
FPGA Automata Processing

A Thesis

Presented to

the Faculty of the School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment

of the requirements for the Degree

Master of Science (Computer Engineering)

by

Theodoric Yang Xie

December 2017

Approval Sheet

This thesis is submitted in partial fulfillment of the requirements for the degree of

Master of Science (Computer Engineering)

Theodoric Yang Xie

This thesis has been read and approved by the Examining Committee:

Mircea R. Stan, Adviser

Samira M. Khan, Committee Chair

Kevin Skadron

Accepted for the School of Engineering and Applied Science:

Craig H. Benson, Dean, School of Engineering and Applied Science

December 2017

b

c© 2017 Theodoric Yang Xie

d

Abstract

Dwindling inter-generational CPU performance and power consumption improvements previously made

possible by semiconductor scaling motivate hardware specialization for a wide variety of tasks. In recent years,

implementing certain algorithms as specialized circuits (“accelerators”) has been proven to improve both

speediness and power/energy efficiency compared to the equivalent CPU implementation. One particular

domain that shows great promise for hardware specialization is automata processing. Finite automata are

most commonly known as the back-end data structures for regular expressions, which are used in a wide

variety of applications such as antivirus file scanning and packet payload inspection for network intrusion

detection systems (NIDS). Several research efforts have extended the applicability of finite automata beyond

just regular expression into domains such as machine learning, particle physics, bioinformatics, and pattern

mining. The versatility of automata processing as well as its inefficiency on traditional von Neumann computer

architectures informs the need for a flexible and high-performance accelerator for these applications.

In this thesis, an FPGA-based automata processing hardware accelerator is implemented in two different

configurations: (1) a traditional discrete FPGA accelerator board attached over PCI-Express; and (2) a new

tightly-coupled cache-coherent FPGA accelerator architecture utilizing the Intel Broadwell Xeon CPU +

Arria 10 FPGA platform, known as the Hardware Accelerator Research Platform (“HARP”).

i

Acknowledgments

I have been at UVA for about six years now, including my undergraduate education. I started out as a clueless

high school graduate, and now I can finally contribute something to the computer engineering community

with the contents of this master’s thesis. I could not have reached this point without help and support from

a huge number of people.

First and foremost, all three of my committee members (Dr. Mircea R. Stan, Dr. Kevin Skadron, Dr.

Samira Khan) have all at some point motivated me to become a better researcher, engineer, or computer

architect. Your enthusiasm and expertise has been truly inspirational for me as a young engineer.

I would additionally like to thank the fellow members of HPLP, CAP, and LAVA for their constant support

and mentorship through the years - Jack Wadden, Sergiu Mosanu, Mateja Putic, Tommy Tracy, Vinh Dang,

Chunkun Bo. Thank you all for not only being amazing colleagues, but friends as well!

This work was supported in part by NSF grant no. CCF-1629450, a grant from Xilinx, and support

from C-FAR, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by

MARCO and DARPA. Finally, I would like to thank Intel Corporation and Synopsys, Inc. for access to their

professional-grade design tools, without which none of this work would have been remotely possible.

ii

Contents

Contents iii
List of Tables . v
List of Figures . vi

1 Introduction 1
1.1 Contributions . 2
1.2 Organization . 2

2 Background Information 3
2.1 Regular Expressions and Automata Processing . 3
2.2 FPGA Basics . 4
2.3 Modern FPGA Platforms . 5

2.3.1 Xilinx SDAccel . 5
2.3.2 Intel Broadwell + FPGA Multi-Chip Module . 6

3 Related Work 8
3.1 CPU Automata Processing Engines . 8
3.2 FPGA Automata Processing Engines . 9

3.2.1 NFA Engines . 9
3.2.2 DFA engines . 9

3.3 The Micron Automata Processor . 10
3.4 Other Architectures . 10

4 REAPR: Reconfigurable Engine for Automata Processing 11
4.1 Benchmarks . 11

4.1.1 Maximally-Sized Levenshtein Automaton . 12
4.2 RTL Code Generation . 12

4.2.1 LUT-Based Design . 14
4.2.2 BRAM-Based Design . 14
4.2.3 I/O . 14
4.2.4 Reporting Architecture (Match Output Offloading) . 16

4.3 Evaluation Methodology . 17
4.4 Results . 18

4.4.1 ANMLZoo Benchmark Results . 18
4.4.2 Random Forest with I/O Circuitry . 20
4.4.3 Maximally-Sized Levenshtein Automaton . 21

4.5 Discussion . 21
4.5.1 The Importance of I/O . 21
4.5.2 The Importance of Application and Platform Topology 22
4.5.3 Logic vs. BRAM . 22
4.5.4 FPGA Advantages Over the Micron Automata Processor 23
4.5.5 FPGA Disadvantages Compared to the Micron Automata Processor 24
4.5.6 Normalizing for Process Node . 24

iii

Contents iv

4.6 Conclusion . 25

5 Automata Processing on Intel HARP 26
5.1 The Case for Multi-Platform Automata Processing . 26
5.2 Profiling Automata Activity . 27
5.3 Hybrid System Architecture . 29

5.3.1 Automata Processing Engine . 29
5.3.2 Reporting Architecture . 30
5.3.3 HARP Integration . 31

5.4 Results . 33
5.4.1 Spatial Resource Reduction . 33
5.4.2 Compilation Time Reduction . 34
5.4.3 Communication/Synchronization Overheads . 35

5.5 Discussion . 35
5.6 Conclusion . 36

6 Conclusion 39

7 Future Work 41
7.1 FPGA Automata Processing Overlay Architecture . 41
7.2 Integrated FPGAs for Consumer-Grade High-End Desktop (HEDT) Systems 42

Bibliography 43

List of Tables

4.1 ANMLZoo is a benchmark suite for automata engines, suitable for many platforms such as
traditional CPUs, GPUs, FPGAs, and the Micron Automata Processor. Note that the state
counts listed in this table are for the raw, unoptimized ANML files. 12

5.1 Relevant ANMLZoo benchmarks with their selected activity-optimal partitions. These are the
activity levels at which the CPU cannot possible bottleneck FPGA throughput, i.e. the CPU
runs at more than 400 MBps. 30

v

List of Figures

2.1 The NFA that implements the regular expression /a(a|b)a(a|b)a/. 4

2.2 The overall HARP system topology. An Intel Xeon CPU is tightly coupled with an Intel Arria
10 FPGA through a cache-coherent interconnect link. THe green portions of the architecture
are user-defined while the blue portions are static IP blocks used to implement features like
the coherency protocol and firmware. 7

4.1 Automata states can be easily mapped to registers and look-up tables (“logic”). The regular
expression that this NFA implements is /(a|b)[cd]/. 13

4.2 Execution flow of AXI and PCI-Express transactions for automata processing kernels. 14

4.3 The pipelined voter module for Random Forest compresses the output size from 1,661 to just
8 bits. 16

4.4 CLB and BRAM utilization for ANMLZoo benchmarks using the LUT-based and BRAM-based
design methodologies. Note that none of the benchmarks exceed more than 70% utilization,
and that in most cases the BRAM-based design uses fewer CLBs. 18

4.5 The average state complexity for an automaton is the ratio of CLBs placed and routed versus
the number of automaton states. Automata with very simple character classes intuitively need
less logic (CLBs) than more complex automata. 19

4.6 Clock frequency in most cases is degraded when comparing LUT-based automata to BRAM-
based, and in general ranges from 200 MHz to nearly 700 MHz. 20

4.7 Estimated power consumption for LUT NFAs is very low; the most power hungry application,
Dotstar, is estimated to consume barely more than 3 W. The BRAM implementation is much
more inefficient, peaking at above 25 W for three applications. 21

4.8 Estimated power efficiency of the LUT-based design greatly outstrips that of BRAM. Mesh
benchmarks (Hamming and Levenshtein) perform very well in this aspect. 22

4.9 Speedup ranges from 1.03x to 2,188x for LUT-based automata and 0.87x - 2,009x for BRAM-
based automata. 23

5.1 Percentage of states required to capture different levels of total work done by the automata. 27

5.2 For most applications, the proposed partitioning technique can offload a huge number of
automata states to the CPU. For Fermi and PowerEN, doing so is not possible, so there are no
results for those benchmarks. 29

5.3 CPU performance for offloaded computation versus activity level. The dotted line indicates
the maximum possible processing throughput for REAPR on the HARP platform - 400 MBps. 29

5.4 The standard RTL interface for finite automata has an 8-bit input and an N-bit output, where
N is the number of reporting elements. 31

5.5 System topology for the reporting architecture. 32

5.6 Microarchitecture of the report aggregator (RAGG). 33

5.7 System design for the automata accelerator and reporting architecture inside of the HARP
platform. 34

vi

List of Figures vii

5.8 The total number of LUT resources needed to compile each ANMLZoo benchmark. The blue
bars represent the LUT count for the baseline optimized automata graphs while the orange
bars represent the LUT count for the partitioned graphs. The reduction in LUTs necessary
ranges from 0.3% (Random Forest) to 20% (ClamAV) with an average of 8.15%. 35

5.9 The percentage of strictly automata-related LUTs removed. This figure of merit is simply the
total LUT count for a given benchmark minus the number of LUTs needed for a basic I/O kernel. 36

5.10 The total number of seconds needed to compile the optimized baseline graphs (blue) versus
partitioned graphs (orange). 37

5.11 The amount (in percentage) that automata graph partitioning can reduce total compilation
time. This ranges from 15.6% (Brill) to 72% (Dotstar). 38

5.12 In most cases, the partitioned graphs will not require significantly more cycles to run than
the baseline automata. In some cases such as Entity Resolution and SPM, the runtime may
actually be reduced because some frequently reporting states have been allocated to the host
CPU. 38

List of Figures viii

Chapter 1

Introduction

Traditionally, finite automata have only been used as the back-end data structures for regular expression

engines such as Google RE2 [1] and Intel HyperScan [2]. For decades, automata have faithfully served

high-profile applications in domains such as deep packet inspection [3] [4] and antivirus file scanning [5]

solely for the purpose of string pattern matching. However, recent research efforts have shown that automata

processing can benefit other domains as well, including machine learning [6], pattern mining [7], bioinformatics

[8], and even particle physics [9].

As companies and consumers alike generate more and more data, these automata processing applications

must be able to scale their performance to meet the industry’s needs. In the past, computer engineers have

relied on generational improvements in CPU performance to keep up with demand, but as Moore’s Law

generational advances grind to a halt, this passive approach to scalability and high performance have become

untenable. More drastic changes to system architecture are necessary if the industry wants to keep pace with

an ever-growing quantity of data.

Prior works [10] [11] have shown that spatial reconfigurable fabrics such as Field-Programmable Gate

Arrays (FPGAs) can offer significantly higher throughput over regular von Neumann CPUs for automata

processing. The industry has realized the market potential for accelerating automata algorithms, and to

this end, Micron has unveiled their Automata Processor [12], a course-grained spatial reconfigurable fabric

tailored for automata workloads.

This thesis hypothesizes that FPGAs can offer significant speedup over a high-end CPU, even when

accounting for data transfer and control overheads. To verify this claim, several tools are proposed that

generate whole FPGA accelerator systems for automata processing, and performance metrics like processing

throughput and spatial resource utilization will be analyzed.

1

Chapter 1 Introduction 2

1.1 Contributions

These are the main contributions of this thesis:

• A high-performance RTL generation tool for automata processing workloads on the FPGA using both

LUT-based and BRAM-based designs called REAPR (Reconfigurable Engine for Automata Processing);

• The first effort to characterize automata performance on FPGAs beyond just regular expressions

using REAPR, the results of which have been published in the Proceedings of the 27th International

Conference on Field Programmable Logic [13];

• The first effort to characterize and optimize automata performance with report offloading for both

traditional discrete accelerator systems and integrated ones.

1.2 Organization

The rest of this thesis is organized as follows:

• Chapter 2 provides background information about ideas and concepts frequently referred to through this

work. This will include some basic theory of computation (regular expressions and automata theory),

a brief overview of FPGA architecture, and modern FPGA platforms, including the two platforms

explored in this thesis;

• Chapter 3 summarizes past efforts to accelerate automata processing on multiple platforms, including

CPU and FPGA;

• Chapter 4 presents a tool called REAPR that generates automata FPGA kernels and analyzes REAPR’s

capability to accelerate automata processing on a discrete FPGA board using Xilinx SDAccel;

• Chapter 5 presents an extension of the REAPR work that utilizes both the CPU and FPGA of the

Intel Broadwell + FPGA multi-chip module to co-process automata processing workloads, as well as a

refined general purpose automata reporting architecture;

• Chapter 6 summarizes the thesis;

• Finally, Chapter 7 provides a list of future research directions inspired by the work in this thesis.

Chapter 2

Background Information

2.1 Regular Expressions and Automata Processing

Regular expressions (“regex”) are special strings used to identify text patterns. They are typically composed

of a series of literal characters that define sub-patterns along with some control characters that specify

information like how many times a sub-pattern may occur. One of the most popular ways to represent regular

expressions, and the one used in this thesis, is the Perl-Compatible Regular Expression (“PCRE”). Regex are

widely used in a variety of applications ranging from text editors to bioinformatics; many problems involving

searching and/or replacing a known text pattern can be solved using regex.

The back-end data structure for these text pattern matching engines is usually some kind of finite

automaton [14]. Informally, finite automata are state machine-like structures that accept regular languages.

Automata can be generated from regular expressions using algorithms such as the McNaughton-Yamada-

Thompson Construction [11] or Gluschkov’s algorithm [15]. There are two main types of finite automata:

non-deterministic (NFA) and deterministic (DFA). NFAs can have multiple states active at any one time,

allowing multiple simultaneous searches to take place at once for the same given input symbol. DFAs can

only have one state active at a time, and are typically constructed from NFAs using a technique like subset

construction. In some cases, translating an NFA to a DFA can result in the number of states increasing

dramatically, a phenomenon known as “state explosion”. Figure 2.1 shows the NFA of the regular expression

/a(a|b)a(a|b)a/.

3

Chapter 2 Background Information 4

a ab a ab a

Figure 2.1: The NFA that implements the regular expression /a(a|b)a(a|b)a/.

2.2 FPGA Basics

Field-programmable gate arrays (“FPGAs”) are integrated circuits whose configuration can be altered at

run-time. Historically, these chips were first used to prototype integrated circuits or to implement “glue logic”

between discrete digital circuit components, but since then have taken on a wide variety of roles. Modern

FPGAs have even been used in place of application-specific integrated circuits (ASICs) for certain tasks due

to their shorter time-to-market and high availability.

An FPGA is commonly thought of as a “sea of logic gates,” where both the behavior and topology of

these gates can be changed arbitrarily in the field. This functionality is achieved through a combination

of two technological innovations: 1) look-up tables (“LUTs”) for implementing n-input logic gates; and 2)

switch boxes/connection boxes for implementing arbitrary connectivity between LUTs. In the ”sea of gates”

analogy, LUTs can be thought of as islands of activity and connection/switch boxes can be thought of as

water between the islands that pass information back and forth.

An FPGA typically contains a 2-D array of so-called “logic blocks,” each of which contains one or more

LUTs along with some registers and multiplexers. These logic blocks, referred to as configurable logic blocks

(CLBs) or adaptive logic modules (ALMs) by Xilinx and Intel respectively, are arranged in a 2-D array

throughout the chip. Connection boxes (“CBs”) connect logic blocks to each other while switch boxes

(“SBs”) connect connection boxes to each other. By changing the configurations of these logic, connection,

and switch boxes, an FPGA engineer can implement almost any digital circuit with arbitrary behavior and

interconnectivity. In addition to these resources, modern FPGAs will also contain other elements such as

hard transceiver blocks (PCI-Express, DDR, QSFP), digital signal processors, or configurable high-capacity

embedded memories called “block RAMs” or “BRAMs”.

Historically, FPGAs have been programmed using register-transfer level (RTL) hardware description

languages (HDLs) such as VHDL or Verilog. These languages enable developers to instantiate digital circuit

components such as logic gates and memory cells and specify the wire interconnections between them.

Compiling HDL code follows several main steps: Synthesis, Technology Mapping, Placement, and Routing.

• Synthesis: The compiler parses HDL code and infers what kind of circuit components have been

instantiated (i.e. logic gates and registers) as well as their connectivity. During synthesis, the compiler

2.3 Modern FPGA Platforms 5

will also typically perform some basic logic optimization to find the minimal form of each Boolean

expression specified by the designer.

• Technology mapping: After primitive circuit components have been inferred, they must be translated

to device-specific components. For example, a Boolean expression such as a ∩ b will be mapped into a

2-input LUT with the following contents: (0,0) = 0, (0,1) = 0, (1,0) = 0, (1,1) = 1.

• Placement: Given a list of populated LUTs, the compiler must then pack them into the FPGA chip’s

limited resources. This step reduces to the NP-hard bin packing problem. One common algorithm for

placement is simulated annealing, where logic blocks are first randomly placed in the chip resources,

then repeatedly swapped until the minimum cost configuration has been found.

• Routing: Once the placer has found a minimum cost placement, the compiler will attempt to find the

minimum cost path connecting all of the circuit components in the desired configuration. This step

generally uses a comparatively low-cost pathfinding algorithm such as Dijkstra’s algorithm.

As FPGAs have moved beyond being just circuit prototyping platforms, companies like Xilinx and Intel

have invested heavily in high-level synthesis languages, where standard procedural programming languages

like C or OpenCL can be used to directly synthesize hardware, thus substantially lowering the barrier of

entry for software developers who may not have extensive backgrounds in digital circuit design [16].

2.3 Modern FPGA Platforms

Today, Xilinx and Intel have realized the market potential for FPGA accelerator systems and have each

released their own development platforms to bring FPGA performance and efficiency to the rest of the world.

At first, these platforms were similar to GPGPU systems in that they were discrete chips with separate global

memory linked to the CPU over PCI-Express. Recently, Intel has released a novel new tightly-coupled FPGA

accelerator architecture called the Hardware Accelerator Research Platform (“HARP”), which is comprised of

an Intel Broadwell 14-core Xeon CPU and an Intel Arria 10 FPGA. In this thesis, we will examine accelerator

design experiences on a traditional discrete FPGA platform (Xilinx SDAccel) and the aforementioned Intel

multi-chip module.

2.3.1 Xilinx SDAccel

SDAccel [17] is Xilinx’s flagship product for bringing high-performance customizable hardware acceleration to

the masses. At its core, SDAccel emulates the GPGPU development process - the company even advertises

Chapter 2 Background Information 6

this product as the first GPU-like ecosystem for FPGA development. Specifically, the SDAccel software

architecture closesly mimics that of OpenCL in both its execution flow and syntax. On the host side,

developers make familiar calls to Xilinx’s flavor of the OpenCL host API. Much like with GPU OpenCL

programming, the general host code flow is that some memory is allocated local to the CPU, then written to

the target device’s global memory, and finally read back into the CPU’s local memory buffers. For kernel

development, Xilinx offers support for RTL code (Verilog/VHDL), Xilinx high-level synthesis C, and even

OpenCL.

As of late 2016, Xilinx has partnered with Amazon Web Services to bring SDAccel-compatible boards to

AWS users via the Elastic Compute (“EC2”) F1 service. These AWS FPGA instances use top-of-the-line

Xilinx Virtex UltraScale+ series chips to complement AWS’s existing high-performance nodes with GPUs

and high-end CPUs.

2.3.2 Intel Broadwell + FPGA Multi-Chip Module

In 2015, Intel Corporation unveiled plans for a new high performance reconfigurable computing architecture

that combined an enterprise-class Broadwell Xeon processor with a top-of-the-line Arria 10 FPGA [18]. While

this is not the first product that closely coupled a CPU with an FPGA (many of Intel FPGA’s embedded-class

products combine a low-power ARM processor with a small Cyclone-series FPGA), this represents one of the

first efforts to combine large enterprise-class chips through a shared last-level cache.

Similarly to SDAccel, this new product, known as the Hardware Accelerator Research Platform (“HARP”),

allows the user to develop FPGA kernels with either RTL code, OpenCL, or Intel’s SystemC-based high-level

synthesis language. HARP’s main CPU-FPGA communication bus is Intel’s Core Cache Interface (CCI-P)

[19]. CCI-P serves as a layer of abstraction on top of three communication busses, one of which is QPI and

two of which are PCI-Express. CCI-P allows users to either manually select which of the three links they

want to use or use the automatic channel selection mode, which opportunistically chooses which channel to

send/receive information on.

When developing for HARP, the user is exposed to three main components: 1) the Xeon CPU host

code; 2) the Intel-provided FPGA “blue bitstream”; and 3) the user-defined FPGA “green bitstream”. The

host-side code, similarly to the OpenCL execution flow, simply allocates memory regions and sends control

signals to the FPGA. The FPGA blue bitstream is provided by Intel and serves as a cache-coherent shim

that ineteracts with the Xeon processor’s TLB and last-level cache on the user’s behalf. Finally, the green

bitstream is completely user-defined and contains some kind of computation logic along with some basic

2.3 Modern FPGA Platforms 7

control logic to communicate with the blue bitstream, which in turn interacts with the Xeon CPU. A diagram

of the HARP ecosystem can be seen in Figure 2.2.

CCI-P	Bus

1x	QPI
2x	PCI-E

User
Application

OPAE
C++	API

User
RTL

OPAE
RTL	

Building	
Blocks

Intel	Xeon	CPUIntel	Arria 10	FPGA

Intel	Xeon	+	FPGA	(HARP)	Platform

Figure 2.2: The overall HARP system topology. An Intel Xeon CPU is tightly coupled with an Intel Arria 10
FPGA through a cache-coherent interconnect link. THe green portions of the architecture are user-defined
while the blue portions are static IP blocks used to implement features like the coherency protocol and
firmware.

Chapter 3

Related Work

3.1 CPU Automata Processing Engines

In a nondeterministic finite automaton (NFA), symbols from the input stream are broadcast to each state

simultaneously, and each state connects to several other states, each of which may or may not activate

depending on whether a given state matches the incoming symbol. For each symbol, an NFA engine must

determine the next set of activated states, which involves a linear-time scan of the adjacency lists of all

states in the current activated set. In the worst case, the adjacency list may contain nearly all of the states

in the automaton; therefore, the run-time on a CPU for simulating an m-state automaton on n symbols

is O(n · m). CPU NFA processing is additionally hampered by the so-called “memory wall” due to the

NFA’s pointer-chasing execution model, and therefore it is desirable to drastically reduce the number of

memory accesses per input item. In order to mask memory latency, state-of-the-art NFA engines such as

Intel HyperScan [2] perform SIMD vector operations to execute as many state transitions as possible for a

given memory transaction. Even so, such optimizations can not escape the fact that sequential von Neumann

architectures are fundamentally ill-suited for these type of workloads.

In order to improve the run-time complexity of automata traversals, some regular expression engines

transform the NFA into its equivalent deterministic finite automata (DFA). A DFA only has one state active

for any given symbol cycle and is functionally equivalent to an NFA; this is achieved through a process

known as subset construction, which involves enumerating all possible paths through an NFA. Converting

an NFA to DFA has the benefit of reducing the runtime to O(n) for n symbols (note that now the runtime

is independent of automaton size) and only requires one memory access per input symbol, but frequently

causes an exponential increase in the number of states necessary; this phenomenon is often referred to as

8

3.2 FPGA Automata Processing Engines 9

state explosion. Subset construction for large automata incurs a huge memory footprint, which may actually

cause performance degradation due to memory overhead in von Neumann machines.

Prior work by Becchi [20] attempted to leverage the best of both types of finite automata (the spatial

density of NFA and temporal density of DFA). By intercepting the subset construction algorithm and not

expanding paths that would result in a state explosion, Becchi achieved 98-99% reduction in memory capacity

requirement and up to 10x reduction in memory transactions.

3.2 FPGA Automata Processing Engines

The projects described in this thesis are not the first efforts to accelerate automata processing using FPGAs.

Several past research endeavours have also attempted to accelerate both NFA and DFA processing using

reconfigurable fabrics.

3.2.1 NFA Engines

Past implementations of NFAs on FPGA [11] [10] focused on synthesizing only regular expression matching

circuits for applications such as antivirus file scanning and network intrusion detection. REAPR extends this

prior work by focusing on a more diverse set of finite automata to address the fact that the workload for

automata processing is much richer and more diverse than regular expressions. We extend the underlying

approaches for NFA RTL generation from prior work, adapt it for other NFA applications, and detail our

process in Chapter 4.

3.2.2 DFA engines

Several efforts [21] in accelerating automata processing with FPGAs use Aho-Corasick DFAs as the underlying

data structures. A major motivator behind this design choice is the ease of translation between a DFA and a

simple transition table, which is easily implemented using BRAM. One benefit to this approach is that BRAM

contents can be hot-swapped easily, whereas a spatial design requires a full recompilation to realize even a

single change. Because DFAs do not exploit the abundant bit-level parallelism in digital hardware and are

much better suited to memory-bound CPU architectures, REAPR only focuses on the spatial implementation

of NFAs.

Chapter 3 Related Work 10

3.3 The Micron Automata Processor

In 2014, Micron Technologies unveiled a purpose-built automata accelerator appropriately named “The

Automata Processor” [12], often referred to as the “AP”. This product is designed in a 50nm DRAM process

and computes one byte per cycle at a maximum frequency of 133 MHz for a throughput of 133 MBps

(approximately 1 Gbps). Each Automata Processor populates a standard PCI-Express form factor with 32

chips per board, each of which contains roughly 49,000 automaton states per chip. The fundamental building

block of the AP is the state transition element (STE). STEs are connected together with a hierarchical

routing tree similarly to how the 2D routing mesh in an FPGA connects look-up tables together. In addition

to automaton states, AP chips also have a limited number of special purpose elements such as up-counters

and boolean logic gates.

To program the AP, Micron offers their AP software development kit, which enables users to write C++

host code and use a XML-based graph description language called “ANML” (Automata Network Markup

Language) to design state machines which are implemented on the AP board. Developers can either create

their own ANML files using the provided API or generate them from regular expressions using the SDK’s

apcompile command.

3.4 Other Architectures

Several past efforts have proposed modifications to existing von Neumann architectures to specifically increase

performance of automata processing workloads. HARE (Hardware Accelerator for Regular Expressions)

[22] uses an array of parallel modified RISC processors to emulate the Aho-Corasick DFA representation

of regular expression rulesets. The Unified Automata Processor (UAP) [23] also uses an array of parallel

processors to execute automata transitions and can emulate any automaton, not just Aho-Corasick. However,

because these works are 1) not FPGA-centric (both are ASICs), 2) based on the von Neumann model and

not spatially distributed like REAPR, and 3) confined to a limited set of just regular expressions (as opposed

to general automata applications), we do not directly compare to them.

There have also been numerous efforts to process NFAs on GPUs [24] [25]. However, due to the mismatch

between the GPGPU execution model (single instruction multiple data - SIMD) and that of the automata

processing execution model (multiple instruction single data - MISD), GPUs are unable to achieve the same

level of efficiency for NFA processing as spatial reconfigurable architectures like FPGAs and the AP do.

Chapter 4

REAPR: Reconfigurable Engine for

Automata Processing

Prior work in accelerated automata processing was limited to just regular expressions and did not link the

automata kernels with external high-speed communications interfaces such as PCI-Express. This thesis

proposes REAPR (Reconfigurable Engine for Automata PRocessing to address these concerns. REAPR

is an extensible and high-performance tool for generating automata processing accelerators on the FPGA,

including rudimentary support for report offloading. In this work, we use REAPR to evaluate the potential of

FPGAs to accelerate automata workloads besides just regular expressions. To do so, we examine a series of

known automata benchmarks, attempt to find a realistic STE capacity estimate for the maximum capacity of

our Xilinx Kintex UltraScale chip, and measure the processing throughput of the automata implementation

of the Random Forest inference algorithm.

4.1 Benchmarks

We synthesize the ANMLZoo [26] automata benchmark suite developed by Wadden et al. to determine the

efficiency of REAPR. ANMLZoo contains several applications falling into three broad categories: regular

expressions, widgets, and mesh. The applications, along with their categories, are listed below in Table 4.1.

Detailed descriptions of these benchmarks can be found in the ANMLZoo paper [26].

ANMLZoo is normalized for one AP chip, so these benchmarks synthesized for the FPGA will provide a

direct comparison of equivalent kernel performance between the two platforms.

11

Chapter 4 REAPR: Reconfigurable Engine for Automata Processing 12

Benchmark Name Category States

Snort RegEx 69,029
Dotstar RegEx 96,438
ClamAV RegEx 49,538
PowerEN RegEx 40,513

Brill Tagging RegEx 42,658
Protomata RegEx 42,009

Hamming Distance Mesh 11,346
Levenshtein Distance Mesh 2,784

Entity Resolution Widget 95,136
Sequential Pattern Mining (SPM) Widget 100,500

Fermi Widget 40,738
Random Forest Widget 33,220

Table 4.1: ANMLZoo is a benchmark suite for automata engines, suitable for many platforms such as
traditional CPUs, GPUs, FPGAs, and the Micron Automata Processor. Note that the state counts listed in
this table are for the raw, unoptimized ANML files.

4.1.1 Maximally-Sized Levenshtein Automaton

In addition to comparing the relative performance of the AP versus an FPGA, it is also useful to know exactly

what the upper bounds are for FPGA capacity. For this reason, we resize the Levenshtein benchmark such

that it completely saturates the FPGA’s on-chip LUT resources. We have chosen Levenshtein specifically

because it is the smallest and therefore worst-performing application in ANMLZoo, due to the clash between

its 2D-mesh topology and the AP’s tree-based routing. The poor routing can be observed in the fact that

Levenshtein has the smallest number of states in ANMLZoo, thus wasting the most computational potential.

We believe that Levenshtein represents an application that not only is inefficient on the AP, but is very

well-suited to the FPGA and its 2D-mesh routing network.

4.2 RTL Code Generation

This work focuses mainly on the hardware synthesis of nondeterministic finite automata rather than DFA.

The NFA’s highly parallel operation of matching one single datum for many states (“Multiple Instruction

Single Data” in Flynn’s taxonomy) maps very well to the abundant parallelism offered by spatial architectures

such as the FPGA and AP. While DFAs can also be implemented spatially, the argument is less compelling

because 1) DFAs only need to perform a single symbol match per cycle, and therefore are better suited for

von Neumann architectures and 2) DFAs often have a huge area requirement.

Spatial architectures implement automata states as transition logic ANDed with a single register rep-

resenting whether the state is activated. This is the case for the AP as well as prior work [11] [10]. In the

case of REAPR and the AP, the transition logic is actually merged with the state to transform a traditional

4.2 RTL Code Generation 13

NFA into a homogeneous finite automaton [15]. In these homogeneous FAs, the combined state-transition

structure is referred to as a state-transition element (STE). Each STE’s transition logic is one-hot encoded as

a 1x256 memory column (the “character class”) and is ANDed with the activation state register, the input to

which is the reduction OR of enable signals coming from other states. With this design, a single STE will

only output “1” when its activation state is driven high by other states and the current symbol is accepted in

its character class. Algorithm 1 describes this process and Figure 4.1 shows a visual representation of it.

Algorithm 1 NFA-RTL Translation Algorithm

1: procedure NFA2RTL(incoming symbol)
2: for each STE do
3: generate DFF dff
4: generate 1bx256 character class RAM cc
5: generate 1b signal activated
6: for each incoming iSTE do
7: activated |= iSTE.output
8: end for
9: generate 1b signal char matches

10: char matches = cc[incoming symbol]
11: generate 1b output signal output
12: output= char matches AND activated
13: end for
14: end procedure

a

\x00

\xff

\x61=‘a’

0
0
0

0
0
0

1

\x00

\xff

\x62=‘b’

0
0
0

0
0
0

1

\x00

\xff

\x63=‘c’

0
0
0

0
0
0

1

b c

d
[a]

[b]

[cd]

Figure 4.1: Automata states can be easily mapped to registers and look-up tables (“logic”). The regular
expression that this NFA implements is /(a|b)[cd]/.

Chapter 4 REAPR: Reconfigurable Engine for Automata Processing 14

PCI-E controller
receives data

AXI Write data
to global
memory

AXI Read Data
Process

Automaton

AXI Write
reports to

global memory

Pipelined

Write reports
to PCI-E bus

Figure 4.2: Execution flow of AXI and PCI-Express transactions for automata processing kernels.

We propose two design methodologies to represent character classes in hardware using either the FPGA’s

lookup tables (LUTs) or BRAM.

4.2.1 LUT-Based Design

Each state must accept a range of characters corresponding to outgoing transitions in a canonical finite

automaton. LUTs are well-suited for this task, due to their proximity to the state registers within a CLB; a

LUT-based flow will not need to use as much long-distance wiring to connect to a far-away BRAM.

4.2.2 BRAM-Based Design

The main disadvantage of using LUTs for storing the character class is the long compilation time; FPGA

compilers aggressively minimize logic for LUT designs, which drastically increases compiler effort. Using

BRAMs for transition logic circumvents the expensive optimization step and therefore significantly decreases

compile time.

The AP’s approach to generating hardware NFAs is very similar to the BRAM design, except that Micron

stores the 256-bit columns into DRAM banks instead of FPGA BRAM. This has the benefit of high state

density due to the higher density of DRAM compared to SRAM.

4.2.3 I/O

Prior works considered only kernel performance rather than system performance. While this approach has

the benefit of greatly reducing the implementation difficulty of a research project, it does not provide a full

analysis because real systems are not I/O-agnostic. A main contribution of REAPR is the inclusion of I/O

circuitry over PCI-Express and AXI for the Random Forest benchmark, making REAPR the first work to

offer a truly end-to-end automata accelerator design flow for FPGAs.

We adopt a high level synthesis (HLS)-centric approach by designing the I/O interface using HLS and

modifying the generated Verilog code to integrate our automata kernels. Xilinx SDAccel [17] then generates

AXI and PCI-Express circuitry for our kernels. Testing automata circuits with real data on real hardware

4.2 RTL Code Generation 15

allows us to obtain more realistic benchmark results compared to simulations, which prior works have relied

on. The overall execution flow of REAPR with I/O is shown in Figure 4.2.

To integrate our RTL kernels into HLS-generated Verilog, we design the I/O kernel to have some very

basic dummy computation. A simplified code snippet is shown in Listing 4.1, which shows data being copied

from the input buffer to the output buffer after being added to 0xFA. In the generated Verilog (Listing 4.2),

we can search for this dummy addition, and substitute the addition operation with our automata RTL kernel

(Listing 4.3).

Listing 4.1: I/O kernel with dummy computation

void i o k e r n e l (din ∗ indata , dout∗ outdata) {

for (int i =0; i<DATA SIZE ; i++) {

outdata [i] = indata [i] + 0xFA;

}

}

Listing 4.2: Snippet of generated dummy computation Verilog code.

assign r e su l tAB fu 171 p2 = ($s igned (loadAB reg 239) + $s igned (8 ’ d250)) ;

Listing 4.3: Code modifications necessary to hook in automata processing kernel.

// as s i gn resu l tAB fu 171 p2 = ($ s i gned (loadAB reg 239) + $ s i gned (8 ’ d250)) ;

wire [7 : 0] automata indata ;

wire [7 : 0] automata reports ;

assign automata indata = loadAB reg 239 ;

my automata automata U (

. c l o ck (ap c lk) ,

. r e s e t (1 ’ b0) ,

. run (1 ’ b1) ,

. da ta in (automata indata) ,

. r epo r t s (automata reports)

) ;

Chapter 4 REAPR: Reconfigurable Engine for Automata Processing 16

v0

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

vote=0

max=0

cout0_0

cout1_0

cout2_0

cout3_0

cout4_0

cout5_0

cout6_0

cout7_0

cout8_0

cout9_0

Max_Out

Vote_Out

v1 v9

cout0

cout1

cout2

cout3

cout4

cout5

cout6

cout7

cout8

cout9

Max_Out

Vote_Out

. . .

Figure 4.3: The pipelined voter module for Random Forest compresses the output size from 1,661 to just 8
bits.

4.2.4 Reporting Architecture (Match Output Offloading)

A major challenge to implementing automata on FPGAs is not in the kernel itself, but rather in the I/O. For

every 8-bit symbol processed by REAPR, thousands of reports may fire, requiring per-cycle storage on the

order of kilo-bits. This massive amount of data transfer has a non-negligible overhead on overall throughput.

To illustrate the detrimental effects of I/O on performance, consider the following example. In the Random

Forest application, there are 1,661 reporting states corresponding to 10 feature classifications [6]. The host

CPU post-processes this report data, so all of it must be preserved. A 10 MB input file will therefore generate

16.61 Gb worth of output signals. Assuming 250 MHz kernel clock rate and a 10 GBps PCI-Express link

with a single-stream blocking control flow, the overall end-to-end throughput of the system can be expressed

as follows:

Throughput =
10MB

10MB
10GBps + 10MB

250MBps + 16.61Gb
10GBps

Evaluating the above expression gives an overall throughput of just 41.2 MBps, only about 16% of the

expected 250 MBps. Efficient reporting is therefore a crucial part of developing high performance automata

processing kernels.

To demonstrate an example of efficient report processing, we delegate the voting stage of the Random

Forest algorithm on-chip so that instead of exporting 1,661 bits of report information per cycle, we can just

export the vote instead. The Random Forest (“RF”) kernel in the ANMLZoo benchmark suite is trained for

the MNIST hand-writing database for digits 0-9 [6], so only four bits are necessary to encode the vote per

cycle. However, because the minimum word width of SDAccel is 8 bits (one byte), we set the vote output

4.3 Evaluation Methodology 17

width to be 8 bits instead. This enables a factor of 207 reduction in necessary report storage compared to

the original 1,661 bits.

Each of the report bits in the RF kernel corresponds to one of ten possible feature classifications. The

voter module, shown in Figure 4.3, contains ten identical stages. Each voter stage vi takes as input 10

classification vectors (c0 - c9), the determined vote from the previous stage (vote), and the number of votes

corresponding to that classification (max). Each stage i will calculate the Hamming Weight w of classification

vector ci and compare that to max. If w > max, then the current stage passes i as vote and w as max. All

of the classification vectors ci are passed to the next stage. Because the throughput of this voter module is

one vote per cycle, it has no negative impact on the overall throughput of the Random Forest kernel.

4.3 Evaluation Methodology

All FPGA metrics were obtained for the Xilinx Kintex UltraScale 060 FPGA (Alpha Data ADM-PCIE-KU3

board) with an X16 PCI-Express interface, 2,160 18 Kb BRAMs and 331k CLB LUTs. The FPGA’s host

computer has a quad-core Intel Core i7-4820k CPU running at 3.70 GHz and 32 GB of 1866 MHz DDR3

RAM. CPU performance results were obtained on a six-core Intel Core i7-5820k running at 3.30 GHz with 32

GB of 2133 MHz DDR4 RAM.

To obtain the synthesis and place & route results, we use Xilinx Vivado’s Out of Context (OOC) synthesis

and implementation feature. OOC allows us to synthesize RTL designs for which the number of pins exceeds

the maximum number on our selected chip (1,156) in the absence of a general-purpose report-offloading

architecture. For future work, we hope to implement such an architecture to obtain more confident data

regarding throughput, power consumption, and resource utilization.

All CPU benchmark results are obtained by running a modified version of VASim [27] that uses Intel’s

HyperScan tool as its automata processing back-end and an ANML (instead of regular expression) parser

as its front-end. We choose HyperScan as a general indicator of a state-of-the-art highly optimized CPU

automata processing engine.

Because the AP and REAPR have similar run-time execution models and are both PCI-Express boards, we

can safely disregard data transfer and control overheads to make general capacity and throughput comparisons

between the two platforms. While in reality the I/O circuitry has a non-negligible effect on both capacity

and performance for both platforms, we aim to draw high-level intuitions about the architectures rather than

the minutia of reporting.

Chapter 4 REAPR: Reconfigurable Engine for Automata Processing 18

4.4 Results

4.4.1 ANMLZoo Benchmark Results

Our primary figure of merit to quantify capacity is the CLB utilization for the FPGA chip. CLB usage is a

function mainly of two variables: state complexity and routing complexity. Automata with very simple state

character classes will require very few CLBs to implement. Similarly, very complexly routed applications (for

instance, Levenshtein) have so many nets that the FPGA’s dedicated routing blocks are insufficient so the

compiler instead uses LUTs for routing. The CLB utilization can be observed in Figure 4.4.

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

U
til
iz
at
io
n,
	%

Benchmark

CLB	and	BRAM	Utilization,	Logic	vs	BRAM

CLB	Util.,	LUT	Design CLB	Util.,	BRAM	Design BRAM	Util.,	BRAM	Design

Figure 4.4: CLB and BRAM utilization for ANMLZoo benchmarks using the LUT-based and BRAM-based
design methodologies. Note that none of the benchmarks exceed more than 70% utilization, and that in most
cases the BRAM-based design uses fewer CLBs.

CLB utilization ranges from 2-70% for the LUT-based design and 1.4-46% for the BRAM-based design. In

most cases, using BRAM results in a net reduction in CLB utilization because the expensive state transition

logic is stored in dedicated BRAM instead of distributed LUTs.

Figure 4.4 also shows the results of compiling ANMLZoo in the BRAM flavor. Theoretically, the total

state capacity for BRAM automata designs is the number of states per 18 Kb BRAM cell multiplied by the

number of cells. Ideally, we would be able to map transition logic to a 256-row by w-column block, where

w = 18Kb
256b = 72. The closest BRAM configuration we can use is 512× 36, which means that we can only fit

36 256-bit column vectors into one BRAM cell instead of 72. Multiplying the number of states per cell (36)

by the number of cells (2,160) gives a per-chip BRAM-based state capacity of 77,760. Most applications’

4.4 Results 19

BRAM utilization is almost exactly their number of states divided by the total on-chip BRAM state capacity

except for Dotstar, ER, and SPM. In these cases, the applications have more than the 77k allowable states

for the BRAM design, so REAPR starts implementing states as LUTs after the limit is surpassed.

0

0.5

1

1.5

2

2.5

3

C
LB

 p
er

 S
ta

te

Benchmark

Average State Complexity

CLBs Per State, Logic CLBs per State, BRAM

Figure 4.5: The average state complexity for an automaton is the ratio of CLBs placed and routed versus the
number of automaton states. Automata with very simple character classes intuitively need less logic (CLBs)
than more complex automata.

Figure 4.5 shows the state complexity in ANMLZoo applications, which ranges from 1-3 CLBs per state.

While the complexity for logic-based automata varies dramatically based on the complexity of transition

logic and enable signals (node in-degree), for BRAM it remains relatively consistent at roughly 1 CLB per

state. Notable exceptions to this trend are Hamming, Levenshtein, and Entity Resolution. Hamming and

Levenshtein are mesh-based automata with high routing congestion, and ER is so large that the on-chip

BRAM resources are exhausted and LUTs are used to implement the remaining states.

We use Vivado’s estimated maximum frequency (Fmax) to approximate throughput for REAPR, the

results of which are displayed in Figure 4.6. Because the hardware NFA consumes one 8-bit symbol per

cycle, the peak computational throughput will mirror the clock frequency. For ANMLZoo, REAPR is able to

achieve between 222 MHz (SPM) and 686 MHz (Hamming Distance) corresponding to 222 MBps and 686

MBps throughput.

One interesting result of the estimated power analysis reported by Vivado (see Figure 4.7) is the observation

that the BRAM implementation consumes much more power (1.6W - 28W) than the LUT designs (0.8W

- 3.07W). The reason for this discrepancy is twofold: 1) BRAMs in general are much larger circuits than

Chapter 4 REAPR: Reconfigurable Engine for Automata Processing 20

0

100

200

300

400

500

600

700

800

C
lo

ck
 F

re
q

u
en

cy
, M

H
z

Benchmark

Maximum Clock Frequency, Logic vs BRAM

Fmax, LUT Design Fmax, BRAM Design

Figure 4.6: Clock frequency in most cases is degraded when comparing LUT-based automata to BRAM-based,
and in general ranges from 200 MHz to nearly 700 MHz.

LUTs, and powering them at high frequencies is actually quite expensive; 2) routing to and from BRAM

cells requires using many of the FPGA’s larger long-distance wires which tend to dissipate more energy. In

future work, we hope to program all of these BRAM-based circuits onto actual hardware and measure TDP

to verify the power consumption.

Figure 4.8 shows the power efficiency of ANMLZoo applications, which we define as the ratio between

throughput and power consumption. In all cases, the LUT-based designs are significantly more power efficient

than the BRAM designs due to the much lower power consumption.

Using Fmax (without any reporting or I/O circuitry) as the computational throughput, we can determine

the speedup (seen in Figure 4.9) against an Intel Core i7 5820k CPU running Intel HyperScan 1. In the worst

case, REAPR is on par with HyperScan and in the best case achieves over a 2,000x speedup for the SPM

application for both the BRAM- and LUT-based designs.

4.4.2 Random Forest with I/O Circuitry

Using the pipelined voter module, we are able to achieve an average throughput of 240 MBps for the

Random Forest kernel, including data transfer and control overheads. Compared to HyperScan’s performance

of 1.31 MBps for this application, we achieve a 183x speedup on real hardware.

1The HyperScan-based CPU engine and benchmark results were designed and collected by my colleague Jack Wadden.

4.5 Discussion 21

0

5

10

15

20

25

30

Po
w

er
 C

o
n

su
m

p
ti

o
n

, W
at

ts

Benchmark

Power, Logic vs BRAM

Power, Logic Power, BRAM

Figure 4.7: Estimated power consumption for LUT NFAs is very low; the most power hungry application,
Dotstar, is estimated to consume barely more than 3 W. The BRAM implementation is much more inefficient,
peaking at above 25 W for three applications.

4.4.3 Maximally-Sized Levenshtein Automaton

To demonstrate the true power of FPGAs for automata processing, we have developed a new “standard

candle” 2 for the Levenshtein benchmark using the approach described by Tracy et al. [28]. By generating

and synthesizing larger and larger edit distance automata, we have discovered that for a distance of 20 (the

same as the ANMLZoo Levenshtein), the longest Levenshtein kernel we can fit on our Kintex Ultrascale

FPGA has a length of 1,550, requiring 63,570 states. Compared to the 2,784 states in the 24x20 ANMLZoo

Levenshtein benchmark, the FPGA achieves a 22.8x improvement in per-chip capacity.

4.5 Discussion

4.5.1 The Importance of I/O

Our implementation of Random Forest, including the pipelined voter mechanism, achieved 240 MBps overall

throughput. This data point proves that I/O handling can have a substantial impact on overall system

performance. By delegating the voting portion of the Random Forest algorithm on-chip, REAPR enables

FPGA developers to achieve a 5.8x speedup over the estimated worst-case performance of 41.2 MBps.

2A standard candle in the context of spatial automata processing is an automaton that completely saturates on-chip resources.

Chapter 4 REAPR: Reconfigurable Engine for Automata Processing 22

0

100

200

300

400

500

600

700

800

900

Ef
fi

ci
en

cy
, M

B
p

s/
W

at
t

Benchmark

Power Efficiency, Logic vs BRAM

Energy Efficiency, Logic Energy Efficiency, BRAM

Figure 4.8: Estimated power efficiency of the LUT-based design greatly outstrips that of BRAM. Mesh
benchmarks (Hamming and Levenshtein) perform very well in this aspect.

Moreover, the compacted output data stream allows the kernel to operate at 96% of its estimated 250 MBps

throughput, indicating that I/O overheads are minimized with our approach.

4.5.2 The Importance of Application and Platform Topology

In the case of the Hamming and Levenshtein benchmarks, both of which have 2D mesh topologies, the

AP compiler was unable to efficiently place and route due to a clash with the AP’s tree-like hierarchical

routing network. Such a limitation does not exist on the FPGA, which has a 2D mesh routing topology,

exemplified in the FPGA’s 28x capacity improvement for Levenshtein compared to the AP. Additionally,

Hamming and Levenshtein were among the two best-performing benchmarks in terms of power efficiency.

Therefore, applications using 2D mesh-like automata are better suited for the closer-matching 2D routing

network available on an FPGA.

4.5.3 Logic vs. BRAM

In general, using BRAM to hold state transition logic enables significant savings in terms of CLB utilization;

in the BRAM design methodology, CLBs are only used for combining enable signals and in some cases

routing rather than those two tasks as well as transition logic. In most ANMLZoo benchmarks except for the

synthetic benchmark PowerEN, the overall CLB utilization decreases by an average of 16.33%. Similarly, the

4.5 Discussion 23

0.1

1

10

100

1000

10000

FPGA vs CPU Speedup

Logic Speedup BRAM Speedup

Figure 4.9: Speedup ranges from 1.03x to 2,188x for LUT-based automata and 0.87x - 2,009x for BRAM-based
automata.

average state complexity is greatly improved (except for PowerEN), in some cases by as much as 2.7x. We

suspect PowerEN is an outlier due to its high BRAM utilization and high routing complexity. The compiler

is forced to route complex enable logic to far-away BRAMs, and doing so exhausts on-chip routing resources,

so Vivado defaults to using LUTs as “pass-through” LUTs to successfully place and route the design.

Improved CLB utilization comes primarily at the cost of both maximum clock rate and power consumption.

Routing to far-off block RAM cells requires using expensive long-distance wiring in the FPGA fabric, which

causes clock speed to be degraded and power consumption to increase significantly. The effect can be observed

in Figures 4.6 and 4.7.

If an engineer wants to fit as many states as possible into an FPGA, it would be ideal to use a combined

LUT and BRAM approach. For applications where state capacity is a limiting factor, an engineer can

pass arguments to REAPR to completely saturate BRAM first, and then start using LUTs to implement

states after that. This feature in REAPR has already been employed to synthesize ANMLZoo benchmarks

with more than 77k states when targeting BRAM. For future work we anticipate maximally sizing other

benchmarks using both BRAM and LUTs.

4.5.4 FPGA Advantages Over the Micron Automata Processor

One FPGA chip offers significantly greater per-chip capacity compared to the first generation AP. Whereas

one AP chip is maximally utilized for all ANMLZoo benchmarks, we have shown that FPGAs in the worst

Chapter 4 REAPR: Reconfigurable Engine for Automata Processing 24

case are only filled to less than 70% of logic and 99.7% of BRAM, and in the best case only 2% of logic and

3.24% of BRAM are utilized. Simultaneously, FPGAs run at higher clock speeds (222 MHz - 686 MHz) for

all ANMLZoo applications. Theoretically, the speedup of a high-end FPGA chip versus the AP ranges from

1.7x to 5.2x, disregarding the effects of I/O and reporting.

4.5.5 FPGA Disadvantages Compared to the Micron Automata Processor

Despite that FPGAs excel in per-chip capacity, their per-board capacity lags far behind the AP. Whereas an

FPGA board such as the Alpha Data KU3 typically contains just one chip, the AP board contains 32. In an

exceedingly large application, an automata developer would need multiple FPGA boards whereas the AP

compiler natively supports partitioning automata across multiple chips [29]. Assuming that the per-board

cost is relatively similar for an AP and a high-end FPGA, then the AP has a significant capacity-per-dollar

advantage over FPGAs. Furthermore, the AP can process multiple streams simultaneously on its many

chips. In the best case, each chip may process its own stream, resulting in an aggregate throughput of 4.2

GBps. For the same form factor, an AP board is capable of achieving roughly 6x the performance of one

FPGA board. This is especially important because datacenters typically optimize their hardware purchase

decisions based on total cost of ownership (TCO), and the AP’s significant advantage in multi-chip capacity

and throughput makes it an excellent platform if the datacenter wishes to specialize some nodes for automata

processing.

Another important metric for datacenter-scale deployment is productivity. Compiling the ANMLZoo

applications requires on average about 10 hours for the LUT-based designs and 5 hours for the BRAM-based

designs. Static applications easily tolerate this long implementation latency, but latency-sensitive domains

like network security and machine learning can not. In the example of network security, a 10-hour downtime

when fixing a zero-day vulnerability is completely unacceptable. Meanwhile, compiling these ANMLZoo

benchmarks with the AP tools takes only minutes, orders of magnitude faster than the FPGA compilation.

This can be attributed to the fact that the AP is specialized for automata processing, so there are fewer

degrees of freedom for the compiler to consider.

4.5.6 Normalizing for Process Node

The AP is designed in 50 nm DRAM while our Kintex UltraScale FPGA is based on a 20nm SRAM process,

roughly 2.5 ITRS generations ahead. To compare against the AP fairly, we can project expected capacity

for a next-generation AP manufactured in a similar process, albeit for DRAM. With 2x transistor density

4.6 Conclusion 25

increases per generation, the same chip area has 5.7x the capacity of the 50 nm AP. Therefore, an AP made

in a modern process theoretically could pack 285k states in one chip, or roughly 9.1 million per board.

Per-chip capacity is additionally affected by the overall chip size. Judging by the package sizes, an FPGA

chip is much larger than an AP chip, and therefore is able to fit more states simply due to its larger area.

State capacity per unit area for both platforms would have been a very informative metric, but unfortunately

the die size of our FPGA is not available online, so we are unable to make this comparison.

4.6 Conclusion

In this chapter we presented REAPR, a tool that generates RTL and I/O circuitry for automata processing.

Using REAPR, we showed that the spatial representation of nondeterministic finite automata intuitively

maps to spatial reconfigurable hardware, and that these circuits offer extremely high performance on an

FPGA compared to a best-effort CPU automata processing engine (up to 2,188x faster). We compared

REAPR’s performance to a similar spatial architecture, the Micron Automata Processor (AP), in terms of

capacity and throughput, and found that generally the FPGA outperforms the AP in both of those areas on

a per-chip basis. However, since there are many chips per AP board, the Micron product outperforms the

FPGA on a per-board basis.

We analyzed two different methods of generating automata RTL: LUT-based and BRAM-based, and found

that LUT representations are more compact and lower power, and that BRAM designs are faster to compile.

We determined that for Levenshtein distance, the FPGA is capable of achieving over 28x higher capacity

than the AP, and that an application-specific reporting protocol for Random Forest on FPGA resulted in a

183x speedup over the CPU and 5.8x speedup over the estimated worst-case performance of a naive reporting

protocol. In summary, we have extended prior work about regular expressions on FPGAs and extended it for

a more diverse set of finite automata to show how FPGAs are efficient for automata applications other than

regular expressions.

Chapter 5

Automata Processing on Intel HARP

In many graph analytics domains such as social networks and computer networks, there is a notion of a “power

law,” where a majority of the activity is concentrated in a small number of nodes. This chapter of the thesis

will show that the same power law exists in automata graphs, and that this activity imbalance can actually

be used to reduce resource utilization and compilation time (thus increasing productivity) for closely-coupled

FPGA accelerator systems, where the FPGA computes the so-called “hot set” of an automaton and the

CPU co-processes the “cold set.” This chapter will additionally propose a novel reporting architecture for

automata workloads and will benchmark its performance in the context of this hybrid spatial/von Neumann

automata processing workflow.

The work presented in this chapter was the result of significant collaboration between myself and Jack

Wadden, who designed the partitioning algorithm and reporting architecture. I implemented the RTL design

of the system architecture and gathered place and route benchmark results as well as collaborated on the

performance model described later in this chapter.

5.1 The Case for Multi-Platform Automata Processing

In the previous chapter, REAPR was shown to significantly improve processing throughput for a wide variety

of automata processing workloads while occupying up to 70% of the Xilinx Kintex UltraScale FPGA’s

available configurable logic blocks. While many of the ANMLZoo benchmarks fit in a relatively small portion

of the chip, the fact that some benchmarks like Entity Resolution approach the chip’s capacity means that

users will be fairly restricted by problem size with no real way of resolving this limitation. One possible way

of side-stepping this concern is to exploit the aforementioned power law. Intuitively, it is possible to find a

26

5.2 Profiling Automata Activity 27

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
90

%
99

%
99

.9
%

99
.9

9%
99

.9
99

%
99

.9
99

9%
99

.9
99

99
%

99
.9

99
99

9% 90
%

99
%

99
.9

%
99

.9
9%

99
.9

99
%

99
.9

99
9%

99
.9

99
99

%
99

.9
99

99
9% 90

%
99

%
99

.9
%

99
.9

9%
99

.9
99

%
99

.9
99

9%
99

.9
99

99
%

99
.9

99
99

9% 90
%

99
%

99
.9

%
99

.9
9%

99
.9

99
%

99
.9

99
9%

99
.9

99
99

%
99

.9
99

99
9% 90

%
99

%
99

.9
%

99
.9

9%
99

.9
99

%
99

.9
99

9%
99

.9
99

99
%

99
.9

99
99

9% 90
%

99
%

99
.9

%
99

.9
9%

99
.9

99
%

99
.9

99
9%

99
.9

99
99

%
99

.9
99

99
9% 90

%
99

%
99

.9
%

99
.9

9%
99

.9
99

%
99

.9
99

9%
99

.9
99

99
%

99
.9

99
99

9% 90
%

99
%

99
.9

%
99

.9
9%

99
.9

99
%

99
.9

99
9%

99
.9

99
99

%
99

.9
99

99
9% 90

%
99

%
99

.9
%

99
.9

9%
99

.9
99

%
99

.9
99

9%
99

.9
99

99
%

99
.9

99
99

9% 90
%

99
%

99
.9

%
99

.9
9%

99
.9

99
%

99
.9

99
9%

99
.9

99
99

%
99

.9
99

99
9% 90

%
99

%
99

.9
%

99
.9

9%
99

.9
99

%
99

.9
99

9%
99

.9
99

99
%

99
.9

99
99

9% 90
%

99
%

99
.9

%
99

.9
9%

99
.9

99
%

99
.9

99
9%

99
.9

99
99

%
99

.9
99

99
9%

Brill Dotstar ClamAV EntityResolution Fermi Hamming Levenshtein PowerEN Protomata RandomForest Snort SPM

% States Required to Capture Varying Levels of Total Automata Work

Figure 5.1: Percentage of states required to capture different levels of total work done by the automata.

graph cut in the automaton where one side has high activity and the other side has low activity. These two

halves will be called the “hot set” and “cold set” respectively.

During run time, most of the activity will be contained within the FPGA’s hot set, while the CPU’s cold

set will mostly sit idle. When an activation signal on the FPGA side must traverse the boundary between

the hot and cold sets, that signal must be sent over a communication bus between the FPGA and CPU, thus

incurring some I/O protocol overhead. As long as there are no backward-facing automaton state connections

from the CPU back to the FPGA, the FPGA should never have to stall while waiting for the CPU to finish

running its cold set computation. In this configuration, the FPGA and the CPU can both run at their peak

processing rates.

The rest of this chapter will explore how to design an efficient reporting architecture for hybrid automata

accelerators and various tradeoffs and metrics associated with the proposed partitioning technique.

5.2 Profiling Automata Activity

To find the delineation between the hot and cold sets, we have modified VASim to keep track of how many

cycles each automata state has been activated. Because ANMLZoo does not contain a large number of

input data sets, we must repeatedly partition the given testing data with an 80/20 split following the Pareto

principle. By repeating this procedure, we can identify which states encapsulate various levels of behavior;

for this experiment, we have chosen to find graph cuts that clearly delineate between one and eight 9’s of

total activity (90% to 99.999999%). The results of this experiment can be seen in Figure 5.1, which plots the

activity levels of each benchmark against the percentage of the original states required to capture that level.

The results of this experiment show that in some benchmarks such as Dotstar and ClamAV, a very

small number of states is required to capture most of the activity; in the case of Dotstar, only 2.5% of the

original number of automata states can capture 99.999999% of all activity! Conversely, in the Random Forest

benchmark, a large percentage of the original states are necessary to capture most of the activity. This is

Chapter 5 Automata Processing on Intel HARP 28

due to the fact that the Random Forest kernel has many backward-facing loops, which causes the activity

distribution to be more evenly spread out than in other strictly feed-forward automata.

When partitioning the automata workload between the accelerator and host, there will be a compile-

time/throughput tradeoff associated with the partitioned activity level. When the CPU handles very high

activity levels (i.e. there is minimal logic on the FPGA), compilation will be very fast, but the CPU might be

overwhelmed by the amount of requisite processing and therefore bottleneck the entire system. Meanwhile,

if the FPGA bears most of the computational burden, the CPU will have an almost negligible amount of

work and process symbols very quickly, but the RTL compilation time will be much longer. Therefore, it is

desirable to select an activity level that fairly balances the number of states on the accelerator and CPU, and

therefore minimizes both compile time and CPU workload.

To do so, we again repeatedly perform a Pareto split on the input datasets and simulate the CPU’s

processing capability as a function of activity level using VASim. The results of this step are shown in Figure

5.3. To find the threshold between CPU bottlenecking and compilation time explosion, we simply choose

an activity level for each benchmark that exceeds the FPGA’s maximum processing potential. HARP’s

maximum system clock frequency is 400 MHz, and since REAPR processes one byte per cycle, the maximum

throughput for any automata application on this platform will be 400 MBps. Intuitively, the threshold that

maximizes both FPGA and CPU potential will be the lowest activity level that surpasses the 400 MBps peak;

at this point, the CPU is guaranteed to never bottleneck the FPGA, and the FPGA takes on as much of

the computational burden as it can without leaving the CPU with too light of a workload. For Fermi and

PowerEN, it is not possible to partition the automata graphs in such a way that the CPU side ever processes

above 400 MBps, so those benchmarks will not benefit from this partitioning technique. The chosen activity

thresholds for the remaining ANMLZoo benchmarks are recorded in Table 5.1. The percentage reduction in

number of automata states for the ANMLZoo benchmarks can be seen in Figure 5.2.

For every remaining ANMLZoo benchmark, we must find the activity level at which the CPU is guaranteed

not to bottleneck the FPGA. This occurs when the CPU’s throughput outstrips the HARP engine’s maximum

throughput, which at HARP’s maximum frequency of 400 MHz with one byte processed per cycle means 400

MBps. We measure the CPU performance for each benchmark at each of the activity levels and measure the

throughput achieved by VASim. The results of the activity profiling experiment are shown in Table 5.1.

5.3 Hybrid System Architecture 29

Figure 5.2: For most applications, the proposed partitioning technique can offload a huge number of automata
states to the CPU. For Fermi and PowerEN, doing so is not possible, so there are no results for those
benchmarks.

Figure 5.3: CPU performance for offloaded computation versus activity level. The dotted line indicates the
maximum possible processing throughput for REAPR on the HARP platform - 400 MBps.

5.3 Hybrid System Architecture

5.3.1 Automata Processing Engine

To actual process the incoming symbol stream, we use REAPR’s LUT-based design to generate automata

RTL code for the optimized baseline designs as well as the selected activity levels. For I/O, we use Intel’s

Open Programmable Accelerator Engine (OPAE) [30] IP cores to facilitate data transfer with the Xeon

CPU’s last level cache. OPAE provides both FPGA building blocks for interacting with the CCI-P bus and

a host-side C++ API that interact with OPAE-enabled accelerators. Using the virtual addressing mode

provided by OPAE trivializes host/accelerator memory transaction logic by abstracting away the complexities

of the QPI and PCI-Express channels that interface the HARP FPGA and CPU.

Chapter 5 Automata Processing on Intel HARP 30

Benchmark Name Chosen Partition

brill 99.9%
clamav 99.9%
dotstar 99.9%
er 99%
hamming 99.99%
lev 99.99%
protomata 99.99%
rf 99.99%
snort 99.9%

Table 5.1: Relevant ANMLZoo benchmarks with their selected activity-optimal partitions. These are the
activity levels at which the CPU cannot possible bottleneck FPGA throughput, i.e. the CPU runs at more
than 400 MBps.

5.3.2 Reporting Architecture

One major limitation of the Xilinx SDAccel implementation of REAPR is the lack of a real reporting

architecture. In the REAPR chapter, the only application that had actual end-to-end performance numbers

on real hardware was Random Forest, which was only made possible by creating a highly customized match

offloading circuit that reduced the number of reporting signals from 1,661 to 8. This approach is not

generalizable to other automata applications and also tied to Xilinx’s particular flavor of high-level synthesis

C, and therefore is not even portable to other FPGA platforms.

This chapter of the thesis presents the RTL implementation of a high performance general-purpose

reporting architecture initially proposed by Wadden et al [31]. This circuit is composed of several components:

the automata report vector, report aggregators (“RAGGs”), an arbiter, and a 128-bit shift register.

The standard RTL interface for automata designs is shown in Figure 5.4. This is the format generated by

REAPR and is comprised of five main signals. The first input signal is the 8-bit data input signal, which

is broadcasted to all automata states. The next three, enable, reset, and clock, are standard digital circuit

control signals, while the last N-bit Reports signal is the buffer that stores all report events for a given cycle

in the automaton. Because the number of reports as well as the locations of reports inside the output vector

are both unpredictable, it is especially difficult to apply traditional signal compression techniques on this

output data, which ranges on the order of kilobits per cycle.

Figure 5.5 shows the overall topology for the reporting architecture for a relatively small automaton with

128 bits in its output buffer. The bottom 64 bits of reports are handled by RAGG 0 while the top 64 are

handled by RAGG 1. For other automata, the report vector will be split into 64-bit chunks, each of which is

assigned its own RAGG.

At the top of the diagram, the automata processing module, represented as the blue cloud, processes the

5.3 Hybrid System Architecture 31

automata

Data_in[7:0]

enable

rst

clk

Reports[N-1:0]

Figure 5.4: The standard RTL interface for finite automata has an 8-bit input and an N-bit output, where N
is the number of reporting elements.

input stream one byte at a time until at least one bit in the report vector is high. At this time, one or both

of the RAGGs, depending on the location of the report signal(s), will send a request to the arbiter, and the

arbiter will send a stall signal to the automata module until all RAGG requests are de-asserted.

RAGGs will assert their request line if at least one of the report signals in their 64-bit Reports in input

is high. This request will stay high until the arbiter grants the request, at which point the request line will

be forced low. A circuit diagram of the RAGG logic can be seen in Figure 5.6.

The arbiter will issue one RAGG grant at a time until no more RAGGs request their data to be offloaded

(i.e. all of the requests have been serviced). When a RAGG’s request is granted by the arbiter, its 64-bit

data chunk is passed through the report multiplexer and appended with 64 bits of metadata containing

the timestamp and the RAGG ID. The metadata field is used by the CPU-side code to determine which

automaton states were activated and where in the input stream they were activated.

Each time a valid 128-bit report data + metadata “report packet” is created, it is sent to a 4x128-bit

shift register that serves as a buffer to the cache coherent interconnect bus. Once this shift register has been

filled with four entries, the HARP system will send the entire 512-bit buffer through CCI-P to be stored back

into the CPU’s memory system.

5.3.3 HARP Integration

Two finite state machines handle streaming input and output; the input stream feeds into the automaton’s

8-bit data input while the output stream accepts 512-bit packets from the reporting architecture. The input

FSM requests one 64B cacheline at a time from the CCI-P bus and stores the responses into a FIFO. The

input controller will continue requesting cachelines until either the FIFO is full or the end of the data stream

has been reached.

Chapter 5 Automata Processing on Intel HARP 32

RTL	Automata

RAGG_0 RAGG_1

Reports[64:127]Reports[0:63]

Arbiter

Grant

Request

128b	Report	Packet
Metadata	
Generator

4x128b
Shift	Register 512b	CCI-P	packet

64b	RAGG	Data

Stall

Figure 5.5: System topology for the reporting architecture.

Meanwhile, the automata processing engine reads one byte at a time from the FIFO, only pausing when

the reporting architecture’s arbiter sends a stall signal. On the output side, another finite state machine

continuously checks the 4x128b shift register to see whether it is full.

Once all four entries in the shift register are populated, the FSM will export the contents to the CCI-P

bus and empty the shift register. Since there are three channels available to HARP’s CCI-P controller (1 QPI

and 2 PCI-Express) that can be automatically selected based on availability, it is possible to simultaneously

request a line read while also writing the 512b output buffer. Figure 5.7 shows the overall system architecture

inside of the FPGA including all of the automata processing, reporting architecture, and I/O elements.

Both the baseline and partitioned ANMLZoo benchmarks described in Table 5.1 will be integrated into

a full HARP system and run through a full place and route flow. The RTL compilation results of each

benchmark will provide two data points each: 1) the end-to-end compilation time for a full HARP automata

accelerator system; and 2) the resource utilization. To run the place and route flow, we use Intel Quartus

Prime Pro v16.0 on a CentOS 7 Linux distribution. Our compilation machines have 6-core Intel Core i7

5820k with 32 GB of 2133 MHz DDR4 RAM.

To estimate the performance of this system, a cycle-accurate performance model has been developed

which can read in report traces generated by VASim and output an estimate of the total number of cycles

needed to process a given input file. Since the reporting architecture adds stall cycles every time at least one

5.4 Results 33

D				E				Q

RST

Reports_in[0:N]

“0”

“1”

Request

RST Grant NOT_ShiftReg_Stall

Reports_out[0:N]

Figure 5.6: Microarchitecture of the report aggregator (RAGG).

RAGG’s request line is high, it is important to quantify this overhead.

5.4 Results

5.4.1 Spatial Resource Reduction

Figure 5.8 shows the total number of LUTs used for each of the ANMLZoo benchmarks for the optimized

kernels (blue) versus the partitioned ones (orange). In many cases, the total number of LUTs is not drastically

reduced (on average just 8%, with a maximum of 20%), but this is mainly due to the fact that the automata

in ANMLZoo are relatively small compared to the high overhead associated with the various I/O circuitry

needed for HARP (just I/O circuitry occupies roughly 18% of available LUT resources).

Examining the total number of automata states before and after partitioning gives a clearer picture of the

true benefit of this technique. Figure 5.2 shows the total number of automata states that can be offloaded

to the CPU using the proposed partitioning technique. In most cases, a large fraction of the states can be

pruned from the FPGA-side automata engine.

A similar analysis can be applied to FPGA resource utilization by examining only the automata-related

LUT usage, which can be easily done by simply subtracting the number of LUTs needed for a bare-bones

I/O kernel from the total number of LUTs needed for each benchmark. Figure 5.9 shows the results of this

Chapter 5 Automata Processing on Intel HARP 34

CCI-P	Bus	Controller

Automata	+
Report	ArchInput	FIFO Write	

FSM
Read	
FSM

Q
PI

PC
I-E

PC
I-E

Blue
Bitstream

Green
Bitstream

Figure 5.7: System design for the automata accelerator and reporting architecture inside of the HARP
platform.

comparison. On average, the partitioning approach results in over 60% reduction in LUTs required to

implement nearly the same functionality as the baseline benchmark application. In the case of Dotstar,

over 98% of LUT resources can be removed with this technique. Comparing Figure 5.9 with Figure 5.2, the

two plots nearly mirror each other except in the case of Brill. For that particular benchmark, the likely

explanation for the mismatch between the high LUT reduction rate and the relatively low state reduction

rate is that the states left over by the partitioning algorithm have redundant behavior, so the FPGA logic

optimizer chooses to remove the circuitry that implements those states.

5.4.2 Compilation Time Reduction

A direct consequence of reducing requisite spatial resources for these automata benchmarks is reduced

compilation time. This can be readily observed in Figures 5.10 and 5.11, which represent the total compilation

time (baseline versus partitioned) and the percentage improvement due to partitioning, respectively.

On average, the compilation time is reduced by 48%, a nearly 2x improvement in productivity! Inter-

estingly, Random Forest, a benchmark that did not benefit very much from partitioning in terms of states

offloaded or LUT reduction, sees a 55% decrease in compile time, which indicates that even if partitioning

cannot necessarily improve the resource utilization of an application, it can at least reduce the compilation

time.

5.5 Discussion 35

0

20000

40000

60000

80000

100000

120000

LU
T	
Co
un
t

LUT	Utilization,	Baseline	vs.	Partitioned

Baseline	LUTs Partitioned	LUTs

Figure 5.8: The total number of LUT resources needed to compile each ANMLZoo benchmark. The blue
bars represent the LUT count for the baseline optimized automata graphs while the orange bars represent
the LUT count for the partitioned graphs. The reduction in LUTs necessary ranges from 0.3% (Random
Forest) to 20% (ClamAV) with an average of 8.15%.

5.4.3 Communication/Synchronization Overheads

Figure 5.12 shows the communication overhead associated with the baseline automata compared to the

partitioned ones. For most applications, partitioning does not add a significant overhead compared to the

baseline - only as high as 6% in the case of Brill. Some benchmarks can actually benefit from the partition as

groups of states with high report activity are off-loaded to the CPU, thus saving precious cycles that the

reporting architecture does not need to stall for. This phenomenon occurs in Entity Resolution but is most

pronounced in SPM, where the partitioned automaton runs over 20% faster than the baseline. Future work

may explore partitioning strategies that minimize only reporting behavior rather than activation behavior, as

this chapter’s approach does.

5.5 Discussion

For most applications, the partitioning technique described in this chapter is able to reduce the number

of automata states implemented on the FPGA significantly, in some cases up to 97%. The net effect of

this optimization is that the FPGA is now relatively underutilized - peak LUT resource utilization for the

partitioned applications barely reaches above 20% of the FPGA’s total system resources, including area

overhead attributed to I/O and reporting architecture circuitry. Theoretically, users could accelerate much

Chapter 5 Automata Processing on Intel HARP 36

0

20

40

60

80

100

120

LU
Ts
	R
em

ov
ed
	(%

)

Automata	LUTs	Reduction	(%)

Figure 5.9: The percentage of strictly automata-related LUTs removed. This figure of merit is simply the
total LUT count for a given benchmark minus the number of LUTs needed for a basic I/O kernel.

larger automata applications (compared to what can typically fit on just one FPGA) thanks to the work

proposed in this thesis. This partitioning technique effectively combines the strengths of CPU and FPGA

automata processing: large automaton size and high computational throughput, respectively.

A secondary effect of reduced spatial resource utilization is reduced compilation times. Compiling automata

accelerators for an FPGA platform can be extremely time intensive due to the aggressive logic optimizations

performed by FPGA place and route tools. For most ANMLZoo applications, compiling an accelerator

to implement a whole benchmark can take up to four hours! By reducing the amount of logic required

to implement automata kernels, it is possible reduce the overall compilation time by an average of 48%,

effectively allowing developers to iterate twice as fast while prototyping their systems. This is also a boon

for any compilation time-sensitive applications such as sequential pattern mining [7] or network intrusion

detection systems [3] [4], since the performance and/or efficacy of these applications is directly tied to how

quickly an existing automaton design can be updated.

5.6 Conclusion

In this chapter, a novel hybrid automata co-processing architecture was explored on the Intel Xeon+FPGA

(“HARP”) platform. In order to take advantage of the tight coupling between HARP’s CPU and FPGA,

this work proposed running the most computationally intensive part of an automaton, or the “hot set”, on a

high-performance Intel Arria 10 FPGA while the CPU computes the “cold set.” This approach has several

5.6 Conclusion 37

0

2000

4000

6000

8000

10000

12000

14000

16000

brill clamav dotstar er hamming lev protomata rf snort

To
ta
l	C
om

pi
la
tio
n	
Ti
m
e	
in
	S
ec
on
ds

ANMLZoo	Compilation	Time	(seconds)

Baseline	Time	 (s) Partitioned	Time	 (s)

Figure 5.10: The total number of seconds needed to compile the optimized baseline graphs (blue) versus
partitioned graphs (orange).

key benefits. First, it greatly reduces the number of states run on the FPGA (up to 98% are removed), thus

also greatly reducing the LUT resource utilization. Second, because there are now fewer circuit elements to

synthesize and place & route, the total end-to-end compilation time is greatly reduced (on average 48% and

up to 72%). Lastly, some partitions (see Entity Resolution and Sequential Pattern Mining) actually offload

frequently reporting states to the CPU, where reporting overhead is not as significant compared to FPGA,

and therefore can reduce the communication overhead associated with reporting.

These experiments show that automata partitioning has a wide variety of benefits, and that Intel HARP

is an excellent platform to host this type of co-processor architecture given the tight coupling between the

host CPU and the accelerator. The experimental results from this chapter indicate that this technique can

reduce circuit area (thus increasing maximum automaton capacity for the HARP FPGA), reduce compilation

time, and even improve the overall run time compared to a system which only uses the FPGA for automata

processing.

Chapter 5 Automata Processing on Intel HARP 38

0

10

20

30

40

50

60

70

80

CO
m
pi
la
tio
n	
Ti
m
e	
Im

pr
ov
em

en
t,	
%

Compilation	Speedup	(%)

Figure 5.11: The amount (in percentage) that automata graph partitioning can reduce total compilation
time. This ranges from 15.6% (Brill) to 72% (Dotstar).

-25

-20

-15

-10

-5

0

5

10

Co
m
m
un
ica

tio
n	
ov
er
he
ad
,	%

Added	communication	overheads	(%)

Figure 5.12: In most cases, the partitioned graphs will not require significantly more cycles to run than the
baseline automata. In some cases such as Entity Resolution and SPM, the runtime may actually be reduced
because some frequently reporting states have been allocated to the host CPU.

Chapter 6

Conclusion

This thesis has shown that FPGAs are an ideal platform to host automata processing applications. By

exploiting the straightforward translation from the spatial distribution of automata state machine nodes

to digital circuit elements, it is possible to transform the O(n ∗m) work associated with simulating non-

deterministic finite automata (NFAs) into just O(n) runtime while still only using O(m) circuit elements.

FPGAs enable greater time- and space- efficiency for NFA processing than traditional von Neumann CPU

architectures.

The fourth chapter of this thesis proposed REAPR, a tool that generates RTL code and rudimentary

I/O architecture for an FPGA backend. Synthesizing the ANMLZoo benchmark suite [26] using REAPR

for the Xilinx SDAccel platform confirmed the initial hypothesis that FPGAs are well-suited for automata

processing; the spatial representation of nondeterministic finite automata naturally maps to the spatial

representation of circuit elements in reconfigurable hardware. Thanks to this compatability, FPGAs can offer

significant performance and efficiency boosts for automata processing workloads compared to traditional von

Neumann computer architectures. Additionally, experiments in the fourth chapter confirmed the hypothesis

that synthesizing a 2D-mesh application (Levenshtein distance) on a fabric with a 2D-mesh routing topology

(FPGAs) will have superior routing and capacity performance than doing so on the Micron Automata

Processor, which has a tree-like routing topology. We analyzed two different methods of generating automata

RTL: LUT-based and BRAM-based, and found that LUT representations are more compact and lower power,

and that BRAM designs are faster to compile. We determined that for Levenshtein distance, the FPGA

is capable of achieving over 28x higher capacity than the AP, and that an application-specific reporting

protocol for Random Forest on FPGA resulted in a 183x speedup over the CPU and 5.8x speedup over the

estimated worst-case performance of a naive reporting protocol. In summary, we have extended prior work

39

Chapter 6 Conclusion 40

about regular expressions on FPGAs and extended it for a more diverse set of finite automata to show how

FPGAs are efficient for automata applications other than regular expressions.

The fifth chapter of this thesis optimized the resource utilization and compile time associated with

the original REAPR system by sharing the NFA processing workload between the Xeon host CPU and a

tightly-coupled cache-coherent FPGA on the Intel HARP platform. Using this workload sharing approach,

the overall resource utilization was lowered by 98% while the compile time was reduced by an average of 78%.

These results indicate that for automata processing, it is not entirely necessary to have a large state-of-the-art

FPGA to still preserve high performance for automata processing. Future computer systems purpose-built

for automata processing may choose to include a small integrated FPGA (much like an integrated GPU on

desktop/laptop processors) to process the ”hot set” of an automata kernel, thus obviating the need for a

large top-of-the-line FPGA such as an Arria 10.

Chapter 7

Future Work

7.1 FPGA Automata Processing Overlay Architecture

One of the major limitations to both of the works proposed in this thesis (REAPR on SDAccel, REAPR

on HARP) is the compilation time. Without any kind of optimizations, accelerator systems generated by

REAPR for Xilinx SDAccel take on the order of 5-15 hours to compile. Even after drastically pruning the

number of states using the profiling method described in the HARP chapter, compile times are still around

one or two hours. This leads to greatly reduced productivity and is especially detrimental for any iterative or

turnaround-sensitive application. Iterative algorithms such as sequential pattern mining rely on using the

outputs from the previous run to reconfigure the behavior of the automaton for the upcoming run. With

the current way that REAPR is designed, every iteration would incur a several-hour penalty to completely

rerun the RTL compilation flow, which is unacceptable (for reference, CPUs can reconfigure automaton

behavior almost instantaneously - just change the contents of some pointers). For other turnaround-sensitive

applications such as network intrusion detection systems or antivirus file scanning, the time difference between

discovering the patch for a virus and deploying the patch is critical. A latency of several hours is simply

unacceptable for this type of scenario; CPU NIDS engines can almost instantaneously add a new regular

expression to their database and be up-and-running in mere microseconds.

To address these concerns, it is prudent to develop a layer of abstraction on top of the existing FPGA

infrastructure that has a smaller and more coarse-grained design space than an FPGA that allows a spatial

reconfigurable automaton kernel to be compiled in seconds or minutes rather than hours. To this end, there

is already existing work that has built the “automata-to-routing (ATR)” tool [32] that can place-and-route

automata designs onto a parameterizable spatial reconfigurable fabric relatively quickly. Using the tools and

41

Chapter 7 Future Work 42

intuitions from ATR, it will be relatively straightforward to implement the RTL for an automata overlay

architecture’s switch boxes, connection boxes, logic cells, etc. and integrate it with a platform such as Xilinx

SDAccel or Intel HARP. The main challenges to this overlay approach will be timing and capacity tradeoffs;

implementing FPGA-like routing on top of existing FPGA routing will surely incur huge area overhead.

7.2 Integrated FPGAs for Consumer-Grade High-End Desktop

(HEDT) Systems

The results from the HARP chapter of this thesis indicate that at least for automata processing, it is possible

to capture most of the circuit activity in just a small percentage of the area. The remainder of the circuit, or

the “cold set”, can be computed on the CPU when an activation signal propagates from the FPGA to the

host CPU. While this approach may not apply to all accelerator systems, it is certainly possible that many

hardware accelerators do not necessarily need the full might of an Arria 10 FPGA to achieve high throughput.

A recent paper using the Rodinia GPU benchmark suite as an FPGA high-level synthesis benchmark suite

[33] indicates that several of the Rodinia applications (NW, HotSpot3D, pathfinder) fit in roughly 20% of the

logic resources on an Intel Stratix V FPGA, the largest Intel/Altera FPGA of the last generation. Since the

Cyclone V, Intel’s smallest family of FPGAs, contains between 10% and 50% of the logic capacity of the

Stratix V, it seems plausible that a small FPGA can perhaps even reside in the same die as a consumer-grade

Core i5 or i7 CPU, much like how existing Intel Core processors already have integrated GPUs for accelerating

graphics workloads. Incorporating small high-performance FPGAs into desktop processors could potentially

improve the throughput of broad range of applications, not just graphics, for a small chip area and power

consumption overhead. Similar to HARP, these integrated reconfigurable processors could share a coherence

domain with the main CPU’s last level cache and be programmed with a software engineer-friendly language

like OpenCL.

Bibliography

[1] Google. Re2. https://github.com/google/re2.

[2] Intel. Hyperscan. https://github.com/01org/hyperscan.

[3] Martin Roesch. Snort: Lightweight intrusion detection for networks. In Proceedings of the USENIX
Large Installation Systems Administration Conference (LISA), 1999.

[4] Vern Paxson. Bro: a System for Detecting Network Intruders in Real-Time. Computer Networks,
31(23-24):2435–2463, 1999.

[5] ClamAV. ClamAV Rules. Available at https://www.clamav.net/.

[6] Tommy Tracy II, Yao Fu, Indranil Roy, Eric Jonas, and Paul Glendenning. Towards machine learning
on the automata processor. In Proceedings of the International Conference on High Performance
Computing. Springer, 2016.

[7] Ke Wang, Elaheh Sadredini, and Kevin Skadron. Sequential Pattern Mining with the Micron Automata
Processor. In Proceedings of the ACM International Conference on Computing Frontiers (CF), 2016.

[8] Indranil Roy. Algorithmic Techniques for the Micron Automata Processor. PhD thesis, Georgia Institute
of Technology, 2015.

[9] Michael H.L.S. Wang, Gustavo Cancelo, Christopher Green, Deyuan Guo, Ke Wang, and Ted Zmuda.
Using the Automata Processor for fast pattern recognition in high energy physics experiments—a
proof of concept. Nuclear Instruments and Methods in Physics Research, 2016.

[10] Reetinder Sidhu and Viktor K. Prasanna. Fast Regular Expression Matching Using FPGAs. In Proceed-
ings of the the 9th Annual IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM), pages 227–238, Washington, DC, USA, 2001. IEEE Computer Society.

[11] Yi-Hua E. Yang, Weirong Jiang, and Viktor K. Prasanna. Compact Architecture for High-throughput
Regular Expression Matching on FPGA. In Proceedings of the 4th ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems (ANCS), pages 30–39, New York, NY, USA, 2008.
ACM.

[12] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes. An efficient and scalable semicon-
ductor architecture for parallel automata processing. IEEE Transactions on Parallel and Distributed
Systems, 25(12):3088–3098, Dec 2014.

[13] Ted Xie, Vinh Dang, Jack Wadden, Kevin Skadron, and Mircea R. Stan. Reapr: Reconfigurable
engine for automata processing. 2017 27th International Conference on Field Programmable Logic and
Applications (FPL), pages 1–8, 2017.

[14] Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson Course Technology,
2006.

[15] Pascal Caron and Djelloul Ziadi. Characterization of glushkov automata. Theoretical Computer Science,
233(1):75 – 90, 2000.

43

https://github.com/google/re2
https://github.com/01org/hyperscan
https://www.clamav.net/

Bibliography 44

[16] Russell Tessier. Fast Place and Route Approaches for FPGAs. PhD thesis, Massachussetts Institute of
Technology, 1999.

[17] Xilinx. Sdaccel development environment. https://www.xilinx.com/products/design-tools/

software-zone/sdaccel.html.

[18] Algo-Logic. Intel xeon + fpga. http://algo-logic.com/Intel-Xeon-FPGA.

[19] Intel. Intel cci: Core cache interface. https://01.org/sites/default/files/downloads/opae/

cci-p-mpf-overview.pdf.

[20] Michela Becchi and Patrick Crowley. A hybrid finite automaton for practical deep packet inspection.
In Proceedings of the 2007 ACM CoNEXT Conference, CoNEXT ’07, pages 1:1–1:12, New York, NY,
USA, 2007. ACM.

[21] Tran Trung Hieu and N. T. Tran. A memory efficient fpga-based pattern matching engine for stateful
nids. In 2013 Fifth International Conference on Ubiquitous and Future Networks (ICUFN), pages
252–257, July 2013.

[22] Vaibhav Gogte, Aasheesh Kolli, Michael J. Cafarella, Loris D’Antoni, and Thomas F. Wenisch. HARE:
Hardware accelerator for regular expressions. In Proceedings of the 49th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO), pages 1–12, Oct 2016.

[23] Yuanwei Fang, Tung T Hoang, Michela Becchi, and Andrew A Chien. Fast support for unstructured
data processing: the unified automata processor. In Proceedings of the ACM International Symposium
on Microarchitecture (MICRO), pages 533–545, 2015.

[24] Xiang Wang. Techniques for efficient regular expression matching across hardware architectures.
Master’s thesis, University of Missouri-Columbia, 2014.

[25] Niccolo’ Cascarano, Pierluigi Rolando, Fulvio Risso, and Riccardo Sisto. iNFAnt: NFA Pattern Match-
ing on GPGPU Devices. SIGCOMM Computer Communication Review, 40(5):20–26, 2010.

[26] Jack Wadden, Vinh Dang, Nathan Brunelle, Tom Tracy II, Deyuan Guo, Elaheh Sadredini, Ke Wang,
Chunkun Bo, Gabriel Robins, Mircea Stan, and Kevin Skadron. ANMLZoo: A Benchmark Suite for
Exploring Bottlenecks in Automata Processing Engines and Architectures. In Proceedings of the IEEE
International Symposium on Workload Characterization (IISWC), 2016.

[27] Jack Wadden. Virtual Automata Simulator (VASim). Available at https://github.com/jackwadden/
vasim/.

[28] Tommy Tracy, Mircea R. Stan, Nathan Brunelle, Jack Wadden, Ke Wang, Kevin Skadron, and
Gabriel Robins. Nondeterministic finite automata in hardware - the case of the levenshtein automaton.
2015.

[29] Micron Technologies. Micron Automata Pocessor: Developer Portal. Available at http://

micronautomata.com/.

[30] Intel. Open programmable acceleration engine. https://opae.github.io/.

[31] Jack Wadden, Kevin Angstadt, and Kevin Skadron. Characterizing and mitigating output reporting
bottlenecks in spatial-reconfigurable automata processing architectures. In Proceedings of IEEE
International Symposium on High-Performance Computer Architecture (HPCA). IEEE, 2018.

[32] Jack Wadden, Samira Khan, and Kevin Skadron. Automata-to-Routing: An Open Source Toolchain for
Design-Space Exploration of Spatial Automata Processing Architectures. In Proceedings of the IEEE
International Symposium on Field-Programmable Custom Computing Machines (FCCM), 2017.

[33] A. Podobas, H. R. Zohouri, N. Maruyama, and S. Matsuoka. Evaluating high-level design strategies on
fpgas for high-performance computing. In 2017 27th International Conference on Field Programmable
Logic and Applications (FPL), pages 1–4, Sept 2017.

https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
http://algo-logic.com/Intel-Xeon-FPGA
https://01.org/sites/default/files/downloads/opae/cci-p-mpf-overview.pdf
https://01.org/sites/default/files/downloads/opae/cci-p-mpf-overview.pdf
https://github.com/jackwadden/vasim/
https://github.com/jackwadden/vasim/
http://micronautomata.com/
http://micronautomata.com/
https://opae.github.io/

	Contents
	List of Tables
	List of Figures

	Introduction
	Contributions
	Organization

	Background Information
	Regular Expressions and Automata Processing
	FPGA Basics
	Modern FPGA Platforms
	Xilinx SDAccel
	Intel Broadwell + FPGA Multi-Chip Module

	Related Work
	CPU Automata Processing Engines
	FPGA Automata Processing Engines
	NFA Engines
	DFA engines

	The Micron Automata Processor
	Other Architectures

	REAPR: Reconfigurable Engine for Automata Processing
	Benchmarks
	Maximally-Sized Levenshtein Automaton

	RTL Code Generation
	LUT-Based Design
	BRAM-Based Design
	I/O
	Reporting Architecture (Match Output Offloading)

	Evaluation Methodology
	Results
	ANMLZoo Benchmark Results
	Random Forest with I/O Circuitry
	Maximally-Sized Levenshtein Automaton

	Discussion
	The Importance of I/O
	The Importance of Application and Platform Topology
	Logic vs. BRAM
	FPGA Advantages Over the Micron Automata Processor
	FPGA Disadvantages Compared to the Micron Automata Processor
	Normalizing for Process Node

	Conclusion

	Automata Processing on Intel HARP
	The Case for Multi-Platform Automata Processing
	Profiling Automata Activity
	Hybrid System Architecture
	Automata Processing Engine
	Reporting Architecture
	HARP Integration

	Results
	Spatial Resource Reduction
	Compilation Time Reduction
	Communication/Synchronization Overheads

	Discussion
	Conclusion

	Conclusion
	Future Work
	FPGA Automata Processing Overlay Architecture
	Integrated FPGAs for Consumer-Grade High-End Desktop (HEDT) Systems

	Bibliography

