉 < pr for all α ∈ R+}.

We can further compare the reduction mod p modules with another class of well-

known modules. Recall first the Steinberg tensor product theorems for the two cases

(see §3.2 for the r = 1 case):

(10.0.3) L(γ0 + prγ1) ∼= L(γ0)⊗ L(γ1)[r]

(10.0.4) Lζ(γ0 + prγ1) ∼= Lζ(γ0)⊗ V (γ1)[1],

where γ0 ∈ Xr := {γ ∈ X+ | 〈γ + ρ, α∨〉 < pr, ∀α ∈ Π}, γ1 ∈ X+. (Recall also that

V (γ1) denotes the Weyl module for g and has the Weyl character χ(γ1).) The −[r]

is the composition of the Frobenius twist −[1] r times. We have the third Steinberg

tensor product theorem, regarding reduction mod p modules:

Proposition 10.1. [25, Theorem 2.7] For γ0 ∈ Xr and γ1 ∈ X+j, there are isomor-

phisms of G-modules

∆red
r (γ0 + prγ1) ∼= ∆red

r (γ0)⊗∆(γ1)[r], ∇r
red(γ0 + prγ1) ∼= ∇r

red(γ0)⊗∇(γ1)[r].

From now on, we always write γ ∈ X+ as γ = γ0 + prγ1 (uniquely) with γ0 ∈ Xr

and γ1 ∈ X+. Define

∆pr(γ) := L(γ0)⊗∆(γ1)[r]
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and

∇pr(γ) := L(γ0)⊗∇(γ1)[r].

Then Proposition 10.1 gives the following.

Corollary 10.2. For γ ∈ X+, we have

∆red
r (γ)→→ ∆pr(γ), ∇pr(γ) ↪→ ∇r

red(γ).

The modules ∆pr(γ) for different r ≥ 1 form a descending chain

∆p(γ)→→ ∆p2(γ)→→ · · · →→ ∆pr(γ)→→ · · · .

This can be seen from the definition and the tensor product theorem (10.0.3) as

follows. Write

γ = γ0 + pr−1(γ1 + pγ2) = (γ0 + pr−1γ1) + prγ2

with γ0 ∈ Xr−1, γ1 ∈ X1, and γ2 ∈ X+. Then we have

∆pr−1

(γ) = L(γ0)⊗∆(γ1 + pγ2)[r−1]

→→ L(γ0)⊗ (L(γ1)⊗∆(γ2)[1])[r−1]

∼= L(γ0)⊗ L(γ1)[r−1] ⊗∆(γ2)[r]

∼= L(γ0 + pr−1γ1)⊗∆(γ2)[r]

= ∆pr(γ)

for each r > 1. The second line follows from combining (10.0.1) and Corollary 10.2.

The fourth line follows from (10.0.3).

There is no obvious relation between the ∆red
r (γ) for r ≥ 1. Instead, we know

the characters of the modules ∆red
r (γ) in most (possibly all) cases since ch ∆red

r (γ) =
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chLζ(γ). Let pr be KL-good. For λ ∈ prC−Z , w ∈ W
+
pr ,

ch ∆red
r (γ) =

∑
y∈Wpr ,y∈W+

pr (λ)

(−1)l(w)−l(y)P J
y,w(−1)χ(y.λ)

where J = {s ∈ Spr | s.λ = λ} and γ = w.λ (see §3.2).

We can use the characters to actually show that there is no map between ∆red
r (γ)

and ∆red
r′ (γ) in general for r 6= r′ ∈ Z. For χ, χ′ ∈ Z[X], we say χ ≥ χ′ if χ − χ′ ∈

Z≥0[X] and χ 6≥ χ′ otherwise. Whether we require r < r′ or we require r′ < r, we can

easily find a case that ch ∆red
r (γ) 6≥ ch ∆red

r′ (γ). (See §13.) Since they have the same

irreducible head L(γ) and

[∆red
r (γ) : L(γ)] = [∆red

r′ (γ) : L(γ)] = 1,

any nonzero map between ∆red
r (γ) and ∆red

r′ (γ) is surjective. So ch ∆red
r (γ) 6≥ ch ∆red

r′ (γ)

implies

HomG(∆red
r (γ),∆red

r′ (γ)) = 0.

11. Comparing the Jantzen sum formulas

The Jantzen filtration on standard modules ∆(γ) ∈ G -mod is fully discussed in

Jantzen’s book [16, II.8]. An important consequence of the filtration is the Jantzen

sum formula we state below. We need first to introduce a notation. Let νp be the

p-adic valuation on Z. That is, if n ∈ Z has the form n = prd with p, d relatively

prime, then νp(n) = r. Recall for α ∈ R and m ∈ Z the (affine) reflection on X ⊗Z R

given by

sα,m(γ) = γ − (〈γ, α∨〉 −m)α

for γ ∈ X ⊗Z R.
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Proposition 11.1. [16, II.8.19] Let γ ∈ X+. There is a filtration

∆(γ) = V 0 ⊃ V 1 ⊃ · · ·

of ∆(γ) in G -mod such that

(11.0.1)
∑
i>0

chV i =
∑
α∈R+

∑
0<mp<〈γ+ρ,α∨〉

νp(mp)χ(sα,mp.γ)

where χ(sα,mp.γ) is the Weyl character (see §3.1) and

∆(γ)/V 1 ∼= L(γ).

Let’s denote the right hand side of (11.0.1) by χJ(γ), and put

χJ(γ, pr) :=
∑
α∈R+

∑
0<mpr<〈γ+ρ,α∨〉

χ(sα,mpr .γ).

We now rewrite the formula (11.0.1) as

χJ(γ) =
∑
α∈R+

∑
0<mp<〈γ+ρ,α∨〉

νp(mp)χ(sα,mp.γ)

=
∑
α∈R+

(
∑

0<mp<〈γ+ρ,α∨〉

χ(sα,mp.γ) +
∑

0<mp2<〈γ+ρ,α∨〉

χ(sα,mp2 .γ) + · · · )

=
∑
r

χJ(γ, pr).

(11.0.2)

The reason we do this is that the Jantzen sum formula works for the quantum case,

with a different formula:

Proposition 11.2. [4, §10] Let γ ∈ X+, r ≥ 1. There is a filtration of the Uζ-module

∆ζ(γ)

∆ζ(γ) = V 0
ζ ⊃ V 1

ζ ⊃ · · ·
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such that

(11.0.3)
∑
i>0

chV i
ζ = χJ(γ, pr) =

∑
α∈R+

∑
0<mpr<〈γ+ρ,α∨〉

χ(sα,mpr .γ)

and

∆ζ(γ)/V 1
ζ
∼= Lζ(γ).

We can draw an observation from these formulas.

Proposition 11.3. For γ, γ′ ∈ X+, we have

[∆ζ(γ) : Lζ(γ
′)] 6= 0⇒ [∆(γ) : L(γ′)] 6= 0.

Proof. Suppose [∆ζ(γ) : Lζ(γ
′)] 6= 0. Since [∆ζ(γ) : Lζ(γ)] = [∆(γ) : L(γ)] = 1, we

may assume that γ > γ′.

By Proposition 11.1, [∆(γ) : L(γ′)] 6= 0 if and only if chL(γ′) has a nonzero

coefficient when we write χJ(γ) as a (Z-)linear combination of the characters of the

irreducible G-modules (with non-negative coefficients). In (11.0.2), which says

χJ(γ) =
∑
r

χJ(γ, pr),

each χJ(γ, pr) is also a non-negative sum of irreducible G-characters by Proposition

11.2, since all Uζ-characters are also G-characters. Thus, the claim is proved if we

check that chL(γ′) has a nonzero coefficient when we write χJ(γ, pe) as a linear

combination of the characters of the irreducible G-modules, where e is such that ζ

is a primitive pe-th root of unity. By Proposition 11.2 and the assumption [∆ζ(γ) :

Lζ(γ
′)] 6= 0, the character χJ(γ, pe) has a positive coefficient for chLζ(γ

′) when we

write it as a non-negative sum of irreducible Uζ-characters. But chLζ(γ
′), when

written as a sum of irreducible G-characters, has a nonzero chL(γ′) term. �



65

Corollary 11.4. For γ, γ′ ∈ X+ and r ≥ 1, the module ∆(γ) has a composition

factor L(γ′) provided that γ′ < γ and γ, γ′ are mirror images under the reflection

through a wall of the pr-facet containing γ.

Proof. We take the integer r as in the statement. That is, we have γ′ = sβ,npr .γ ∈ X+

for an appropriate positive root β and an integer n. Now observe in

χJ(γ, pr) =
∑
α∈R+

∑
0<mpr<〈γ+ρ,α∨〉

χ(sα,mpr .γ)

that only χ(sβ,npr .γ), among the Weyl characters appearing, has a nonzero chL(sβ,npr .γ)-

term when it is written as a sum of irreducible G-characters. Necessarily, the multi-

plicity [∆ζ(γ) : Lζ(γ
′)] is nonzero. Proposition 11.3 gives the corollary. �

12. Reducing morphisms modulo p

We use the reduction mod p procedure to construct many nontrivial elements in

Hom and Extn spaces for G-mod.

Proposition 12.1. Let M,N ∈ Uζ -mod and M̃, Ñ ∈ Ũζ -mod be admissible lattices

of M,N respectively. Then for all n ≥ 0,

dimk ExtnG(M̃k, Ñk) ≥ dimK ExtnUζ(M,N).

Proof. The short exact sequence

0→ Ñ
π−→ Ñ → Ñk → 0

of Ũζ-modules induces the long exact sequence

0→HomŨζ
(M̃, Ñ)

π−→ HomŨζ
(M̃, Ñ)→ HomŨζ

(M̃, Ñk)→ · · ·

→Extn
Ũζ

(M̃, Ñ)
π−→ Extn

Ũζ
(M̃, Ñ)→ Extn

Ũζ
(M̃, Ñk)→

→Extn+1

Ũζ
(M̃, Ñ)

π−→ Extn+1

Ũζ
(M̃, Ñ)→ · · ·

(12.0.1)
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of O-modules, where the map π is multiplication by the generator of the maximal

ideal of O.

We also have

Extn
Ũζ

(M̃, Ñ)⊗O K ∼= ExtnUζ(M,N),

by [11, (2.9), Theorem 3.2]. Let dn be the (K-)dimension of this space. Thus,

Extn
Ũζ

(M̃, Ñ) = O⊕dn ⊕Tn, where Tn is a torsion O-module. So the sequence (12.0.1)

is of the form

· · · → O⊕dn ⊕ Tn
π−→ O⊕dn ⊕ Tn → Extn

Ũζ
(M̃, Ñk)→

→ O⊕dn+1 ⊕ Tn+1
π−→ O⊕dn+1 ⊕ Tn+1 → · · · .

(12.0.2)

Since O/πO ∼= k, we have

Extn
Ũζ

(M̃, Ñk) ∼= k⊕dn ⊕ Tn/πTn ⊕ ker(Tn+1
π−→ Tn+1).

The proof is complete using [11, (2.9), Theorem 3.2], which says

Extn
Ũζ

(M̃, Ñk) ∼= ExtnG(M̃k, Ñk).

�

The following is an immediate consequence.

Proposition 12.2. Let γ, γ′ ∈ X+. We have

(1) dimk ExtnG(∆(γ),∆(γ′)) ≥ dimK ExtnUζ(∆ζ(γ),∆ζ(γ
′));

(2) dimk ExtnG(∆(γ),∆red
r (γ′)) ≥ dimK ExtnUζ(∆ζ(γ), Lζ(γ

′));

(3) dimk ExtnG(∆(γ),∇r
red(γ′)) ≥ dimK ExtnUζ(∆ζ(γ), Lζ(γ

′));

(4) dimk ExtnG(∆red
r (γ),∇r

red(γ′)) ≥ dimK ExtnUζ(Lζ(γ), Lζ(γ
′));

(5) dimk ExtnG(∆red
r (γ),∆red

r (γ′)) ≥ dimK ExtnUζ(Lζ(γ), Lζ(γ
′));

and similar inequalities for the dual modules (replace “∆” by “∇”).
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The right hand sides of Proposition 12.2 (2)-(5) are known by Theorems 8.10, 8.14.

The “r ≥ 1”-analogues of (§4.2.2) would say that the “≥” are actually “=” for (3),

(4). We give some examples in §13 below where this is a strict inequality for r > 1.

Unlike in the other inequalities in Proposition 12.2, the right hand side in Propo-

sition 12.2 (1) is not known in general. (A result on Ext between two (co)standard

modules in special cases can be found in [30].) Another difference between this case

and the rest is that the left hand side in Proposition 12.2 (1) does not depend on r.

Considering all the cases r ≥ 1 together, we obtain

dimk ExtnG(∆(γ),∆(γ′)) ≥ max{dimK ExtnUζ(∆ζ(γ),∆ζ(γ
′)) | ζpr = 1, r ≥ 1}

(12.0.3)

We explore some special cases where we can say something about the dimensions

of ExtnUζ(∆ζ(γ),∆ζ(γ
′)) for the rest of this subsection.

It will be convenient to employ the following convention when writing weights.

Recall that we identify the weight lattices for G and for Uζ , for any root of unity ζ.

Now write a G-weight γ as γ = w.λ where λ ∈ prC−∩X and w ∈ W+
pr(λ) ⊂ Wpr ⊂ Wp.

The following two corollaries have a large intersection with Franklin’s results [14].

Corollary 12.3. Let r ≥ 1 be such that pr ≥ h. Let µ ∈ prC− ∩X, w ∈ W+
pr ⊂ Wp

and s ∈ Spr ⊂ Wp (So s may not be in Sp). If ws > w, then

HomG(∆(w.µ),∆(ws.µ)) 6= 0.

In other words, there is a nonzero map

∆(γ)→ ∆(γ′)

if γ′ > γ ∈ X+ and γ′ is the reflection image of γ through a wall of the pr-facet

containing γ.
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Proof. First consider the case where µ ∈ prC
− ∩ X is regular. The condition on pr

ensures the existence of (a regular and) a subregular weight for Uζ with ζ a primi-

tive pr-th root of unity. (See Proposition 2.2.) We can, thus, apply the translation

argument [16, II.7.19] to obtain

HomUζ(∆ζ(w.µ),∆ζ(ws.µ)) ∼= K

in the quantum case. The corollary follows from Proposition 12.2 (1).

Now we treat the general weight µ ∈ prC− ∩X. Again, by Proposition 12.2 (1), it

is enough to obtain

HomUζ(∆ζ(w.µ),∆ζ(ws.µ)) 6= 0.

Pick a regular weight λ ∈ prC
−∩X (possible since pr ≥ h) and consider the translation

functor T µλ in Uζ-mod. We may assume that w ∈ W J . We have

HomUζ(∆ζ(w.µ),∆ζ(ws.µ)) ∼= HomUζ(T
µ
λ ∆ζ(w.λ), T µλ ∆ζ(ws.λ))

∼= HomUζ(T
λ
µT

µ
λ ∆ζ(w.λ),∆ζ(ws.λ))

But the surjection

T λµT
µ
λ ∆ζ(w.λ)→→ ∆ζ(w.λ)

(see page 30) induces an inclusion

HomUζ(∆ζ(w.λ),∆ζ(ws.λ)) ↪→ HomUζ(T
λ
µT

µ
λ ∆ζ(w.λ),∆ζ(ws.λ)).

The left hand side is nonzero by the regular case done in the first paragraph. �

Remark 12.4. Since hd ∆(γ) ∼= L(γ), if there is a nonzero map from ∆(γ) to ∆(γ′)

then L(γ) is a composition factor of ∆(γ′). Thus, Corollary 12.3 implies Corollary

11.4. The same remark applies to Corollary 12.5 below.
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In fact, we know many more morphisms between standard modules in the quantum

case, from which we can reduce mod p.

Corollary 12.5. Let r ≥ 1 be such that pr ≥ h. Let λ ∈ prC− ∩ X, s ∈ Spr \ I,

where I = {s ∈ Spr | s.λ = λ} For w ∈ W (Spr\{s})
pr ∩W+

pr and x < y ∈ W(Spr\{s})(=

(Wpr)(Spr\{s})), we have

HomG(∆(wx.λ),∆(wy.λ)) 6= 0.

Proof. A nonzero morphism in the quantum case

∆ζ(wx.λ)→ ∆ζ(wy.λ)

when λ is regular is well known or explained in [3, Remark 3.6, Proposition 3.7]. It is

a composition of maps obtained in Corollary 12.3 and also uses translation functors

in showing that it is nonzero. The proof of Corollary 12.3 gives the singular case.

Finally, use Proposition 12.2. �

A very similar proof gives the next corollary.

Corollary 12.6. In the situation of Corollary 12.3, we have

Ext1
G(∆(w.µ),∆(ws.µ)) 6= 0.

Proof. By Proposition 12.2 (1), it is enough to show that Ext1
Uζ

(∆ζ(w.µ),∆ζ(ws.µ)) 6=

0.

The regular case is done by the argument in [16, II.7.19]. For the singular case, take

a regular weight λ in prC
−

and consider the translation functor T µλ of Uζ-modules.

Then,

Ext1
Uζ

(∆ζ(w.µ),∆ζ(ws.µ)) ∼= Ext1
Uζ

(T λµT
µ
λ ∆ζ(w.λ),∆ζ(ws.λ))
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Assuming w ∈ W J , there is a short exact sequence

0→M → T λµT
µ
λ ∆ζ(w.λ)→ ∆ζ(w.λ)→ 0,

whereM has a ∆-filtration with sections ∆ζ(wx.λ), x ∈ W J\{e}. Taking HomUζ(−,∆ζ(ws.λ)),

we have (a part of) a long exact sequence

→ HomUζ(M,∆ζ(ws.λ))

→ Ext1
Uζ

(∆ζ(w.λ),∆ζ(ws.λ))→ Ext1
Uζ

(T λµT
µ
λ ∆ζ(w.λ),∆ζ(ws.λ))→.

(12.0.4)

Since the head of M is a direct sum of irreducibles of highest weight wt with t ∈ J ,

and since wt 6< ws for t 6= s ∈ Spr , the first term HomUζ(M,∆ζ(ws.λ)) in (12.0.4)

is zero. The second term Ext1
Uζ

(∆ζ(w.λ),∆ζ(ws.λ)) in (12.0.4) is nonzero by the

regular case considered above. Therefore Ext1
Uζ

(T λµT
µ
λ ∆ζ(w.λ),∆ζ(ws.λ)) is also not

zero, which proves the claim. �

Remark 12.7. The condition pr ≥ h in Corollary 12.3, 12.5, 12.6 can be replaced by

the KL-good condition if we transfer the assertions in Uζ -mod to the affine case via

the Kazhdan-Lusztig correspondence, use the result of Fiebig [12] to move the level,

and then transfer the assertion back to the quantum case. See the proof of Theorem

8.10 where we do this.

13. Type A1 examples

Let G = SL2. We provide some examples of the r = 2 case which shows that many

nice results for the r = 1 case does not generalize to r > 1. The r ≥ 1 versions of the

“nice results” that are disproved in this section are the following.

(1) If p � 0 and λ ∈ pC−Z , then ∆(w.λ) for each w ∈ W+
p has a filtration with

sections of the form ∆red
r (γ). (The r = 1 case is proved in [35].)

(2) If p � 0 and λ ∈ pC−Z , then ∆red
r (w.λ) for w ∈ W+

p has left parity with respect

to all irreducible G-modules, or equivalently, ∆red
r (w.λ) ∈ EL, or equivalently,
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we have

ExtnG(∆red
r (w.λ),∇(y.λ)) = 0 if l(w)− l(y) 6≡ n mod 2.

(The r = 1 case is proved in [9]: See §4.2.2.)

We take p = 3 to have concrete numbers, but all the examples here work for a

larger p. Note that the condition “p � 0” means, by our convention, “the Lusztig

conjecture for G is true and p ≥ 2h− 2”. Thus, 3� 0 for SL2.

In this case, the dominant weights are identified with the integers n ∈ Z≥0. The

Jantzen region in this notation is defined by the condition n ≤ 8. On the quan-

tum side, we have Uζ = Uζ(sl2) with ζ a primitive 9th root of unity and Uζ3 the

corresponding quantum group at a 3rd root of unity.

Let’s consider the regular orbit containing 0 ∈ pC−Z . The highest weights are

0, 4, 6, 10, 12, 16, 18, · · · . We express the radical filtration of a G-module via the

following notation.

M =

M/ radM = hdM

radM/ rad2M

rad2M/ rad3M

· · ·

It is easy to check that

∆(6) = ∆red
2 (6) =

L(6)

L(4)

and

∆red
2 (10) = L(10),

while the structure of ∆(10) is either
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(Case 1) ∆(10) =

L(10)

L(4)

L(6)

or

(Case 2) ∆(10) =
L(10)

L(4)⊕ L(6)
.

(We cannot have

∆(10) =

L(10)

L(6)

L(4)

because ∆(10)→→ ∆red(10) =
L(10)

L(4)
.)

In either case, ∆(10) does not have a filtration with sections of the form ∆red
2 (γ).

We actually know which is the case. Suppose (Case 2) is true. Then, we have

Ext1
G(L(10), L(6)) 6= 0.

Since the weight 10 is the only one out of the Jantzen region among the weights

0, 4, 6, 10, we have

Ext1
G(L(a), L(b)) 6= 0

for every pair of weights a, b ∈ {0, 4, 6, 10} in two adjacent alcoves. Applying [7,

Theorem 5.3] to the category (G -mod)[0, 4, 6, 10], we have chL(10) = chLζ(10).

This contradicts chLζ(10) = chL(10) + chL(4). Thus, (Case 1) is the case.
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Now we check that ∆red
2 (10) is not in the category EL (see Proposition 7.8). A se-

quence of distinguished triangle constructions of ∆red
2 (10) with the standard modules

(see the proof of Proposition 7.8 and Remark 7.9) is as follows.

∆(10)→ Y0 = ∆red
2 (10)→ Y1 =

L(4)

L(6)
[1]→,

∆(6)[1]→ Y1 =
L(4)

L(6)
[1]→ Y2 = L(4)[1]⊕ L(4)[2]→,

∆(4)[1]⊕∆(4)[2]→ Y2 = L(4)[1]⊕ L(4)[2]→ Y4 = L(0)[2]⊕ L(0)[3]→,

∆(0)[2]⊕∆(0)[3]
∼=−→ Y4 = L(0)[2]⊕ L(0)[3]→ 0→,

using

∆(0) = L(0), ∆(4) =
L(4)

L(0)
.

We see that the “wrong” shifts ∆(4)[1] and ∆(0)[2] appear. In view of the recog-

nition theorem (Proposition 7.8), the sequence above of distinguished triangles show

that ExtiG(∆red
2 (10),∇(4)) has dimension one at i = 1, 2 and that ExtiG(∆red

2 (10),∇(0))

has dimension one at i = 2, 3. In particular, the p2-analogue of [36, Conjecture II]

(§4.2.2) is not true.
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