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In order to properly titrate insulin dosages for individuals with type 1 diabetes

(T1D), it is essential to have accurate information regarding when they have eaten

and taken insulin to reconcile those events with their blood glucose levels through-

out the day. A verifiable record of when insulin was taken can be obtained by down-

loading data from the patient’s insulin pump. While this record shows exactly when

insulin was injected, it remains unclear when that person actually ate. Although in-

formation about consumed carbohydrates is often logged at the time of an insulin

bolus, it has been shown that individuals with T1D often dose insulin long after

they have eaten. This practice is not advised and has been linked to an increased

risk of developing complications. This project demonstrates a method to estimate

the times of meals using a multiple hypothesis approach. When an insulin dose is

recorded multiple hypotheses are spawned describing different variations of when

the meal in question occurred. As postprandial glucose values further inform the

model, the posterior probability of the truth of each hypothesis is evaluated, and

from these posterior probabilities an expected meal time is found. This technique

could be used to help advise physicians about the mealtime insulin dosing behav-

iors of their patients and potentially influence changes in their treatment strategy.
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Chapter 1

Motivation

1.1 Introduction

Type 1 diabetes (T1D) is a chronic disease caused by an autoimmune reaction that

destroys the insulin producing beta cells in the pancreas. Insulin is a naturally pro-

duced hormone that helps regulate the amount of glucose in the blood (Type 1 Dia-

betes | Basics | Diabetes | CDC).

Although numbers vary, it is estimated that 1.25 million people in the United

States have T1D (Type 1 Diabetes Facts - JDRF). 200,000 of whom are under the age of

20. Roughly 40,000 people are diagnosed with T1D each year. By the year 2050, it is

expected that 5 million people in the U.S. will have T1D.

People with T1D monitor their BG values and take insulin to maintain acceptable

glycemic levels. Traditionally, individuals with T1D were able to check BG levels

through self-monitoring of blood glucose (SMBG), where the person pricks his or

her finger, draws blood, and deposits it on an oxidizing strip in a glucometer. In

recent years, continuous blood glucose monitors (CGMs) have become more accu-

rate, available, and affordable which has significantly increased the amount of use

within the U.S. These devices consist of a sensor placed beneath the skin in the in-

terstitial fluid and a transmitter that sends BG information every 5 minutes to either

a standalone receiver or a smart-phone. The frequency at which this information is

collected allows the person using it to notice trends and potentially prevent low or

high BG from occurring (Bode and Battelino, 2010).

In addition to monitoring glycemia, those with T1D take synthetic insulin to
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maintain euglycemic levels. Insulin therapy is administered through either multi-

ple daily injections (MDI) or with an insulin pump. In each case, the person with

T1D takes insulin at meal times. These doses are called meal boluses. They also

take supplemental insulin doses to correct for hyperglycemia, known as correction

boluses. People using MDI inject long-acting insulin once or multiple times a day.

Insulin pumps on the other hand do not use long-acting insulin and instead deliver

micro-doses of insulin every few minutes, producing a basal insulin rate (“Continu-

ous Subcutaneous Insulin Infusion at 25 Years” 2002).

Physical activity also factors largely into BG control for those with T1D. Exercise

increases insulin sensitivity which can cause BG to significantly drop during periods

of activity (Zisser et al., 2011). Conversely, some forms of exercise such as anaerobic

exercise or intense aerobic exercise may actually cause BG to increase. This is due to

stress hormones signaling for stored glucose to be released into the blood stream. In

essence, physical activity and exercise have a significant effect on BG and are often

a source of uncertainty for those with T1D.

Less than one third of individuals with T1D are achieving target BG control levels

(Wood et al., 2013). Complication of uncontrolled BG levels are severe. Extremely

low BG can cause short and long-term complications such as myocardial infarction,

neurocognitive dysfunction, cerebrovascular disease, retinal cell death, and loss of

vision (Kalra et al., 2013). This may lead the individual to be severely impaired and

may even cause death.

Prolonged hyperglycemia also has dangerous short and long-term effects. Com-

plications that cause micro-vascular damage may lead to organ failure, loss of limb,

and even death (Kalra et al., 2013). The complications of hypo and hyperglycemia

can largely be avoided through good management practices (Group, Diabetes Inter-

ventions, and Research, 2000).

In order to reduce the burden of managing as well as mitigate complications, re-

searchers have been developing methods to better treat diabetes using data. These

technologies fall under two main categories; open and closed-loop. Closed-loop

technologies implement a feedback system where meal, insulin, and BG information

is regularly collected and a controller decides a strategy for dosing insulin based on
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BG predictions. These systems are often referred to as artificial pancreas (AP) sys-

tems. Open-loop technologies encompass a broader range of new developments.

These innovations leverage data to analyze risk, optimize dosing parameters, cal-

culate insulin doses in a more sophisticated manor, and provide decision support

to the patient. There are advantages and disadvantages to both approaches, but a

commonality between the two is that they use data and the accuracy and validity of

that data is paramount in the decision-making process.

1.2 Problem Statement

1.2.1 Challenges with Self-Reported Type 1 Diabetes Data

Self-reported data is still a cornerstone of the latest technology used to manage T1D.

Because there are no sensors readily available to measure when someone is eating

and how much, it is up to the user of the system to acknowledge when he or she has

eaten. Additionally, insulin records for those without insulin pumps and who use

multiple daily injections (MDI), still a majority of the T1D population, are recorded

manually if at all. This may change when connected pens become more prolific in the

United States. Self-reported information, especially of meals, can be very subjective.

The amount of insulin required for a person living with T1D is periodically shift-

ing. There are long and short-term factors that cause insulin sensitivity to fluctuate.

Because of this, people with T1D meet with their endocrinologists on a frequent basis

to adjust their various basal and mealtime insulin doses. In order to effectively titrate

insulin, physicians use information about the number of grams of carbohydrates in

meals and insulin injection amounts to reconcile BG values recorded throughout the

day. Doctors ask patients keep a record of their carbohydrate and insulin amounts

leading up to their visits in order to provide information that may help them appro-

priately change treatment.

For those with insulin pumps, the information about when they dose insulin and

how much is stored automatically, which allows pump users to have a more accurate

record of insulin than those using MDI. When a person with an insulin pump eats,

they usually enter a SMBG done through a finger prick or a CGM value and the

amount of carbohydrates in their meal into a bolus calculator. This program then
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calculates the amount of insulin needed to correct their current glucose level and

account for the consumed carbs. Lastly, the user is asked to adjust the bolus as they

deem necessary and confirm the delivery. In addition to mealtime boluses, insulin

is also delivered in small doses throughout the day on a schedule and the user is

also capable of giving insulin doses at times when they are not eating to correct for

hyperglycemia. This gives clinicians the opportunity to download a verbatim record

of all the delivered insulin for a particular individual from their insulin pump.

1.2.2 Dissonance Between Meals and Insulin Dosing

Whereas the timing and amounts of insulin injections are known with a great deal

of certainty, what is not is when food was actually consumed. It is possible and

oftentimes likely that the user of the pump ate and then gave themselves a corre-

sponding bolus sometime afterwards. To the clinicians and for purposes of analysis,

it is impossible to tell when these meals are actually occurring.

This occurs frequently and is usually a consistent behavioral trend. A study done

to gauge the prevalence of pre versus post-meal bolusing behavior showed that 32%

of the 21,533 participants surveyed regularly bolused after or during meals (Peters et

al., 2017). This practice is not recommended and those who gave insulin after meals

reported higher hemoglobin A1c (HbA1c) values. HbA1c is a measure of average

BG. Higher values can be predictive of developing diabetes related complications

such as damage to the small blood vessels in the eyes, organs, and extremities (Lind

et al., 2009).

Although this practice is neither recommended nor ideal, it does happen and

there are many real-life examples of why this might be the case. Anyone with small

children knows that just because you make them an amount of food does not mean

that they will eat it. Dosing insulin in this scenario could be very dangerous if the

child does not his or her full meal. This does not just apply to despondent children,

adults are just as guilty of not taking insulin in sync with when they eat.

Imagine a situation where you are at a birthday party. It’s your birthday and

for dinner you eat 2 slices of pizza, dutifully you give yourself a bolus before you

eat. Now it’s time for cake. Everyone sings, you blow out the candles, and someone

handing out cake gives you a piece. As you are walking to your table, grandma
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approaches. She begins a long story about what you were like as a little kid and as

you listen you start taking bites of cake. The story ends, you hug grandma, and then

sit down. At this moment, you realize that you forgot to bolus before you ate and

your BG is already sharply rising. Clinical guidelines are in place for a reason, but

sometimes life gets in the way. It’s not always grandma, but it’s is always something.

1.3 Objectives

The purpose of this work is to begin an exploration into how to characterize insulin

dosing behavior. The aim of this is to provide tools to clinicians so they can deter-

mine if their patients are being adherent to clinical recommendations and address a

problem if there is one. Say for instance a person regularly forgets to bolus until 20

minutes after he or she eats. This tool would make that apparent to their doctor who

might be able to offer interventional help, either by demonstrating to the patient

how important it is to take insulin on time or to tailor treatment to this ingrained

behavioral inclination.

The first step in the development of algorithmic tools like those developed in

this thesis. Past methods of meal detection were only able to establish that a meal

occurred, but not when or how many carbs it consisted of. This work proposes

a framework for taking unverified data streams and making meal time estimates

using bolus times as a starting off point. The multiple hypothesis framework de-

livers statistical insight into how events may have occurred in terms of their timing

and magnitude. Other attempts have focused strictly on detection and have not

proposed a way to amend the record of events recorded by the patient based on a

probabilistic representation of potential events.

The major objective of this exploration is to define a methodology to estimate

when meals have occurred based on pump records. This could be implemented

to make statements about the dissonance between when food was ingested and

when insulin was subsequently taken to account for it. It is often the case that peo-

ple with T1D, particularly children, will inject insulin long after meals leading to

higher HbA1c levels (Peters et al., 2017). This practice can cause postprandial hy-

perglycemia and disturb the glycemic balance potentially causing more hyper or
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hypoglycemic events if insulin and meals are not aligned properly (Cobry et al.,

2010). Because it is not apparent from the meal and insulin record alone, a method

needs to be developed to highlight instances where these events may not happen

concurrently.

1.4 Contributions

The contributions of this work are as follows:

1. A methodology for calculating and comparing the posterior probability of

multiple hypotheses regarding meal timing

2. A procedure for estimating meal times with regards to when insulin was dosed

3. Demonstration of this method on both real and simulated data

4. Insight into how this tool could be used in practice and the implications it

might have on individuals with T1D
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Chapter 2

Literature Review

2.1 Meal Detection

Meal detection has long been a focus of the diabetes technology community. This

body of work serves to create solutions to a number of diabetes management prob-

lems related to meal time insulin dosing. Many of the papers in this field aim to

incorporate meal detection into a closed-loop insulin dosing system.

The purpose of meal detection is to eliminate the need for patients to acknowl-

edge meals manually. In most, if not all systems, insulin is taken at the time of meals.

In order to initiate this process, the user of the system estimates the carbohydrate

content of the meal and then doses insulin accordingly. Carbohydrate content is

usually measured in grams of carbohydrates. This is sometimes referred to as "carb

counting." For those with insulin pumps, this information is entered into a bolus

calculator that, based on carb ratios and correction factors, calculates an appropriate

amount of insulin to deliver. There are many reasons why a user might not want

to do this. It is a burdensome process, especially if someone eats many small meals

throughout the day and also it presents an opportunity for a lapse in focus to create

a significant problem. If someone forgets to take insulin at the time of a meal on

accident, BG levels following the meal can reach dangerously high levels (Randløv

and Poulsen, 2008). If there was a way to detect meals automatically as well as de-

termine when that person ate and how much, there would be a huge reduction in

the amount of work required of people with T1D to manage their disease and also

the potential of eliminating forgotten insulin injections.
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2.1.1 CGM-only Meal Detection

Seminal work using CGM was done by Dassau and colleagues (Dassau et al., 2008),

where meals were detected based on a voting algorithm with rules defined by dif-

ferent evaluations of glucose rate of change.

The detection algorithm works as follows:

1. The most recent CGM reading is fed into the algorithm. The monitor is able to

read BG every 5 minutes, so the algorithm is iterated on a 5-minute basis. The

CGM readings are processed in parallel by a rate of change component and a

Kalman filter estimation algorithm.

2. A rate of change calculation is conducted on the CGM signal using 4 different

methods 1.) backward difference rate of change from the raw signal 2.) back-

ward difference rate of change from the Kalman filtered glucose estimation

3.) Kalman Filter estimation of glucose and the rate of change 4.) the Kalman

estimate of the rate of change of the rate of change of BG.

3. Each of these rules are evaluated against their respective thresholds.

4. Voting algorithm is then implemented and a meal is only detected if two of

three rules or three of four rules are triggered within the same 5-minute inter-

val.

5. The controller receives a meal flag if the voting algorithms determines that

there is significant evidence to detect a meal and the system acknowledges the

meal.

The Glucose Rate of Increase (GRID) method was able to detect meals, where

the associated bolus was withheld for an hour, with a great deal of certainty. For

this specific instance where glucose rose rapidly following a meal, GRID was able to

detect greater than 90% of meals within 30 minutes of the onset of eating.

This method was refined in a later work by Harvey et al. (Harvey et al., 2014) in

2014. The GRID+ method eliminated the voting algorithm and used only a filtered

glucose rate of change to detect meals. This new formulation of the algorithm was

able to detect 87.5% of meals in a training data set of real and virtual patients where
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insulin was given at the time of the meal. The mean time to detection using GRID+

was 42 minutes.

2.1.2 Model-based Meal Detection

Where some meal detection algorithms operate on knowledge of CGM values alone,

some others have attempted to use insulin-glucose models to determine when and

if meals occurred using insulin and meal records as well as CGM values.

In a more recent work, Turksoy used CGM measurements as well as a formula-

tion of the Bergman minimal model with the addition of an unscented Kalman Filter

for state estimation (Turksoy et al., 2016). From this the estimated rate of appearance

of glucose is used for meal detection. This algorithm was evaluated on 9 subjects

and the results indicate that the method works with high accuracy. On average glu-

cose only changed by 16 (±9.42) mg/dL between the meal and the time of detection

for 61 detected meals and snacks. This was developed for the purpose of integrating

it into an AP controller to dose insulin for meals automatically.

Weimer has proposed a method of detecting meals that is agnostic to certain

patient specific parameters usually incorporated in other model schemes (Weimer

et al., 2016). The physiological parameter-invariant (PAIN) detector is based on a

minimal insulin-glucose model and is by design not subject to some of the patient-

specific customization required in other models. This algorithm was able to achieve

a near constant false alarm rate across all subjects and was compared to three existing

meal detection algorithms using a clinical T1D data set.

The PAIN-based detector achieved 86.9% sensitivity and two false alarms on av-

erage per day. It also outperformed all three of the other algorithms across all false

alarm rates. This method has the unique characteristic of maintaining low variance

in detection and false alarms for all subjects in the data set without patient specific

tuning or training.

2.1.3 Meal Detection with Non-Glucose Sensors

Many methods other than those involving measurements of BG or insulin-glucose

models have been used to detect when people eat across a plethora of domains.
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Some of these methods were created with the aim of improving or understanding

diabetes management, but others were generalized to contexts outside of T1D. In-

stead of an approach strictly based on sensor streams generally related to T1D, many

methodologies use other passive sensing techniques to glean information about peo-

ple’s eating habits. The following works focus solely on wearable food intake moni-

toring technologies that use passive sensors.

The Automatic Approach There are a number of methods that have been attempted

that are classified under the epithet of Automatic Approaches. These include at-

tempts to monitor food intake using force sensors in either a plate or as part of a ta-

ble. The so-called "Diet-Aware Dining Table" achieved 80% accuracy in determining

the amount of food transferred from each part of the table and the amount consumed

by each person seated at it (Chang et al., 2006). A smart surface was developed that

rests on top of a dining table and was able to detect eating movements, but could not

classify what type of food was being shift around or how much (Zhou et al., 2015).

Others have tried to create methods for detecting when people eat by using

surveillance-video. These methods employ a stationary camera that observes indi-

viduals and classifies their behavior using image processing. A method by Cadavid

et al. used an active appearance model system to detect chewing motions when the

camera was able to collect images of people’s faces (Cadavid, Abdel-Mottaleb, and

Helal, 2012).

A third automatic approach implements Doppler sensing to detect meals. These

methods use microwave Doppler motion sensors to determine if an individual is

eating or not. Tanigawa et al. explored the use of the Doppler effect caused by

mastication to detect if someone was eating (Tanigawa et al., 2008). This was deter-

mined from the relationship between jaw movement, Doppler frequency and mov-

ing speed.

The Wearable-Based Approach Since it has been thoroughly established that man-

ual meal records are not accurate and clunky stationary devices are required for most

automatic approaches, wearables provide the unique benefit of being able to collect

information on a semi-continuous basis and also monitor their users in a minimally
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invasive fashion (Burke et al., 2005), (Westerterp and Goris, 2002). There are many

different sensor types that have been used to try to detect meals such as, acoustic

sensors, visual sensors, inertia sensors, EMG/EGG-based sensors, Piezoelectric sen-

sors, and sensors that combine multiple sources of information.

The acoustic methods characterize eating by the sounds that people make when

they chew or swallow. Saznov et al. used support vector machines to differentiate

eating specific sounds from ambient noise (Sazonov et al., 2010).

The visual approach to eating detection, uses image processing to recognize food

and people’s motions related to eating. In an on-going work, initially conceptualized

by Sun et al., the eButton is button sized camera that can be worn by an individual

and is capable of determining the amount of food in a portion, what it is, and then

relate it to nutritional values stored in the USDA Food and Nutrient Database (Sun

et al., 2014). This work has been further improved upon by a number of other re-

searchers (Zhu et al., 2010), (Zhu et al., 2011), (Fengqing Zhu et al., 2010), (Sun et al.,

2014), (Chen et al., 2013), (Wenyan Jia et al., 2012).

The inertial approach uses the motion of the eating process to detect meals. Gy-

roscopes have been used to detect wrist motion that is indicative of eating. The

most renowned work using this method was initially created and improved upon

by Dong et al. to track wrist motion when the user takes a bite and was able to detect

meals with 80% accuracy under laboratory conditions for certain foods (“Detecting

Periods of Eating During Free-Living by Tracking Wrist Motion”). Additional stud-

ies have been done where accelerometers were used embedded in a smart watch

or band to detect eating activities (Thomaz, Essa, and Abowd, 2015), (Mendi et al.,

2013).

The physiological approach employs electroglottography (EEG) and electromyo-

graphy (EMG) sensors to determine whether or not a person is eating. EEG senses

motion-induced impedance changes between two electrodes placed across the lar-

ynx. By using an EEG sensor Farooq was able to detect 89.7% of meal events in

females and 90.3% in males (Farooq, Fontana, and Sazonov, 2014).

EMG sensors have been widely used to monitor food intake. This sensor is ef-

ficient in detecting both chewing and swallowing. Its primary function is to assess

bite size and hardness of food being eaten. Woda et al, used EMG to determine the
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effect of food hardness, bite size, chewing cycles and sequence duration for various

foods and subject behaviors (WODA, MISHELLANY, and PEYRON, 2006), (Woda

et al., 2006).

Other researchers have delved into whether or not piezoelectric materials are a

viable way to detect food consumption. Farooq and Sazonoz utilized piezoelectric

film sensors to identify jaw movements during chewing (Farooq and Sazonov, 2016).

By placing two sensors below one ear they were able to detect chewing with and

error rate of 8.09%.

Kalantarian et al., used piezoelectric materials to detect movement in the throat

during swallowing (Kalantarian, Alshurafa, and Sarrafzadeh, 2014). The authors of

this work embedded piezoelectric materials in a necklace to detect changes in the

movement of the throat of a person. This method was able to recognize swallowing

with 86% accuracy when it was tested on 10 subjects in a laboratory setting.

Other food intake monitoring technologies employ a combination of sensors to

detect eating. These methods are known as fusion eating monitoring methods. An

example of this is a combination acoustic-visual approach. Liu et al. described a

method for using both a camera and a microphone to detect eating (Liu et al., 2012).

This system utilizes a microphone to detect chewing. Then a camera is triggered to

that collect video in order to classify the type and amount of food being consumed.

Sen et al. developed a fusion method that used both visual and inertial sensors

to monitor food intake (Sen et al., 2015). This is similar to the Liu method in that

it uses one sensor to trigger a camera that can provide more detailed information

about eating. The accelerometer and gyroscope built into a smart-watch trigger a

camera when eating occurs and then information is relayed to a server via a smart

phone.

Fontana et al. proposed a method called the Automatic Ingestion Monitor that

uses piezoelectric, accelerometer, and proximity sensors to monitor food intake (Fontana,

Farooq, and Sazonov, 2014). By using this sensor set, their algorithm detects eating

by using a combination of signals that collect information regarding jaw movement,

body motion, and hand gestures. This method was 89.8% accurate in a laboratory

setting when it was tested on 12 subjects.
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2.1.4 Multiple Hypothesis Methods

The foundation of the work described in this thesis comes from a paper written by

Patek (Patek, 2010). In this paper, the author describes a linear, time-invariant system

subject to non-zero mean disturbance processes. These disturbance processes are

described with a finite set of hypotheses that are differentiated from one another

by the magnitude and timing of these disturbance processes. Zero-mean Gaussian

noise and sensor noise also affects the measurement of the output of the system.

By decomposing the state estimation problem with respect to the spawned hy-

potheses, optimal filtering equations and Bayesian update rules used to find the pos-

terior probabilities of each hypothesis. From this Bayesian method the hypotheses

can be compared to one another and hypothesis that most aptly determines what is

affecting the system. This process can also be used to determine the stage-by-stage

optimal open-loop feedback control action.

The methodology described in this work provided the framework for evaluating

multiple hypotheses against one another. Each hypothesis holds within it a differ-

ent sequence of events and through Bayesian methods the posterior probabilities of

each are found. Those probabilities are then compared to each other. The residual

difference between the known sequence of events and what is described in each hy-

pothesis creates a profile of the disturbances that caused the response of the system

as a function of time.

The Patek paper presents how this could be applied to any linear time-invariant

system subjected to this particular type of disturbances. For this application the

linear system is the Bergman Subcutaneous Oral Glucose Minimal Model and the

disturbance processes are the insulin and ingested glucose signals that are used as

inputs for this model (“Quantitative estimation of insulin sensitivity”).

In work closely related to this proposal, Cameron developed a method for detect-

ing meals using multiple hypotheses (Cameron, Niemeyer, and Buckingham, 2009).

In this work, Cameron evaluated the probability of no meal happening at a given

time and compared that to the hypothesis that a meal had occurred. As time pro-

gresses, the model becomes more informed and the probability of each hypothesis

updated. If a meal is detected, actions are taken to deliver insulin automatically in a
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simulated closed-loop system. Evaluations of this technique reduced post-meal BG

from 137 to 132 mg/dL over 1.5 without any increase in incidences of hypoglycemia.

2.2 Prior Work Using Multiple Hypotheses

In previous work, a multiple hypothesis method was implemented to assess the au-

thenticity of events in a data stream. Figure 2.1 shows 12 hours of BG and meal

data for a clinical trial participant. The posterior probability calculation for two hy-

potheses, that a meal occurred as recorded and that no meal occurred at that time,

are displayed in the center subplot. When no meal has been announced for at least

6 hours this probability is set to a prior value, but once a meal is announced the

algorithm begins to evaluate the probability of each hypothesis. If the probability

of no meal occurring reaches a threshold of 0.9, then a rule is violated triggering a

detection of the fake meal. A Boolean evaluation of this rule is shown in the bottom

subplot.

It can be seen in the plot that a "spoofed" meal event was added to the data log at

3 a.m. Following the fake meal, the algorithm begins to evaluate the probability of a

meal or no meal happening at that time. Shortly after 3 a.m., the probability of the

no meal hypothesis exceeds the allowable threshold and the rule in place is violated

triggering a detection of the fake meal. At 7:45 a.m. the subject eats breakfast and

the algorithm correctly classifies the meal as having actually occurred.

In this method whether or not a meal happened is being assessed, a similar

method was used in the previously described O.L.F.C. paper by Patek to evaluate

the timing of recorded meals (Patek, 2010). The foundational knowledge of the mul-

tiple hypothesis evaluation processes is already understood from prior investiga-

tion, which provided an advantage in developing this methodology. Additionally,

the code base for multi-hypothesis evaluation existed in large and was expanded on

for the purpose of this thesis.
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FIGURE 2.1: Multiple hypothesis Classifier for Real and Fake Meal
Events.

2.3 Literature Reflection

All of the works described previously in this section describe methods where eating

or meals are detected. Some involve passive sensing techniques with wearable sen-

sors and other use physiological signals such as BG and signal processing techniques

to determine when people are eating. Some of these methods are distinct from this

work, because they require the additional use of hardware, others just determine

that a meal happened without giving more information about it that might be nec-

essary for treatment purposes. Additionally, many of these methods if not all do

not pinpoint the exact moment at which the meal occurred. The goal of the method

proposed in this work is to precisely estimate meal times based on data reported by

the patient without additional hardware or user input.
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Chapter 3

Approach

3.1 Data

Actual patient data collected in a clinical setting as well as simulated data engineered

to recreate certain events was used to test this meal time estimation method. Both

kinds of data were used so that a multitude of situations could be tried out within

the context of the system. These datasets were used to evaluate the performance of

this methodology when meals and boluses occurred simultaneously and when they

were misaligned.

3.1.1 Clinical Data

Any data related to meal and insulin events collected outside of a strictly controlled,

clinical environment is likely to be flawed. For this reason, the data used to evaluate

the proposed method is actual, patient data, but was collected during part A of the

Glucose Variability study (GV2a) at UVA where participants acted freely except their

meal and insulin information was recorded meticulously under the supervision of

the study team. This study was funded through the R01 DK051562 grant awarded to

UVA from the NIH and has been approved by the IRB (#18348). This data includes

physiological measures such as height and body weight which affect parameters

in the insulin-glucose model, as well as diabetes management related information

such as delivered insulin, meals, basal profiles, CGM measurements, SMBG mea-

surements, carbohydrate to insulin ratios, and BG correction factors. Because this

was collected in the Clinical Research Unit of the UVA Hospital under a strict pro-

tocol, it is know that meals and insulin happened exactly when they were recorded.
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TABLE 3.1: GV2a study demographics.

Age Gender Race Height Weight BMI HbA1c Control Period

40101 26 M W 182.2 89.9 27.1 7 1/28-30/16
40103 34 F W 155.2 53.3 22.1 8.4 10/16-18/15
40105 53 F W 170.1 88.1 30.4 7.4 12/11-13/15
40106 33 M W 185.2 106.9 31.2 7.1 10/20-22/15
40108 50 F W 163 70.3 26.5 9.7 12/15-17/15
40109 26 F W 159.3 84.8 33.4 7.6 12/15-17/15
40110 39 F W 173 74.2 24.8 7.1 11/17-19/15
40112 54 F W 170 57.1 19.8 7.4 11/20-22/15
40115 45 F W 162 76.7 29.2 8.3 12/18-20/15
40122 57 F W 158 61.8 24.8 7.3 2/19-21/16
40123 33 M W 183.1 97 28.9 7.5 1/28-30/16

This provides the opportunity to use it as a testbed, which is unique considering

many of the recent trials have been at home and meal times cannot be verified.

The admission portion of the GV2a study was conducted in Fall of 2015 through

Winter of 2016 at the UVA Hospital. During the two day admission, participants

were monitored by the study team as they acted freely and managed their T1D as

they would in their everyday lives. A subset of 11 patients were selected from the

GV2a data, because they were pump users and had complete data for the admission.

On average the participants were 41 years old. 8 of the participants were female and

3 male. All participants were Caucasian. Average height, weight, and BMI were

169 cm, 78 kg, and 27 kg/m2 respectively. The participants had an HbA1c of 7.7 on

average. More details about the participant’s demographics are shown in Table 3.1.

3.1.2 Simulated Data

In order to recreate situations where meals and insulin doses were misaligned, simu-

lated data was created using the FDA-accepted UVA-Padova Simulator. In this data,

100 adult subjects were simulated over the course of a day where they ate breakfast

at 6:00 a.m., lunch at 12:00 p.m., and dinner at 6:00 p.m. Each meal was proportional

to their body weight. At breakfast each subject ate 0.5 grams of carbs per kilogram of

body weight, at lunch it was 1 g/kg, and for dinner they had 0.8 g/kg. Insulin doses

were randomly distributed for each meal from an hour preceding when the person

ate until an hour after. It was necessary to create these events insilico, because even
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though it is highly likely insulin is not always taken at meal times it is difficult to

find examples of this due to the method that the data normally collected. The clini-

cal data set used was selected becasue meal times are verified and as a result of the

conditions it was collected in there are few instances where meal time insulin doses

were taken a long time before or after a participant ate. For this particular reason,

these events were created artificial in the simulation data.

3.2 Algorithm Description

The aim of this work is to characterize the timing of meals using a multiple hy-

pothesis approach. The following sections describe the methodology of how the

hypotheses were structured, what they described, the model in which they were fed

into, how the posterior probability of each was calculated, how an estimated meal

time was found from those posterior probability values, and how the results were

evaluated.

3.2.1 Preprocessing

For both the clinical and simulated data, a number of preprocessing techniques were

used to clean and curate the data. Raw CGM signals often have large unexplained,

jumps in the measured glucose values that are not physiologically possible and are

caused by signal interference. Because this is a known issue with the raw signal,

the CGM measurements were smoothed and this transformed signal was used in

the algorithm. Additionally if there were gaps in the CGM readings greater than 5

minutes, the missing entries were interpolated. Because the actual data was collected

in a controlled environment and technicians were on hand to prevent issues such as

signal loss between receiver and transmitter, these gaps are small or nonexistent in

the clinical data. Most CGM readings are collected on a 5-minute basis and because

of this all events were snapped to the closest 5-minute interval. Although many of

these issues were not present in the simulated data the same process was done on

both data sets.
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3.2.2 Hypothesis Formulation

At each meal event, a number of hypotheses representing different descriptions of

how the meal may have occurred were spawned. Initially, the time of the insulin

bolus was considered to be the time of the meal. This could be thought as the null

hypothesis in this context. The amount carbs in the meal was said to be what was

recorded in the original record. Keeping the bolus at the time that it was known

to have been taken, the meal record was altered for each hypothesis. 25 different

versions of the meal record were written. Each had a different time for when the

meal occurred with the time of the insulin dose held constant. These hypothesized

meals ranged from one hour before the insulin dose was taken to an hour after, each

one altered by an increment 5 minutes. The times of these hypotheses were -60, -55,

-50, -45, -35, -30, -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, and

60 minutes all relative to the time of the insulin injection. The initial probability of

each hypothesis was the reciprocal of the number of hypotheses spawned, in this

case 1/25.

Figure 3.1, shows how the hypotheses were structured. This example only shows

9 hypotheses with hypothesized meal times ranging from 60 minutes before the meal

to 60 minutes after. Each of the hypothesis’ meal time differed from the others by 15

minutes. This illustration only used 9 hypotheses versus the normal 25 to make the

structure clearer and so all of the traces could distinctly be shown in one plot.

In the top subplot, the probability of each hypothesis is shown as a function of

time. Below that, there is a graph of the CGM trace during this period of time. In the

plot that is second to the bottom, the structure of the hypothesis set is shown. Each

peak represents a different hypothesis’ meal time. The apex of these peaks are at the

time that this hypothesized meal was recorded in the log. The magnitude of these

peaks correspond to the meal amount in grams of carbohydrates. This demonstrates

that each hypothesis, maintained the original meal size, but offset the time of that

meal from when the bolus was administered. The bottom subplot shows the amount

of insulin given at the time of the meal and when that dose occurred. For each of the

hypotheses, the insulin record was kept the same. The amount of insulin and timing

of the meal time bolus was consistent for each due to the fact that it is known to be
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FIGURE 3.1: Hypothesis probabilities, CGM trace, meal timing for
each hypothesis, and time of the actual bolus.
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true based on pump records.

3.2.3 Model Description

For this analysis, there were 25 competing accounts of what may have happened.

In each the CGM values, insulin record, and ingested carbohydrate amounts re-

mained the same, only the time at which those carbs were consumed differentiated

the hypotheses. These 25 hypothesized scenarios were the inputs that were fed into

the physiological model used to explain the insulin-glucose dynamic for individ-

uals with T1D. In this evaluation, the Subcutaneous Oral Glucose Minimal Model

was used. The core of this model was initially developed by Bergman et al. in the

late 1970’s (“Quantitative estimation of insulin sensitivity”). Patek and colleagues

added the oral and subcutaneous compartments, so ingested carbohydrates and in-

jected insulin could be used as inputs (“Empirical Representation of Blood Glucose

Variability in a Compartmental Model *”). This model describes the insulin-glucose

relationship as a linear time-invariant system where,

x(k + 1) = Ax(k) + Bu(k) + Gd(k) + Hw(k)

k = 0, 1, ..., N − 1

describes the state. Insulin injections u(k), relative to the basal rate of the par-

ticular individual, serve as an input and disturbances d(k) represent meal events

recorded that could explain the response of BG over time. These noisy measure-

ments representing BG, subject to zero-mean white Gaussian process, can be repre-

sented discreetly as,

y(k) = Cx(k) + v(k)

Figure 3.2 is a visual interpretation of the SOGMM, which is a type of compart-

mental model. The inputs of the model, shown entering the compartments from the

left and top of the diagram are insulin in either short or long-acting form and carbs

ingested either at meals or as a treatment for hypoglycemia. It should be noted that

because the subjects used in the aforementioned data set are either actual or vir-

tual pump users, long-acting insulin was not use and instead a constant basal dose

of short-term insulin was administered. This input enters the model through the
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FIGURE 3.2: Visual representation of Subcutaneous Oral Glucose
Minimal Model.
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fast-acting insulin compartment just as correction and meal boluses would. Addi-

tionally, hypoglycemia treatments are analogously represented as meal time carbs.

These inputs take the form of insulin or glucose and enter the core compartment

through their respective intermediary compartments. The state of the system, as

well as current expected BG are described mathematically in the core compartment

of the model. This was previously described by the state space equations listed

above. The output of the model is an anticipated value for BG at each discrete time

step.

3.2.4 Posterior Probability Calculation

At each step in time, the optimal least-squared estimate of glucose was calculated

using a discrete-time Kalman filter for each hypothesis. This prediction was then

compared to the measured glucose and the posterior probability of each hypothesis

was calculated using a formulation of Bayes’ Rule. As the model predictions are

evaluated, the hypothesis with the highest probability should be associated with the

true description of the events that occurred.

The following method is largely described in Patek’s paper, Open-Loop Feed-

back Control under Multiple Disturbance Function Hypothesis (Patek, 2010). Much

of the method and description of the method is paraphrased from that work.

Setting The equation used to describe the state space of the SOGMM model,

x(k + 1) = Ax(k) + Bu(k) + Gd(k) + Hw(k)

was used as the underlying governing equation for the LTI system for the poste-

rior probability calculation. This was observed during a finite horizon k = 0, 1, ..., N−

1, where A, B, G, and H are appropriately dimensioned state-space matrices. It was

assumed that,

1. x(0) was normal with a mean of x̄0 and a covariance matrix of X0.

2. {w(k)}N−1
k=0 was a zero-mean, white Gaussian process with a covariance matrix

W
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3. {d(k)}N−1
k=0 was another disturbance process that could take one of nh different

forms:

d(k) = dh(k),

k = 0, 1, ..., N − 1;

h = 1, 2, ...nh

the prior probabilities for each were denoted as π1(0), π2(0),...,πnh(0)

4. u(k) at each stage k = 0, ...N− 1 was determined historically by past measure-

ments and inputs I(k) = {y(k), u(k− 1); I(k− 1)}

Additionally, this system produced noisy measurements,

y(k) = Cx(k) + v(k)

for the purposes of this evaluation individual CGM values were used for y(k)

with C as an appropriately dimensioned matrix and {v(k)}N−1
k=0 as a zero-mean,

white Gaussian process with covariance matrix V.

Optimal Filtering This section describes the decomposition of the problem of esti-

mating x(k) as one of maintaining a conditional estimate x̂h(k) for each hypothesis.

The optimal least squares estimate of x(k) at any stage k = 0, ..., N was given

by the conditional expectation x̂(k) = E{x(k)|I(k)}. Conditioned on the event Eh,

meaning that the h− th disturbance process is driving the system. From this it can

be seen that,

x̂(k) = ∑nh
h=1 πh(k)x̂h(k)

where x̂h(k) = E{x(k)|I(k), Eh} and πh(k) = P(Eh)|I(k)), k = 0, ..., N

The following section describes how x̂(k) and πh(K) are found.

Optimal State Estimation under the h-th Disturbance Process Given the event,

Eh, the state, x(k), changes according to,

x(k + 1) = Ax(k) + Bu(k) + Gdh(k) + Hw(k)
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The optimal estimate pertaining to that particular event, Eh, was found though a

discrete-time Kalman filter:

x̆h(k) = Ax̂h(k− 1) + Bu(k− 1) + Gdh(k− 1)

x̂h(k) = x̆h(k) + Lk[y(k)− Cx̆h(k)]

with x̂h = x̂(0). The Kalman Filter gain matrix Lk and error covariance matrix Pk

were found recursively. These are independent of the hypotheses and can be shown

as:

P̆k = APk−1A′ + HWH′

Pk = I − LkCP̆k

Lk = P̆kC′[CP̆kC′ + V]−1

with P0 = X0. Given I(k) and Eh, x(k) is conditionally normal with mean x̂h(h)

and a covariance matrix Pk. Therefore, x(k) has a conditional density N(·; x̂h(h), Pk).

Additionally, given (k − 1) , u(k − 1), and Eh, y(k) is conditionally normal with

mean,

y̆h(k) = Cx̆h(k)

and covariance matrix,

Yk = CP̆kC′ + V

Thus, y(k) has a conditional density N(·; y̆h(k), Yk).

Posterior Probability of the h-th Disturbance Process From the observations de-

scribed in the last section, the posterior probability that dh was disturbing the system

was found recursively.

πh(k) = N(y(k);y̆h(k),Yk)π
h(k−1)

∑
nh
a=1 N(y(k);y̆a(k),Yk)πa(k−1)

The posterior probability of each hypothesis can be found this way, because it is

effectively an application of Bayes’ rule. In this case, y(k) is conditionally normal

with a mean of y̆h(k) and covariance matrix Yk, given I(k − 1), u(k − 1), and Eh.

The terms in the numerator and denominator represent the conditional likelihood

of making the observation y(k) given that the the corresponding hypothesis is true,

weighted by the conditional probability P(EA|u(k− 1), I(k− 1)).
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FIGURE 3.3: Posterior probability of each hypothesis throughout the
day.

Implementation This technique was used to recognize if a subject ate at a time

other than when the insulin dose was recorded. The set of disturbance functions

mentioned previously, dh, were ingrained in the hypotheses that were evaluated.

The framework of this methodology dictated that the size of the perturbation was

the same for each hypothesis and was in the form of ingested carbs, but the time

where that disturbance occurred was different. The probability of a disturbance

or hypothesis being correct was denoted as πh. This is the probability of the meal

occurring at the time described by the disturbance function relative to the other dis-

turbance functions in the hypothesis set.

Figure 3.3 shows how the probability of each hypothesis evolves and shifts through-

out the day for one given subject. As meal and insulin events occur and as BG

changes, the likelihood of a given hypothesis changes. Each hypothesis has the same

probability at the beginning of each meal evaluation and as time goes on the model

becomes more informed, distinguishing what is possible from what is predicted by

the model.

There are three distinct meals shown in Figure 3.3. This representation of how the
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probability of each hypothesis changed was taken from one insilico subject used in

the data set. The first meal occurred at 6:00 a.m. and it can be seen that the algorithm

started sometime before this. The evaluation of the various hypotheses began when

the first hypothesis’ meal took place. Based on when the bolus for this particular

subject occurred, this could have been as early as 5:00 a.m. if the bolus was given an

hour before the meal or 7:00 a.m. if the bolus was delivered an hour after. Shortly

after the evaluation began, the probability of certain hypotheses quickly dropped to

near zero values. Simultaneously, others rose just as dramatically upwards. All of

the hypotheses’ probabilities summed to one at all times. This caused the various

posterior probabilities to behave in a manner that was proportional to one another.

The lunchtime meal occurred at noon and dinner took place at 6:00 p.m. In each

case the hypotheses’ probabilities changed as a function of how BG was behaving

and what the predicted BG was for that particular hypothesis. Hypotheses with

large residual differences between the predicted BG and the actual BG at a given

time had low probabilities. A hypothesis that was close in value to the actual BG

would have had a higher or equal posterior probability to the other hypotheses with

similar predicted BG values.

3.3 Meal Time Estimation

At the end of the evaluation period, the posterior probabilities of each hypotheses

were compared to each other. Ideally, the hypothesis closest to the actual sequence of

event would have had the largest probability and each of the probabilities summed

to one.

If a patient is a pump user, it can be assumed that the times of boluses are

recorded exactly as they occurred. This is due to the fact that they are automati-

cally logged as they are administered if they are given through an insulin pump or

connected insulin pen. Because this is assumed to be true in the actual data and there

is much more uncertainty around when meals may have taken place, this evaluation

was centered around the bolus times. For the admission data used, most of the in-

sulin doses happened within a short period of time of the meals they were associated

with. This is generally advisable and even though is not always what is done in free
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living conditions per the requirements of the study, boluses were taken right when

or before the participant ate. In the simulation data generated, boluses are randomly

distributed anywhere from an hour before until an hour after each meal. This may

be more representative of how people actually behave considering there is evidence

to suggest that delayed bolusing happens frequently with some individuals (Peters

et al., 2017).

Each meal was evaluated from two hours preceding when the meal time bolus

was administered until, 4 hours after. This means that for the simulated data, the

meal could have occurred anywhere from one hour before to one hour after that bo-

lus. The evaluation window was chosen so no matter when the meal occurred there

was enough time for the Kalman Filter to “warm up” to a reasonable state before

evaluating any of the hypotheses and run long enough to take into account the full

effect of the meal on BG. Throughout that evaluation window the posterior prob-

ability of each hypothesis in relation to the others was calculated at each 5-minute

iteration. By the end of the 6-hour period, each hypothesis had an associated vector

of probability values describing the likelihood of that description of events at each

moment in time. There could have been one hypothesis that had dominance over

all others or a number of hypotheses may have shared the probability mass. Ideally,

the hypothesis that actually describes the events that took place would have a prob-

ability of one by the end of the evaluation window. This would in turn associate to

an error,

error = testimate − tactual (3.1)

of zero.

Figure 3.4, shows a distribution of what the final posterior probabilities of each

of the 25 hypotheses may look like. In this case, the hypothesis that described the

meal occurring zero minutes before the bolus was given was the most likely. The

hypotheses that described the meal happening 5 and 10 minutes before or after the

bolus also had nontrivial probabilities in comparison to some of the others. The
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FIGURE 3.4: Final posterior probabilities associated with each hy-
pothesis. In this example the meal occurred at the time of the insulin

bolus.

other hypotheses either had zero probability of having happened or negligible val-

ues. This demonstrates that the algorithm was able to deem one hypothesis the most

likely, in this case the correct one, and also state that there was still some chance that

the meal occurred shortly before or after the estimated meal time. The probability

mass was centered on the correct hypothesis, but there was some uncertainty. As

long as this uncertainty was centered on the correct hypothesis the final meal time

estimate should be close to when the meal actually took place.

In both simulation and actual clinical data, there were issues involving the poste-

rior calculation of each descriptive scenario. The correct hypothesis was not always

deemed the most probable. This can be attributed to a number of factors. Primarily,

the issue was in how the underlying SOGMM relates glucose rate of appearance or

the dynamics of how insulin affects BG levels after it is administered. Additionally,

unaccounted for inputs such as physical activity, stress, and sickness may affect BG

in the actual patients. After a meal, BG does not rise instantaneously. It begins to go

up some time after the meal, dependent on the fat, protein, carb balance, and then

increases at a rate related to that meal’s nutritional composition as well as the in-

dividual’s metabolic processes. Because of the complicated mechanism that causes

glucose to be absorbed into the blood stream, the models created to describe this



Chapter 3. Approach 30

process are highly subjective to an individual’s physiology as well as the content

of the meal, their sensitivity to insulin at the time which may be related to activity

levels, and numerous other factors. Thus, the existing SOGMM serves as a reference

point for how the insulin-glucose relationship should behave in a given situation,

but is far from perfect.

Because it was often the case that more than one hypothesis had a posterior prob-

ability greater than zero, the expected meal time was found by taking a weighted

average of all of the hypotheses’ meal times based on their final posterior probabil-

ity.

testimate =
nh

∑
h=1

πh(N) ∗ ∆dh, (3.2)

where πh is the final posterior probability of a particular hypothesis and ∆dh was

the time difference between the hypothesized meal time and the time of the insulin

bolus.

3.4 Parameter Tuning

In order to produce more accurate results, a number of parameters were tuned

within the SOGMM. Prior to tuning there was an issue with how the model used

for the posterior probability calculation expected BG to react and how it was be-

having in the clinical and insilico data. This problem was caused by a number of

parameters in the SOGMM, all related to the appearance and clearance of glucose to

and from the blood stream, not being representative of the data set.

From observation it was clear that in some situations, particularly when insulin

doses were taken long after a meal occurred, the correct hypothesis did not have the

highest probability. Take for instance when a meal occurred one hour before insulin

was administered, for certain subjects the algorithm would actually conclude that

the person ate an hour after they took their insulin.

This can be clearly seen in Figure 3.5. For this particular simulation subject, all

three meals were eaten and then an insulin dose was delivered sometime after. At

lunch there was only a small gap between the meal time and the bolus time, but
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FIGURE 3.5: Visualization of meal evaluation process. Top subplot
shows the posterior probability of each hypothesis at each point in
time throughout the evaluation. The middle subplot shows CGM val-
ues throughout the day. The bottom subplot shows meals in blue and

the associated boluses in orange.
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at dinner and breakfast the time delay in insulin dosing was much larger. Shortly

after the insilico subject ate breakfast the probability of the hypothesis where the

meal occurred 60 minutes prior to the bolus increased dramatically and the other

hypotheses’ probabilities are reduced to nearly zero. Then as BG began to rapidly

decline, so did that probability of that hypotheses.

In this evaluation, the correct hypothesis, stating that the bolus was after the

meal was initially picked, then as the model became more informed another was

chosen in its place. Why did this happen? It can be seen in the middle subplot that

the correct hypothesis’ probability began to decline when BG peaked and started to

drop. This also correlated to when the insulin dose was taken, which is indicated by

the orange spike in the lower subplot.

From observing the data, it appeared that confusion in the model occurred pri-

marily when boluses followed long after meals occurred. These "early meal" in-

stances provided a source of disparity between what the predicted glucose value

was given the hypothesized version of events and what actually happened. Often

it was the case, as was shown in Figure 3.5, that when a meal took place and then

insulin was taken long after that, the hypothesis correctly describing what happened

would be most likely until BG reached its postprandial peak and began to descend.

This is indicative of parameters describing how insulin and glucose should inter-

act with one another being maladjusted within the SOGMM. In order to test if this

was the case, a small set of parameters were selected and incrementally changed to

see if a better set of values could be chosen. Due to the nature of the error and con-

sistency in how this was occurring, the parameters that describe how oral glucose is

absorbed (kabs), physiological and sensor lag (ksc), oral glucose transport (ktau), and

subcutaneous insulin transport (kcl) were selected to be the hyperparameters that

were altered.

In order to minimize absolute error, a grid search was conducted using the 4

relevant parameters. Each parameter was multiplied by an individual constant that

ranged from 200%-400% of the original value in increments of 25%. For each set of

parameters in the grid search, the algorithm was run on all 100 simulation subjects.

The absolute error,
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FIGURE 3.6: Normal
Parameters.

FIGURE 3.7: Opti-
mized Parameters.

absolute error =
√
(tactual − testimated)2

for the sample data was reported for each evaluated meal. Population parame-

ters were chosen based on which parameter values yielded the lowest mean absolute

error for all subjects.

It can be seen in Figure 3.7 how the issue described before was corrected by

adjusting the model parameters. In this case, instead of the wrong hypotheses being

selected ones that more closely described what actually happened were determined

to be the most likely. In all three cases, the expected meal time was within 5 minutes

of the actual meal times when the optimal parameters were used.

3.5 Algorithm Evaluation

The performance of these algorithms was evaluated using a number of different

metrics. To understand how each was performing in an overall sense the error for

each meal was calculated by taking the difference between the estimated meal time

and the actual meal time.

error = testimate − tactual (3.3)
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The mean was then taken to get a sense if the algorithm was consistently biased

towards over or underestimated when a meal happened. The formula for mean error

(ME) is intuitively,

ME =
1
n

n

∑
i=1

(testimate − tactual) (3.4)

To determine the performance of the algorithm in a way that would not be af-

fected by balanced under and overestimation error of equal magnitude, mean abso-

lute error (MAE) was also measured for each data set.

MAE =
1
n

n

∑
i=1

√
(testimate − tactual)2 (3.5)

Additionally, sample standard deviation, and sample standard error were calcu-

lated for each parameter set’s results. These results were further segmented for the

simulation data into when the meal occurred. "Early meals" were instances when

the meal happened more than 20 minutes prior to when insulin was administered.

"On-time meals" were any eating events that happened 20 minutes or less from the

respective insulin dose and "late meals" were when insulin was taken at least 20

minutes before the subject ate. These results and a visualization of each of he meal

categories distributions are presented in Section 4.

These metrics were conducted on two sets of results. The first set is for when

the algorithm was run using the SOGMM and its original parameters. The second

set used the SOGMM with the parameters selected based on which set yielded the

lowest mean absolute error in the simulation data. The same metrics were reported

for both sets of parameters on both the clinical admission and simulated data.
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Chapter 4

Results

The performance of the algorithm was evaluated for both the standard SOGMM

parameters as well as the parameters that were optimized to minimize absolute es-

timation error in the simulation data set. In the following section the ME, MAE,

sample standard deviation, SE, and distribution of error is presented for both pa-

rameter sets. This result is broken down further for the simulation data set into

when the meals occurred. The three subsets are when the bolus followed the meal

by 25 minutes or more this group is referred to as "early meals." If the meal occurred

20 minutes or less from the time of the bolus this was considered to be an "on-time"

meal. If the bolus was greater than 20 minutes before the meal this was deemed a

"late meal." All of the instances described are focused on when the meal happened

with reference to the bolus, but could also be framed based on when the bolus hap-

pened. This may be more customary to how insulin doses are normally talked about

and the subsets of the meals would then be late boluses, on-time boluses, and early

boluses.

4.1 Clinical Data

4.1.1 Clinical Data Performance Evaluation

The evaluation results for the clinical data set are presented in Table 4.1. The pa-

rameters optimized on the simulation data as well as standard parameters were

evaluated. The standard parameters produced a mean error of -2.88 minutes and

an MAE of 29.89 minutes. The algorithm returned a sample standard deviation of

36.05 minutes and an SE of 0.61. The optimized parameters had a mean error of 1.34
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TABLE 4.1: The mean error, mean absolute error, sample standard
deviation, and standard error for the algorithm run with the original
parameter values and the optimized parameters evaluated on clinical

data.

Original Parameters Optimized Parameters

Overall
ME -2.88 1.34
MAE 29.89 24.88
Sample St.Dev 36.05 32.35
SE 0.61 0.55

FIGURE 4.1: Overall
distribution of error
for clinical data when
original parameters

are used.

FIGURE 4.2: Overall
distribution of error for
clinical data when op-
timized parameters are

used.

minutes and an MAE of 24.88 minutes. The sample standard deviation and SE when

the optimized parameters were used in the algorithm were 32.35 minutes and 0.55

minutes respectively.

4.1.2 Clinical Data Error Distribution

Figures 4.1 and 4.2 show the distribution of error for the clinical admission data. The

independent variable of these histograms indicates the time difference between the

estimated meal time and the actual meal time. Each of the bins represent 10 minute

windows of time ranging from -120 minutes to 120 minutes from the insulin dose.

An error of -70 minutes would correspond to an estimated meal time 10 minutes

before the bolus when the meal actually occurred one hour after the insulin dose was

taken. Figure 4.1 shows the distribution of error for the meal estimation algorithm

when the original SOGMM parameters were used. Figure 4.2 presents the results
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TABLE 4.2: The mean error, average absolute error, sample standard
deviation, and standard error for the algorithm run with the original
parameter values and the optimized parameters evaluated on clinical

data.

Original Parameters Optimized Parameters

Overall
ME 0.87 -0.01
MAE 22.78 3.54
Sample St.Dev 33.99 4.56
SE 0.11 0.02

Early
ME 28.17 -0.57
MAE 44.88 3.36
Sample St.Dev 50.30 4.53
SE 0.57 0.05

On-time
ME -6.78 -0.26
MAE 12.19 4.29
Sample St.Dev 14.43 5.33
SE 0.13 0.05

Late
ME -14.85 0.75
MAE 14.85 2.87
Sample St.Dev 4.83 3.49
SE 0.05 0.03

when the parameters optimized on the simulation data were used in the SOGMM

and the algorithm was applied to the clinical data set. The error ranged from -60 to

90 for the results of the algorithm, regardless of which set of parameters were used

in the SOGMM.

4.2 Simulation

4.2.1 Simulation Data Performance Evaluation

Table 4.2, shows the ME, MAE, sample standard deviation, and SE calculated for the

meal time estimates of the algorithm using both standard and optimized parameters

for the simulation data set. The results presented are for the overall evaluation of the

meals as well as a break down of early, on-time, and late meals.

For the data set as a whole, the ME for the algorithm using the original SOGMM

parameters was 0.87 minutes. The MAE using this parameter set was 22.78 minutes.

The sample standard deviation was 33.99 minutes and the SE was 0.11 when the

standard parameters were used. When the optimized parameters were applied to

the SOGMM an ME of -0.01 minutes and an MAE of 3.54 minutes were achieved. The
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sample standard deviation and SE for this subset of the data set were 4.56 minutes

and 0.02 minutes respectively.

For the early meals, that is those that occurred more than 20 minutes before a

meal bolus was delivered, the ME was 28.17 minutes for the normal parameters and

-0.57 minutes for the optimized parameters. The MAE for the standard parameters

was 44.88 minutes. When the optimized parameters were used, the MAE fell to

3.36 minutes. The sample standard deviation was 50.30 and 4.53 for the regular and

optimized parameters respectively. The SE when the regular parameter values were

used was 0.57. It was 0.05 minutes when the optimized parameters were inputted

into the model.

When meals occurred 20 minutes or less from their associated insulin dose, the

ME was -6.78 and -0.26 minutes for algorithms when normal and optimized param-

eters were used. The MAE was 12.19 minutes for the normal parameters and 4.29

minutes for the optimized values. The SE’s were 0.13 minutes and 0.05 minutes for

the original and optimized parameter values.

For the late meals, the ME for the standard model parameters was -14.85 min-

utes. Comparatively, the ME was 0.75 minutes when the optimized values were

used in the SOGMM. The original parameters yielded an MAE of 14.85 minutes, a

sample standard deviation of 4.83 minutes, and a SE of 0.05 minutes. The optimized

model parameters had an MAE of 2.87 minutes, a sample standard deviation of 3.49

minutes and an SE of 0.03 minutes.

4.2.2 Simulation Data Error Distribution

Figures 4.3 and 4.4, show the overall distribution of estimation error for both param-

eter sets. The error values for the original parameter values fall into bins ranging

from 40 minutes before the true meal time to 100 minutes after. This bin with the

largest frequency is 10 to 20 minutes before the actual meal time. The range of error

when the optimized parameters are used is ± 10 minutes the actual meal time with

the bin 0 to 10 having the most number of entries.

The distribution of error for the early meals can be seen in Figures 4.5 and 4.6.

These meals occurred 20 minutes before to 20 minutes after the insulin dose. The
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FIGURE 4.3: Overall
distribution of error for
simulated data when
original parameters are

used.

FIGURE 4.4: Overall
distribution of error for
simulated data when
optimized parameters

are used.

FIGURE 4.5: Distribu-
tion of error for sim-
ulated data for early
meals when original
parameters are used.

FIGURE 4.6: Distribu-
tion of error for sim-
ulated data for early
meals when optimized
parameters are used.
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FIGURE 4.7: Distribu-
tion of error for simu-
lated data for on-time
meals when original
parameters are used.

FIGURE 4.8: Distribu-
tion of error for simu-
lated data for on-time
meals when optimized
parameters are used.

spread of error for the original SOGMM parameters is from -40 minutes to 60 min-

utes. The range of the algorithmic error ranges from -20 to 20 from the meal time

when optimized parameters were used. The bins with the highest frequency repre-

sent -10 to 0 and 0 to 10 minute errors for the original parameters and the optimized

parameters respectively.

Figures 4.7 and 4.8 show the distribution of the difference between the estimated

meal times and the actual meal times for the simulated data set for on-time meals.

Figure 4.7 shows the error when the original parameters were used ranging from

-30 to 0. The bin with the highest frequency represents error values from -10 to -

20 minutes. It can be seen in Figure 4.4 that the error values range from -10 to 10

minutes with respect to the actual meal time. The bin with the highest frequency is

for an error value of 0 to 10 minutes after the meal.

Similarly, Figures 4.9 and 4.10 present the distribution of error for the late meals.

The distribution of error ranges from -30 to 0 minutes for the original parameter

values and from -10 to 10 minutes when the optimized parameters are used. The

bins where most of the error fell was -10 to -20 and 0 to 10 minutes for the original

and optimized parameters respectively.
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FIGURE 4.9: Distribu-
tion of error for sim-
ulated data for late
meals when original
parameters are used.

FIGURE 4.10: Distribu-
tion of error for sim-
ulated data for late
meals when optimized
parameters are used.
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Chapter 5

Discussion

5.1 Clinical Data

5.1.1 Accuracy Metrics

For the clinical data the algorithm performed better when the optimized parameter

set was used. It is evident that the original parameters tended to cause the algorithm

to estimate a meal time that was slightly before when the meal occurred on average.

When the parameters were changed to values found by optimizing on the simulation

data, the opposite happened, meals were estimated to have happened a little over

a minute after they actually happened on average. By taking the metrics regarding

variance, namely sample standard deviation and SE, into account, it is apparent that

there was a large spread in the results when either parameter set was used. For

some meals, the algorithm estimated a meal time that was long before the actual

meal time. For others the opposite was true and the meal time was estimated long

after it actually happened. This in turn led to the average error being close to zero.

Creating a near zero mean distribution of error.

Although there was a large spread in the error values, there is a significant benefit

of having this kind of error distribution. Because the ultimate goal of this work is

develop a method that could be refined so that general behavior patterns could be

determined, having error that is evenly distributed around zero would lead to more

acceptable results. This would allow for an aggregate assessment of behavior to

be close to the truth instead of having a distinct skew in one direction or another.

Ideally, the variance would be as small as possible.
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A more telling statistic related to general algorithm performance is the mean

absolute error. This metric effectively represents how much error there is in the

meal time estimation algorithm in an absolute sense. The mean error can wash out

certain inaccuracies because of a large spread in the error of the algorithm. The

mean absolute error does not provide this ability to negate balanced error. For the

clinical data set the mean absolute error was nearly 30 minutes when the original

SOGMM parameters were used and appropriately 25 minutes when the optimized

parameters were used. This can be considered a notable reduction in error.

There are a number of possible caused of this inaccuracy. The better set of param-

eters used offers an improvement in estimation ability, but still had relatively large

error. These parameters were selected based on what minimized error for the insil-

ico data set. The optimization was done in this manner, because the insilico data set

was nearly 5 times larger than the clinical data set with 300 meals and 100 patients

versus 11 patients and 59 meals. Some of the patients in the clinical data set only had

two or three usable meals. Additionally, the subjects in the clinical data set are in-

herently more heterogeneous than those in the simulated population. There may be

a large range of physiological disparities between the individuals that participated

in this study.

It should also be taken into account that some individual’s treatment parameters

such as carb ratio, correct factors, and basal rates may not be properly tuned. Their

insulin sensitivity may be different from what was calculated in the algorithm. Ad-

ditionally, there is still not an established method for precisely estimating this due

to its nature to change on an inter and inter-day basis.

An additional factor that may lead to some confusion in the model is that the

SOGMM does not incorporate physical activity. If a person exercised before or after

a meal their insulin sensitivity is increased and BG would behave differently than if

they had not. Insilico subjects are not affected by the kind of BG variability caused

by physical activity whereas actual patients are very much affected by this. This

could lead to differences in predicted and actual BG values when the algorithm is

applied to the clinical data set. These are not excuses for errors in the methodology,

but they should be acknowledged as limitations. Ideally, a this method would be

robust enough to withstand this kind of immeasurable uncertainty.
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5.1.2 Distribution

The distribution of error for the clinical data was widespread for both sets of pa-

rameters. In both cases, it spanned from -60 to 90 minutes. When the original model

parameters were used in the algorithm the error is right tailed and often times meant

that the meal was predicted to have happened before it actually did. When the opti-

mized parameters were used the distribution of error is more centered towards zero.

There are still error values far from zero were meals were estimated long before or

after the actual meal time, but with this parameter set there is some semblance of a

centralized error distribution.

There are additional, deeper questions in the clinical data. When were the meals

recorded? Did this happen at the beginning of the meal, throughout or at the end

and did it depend on who was recording it? Other non-controlled for variables may

have also had an impact on gylcemia. For instance, what was the composition of the

meals? If a person had a high fat, high carb meal like pizza it would affect glucose

in an entirely different way than if they just drank a glass of juice. It may also be the

case that certain sized meals are easier to classify than ones with lower carb content.

Further evaluation may elucidate how these factors affect estimation accuracy.

5.2 Simulation Data

5.2.1 Accuracy

There was a dramatic improvement in accuracy between the original SOGMM pa-

rameter values and the optimized parameters when the algorithm is used to estimate

the meal times of the simulated subjects. The optimized parameter performed better

than the original parameter set in every metric for every sample subset. This has to

be partially attributed to the fact that the parameters were optimized to minimize

error in this data set. Nonetheless, the performance of the algorithm significantly

improved when these values were used in the BG prediction model.

For the data set as a whole, the ME was -0.01 minutes and the MAE was 3.54 min-

utes when the optimized parameters were used. This is a huge improvement com-

pared to the standard model which had an ME of 0.87 which seems respectable, but
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an egregious amount of absolute error on average, 22.78 minutes. The variance in

the results also dramatically decreased when the optimized parameters were used.

For the algorithm using the optimized parameters the sample standard deviation

dropped from 33.99 minutes to 4.56 minutes.

The early meals provided a great deal of difficulty for the original parameter

set. As was explained when the motivation for the parameter optimization was

described, these meals caused the probability calculation of the correct hypothesis

to initially have a high probability that quickly descended as BG began to drop after

the meal. By adjusting the parameters describing the insulin-glucose dynamic, the

residual between the expected BG for these hypotheses and what was observed was

reduced greatly. This led to a reduction in MAE of more than 41 minutes. The sample

standard deviation for this subset of meal also decreased from 50.30 minutes to 4.53

minutes.

The improvement between the two parameter sets was the smallest for the meals

that happened within relative proximity of the insulin dose, but the improvement is

still notable. The ME decreased from -6.78 to -0.26 minutes and the MAE went from

12.19 minutes to 4.29 minutes. As was the case with the other meal classifications

the deviation in the results for the parameters sets also decreased when they were

optimized.

For the late meals the ME was reduced from -14.85 minutes to 0.75 minutes when

the optimized parameters were used in the insulin-glucose model. The MAE also de-

creased from 14.85 minutes to 0.75. The standard deviation and SE of the optimized

group were reduced to acceptably accurate amounts.

Overall, there was a large reduction in error and deviation when the optimized

parameters were used in the SOGMM. This held true for all subsets of the data sets.

Even though certain BG values following meals were more difficult to match to pre-

dicted values the overall error is comfortably within an acceptable range for the

simulation data. It was possible to estimate meal times within 4 minutes of when

they occurred for the data set as a whole as well as for early, on-time, and late meals.
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5.2.2 Distribution

Figures 4.3 and 4.4 of Section 4 clearly demonstrate how the optimized parameters

eliminate large errors and dramatically tighten the distribution of errors centering

it at zero. The original parameters caused certain meals to yield very large error

values. This tended to happen when the meal time was significantly before or after

the bolus. Early meals provided a great deal of disparity between the predicted

glucose and the observed values. With the optimized parameters all of the error

values were equal to or less than 30 minutes, without some meal had an error in the

estimated meal time of up to 120 minutes.

It can be seen in Figure 4.5, that the original SOGMM parameters produced error

values for the early meals that resembled a bimodal distribution. Much of the error

was centered around zero, but a notable portion of meals had an estimated time that

was greatly after when the meal happened. This second modality ranged from 30 to

120 minutes from the time of the meal. When the optimized parameters were used in

the SOGMM within the algorithm the error was kept to between -10 and 20 minutes

with a large portion of the errors being between -10 and 0.

For the on-time meals, shown in Figures 4.7 and 4.8, it is apparent how the op-

timized parameters affected the distribution of error for the meal estimation algo-

rithm. The optimized parameters greatly reduced the span of the errors and made

it so most meals were estimated within 10 minutes of the time of their occurrence.

The spread was dramatically reduced so that no meal had an absolute error of more

than 20 minutes.

The late meals were most accurately estimated with the original parameter val-

ues. Optimization did provide some improvement in the spread of the error, reduc-

ing it from -30 to 0 to ± 10 minutes. In the optimized case, the majority of the errors

were between 0 and 10 minutes whereas with the normal parameter values, most of

the meals were estimated 10 to 20 minutes before they actually happened.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

It is imperative that meal information is known precisely when analyzing BG data.

The timing of these meals has a significant impact on glycemia and based on how

this information is usually collected in clinical trials insulin doses and times are

known with accuracy, but it is often unclear about when meals happened. This

exploration has shown how a multiple hypothesis method could be used to estimate

meal times. The accuracy of this method could be improved on through additional

signal processing techniques as well as a refinement of the underlying model. The

impact of this work is to serve a foundation that can be built upon to create accurate

meal time estimation tools. These tools when tuned properly could then be used

so that clinicians can work with their patients to demonstrate to them how BG may

improve if insulin was delivered properly at meal times. guidelines were followed

more closely.

6.2 Future Work

Only something that worthwhile is worth improving upon. This exploration asks

an important question, "How can we find out precisely when people eat with as

little burden on the subject as possible?" Data collection used in diabetes research

is burdensome on behalf of the participants and is a source of frustration for the

researchers analyzing it because of its faults. The patient should not be held ac-

countable for this, because what they are being asked to do, meticulously categorize



Chapter 6. Conclusions and Future Work 48

every morsel of food entering their mouths, is an unreasonable request. It is sim-

ply not sustainable over an extended period of time and it is the responsibility of

the researchers to find ways to collected data in a less invasive manner or create

technology that can work with imperfect data.

The methodology developed in this thesis is the first step of exploration in a

potentially fruitful way of estimating meal times messy patient data collected pas-

sively through an action that they already do regularly. The proliferation of insulin

pumps has made insulin records verbatim and gotten us much closer to having com-

plete meal records for individuals who use them. There a number of ways that this

method can be improved on or implemented that are discussed in this section, but

are by no means exclusive.

6.2.1 Parameter Tuning

Based on the current SOGMM, BG can be estimated roughly from insulin and meal

information. Its short coming is that not all patients are the same and the inherent

customization does not tailor predictions perfectly to all people. A further parame-

ter optimization could be done for this particular data set as well as different meal

compositions (high fat and high carb, carb only, etc.). Based on how the posterior

probability of the correct hypothesis behaves at times, it is evident that some con-

stants pertaining to insulin sensitivity, glucose rate of appearance, or insulin clear-

ance could be tuned more precisely. Additionally, patient customization of model

parameters may create more accurate predictions of BG. Further exploration could

serve to enhance the performance of a multiple hypothesis method for meal time

estimation.

6.2.2 Behavioral Profiling

From this information, clinicians could potential create a profile for patients based

on their insulin dosing behavior. By observing estimations of meal times, one could

make an inference about how a patient was regularly taking insulin with regard

to meals. If it was estimated that most insulin dosages are happening significantly

before or after meals, then it could be more strongly supported that there needed to
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be a behavioral intervention by the medical team. This would have to be in a done

in a way that was not accusatory of the patient and used as a teaching experience to

explain that by regularly doing this they may have negative effects on postprandial

glucose values. Dosing insulin may lead to higher overall glucose values and could

cause the person to develop complications.

6.2.3 Behaviorally Dependent Control

Behavioral models have been introduced into a number of control schemes for T1D

(Patek, 2010), (Cameron, Niemeyer, and Buckingham, 2009). These methods use

behavior and past events to control BG. The proliferation of machine-learning tech-

niques presents an opportunity to personalize technology. For instance, if an algo-

rithm such as the one described in this work was to determine that an individual

regularly announced meals sometime after consuming them, maybe it could take

that into account and suggest different insulin doses than usual. This could po-

tentially create a system where behavior would not be influenced by a system, but

rather the system would adapt to the user’s behavior.

6.2.4 Plant-Model Deviation Analysis

The SOGMM has been in existence for decades. Although there are some significant

blind spots in its form, it does an incredibly good job of modeling glucose consider-

ing its simplicity. The kind of analysis done in this work, compares model predic-

tions with actual or simulation generated events. Through Bayesian methods there

is an inherent commentary on the performance of the underlying model in terms of

predicting glucose. It provides a comparison between individual’s actual insulin-

glucose dynamic and how a well-established model says that this interaction should

be. It shows that for some and in certain situations this model performs very well

and in others it fails somewhat dramatically.

The question is, why does this happen? There are many reasons why this might

occur. First, there is a significant part of reality that the SOGMM does not take into

account. Physical activity is not an input. To anyone familiar with T1D, this is an

evident flaw. Physical activity has a significant impact on glycemia and is a large
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contributor to variations in BG (Zisser et al., 2011), (Riddell and Perkins, 2009). The

SOGMM uses insulin and consumed food as an input, but noticeably neglects phys-

ical activity.

This was not done as the result of an oversight. It has been common knowledge

that physical activity makes BG decline long before the creation of this model. The

reason for its absence as an input is that the relationship between physical activity is

largely still unclear. Light and moderate activity drops BG, whereas intense activity

will raise it (Riddell and Perkins, 2009). Lots of ongoing work is trying to reconcile

BG, insulin, consumed carbs, and physical activity (Dalla Man, Breton, and Cobelli,

2009), (Ding and Schumacher, 2016), (Breton et al., 2014).

Apart from the SOGMM not including physical activity, there are some other

reasons why it may fail to accurately recreate BG for a particular subject. There are a

number of conditions that may cause an individual’s BG to act in a way that would

not be considered normal for someone with T1D.

Take for instance, diabetic gastroparesis. This condition that affects 40% of pa-

tients with T1D causes chronic delayed gastric emptying without mechanical ob-

struction (Parkman, Fass, and Foxx-Orenstein, 2010). If a patient were to have this

condition how they process glucose would differ significantly from someone with-

out diabetic gastroparesis. This in turn would cause a large divergence from model

predictions and actual glucose given the inputs. One can envision using this di-

vergence to draw attention to its potential causes and maybe creating a framework

for diagnosing conditions that are known to affect the insulin-glucose dynamic in

specific ways.

6.2.5 Profile Based Priors

Were this methodology to be implemented in an actual patient population there

would be a number of distinct advantages. The data set used, for both real and

generated subjects only provided a small number of meals for each patient. In the

clinical data set collected over the course of two days, there were 4-7 meals. The in

silico subjects there were three meals per patient. The goal in developing this method

was to create an overarching profile to describe behavior and given that dataset that

was not possible. It would be however if there was a large amount of data for each
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subject. This would provide a broader perspective on their behavior and hopefully

the algorithms, although not perfect, could see the general trends. This would al-

low for some anomalous meals to go grossly misclassified and still show a general

profile for a subject. If a person always bolused either late or early, this would be

apparent. When they actually ate in relation to an insulin dose would become less

significant when compared to the aggregate and ultimately give a sense of what that

person did regularly.

Additionally, a greater amount and more consistent information could allow for

some machine learning techniques to be implemented. For instance, if someone

always ate 20 minutes before their insulin was delivered, a system could recognize

this and adjust the priors of each hypothesis to match previous behavior moving the

starting point just a little closer to what is likely to have happened.

6.2.6 Data Robustness Analysis

There is a distinct need to conduct a sensitivity analysis on this method in order to

determine how it performs under certain criteria. What if there are sensor gaps?

What if there is sensor noise? How does meal size affect the ability of the algorithm

to estimate meal time? These are all very valid questions that warrant further explo-

ration. In order for this to be feasible testing needs to be conducted on messy data

streams subjected to a plethora of unideal modeling situations. Further expansion

of this method so that it is robust enough to handle many of these occasions would

make it more feasible to employ in an online system.

6.2.7 Meal Amount Estimation

Future work could improve upon the idea of meal time estimation to also include

meal amounts. One can envision another level of variables being added to the hy-

pothesis set, where not only are meal times changed variably, but meal amounts are

changed from the operating point of what the person logged.

People are often inaccurate when counting carbs and this could provide a bet-

ter account of when and how much they ate (Kawamura et al., 2015), (Meade and

Rushton, 2016). This tool if it was accurate enough could then be used by medical
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professionals to diagnose habitual misestimation of carbs. It could also be imple-

mented in a system to automatically compensate for this kind of behavior if there

was a strong enough pattern of it happening.

6.3 Impact on Patients

The end goal of this work is to create a tool that clinicians could use to diagnose

meal time insulin dosing behavior that could be improved upon in their patients.

It is important not to forget how this may impact patients. If used improperly this

could be a method for doctors to technologically point the finger at bad behavior

and scold. That is not my intention. This is tool to provide information to clinicians

so that they can help their patients, not chastise them.

At this stage of development there is nothing in place for that to really be en-

forced, but moving forward should be a consideration. Diabetes is a work intensive

disease that does not halt for life’s unexpected events.

The control of BG in T1D is as much a human problem as it is a physiological

one and by understanding people’s behavior there is an opportunity to find room

for improvement or to change treatment practice to fit what is effective for them.

What makes it a unique disease is that often medical professionals have little to do

with the dosing and administration of treatment. Doctors may suggest what they

think are best practices, but it is entirely up to the patient to be compliant. Some are

diligently compliant others are not and that is their right to do so. That being said,

tools like this could be used as a source of encouragement or a push further away.

BG is affected by many different things and often times the source of a particu-

lar effect on BG is unidentifiable. The mechanisms that govern it are sophisticated

and the models that describe it are mathematical quagmire. People with T1D are

often faced with the question, "Why is this happening to me?" Not in a profound

existential way, but more simply that their BG is not what they expected and there

is seemingly no explanation why. This tool could provide some insight. Particularly

because the effects of misaligned insulin and meal events are not usually apparent.

The usefulness of this is based entirely on how it is received by those who it is

supposed to be helping. It is also very possible that it is not providing them with
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anything that they did not already know. Few people are going to be surprised that

they regularly dose insulin sometime other than when they are supposed to, but

this is not evident to the endocrinologists who are not with the patient and cannot

witness this behavior. Not many people would willingly tell their doctor that they

are not doing what he or she told them to do, but this might give physicians the

opportunity to know that this behavior is happening. Hopefully, this can provide

fodder for a conversation that may inform or gently nudge the patient into being

more adherent to best practices and not create an opportunity for additional conflict.

Furthermore, if a person was regularly bolusing long after a meal and having

postprandial hyperglycemia as a result of this other technologies could provide in-

sight into how this was affecting BG and how it could be improved. A techno-

logically capable medical team could show simulations that demonstrated how BG

behaved after a late bolus and how it would have been better if insulin was taken

before or at the time of a meal. Some may like the additional information and others

would just be lost in the numbers.
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