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Abstract

Jet engines are highly complex systems that have many internal processes which may become

unstable under certain non-ideal conditions. These potentially unstable processes can induce

instability in the overall engine process if left uncontrolled. One such process is known as

thermoacoustic coupling. This is a process through which acoustic waves in the combustion

chamber may become coupled with unsteady heat release at the flameholders, forming

a positive feedback loop. Additionally, acoustic modes of close resonant frequency may

become coupled and force the system to an unstable operating point. This process results

in high amplitude pressure oscillations which in serious cases may result in permanent

damage to the engine.

In this research, an indirect adaptive linear quadratic control scheme is first developed

for a multi-input multi-output dynamic model of thermoacoustic coupling with unknown

parameters and time delays. For this model, the controlling variable is the fuel mass flow into

the combustion chamber. The time delays are modeled by a first-order Pade approximation.

An adaptive controller design is developed to estimate the system and delay parameters, and

an in-depth simulation study is conducted that verifies our results. The developed adaptive

scheme has the ability to guarantee the desired stabilization properties in the presence

of noisy inputs. When delays are large, it may not be appropriate to approximate time

delays since it can introduce large errors into the system model. It is desirable to develop

techniques that can directly handle large actuator delays. For this purpose, a nominal (non-

adaptive) backstepping based actuator delay compensation scheme is derived and analyzed

for systems in which time delays may be arbitrarily large. An extensive simulation study is

also conducted to verify the developed backstepping delay control algorithm.
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Chapter 1

Introduction

In recent years, jet engine research has flourished. The literature has focused on

topics such as reducing emissions while improving fuel efficiency, the development of

advanced fault detection schemes, and the application of advanced control techniques

for the engine system as a whole as well as the stabilization of certain unstable

processes that may induce engine instability. Such unstable processes that may occur

in the engine include compressor surge and stall, blade flutter, and thermoacoustic

coupling, which will be our primary focus.

Thermoacoustic coupling is a phenomenon by which unsteady heat release may

couple with the acoustics of the combustion chamber and lead to high amplitude

pressure oscillations. In extreme cases, these uncontrolled pressure oscillations can

lead to damage of the combustion chamber. This coupling has a few primary causes,

the first of which being the use of a lean fuel-air mixture. This type of mixture

is often used for reducing NOx emissions as well as increasing the fuel efficiency of

the engine. Aircraft contribute 1% of total mobile source NOx emissions, and much

higher percentages in city centers near major airports, so reducing emissions is a large

concern [35],[36],[37]. While it is possible to passively control the resultant coupling

of heat release and pressure waves through the physical design of the size and shape

of the combustion chamber, it is more desirable to be able to operate the engine
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1.1. LITERATURE REVIEW 2

over a wide range of operating conditions. Active control methods are frequently

sought to perform this task. Additionally, it is possible for a situation to occur in

which the fundamental properties of the engine may change, perhaps due to damage

of some kind. In this case, the acoustics of the chamber may change and become

more susceptible to perturbations, in which case, active control would be necessary

for stabilization.

In addition to these problems, jet engines present difficult engineering challenges

because of the incredibly harsh internal conditions. A result of this is difficulty in

accurately determining the system parameters that are necessary for the design of tra-

ditional control systems. This motivates us to utilize adaptive parameter estimation

techniques to update online estimates of the parameters needed to use an indirect

adaptive control scheme. Additionally, since this system may also include uncer-

tain time delays, we explore techniques that facilitate the use of adaptive parameter

estimation to estimate these uncertain delays.

1.1 Literature Review

Jet engine control research spans a wide variety of areas. Some recent focuses and

advancements include integrated flight/propulsion control [24]–[26], which incorpo-

rates advanced maneuvering capabilities such as vertical take off and landing and

high-angle-of-attack performance into the control design, and intelligent life extend-

ing control where the focus is to minimize damage accumulation of components in

the hot-gas-path over time [27]. Other research efforts include engine health monitor-

ing and diagnostics [28]–[30], engine dynamic modeling for controls and diagnostics

[32]–[34], and active combustion and stall control.

The potentially unstable processes mentioned previously have been long-standing

2



1.1. LITERATURE REVIEW 3

issues in jet engine control and design, as outlined in [16] and the many references

therein. This thesis will focus on the specific case of thermoacoustic coupling. Sup-

pression of thermoacoustic coupling has been demonstrated as a viable solution in

both theory and practice. The paper in [7] along with its references detail a small

portion of the extensive amount of theoretical and experimental work done on this

topic. Experimental validation of active control was demonstrated on small-scale [12],

mid-scale [13],[14], and large-scale/industrial [15] test rigs, showing that active control

is a viable solution in practice as well as in theory. Some of the theoretical work can

be seen in [8] where secondary peaks due to phase shifting controllers were explained

and [9] where robust control was discussed. While the techniques implemented within

these references are thorough, they do not consider the case where parameters are

unknown. Various adaptive schemes have been implemented in [1], [10], and [11];

however these techniques do not satisfy the desired optimality in jet engine control.

In control design, time delays are often modeled by a Pade approximation which

introduces system zeros that are non-minimum phase. Due to this, many direct

adaptive control schemes such as MRAC techniques found in [4] and multivariable

adaptive backstepping control [3] cannot be applied because the non-minimum phase

zeros violate the design conditions. In addition, direct adaptive control schemes may

lead to heavy overparameterization, which may cause difficulty in control implemen-

tation due to a lack of robustness. The adaptive control scheme that was designed

in [1] uses an indirect adaptive pole placement scheme applicable to non-minimum

phase systems; however, pole placement control often results in large transients in

the control input. This motivates us to employ an adaptive linear quadratic control

scheme, similar to that of [1] in using an indirect control design which estimates the

system parameters and uses their online estimates to compute the control input, but

different in that it is based on optimality design criterion helpful for reducing the

3
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control magnitude.

When time delay approximation introduces large modeling errors that do not

allow for the design of a sufficient controller, then control schemes that take the

delays directly into account must be sought. Stability of time delay systems is much

more difficult to examine than stability for standard LTI systems and a collection

of techniques can be found in [44]. One method for control is known as the Smith

predictor [39] and the extension to unstable plants derived in [40],[41],[42]. Recently,

a new derivation of the Smith predictor was developed in [17], using a transport

PDE model of actuator delay and a backstepping algorithm. This unique derivation

allowed for the development of new adaptive control theory for systems with unknown

time delays as was demonstrated in [19],[20],[21]. These references develop adaptive

control theory for when actuator delays are unknown as well as having parameter

uncertainties, estimated inputs, and nonlinear system structure, respectively.

1.2 Contributions

The model of thermoacoustic coupling that we use for control design contains un-

known time delays in both the actuators and states. We utilize a first-order Pade

approximation to model the delay terms. This modeling facilitates the development

of an indirect adaptive linear quadratic control scheme for active control of thermoa-

coustic coupling. Such a control scheme also satisfies the desired optimality in jet

engine systems. In some cases, it may be desirable to directly compensate for time

delays instead of through an approximation. Because of this, another contribution of

this thesis is the development of a novel backstepping algorithm for actuator delay

compensation. The technique that this algorithm is based off of was recently demon-

strated to be compatible with adaptive estimation of time delays [19],[20],[21]. Hence,

4
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the development of this algorithm is the basis for future adaptive controls research

for similar classes of delay differential equations.

1.3 Organization of Thesis

This thesis is organized as follows. Chapter 2 will discuss some fundamentals of adap-

tive control and linear quadratic control, then give a brief introduction to jet engines

systems and operation, and discuss the modeling of the thermoacoustic coupling phe-

nomenon. Chapter 3 will discuss our adaptive control scheme. This chapter briefly

discusses modeling and delay approximation, presents a nominal controller design,

and then extends the theory by presenting the adaptive controller design. Finally,

an extensive simulation study is presented that verifies our design with non-ideal cir-

cumstances such as parameter jumps and actuator saturation. Chapter 4 develops a

new backstepping algorithm that can be used with systems that have both state and

actuator delays and provides a stability analysis and simulation study to verify the

design.

5



Chapter 2

Background

The goal of this thesis is to develop reliable adaptive control schemes for unstable

processes that may occur in jet engine systems that can induce instability such as

thermoacoustic coupling, compressor surge and stall, and blade flutter. The focus of

this section is to provide the necessary background for this thesis. We will begin by

briefly recapping the basics of adaptive control. Then we will give a short discourse

on indirect adaptive control methodology followed by a discussion of linear quadratic

control. Finally, we present the basics of jet engine operation and control as well as a

more in-depth discussion of the physics and modeling of the thermoacoustic coupling

problem.

2.1 Adaptive Control Basics

All branches of control theory have the common goal of the manipulation of the system

dynamics, which may include stabilization of an unstable plant, trajectory tracking,

disturbance rejection and satisfying any desired performance specifications. Design

of these systems typically requires that the engineer have a detailed mathematical

model of the system where most, if not all, parameters are known. For more complex

plants or those where certain system identification techniques are not feasible, it is

6



2.1. ADAPTIVE CONTROL BASICS 7

Figure 2.1: High level block diagram of a direct adaptive control system known as
model reference adaptive control.

not possible to analytically design such controllers using the traditional techniques;

furthermore, some system parameters may undergo change during operation. Under

the initial conditions, a specific controller may be stabilizing; however, this same

controller may no longer be stabilizing after this change has occurred. Adaptive

control is the branch of control theory that is concerned with problems such as this.

Adaptive control design only requires knowledge of the basic system structure

while parameters that govern the system may be unknown. The control gains are

determined from an adaptive update law that is a function of the estimation error

between expected and actual system signals. There are two primary techniques in

adaptive control: direct adaptive control and indirect adaptive control. Direct adap-

tive control is the branch of adaptive control that produces on-line estimates of the

controller gains, bypassing the need to determine the system parameters. Indirect

adaptive control, in contrast, chooses to estimate the system parameters. These pa-

rameter estimates are then used to solve for the control input using a predetermined

7



2.2. INDIRECT ADAPTIVE CONTROL METHODOLOGY 8

control law. This will be the approach that we use in this paper. Fig. 2.1 shows a

basic block diagram of an adaptive control system.

2.2 Indirect Adaptive Control Methodology

A typical indirect adaptive control scheme has two steps: estimation of the plant

through the use of an adaptive law and the calculation of the control input from a

predefined control law. One advantage that indirect adaptive control has over direct

adaptive control schemes is that the numerator of the system transfer function is not

required to be stable, meaning that the plant is allowed to have open-loop unsta-

ble zeros. Many direct adaptive schemes such as model reference adaptive control

(MRAC) and adaptive backstepping are based on the assumption that all system

poles are located in the left half of the complex plane.

To proceed with the adaptive estimation step, we require a parametric representa-

tion that defines a system in terms of a parameter vector and a vector of measurable

signals. Consider the linear time-invariant plant

P (s)[y](t) = Z(s)[u](t) (2.1)

where y(t) ∈ R, u(t) ∈ R are the measured plant output and input, respectively. The

polynomials Z(s), P (s) are of the form

P (s) = sn + pn−1s
n−1 + · · ·+ p1s+ p0

Z(s) = zm−1s
m−1 + zm−2s

m−2 + · · ·+ z1s+ z0.

(2.2)

We begin by choosing an arbitrary stable polynomial Λ(s) = sn + λn−1s
n−1 + · · · +

λ1s+λ0. We then choose to filter both sides of equation (2.1) by the stable filter 1
Λ(s)

8



2.2. INDIRECT ADAPTIVE CONTROL METHODOLOGY 9

to obtain

1

Λ(s)
P (s)[y](t) =

1

Λ(s)
Z(s)[u](t). (2.3)

Manipulating this equation, we can obtain

y(t) =
Z(s)

Λ(s)
[u](t) +

Λ(s)− P (s)

Λ(s)
[y](t) (2.4)

which can be expressed as

y(t) = θ∗Tφ(t), t ≥ 0 (2.5)

where θ∗ is an unknown parameter vector, and φ(t) is a vector of measurable signals.

These vectors are of the form

θ∗ =
(
z0, z1, . . . , zm−1, zm, λ0 − p0, λ1 − p1, . . . ,

λn−2 − pn−2, λn−1 − pn−1

)T ∈ Rn+m+1

(2.6)

φ(t) =

(
1

Λ(s)
[u](t),

s

Λ(s)
[u](t), . . . ,

sm−1

Λ(s)
[u](t),

sm

Λ(s)
[u](t),

1

Λ(s)
[y](t),

s

Λ(s)
[y](t), . . . ,

sn−2

Λ(s)
[y](t),

sn−1

Λ(s)
[y](t)

)T
∈ Rn+m+1.

(2.7)

We can now define the estimation error as

ε(t) = θT (t)φ(t)− y(t), t ≥ t0. (2.8)

where θ(t) is an estimate of the parameter vector θ∗. Substituting equation (2.5) into

this, we obtain

ε(t) = θ̃T (t)φ(t), θ̃(t) = θ(t)− θ∗. (2.9)

The representation given in (2.8) is a measurable signal and can be used in adaptation

laws such as the normalized gradient algorithm or normalized least-squares algorithm.

9
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For brevity and simplicity, only the gradient update law will be given as follows:

θ̇ = −Γφ(t)ε(t)

m2(t)
, θ(t0) = θ0. (2.10)

Here, m(t) is a normalization signal that is generated to help guarantee stability

properties and is of the form

m(t) =
√

1 + αφT (t)φ(t), α > 0. (2.11)

The parameter Γ = ΓT > 0 is an arbitrary gain matrix, θ0 is an initial estimate of θ∗,

and α > 0 is a design parameter. Such a gradient parameter estimator guarantees

the following properties that are useful in adaptive controller design: θ(t), θ̇(t), ε(t)
m(t)

are bounded, and θ̇(t), ε(t)
m(t)
∈ L2.

The next step is to define a control law in terms of these parameter estimates.

The control law that the designer uses will be heavily dependent upon the application

and preference, but generally can be given as

u(t) = u(t; θ(t), y(t), r(t)) (2.12)

where r(t) may be a desired reference input for tracking. Techniques exist for adaptive

pole placement control, adaptive model reference control, and adaptive LQ control,

and each have their advantages and disadvantages. One potential pitfall of indirect

adaptive control is that once the control law has been chosen, the current formu-

lation cannot ensure that the given design equation always has a solution. This is

known as the singularity problem. It is known that neither the gradient algorithm

given above, nor the least-squares algorithm can ensure a singularity free adaptive

controller. Therefore, the designer must study the system and then utilize robust

10



2.2. INDIRECT ADAPTIVE CONTROL METHODOLOGY 11

methods to ensure that the control law exists and is finite for all t ≥ t0.

One such robust method that can accomplish this is known as parameter projec-

tion. Given the unknown ideal parameter vector θ∗ ∈ Rn+m+1, then we assume

that there exist known θbi > θ∗ and known θai < θ∗ such that for the estimate

θi ∈ [θai , θ
b
i ], i = 1, 2, ...n + m + 1, the control input u(t) exists and can be calcu-

lated from the estimate vector θ(t) for t > t0. To accomplish this, we choose the

initial estimate θi(0) ∈ [θai , θ
b
i ] and define the adaptation signal as

g(t) = −Γ
φ(t)ε(t)

m2(t)
. (2.13)

From this, we obtain the projection signal as

fi(t) =



0 if θi(t) ∈ [θai , θ
b
i ] or

if θi(t) = θai and gi(t) ≥ 0 or

if θi(t) = θbi and gi(t) ≤ 0

−gi(t) otherwise

. (2.14)

The projection vector is then built as f(t) = [f1(t), f2(t), ..., fn+m1(t)]. From this we

define the new parameter update law as

θ̇ = −Γ
φ(t)ε(t)

m2(t)
+ f(t). (2.15)

This choice of f(t) ensures that θi(t) ∈ [θai , θ
b
i ], i = 1, 2, ..., n + m + 1 for all time by

negating the adaptation signal if it were to move outside of the specified interval.

Thus, the parameter projection method can ensure that the control law u(t) exists

and is finite when the estimate vector θ(t) is used to calculate it. It can also be

shown that the parameter projection operator does not harm the ideal properties of

11



2.3. LINEAR QUADRATIC CONTROL DESIGN 12

boundedness and finite energy given by the gradient parameter estimator.

2.3 Linear Quadratic Control Design

A branch of control theory known as optimal control deals with the determination

of control laws through mathematical optimization. The design problem is defined

in terms of a cost function that is comprised of the state and control variables. The

optimal control is the path that the control variables must take in order to minimize

the cost function. A special case of general optimal control is known as the linear

quadratic control problem. Given the LTI system described by

ẋ = Ax(t) +Bu(t), (2.16)

the LQ control problem is given as the minimization of the cost function

J =

∫ ∞
0

[
xT (t)Qx(t) + uT (t)Ru(t)

]
dt (2.17)

where Q = QT ≥ 0, R = RT > 0 are cost matrices. The LTI system state equations

act as the set of linear constraints for the cost function, completing the mathematical

formulation of the optimization problem. The goal of this problem is to determine

the optimal state feedback

u(t) = −Kx(t) (2.18)

K = R−1BTP (2.19)

12



2.4. JET ENGINE SYSTEMS 13

that will minimize (2.17). K is the optimal gain matrix and depends on a P = P T ≥ 0

that is the solution to the algebraic Riccati equation

ATP + PA− PBR−1BTP +Q = 0. (2.20)

The solution P is known to exist, given the restriction that the pair (A,B) is con-

trollable. The resultant gain matrix K will generate a stabilizing control law for the

system in (2.16) and is optimal in the sense of the cost function (2.17).

2.4 Jet Engine Systems

This section will present some basics of jet engine systems that will be relevant to the

rest of the thesis. We begin with engine operation and function and then discuss the

role of control systems in jet engines. We then give a summary of the modeling of

the thermoacousic coupling phenomenon. This modeling includes the physics-based

distributed model and derives a reduced model that is useful for control design.

2.4.1 Operation and Engine Control Basics

In general, a jet engine system refers to any air-breathing, internal combustion engine

that generates thrust via the discharge of a fast moving jet. Modern aircraft engines

are the most prevalent of such engines and are the focus of this thesis. Figure 2.2

depicts a typical aircraft engine known as a turbojet and its standard gas flow paths.

As can be seen, air enters the engine at the front intake and is passed through a set of

axial and/or centrifugal compressors. Typically the engine is either a single-spool or

multi-spool engine, having either one or multiple compressor and fan combinations.

The compressed air is then mixed with fuel at the entrance to the combustion chamber

13



2.4. JET ENGINE SYSTEMS 14

Figure 2.2: Diagram of a modern aircraft engine and operation [38].

and ignited. The resulting hot gases are ejected in a jet out of the exhaust that

produces thrust.

As these engines are highly nonlinear, a typical jet engine control system contains

several feedback loops that control various engine processes with the common goal

of maintaining a desired operating condition over time. At this operating point, the

primary engine control loop will typically take the pilot’s power request as an input,

convert this to either shaft speed or engine pressure ratio (as these signals typically

corellate well with thrust), and compute the desired fuel flow rate. The loop is then

closed by sensing the shaft speed or pressure ratio and feeding it back.

2.4.2 Thermoacoustic Coupling Model Derivation

Thermoacoustic coupling is one example of an internal process that can be controlled

in order to maintain stable operation of the engine at a desired operating point. This

phenomenon occurs as a result of unsteady heat release in the combustion chamber.

This heat release excites acoustic waves which, in turn, perturb the fuel-air mixture

entering the chamber. If this perturbation is strong enough, resonant pressure modes

may become unstable. This instability results in high amplitude pressure oscillations

14
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which, in extreme cases, can lead to damage or reduced lifetime of the combus-

tion chamber. In addition, resonant modes of close resonant frequency may become

coupled which may further decrease stability. This motivates the development of a

multivariable model for the control of this process. The references [1] and [2] develop

this model from the linear distributed thermoacoustic model

∂

∂t
p̃(x, y, z, t) + ū(x, y, z) · ∇p̃(x, y, z, t) + ∆φ(x, y, z, t) = q̃(x, y, z, t) (2.21)

∂

∂t
φ(x, y, z, t) + ū(x, y, z) · ∇φ(x, y, z, t) + a2p̃(x, y, z, t) = η(x, y, z, t) (2.22)

∂

∂t
yf (x, y, z, t) + ū(x, y, z) · ∇yf (x, y, z, t) = 0 (2.23)

q̃(x, y, z, t) = F ′hr(Ȳf (x, y, z))γflame(x− gfl(y, z))yf (x, y, z, t) (2.24)

where p̃, q̃ are the normalized pressure and heat release perturbations, respectively,

φ, η are the velocity and noise potential, ū, u′ are the mean and perturbation velocity

of the fuel-air mixture, and gfl(y, z) represents the fixed flame surface. The mean

fuel mass fraction Ȳf (x0, y, z), perturbation fuel mass fraction yf (x0, y, z, t), and axial

and local heat release functions γflame(·), Fhr(·) are defined in depth in the source

material. This distributed model is not convenient for control design, so a reduced

order model is introduced. The first step is to expand the pressure and potential

perturbations in terms of the acoustic resonant modes. This results in

p̃(x, t) =
n∑
i=1

yi(t)Πi(x) (2.25)

and

φ(x, t) =
n∑
i=1

φi(t)Πi(x). (2.26)

15



2.4. JET ENGINE SYSTEMS 16

where Πi(x) are spatial resonant mode shapes, and yi(t) and φi(t) govern how the

pressure and potential mode shapes fluctuate in time. As is commonly done, we now

apply a Galerkin approximation [1], [2], [8] to obtain

jω



Φ1(jω)

Φ2(jω)

Y1(jω)

Y2(jω)


=



0 0 −a2 0

0 0 0 −a2

λ1 0 0 0

0 λ2 0 0





Φ1(jω)

Φ2(jω)

Y1(jω)

Y2(jω)


+



N1(jω)

N2(jω)

Q1(jω)− V1(jω)

Q2(jω)− V2(jω)


, (2.27)

where Ym(jω) is the Fourier transform of ym(t), Φm(jω) is the Fourier transform of

φm(t), and Qm(jω), Nm(jω), and Vm(jω) are the Fourier transforms of

qm(t) =

∫
V

Πm(x)q̃(x, t)dx (2.28)

ηm(t) =

∫
V

Πm(x)η̃(x, t)dx (2.29)

vm(t) =

∫
S

Πm(x)u′n(x, t)dx (2.30)

respectively. Here, V and S represent the combustion chamber volume and surface,

and the coefficient λm > 0 is defined as

λm =

∫
V |∇Πm(x)|2dx∫
V |Πm(x)|2dx

. (2.31)

Equation (2.27) can be simplified to obtain the expression

((jω)2 + λka
2)Yk(jω) = (jω)(Qk(jω)− Vk(jω)) + λkNk(jω), k = 1, 2 (2.32)
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2.4. JET ENGINE SYSTEMS 17

and the functions Vm(jω), Qm(jω) are given as

Vm(jω) = Gbc
m(jω)Ym(jω) (2.33)

Qm(jω) =
2∑

k=1

Gp2q
mk(jω)Ym(jω) +

Ninj∑
i=1

G
uf2q
mi (jω)Wf,i(jω). (2.34)

where transfer functions Gbc
m(jω), Gp2q

mk(jω), G
uf2q
mi (jω) are defined in [1] and [2]. Sub-

stituting equations (2.33) and (2.34) into (2.32) we obtain

((jω)2 + (jω)Gbc
k (jω) + λka

2)Yk(jω)

=
2∑

m=1

(jω)Gp2q
kmYm(jω) +

Ninj∑
i=1

G
uf2q
mi (jω)(jω)Wf,i(jω) + λkNk(jω), k = 1, 2.

(2.35)

We now make some simplifying assumptions regarding the remaining transfer func-

tions. The first is that the boundary admittance is a real positive number such that

Gbc
k (jω) = ξkk, (2.36)

which is valid as acoustic boundary conditions are designed to maximize the real

part of admittance for optimal acoustic damping. The second assumption proposes

that the distributed delays contained in the heat release transfer functions can be

represented as a real positive number and a lumped delay term. That is,

G
uf2q

kk (jω) ≈ gkke
jωτc,k (2.37)

(jω)Gp2q
km(jω) ≈ −ζkmejωτkm . (2.38)

17



2.4. JET ENGINE SYSTEMS 18

This is based on the assumption that in a narrow band around the resonant frequency,

any transfer function with flat magnitude response and rolling off phase response can

be approximated as a lumped delay and static gain. With this, equation (2.35) results

in a set of delay differential equations of the form

ÿ1 + ξ11ẏ1 + η11y1 + ζ11y1(t− τ11) + ζ12y2(t− τ12) = g11u̇2(t− τc,1) + h11χ1

ÿ2 + ξ22ẏ2 + η22y2 + ζ22y2(t− τ22) + ζ21y1(t− τ21) = g22u̇1(t− τc,2) + h22χ2.

(2.39)

For this specific case of coupling, we can take advantage of the circular symmetry of

the combustion chamber and the fact that for the two pressure modes, one is obtained

by a 90 degree rotation of the other. These two properties of the application result

in the above model reducing to

ÿ1 + ηy1 + ζy2(t− τ) = gu̇2(t− τ) + hχ1

ÿ2 + ηy2 − ζy1(t− τ) = −gu̇1(t− τ) + hχ2.

(2.40)

This is the model that we base our control system design off of. The next chapter

will develop an indirect adaptive control scheme for when it is appropriate to esti-

mate the lumped delay τ and provide simulation results verifying our design. Then,

the following chapter will examine a novel technique for control of the delay system

without approximations.

18



Chapter 3

Adaptive Controller Design with De-

lay Approximation

The following sections will present the design case where all system parameters, in-

cluding time delays, are unknown, and the delays are estimated using a first-order

Pade approximation. This thesis applies techniques of optimal control theory, namely

linear quadratic control, to stabilize the simplified jet engine instability model that

is used to describe thermoacoustic coupling. We will begin by modeling the physical

system in state space with approximated time delays. Following this, we will solve

the control problem for the nominal case where all system parameters are known. We

will then approach the adaptive control problem using an indirect adaptive scheme,

as the more common direct adaptive schemes require the assumption that all system

zeros be stable. We end by presenting the simulation results that verify our design.

3.1 Delay Approximation Model

For a complex system such as a jet engine, it is possible that the system time delays

may be unknown which makes the control problem significantly harder. A technique

that may be used in situations where the time delay is sufficiently small compared

19



3.1. DELAY APPROXIMATION MODEL 20

to the system dynamics is to use a simple approximation such as a first-order Pade

approximation. The benefit of this approximation is that it allows us to transform

a functional differential equation - one that includes time delays - into an ordinary

differential equation system. Furthermore, if the time delay is unknown, then the ap-

proximation allows for the use of existing adaptive control techniques for estimation.

It is known that for an arbitrary delayed signal f(t),

L[f(t− τ)] = L[f(t)]e−τs (3.1)

where L[·] is the Laplace transform operator. From this, we can obtain the first-order

approximation of a time delayed signal as

e
−2s
f ≈ f − s

f + s
, τ =

2

f
. (3.2)

Such an approximation allows for the derivation of a model that is suitable for control

design.

Taking the Laplace transform of the model in (2.40) and applying the approxima-

tion in equation (3.2), we obtain the equations

(s2 + η)Y1 + ζY2
f − s
f + s

= gsU2
f − s
f + s

+ hX1

(s2 + η)Y2 − ζY2
f − s
f + s

= −gsU1
f − s
f + s

+ hX2

(3.3)

where Yi, Ui, and Xi are the Laplace transforms of the signals yi, ui, and χi for i = 1, 2.
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3.1. DELAY APPROXIMATION MODEL 21

Define the matrices P1, Q1 as

Q1 = ηI + ζP1,

P1 =

 0 1

−1 0

 .
Simplifying the above equations we obtain

(s3 + fs2ηs+ fη)Y1 + ζY2(f − s) = gsU2(f − s) + h(f + s)X1

(s3 + fs2ηs+ fη)Y2 − ζY1(f − s) = −gsU2(f − s) + h(f + s)X2

(3.4)

which can be combined into matrix form as

(Is3 + fIs2 +Q1s+ fQ1)[y](t) = g(f − s)sP1[u](t) + h(s+ f)Iχ (3.5)

where y = [y1, y2], u = [u1, u2] are the output and input vectors, and χ = [χ1, χ2]

is the disturbance input vector. The parameters f, g, h, η, ζ are all unknown system

parameters. This system is in a standard MIMO form

A(s)y = B(s)u+ C(s)χ

A(s) = (Is3 + fIs2 +Q1s+ fQ1)

B(s) = g(f − s)sP1

C(s) = h(s+ f)I.

(3.6)

According to [4], a MIMO system represented in the above form, and

A(s) = Isn + An−1s
n−1 + ...+ A1s+ A0 (3.7)
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B(s) = Bn−1s
n−1 +Bn−2s

n−2 + ...+B1s+B0 (3.8)

can be represented in a MIMO observer canonical form given as

ẋ = Aox+Bou

y = Cox

(3.9)

where

Ao =



An−1 I 0 . . . 0

An−2 0 I . . . 0

...
...

...
. . .

...

A1 0 0 . . . I

A0 0 0 0 0


, Bo =



Bn−1

Bn−2

...

B0


(3.10)

and

Co =

[
I 0 . . . 0 0

]
. (3.11)

We can put equations (3.5)–(3.6) into the MIMO observer canonical form where the

state equations are of the form

ẋ = Agx+Bgu+Dgχ, x ∈ R6

y = Cgx (3.12)

where Ag, Bg, Dg are formed as

Ag =


−fI I 0

−QT
1 0 I

−fQ1 0 0

 , Bg =


−gP1

gfP1

0

 , Dg =


0

hI

hfI

 . (3.13)
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3.2. NOMINAL CONTROLLER DESIGN 23

In this form, the output matrix Cg is known, and it is given as

Cg =

[
I 0 0

]
. (3.14)

3.2 Nominal Controller Design

In optimal control, the motivation is to construct a control law that will minimize a

given cost function. The cost function is determined according to the system speci-

fications so that the designer can place high or low costs on certain deviations. The

magnitude of the control input is included in the cost function in order to limit the

energy expended by it, as large values of the control input are often undesirable be-

cause of the potential for actuator saturation. For linear quadratic control, the control

objective is to choose an optimal state feedback controller for the generic system

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm

y = Cx (3.15)

subject to the cost function

J =

∫ ∞
0

(xTQx+ uTRu)dt (3.16)

where Q = QT ∈ Rn×n is a positive semidefinite matrix and R = RT ∈ Rm×m is a

positive definite matrix, chosen to meet certain optimality. In particular, R and Q

can be treated as the weighting factors for the cost specification on x and u in J to

be minimized.

For adaptive LQ control when the system matrices A, B and C are unknown, we
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3.2. NOMINAL CONTROLLER DESIGN 24

choose Q = CTC so that xTQx = yTy, leading to certain optimality specification on

the system output y(t), and with uTRu, on u(t), relatively. Then an input-output

system model can be employed for the construction of an adaptive observer (see next

subsection).

To achieve our goals of stabilization and minimization of J , we will utilize an

optimal control theory to generate the control law. A summary of linear quadratic

control can be found in Section 2.3 and in [5]. We will discuss the nominal control

cases for the known system parameter case first, as the basis for an adaptive control

design for the unknown parameter case.

We begin our controller design by deriving the nominal controller when all system

parameters and matrices are known. We will look at two approaches in order to

build the theory: the first being state feedback control when all system states are

measurable, and the second being observer-based feedback control for the case when

we may have arbitrary unmeasurable states.

State Feedback Control Design

When all states of the open loop system are available for measurement, an effective

controller is a state feedback controller. The cost function (3.16) can be minimized

by using the control law

u = −Kx

K = R−1BTP

(3.17)

where P ∈ Rn×n is a positive definite matrix satisfying the Riccati Equation

ATP + PA− PBR−1BTP +Q = 0. (3.18)
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To ensure the existence of such a matrix P and a minimal value of J , for a feasible

LQ control design, we need the following condition:

(A1) The pair (A,B) is stabilizable (to ensure that a finite cost function J is

possible by making the closed-loop stable, so that a minimal J can be found), and

the pair (A,C0) is observable for C0 ∈ Rp×n being such that Q = CT
0 C0 (to ensure

that a finite (minimal) J leads to limt→∞ x(t) = 0 so that the closed-loop system is

asymptotically stable—it is sufficient for this if (A,C0) is detectable—and to ensure

the existence of a unique P = P T > 0 to the Riccati equation—a detectable (A,C0)

can ony ensure a unique solution P = P T ≥ 0).

The optimal controller (3.17) can be directly applied to the system (3.12) with

χ = 0 if x(t) is available for measurement. The matrix Q can be chosen as Q = CT
g Cg

as (Ag, Cg) is observable. The control law results in the closed-loop state equation

ẋ = (Ag −BgR
−1BT

g P )x. (3.19)

Given that (Ag, Bg) is stabilizable and Q and R are chosen as positive semidefinite

and positive definite, respectively, a P = P T > 0 exists and is a unique solution to

the Riccati Equation (3.18). It will result in all eigenvalues of the closed-loop system

matrix (Ag − BgK) having negative real parts. This control law also guarantees

boundedness of all closed-loop signals and y(t)→ 0 exponentially fast.

Observer-Based Feedback Control Law

In general, the system state variables x(t) may not be available for measurement, so

in order to use a state feedback based control scheme such as linear quadratic control,

we will make use of a state observer for the system in (3.12) (which is a special form
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of (3.15)) of the form

˙̂x = Agx̂+Bgu−Ko(Cgx̂− y) (3.20)

where the observer gain Ko ∈ R6×2 is chosen to meet the matching equation

det(sI − Ag +KoCg) = A∗o(s) (3.21)

for a desired nth-order monic and stable polynomial A∗o(s), which can be realized

under the observability condition of (Ag, Cg).

Then, the observer-based control law that minimizes the cost function (3.16) is

given by

u = −Kx̂, (3.22)

K = R−1BT
g P (3.23)

where P ∈ Rn×n is a positive definite matrix satisfying the Riccati Equation

ATg P + PAg − PBgR
−1BT

g P +Q = 0. (3.24)

To ensure the existence of such a matrix P and a minimal value of J , for a feasible LQ

control design we require assumption (A1) to hold, with A = Ag, B = Bg, C0 = Cg

for the (Ag, Bg, Cg) given in (3.13).

In order to properly utilize the state observer, the designer should choose the poles

of the observer to be sufficiently fast so that the state estimates converge much faster

than their respective states. Since the observer is stable by design, then under the

assumptions of stabilizability and with the additional assumption of observability,

then we can guarantee the boundedness of all closed-loop signals and limt→∞ x̂(t) =
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x(t) exponentially fast. In turn, this will lead to the conclusion that limt→∞ y(t) = 0.

Existence of Solution

The Riccati equation in 3.24 requires two conditions to guarantee the existence of a

finite, unique solution. The first condition is that R = RT > 0, and Q = QT ≥ 0, and

are chosen by the designer. The second condition is that the matrix pair (Ag, Bg) is

stabilizable. To guarantee this condition we must examine the controllability of the

system (3.12).

Controllability for the matrix pair (Ag, Bg) is given by the equation

C =
[
Bg AgBg A2

gBg A3
gBg A4

gBg A5
gBg

]
(3.25)

The matrix C must be of full rank to ensure controllability. While for a 6th order

system, examining this matrix is cumbersome, we will examine a submatrix that will

also give us insight into the controllability of the system. Consider the submatrix

C3 =
[
Bg AgBg A2

gBg

]
. (3.26)

Expanding this matrix results in

C3 =



0 −g 0 2fg gζ g(η − 2f 2)

g 0 −2fg 0 −g(η − 2f 2) gζ

0 fg gζ gη −3fgζ −fgη

−fg 0 −gη gζ fgη −3fgζ

0 0 −fgζ fgη 2f 2gζ −2f 2gη

0 0 −fgη −fgζ 2f 2gη 2f 2gζ


. (3.27)
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If rank [C3] = 6 then we will know that the controllability matrix C has full rank, thus

implying the system is controllable. Since C3 is a square matrix, full rank implies that

the matrix is nonsingular, so we take the determinant as follows:

det C3 = 4f 4g6η4 + 8f 6g6η3 + 4f 8g6η2 + 4f 4g6η2ζ2 + 8f 6g6ηζ2 + 4f 8g6ζ2

= 4f 4g6(η4 + 2f 2η3 + f 4η2 + η2ζ2 + 2f 2ηζ2 + f 4ζ2)

(3.28)

This yields a set of necessary conditions that guarantee the controllability of the

system (3.12). These are as follows

• (C1) f 6= 0

• (C2) g 6= 0

• (C3) η 6= ζ 6= 0

• (C4) η4 + f 4η2 + η2ζ2 + f 4ζ2 6= −2f 2η3 − 2f 2ηζ2

For us to reasonably assume that our system is controllable, we must examine each

of these conditions. Condition (C1) is reasonable to assume true since f = 0 would

imply that the time delay τ is infinite. The next condition, (C2), is reasonable to

assume because g = 0 would imply that we have zero control authority, which is

simply not true. (C3) is a reasonable assumption because ζ = 0 would imply that

there is zero coupling between the acoustic modes. We are specifically looking at the

case where there is a strong coupling between modes. Additionally, if η = 0 then

the original differential equation would only depend on the input, which we know

to be not true. The last condition, (C4), is more complex; however, we see that an

inclusive requirement of (C4) is that η < 0. From [1] and [2], we know that this term

is related to the acoustic resonant frequency, so it must be greater than zero. With

η > 0 condition (C4) will always be satisfied.
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3.3 Adaptive Linear Quadratic Control

Jet engines are highly complex systems. Due to the system nature, poorly understood

physical phenomena, and time-varying parameters, obtaining accurate parameter val-

ues is difficult. Thus, we consider the case in which system parameters f, g, η, ζ are

unknown. Adaptive control is an effective tool in such cases due to its ability to obtain

online parameter estimates and update them during operation. As stated previously,

the first-order Pade approximation results in a non-minimum phase realization of the

model in (2.40). This, along with the desired optimality for jet engines, motivates

us to utilize an indirect adaptive linear quadratic control scheme. We begin with the

controller design, discuss the reduced-order parameter estimation and robust adaptive

laws, and then present a detailed simulation study to verify our results.

3.3.1 Control Design

Since the parameters Ag and Bg of

ẋ = Agx+Bgu, y = Cgx (3.29)

are unknown, we use the adaptive version of the control law (3.22) as

u = −K̂x̂, K̂ = R−1B̂T
g (t)P (t) (3.30)

where P (t) is the solution of the online Riccati equation

ÂTg P (t)+P (t)Âg−P (t)B̂gR
−1B̂T

g P (t)+Q = 0. (3.31)
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Âg and B̂g are adaptive estimates of Ag and Bg, and x̂ is produced by the adaptive

observer

˙̂x = Âgx̂+ B̂gu− K̂o(Cgx̂− y), (3.32)

with K̂o ∈ R6×2 chosen to satisfy

det(sI − Âg + K̂oCg) = A∗o(s). (3.33)

The implementation of this indirect adaptive control scheme requires that our

estimates of the system matrices Âg and B̂g satisfy some crucial conditions.

(A2): The estimates Âg(t) and B̂g(t) are such that Âg(t), B̂g(t) ∈ L∞ and

˙̂
Ag(t),

˙̂
Bg(t) ∈ L2, plus some desired estimation error conditions (see Section 3.3.2).

Also, in order to utilize parameter projection and form the projection signal, we

will require some basic knowledge of our system parameters.

(A3): The parameters f, g, η, ζ satisfy |f | ≥ f0 > 0, |g| ≥ g0 > 0, |η| ≥ η0 > 0,

|ζ| ≥ ζ0 > 0,∀t ≥ 0 for some known lower bounds f0, g0, η0, ζ0 and sign [f ], sign [g],

sign [η], sign [ζ] are known.

The assumption (A3) allows the implementation of parameter projection for ro-

bust control. The use of parameter projection will allow us to manipulate the adaptive

law so that we can guarantee that a solution to the online Riccati equation in (3.31)

always exists, as we will discuss next. An overall block diagram for the adaptive

control system is seen in Fig. 3.1.

Controllability and Observability. The adaptive Riccati equation given in

(3.31) requires two conditions to guarantee the existence of a finite, unique solution.

The first condition is that the matrices R = RT > 0 and Q = QT ≥ 0, which are

chosen by the designer. The second condition is that at any frozen time t > 0, the
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Figure 3.1: Block diagram of the adaptive LQ control system.

system matrix estimate pair (Âg(t), B̂g(t)) is stabilizable and (Âg(t), Cg) is detectable.

To guarantee this we must examine the controllability and observability of our system

for all time.

Controllabilty for the matrix pair (Âg(t), B̂g(t)) at the frozen time t is given by

the equation

C =
[
B̂g ÂgB̂g Â2

gB̂g Â3
gB̂g Â4

gB̂g Â5
gB̂g

]
. (3.34)

While the controllability matrix for the pair (Ag, Bg) is too large to be practically

included here, it was shown previously that this pair is controllable in all scenarios

except for the following:

• The system parameter estimate f̂ 6= 0.

• The system parameter estimate ĝ 6= 0

• The system parameter estimates η̂, ζ̂ are such that η̂ 6= ζ̂ 6= 0 simultaeously.
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These are the same conditions as given in Section 3.2 where each parameter is replaced

with its adaptive estimate. For all other values of f̂ , ĝ, η̂, ζ̂, it can be shown that the

controllability matrix has full rank which gives us controllability of the matrix pair

(Âg, B̂g). For simplicity we can impose the condition that f̂ 6= 0, ĝ 6= 0, η̂ 6= 0, ζ̂ 6= 0,

which is inclusive of the three conditions given above. Then, given assumption (A3),

this allows us to apply parameter projection to guarantee that the all parameters

never cross zero, ensuring that the pair (Âg(t), B̂g(t)) is controllable for all time (See

Section 3.3.2 for details).

Observability for this system model is much simpler to ensure. Since we are in

MIMO observer canonical form, the observablity matrix, given by

O =



Cg

CgÂg

CgÂ
2
g

CgÂ
3
g

CgÂ
4
g

CgÂ
5
g


, (3.35)

will always have full rank regardless of the value of the parameters f̂ , ĝ, η̂, ζ̂. As such,

the matrix pair (Âg(t), Cg) will be observable for all time. This analysis shows that

assumptions (A1)–(A3) are sufficient to guarantee that the adaptive Riccati equation

in (3.31) has a finite, unique positive definite solution P for all time.

Stability analysis. We will now show that the observer error dynamic equation

is stable which can be shown to lead to stability of the overall system. We begin by

proposing the following lemma.
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Lemma 3.3.1 Given assumptions (A1)–(A3), the indirect adaptive control scheme

in equations (3.30)–(3.33) guarantees local stability and boundedness of all closed-loop

signals.

Proof : Since the control law (3.30) results in the closed-loop observer state equa-

tion

˙̂x = (Âg − B̂gR
−1B̂T

g P )x̂− K̂o(Cgx̂− y)

= Ac(t)x̂+ K̂oCgeo

(3.36)

where eo = x− x̂ is the observation error, and the observer is chosen to be stable, it

follows that we need to establish the stability of Ac(t). With assumptions (A1), (A3)

and this system structure, the online estimates (Âg, B̂g) are stabilizable. Then, at

each frozen time t, we can say that all eigenvalues of Ac(t) have negative real parts.

To conclude stability, we then need to show that ‖Ȧc(t)‖ ∈ L2. For this, we take the

norm of Ȧc(t) to obtain the relationship:

‖Ȧc(t)‖ ≤ ‖ ˙̂
Ag(t)‖+ ‖ ˙̂

Bg(t)‖R−1‖ B̂T
g (t)‖‖P (t)‖

+‖B̂g(t)‖R−1‖ ˙̂
BT
g (t)‖‖P (t)‖+ ‖B̂g(t)‖R−1‖B̂T

g (t)‖‖Ṗ (t)‖.
(3.37)

To obtain an expression for Ṗ , take the derivatve of (3.31):

d

dt
(ÂTg (t)P (t) + P (t)Âg(t)− P (t)B̂g(t)R

−1B̂T
g (t)P (t) +Q)

=
˙̂
ATg P + ÂTg Ṗ + Ṗ Âg + P

˙̂
Ag − Ṗ B̂gR

−1B̂T
g P

− P ˙̂
BgR

−1B̂T
g P − PB̂gR

−1 ˙̂
BT
g P − PB̂gR

−1B̂T
g Ṗ = 0

(3.38)
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which can be organized as

ÂTg Ṗ + Ṗ Âg − Ṗ B̂gR
−1B̂T

g P − PB̂gR
−1B̂T

g Ṗ

= − ˙̂
ATg P − P

˙̂
Ag + P

˙̂
BgR

−1B̂T
g P + PB̂gR

−1 ˙̂
BT
g P.

(3.39)

Finally, we arrive at

ATc Ṗ + ṖAc = −Q, (3.40)

where

Q =
˙̂
ATg P + P

˙̂
Ag − P ˙̂

BgR
−1B̂T

g P − PB̂gR
−1 ˙̂
BT
g P. (3.41)

Since at any frozen time t, all eigenvalues of Ac(t) have negative real part, then for

any given Âg, B̂g, P , equation (3.40) is a Sylvester Equation of the form

AX +XB = C (3.42)

where A,B,C are arbitrary n×n matrices. The solution to the Sylvester Equation is

guaranteed to exist when A and −B have no common eigenvalues. Then, for (3.40),

we see that Ac(t) and −Ac(t) have no common eigenvalues. Thus, we have that the

solution Ṗ exists and is continuous with respect to Q. Given Assumption (A2), this

leads to P ∈ L∞ and ‖Ṗ (t)‖ ∈ L2. Thus we have Ȧc(t) ∈ L2 and we can conclude that

Ac(t) is a uniformly asymptotically stable matrix. It follows from this and assumption

(A2) that all closed-loop signals are bounded using the techniques found within [5].

O
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3.3.2 Parmeter Estimation

In order to implement an indirect adaptive control scheme, we construct an adaptive

parameter estimator to estimate the uncertain parameters. For this estimator, we will

choose to only estimate the unknown physical plant parameters f, g, η, ζ. This gives us

an advantage over certain direct adaptive control schemes where it may be required

to estimate many more uncertain parameters that may be comprised of products

and powers of the physical parameters. Due to the symmetry of the problem with

the uncertain parameters in (2.40) we will construct an estimator for the uncertain

parameters of the first equation only.

Parametric Model

We will begin our design by neglecting the effects of noise by letting χ = 0 in (2.40).

Then the dynamic equation for y1 becomes

...
y 1 + fÿ1 + ηẏ1 − ζẏ2 + fηy1 + fζy2 + gü2 − fgu̇2 = 0. (3.43)

Similar to that used in [1], for adaptive law derivation and implementation pur-

poses, we will construct three third-order filters in order to measure the derivatives

of y1, y2, u2. The first filter system is

φ̇1 = φ2

φ̇2 = φ3

φ̇3 = −l0φ1 − l1φ2 − l2φ3 + y1, (3.44)
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the second filter system is

ψ̇1 = ψ2

ψ̇2 = ψ3

ψ̇3 = −l0ψ1 − l1ψ2 − l2ψ3 + y2, (3.45)

and the third filter system is

ω̇1 = ω2

ω̇2 = ω3

ω̇3 = −l0ω1 − l1ω2 − l2ω3 + u2. (3.46)

Here, l(s) = s3 + l2s
2 + l1s + l0 is chosen as a monic and stable polynomial. Then,

operating l(s) on y1 we obtain

l(s)[y1](t) =
...
y 1 + l2ÿ1 + l1ẏ1 + loy1. (3.47)

Combining this equation with (3.43), we obtain

l(s)[y1] =
...
y 1 + l2ÿ1 + l1ẏ1 + loy1 − (

...
y 1 + fÿ1

+ ηẏ1 − ζẏ2 + fηy1 + fζy2 + gü2 − fgu̇2). (3.48)

Operating both sides by 1
l(s)

and using our three filter systems, we obtain

y1(t) = l2φ3 + l1φ2 + l0φ1 − fφ3 − ηφ2 + ζψ2

− fηφ1 − fζψ1 − gω3 + fgω2. (3.49)
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This is our parametric model for the system in (3.12), neglecting the noise term. This

equation can be further written as

y1 − l2φ3 − l1φ2 − l0φ1 + ηφ2 − ζψ2

+ gω3 + f(φ3 + ηφ1 + ζψ1 − gω2) = 0. (3.50)

Parameter Update Law

Based on (3.50), with the estimates η̂, ζ̂, ĝ, f̂ of η, ζ, g, f , we define the estimation

error

ε = y1 − l2φ3 − l1φ2 − l0φ1 + η̂φ2 − ζ̂ψ2

+ĝω3 + f̂(φ3 + η̂φ1 + ζ̂ψ1 − ĝω2). (3.51)

From (3.51), as given in [1], it follows that

ε = −ΩT θ̃ + θ̃TΣθ̃, (3.52)

where the parameter error is θ̃ = θ− θ̂(t), with θ and θ̂(t) being the parameter vector

and its online estimate vector, given as

θ =



η

ζ

g

f


, θ̂(t) =



η̂

ζ̂

ĝ

f̂


. (3.53)
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The regressor vector Ω is

Ω =



φ2 + f̂φ1

−ψ2 + f̂ψ1

ω3 − f̂ω2

φ3 + η̂φ1 + ζ̂ψ − ĝω2


, (3.54)

and the matrix Σ is

Σ =



0 0 0 0

0 0 0 0

0 0 0 0

−φ1 −ψ1 ω2 0


. (3.55)

With the definition of the estimation error ε(t), we can design a gradient parameter

estimator with the update law [1]:

˙̂
θ = −Γ

Ωε

1 + γΩTΩ
+ fp(t) (3.56)

where γ is a positive constant and Γ = ΓT > 0 is a constant positive definite symmetric

matrix. The projection signal fp(t) is used to ensure controllability of the pair (Âg, B̂g)

for all time. With assumption (A3), this is accomplished by designing the projection

signal as

fpi(t) =


0 if |θ̂i(t)| ∈ [0,∞] or

if θ̂i(t) = 0 and sign[θi]gi(t) ≥ 0 or

−gi(t) otherwise

. (3.57)

This projection operator guarantees that each estimate f̂ , ĝ, η̂, ζ̂ never crosses zero.

This satisfies the controllability requirement and ensures that the Riccati equation

(3.31) has a solution. Analysis of this parameter estimator reveals that it is locally
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stable [1]. Such an adaptive law ensures that θ̂,
˙̂
θ, ε

m
are bounded and

˙̂
θ, ε

m
∈ L2 for

m =
√

1 + γΩTΩ, locally or globally.

Parameter Update Law for the Case with Noise

Now we consider the case where the noise χ 6= 0 in (3.12). The parameter projection

techique can be used to provide robustness in the presence of bounded noise, however

we address another viable technique here.

Since the input to the system is noisy, there is the potential for parameter drift

due to small estimation errors caused by the noise. To counteract such a noise for

robustness, we need to modify the adaptive law. We first introduce a deadzone

nonlinearity ∆(·; b) defined as

∆(ε; b) =

 ε if |ε| > b

0 if |ε| ≤ b

for some constant b > 0. Then, the adaptive parameter update law is modified as

˙̂
θ = −Γ

Ω∆(ε; b)

1 + γΩTΩ
. (3.58)

The function of the deadzone nonlinearity ∆(·; b) is to stop the parameter adaptation

if the estimation error ε(t) is below a specific value b. This technique may be combined

with parameter projection to guarantee the existence of a solution to the online

Riccati equation (3.31) for all time and is a viable technique in many applications

for the rejection of input noise and guarantees that our parameter estimates remain

bounded.
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3.4 Simulation Study

In this section we will demonstrate the ability of our adaptive controller to successfully

stabilize the system under non-ideal circumstances such as exposure to a noisy input

signal, actuator saturation, and a shift in system parameters. We will provide a

recap of the system and controller, then discuss the simulation conditions, and finally

provide a summary of our simulation results.

3.4.1 System Model

Recall that the time delayed jet engine system model was approximated by a non-

minimum phase system model

A(s)y = B(s)u+ C(s)χ (3.59)

where A(s), B(s), C(s) are given as

A(s) = Is3 + fIs2 +QT
1 s+ fQ1

B(s) = g(f − s)sP1

C(s) = h(s+ f)I

Q1 = ηI + ζP1

P1 =

 0 1

−1 0

 . (3.60)
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It was built in MATLAB in the state variable form with x(t) ∈ R6 and a state observer

with x̂(t) ∈ R6:

ẋ = Agx+Bgu+Dgχ, y = Cgx (3.61)

˙̂x = Âgx̂+ B̂gu− K̂o(Cgx̂− y). (3.62)

The uncertain parameters η, ζ, f, g were estimated according to the adaptive update

law

˙̂
θ = −Γ

Ω∆(ε; b)

1 + γΩTΩ
(3.63)

where ε is the estimation error, Ω is the regressor vector, and θ̂ is the estimate of the

parameter vector, ∆(·; b) is a deadzone nonlinearity to help reject noise errors in the

estimator. The adaptive LQ control law was

u = −K̂x̂ (3.64)

which was constructed by creating estimates Âg(t), B̂g(t) of the system matrices

Ag, Bg and using them to solve the online Riccati Equation

ÂTg (t)P (t) + P (t)Âg(t)− P (t)B̂g(t)R
−1B̂T

g (t)P (t) +Q = 0 (3.65)

for the matrix P (t) to construct the control gain

K̂ = R−1B̂T
g (t)P (t). (3.66)
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3.4.2 Simulation Conditions and Cases

Due to the lack of real world values of the unknown parameters, this system was

simulated against the same values as the simulation done in [1]. Additionally, their

choice of initial conditions were also used as they are representative of what one would

use as an initial estimate of the unknown parameters. These conditions and values

are listed below:

• f = g = η = ζ = h = 1

• y1(0) = 1, y2(0) = 1

• η̂(0) = 1.3η: This parameter is the natural frequency of the closed-loop plant,

and is least uncertain.

• ĝ(0) = 2g: This parameter is estimated large because we have limited control

authority and an underestimate would lead to the need for large input values.

• f̂(0) = 2.4f : This is chosen large so as to not underestimate the system time

delay.

• ζ̂(0) = 1.7ζ: We overestimate the coupling, as a low estimate would imply a

predominantly SISO design.

• Γ = 10I, γ = 1

• b = 0.03: This parameter determines the deadzone size to help to avoid bursting

due to noisy inputs.

The rest of the simulation parameters are as follows:
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• R = 10I: This was chosen large so as to help limit large transient values in the

control input.

• l(s) = s3 + 6s2 + 11s+ 6

• The poles of A∗o(s) were chosen to be sufficiently fast.

With these parameter values the open-loop plant is unstable with poles at −1.3 ±

j0.75, 0.11± j1.4, 0.23± j0.63.

Three different cases were studied for comparison with our adaptive control scheme.

These cases are as follows:

• Case I: the ideal controller with no adaptation, θ̂ = θ.

• Case II: a non-adaptive controller with η̂ = 1.3η, ĝ = 2g, f̂ = 2.4f , ζ̂ = 1.7ζ

• Case III: the adaptive controller with η̂(0) = 1.3η, ĝ(0) = 2g, f̂(0) = 2.4f ,

ζ̂(0) = 1.7ζ.

We conducted four sets of simulations, each with the three cases as mentioned above,

under different circumstances. In the first simulation set we chose the weighting

Q = I, as for LQ control the requirement is that Q must be positive semidefinite.

In our second simulation set we chose Q = CT
g Cg as this is a common choice of Q

since it results in the cost function depending only upon the output vector y. Our

third simulation set contained a shift in parameter values to simulate a fundamental

change in the system. The last simulation set contained the same parameter shift as

well as a limit on the range of the control input in order to simulate the potential for

actuator saturation.
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3.4.3 Simulation Results for Q = I

Fig. 3.2–3.3 show the outputs and inputs of the system, respectively, for different

controllers . As we can see for the adaptive case, during the adaptation phase from 0

to around 10 seconds, the output grows in magnitude. After this, Fig. 3.4 shows that

the parameter estimates have settled and the origin becomes stable. The magnitude

of the output then begins to decay and approaches zero around 20 seconds. Fig. 3.5

shows the estimation error ε(t). As we can see, it also approaches zero, which is to be

expected as that is guaranteed by the adaptive law. The parameter estimates in Fig.

3.4 do not approach the true values because of a lack of persistence of excitation,

however, this is unnecessary for achieving the desired control objective, since the

estimation error is always guaranteed to go to zero.

Figures 3.2 and 3.3 also show outputs and inputs for the ideal and non-ideal fixed

gain controllers as a comparison. As is easily seen, the adaptive controller performs

much better than the non-ideal case as this case is unstable and the outputs and

inputs diverge due to poor initial estimates.

3.4.4 Simulation Results for Q = CT
g Cg

One common choice of Q is to set it as Q = CT
g Cg. This is because such a choice of

Q will lead to the cost function term xTQx = xTCT
g Cgx = yTy. Then, our optimality

is based upon the magnitude of the control inputs and system outputs. As we can

see in Figs. 3.6 and 3.7 for the adaptive case, during the adaptation phase from 0 to

around 10 seconds, the output grows in magnitude. After this, Fig. 3.8 shows that

the parameter estimates have settled and the origin becomes stable. The magnitude

of the output then begins to decay and approaches zero around 20 seconds. The

parameter estimates in Fig. 3.8 do not approach the true values because of a lack
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Figure 3.2: System outputs for Q = I case with ideal controller (top), non-ideal
controller (middle) and adaptive controller (bottom).
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Figure 3.3: Control inputs for Q = I case with ideal controller(top), non-ideal con-
troller (middle), and adaptive controller (bottom).
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Figure 3.4: Adaptive parameter estimates η̂, ζ̂, ĝ, f̂ for Q = I case.
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Figure 3.5: Output estimation error ε(t) for Q = I case.
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Figure 3.6: System outputs for Q = CT
g Cg case with ideal controller (top), non-ideal

controller (middle) and adaptive controller (bottom).

of the persistence of excitation condition, however, this is unnecessary for achieving

the desired control objective, since the estimation error is always guaranteed to go to

zero.

Fig. 3.6 and 3.7 also show outputs and inputs for the ideal and non-ideal fixed

gain controllers as a comparison. As is easily seen, the adaptive controller performs

much better than the non-ideal case as this case is unstable and the outputs and

inputs diverge due to poor initial estimates.

3.4.5 Simulation Results for Parameter Jump Case

This case is one that has received a lot of attention from the research community

in recent years. Parameter jump can result from a number of physical phenomena,

all of which represent the system undergoing sudden change due to the occurence
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Figure 3.7: Control inputs for Q = CT
g Cg case with ideal controller (top), non-ideal

controller (middle) and adaptive controller (bottom).

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Time(s)

 

 
f̂
ĝ
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Figure 3.8: Adaptive parameter estimates η̂, ζ̂, ĝ, f̂ for Q = CT
g Cg case.

48



3.4. SIMULATION STUDY 49

0 20 40 60 80 100
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time(s)

Figure 3.9: Output estimation error ε(t) for Q = CT
g Cg case.

of events such as structural damage. In this simulation we chose a parameter jump

for the unknown physical parameters f, g, η, ζ. Due to lack of real world values for

these parameters we will choose all parameters to jump to a value of 1.5 starting at

t = 30 and moving linearly to their final values over a 50 second period. Outputs

and control inputs can be seen in Fig. 3.10–3.11. At the initial time of the parameter

jump, as can be seen in Fig. 3.12–3.13 the parameter values do not change due to

the estimation error lying within the deadzone; however when the error grows, the

parameter estimator updates and the controller is able to compensate. A second peak

occurs after the parameter jump for a similar reason as the first peak occurred - the

estimation error was within the deadzone while the parameter jump was occuring.

Fig. 3.12 shows that after around 80 seconds the estimator has stopped adapting,

and the origin becomes stable again.
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Figure 3.10: System outputs for the parameter jump case with ideal controller (top),
non-ideal controller (middle) and adaptive controller (bottom).
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Figure 3.11: Control inputs for the parameter jump case with ideal controller (top),
non-ideal controller (middle) and adaptive controller (bottom).
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Figure 3.12: Adaptive parameter estimates η̂, ζ̂, ĝ, f̂ for the parameter jump case.
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Figure 3.13: Estimation error ε(t) for the parameter jump case.
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3.4.6 Simulation Results with Actuator Saturation

An important case to consider in physical systems is actuator saturation. As stated

in [1], it is important to note that in this application we have limited control au-

thority, and so we choose to explore the effects of saturation on our control system

performance. In this simulation we chose a parameter jump for the unknown physical

parameters f, g, η, ζ. Additionally, we simulate a parameter jump case. Due to lack

of real world values for these parameters we will choose all parameters to jump to a

value of 1.5 starting at t = 30, moving linearly to their final values over a 50 second

period.

In these simulations, we choose the range of our control input to be [-3.5, 3.5].

As can be seen in Fig. 3.15, very mild actuator saturation does occur in the initial

adaptation phase and Fig. 3.14–3.17 show that the controller does recover from it

quite easily. After the parameter jump occurs, the actuators become heavily saturated

and work hard to keep the system stabilized, eventually bringing the trajectory back

to the origin.
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Figure 3.14: System outputs for the parameter jump case with actuator saturation
with ideal controller (top), non-ideal controller (middle) and adaptive controller (bot-
tom).
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Figure 3.15: Control inputs for the parameter jump case with actuator saturation with
ideal controller (top), non-ideal controller (middle) and adaptive controller (bottom).
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Figure 3.16: Adaptive parameter estimates η̂, ζ̂, ĝ, f̂ for the actuator saturation case.

0 20 40 60 80 100
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time(s)

Figure 3.17: Estimation error ε(t) for the with actuator saturation case.
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Chapter 4

Backstepping Based Actuator De-

lay Compensation

When time delays become large, it is no longer appropriate to utilize the Pade ap-

proximation since this introduces large modeling errors. Controllers that are designed

under the assumption that these modeling errors are sufficiently small when they are

not will not be able to guarantee stabilization. Since delays are inherent in the ther-

moacoustic coupling model given in 2.40, for completeness we are motivated to solve

the control problem when time delays may be arbitrarily large. Control of time de-

lay systems has been studied in-depth by the research community. Recent efforts

in [17] have led to the development of a backstepping technique that is compatible

with adaptive control of systems with unknown arbitrary actuator delay as shown in

[19],[20]. This chapter will propose the use an actuator delay compensation scheme by

developing a new backstepping transformation that may be used with the simplified

thermoacoustic model in 2.40 as well as other systems with both state and actuator

delays.
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4.1 Delay Model

The Pade approximation of a time delayed system is useful for many cases and results

in a model that is sufficient for control design; however, there may be difficulties with

this method when the time delays are sufficiently long. This means that the modeling

error introduced by the approximation is not small enough to ensure that a given

controller design will stabilize the system it was designed for. In these circumstances,

the system must be modeled with the time delays included in the dynamic equations

and the controller designed accordingly.

Similarly to the previous chapter, the equations in (2.40) can be represented as

(s2 + η)[y1](t) + ζy2(t− τ) = gs[u2](t− τ) + hχ1

(s2 + η)[y2](t)− ζy1(t− τ) = −gs[u1](t− τ) + hχ2.

(4.1)

These equations can be combined in matrix form as

(Is2 + ηI)[y](t) + ζP1y(t− τ) = gP1s[u](t− τ). (4.2)

Using the same approach as in Section 3.1, we find that the state equations for this

model with time delays is given as

ẋ = Adx+ Ad1x(t− τ) +Bdu(t− τ) +Ddχ

y = Cdx

(4.3)

where

Ad =

 0 I

ηI 0

 , Ad1 =

 0 0

ζP1 0

 , Bd =

gP1

0

 , Dd =

 0

hI

 (4.4)
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and the output matrix Cd is known, and is given as

Cd =

[
I 0

]
. (4.5)

This model can be used with time delay control techniques to solve the standard,

non-adaptive control problem. In order to build the theory, the physical parameters

η, ζ, g, h, τ are assumed to be known. The remainder of this thesis will focus on

solving the nominal control problem for the purpose of estabilishing the foundation

for future adaptive control research.

Input Delay Modeling

The actuator delay compensation scheme that we will develop is based on a method of

modeling the input delay term as a transport PDE and will be shown next. Consider

the system with arbitrary, potentially long delay given by (4.3). We will begin by

neglecting the effects of noise and designing for the system

ẋ = Adx(t) + Ad1x(t− τ) +Bdu(t− τ)

y = Cdx(t)

(4.6)

where system matrices Ad, Ad1, Bd, and Cd are defined as in (4.4) - (4.5). The ref-

erences in [17] - [21] develop a backstepping transformation for the case where no

state delay term exists, that is Ad1 = 0. This secton will modify that design to be

compatible with the case when Ad1 6= 0.

We begin our design by proposing that the delayed input u(t−τ) can be expressed
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as the boundary response v(0, t) of the linear transport PDE

vt(s, t) = vs(s, t) (4.7)

under the boundary condition

v(τ, t) = u(t). (4.8)

To verify this, we see that v(s, t) = u(s + t− τ) satisfies (4.7): for g(s, t) = s + t we

have

vs = ug(g − τ)gs

vt = ug(g − τ)gt.

(4.9)

Since gs = gt = 1, it follows that vs = vt. We also see that v(s, t) = u(s + t − τ)

satisfies the boundary condition v(τ, t) = u(t). Then, for the solution

v(s, t) = u(s+ t− τ) (4.10)

at s = 0, we have v(0, t) = u(t − τ), as expected. Here s ∈ [0, τ ] can be viewed as a

fictitious distance that the signal u(t) must propagate in order to act on the system.

Because of this, we can choose to model the delayed input term as this transport

PDE system without fundamentally changing the system in (4.6). Hence, we can

substitute this new model of delay into equation (4.6) to obtain

ẋ = Adx(t) + Ad1x(t− τ) +Bdv(0, t) (4.11)

vt = vs

v(τ, t) = u(t).

(4.12)
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Writing the system in terms of a transport PDE instead of a delayed input allows us

to manipulate the system in beneficial ways, as will be shown next. The goal will be

to transform the system into one with desirable properties by way of a backstepping

transformation. This transformation will result in obtaining an expression for the

control law that is required to achieve a desirable target system.

4.2 Backstepping Transformation Design

Our goal for this section is to transform the system (4.11) to one with many desirable

properties. Such a desirable system is described as follows:

ẋ = (Ad +BdK)x(t) + (Ad1 +BdK1)x(t− τ) +Bdw(0, t) (4.13)

wt = ws

w(τ, t) = 0

(4.14)

where K ∈ Rm×n and K1 ∈ Rm×n are gain matrices that are chosen to stabilize the

system, and w(s, t) is a transform variable. Such gain matrices can be found under

the following assumptions:

• (B1) The system matrices (Ad, Bd) are controllable.

• (B2) Gain matrices K and K1 can be found as solutions to the linear matrix

inequality

P (Ad +BdK) + (Ad +BdK)TP + αP P (Ad1 +BdK1)

(Ad1 +BdK1)TP −αP

 < 0. (4.15)
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The LMI in (B2) satisfies the delay-independent stability criteria of the Razumikhin

Theorem (see Section 4.3).

To transform to the desired target system given in (4.13)–(4.14), we propose a

modified backstepping transformation, defined as

w(s, t) = v(s, t)−
∫ s

0

q(s, y)v(y, t)dy −
∫ s

0

p(s, y)v(y, t− τ)dy

− γ(s)Tx(t)− γ1(s)Tx(t− τ)− f(s, t).

(4.16)

Equations (4.14) and (4.16) will result in the control law taking the form

u(t) = v(τ, t) =

∫ τ

0

q(τ, y)v(y, t)dy +

∫ τ

0

p(τ, y)v(y, t− τ)dy

+ γ(τ)Tx(t) + γ1(τ)Tx(t− τ) + f(τ, t).

(4.17)

With the control law (4.17) and the transformation in (4.16), we propose the following

lemma:

Lemma 4.2.1 Given the Assumptions (B1) and (B2), the modified backstepping

transformation given in (4.16) can successfully transform the system in (4.6) to the

desired target system in (4.13)–(4.14). Furthermore, given a K and K1 chosen to

satisfy Assumption (B2), then the backstepping transformation can guarantee expo-

nential stability in terms of the full state norm (‖x(t)‖2 +
∫ τ

0
v2(s, t)ds)1/2.

The remainder of this section will develop the backstepping algorithm needed to

obtain the control input that will successfully complete this transformation. We will

impose conditions on the functions q(s, y), p(s, y), γ(s), γ1(s), f(s, t) and the control

input v(τ, t) = u(t) such that we can transform (4.11)–(4.12) to the target system

(4.13)–(4.14).
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Backstepping Algorithm

To proceed, we take the partial derivatives of equation (4.16). The derivative ws can

be obtained by using the Leibniz rule which results in

ws = vs − q(s, s)v(s, t)−
∫ s

0

qs(s, y)v(y, t)dy

− p(s, s)v(s, t− τ)−
∫ s

0

ps(s, y)v(y, t− τ)dy

− γ′(s)Tx(t)− γ′1(s)Tx(t− τ)− fs(s, t)

(4.18)

The derivative wt of (4.16) is found by using integration by parts, the fact that vt = vs,

and the expression (4.11), that is,

wt = vs − q(s, s)v(s, t) + q(s, 0)v(0, t) +

∫ s

0

qy(s, y)v(y, t)dy

− p(s, s)v(s, t− τ) + p(s, 0)v(0, t− τ) +

∫ s

0

py(s, y)v(y, t− τ)dy

− γ(s)T [Adx(t) + Ad1x(t− τ) +Bdv(0, t)]

− γ1(x)T [Adx(t− τ) + Ad1x(t− 2τ) +Bdv(0, t− τ)]− ft(s, t).

(4.19)

Since the target system (4.13)–(4.14) requires that wt = ws, subtracting (4.18) from

(4.19), we obtain the expression

wt − ws =

∫ s

0

(qs(s, y) + qy(s, y))v(y, t)dy +

∫ s

0

(ps(s, y) + py(s, y))v(y, t− τ)dy

+ [q(s, 0)− γ(s)TBd]v(0, t) + [p(s, 0)− γ1(s)TBd]v(0, t− τ)

+ [γ′(s)T − γ(s)TAd]x(t) + [γ′1(s)T − γ(s)TAd1 − γ1(s)TAd]x(t− τ)

− γ1(s)TAd1x(t− 2τ)− ft + fs = 0.

(4.20)
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Because we have defined the target system in this way, we can compile a list of

conditions that are sufficient to obtain (4.20) as:

qs(s, y) + qy(s, y) = 0,

q(s, 0) = γ(s)TBd,

(4.21)

ps(s, y) + py(s, y) = 0,

p(s, 0) = γ1(s)TBd,

(4.22)

fs − ft = g(s, t), (4.23)

γ′(s) = ATd γ(s), (4.24)

γ′1(s) = ATd γ1(s) + ATd1γ(s), (4.25)

where g(s, t) = γ1(s)TAd1x(t − 2τ). Equations (4.21) and (4.22) represent first-

order transport PDEs with their boundary conditions, (4.23) is a nonhomogeneous

first-order transport PDE, and the equations (4.24) and (4.25) are first-order ODEs

whose initial conditions are obtained from equations (4.11) and (4.16) as well as the

boundary condition for (4.23) as shown next. From (4.16), The signal v(0, t) evaluated

from the backstepping equation is given as v(0, t) = w(0, t) + γ(0)Tx(t) + γ1(0)Tx(t−

τ) + f(0, t). Substituting this into (4.11), we get

ẋ = Adx(t) + Ad1x(t− τ) +Bdv(0, t)

= Adx(t) + Ad1x(t− τ) +Bd(γ(0)Tx(t) + γ1(0)Tx(t− τ) + w(0, t) + f(0, t))

= (Ad +Bdγ(0)T )x(t) + (Ad1 +Bdγ1(0)T )x(t− τ) +Bdw(0, t) +Bdf(0, t)

(4.26)
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Comparing this equation with (4.13), we obtain the initial conditions to (4.24), (4.25),

and (4.23) as

γ(0)T = K. (4.27)

γ1(0)T = K1 (4.28)

f(0, t) = 0, (4.29)

respectively. From this, we can obtain the solution γ(s) to (4.24) as

γ(s)T = KeAds. (4.30)

The solution q(s, y) of the transport PDE (4.21) can be shown to satisfy

q(s, y) = φ(s− y)

q(s, 0) = φ(s)

(4.31)

where φ(s) is the boundary condition of the transport PDE. This can be verified using

the boundary condition given in (4.21): we can have the solution q(x, y) as

q(s, y) = γ(s− y)TBd

= KeAd(s−y)Bd.

(4.32)

Similarly, it can be shown that the solution γ1(s) to the system (4.25) with initial

condition (4.28) is given as

γ1(s) = eA
T
d (s−s0)γ10 +

∫ s

s0

eA
T
d (s−σ)AT1 e

AT
d σKTdσ

= eA
T
d sKT

1 +

∫ s

0

eA
T
d (s−σ)ATd1e

AT
d σKTdσ.

(4.33)
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It is shown in [22], [23] that a general integral of the form

B12(t) =

∫ t

0

eA11(t−s)A12e
A22sds (4.34)

can be evaluated by calculating the matrix exponential

eΦt =

B11(t) B12(t)

0 B22(t)

 (4.35)

and

B12(t) = (eΦt)12 (4.36)

where (·)ij denotes the submatrix in row i, column j of the given matrix. The matrix

Φ is an upper-triangular matrix of the form

Φ =

A11 A12

0 A22

 . (4.37)

This formulation allows us to simplify (4.33). Let

Φ0 =

ATd ATd1

0 ATd

 . (4.38)

Then, equation (4.33) simplifies to

γ1(s)T = K1e
Ads +K(eΦ0s)T12 (4.39)
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which in turn yields the solution p(s, y) to the transport PDE system (4.22) as

p(s, y) = K1e
Ad(s−y) +K(eΦ0(s−y))T12. (4.40)

Lastly, we shall solve the inhomogeneous hyperbolic PDE system (4.23). This

inhomogeneous problem is well understood. To find the solution to this problem,

begin by setting v(s) = f(s+ σ, t− σ). Then

dv(σ)

dσ
= −ft + fs(s+ σ, t− σ) = g(s+ σ, t− σ) (4.41)

Consider

f(s, t)− f(0, t+ s) = v(0)− v(−s)

=

∫ 0

−s

dv

dσ
dσ

=

∫ 0

−s
g(s+ σ, t− σ)dσ

=

∫ s

0

g(σ, t− (σ − s))dσ

(4.42)

Given this, we have obtained the solution to the first-order, inhomogeneous transport

problem as

f(s, t) = f(0, t+ s) +

∫ s

0

g(σ, t− (σ − s))dσ

=

∫ s

0

[
K1e

Adσ +K(eΦ0σ)T12

]
Ad1x(t− (σ − s)− 2τ)dσ.

(4.43)
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Control Law Derivation

Using the solutions obtained in (4.30), (4.32), (4.39), (4.40), (4.43), this process

produces the final version of the backstepping transformation

w(s, t) = v(s, t)−
∫ s

0

KeAd(s−y)Bdv(y, t)dy

−
∫ s

0

[(
K1e

Ad(s−y) +K(eΦ0(s−y))T12

)
Bdv(y, t− τ)

]
dy

−
∫ s

0

[(
K1e

Adσ +K(eΦ0σ)T12

)
Ad1x(t− (σ − s)− 2τ)

]
dσ

−KeAsx(t)−
(
K1e

As +K(eΦ0s)T12

)
x(t− τ)

(4.44)

With all conditions of the transformation equation (4.16) verified, we have that v(0, t)

in equation (4.11) is obtained from (4.16) as

v(0, t) = w(0, t) +Kx(t) +K1x(t− τ) (4.45)

which results in the desired system (4.13):

ẋ = (Ad +BdK)x(t) + (Ad1 +BdK1)x(t− τ) +Bdw(0, t). (4.46)

Lastly, we will complete the transformation and determine the control law by sat-

isfying the w(s, t) subsystem in (4.14). Because conditions (4.21)-(4.25) have been

satisfied, we have that wt = ws. To satisfy the condition w(τ, t) = 0, we choose the
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control input u(t) = v(τ, t) from (4.44) to be

v(τ, t) =

∫ τ

0

KeAd(τ−y)Bdv(y, t)dy

+

∫ τ

0

[(
K1e

Ad(τ−y) +K(eΦ0(τ−y))T12

)
Bdv(y, t− τ)

]
dy

+

∫ τ

0

[(
K1e

Adσ +K(eΦ0σ)T12

)
Ad1x(t− (σ − τ)− 2τ)

]
dσ

+KeAτx(t) +

(
K1e

Aτ +K(eΦ0τ )T12

)
x(t− τ).

(4.47)

With this, we have satisfied all conditions of the target system (4.13)–(4.14). The

next step is to obtain an expression for the control law u(t). Substituting in u(t) for

v(τ, t) and using a change of variables, this can be written as

u(t) =

∫ t

t−τ
KeAd(t−θ)Bdu(θ)dθ

+

∫ t−τ

t−2τ

[(
K1e

Ad(t−τ−θ) +K(eΦ0(t−τ−θ))T12

)
Bdu(θ)

]
dθ

+

∫ t−τ

t−2τ

[(
K1e

Ad(t−τ−θ) +K(eΦ0(t−τ−θ))T12

)
Ad1x(θ)

]
dθ

+KeAdτx(t) +

(
K1e

Adτ +K(eΦ0τ )12

)
x(t− τ).

(4.48)

This control law satisfies all conditions of the backstepping transformation given in

(4.16) needed to transform the given system in (4.11) to a desired target system in

(4.13)–(4.14). The next section will discuss stability of the delay model when using

this controller.

4.3 Stability Analysis

As we have satisfied all conditions necessary to tranform to the target system (4.13)–

(4.14), our analysis will be performed using this as our system model. We will discuss

67



4.3. STABILITY ANALYSIS 68

the delay-independent stability criteria of this system as given by the Razumikhin

Theorem. We propose the following candidate Lyapunov function

V (x,w) = xTPx+
a

2

∫ τ

0

(1 + s)w(s, t)2ds (4.49)

where P = P T > 0 and control gains K and K1 are chosen such that they satisfy the

linear matrix inequality (LMI)

P (Ad +BdK) + (Ad +BdK)TP P (Ad1 +BdK1)

(Ad1 +BdK1)TP −αP

 = −Q < 0 (4.50)

for a chosen Q = QT > 0 and some α > 0, and the parameter a > 0 is to be chosen

later. The analysis first shows the exponential stability of the full state norm in the

transform variable
(
‖X(t)‖2+

∫ τ
0
w2(s, t)ds

)1/2
, and then uses that result to determine

the stability of the full state norm in the control variable
(
‖X(t)‖2 +

∫ τ
0
v2(s, t)ds

)1/2
.

Stability of the norm
(
‖X(t)‖2 +

∫ τ
0
w2(s, t)ds

)1/2

To begin our analysis, we take the time derivative of the canididate Lyapunov func-

tion, V (x,w). The derivative of the integral term can be taken as follows:

1

2

d

dt

∫ τ

0

(1 + s)w(s, t)2ds =
1

2

∫ τ

0

d

dt

(
(1 + s)w(s, t)2

)
ds

=

∫ τ

0

w(s, t)wt(s, t)ds+

∫ τ

0

sw(s, t)wt(s, t)ds

=

∫ τ

0

w(s, t)ws(s, t)ds+

∫ τ

0

sw(s, t)ws(s, t)ds.

(4.51)
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The first integral term of this can be solved by substitution and the second integral

can be solved by integration by parts. From this, we obtain

1

2

d

dt

∫ τ

0

(1 + s)w(s, t)2ds =
w(s, t)2

2

∣∣∣∣τ
0

+
sw(s, t)2

2

∣∣∣∣τ
0

− 1

2

∫ τ

0

w(s, t)2ds (4.52)

Since our control law was chosen such that w(τ, t) = 0, we obtain

d

dt

∫ τ

0

(1 + s)w(s, t)2ds = −w(0, t)2

2
− 1

2

∫ τ

0

w(s, t)2ds. (4.53)

With this result, taking the time-derivative of (4.49), we obtain

V̇ = xT ((Ad +BdK)TP + P (Ad +BdK))x

+ xT (t− τ)((Ad1 +BdK1)TP + P (Ad1 +BdK1))x(t− τ)

+ 2xTPBdw(0, t)− a

2
w(0, t)2 − a

2

∫ τ

0

w(s, t)2ds.

(4.54)

As per the conditions of the Razumikhin theorem, whenever the system trajectory

xt = x(t+ θ) for all −τ ≤ θ ≤ 0 satisfies

V (x(t+ θ)) < pV (x(t)), ∀ − τ ≤ θ ≤ 0 (4.55)

for some p > 1, then we can conclude for any α > 0

V̇ (x,w) ≤ 2xTP [(Ad +BdK)x(t) + (Ad1 +BdK1)x(t− τ)

+ α

[
pxT (t)Px(t)− xT (t− τ)Px(t− τ)

]
+ 2xT (t)PBdw(0, t)− a

2
‖w(s, t)‖2

2.

(4.56)
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Define the signal φ0τ as

φ0τ =
(
xT (t) xT (t− τ)

)T
. (4.57)

Then, we see that this simplifies to

V̇ ≤ φT0τ

P (Ad +BdK) + (Ad +BdK)TP P (Ad1 +BdK1)

(Ad1 +BdK1)TP −αP

φ0τ

+ 2xT (t)PBdw(0, t)− aw(0, t)2

2
− a‖w(s, t)‖2

2

2

= −φ0τQφ0τ + 2xT (t)PBdw(0, t)− aw(0, t)2

2
− a‖w(s, t)‖2

2

2
.

(4.58)

Applying Young’s inequality:

2xT (t)PBdw(0, t) ≤ 2‖xTPBd‖2

a
+
aw(0, t)2

2
(4.59)

which yields

V̇ (x,w) ≤ −φ0τQφ0τ +
2

a
‖xTPBd‖ −

a‖w(s, t)‖2
2

2

≤ −λmin(Q)‖φ0τ‖2
2 +

2

a
‖PBd‖2‖x‖2 − a‖w(s, t)‖2

2

2

≤ −λmin(Q)‖φ0τ‖2
2 +

2

a
‖PBd‖2‖φ0τ‖2 − a‖w(s, t)‖2

2

2

= −λmin(Q)

2
‖φ0τ‖2 − (

λmin(Q)

2
‖φ0τ‖2 − 2

a
‖PBd‖2‖φ0τ‖2)− a

2
‖w(x, t)‖2,

(4.60)

where λmin(Q) denotes the smallest eigenvalue of the matrix Q. Letting

a =
4λmax(PBdB

T
d P )

λmin(Q)
(4.61)
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we obtain

V̇ ≤ −λmin(Q)‖φ0τ‖2

2
− 2λmax(PBdB

T
d P )

λmin(Q)
‖w(s, t)‖2. (4.62)

Comparing this result with the candidate Lyapunov function given in (4.49), we see

that

V̇ ≤ −min

{
λmin(Q)

2λmax(P )
,
a

2

}
V. (4.63)

This result reveals that we have achieved exponential stability in terms of the full

state norm in the transformed variable,
(
‖x(t)‖2 +

∫ τ
0
w(s, t)2ds

)1/2
.

Stability of the norm
(
‖X(t)‖2 +

∫ τ
0
v2(s, t)ds

)1/2

To show exponential stability in terms of the full state norm in the control variable,

(‖x(t)‖2 +
∫ τ

0
v(s, t)2ds)1/2, we must obtain the inverse transform. This is done by

solving the reverse problem, transforming from the target system (4.13)–(4.14) to the

original system (4.11)–(4.12). This yields the inverse transformation

v(s, t) = w(s, t) +

∫ s

0

KeĀd(s−y)Bdw(y, t)dy

+

∫ s

0

[(
K1e

Ād(s−y) +K(eΦ̄0(s−y))T12

)
Bdw(s, t− τ)

]
dy

+

∫ s

0

[(
K1e

Ādσ +K(eΦ̄0σ)T12

)
Ād1x(t− (σ − s)− 2τ)

]
dσ

+KeĀdsx(t) +

(
K1e

Āds +K(eΦ̄0s)T12

)
x(t− τ)

(4.64)

where Ād = (Ad +BdK), Ād1 = (Ad1 +Bd1K1), and where Φ̄0 is given as

Φ̄0 =

Ād Ād1

0 Ād

 . (4.65)
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Taking the integral of the square of the inverse transform we easily see that the first

term and last two terms are exponentially stable. Using the Schwarz inequality, the

remaining terms can be shown to satisfy

∫ D

0

(∫ s

0

KeĀd(s−y)Bdw(y, t)dy

)2

ds ≤ β1

∫ D

0

w2(s, t)ds (4.66)

∫ D

0

(∫ s

0

[(
K1e

Ād(s−y) +K(eΦ̄0(s−y))T12

)
Bdw(y, t− τ)

]
dy

)2

ds ≤ β2

∫ D

0

w2(s, t)ds

(4.67)∫ D

0

(∫ s

0

[(
K1e

Ādσ +K(eΦ̄0σ)T12

)
Ād1x(t− (σ − s)− 2τ)

]
dσ

2

ds ≤ β3‖X(t)‖2.

(4.68)

for some finite β1, β2, β3 > 0. With this, we have shown the exponential stability of

the full state norm
(
‖X(t)‖2 +

∫ D
0
v2(s, t)ds

)1/2
.

4.4 Simulation Study

Simiilarly to the simulation study for the delay approximation case, we chose a set of

parameters to demonstrate the capabilities of the designed controller. For comparison,

we simulated the system against an ideal controller of the form

u(t) = Kx(t) +K1x(t− τ). (4.69)

This ideal controller is equivalent to the controller developed in the previous section

when the actuator delay is assumed to be zero. The conditions and parameter values

used in this simulation study are listed below:

• g = 1, η = 1, ζ = 0.5

• y1(−r) = 1, y2(−r) = −1, τ ≤ r ≤ 0
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• K =

 0 2.0855 0 2.1971

−2.9855 0 −2.1971 0



• K1 =

−0.2564 0 −0.1941 0

0 −0.2564 0 −0.1941


The above gain matrices K and K1 were chosen as solutions to the linear matrix in-

equality given in (4.50). We conducted 2 sets of simulations, each with the parameters

as listed above for τ = 1 and τ = 3.

4.4.1 Simulation Results

The first simulation that was conducted was done with the time delay τ = 1. As can

be seen in Fig. 4.1, this system is initially unstable for t < 1 but is brought under

control after this by the control inputs seen in Fig. 4.2. For comparison, Fig. 4.3

shows the states for the typical case without actuator delay compensation. From this,

it is clear that the ideal controller is not able to provide satisfactory performance as

the system goes unstable. Note that Fig. 4.2 displays the undelayed input u(t) and

that this input was applied to the system at time t+ τ .

The τ = 3 case shows similar results, which is to be expected as, in the previous

section, stability was shown to be independent of the delay and we are using the

delay-independent criteria of the Razumikhin Theorem. Fig. 4.4 shows the outputs

y1, y2. This figure also shows that our actuator delay compensation scheme was

able to successfully stabilize and bring the trajectory back to the origin as opposed

to the uncompensated state feedback case shown in Fig. 4.5. This verifies that our

actuator delay compensation scheme and new backstepping transformation algorithm

are capable of stabilization of systems with long actuator delays and state delays.
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Figure 4.1: System outputs for τ = 1 case with actuator delay compensation.
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Figure 4.2: Control inputs u(t) for τ = 1 case with actuator delay compensation.
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Figure 4.3: System states for τ = 1 case with ideal input (no compensation for
actuator delay).
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Figure 4.4: System outputs for τ = 3 case with actuator delay compensation
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Figure 4.5: System states for τ = 3 case with ideal input (no compensation for
actuator delay).

76



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this work, we have developed a robust indirect adaptive control scheme to control

the thermoacoustic coupling phenomenon for the case when all system parameters are

unknown, including time delays. This was achieved via a Pade approximation for the

time delay and the utilizaton of a reduced-order parameter estimator. Additionally,

for cases when delay approximation introduces large modeling errors, we developed a

new backstepping algorithm for use with systems with arbitrarily long delays in both

the states and the actuators.

As shown in Chapter 3, our indirect adaptive control scheme has the ability to

guarantee closed-loop stability of the thermoacoustic coupling phenomenon with no

knowledge of the system parameters and time delays. We developed robust laws that

can guarantee the existence of a solution for all time, making this a viable technique

for implementation. The adaptive scheme was also demonstrated to maintain this

result in the presence of bounded input noise. Then, in Chapter 4, the developed

backstepping algorithm was shown to result in stability of the full state norm in the

presence of arbitrarily long time delays when all system parameters are known. This

result was found for a general class of linear systems that have both input and state
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delays. The thermoacoustic coupling model given in (2.40) falls into this class of

systems, so this technique is also viable for control of this phenomenon, particularly

when the use of a Pade approximation introduces large modeling errors.

5.2 Future Work

There is a large amount of potential for advancement of the research and studies done

in this thesis. For the work done in Chapter 3, we assume that the simplified model

gives a sufficient representation of the physical distributed system. For this work to

be entirely validated through simulation, it is necessary to simulate against the un-

simplified thermoacoustic models given in [2]. Additionally, fault tolerant techniques

could be examined for the case when some of the fuel injectors are susceptible to a

variety of failures. Similar controller design techniques may be applicable to other

processes that adhere to the general model specified in (2.39).

Chapter 4 presents only the beginning of the work that is able to be done with

the developed backstepping algorithm. This algorithm is a modification of that pre-

sented in [17], which was shown to be compatible with adaptive parameter estimation

schemes where the time delay was able to be adaptively estimated, as demonstrated

in [19],[20],[21]. Additionally, modifying techniques given in [19] would allow for the

design of an adaptive parameter estimator for the unknown system parameters. Ap-

plication of robust techniques could then be used to ensure stabilization of the system

and the adaptive estimates in the presence of bounded noise and other disturbances.

78



Bibliography

[1] M. Krstic and A. Banaszuk, “Multivariable adaptive control of instabilities arising

in jet engines,” Control Engineer Practice, vol. 14, pp. 833-842, July 2006.

[2] A. Banaszuk, G. Hagen, P. Mehta, J. Oppelstrup, “A linear model for control

of thermoacoustic instabilities on an annular domain,” Proceedings of the IEEE

Conference on decision and control, Maui, HI, 2003, pp. 2346-2351.

[3] Y. Ling and G. Tao, “Adaptive backstepping control design for linear multivariable

plants,” International Journal of Control, vol. 68, no. 6, pp. 1289-1304, 1997.

[4] G. Tao, Adaptive Control Design and Analysis, Wiley, Hoboken, NJ, 2003.

[5] P. A. Ioannou, and J. Sun, Robust Adaptive Control, Prentice-Hall, Englewood

Cliffs, NJ, 1996.

[6] G. Franklin, J. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Sys-

tems, Prentice-Hall, Upper Saddle River, NJ, 2010.

[7] A.M. Annaswamy and A.F. Ghoniem, “Active control of combustion instability:

Theory and practice,” IEEE Control Systems Magazine, December 2002.

[8] M. Fleifil, J.P. Hathout, A.M. Annaswamy, and A.F. Ghoneim, “The origin of

secondary peaks with active control of thermoacoustic instability,” Combustion

Science and Technology, vol. 133, no. 4-6, pp. 227-265, 1998.

79



BIBLIOGRAPHY 80

[9] Y.C. Chu, A.P. Dowling, and K. Glover, “Robust control of combustion oscil-

lations,” Proceedings of the Conference on Control Applications, Trieste, Italy,

August 1998.

[10] G. Billoud, M.A. Galland, C. Huynh Huu, and S. Candel, “ Adaptive active

control of combustion instabilities,” Combustion Science and Technology, vol. 164,

no. 4-6, pp. 65-94, January 1992.

[11] M. Krstic, A.S. Krupadanam, and C. Jacobson, “Self-tuning control of a nonlin-

ear model of combustion instabilities,” IEEE Control System Technology, vol. 7,

no. 4, pp. 424-436, July 1999.

[12] A.M. Annaswamy, M. Fleifil, J. Rumsey, J.P. Hathout, R. Prasanth, and A.F.

Ghoniem, “Thermoacoustic instability: Model-based optimal control designs and

experimental validation,” IEEE Transactions on Control Systems Technology, vol.

8, no. 6, pp. 905-918, November 2000.

[13] K. Yu, K.J. Wilson, and K.C. Schadow, “Scale-up experiments on liquid-

fueled active combustion control,” 34th AIAA/ASME/SAE/ASEE Joint Propul-

sion Conference, AIAA 98-3211, Cleveland, OH, 1998.

[14] S.S. Sattinger, Y. Neumeier, A. Nabi, B.T. Zinn, D.J. Amos, and D.D. Darling,

“Sub-scale demonstration of the active feedback control of gas-turbine combustion

instabilities,” ASME Journal of Engineering for Gas Turbines and Power, vol.

122, no. 2, pp. 262-268, January 2000.

[15] J. Hermann, A. Orthmann, S. Hoffmann, and P. Berenbrink, “Combination of

active instability control and passive measures to prevent combustion instabilities

in a 260 mw heavy duty gas turbine,” NATO RTO/AVT Symposium on Active

80



BIBLIOGRAPHY 81

Control Technology for Enhanced Performance in Land, Air, and Sea Vehicles,

Braunschweig, Germany, May 2000.

[16] S. Garg, “Aircraft Turbine Engine Control Research at NASA Glenn Research

Center,” Journal of Aerospace Engineering, vol. 26, no. 2, pp. 422-438, April 2013.

[17] M. Krstic and A. Smyshlyaev, “Backstepping boundary control for first order

hyperbolic PDEs and application to systems with actuator and sensor delays,”

Systems and Control Letters, vol. 57, no. 9, pp. 750-758, April 2008.

[18] A. Smyshlyaev and M. Krstic, “Closed form boundary state feedbacks for a class

of 1D partial integro-differential equations,” IEEE Transactions on Automatic

Control, vol. 49, no. 12, pp. 2185-2202, December 2004.

[19] D. Bresch-Pietri and M. Krstic, “Adaptive trajectory tracking despite unknown

input delay and plant parameters,” Automatica, vol. 45, no. 9, pp. 2074-2081,

June 2009.

[20] D. Bresch-Pietri and M. Krstic, “Delay-Adaptive predictor feeback for systems

with unknown long actuator delay,” IEEE Transactions on Automatic Control,

vol. 55, no. 9, pp. 2106-2112, September 2010.

[21] D. Bresch-Prietri and M. Krstic, “Delay-adaptive control for nonlinear systems,”

IEEE Transactions on Automatic Control, vol. 59, no. 5, pp. 1203-1218, May 2014.

[22] C. Van Loan, “Computing Integrals Involving the Matrix Exponential,” IEEE

Transactions on Automatic Control, vol. 23, no. 3, pp. 395-404, June 1978.

[23] F. Carbonell, J. C. Jimenez, and L. M. Pedroso, “Computing multiple integrals

involving matrix exponentials,” Journal of Computational and Applied Mathemat-

ics, vol. 213, pp. 300-305, March 2008.

81



BIBLIOGRAPHY 82

[24] S. Garg, P. J. Ouzts, C. F. Lorenzo, and D. L. Mattern, “IMPAC - an inte-

grated methodology for propulsion and airframe control,” Proceedings of the 1991

American Control Conference, Boston, MA, 1991.

[25] S. Garg and D. L. Mattern, “Application of an integrated methodology for

propulsion and airframe control design to a STOVL aircraft,” 94-3611, AIAA,

Reston, VA, 1994.

[26] M. M. Bright, et. al., “Piloted evaluation of an integrated methodology for

propulsion and airframe control design,” 94-3612, AIAA, Reston, VA, 1991.

[27] T. Guo, P. Chen, and L. Jaw, “Intelligent life-extending controls for aircraft

engines”, 2004-6468, AIAA, Reston, VA, 2004.

[28] L. Jaw and J. Mattingly, Aircraft engine controls design, system analysis, and

health monitoring, AIAA, Inc., Reston, VA, 2009.

[29] B. Pourbabaee, N. Meskin, and K. Khorasani, “Multiple-Model Based Sensor

Fault Diagnosis using Hybrid Kalman Filter Approach for Nonlinear Gas Turbine

Engines,” Proceedings of the 2013 American Control Conference, Washington,

DC, 2013, pp. 4724-4730.

[30] N. Daroogheh, N. Meskin, and K. Khorasani, “Particle Filtering for State and

Parameer Estimation in Gas Turbine Engine Fault Diagnostics”, Proceedings of

the 2013 American Control Conference, Washington, DC, 2013, pp. 4349-4355.

[31] M. Lichtsinder and Y. Levy, “Jet Engine Model for Control and Real-Time Sim-

ulations,” Journal of Engineering for Gas Turbines and Power, vol. 128, no. 4,

pp. 745-753, May 2003.

82



BIBLIOGRAPHY 83

[32] K. Parker and T. Guo, “Development of a turbofan engine simulation in

a graphical simulation environment,” TM-2003-21243, NASA, Cleveland, OH,

http://ntrs.nasa.gov/.

[33] J. A. DeCastro, J. S. Litt, and D. K. Frederick, “A modular aero-propulsion

system simulation of large commercial aircraft engine,” 2008-4579, AIAA, Reston,

VA, 2008.

[34] R.D. May, et al., “A high fidelity simulation of a generic commercial aircraft

engine and controller,” AIAA/ASME/SAE/ASEE Joint Propulsion Conference,

Nashville, TN, 2010.

[35] Environmental Protection Agency, “Nitrogen Dioxide: Air Emissions Sources,”

Internet: www.epa.gov/oaqps001/nitrogenoxides/, Aug. 15, 2014, [Mar. 18, 2015].

[36] Environmental Protection Agency, “Regulatory Announcement: New

Emission Standards for New Commercial Aircraft Engines,” Internet:

www.epa.gov/otaq/regs/nonroad/aviation/420f05015.pdf, Nov. 2005, [Mar.

18, 2015].

[37] Environmental Protection Agency, “Aircraft,” Internet:

www.epa.gov/otaq/aviation.htm, Mar. 13, 2015, [Mar. 18, 2015].

[38] Airplane Flying Handbook, Basic components of a gas turbine engine. 2004.

[39] O. Smith, “A controller to overcome dead time,” Indian Scientist Association in

Japan, vol. 6, pp. 28–33, 1957.

[40] A. Manitius and A. Olbrot, “Finite spectrum assignment for systems with de-

lays,” IEEE Transactions on Automaic Control, vol. 24, no. 4, pp. 541-552, August

1979.

83



BIBLIOGRAPHY 84

[41] W.H. Kwon and A.E. Pearson, “Feedback stabilization of linear systems with

delayed control,” IEEE Transactions on Automatic Control vol. 25, no. 2, pp.

266–269, April 1980.

[42] Z. Artstein, “Linear systems with delayed controls: A reduction,” IEEE Trans-

actions on Automatc Control, vol. 27, no. 4, pp. 869-879, August 1982.

[43] G. Kulikov and H. Thompson, Dynamic Modelling of Gas Turbines: Identifica-

tion, Simulation, Condition Monitoring, and Optimal Control, Springer, London,

2004.

[44] K. Gu, V. Kharitonov, and J. Chen, Stability of Time-Delay Systems, Birkhauser,

Boston, MA, 2003.

84


