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Abstract 
 
In a randomized controlled cancer screening trial, the screen-detected cancers present a 

length-biased sample of all preclinical durations, as cases that progress more slowly prior 

to diagnosis are more likely to be caught by regular screening than their faster-paced 

counterparts.  This leads to an overestimate of the life-extending benefits of the screening 

test being evaluated.  Previous research has shown that the severity of the length-biased 

sampling effect depends on the joint distribution of preclinical and clinical durations, but 

these simulation studies did not make data-driven choices for the distributions of these 

cancer growth periods. 

 We discovered that a mixture of two exponential distributions fit the clinical 

durations from three historic screening trials well after developing a simple exploratory 

procedure to estimate the parameters of such a mixture model.  Furthermore, we found 

that, when simulating preclinical durations from the same type of mixture distribution, the 

parameters could be inferred from the pattern of diagnoses in the trial, a key finding given 

that preclinical durations are unobservable in a real trial.  We used these simulated results 

to train a predictive model to estimate the distribution of preclinical durations from 

observable trial outcomes.  Finally, we calculated the mean length-biased sampling effect 

under a variety of preclinical duration distributions, screening test sensitivity models, and 

screening programs.  Using our approach to predict preclinical duration distribution 

parameters from trial outcomes could allow for the length-biased sampling effect to be 

more accurately specified for a real cancer screening trial. 
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1. Introduction 
 
Cancer is one of the leading causes of mortality worldwide.  In the United States alone, the 

National Cancer Institute estimated that 609,640 people died from cancer in the year 2018, 

or approximately 163.5 deaths per 100,000 people [1].  With roughly one in five deaths in 

the United States caused by cancer, billions of dollars are spent each year on cancer 

research [2].   

A key focus of cancer research is early detection through cancer screening.  The goal 

of cancer screening is to check for and identify cancer earlier than it would have been 

diagnosed from symptoms alone.  Because screening can detect cancers at an earlier stage, 

the prognosis is presumed to be better and the treatments more likely to be successful [3].  

Many cancer screening tests are widely used as a part of modern medicinal practices.  For 

example, the United States Preventative Services Task Force recommends women aged 50 

to 74 have a biennial mammogram to screen for breast cancer [4].  Starting at age 50, all 

adults are recommended to begin screening for colorectal cancer, either with an annual 

stool-based test or a visual exam, like a colonoscopy, at least every ten years [5]. 

To understand the mechanism of cancer screening, we rely on a model for cancer 

growth as a two-stage process [6].  The first stage is the preclinical duration, the time 

during which cancer can only be detected by a screening test but otherwise is not clinically 

apparent.  The length of the preclinical duration is unknown, as it requires knowledge of 

the time that cancer growth begins.  The second stage is the clinical duration, the period 

during which cancer grows in the body post-diagnosis until its endpoint, cure or death.  

The clinical duration begins at the time of diagnosis and ends at death from or cure of the 

disease. 
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Figure 1.1: the timeline of a patient’s life from the start of cancer growth without screening 
(a) and with screening (b). 
 
(a)                                                                                        
------------------------------------------------------- -----------------------------  

preclinical duration clinical duration  
(b)                                           
-------------------------- -------------------------- ----------------------------- --------------------------- 
preclinical duration lead time  benefit time 

 clinical duration 
  

 

This two-stage model is modified for the person whose disease is screen-detected 

during the preclinical phase.  Figure 1.1 compares the preclinical and clinical durations for 

a patient without screening (a) to the same patient with screening (b) [7].  For the 

unscreened patient, a cancer diagnosis cannot be made until symptoms become clinically 

apparent and confirmed by a doctor.  When the patient is screened for cancer, diagnosis 

can be made earlier than in the unscreened case, as the cancer can be detected before 

symptoms are present.  When this occurs, the patient’s survival time, or time from 

diagnosis to endpoint, increases by the length of time corresponding to the advanced 

diagnosis.  This period is referred to as the lead time, measuring how much earlier cancer is 

detected in the presence of screening.  The screened patient may also have an improved 

prognosis because the cancer has been detected and treated sooner, so it is possible that 

the screen-detected cancer patient will live longer than the unscreened patient would.  This 

added lifetime is called the benefit time.  Thus, relative to the unscreened patient, the 

screen-detected cancer patient’s time from diagnosis to death is extended both by the early 

diagnosis (lead time) and the life-extending benefits of this early diagnosis and treatment 

(benefit time) if such a benefit exists. 



9 
 

Unfortunately, in reality, the same subject cannot be observed both in the presence 

and absence of screening as in Figure 1.1.  To assess the benefits of any cancer screening 

test, comparisons must be made at the group level through a randomized controlled 

screening trial [8].  A cancer screening trial enrolls a large cohort of healthy subjects from 

the at-risk population targeted by a certain screening test.  For example, a breast cancer 

screening trial may enroll healthy women aged 40 years or older.  The subjects who agree 

to participate in the trial are generally divided into two arms: treatment and control.  In the 

treatment arm, the subjects are enrolled in the screening program, meaning that they are 

offered screening every r years for an s year period.  The subjects in the control arm receive 

usual care and are monitored for the development of cancer in the absence of screening, a 

baseline to which we can compare the screened subjects.  After several years of follow-up, 

population death rates between the two arms are compared, as well as the survival times 

for the cancer patients in both arms.  Because this study design randomly assigns subjects 

to the screened and control arms, we can expect that all relevant background 

characteristics to cancer prognosis, such as age or medical history, are evenly distributed 

between the two arms due to randomization.  Thus, the only difference between the two 

arms is the presence of screening, and any significant difference in average group 

prognoses, measured by time from diagnosis to death, must be attributed effects stemming 

from the screening program. 

When comparing the subjects who developed cancer in the screened arm and the 

subjects who developed cancer in the control arm, there are two estimates potentially 

calculated to assess the life-extending benefit of a screening test.  One is the mortality ratio.  

The mortality rate at time t, calculated for either the treatment or control arm, records the 
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proportion of study participants who died from cancer within the first t years from the 

start of the trial.  The mortality ratio compares the mortality rate in the treatment arm to 

the rate in the control arm [9].  The mortality ratio can be reported at various times t 

throughout the follow-up period of the screening trial, such as five-year and ten-year 

mortality ratios.  The second estimate to assess the screening test is mean benefit time.  As 

a reminder, the benefit time measures how much longer a cancer patient lives when 

diagnosed earlier through screening.  The mean benefit time is an average estimate of this 

quantity across all cancer patients in the treatment arm of the trial [10].  These two 

estimates – mortality reduction and mean benefit time – are the possible metrics to assess 

the benefits of screening and will be discussed further in Section 2. 

It is important to note that, of the cancer patients in the treatment arm, not all had 

their cancer diagnosed by a screening test.  In fact, the cancer diagnoses among the 

treatment arm patients can be grouped into four general categories [7].  One of these four 

categories is diagnosis through screen-detection.  A second case is a patient who was 

offered screening by the trial, but refused, and was then diagnosed through symptoms 

alone; this type of patient is commonly referred to as a refusal.  A third category of cancer 

patient is an interval case, which is a patient who was diagnosed by symptoms in between 

two scheduled screens.  For the interval case to occur, either the preclinical duration is 

shorter than the time until the next screen or the previous screening test(s) produced a 

false negative prior to the diagnosis by symptoms.   The fourth and final category of cancer 

diagnosis in the treatment arm is post-screening, which refers to a patient diagnosed with 

cancer during the follow-up period after the conclusion of the screening program offered. 
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Among other causes, such as the length of the preclinical duration and the time at 

which it begins, one of the reasons why not all treatment group cancers are diagnosed by 

screening is the sensitivity of the test.  The sensitivity of a screening test measures the 

proportion of cases of cancer correctly diagnosed by the test.  Tests with low sensitivity 

will produce a higher rate of false negative cancer diagnoses, which explains why some 

subjects who are regularly screened in the treatment group instead have their cancers 

diagnosed by symptoms [11].  The sensitivity of a test is not believed to be the same for all 

subjects.  Sensitivity is believed to depend on variables related to the cancer’s growth, such 

as the length of the preclinical duration and how long the cancer has been growing at the 

time of the screen, as well as covariates related to the patient’s health, such as age [12]. 

Besides false negatives, another problematic screening test result is a false positive, 

which occurs when the test suggests the presence of a cancer but the subsequent 

diagnostic workup is negative.  While this is a detrimental outcome for the patient, false 

positives usually do not impact the estimates of mortality reduction or mean benefit time in 

a cancer screening trial because false positive test results are usually overturned after 

follow-up testing and the subjects are not counted among the cancer patients in the 

treatment arm.  Although false positives do not affect the comparison of survival among 

confirmed cases in the trial, false positives, as well as overdiagnosed cases (to be discussed 

on page 14), do contribute unnecessarily, and mightily, to the healthcare burden [13]. 

Many of the common screening tests used today were shown to be beneficial by 

previous cancer screening trials, while several other screening tests have been deemed 

unnecessary by such studies.  Two noteworthy examples are the Health Insurance Plan of 

Greater New York (HIP) trial and the National Cancer Institute’s Prostate, Lung, Colorectal, 
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and Ovarian Cancer Screening Trial (PLCO).  The HIP trial was one of the first randomized 

cancer screening trials to demonstrate the value of a screening program, consisting of an 

annual mammogram plus clinical breast exam, for reducing mortality from breast cancer.  

The trial enrolled over 60,000 asymptomatic female plan members aged 40-64 between 

1963 and 1966, offering usual care to the subjects randomly assigned to the control arm 

and four annual mammograms with clinical breast exams to the treatment arm subjects 

[14].   After ten years of follow-up, there was a 30% reduction in breast cancer mortality 

between the treatment and control arm cancer patients [15].  The PLCO began in 1992 and 

enrolled 76,685 men and 78,216 women, aged 55 to 74, to assess the benefits of screening 

tests for the four title cancer types relative to usual care [16].  The PLCO found a significant 

reduction in colorectal cancer incidence and mortality among subjects who were offered 

screening in the form of a sigmoidoscopy, with one screen at baseline and a second screen 

during the next three-to-five years [17].  However, among the men screened for prostate 

cancer (an annual digital rectal examination for four years with an annual blood test for 

prostate-specific antigen for six years), the men and women screened for lung cancer (an 

annual chest X-ray for four years), and the women screened for ovarian cancer (an annual 

transvaginal ultrasound for four years with an annual blood test for the CA-125 tumor 

marker for six years), there was no significant reduction in mortality relative to their 

counterparts receiving usual care [18, 19, 20] and, in the case of ovarian cancer, a high rate 

(44%) of false positive results later confirmed as negative [20]. 

In addition to these historical randomized screening trials, several trials are 

currently underway, including four trials assessing various screening tests for colorectal 

cancer.  The Nordic-European Initiative on Colorectal Cancer (NordICC) Study is enrolling 
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just below 70,000 men and women aged 55-64, two thirds of whom will receive usual care 

and one third of whom will receive a one-time colonoscopy with the removal of all detected 

lesions [21].  The NordICC study hopes to quantify the benefits of the colonoscopy, which is 

widely used to screen for colorectal cancer despite no randomized screening trials 

providing evidence of its utility.  The other three screening trials are designed to evaluate 

the fecal immunochemical test (FIT) for colorectal cancer, which is related to the new and 

increasingly used in-home colorectal cancer screening product, Cologuard© [22].  The 

Screening of Swedish Colons (SCREESCO) Trial enrolled 200,000 people aged 59-62; 

20,000 were offered a one-time colonoscopy, 60,000 were offered a FIT at baseline and 

after two years with a follow-up colonoscopy for any positive test result, and 120,000 were 

controls [23].  The Spanish COLONPREV Study enrolled just over 50,000 healthy adults 

aged 50-69; 26,703 were offered a one-time colonoscopy, and 26,599 were offered a FIT 

every two years with a follow-up colonoscopy for any positive test result [24, 25].  The 

Colonoscopy vs. Fecal Immunochemical Test in Reducing Mortality from Colorectal Cancer 

(CONFIRM) Study is enrolling 50,000 individuals aged 50-75 from Veterans Affairs medical 

centers in the United States; half will be offered a one-time colonoscopy, while the other 

half will be offered an annual FIT with a follow-up colonoscopy for any positive test result 

[26, 27]. 

Although the randomized controlled cancer screening trial is the optimal study 

design to assess the benefits of a cancer screening test, the analysis of survival from 

diagnosis involves challenges that must be taken into account.  These screening trials are 

susceptible to both length-bias and overdiagnosis.  A length-biased sampling method is a 

data collection procedure in which “bigger” outcomes are more likely to be selected than 
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“smaller” ones [28].  As a result, the sample has a disproportionate number of “bigger” 

outcomes relative to the population, so estimates from the sample data are based on an 

inaccurate representation of the population.  In a cancer screening trial, subjects with 

longer preclinical durations are more likely to have their cancer detected by screening than 

subjects with shorter preclinical durations, especially at the start of the trial [29].  There is 

simply a larger window in time for screening to intervene and detect the cancer.  

Incidences of cancer with longer preclinical durations tend to have longer clinical 

durations, so the screen-detected cases will have longer times from diagnosis to endpoint 

even in the absence of screening benefit.  Because of this phenomenon, cancer screening 

trials, with many slow-growing cases detected by screening, may overestimate the mean 

benefit time of screening. 

The second important source of bias in cancer screening trials is overdiagnosis.  In 

cancer screening, an overdiagnosis occurs when a patient’s cancer is diagnosed by 

screening, but said cancer never would have progressed to an advanced enough stage to be 

detected in the absence of screening [30].  If there is overdiagnosis in a cancer screening 

trial, there will no longer be balance between the screened and control arms.  When a 

cancer screening trial is designed using randomization, it is assumed that each subject in 

the screened arm of the study has a match in the control arm.  For every fast- or slow-

growing case in the screened arm, randomization ensures a counterpart (fast- or slow-

growing) in the control arm.  However, an overdiagnosed case in the screened arm has no 

such counterpart in the control arm because this “matching case” would never have been 

diagnosed without screening.  Thus, when we compare the times to death from the 

screened arm cancer cases to those from the control arm, the screened arm will have some 
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very long clinical durations that are not matched in the control arm, which will result in 

overestimated screening benefit. 

Section 1 has introduced randomized controlled screening trials, the study design 

used to rigorously assess the benefits of cancer screening tests.  Two estimates of the life-

extending benefits of screening tests, mortality reduction and mean benefit time, were 

defined, along with the biases in screening trials that can affect the mean benefit time.  

Finally, a number of noteworthy screening trials, both past and present, were described, 

highlighting the importance of research on the analysis of cancer screening trial data.  The 

following section will review the statistical literature discussing the simulation and 

analysis of randomized cancer screening trial data, placing a special emphasis on those 

publications addressing the effects of length-bias sampling and overdiagnosis.  

Summarizing the limitations of these current methodologies will transition to the 

presentation of our research agenda, which has the goal of estimating the bias in mean lead 

and benefit time calculations from screening trial data. 
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2. Literature Review 
 
Historically, the mortality ratio has been the more common measure of the benefit of 

screening applied to randomized controlled screening trial data.  This is evidenced by the 

results published from the HIP trial and PLCO that were presented in Section 1 [15, 17, 18, 

19, 20].  Kafadar and Prorok note that mean benefit time may be a more useful measure of 

the effectiveness of screening both because of the continuous nature of the estimate 

produced and its interpretability [10].  First, mortality is a binary response – death or 

survival – so large trials are needed to detect whether there is a significant improvement in 

mortality resulting from screening, especially when most trial participants in both the 

treatment and control arms survive or are never even diagnosed with cancer during the 

trial.  Conversely, using benefit time, a continuous variable, to assess a screening test 

should offer greater power to detect a significant benefit from screening if one exists.  The 

second advantage of mean benefit time relative to the mortality ratio is the interpretability 

of the measure.   The possibility for extended lifetime from a cancer diagnosis by screening 

is just one factor that doctors consider when weighing the pros and cons of a screening 

test; this improved prognosis along with other advantages, such as reduced treatment costs 

and better patient quality of life as a result of less aggressive treatments due to the early 

cancer detection, must be weighed against disadvantages of the screening test, including its 

cost, the potential for overdiagnosis, and the prevalence of false positive results [7].  Since 

the assessment and recommendation of screening tests is done by doctors and 

organizations like the American Cancer Society and National Cancer Institute, it is 

important that the measure quantifying a screening test’s effectiveness be easily 

interpretable for doctors and patients.  The mean benefit time, interpreted as the average 
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added survival time that a patient lives when the cancer is detected by screening relative to 

usual medical care (i.e. clinically apparent symptoms), is simply more intuitive than the 

mortality ratio or percentage reduction in mortality.  Moreover, as shown by Connor and 

Prorok using the HIP trial data, the estimated mortality ratio is also highly dependent on 

the time of comparison [9].  Once comparable case groups between the treatment and 

control arms arise, this should not be an issue for mean benefit time. 

 While mean benefit time is a useful measure of a screening test’s effectiveness, an 

individual patient’s lead and benefit time are unobservable in randomized controlled 

screening trials, so estimators of the mean lead and benefit time must be derived.  Kafadar 

and Prorok first proposed estimators of these two quantities based on survival curves 

assuming that both lead time and benefit time are additive effects [31].  They recognized 

that the difference in survival curves from the time of diagnosis involves both lead and 

benefit time, but the difference in survival curves from the start of the trial involves only 

benefit (assuming no bias from overdiagnosis).  As a result, the estimate for mean benefit 

time is  

 

 �̂� = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑖 {𝑥𝑖 − �̂�𝐶
−1 (�̂�𝑠(𝑥𝑖))}, (2.1) 

where 

𝑥𝑖 = 𝑖th survival time from entry in the treatment arm, 

�̂�𝐶 = Kaplan − Meier estimate of the survival curve from entry for the control arm,  

�̂�𝑆 = Kaplan − Meier estimate of the survival curve from entry for the treatment arm. 

 

The corresponding estimate for the mean lead time is 
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 �̂� = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑗 {𝑤𝑗 − �̂�𝑆
−1 (�̂�𝐶(𝑤𝑗))} − �̂�, (2.2) 

where 

𝑤𝑗 = 𝑗th survival time from diagnosis in the control arm, 

�̂�𝐶 = Kaplan − Meier estimate of the survival curve from diagnosis for the control arm,  

�̂�𝑆 = Kaplan − Meier estimate of the survival curve from diagnosis for the treatment arm. 

 

 Another pair of estimators for mean lead and benefit time was also proposed based 

on the difference in average group outcomes [32].  As mentioned previously, a difference in 

survival from entry between the treatment and control cancer cases in a randomized 

controlled screening trial must be attributed to the benefit time (assuming no 

overdiagnosis).  In addition, a difference in time to diagnosis between the treatment and 

control cancer cases must be attributed to lead time.  Thus, the estimate for mean benefit 

time is 

 

 �̂�′ = �̅�𝑆 − �̅�𝐶, (2.3) 

where �̅�𝑗 = average survival time from entry for the treatment (S) or control (C) arm. 

 

The corresponding estimate for mean lead time is 

 

 �̂�′ = �̅�𝐶 − �̅�𝑆, (2.4) 

where �̅�𝑗 = average time to diagnosis for the treatment (S) or control (C) arm. 
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These estimators were proven to be asymptotically equivalent to the estimators of mean 

lead and benefit time based on Kaplan-Meier survival curves [32], and simulations showed 

that both pairs of estimators resulted in roughly the same estimates for mean lead and 

benefit time under various simulated distributions [7, 32].  Furthermore, the asymptotic 

variance of the means-based �̂�′ and �̂�′ estimators is easily calculated [32]. 

 With reliable estimators for the mean lead and benefit time in a randomized 

controlled screening trial, it is also necessary to identify comparable cases between the 

treatment and control groups for comparison.  Comparable case groups are defined as “two 

groups of cases, one from each trial arm, that theoretically have the same disease 

characteristics in the absence of screening” [7].  This begs the following question: at what 

time point in the trial are both case groups comparable?  Recall that, in a screening trial, 

treatment arm subjects are offered screening only for the length of the screening program, 

say 𝑇 years, but they continue to be tracked for follow-up until the end of the study, say 𝐹 

years (𝑇 < 𝐹).  However, since treatment arm subjects receive only usual care during the 

follow-up period, the same as control arm subjects, they have no screening benefit (not 

screen-detected).  Thus, any estimate of mean benefit time made using all diagnoses in the 

trial through year 𝐹 will be “diluted” by those post-screening cases in the treatment arm 

[9].  Conversely, comparing only the diagnoses made through the end of screening at year 𝑇 

would also be a mistake.  The screen-detected cases are diagnosed earlier than their 

unscreened counterparts by an interval known as the lead time, so many of the cases in the 

control arm that would match with a screen-detected diagnosis in the treatment arm 

(whoever they are) to create comparable case groups are not yet diagnosed by year 𝑇 [7, 

10].  Therefore, to identify comparable case groups for comparison between the treatment 
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and control arms, a catch-up point 𝐶 must be chosen, where 𝑇 < 𝐶 < 𝐹, allowing additional 

time for the later control arm diagnoses to occur that will match with earlier screen-

detected counterparts (assuming no overdiagnosis). 

 To choose the catch-up point 𝐶, Kafadar and Prorok discuss several methods, 

ultimately settling on the two best options [10].  The first option is to choose 𝐶 as the first 

year for which the control arm cumulative cancer incidence equals the treatment arm 

cumulative cancer incidence [33].  However, in the presence of overdiagnosis or a 

preclinical duration with infinite support, control arm cumulative cancer incidence may be 

less than treatment arm cumulative cancer incidence for all years between 𝑇 and 𝐹.  In that 

case, 𝐶 is chosen as the first year for which the logrank test fails to reject the null 

hypothesis of equal incidence between arms at 𝛼 = 0.1 [34].  If no such insignificant result 

exists between years 𝑇 and 𝐹, meaning that there is excess incidence throughout the 

follow-up period (possibly due to overdiagnosis), the catch-up point cannot be identified 

[35].  A second method of choosing a catch-up point 𝐶 is based on the mean preclinical 

duration [10].  A method-of-moments estimate for the mean preclinical duration is 

 

 �̂� = 𝑁0/(�̂�1�̂�), (2.5) 

where 

𝑁0 = number of treatment arm cases detected at the first screen, 

𝑁1 = number of treatment arm cases detected at the second screen, 

𝑁0,1 = number of treatment arm cases detected at between the first and second screen, 

�̂�1 = expected first − year number of cases in treatment arm in absence of screening, 

�̂� = estimated sensitivity = (𝑁0 − 𝑁1)/(𝑁0 + 𝑁0,1 − �̂�1). 
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We can base an estimate of �̂�1 on the annual average number of cases in the control arm 

after the first several years of the trial.  From the method-of-moments estimate of �̂�, the 

catch-up point is chosen to be  

 

 𝐶 = 𝑇 + 2�̂�. (2.6) 

 

In simulations with various preclinical and clinical duration distributions, as well as 

various methods of assigning a benefit time to screen-detected cases, Kafadar and Prorok 

found that the second method of determining the catch-up point, based on the method-of-

moments estimate of the mean preclinical duration, resulted in more accurate confidence 

interval estimates for the mean lead and benefit times (coverage probability closer to the 

nominal confidence level) [10]. 

 Although we have reliable estimates in some circumstances for mean lead and 

benefit time in a randomized controlled screening trial and a method of choosing 

comparable case groups for comparison between the treatment and control arms, these 

estimates can still be biased due to length-biased sampling and overdiagnosis.  Moreover, 

both of these biases tend to favor screening [10].  However, because a cancer patient’s 

preclinical duration is unobservable, it is impossible to identify in real data whether an 

individual cancer is an oversampled slow-growing case due to length-bias or an 

overdiagnosis.  The effects of these two biases must be addressed through simulation 

under a variety of screening programs and plausible models for the cancer growth 

durations [7]. 
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 When simulating a screening trial, an important attribute of the screening test to 

consider is its sensitivity.  Several studies have focused on estimating the sensitivity of a 

screening test using real trial data.  Day and Walter noted a strong negative correlation 

between joint confidence interval estimates of the mean preclinical duration and test 

sensitivity, highlighting the practical difficulty of distinguishing between the effects of the 

distribution of preclinical durations and test sensitivity on the pattern of diagnoses in a 

trial [36].  Day proposed an estimator for sensitivity based on the distribution for the 

preclinical durations, though correctly selecting this distribution was a major assumption 

of the method and estimates were biased when the mean was misspecified [37].  Duffy et al 

used a three-state Markov chain (no disease, preclinical state, clinical state) to model 

“birth” into the preclinical state and “death” into the clinical state, assuming an exponential 

distribution for time-to-birth and time-to-death.  The mean preclinical duration was 

estimated assuming 100% sensitivity, and sensitivity was subsequently updated using the 

parameters of the Markov model [38].  Straatman et al modelled the number of diagnoses 

at certain screens and in certain between-screen intervals using a multinomial distribution, 

where the multinomial probabilities stemmed from an exponential distribution assumed 

for the preclinical durations, and derived maximum likelihood estimates for the mean lead 

time and test sensitivity [39].  Hakama et al estimated test sensitivity as  

 

 
𝛽 = 1 −

𝛼𝑃1

𝑃0 − (1 − 𝛼)𝑃10
 

(2.7) 
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where 

𝛼 = the proportion of treatment arm subjects who attended screening, 

𝑃1 = the rate of interval cases among those screened, 

𝑃0 = the rate of interval cases in the control arm, 

𝑃10 = the rate of interval cases among the refusals [40]. 

 

In each of these cases, an overall test sensitivity is estimated, though Straatman et al 

recognized that constant test sensitivity is not a realistic assumption [39].  For simulation 

studies, test sensitivity, whether assumed to be constant or increasing as the preclinical 

duration progresses, must be tested in addition to the distributions of preclinical and 

clinical durations for its impact on mean lead and benefit time and the length-biased 

sampling effect [12, 29].  

 Useful measures to quantify the effects of length-biased sampling on mean lead and 

benefit time are the relative increases in expected preclinical and clinical durations [29].  

𝐸[𝑌∗]/𝐸[𝑌], where 𝑌 is random variable denoting the preclinical durations in the general 

population and 𝑌∗ denotes the preclinical durations for the length-biased sampled screen-

detected cases, measures the proportional mean increase in preclinical duration for screen-

detected cases relative to the general population.  Similarly, 𝐸[𝑍∗]/𝐸[𝑍] measures the 

proportional mean increase in clinical duration (𝑍) for screen-detected cases relative to the 

general population.  Because estimates for the mean benefit time rely on subjects’ survival 

times from diagnosis in a screening trial, knowing how much longer the screen-detected 

subjects would have lived in the absence of screening can help to debias the mean benefit 

time estimate. 
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 Kafadar and Prorok undertook a large simulation study to quantify the effects of a 

length-biased sample of preclinical durations on the distribution of observed clinical 

durations and estimates of mean lead and benefit time [29].  They used a bivariate gamma 

distribution to jointly model the preclinical (𝑌) and clinical durations (𝑍) as follows:   

 

 
𝑓(𝑦, 𝑧) = 𝜙 (

𝜆1
𝑟1𝑦𝑟1−1𝑒−𝜆1𝑦

Γ(𝑟1)
∗

𝜆2
𝑟2𝑧𝑟2−1𝑒−𝜆2𝑧

Γ(𝑟2)
) + 

(1 − 𝜙) (
𝜆3

𝑟3 𝑦𝑟3−1𝑒−𝜆3𝑦

Γ(𝑟3)
∗

𝜆4
𝑟4𝑧𝑟4−1𝑒−𝜆4𝑧

Γ(𝑟4)
). 

 

(2.8) 

 

𝑟𝑖 is the shape parameter in the univariate gamma density, and 𝜆𝑖  is the rate parameter.  

0 ≤ 𝜙 ≤ 1 is a mixing proportion that represents the proportion of fast-growing cases.  In 

Kafadar and Prorok’s simulation, twenty-one different scenarios were created for the 

model of the preclinical and clinical durations, using different values for the parameters 𝑟𝑖, 

𝜆𝑖 , and 𝜙, resulting in various combinations of short, moderate, and long preclinical and 

clinical durations.  Different screening test sensitivities and screening programs were also 

simulated.  Across these various trials, the joint distribution of preclinical and clinical 

durations played the largest role in determining the effect of length-biased sampling.  The 

next most important factor was the time in between screens, followed by the test 

sensitivity.  However, the bivariate gamma distribution was not a particularly good model 

for cancer growth periods.  Although the distribution was easy to simulate and enabled 

exact computations, its correlation structure was not realistic; conditional on being in the 

fast- or slow-growing group, a case’s preclinical and clinical durations were uncorrelated. 
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 Heltshe et al also undertook a simulation study similar to that of Kafadar and 

Prorok, but with two notable differences in the setup of the simulated trial [12].  First, 

Heltshe et al modelled the preclinical and clinical durations with a bivariate lognormal 

distribution, which they argue is more flexible than the bivariate gamma, allowing for 

greater possibilities in terms of the preclinical and clinical duration distribution shapes and 

scales.  It is also simpler to specify the correlation between preclinical and clinical duration 

in the bivariate gamma with just one correlation parameter 𝜌, where the correlation in the 

bivariate gamma distribution is a function of all nine model parameters.  Second, Heltshe et 

al set the test sensitivity to be a function of the length of the preclinical duration and the 

number of previous false negative screens; Kafadar and Prorok used constant test 

sensitivity.  In Heltshe et al’s approach, the test sensitivity �̃�𝑗 (𝑘, 𝑦) was defined as  

 

 �̃�𝑗(𝑘, 𝑦) = 𝛽0 + 𝛽1𝑦 + 𝛽2(𝑘 − 1), (2.9) 

where 

𝑦 = length of the preclinical duration, 

𝑘 − 1 = number of previous false negative screens. 

 

For a given preclinical duration 𝑦, Heltshe et al allowed the test sensitivity to increase 

monotonically throughout 𝑦 using either a uniform, beta, or Normal cumulative density 

function.  Sensitivity began at 50% at the start of the preclinical duration and converged to 

100% as roughly halfway through the preclinical duration.  Similar to Kafadar and Prorok, 

Heltshe et al simulated a number of different trial scenarios, matching different preclinical 

and clinical distributions with several correlations and screening test sensitivities.  Heltshe 
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et al found that mixtures of extremely different disease progressions, such as a bimodal 

model with both slow and fast disease growth, resulted in the largest effect of length-biased 

sampling on the observed clinical durations, with up to a 40% inflation in the mean clinical 

duration observed.  The effect of length-biased sampling was less severe for models with 

homogeneous disease growth.  The effects of length-biased sampling also generally became 

more severe as the correlation between preclinical and clinical duration increased.  With 

respect to the model for test sensitivity, Heltshe et al found that increasing sensitivity to 

detect the longer preclinical durations exacerbated the effects of length-biased sampling 

(compared to constant test sensitivity).  While the effects of length-biased sampling were 

less if test sensitivity were held constant, Heltshe et al’s model is likely to be more realistic 

of the true sensitivity of screening tests.  They saw no large differences across the different 

distribution functions (uniform, beta, Normal) used to model sensitivity throughout the 

preclinical period. 

 While the two aforementioned publications (Kafadar and Prorok [29] and Heltshe et 

al [12]) used simulations to address the effects of length-biased sampling on the clinical 

durations observed, no such simulation studies have assessed the effects of overdiagnosis.  

In general, the number of overdiagnoses in a trial is estimated by comparing the cumulative 

cancer incidence between the treatment and control arms.  A consistent difference in the 

number of cases between these two arms that persists into follow-up may be attributable 

to overdiagnosis [35].  For example, with ovarian cancer screening in the PLCO, 212 cases 

were diagnosed in the treatment arm by the end of follow-up, while only 176 cases were 

diagnosed in the control arm in this time.  This suggests that, if left unscreened, roughly 

thirty-six cancers detected by screening might never have caused any symptoms or 
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affected the women who were diagnosed by screening; the transvaginal ultrasound and 

annual blood test for the CA-125 tumor marker are prone to overdiagnosis [41].  However, 

in the HIP trial, cumulative cancer incidence in the control arm first exceeds that of the 

treatment arm after seven years, suggesting no overdiagnosis from an annual mammogram 

and clinical breast exam in that trial [33]. 

 Kafadar and Prorok have proposed a method of selecting cases of overdiagnosis in 

randomized controlled screening trial data [42].  They suggest that, because the 

overdiagnosed cases are extremely unlikely to die from cancer, these patients may still be 

alive at the end of the follow-up period or perhaps dead from another cause.  Using the 

screen-detected subjects who are still alive at the end of follow-up or dead from another 

cause as the pool of potentially overdiagnosed cases, they randomly select 𝑛𝑂𝐷  of these 

cases to be deemed overdiagnoses, where 𝑛𝑂𝐷  is equal to the difference in cancer incidence 

between the treatment and control arms, which is the estimated number of overdiagnoses 

as described in the previous paragraph. 

 Kafadar and Prorok also proposed equations to estimate what the mean clinical 

duration would have been in the absence of screening for the length-bias sampled 

treatment arm cases, both in the presence and absence of overdiagnosis [42].  This allows 

for comparison between these cases and the control arm to assess the effect of length-bias 

on the clinical durations that are screen-detected.  Kafadar and Prorok first propose an 

estimator of the mean clinical duration in the absence of screening for the length-bias 

sampled cases assuming that there is no overdiagnosis.  If there is no overdiagnosis, with 

comparable case groups, the total clinical duration across all cases – a product of the 
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number of cases (𝑛) and the mean clinical duration in the absence of screening (𝑧̅) – should 

be equal for both the treatment (𝑆) and control (𝐶) groups:  

 

 𝑛𝐶𝑧�̅� = 𝑛𝑆𝑧�̅�. (2.10) 

 

Because, as discussed in Section 1, the treatment group cases can arise in four ways, the 

right-hand side of Equation (2.10) can be split as follows: 

 

 𝑛𝐶𝑧�̅� = 𝑛𝑟𝑒𝑓𝑢𝑠𝑒𝑑𝑧�̅�𝑒𝑓𝑢𝑠𝑒𝑑 + 𝑛𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑧�̅�𝑛𝑡𝑒𝑟𝑣𝑎𝑙 + 𝑛𝑝𝑜𝑠𝑡−𝑠𝑐𝑟𝑒𝑒𝑛𝑧�̅�𝑜𝑠𝑡−𝑠𝑐𝑟𝑒𝑒𝑛

+ 𝑛𝑠𝑐𝑟𝑒𝑒𝑛 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑧̅∗ 

 
(2.11) 

 

There is no lead or benefit time associated with refusal, interval, or post-screening cases, so 

the observed time from diagnosis to death for these patients is the clinical duration in the 

absence of benefit from screening.  The only unknown value in the equation is 𝑧̅∗, the mean 

clinical duration in the absence of screening for the length-bias sampled screen-detected 

cases, so we can solve for 𝑧̅∗ algebraically.  If a screening trial does have overdiagnosis, 

Equation (2.11) cannot be used because the right-hand side must include overdiagnosed 

cases that have no counterparts in the control group, as they would never have been 

diagnosed without the screening exam.  Kafadar and Prorok select overdiagnosed cases in 

the data using the method described in the previous paragraph: randomly selecting 𝑛𝑂𝐷  

subjects from the screen-detected cases still alive at the end of follow-up or dead from 

another cause.  Once these subjects are removed from the data, 𝑛𝐶𝑧�̅� = 𝑛𝑆𝑧�̅�, and 𝑧̅∗ can be 
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estimated using the remaining screen-detected cases in the treatment group that were not 

identified as overdiagnoses. 

To summarize, Section 2 has presented a method for identifying comparable case 

groups for comparison between the treatment and control arms of a randomized controlled 

screening trial.  Estimators have been presented for the mean lead time and mean benefit 

time in a screening trial that can be used to assess the effectiveness of a screening test.  

However, screening trials are known to provide a biased sample of survival times due to 

length-biased sampling and overdiagnosis, which lead to overestimated mean lead and 

benefit times.  While the effects of length-biased sampling on the observed survival times 

are known to be driven by the joint distribution of the preclinical and clinical durations, the 

models used in simulation, the bivariate gamma and the bivariate lognormal, are not data-

driven selections, and the sensitivity to misspecifying the joint distribution of the 

preclinical and clinical durations has not been studied.  Moreover, while the amount of 

overdiagnosis in a sample can be estimated, the effect of overdiagnosis on estimates of 

mean lead and benefit time has not been studied. 
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3. Modelling Control Arm Clinical Durations 
 
From the literature, specifically the simulation studies from Kafadar and Prorok [29] and 

Heltshe et al [12] discussed in Section 2, it is clear that correctly specifying the joint 

distribution of the preclinical and clinical durations is necessary to accurately assess the 

effects of length-biased sampling.  While modelling the preclinical durations proves to be 

quite a challenge, as these times are inherently unknown because they measure the period 

in which cancer is growing prior to diagnosis, the lengths of subjects’ clinical durations are 

readily available from randomized controlled screening trial data.  We decided that it was 

best to try to specify the distribution of clinical durations first, and, given the strong 

correlation between a subject’s preclinical and clinical durations, we could then assume the 

same type of distribution could plausibly be fit to the preclinical durations, albeit with 

different parameters. 

To model the distribution of clinical durations, we must work with the times from 

diagnosis to death from the control arm cancer patients.  We focused on just the controls 

because these subjects were not exposed to screening, so their times from diagnosis to 

death do not include any lead or benefit time.  The times from diagnosis to death in the 

treatment arm would include both the lead time and benefit time for screening, so it would 

not be useful to consider the times from diagnosis to death for these subjects.  

For this analysis, we began with the HIP trial data [15] because it was readily 

available.  Kafadar and Prorok [10], and Connor and Prorok before them [9], had already 

identified the catch-up point in the HIP trial to be roughly seven years from a patient’s 

enrollment in the study.  By year 7, 437 cases of breast cancer were diagnosed in the 

control arm.  The greatest limitation of the HIP trial data is the high rate of censoring in the 
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times from diagnosis to death; 205 (47%) of the 437 control group cases were censored 

because the subject was either still alive at the end of follow-up or dead from a cause 

unrelated to the cancer.  Death from an unrelated cause was viewed as a censor because 

the true clinical duration (time from diagnosis to death caused by cancer) would have 

lasted longer had the patient not suffered an unrelated demise.  Of these 205 censored 

cases, 167 (38% of all 437 control group cases) were still alive when they exited the study, 

so the censored clinical durations in the data largely correspond to the longest clinical 

durations for breast cancer patients. 

A Kaplan-Meier survival curve was estimated from the 437 control group clinical 

durations diagnosed prior to catch-up in the HIP trial.  We wanted to see how various 

common survival distributions, including the exponential, Weibull, gamma, log-Normal, 

and log-logistic distributions, would fit to this observed survival distribution.  We 

attempted to specify the parameters of these common survival distributions such that the 

parametric survival function would match with the Kaplan-Meier survival curve for the HIP 

trial data.  Unfortunately, none of the five common survival distributions provided a good 

fit (results not pictured).   

As suggested by Kafadar and Prorok when modelling the joint distribution of 

preclinical and clinical durations with a bivariate gamma distribution [29], the clinical 

durations could be split into two groups: fast-developing and slow-developing cases.  We 

believed that, because no single common survival distribution fit the HIP trial clinical 

durations well, it was necessary to model the clinical durations using a mixture of two 

distributions.   The exponential distribution is the simplest of the five common survival 

distributions mentioned above, as it has only a single rate parameter to specify (all four of 
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the other distributions are defined by two parameters), so we decided to begin this new 

approach with a mixture of two exponential distributions. 

The survival function, or probability of surviving beyond time 𝑥, for exponentially 

distributed data is  

 

 𝑆(𝑥) = 𝑒−𝜆𝑥 . (3.1) 

 

The rate parameter 𝜆 can be estimated using �̅�−1 in the absence of censoring, or, when 

censoring renders the sample mean survival time difficult to estimate, 𝜆 can be estimated 

from the slope of log-transformed survival function: 

 

 log 𝑆(𝑥) = −𝜆𝑥. (3.2) 

 

When a mixture of two exponential distributions is used to model survival time data, the 

survival function now includes components for both the fast- and slow-developing cases: 

 

 𝑆(𝑥) = 𝑝𝑒−𝜆𝐹𝑥 + (1 − 𝑝)𝑒−𝜆𝑆𝑥 , (3.3) 

where 

𝑝 = proportion of fast-developing cases, 

𝜆𝐹 = rate parameter for the fast-developing cases, 

𝜆𝑆 = rate parameter for the slow-developing cases. 
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With a mixture of two exponential distributions, there are now three parameters to specify 

and no simple mathematic solution for estimation.   

 The most common approach for parameter estimation in a mixture distribution is 

the expectation-maximization (E-M) algorithm [43].  In the case of a mixture of two 

exponential distributions, the E-M algorithm seeks to maximize the complete data log-

likelihood for the unknown parameters in the mixture model: 

 

 
log 𝐿 = ∑ ∑ 𝑧𝑖𝑗{log 𝑝𝑖 − 𝜆𝑖𝑥𝑗}

𝑛

𝑗=1

2

𝑖=1
, 

(3.4) 

where 

𝑧𝑖𝑗 = indicator whether case 𝑗 arose from component 𝑖 of the mixture, 

𝑝𝑖 = fraction of population from component 𝑖 of the mixture, 

𝜆𝑖 = rate parameter for component 𝑖 of the mixture, 

𝑥𝑗 = time to death for case 𝑗. 

 

The algorithm begins by assigning starting values to the 𝑧𝑖𝑗 ’s, as the 𝑧𝑖𝑗 ’s are all unknown.  

In the subsequent maximization step using the assigned 𝑧𝑖𝑗  values, the unknown 

parameters 𝜆1 and 𝜆2 are estimated using maximum likelihood estimation within each 

component 𝑖.  The 𝑝𝑖 ’s may also be estimated using the assigned values to the 𝑧𝑖𝑗 ’s: 

 

 
�̂�𝑖 = ∑ 𝑧𝑖𝑗 𝑛⁄

𝑛

𝑗=1
. 

(3.5) 
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Following the maximization step, an expectation step adjusts the assigned 𝑧𝑖𝑗  values given 

the parameters estimated in the maximization step: 

 

 
𝐸[𝑧𝑖𝑗|𝑥𝑗] =

𝑝𝑖𝑒−𝜆𝑖𝑥𝑗

∑ 𝑝ℎ𝑒−𝜆ℎ𝑥𝑗2
ℎ=1

 . 
(3.6) 

 

The E-M algorithm continues iteratively, cycling between maximization and expectation 

steps until convergence.  The final values of the 𝑝𝑖 ’s and 𝜆𝑖 ’s are the estimated parameter 

values for the mixture distribution. 

 While the E-M algorithm is the most common approach to parameter estimation in a 

mixture distribution, it does have some drawbacks.  First and foremost, the final parameter 

estimates have been shown to be highly dependent on the starting values for the algorithm, 

with a mixture of two exponential distributions used as an example to highlight this 

limitation [44].  Second, the complete data log-likelihood becomes more complex to specify 

and the algorithm more difficult to use in the presence of censored or truncated data [45], 

such as that from randomized controlled screening trials.  Finally, the algorithm can also be 

computationally slow to yield estimates.  All of these limitations suggest that there may be 

a better approach, or at least a simpler one, to estimate the three parameters in a mixture 

of two exponential distributions. 

 

3.1   Procedure for Parameter Estimation in Mixture of Exponential 
Distributions 

 
When fitting an exponential distribution to survival time data, the rate parameter can be 

estimated from the slope of the plot of the log-transformed survival function against time 
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as shown in Equation (3.2).  We believed that a similarly simple approach could be 

developed for parameter estimation in a mixture of two exponential distributions that 

would be easier to apply than the E-M algorithm.  Although the survival function for the 

mixture of two exponential distributions shown in Equation (3.3) provides no simple 

function when log-transformed, there is one scenario in which such a transformation can 

aid in parameter estimation.  Consider a very large time 𝑡′ such that almost all fast-

developing cases would have died prior to 𝑡′.  If almost all of the fast-developing cases have 

died before time 𝑡′, then the probability of a fast-developing case surviving beyond time 𝑡′ 

is roughly zero, meaning that the term in Equation (3.3) pertaining to the fast-developing 

cases would be approximately equal to zero, which reduces the equation to: 

 

 𝑆(𝑡′) ≈ (1 − 𝑝)𝑒−𝜆𝑆𝑡′
. (3.7) 

 

When Equation (3.7) is log-transformed, it becomes a simple linear function that can be 

used to estimate 𝑝 and 𝜆𝑆: 

 

 log 𝑆(𝑡′) ≈ log(1 − 𝑝) − 𝜆𝑆𝑡′. (3.8) 

 

Thus, two of the three parameters in the mixture of two exponential distributions can be 

estimated by plotting the log-transformed survival function against time and fitting a 

straight line to the plot in the domain of large time points.  The third parameter, 𝜆𝐹 , can be 

estimated using the survival probability for some small time 𝑡’’; �̂�(𝑡′′), �̂�, and �̂�𝑆 can be 

substituted into Equation (3.3) to solve for �̂�𝐹 . 
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 There are two conflicting challenges of estimating 𝑝 and 𝜆𝑆 using Equation (3.8).  

First, what qualifies as “a very large time” depends on the distribution of times to death for 

the fast-developing cases and, therefore, 𝜆𝐹 , which has yet to be estimated.  Because of this 

concern, it would seem that 𝑝 and 𝜆𝑆 should be estimated by fitting a straight line to the 

log-transformed survival function for the largest times to death available in the sample 

data.  This conservative approach should ensure that the survival times being used to 

estimate 𝜆𝑆 are not fast-developing cases.  However, the second challenge of estimating 𝑝 

and 𝜆𝑆 using Equation (3.8) is the high rate of censoring as survival times increase in 

randomized controlled screening trial data.  Censored data, of course, arise in any clinical 

trial (loss to follow-up, low mortality from disease under study, etc.), but cancer screening 

trials have very high rates of censoring, especially for cancers that tend to have higher five-

year survival rates anyway (e.g., breast versus pancreatic cancer).  Nonetheless, this 

challenge may well occur in other kinds of clinical trials also, so an approach to taking it 

into account will benefit the analysis in other applications.  In a screening trial, a high rate 

of censoring for long survival times means that there will be few observed deaths and 

many censored times in the domain of large time points, so it could be difficult to 

accurately estimate 𝑝 and 𝜆𝑆 using the conservative approach with few very large observed 

times to death and a potentially fairly flat empirical survival curve in this domain. 

 To balance both of the aforementioned challenges in the application of our method, 

we estimate the parameters of a mixture of two exponential distributions using an iterative 

process.  Our idea for the procedure is outlined as follows: 
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1. Calculate the Kaplan-Meier estimated survival curve, and plot log �̂�(𝑡) against time.  

Fit a line to the plot in the domain of the largest observed times to death.  Estimate 

(1 − 𝑝) and 𝜆𝑆 using Equation (3.8). 

2. For some small time point 𝑡∗, estimate 𝜆𝐹 by substituting �̂�(𝑡∗), �̂�, and �̂�𝑆 from step 1 

into Equation (3.3).  For screening trial data, a value of 𝑡∗in the 100 to 500 day range 

seems appropriate. 

3. Given the estimate of 𝜆𝐹 from step 2, determine the time point 𝑡∗∗ by which most 

(perhaps 95% or 99%) of the fast-developing cases will have died using the 

exponential cdf. 

4. Step 1 can be repeated.  However, instead of fitting the line in the domain of the 

largest observed times to death, the line can now be fit in the domain of times just 

larger than 𝑡∗∗.  

5. Step 2 can now be repeated given the updated estimates of 𝑝 and 𝜆𝑆 from step 4. 

6. Steps 3-5 repeat iteratively until there is no change in the parameter estimates. 

 

In the first iteration, which is completed in steps 1 and 2 of the procedure, we implement 

the conservative approach designed to ensure that only slow-developing cases are used to 

estimate 𝜆𝑆.  However, because we want to consider only the largest observed times to 

death in this iteration to estimate (1 − 𝑝) and 𝜆𝑆, there are likely only sparse observations 

to use because of censoring and the long right tail of the exponential distribution producing 

few extremely long survival times.  As a result, the initial estimates of  (1 − 𝑝) and 𝜆𝑆 may 

be too small.  The second iteration, which is completed in steps 3 through 5, addresses 

these drawbacks by reevaluating (1 − 𝑝) and 𝜆𝑆 in a domain of time closer to zero than the 
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extreme end, where there are more observed death times but it is still expected that only 

slow-developing cases are used to estimate 𝜆𝑆.  All subsequent iterations seek to adjust the 

estimates of (1 − 𝑝) and 𝜆𝑆 given updated information about 𝜆𝐹 and the domain of time 

where almost all observed deaths are slow-developing cases until a stable model is 

achieved. 

 Perhaps our procedure could be viewed as a “poor man’s version” of the E-M 

algorithm.  Like the E-M algorithm, our procedure iterates between separating 

observations based on the component of the mixture distribution they likely originated and 

updating parameter estimates based on these divisions.  A formal E-M procedure for 

estimating the parameters in screening trial survival times may be difficult to obtain 

because of the high rate of censoring.  The potential advantages of our approach versus a 

formal E-M algorithm are discussed further in Section 3.6. 

 

3.2   Simulations 
 

While our simple procedure should be reliable in theory, we wanted to assess it in a 

few simulated examples before returning to the HIP trial data.  The goal of these 

simulations is to determine the accuracy of the procedure in estimating the three 

parameters of the mixture distribution, as the true parameter values will be set by the 

simulation design.  Example 1 will be presented in detail, as it introduces the general 

simulation design and illustrates the application of our procedure.  In the subsequent 

simulations, only the mixture distribution parameters or rate of censoring change in the 

simulation design, so these examples may be discussed more briefly with a focus primarily 

on the accuracy of our procedure. 
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Figure 3.1: plotting log �̂�(𝑡) against time for example 1 and fitting a line (red) in the 
domain of the largest observed times to death. 
 

 
 
 

 

In example 1, 1,000 survival times are generated from a mixture of exponential 

distributions that is 50% fast-developing cases with a mean duration of 1 year and 50% 

slow-developing cases with a mean duration of 5 years: 𝑝 = 0.5, 𝜆𝐹 = 1/365, and 

𝜆𝐹 = 1/(5 ∗ 365).  For this example, none of the survival times are censored.  To begin our 

procedure, we calculated the Kaplan-Meier estimated survival curve for these 1,000 cases 

and plotted log �̂�(𝑡) against time, as shown in Figure 3.1.  Considering those times to death 

in the 5,000 to 8,000 day range to be the largest available, we fit a line to the plot with an 

intercept of log 0.3 and a slope of 1/(5.25 ∗ 365).  This provided our initial estimates of  
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Figure 3.2: plotting log �̂�(𝑡) against time for example 1 and fitting a line (red) in the 
domain of times just larger than 𝑡∗∗ = 1,540 days. 
 

 
 
 

 

�̂� = 0.7 and �̂�𝑆 = 1/(5.25 ∗ 365).  Moving on to step 2 of the procedure, we selected 

𝑡∗ = 100 days, and calculated �̂�(100) = 0.86 from the simulated data.  We were able to 

solve for �̂�𝐹 = 1/514 using the initial estimates for �̂� and �̂�𝑆.  In step 3 of the procedure, we 

calculated that, if 𝜆𝐹 = 1/514, 95% of the fast-developing cases should end within the first 

1,540 days from diagnosis.  Revisiting the plot of log �̂�(𝑡) against time in step 4 of the 

procedure, we wanted to fit a line in the domain of times just longer than 1,540 days.  This 

is shown in Figure 3.2, and we obtain new estimates of �̂� = 0.49 and �̂�𝑆 = 1/(4.85 ∗ 365).  

In step 5, we return to �̂�(100) = 0.86 and adjust our estimate of �̂�𝐹 given the new values of  
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Figure 3.3: results of examples 1-3. 
 

Example 
True Parameters Estimated Parameters 

Iterations 
𝒑 𝝀𝑭 𝝀𝒔 𝒑 𝝀𝑭 𝝀𝒔 

1 0.5 1/365 1/1825 
0.49 

(2%) 

1/390 

(6%) 

1/1770.25 

(3%) 
2 

2 0.25 1/730 1/2555 
0.26 

(4%) 

1/1202 

(40%) 

1/2737.5 

(7%) 
3 

3 0.75 1/273.75 1/1460 
0.65 

(13%) 

1/267 

(3%) 

1/821.25 

(78%) 
2 

 

 

�̂� and �̂�𝑆 to be 1/390.  Now, if 𝜆𝐹 = 1/390, 95% of the fast-developing cases should end 

within the first 1,168 days from diagnosis.  Once again revisiting the plot of log �̂�(𝑡) against 

time, we see that the slope is no different in the domain of times just longer than 1,168 days 

than it is in the domain just longer than 1,540 days, which means that our estimates of �̂� 

and �̂�𝑆 would not change.  Thus, our algorithm stops after this second iteration, and our 

parameter estimates are �̂� = 0.49,  �̂�𝐹 = 1/390, and �̂�𝑆 = 1/(4.85 ∗ 365). 

 In examples 2 and 3, the three mixture distribution parameters are varied, but there 

is still no censoring.  Example 2 represents a slower distribution: 𝑝 = 0.25, 𝜆𝐹 = 1/(2 ∗

365), and 𝜆𝐹 = 1/(7 ∗ 365).  Example 3 represents a faster distribution: 𝑝 = 0.75, 

𝜆𝐹 = 1/(0.75 ∗ 365), and 𝜆𝐹 = 1/(4 ∗ 365).  The final parameter estimates from simulated 

examples 1 through 3 are listed in Figure 3.3, along with relative errors for the estimates.  

Overall, our procedure is fairly accurate in estimating the mixture distribution parameters.  

Some of the smaller relative errors in parameter estimation may even be explained by 

sampling variability, though this effect was made to be small with a simulated sample size 

of 1,000 for each example.  However, in examples 2 and 3, the method struggled to estimate  
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Figure 3.4: comparing the survival curve fit by our procedure (red) to the Kaplan-Meier 
survival curve for the simulated control arm clinical durations (black) in example 3. 
 

 
 
 

 

the rate parameter for the smaller component of the mixture distribution.  For instance, 

only 25% of cases were slow-developing in example 3, and, while the procedure estimated 

the rate of the fast-developing cases fairly accurately, the rate parameter for the slow-

developing cases was significantly overerestimated.  Because the parameter was properly 

specified for the larger component of the mixture, the survival curve fit by our procedure 

still matches fairly closely to the empirical survival curve from the simulated data, as 

shown in Figure 3.4, and it can be calculated that the survival probabilities from a 
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Figure 3.5: results of examples 1, 4, and 5 (where, in all three examples, 
the true parameter values are 𝑝 = 0.5, 𝜆𝐹 = 1/365, and 𝜆𝐹 = 1/1825).   
 

Example 
Censoring  

Probability 

Estimated Parameters 
Iterations 

𝒑 𝝀𝑭 𝝀𝒔 

1 0 
0.49 

(2%) 

1/390 

(6%) 

1/1770.25 

(3%) 
2 

4 0.25 
0.43 

(14%) 

1/342 

(7%) 

1/1934.5 

(6%) 
2 

5 0.4 
0.4 

(20%) 

1/420 

(13%) 

1/2555 

(29%) 
2 

 

 

distribution with the true parameters and the survival probabilities from a distribution 

with our estimated parameters are very similar.   

Examples 4 and 5 introduced censoring to the simulated survival times.  For both 

examples, 1,000 survival times are generated from a mixture of two exponential 

distributions with 𝑝 = 0.5, 𝜆𝐹 = 1/365, and 𝜆𝐹 = 1/(5 ∗ 365).  Each observation has the 

same 25% chance of being censored in example 4, and the censoring probability increases 

to 40% in example 5.  In either example, a case that has been selected to be censored will 

have its true survival time rescaled by a random observation from the Uniform(0, 1) 

distribution so that the time of censoring will occur prior to the true time of death.  These 

two simulated examples are designed to illustrate random censoring.  The final parameter 

estimates and relative errors, along with the results from example 1, which used the same 

simulated distribution but without censoring, are listed in Figure 3.5.  It is clear that the 

relative errors of the estimated parameters increase with the rate of censoring. 

Furthermore, while the size of the relative errors may be acceptable in example 4 with its  
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Figure 3.6: comparing the survival curve fit by our procedure (red) to the Kaplan-Meier 
survival curve for the simulated control arm clinical durations (black) in example 5. 
 
(a) the fit from our procedure plotted 
without censoring added. 
 

 

(b) the fit from our procedure plotted with 
random 40% censoring added. 
 

 
 

  

 

moderate censoring probability, they are awfully large in example 5 with its high censoring 

probability.  When the censoring is random and occurring at such a high rate, there is a lot 

of early dropout and fewer observed deaths, so the Kaplan-Meier survival curve estimated 

from the data will decrease more slowly than the true underlying survival function of the 

distribution.  This causes our algorithm to underestimate the rate parameter for both the 

fast- and slow-developing components.  As shown in Figure 3.6a, the curve estimated by 

our procedure fits the majority of the simulated data for example 5 well, overlapping the 

Kaplan-Meier curve for roughly the first 3,500 days.  Unfortunately, the model fit by our 

procedure is more heavy-tailed than the Kaplan-Meier curve because it is overfitting the 

slow decrease of the Kaplan-Meier estimated survival function caused by heavy censoring.  

Figure 3.6b shows the distribution fit by our procedure with random 40% censoring added 
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compared to the simulated sample data from example 5.  Here, it is clear that 𝜆𝐹 and 𝜆𝑆 

have been underestimated, which was not as evident in Figure 3.6a when our estimated 

distribution was plotted without censoring.  This suggests that adjustments should be 

made to the parameter estimates from our procedure in the event of heavy censoring as 

seen in example 5, such as systematically increasing the estimates for 𝜆𝐹 and 𝜆𝑆 to improve 

the overall fit.  Moreover, we need a method of estimating the censoring probability so that 

we may generate plots like Figure 3.6b to evaluate the fit of the distribution estimated by 

our procedure while giving consideration to the censoring.  For instance, had example 5 

been real data instead of a simulation, we would not have known that every observation 

had a 40% chance of censoring to generate Figure 3.6b from the distribution estimated by 

our procedure.  In Section 3.3, we will present an idea for estimating the censoring 

probability as a function of the case’s time-to-death. 

 

3.3   Procedure to Estimate the Censoring Probability as a Function of 
Time-to-Death 

 
When using our procedure to estimate the parameters of a mixture of two exponential 

distributions, it is important for the rate of censoring to be considered when assessing the 

estimated fit.  However, to add simulated censoring to the survival times from our 

estimated distribution, we must approximate the probability of being censored for each 

case.  In examples 4 and 5 in the previous section, censoring was purely random; every case 

had the same probability of being censored.  In reality, there is usually some aspect of the 

data collection method causing the censoring.  For randomized controlled screening trials, 

a subject’s survival time is censored for one of two reasons: (i) the subject dies from 

another cause not related to cancer or (ii) the subject is still alive at the end of the trial’s 
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follow-up period.  As we saw in the HIP trial data presented at the beginning of Section 3, 

most of the censored survival times in screening trial data are cases where the subject is 

still alive at the end of the study; this reason accounted for over 80% of the censoring in the 

HIP trial.  If a survival time is censored because the subject is still alive at the end of the 

follow-up period, it is much more likely that the subject has a long survival time than a 

short one.  Thus, we believe it is useful to estimate the censoring probability as a function 

of the subject’s true survival time, as the length of the survival time is one of, if not the, 

leading cause of censoring. 

 To estimate the probability of censoring for a case with survival time in a certain 

interval, say [𝑡𝑖 , 𝑡𝑗), we need to compare the number of observed uncensored survival times 

in that interval to the expected number of survival times in the same interval.  The 

difference between the number of observed uncensored cases and the expected number of 

cases can be attributed to censoring, and the probability of being censored can be 

estimated by dividing this difference by the expected number of cases in the interval.  

While the number of observed uncensored cases in a certain time interval can be counted 

in the sample data, the expected number of cases in this interval depends on the underlying 

distribution of survival times.  Using our procedure described in Section 3.1, we can 

estimate this underlying survival time distribution and calculate the expected number of 

cases from a sample of size 𝑛 that occur in [𝑡𝑖, 𝑡𝑗) by 

 

 𝑛 ∗ (𝑆(𝑡𝑗) − 𝑆(𝑡𝑖)). (3.9) 
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Now, to develop a function for assigning a censoring probability to cases based on 

their survival time, we need to calculate the estimated censoring probability for several 

intervals [𝑡𝑖 , 𝑡𝑗).  We can then plot the estimated censoring probabilities against the 

midpoints of the intervals to get an idea of the functional form of the relationship between 

censoring probability and survival time.  A simple way to do this is by subsetting the data 

into bins of width 𝑤; this creates the intervals [0, 𝑤), [𝑤, 2𝑤), etc.  However, choosing 𝑤 in 

this case is a bit of a balancing act.  If 𝑤 is too wide, then the domain of survival times in the 

sample data will be divided into a very small number of bins, meaning that there will be 

very few points to plot to try to assess the functional form of the relationship between 

censoring probability and survival time.  If 𝑤 is too narrow, then the observed uncensored 

counts and expected counts in each interval will be fairly small, and the censoring 

probabilities will not be estimated very precisely.  Ultimately, the choice of 𝑤 is unique to 

the sample data in question, specifically its sample size and the domain of survival times; if 

the sample size is large or the domain of survival times is small, then a smaller value for 𝑤 

may be selected.  It is also worth noting that, in some instances, especially intervals 

pertaining to short survival times where the probability of censoring is low, the number of 

observed uncensored cases in the interval may be greater than the expected number of 

cases just due to chance.  If this happens, the estimated censoring probability calculated as 

described in the previous paragraph would be negative, which is clearly impossible.  In the 

event that this does happen, we recommend assigning a very small censoring probability, 

perhaps between 0 and 5%, when plotting to determine the functional form of the 

relationship between censoring probability and survival time. 
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With a function to assign censoring probabilities to cases based on their survival 

time, we are now almost able to simulate the effects of censoring on our estimated 

distribution of survival times, as exemplified in Figure 3.6b.  When a case has been 

probabilistically selected to be censored, we just need to determine at what point in its 

survival time the censoring occurs prior to death.  Our idea is to rescale the survival time 

by multiplying it by a random value from a beta random variable, say 𝑟𝐵.  The beta 

distribution is ideal because its support is [0, 1], the same as an allowable proportion, so a 

random beta observation can be treated as the proportion of the survival time that is 

observed prior to censoring.  Moreover, the beta distribution is flexible in its shape, 

meaning that its parameters can be specified in a way that certain values of 𝑟𝐵 are likelier 

than others.  For example, if a censored case is equally likely to be censored at any point 

during its survival time, then the beta(1,1) distribution can be used.  If a censored case is 

most likely to be censored somewhere in the middle of its survival time, then the beta(3,3) 

distribution may be appropriate.  If a censored case is more likely to be censored as it gets 

deeper into its survival time, the beta(2,1) distribution is a reasonable selection.  

Ultimately, we believe the choice of beta distribution parameters is best made using subject 

matter expertise on the data collection method and why censoring is occurring.  As has 

already been discussed, censoring in randomized controlled screening trials usually occurs 

because the subject is still alive at the end of the study, which suggests that censoring is not 

likely to occur shortly after the subject’s diagnosis early in the survival time, but rather 

later on in the survival period when the subject may reach the end of the follow-up period; 

for this reason, we like the beta(2,1) distribution to rescale censored survival times in 

simulated screening trial data.  It is also worth noting that, in some instances, the survival 
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times should be capped prior to being rescaled by 𝑟𝐵.  In screening trials, the maximum 

possible observed survival time, censored or uncensored, is the length of the study; if an 

individual survival time is longer than the length of the study, it makes sense to apply 𝑟𝐵 to 

the study length to determine how long the individual is measured prior to censoring 

rather than multiplying the true survival time by 𝑟𝐵.  Thus, for simulated screening trial 

data, we will assign the censor time 𝑐 to a case probabilistically selected to be censored as 

 

 𝑐 = 𝑟𝐵 ∗ min(𝑧, 𝐹), (3.10) 

where 

𝑧 = true length of the uncensored survival time, 

𝐹 = length of follow − up for the screening trial. 

 

3.4   Additional Simulations 
 
Returning to the simulated examples carried out in Section 3.2, we will now introduce 

censoring probability as a function of the case’s survival time.  For both example 6 and 7, 

1,000 survival times are generated from a mixture of two exponential distributions with 

𝑝 = 0.5, 𝜆𝐹 = 1/365, and 𝜆𝐹 = 1/(5 ∗ 365); this is the same scenario as examples 1, 4, and 

5.  In example 6, the censoring probability increases linearly with survival time, starting at 

0% for a survival time of zero days and reaching a 100% censoring probability at 4,000 

days.  In example 7, the probability that a survival time is observed, which is one minus the 

probability of censoring, decreases in a quadratic function as the survival times extend, 

starting at 100% for a survival time of zero days and reaching a 0% chance of being fully 

observed (uncensored) at 4,000 days.  For both examples, a survival time that has been 
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probabilistically selected for censoring will be rescaled by a random observation from a 

beta(2,1) distribution as discussed in Section 3.3. 

 Starting with example 6, our procedure estimated the mixture distribution 

parameters to be �̂� = 0.48, �̂�𝐹 = 1/344, and �̂�𝑆 = 1/(5.75 ∗ 365).  These estimates had 

relative errors of 4%, 6%, and 13%, respectively.  Given the roughly 20% overall censoring 

probability in example 6, these relative errors are similar to those in example 4, which had 

a 25% random censoring probability for each observation.  However, different from 

example 4, rate parameter for the slow-developing cases now has the largest relative error, 

which may be explained by the fact that the longer cases are more likely to be censored in 

example 6, making their rate parameter more difficult to estimate.  To plot the fit estimated 

by our procedure for comparison to the simulated data, we needed to also estimate the 

censoring probability as described in Section 3.3.  We selected 𝑤 = 500 days, which 

divided the domain of simulated survival times into eight intervals, as there were no 

observed survival times greater than 4,000 days in length.  In each interval, the number of 

observed uncensored survival times was counted, and the expected number of cases was 

calculated using Equation (3.9), where 𝑆(𝑥) was the survival function for a mixture of 

exponential distributions with 𝑝 = 0.48, 𝜆𝐹 = 1/344, and 𝜆𝑆 = 1/(5.75 ∗ 365).  Figure 3.7a 

displays these results in a histogram, where the green bar shows the number of observed 

uncensored cases in the interval, the red bar shows the expected number of cases, and the 

proportion of expected cases that were observed uncensored labels the bin.  Figure 3.7b 

plots the censoring probability, which is the complement of the proportion of observed 

uncensored cases, against time.  95% margins of error are also added to each interval’s 

estimated censoring probability, primarily to reflect the sample size (expected count) in 
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Figure 3.7: estimating censoring probability as a function of survival time for example 6. 
 
(a) histogram displaying the proportion of 
observed uncensored cases in each survival 
time interval. 
 

 

(b) plot of estimated censoring probability 
against survival time with margins of error 
 
 

 
 

  

 

each interval used to estimate this probability.  Recall that the true function assigning 

censoring probabilities is linear; the probability of censoring is equal to the case’s time-to-

death in days divided by 4,000, and all times greater than 4,000 days have a censoring 

probability of 100%.  While the function does not appear perfectly linear in Figure 3.7b, as 

the estimated censoring probability remaining roughly the same for the first three intervals 

causes the function to seem perhaps polynomial in its increase, it can be described as 

roughly linear overall.  This result suggests that we should prefer the simpler functional 

explanation to describe the relationship between censoring probability and survival time, 

rather than trying to specify a complex functional relationship from such a small number of 

time interval data points.  Finally, now that we have an idea of the function to assign 

censoring probability based on survival time, we may generate data with censoring from a  
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Figure 3.8: comparing the survival function estimated by our procedure with censoring 
added (red) to the Kaplan-Meier survival curve for the simulated control arm clinical 
durations (black) in example 6. 
 

 
 
 

 

mixture of exponential distributions with 𝑝 = 0.48, 𝜆𝐹 = 1/344, and 𝜆𝑆 = 1/(5.75 ∗ 365) to 

compare to the simulated data from example 6.  This comparison is plotted in Figure 3.8.  

Because the parameters estimated by our procedure have small relative errors compared 

to the true simulated parameters, and because we were able to reliably estimate the 

censoring probabilities, we see that our estimated fit matches well with the original data. 

Proceeding to example 7, our procedure estimated the mixture distribution 

parameters to be �̂� = 0.44, �̂�𝐹 = 1/315, and �̂�𝑆 = 1/(7.5 ∗ 365), which had relative errors 
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of 12%, 16%, and 33%, respectively.  The overall censoring probability was approximately 

35% in example 7, almost twice that of example 6, and the relative errors increased with 

the censoring rate, just as we saw when comparing examples 1, 4, and 5 in Section 3.2.  

Additionally, similar to example 6, with the longer cases more likely to be censored, the 

rate parameter for the slow-developing cases had the largest relative error.  With example 

5, we discussed adjusting underestimated rate parameter estimates in the presence of high 

random censoring, but, when the censoring probability increases with survival time, 

perhaps only the rate parameter for the slow-developing cases may need to be manually 

increased.  To estimate the functional relationship between censoring probability and 

survival time in order to plot the fit estimated by our procedure for comparison to the 

simulated data, we again divided the domain of simulated survival times into eight 

intervals of 𝑤 = 500 days.  The number of observed uncensored survival times was 

counted in each interval, and the expected number of cases was calculated using Equation 

(3.9), with 𝑆(𝑥) specified by our estimated parameter values.  Figure 3.9a compares the 

number of observed uncensored cases to the expected number of cases in each interval, 

and Figure 3.9b plots the censoring probability against time with 95% margins of error 

added to each interval’s estimated censoring probability.  In Figure 3.9b, the probability of 

censoring appears to increase linearly with survival time over the first 2,500 days before 

levelling off around 90%; this matches fairly closely to the true function assigning 

censoring probability to cases, which decreases the probability a case is observed in a 

quadratic function as the survival time increases.  Just as in example 6, our method for 

estimating the functional relationship between censoring probability and survival time is 

rather accurate.  Using our estimated function to assign censoring probability based on 
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Figure 3.9: estimating censoring probability as a function of survival time for example 7. 
 
(a) histogram displaying the proportion of 
observed uncensored cases in each survival 
time interval. 
 

 

(b) plot of estimated censoring probability 
against survival time with margins of error 
 
 

 
 

  

 

survival time, we generated data with censoring from a mixture of exponential 

distributions with 𝑝 = 0.44, 𝜆𝐹 = 1/315, and 𝜆𝑆 = 1/(7.5 ∗ 365) to compare to the 

simulated data from example 7.  This comparison is plotted in Figure 3.10.  Our estimated 

curve (red) matches up fairly well with the simulated sample data (black) for the first 2,500 

days, though there are larger differences between the estimated and observed survival 

probabilities for more extreme survival times.  Such a discrepancy is likely driven by the 

33% relative error we made in estimating 𝜆𝑆.  Again, when the probability of censoring is 

so high for longer survival times resulting in very few observed uncensored survival times, 

it can be difficult to estimate 𝜆𝑆 using our graphical procedure, so the estimate of 𝜆𝑆may 

need to be artificially adjusted when plotting the estimated survival function against the  
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Figure 3.10: comparing the survival function estimated by our procedure with censoring 
added (red) to the Kaplan-Meier survival curve for the simulated control arm clinical 
durations (black) in example 7. 
 

 
 
 

 

Kaplan-Meier curve for the simulated sample data in order to improve the fit from the 

estimated mixture of exponential distributions. 

 

3.5   Using Data from the HIP and PLCO Trials 
 
In the simulated examples of Sections 3.2 and 3.4, our procedures to estimate the 

parameters in a mixture of two exponential distributions and estimate censoring 

probability as a function of survival time both proved to be reliable in most scenarios.  If 

the rate of censoring is high, we may underestimate the exponential rate parameters, 
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specifically 𝜆𝑆 when the rate of censoring increases with survival time.  However, this error 

can be adjusted by manually increasing 𝜆𝑆 when plotting the estimated survival function 

against the Kaplan-Meier curve for the simulated sample data. 

 Now that we have tested the application of our procedures, we want to return to the 

HIP trial data discussed at the very beginning of Section 3 and see how well a mixture of 

two exponential distributions fits to the survival time data recorded in the HIP trial.  Recall 

that the HIP trial data includes 437 cases in the control group at the catch-up point, and 

there is a heavy rate of censoring (47%).  To begin our procedure, we calculated the 

Kaplan-Meier estimated survival curve and plotted log �̂�(𝑡) against time, as shown in 

Figure 3.11.  We considered times to death longer than 4,000 days to be the largest 

observed, and we fit a line to the plot with an intercept of log 0.7 and a slope of  

1/(33 ∗ 365), giving initial estimates of �̂� = 0.3 and �̂�𝑆 = 1/(33 ∗ 365).  In step 2 of our 

procedure for parameter estimation, we selected 𝑡∗ = 500 days, and calculated 

�̂�(500) = 0.87 from the sample data.  We solved for �̂�𝐹 = 1/1165 using the initial estimates 

for �̂� and �̂�𝑆.  In step 3, we determined that, if 𝜆𝐹 = 1/1165, 95% of the fast-developing 

cases should end within the first 3,490 days from diagnosis.  This new domain of survival 

times to estimate 𝑝 and 𝜆𝑆 (times longer than 3,490 days) is not very different from the 

domain we used in step 1 (times longer than 4,000 days) to get the initial estimates �̂� and 

�̂�𝑆.  Revisiting Figure 3.11, the line we fit to the relationship between log-transformed 

survival probability and time does not change when we try to fit this line in {𝑡 > 3490} 

instead of {𝑡 > 4000}.  Thus, our procedure stops after just one iteration, and our 

parameter estimates are �̂� = 0.3, �̂�𝐹 = 1/1165, and �̂�𝑆 = 1/(33 ∗ 365).  However, we know 

that our procedure may underestimate 𝜆𝑆 when there is heavy censoring for large survival 
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Figure 3.11: plotting log �̂�(𝑡) against time for the HIP trial data and fitting a line (red) in 
the domain of the largest observed times to death. 
 

 
 
 

 

times, so we want to plot our estimated distribution against the Kaplan-Meier curve for the 

HIP trial data.  We will consider this plot prior to estimating the function for assigning 

censoring probabilities, as we do not want to use an erroneous value of 𝜆𝑆 to estimate said 

probabilities.  Figure 3.12a shows the Kaplan-Meier curve for the HIP trial data overlaid 

with our estimated mixture distribution.  We see that our estimated distribution does not 

capture the majority of the Kaplan-Meier curve well, especially not between 1,000 and 

4,000 days, because it is overfitting the trend in the heavily censored data beyond 4,500 

days.  We want to increase our estimate of 𝜆𝑆 to better capture the trend prior to the  
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Figure 3.12: comparing the survival curve fit by our procedure (red) to the Kaplan-Meier 
survival curve for the control arm clinical durations (black) in the HIP trial data. 
 
(a) using the initial value of  
𝜆𝑆 = 1/(33 ∗ 365). 
 

 

(b) using the adjusted value of  
𝜆𝑆 = 1/(22 ∗ 365). 
 

 
 

  

 

heavily censored survival times.  By changing �̂�𝑆 = 1/(22 ∗ 365), we obtain the plot shown 

in Figure 3.12b.  The updated distribution estimate matches with the Kaplan-Meier curve 

for the HIP trial data very well for the first 2,000 days when the rate of censoring is low, 

and the differences between the estimated distribution and the Kaplan-Meier curve beyond 

2,000 days may likely be explained by the Kaplan-Meier curve flattening out with so many 

censored survival times and so few observed uncensored cases.  To verify this explanation, 

we need to add censoring to our estimated mixture distribution of survival times, which 

requires us to now estimate censoring probability as a function of survival time.  Applying 

the procedure discussed in Section 3.3, we divide the domain of the HIP trial survival times 

into intervals of width 𝑤 = 1,000 days, counting the number of observed uncensored 

survival times in each interval and calculating the expected number of cases using Equation  
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Figure 3.13: estimating censoring probability as a function of survival time for the HIP 
trial data. 
 
(a) histogram displaying the proportion of 
observed uncensored cases in each survival 
time interval. 
 

 

(b) plot of estimated censoring probability 
against survival time with margins of error 
 
 

 
 

  

 

(3.9), where 𝑆(𝑥) is the survival function for a mixture of exponential distributions with 

𝑝 = 0.3, 𝜆𝐹 = 1/1165, and 𝜆𝑆 = 1/(22 ∗ 365).  Figure 3.13a compares the number of 

observed uncensored cases to the expected number of cases in each interval, and Figure 

3.13b plots the censoring probability against time with 95% margins of error added to each 

interval’s estimated censoring probability.  In Figure 3.13b, the probability of censoring 

appears to increase linearly with survival time over the first 6,000 days, reaching 

practically 100% in the [6000, 7000) interval of survival times.  We chose to model the 

censoring probability as a linear function that increases from 0% for a survival time of zero 

days to 100% for a survival time of 6,000 days.  Additionally, for simulated survival times 

from our estimated mixture of exponential distributions that were probabilistically  
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Figure 3.14: comparing the survival function estimated by our procedure with censoring 
added (red) to the Kaplan-Meier survival curve for the control arm clinical durations 
(black) in the HIP trial. 
 

 
 
 

 

selected to be censored, we decided to cap them at 7,000 days (roughly the longest 

observed censored survival time in the HIP trial) and rescale using a random observation 

from beta(2,1) variable to simulate the time at which censoring occurs.  Figure 3.14 

compares simulated data with censoring from a mixture of two exponential distributions 

with 𝑝 = 0.3, 𝜆𝐹 = 1/1165, and 𝜆𝑆 = 1/(22 ∗ 365) to the Kaplan-Meier survival curve for 

the HIP trial data.  Because the two survival curves overlap so well, it is clear that a mixture 

of two exponential distributions is an appropriate model for the survival times in the HIP 
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trial, and our procedures have done a remarkable job of estimating the parameters of this 

mixture distribution in the presence of heavy censoring. 

 Although the mixture of two exponential distributions is a good model for the 

survival times from diagnosis in the HIP trial, we wanted to confirm that this type of 

distribution would also be a good fit for survival times from other cancer types, as well.  We 

decided to look at lung and ovarian cancer survival times from the PLCO [16].  There were 

1,719 lung cancer diagnoses in the control arm of the PLCO, and approximately 31% of 

these survival times were censored.  There were also 209 ovarian cancer diagnoses, of 

which 47% had censored survival times.  Without going into repetitive detail about the 

application of our estimation procedures, I will simply present the results to assess how 

well a mixture of two exponential distributions fits to the survival times from these 

screening trials.  For the lung cancer survival times in the PLCO, we fit a mixture of 

exponential distributions with 𝑝 = 0.6, 𝜆𝐹 = 1/238, and 𝜆𝑆 = 1/(6 ∗ 365).  We found that 

the probability of a case being observed uncensored decreased as a quadratic function with 

survival time, similar to the function assigning censoring probabilities to cases in example 

7.  Figure 3.15a compares simulated data from our fitted mixture of two exponential 

distributions with censoring to the Kaplan-Meier survival curve for the PLCO lung cancer 

data.  For the ovarian cancer survival times in the PLCO, we fit a mixture of exponential 

distributions with 𝑝 = 0.6, 𝜆𝐹 = 1/1482, and 𝜆𝑆 = 1/(10 ∗ 365).  We again found that the 

probability of a case being observed uncensored decreased as a quadratic function with 

survival time.  Figure 3.15b compares simulated data from our fitted mixture of two 

exponential distributions with censoring to the Kaplan-Meier survival curve for the PLCO 

ovarian cancer data.  For both cancer types, lung and ovarian, a mixture of two exponential  
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Figure 3.15: comparing the survival curve fit by our procedure with censoring added 
(red) to the Kaplan-Meier survival curve for the control arm clinical durations (black) in 
the PLCO. 
 
(a) lung cancer survival times.  
 

 
 

(b) ovarian cancer survival times. 
 

 
 

  

 

distributions appears to be a good fit for the survival times from diagnosis, and our 

procedures have once again appropriately specified the parameters of these models.  

 

3.6   Discussion 
 
Section 3 began with the challenge of fitting a distribution to the survival times from 

diagnosis in a randomized controlled screening trial.  When it became clear that a single 

common distribution could not provide a good approximation to the Kaplan-Meier curve 

calculated from the sample survival times, we proceeded to consider a mixture of two 

distributions to try to find an appropriate fit.  In Section 3.1, we developed an iterative 

procedure to estimate the rate parameters and component proportions in a mixture of two 

exponential distributions.  After the simulations in Section 3.2 illustrated that heavy 
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censoring led to larger relative errors in the parameter estimates, we devised another 

procedure in Section 3.3 to simulate censoring in a way that would mimic the pattern of 

censoring in the real data.  The simulations in Section 3.4 showed the accuracy of our 

procedures to estimate the parameters in a mixture of two exponential distributions and 

estimate censoring probability as a function of survival time, so we applied them to the 

survival times from three historic screening trials with different cancer types in Section 

3.5: the HIP trial (breast cancer), PLCO-Lung, and PLCO-Ovarian.  In all three examples, a 

mixture of two exponential distributions provided a good fit to the distribution of clinical 

durations. 

 In most of the simulated examples, the relative errors of the parameter estimates by 

our procedure were fairly small, no more than 10-15% at most.  However, our procedure 

did struggle to accurately estimate the mixture distribution parameters in the presence of 

heavy censoring.  There was, at least, a pattern to these errors, as the exponential rate 

parameters were consistently underestimated when heavy censoring flattened out the 

Kaplan-Meier survival curve calculated from the sample data.  With the nature of the error 

known, the parameter estimates from our procedure could be systematically increased 

accordingly so that the estimated survival curve would match more closely to the Kaplan-

Meier curve for the sample data when plotted together.  Moreover, when the censoring 

probability was low for shorter survival times and increased for longer survival times, only 

the rate parameter of the slow-growing cases 𝜆𝑆 seemed to be significantly 

underestimated; both other parameters, 𝑝 and 𝜆𝐹 , were more accurately specified.  Given 

that our procedure is so simple and quick to use, especially compared to the common 

approach for parameter estimation in a mixture distribution, the E-M algorithm, such easily 
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adjustable errors may be tolerated.  Furthermore, the E-M algorithm is not without flaws of 

its own, some of which were highlighted by Seidel et al [44]; the predictable and 

correctable errors from our procedure may be preferable to those of E-M estimation. 

 While survival times in randomized controlled screening trials were the motivation 

for the development of the estimation procedures for a mixture of two exponential 

distibutions discussed in Section 3, this mixture distribution may be applicable to various 

other data types, and our procedures can still be used to estimate the parameters.  An 

example we have considered is the reliability of a population of components, such as 

iPhones or machinery.  A mixture of two exponential distributions may be useful if some 

components inexplicably fail rather quickly while others last for longer periods of time.  

Fitting a mixture of two exponential distributions to such failure times and using our 

procedure to estimate the parameters would allow for calculations about the reliability of 

the component, such as the mean failure time or the probability of failing within a certain 

amount of time.  Additionally, if such failure time data has a lower rate of censoring, as the 

censoring rate of up to 50% in screening trials is rather high, then there would be minimal 

concern regarding the accuracy of the estimated distribution from our procedure, as 

illustrated by simulated examples 1-4 in Section 3.2 with little or no censoring.  

 Finally, because a mixture of exponential distributions is such a good fit to the 

control arm clinical durations in cancer screening data, and because of the plausible strong 

correlation between preclinical and clinical durations, we believe that the mixture of 

exponential distributions should also be an appropriate model for cancer preclinical 

durations.  Preclinical durations are obviously unobservable, as they refer to a period of 

time in which cancer is growing undetected, so having an idea about the type of 
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distribution to fit to the preclinical durations is very important step.  Moreover, there may 

be information in the pattern of diagnoses, such as the screen at which they occur and the 

prevalence of interval cases, that sheds some light on the parameters of the distribution of 

preclinical durations.  Section 5 will discuss this idea further, as well as an idea for 

estimating these unobserved preclinical duration distribution parameters. 
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4. Modelling Screening Test Sensitivity 
 
At the end of Section 3, we presented the idea of fitting a mixture of two exponential 

distributions to preclinical durations.  This mixture distribution provided an appropriate fit 

to the clinical durations observed in three historic screening trials, and the plausible strong 

correlation between a subject’s preclinical and clinical duration suggests that the same type 

of distribution could be fit to preclinical durations.  We also proposed that the pattern of 

diagnoses in a screening trial may provide information about the parameters of the 

distribution of preclinical durations.   

We wanted to design a simulation study to evaluate this idea accounting for several 

factors that arise in screening trials.  First, even if we only focus on simulating diagnoses 

and ignore the subsequent post-diagnosis survival time, we still need to generate 

preclinical durations, define a screening program, and test each case at times specified by 

the screening program with some sensitivity, or probability of a successful diagnosis.  

While the screening program for any randomized controlled trial is known based on the 

study design, the test sensitivity, like the distribution of preclinical durations, is unknown.  

Moreover, the test sensitivity, like the distribution of preclinical durations, has an effect on 

the pattern of diagnoses in the trial.  For example, a low mean lead time, which implies that 

screened subjects are not diagnosed much earlier than their unscreened counterparts, 

could be explained by either short preclinical durations or a low screening test sensitivity.  

In reality, there is probably an interactive effect between preclinical duration and test 

sensitivity on the pattern of diagnoses [36].  Thus, before trying to estimate preclinical 

duration parameters based on the diagnosis pattern in a screening trial, it is important to 

assess the extent to which the test sensitivity will also affect this pattern.  
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The literature, as discussed in Section 2, focuses primarily on estimating the overall 

sensitivity of a screening test.  However, test sensitivity is unlikely to be constant; 

sensitivity of an individual screen may depend on several factors.  While factors like age 

and comorbidities could plausibly affect sensitivity, a major factor is likely to be 

progression into the disease, as the test may be less sensitive very early in the preclinical 

phase and become more sensitive as the preclinical phase progresses to the point of clinical 

detection.  This idea was discussed in detail by Heltshe et al [12].  For a given preclinical 

duration 𝑦, Heltshe et al allowed the test sensitivity to increase monotonically throughout 𝑦 

using either a uniform, beta, or Normal cdf.  Sensitivity began at 50% at the start of the 

preclinical duration and converged to 100% roughly halfway through the preclinical 

duration.  Sensitivity probably will increase as a function of elapsed preclinical duration, 

but the model from Heltshe et al that starts at 50% when the preclinical duration begins 

may be overly optimistic.  A test sensitivity of 50% at the start of the preclinical duration 

suggests that half of cancers can be immediately detected by screening as soon as the first 

cancer cells begin to develop.  Also, sensitivity that reaches 100% midway through the 

preclinical duration suggests a fabulous screening test that guarantees cancer detection in 

only half the time it would take for said cancer to be diagnosed by symptoms.  The 

relationship between test sensitivity and stage of the preclinical duration specified by 

Heltshe et al may not be biologically plausible. 

Because test sensitivity as a function of the preclinical growth cannot be estimated 

from sample data, simulations must be used to assess the effects of different sensitivity 

models on the pattern of diagnoses in a trial.  In general, if we are assuming that test 

sensitivity is a function of the preclinical growth, the model for sensitivity should account 
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for four attributes: (i) the starting sensitivity at the initiation of the preclinical duration, (ii) 

the maximum achievable sensitivity of the test, (iii) the time at which this maximum 

sensitivity is achieved, and (iv) the functional form of the increase in test sensitivity from 

starting sensitivity to maximum.  Of these four attributes, the maximum achievable 

sensitivity is the one that can be most accurately specified based on real data.  Many studies 

have calculated the true positive rate for a screening test in detecting cancer among known 

cancer patients; for example, Cologuard© advertises a 92% sensitivity for detecting known 

cancers [22].  This suggests that the maximum achievable sensitivity in a sensitivity model 

should be fixed somewhere around 90%.  However, the other three attributes – starting 

sensitivity, time at which the maximum sensitivity is achieved, and method of sensitivity 

increase – cannot be estimated without lab experiments to carefully evaluate test 

sensitivity dependence on preclinical growth.  Therefore, we vary these three attributes in 

a simulation study to assess the effects of sensitivity on the pattern of diagnoses in a trial. 

 

4.1   Simulation Study 
 
We designed a simulation study to determine how a given model for test sensitivity affects 

the pattern of diagnoses in a randomized controlled screening trial.  When modelling the 

test sensitivity as a function of the subject’s preclinical growth, or the fraction of the 

preclinical duration completed at the time of the screening test, we varied three attributes 

of the model.  The maximum achievable sensitivity could reasonably be fixed at 90%, but 

the starting sensitivity, time at which the maximum sensitivity is achieved, and method of 

sensitivity increase are not as easily assumed and need to be varied so that their effect on 

diagnosis times can be quantified.   
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Figure 4.1: plotting the eight sensitivity models in our 23 factorial experiment. 
 

 
 
 

 

To assess the significance of these three variables, we designed a 23 factorial 

experiment.  A 23 factorial experiment has three factors with two levels each, resulting in a 

total of eight runs per replicate.  For our three attributes, the levels were as follows: 

starting sensitivity of either 10% or 30%, maximum sensitivity achieved at either three-

quarters of the preclinical duration or the end of the preclinical duration, and sensitivity 

increasing by either a uniform or Normal cdf.  The eight possible sensitivity models are 

plotted in Figure 4.1.  When the method of sensitivity increase follows a uniform cdf, test 

sensitivity increases linearly as the preclinical duration progresses from starting sensitivity 

to 90% at the time at which maximum sensitivity is achieved.  When the method of 
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sensitivity increase follows a Normal cdf, the Normal cdf function between the 50th and 

97.5th percentiles is rescaled to fit the increase from starting sensitivity to 90% at the time 

at which maximum sensitivity is achieved.  Because the Normal cdf is a concave down 

function in this range, this method of sensitivity increase suggests diminishing marginal 

returns of additional preclinical time passing on test sensitivity. 

 For each replicate of our 23 factorial experiment, preclinical durations were 

simulated from a predetermined mixture of two exponential distributions.  The time 

between the initiations of two preclinical durations was generated as a Poisson process at a 

rate of 210 new cancers per year.  In an actual trial, this rate would be determined by the 

study size and the population rate of diagnoses (i.e. 𝑚 new cases each year per 100,000 at-

risk people), but we found that changing this rate in a simulated trial has no effect on the 

study outcomes (results not pictured).  Any case whose preclinical duration overlaps with 

our screening window is included in the data, which means that cases whose preclinical 

durations began before the screening window are included as long as the preclinical 

duration continues beyond the time of the first screen.  For each simulated case, an 

identical observation was assigned to the treatment and control arm, presupposing no 

overdiagnosis.  Because the preclinical durations and the times at which they began are 

both random, the number of simulated cases whose preclinical durations overlap with our 

screening program will not be exactly the same for each replicate, though the counts should 

be similar.   

 Our experiment was designed with four annual screens.  Screening occurred at the 

start of the simulated screening trial, as well as at the end of the first, second, and third 

years.  Our screening process followed the outline for the design of a computer simulation 
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of randomized controlled screening trial presented in Figure 2 of Kafadar and Prorok [46].  

For any case 𝑗, our screening program began by checking whether this case was in the 

middle of its preclinical duration at the time of the first screen and, if so, testing for cancer 

with a sensitivity 𝛽 specified by one of our eight sensitivity models.  If a diagnosis were 

made, the time of the first screen was recorded as the time of diagnosis, and the lead time 

could be calculated as the difference between this time of diagnosis and the time at which 

the preclinical duration would have ended in the absence of screening.  If no diagnosis was 

made, we proceeded to the next screen and repeated this process of testing for cancer.  If 

the preclinical duration ended prior to this next screen, then the time at which the 

preclinical duration ended was recorded as the time of diagnosis, and the lead time was 

calculated to be zero, as this represents an interval case.  This screening process was 

repeated eight times for case 𝑗 so that each of our eight screening models could be used to 

carry out testing.   

Our experiment was performed with various preclinical duration distribution 

parameters, as we expect that the preclinical duration and test sensitivity have an 

interactive effect on the pattern of diagnoses in a screening trial.  We will present the 

results of three different example scenarios.  Example 1 simulated 50% fast-developing 

cases with a mean preclinical duration of one year and 50% slow-developing cases with a 

mean preclinical duration of five years: 𝑝 = 0.5, 𝜆𝐹 = 1/365, and 𝜆𝑆 = 1/(5 ∗ 365).  

Example 2 simulated a very slow distribution with 𝑝 = 0.25, 𝜆𝐹 = 1/(2 ∗ 365), and 

𝜆𝑆 = 1/(7 ∗ 365).  Example 3 simulated a very fast distribution with 𝑝 = 0.75, 𝜆𝐹 =

1/(0.75 ∗ 365), and 𝜆𝑆 = 1/(3 ∗ 365).   
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For each example scenario, we repeated the experiment 500 times.  In each 

replicate, preclinical durations were generated from the specified distribution, and 

screening was simulated eight times based on our eight sensitivity models.  The result of 

each replicate was a distribution of the times of diagnoses under each sensitivity model, as 

well as an estimate for the mean lead time, which is a useful proxy to measure how early 

the diagnoses were made under that sensitivity model.  500 replicates were performed to 

ensure the accuracy and precision of these estimates. 

Figure 4.2 presents the mean lead time and distribution of diagnoses for example 1, 

averaged out across the 500 replicates.  From these counts, it seems clear that the 

sensitivity model does have some effect on the pattern of diagnoses in a screening trial.  A 

higher starting sensitivity, a shorter time to achieve the maximum sensitivity of 90%, and a 

more quickly increasing function (the Normal cdf) as the preclinical duration progresses all 

seem to result in a longer mean lead time and more diagnoses made from screening rather 

than interval and post-screening cases.   

To determine the significance of these results for example 1, we performed an 

analysis of variance (ANOVA) on the mean lead time variable.  The ANOVA model included 

the starting sensitivity, time at which the maximum sensitivity is achieved, and method of 

sensitivity increase, as well as all two- and three-way interactions.  The replicate of the 

experiment corresponding to each mean lead time estimate was also included in the model 

as a blocking factor, as each of our eight sensitivity models was applied once per replicate.  

Figure 4.3 displays the ANOVA table for this analysis.  From our simulation study under the 

preclinical duration conditions of example 1, all three attributes, as well as all two-way 

interactions and the replicate blocking factor, have a significant effect on the mean lead  
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Figure 4.2: Means and standard deviations for the number of diagnoses at various times in 
the simulated screening trial for example 1.  
 

Sens. 
Start 

Sens. 
Increase 

Sens. 
Max. 

 

Mean 
Lead 
Time 

 

S1 Y1 S2 Y2 S3 Y3 S4 
Post-

Screen 

 
0.1 

 
Uniform 0.75 

1.94 
(0.11) 

275 
(16) 

81 
(9) 

170 
(13) 

75 
(9) 

147 
(12) 

75 
(9) 

139 
(11) 

171 
(13) 

 
0.1 

 
Uniform End 

1.74 
(0.10) 

228 
(15) 

96 
(10) 

159 
(13) 

88 
(10) 

138 
(12) 

87 
(9) 

129 
(12) 

207 
(15) 

 
0.3 

 
Uniform 0.75 

2.38 
(0.12) 

338 
(18) 

76 
(9) 

184 
(13) 

70 
(8) 

152 
(12) 

70 
(9) 

143 
(11) 

118 
(11) 

 
0.3 

 
Uniform End 

2.27 
(0.12) 

283 
(17) 

88 
(9) 

179 
(14) 

79 
(9) 

150 
(11) 

78 
(9) 

138 
(12) 

137 
(12) 

 
0.1 

 
Normal 0.75 

2.19 
(0.11) 

309 
(17) 

77 
(9) 

175 
(14) 

71 
(8) 

149 
(11) 

71 
(9) 

142 
(12) 

138 
(12) 

 
0.1 

 
Normal End 

2.01 
(0.11) 

272 
(16) 

86 
(10) 

171 
(13) 

78 
(9) 

144 
(11) 

78 
(9) 

138 
(13) 

165 
(13) 

 
0.3 

 
Normal 0.75 

2.52 
(0.12) 

346 
(19) 

73 
(9) 

182 
(13) 

66 
(8) 

153 
(12) 

67 
(8) 

146 
(12) 

98 
(10) 

 
0.3 

 
Normal End 

2.42 
(0.12) 

318 
(17) 

80 
(9) 

182 
(13) 

72 
(9) 

152 
(12) 

72 
(9) 

142 
(12) 

115 
(11) 

 
0.1 

 
Unif 0.75 

1.94 
(0.11) 

275 
(16) 

81 
(9) 

170 
(13) 

75 
(9) 

147 
(12) 

75 
(9) 

139 
(11) 

171 
(13) 

 
Abbreviations: Sens., sensitivity; S1, first screen; Y1, first year interval cases; S2, second 
screen; Y2, second year interval cases; S3, third screen; Y3, third year interval cases; S4, 
fourth screen. 
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Figure 4.3: Analysis of variance results example 1.  
 

Factor df SS MS F p-value 
Replicate 499 35.4 0.1 19.4 <0.0001 
Sens. start 1 184.1 184.1 50,189.9 <0.0001 

Sens. increase 1 39.3 39.3 10,712.4 <0.0001 

Sens. max. 1 23.0 23.0 6,270.8 <0.0001 

Sens. start ∗ sens. increase 1 3.7 3.7 1,005.3 <0.0001 

Sens. start ∗ sens. max. 1 2.0 2.0 546.9 <0.0001 

Sens. increase ∗ sens. max. 1 0.1 0.1 25.9 <0.0001 

Sens. start ∗ sens. increase ∗ sens. max 1 0.0 0.0 0.0 0.925 
Error 3,497 12.8 0.0  
 
Abbreviations: df, degrees of freedom; SS, sum of squares; MS, mean squares; F, F-
statistic; Sens., sensitivity. 
 

 

time of the simulated trial.  Of the three attributes of the sensitivity model, starting 

sensitivity has the greatest effect on the run’s mean lead time, followed by the method of 

increase and, finally, the time at which maximum sensitivity is achieved.  One explanation 

for the significance of so many model effects is the extremely large sample size of this 

experiment; 500 replicates times eight runs per replicate (one for each sensitivity model) 

results in a total sample size of 4,000 simulated screening trials.  Even with all possible 

interactions and the replicate blocking factor included in the ANOVA model, the residual 

degrees of freedom are still extremely high, resulting in low mean squared error, which 

makes smaller attribute effects appear more significant.  We know that the replicate of our 

experiment should not have a significant effect on mean lead time, as the sample of 

preclinical durations are generated from the exact same distribution for each replicate, yet 

this blocking factor is still highly statistically significant.  With the knowledge that the 

replicate of our experiment should not have a meaningful effect on mean lead time, 

perhaps we could conclude that any effect with a lower sum of squares than the blocking  
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Figure 4.4: Analysis of variance results for examples 2 and 3.  
 
(a) example 2 
 

Factor df SS MS F p-value 
Replicate 499 62.1 0.1 18.7 <0.0001 
Sens. start 1 632.6 632.6 95,236.8 <0.0001 

Sens. increase 1 112.1 112.1 16,890.2 <0.0001 

Sens. max. 1 64.0 64.0 9,630.1 <0.0001 

Sens. start ∗ sens. increase 1 12.7 12.7 1,905.0 <0.0001 

Sens. start ∗ sens. max. 1 6.7 6.7 1,008.5 <0.0001 

Sens. increase ∗ sens. max. 1 0.3 0.3 47.8 <0.0001 

Sens. start ∗ sens. increase ∗ sens. max 1 0.1 0.1 20.0 <0.0001 

Error 3,497 23.2 0.0  
 
(b) example 3 

 

Factor df SS MS F p-value 
Replicate 499 9.8 0.0 21.5 <0.0001 
Sens. start 1 21.8 21.8 23,909.5 <0.0001 

Sens. increase 1 7.1 7.1 7,760.2 <0.0001 

Sens. max. 1 4.1 4.1 4,505.3 <0.0001 

Sens. start ∗ sens. increase 1 0.3 0.3 350.5 <0.0001 

Sens. start ∗ sens. max. 1 0.2 0.2 265.0 <0.0001 

Sens. increase ∗ sens. max. 1 0.1 0.1 6.6 0.01 

Sens. start ∗ sens. increase ∗ sens. max 1 0.0 0.0 2.7 0.10 
Error 3,497 3.2 0.0  
 
Abbreviations: df, degrees of freedom; SS, sum of squares; MS, mean squares; F, F-
statistic; Sens., sensitivity. 
 

 

factor is not really important when specifying a model for test sensitivity as a function of 

preclinical growth. 

 The same ANOVA model was applied to the experimental data for example 2, and 

the results are shown in Figure 4.4a.  All three attributes, as well as all interactions and the 

replicate blocking factor, have a significant effect on the mean lead time of the simulated 

trial.  Once again, of the attributes of the sensitivity model, starting sensitivity has the 

greatest effect on the run’s mean lead time, followed by the method of increase and the 
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time at which maximum sensitivity is achieved.  Compared to example 1, we see that the 

total sum of squares is much higher when the distribution of preclinical durations is 

slower, which means that there is greater variability in the mean lead times across 

simulated screening trials.  Of this increased variability, some is explained by increased 

replicate-to-replicate differences in mean lead times, but the relative increase in sum of 

squares is much higher for the effects pertaining to the sensitivity model attributes.  This 

suggests that, when the preclinical durations are long relative to the screening interval, the 

changes in test sensitivity have a much greater effect on the pattern of diagnoses in the 

trial. 

Our ANOVA model was also applied to the experimental data for example 3, with the 

results displayed in Figure 4.4b.  All three attributes, as well as a pair of two-way 

interactions and the replicate blocking factor, have a significant effect on the mean lead 

time of the simulated trial.  Just as in the previous two example scenarios, starting 

sensitivity has the greatest effect on the run’s mean lead time, followed by the method of 

increase and the time at which maximum sensitivity is achieved.  However, compared to 

examples 1 and 2, the total sum of squares is much lower when the distribution of 

preclinical durations is faster, which means that there is less variability in the mean lead 

times across the 4,000 simulated screening trials.  Moreover, in the results from example 3, 

the method of sensitivity increase and the time at which maximum sensitivity is achieved 

both explain less of the variability in mean lead time across runs than the replicate blocking 

factor, suggesting that these two attributes may not be important when specifying a model 

for test sensitivity as a function of preclinical growth if the preclinical durations are short. 
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4.2   Discussion 
 
We concluded Section 3 with an idea about fitting a mixture of exponential distributions to 

preclinical durations and predicting the parameters for various cancers based on the 

pattern of diagnoses in a randomized controlled screening trial.  Recognizing that the 

sensitivity of a test, in addition to the distribution of preclinical durations for that cancer 

type, also affects the pattern of diagnoses in a trial, we set out in Section 4 to design a 

simulation study to identify the attributes of a sensitivity model that impact diagnosis 

times.  Defining test sensitivity as a function of preclinical growth, we designed in Section 

4.1 a 23 factorial experiment that varied the starting test sensitivity, the time at which 

maximum test sensitivity of approximately 90% is achieved, and the functional form of 

sensitivity increase with preclinical growth.  While all three attributes of the sensitivity 

model had at least some effect on the mean lead time of a cancer diagnosis, starting 

sensitivity by far had the greatest effect on the screening trial’s mean lead time estimate, 

followed by the method of increase and, finally, the time at which maximum sensitivity is 

first achieved. 

 One of the important findings from our three experiments was that the relative 

significance of the sensitivity model attributes depended on the distribution of preclinical 

durations specified.  When the preclinical durations were very fast, only the starting 

sensitivity had a greater effect on the mean lead times observed in the simulated screening 

trials than the replicate of the experiment.  Because we know that the preclinical durations 

simulated come from the same distribution for each replicate, this blocking factor should 

not have a meaningful impact on the mean lead time, so any sensitivity model attribute 

with a lower sum of squares than the experimental replicate could be viewed as 
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unimportant.  As the preclinical durations got slower, the functional form of sensitivity 

increase with preclinical growth gained in relative significance, as did the time to maximum 

sensitivity.  However, this increasing relative significance of sensitivity model attributes 

may be achieved in part because the screening interval was held constant across all of our 

simulated experiments even as the distribution of preclinical durations changed.  The mean 

preclinical duration was 5.75 years in example 2 and 1.3125 years in example 3, yet 

subjects were screened annually in both cases.  In reality, we believe that a cancer as slow-

developing as the one simulated in example 2 likely would not be screened annually, as 

there is no need to screen so frequently; slow-developing cancers – colorectal cancer is a 

familiar example – can be screened less frequently while still diagnosing the disease 

sufficiently early to see a treatment  benefit.  The two experiments for which annual 

screening makes more sense given the distribution of preclinical durations, examples 1 and 

3, found that the starting sensitivity was the only sensitivity model attribute that had a 

highly important effect on the pattern of diagnoses. 

 Our results are fairly consistent with the findings of Heltshe et al.  Recall that 

Heltshe et al allowed the test sensitivity to increase from 50% at the start to 100% roughly 

halfway through the preclinical duration, with this increase taking the form of either a 

uniform, beta, or Normal cdf.  Although their study assessed the impact of sensitivity model 

on the length-biased sampling effect 𝐸[𝑌∗]/𝐸[𝑌] instead of its impact on the mean lead 

time, Heltshe et al found minimal difference between the results from the uniform and 

Normal sensitivity models [12].  Similarly, we found that the functional form of sensitivity’s 

increase with preclinical growth had a minimal effect on the mean lead time observed in a 

simulated screening trial.  Little-to-no change in the mean lead time between two trials 
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with the same distribution of preclinical durations suggests that the similar cases are being 

diagnosed at roughly the same times in both trials.  Because we are comparing two trials 

with the same model for preclinical durations, the mean preclinical duration 𝐸[𝑌] remains 

constant.  Furthermore, if similar cases are being diagnosed at roughly the same times in 

both trials, then the mean screen-detected preclinical duration 𝐸[𝑌∗] should also remain 

constant.  Therefore, our result – that the method of sensitivity increase has minimal 

impact on mean lead time – intuitively implies Heltshe et al’s result – that the method of 

sensitivity increase has minimal impact on the length-biased sampling effect.  We will 

further assess the influence of sensitivity model on the length-biased sampling effect 

ourselves in Section 6. 

 The conclusions drawn from Section 4 will prove useful as we progress to predicting 

preclinical duration distribution parameters from the pattern of diagnoses, which is carried 

out in Section 5.  Our results suggest that only the initial sensitivity at the start of the 

preclinical duration will have a notable effect on the pattern of diagnoses observed.  

Unfortunately, the starting test sensitivity and the preclinical duration parameters are 

confounded in the pattern of diagnoses.  Because the true sensitivity model cannot be 

specified, the preclinical duration parameters cannot be specified with certainty either.  For 

example, as we discussed at the beginning of Section 4, a low mean lead time could be 

explained by either short preclinical durations or low starting test sensitivity.  Thus, when 

we predict the preclinical duration distribution parameters for a certain cancer type based 

on the pattern of diagnoses in a screening trial, we will have to specify a sensitivity model 

that we presume to be reasonably accurate, but still recognize that our parameter 

estimates could be erroneous due to a misspecification of the sensitivity model.  This will 
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require us to ask two questions.  First, how great of a mistake could we make in estimating 

these parameters by misspecifying the sensitivity model?  Second, to what extent does this 

error in defining the preclinical duration parameters and sensitivity model impact the 

length-biased sampling effect on a given screening trial, as this is the ultimate effect we 

wish to estimate?  These questions can be addressed through sensitivity analysis in Section 

6.3. 
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5. Modelling Preclinical Durations 
 
In Section 3, we discovered that a mixture of two exponential distributions provided a good 

fit to the clinical durations observed in three historic screening trials.  Since a subject's 

preclinical and clinical durations are likely to be rather highly positively correlated, it 

makes sense that preclinical durations may also follow this same type of mixture 

distribution.  Unfortunately, because the true length of a subject’s preclinical duration is 

unknown, as it represents a period of cancer growth prior to diagnosis, we cannot plot the 

preclinical durations and estimate their distribution parameters as we did in Section 3.  

Thus, we need a different method of estimating the mixture distribution parameters for 

this unobservable data. 

Our idea is that the preclinical duration distribution parameters may affect the 

pattern of diagnoses in a screening trial.  When we say “the pattern of diagnoses,” we mean 

the frequencies of diagnoses at general times in the screening trial: the first (initial) screen, 

the interval between the first and second screen, the second screen, the interval between 

the second and third screen, etc.  Specifically, we hypothesize that the proportion of cases 

diagnosed at the first screen and the proportion of interval cases will be particularly 

informative about the distribution of preclinical durations.  We also include the mean lead 

time of the trial along with the pattern of diagnoses, as we know this to also be related to 

the length of preclinical durations.  Each of these three measures is discussed briefly below 

for its relationship to the preclinical duration distribution. 

The proportion of cases diagnosed at the first screen records the fraction of 

treatment arm diagnoses that occurred at the initial screening test of the trial.  This 

proportion is expected to be larger when the preclinical durations are longer, as cancers 
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dating back further from the start of the trial can be diagnosed at this first screen.  For a 

simple illustration of this fact, consider two cancers: cancer A with all preclinical durations 

equal to one year and cancer B with all preclinical durations equal to two years.  Assuming 

that the rate of new cancers is the same for both cancer A and cancer B, then it is expected 

that cancer B will have twice as many cases that are eligible for screen detection at the start 

of the trial.  Even with imperfect test sensitivity, cancer B will be expected to have more 

diagnoses at the start of the trial than cancer A.  Moreover, because the rate of new cancers 

is the same for both cancer A and B, the expected number of cases arising after the start of 

the trial should be the same for both, meaning that the proportion of diagnoses made at the 

start of the trial will be higher for cancer B.  Thus, longer preclinical durations present 

more cases able to be detected by the first screening test of the trial, which will result in a 

larger proportion of the overall number of cases detected at this time. 

The proportion of interval cases records the fraction of all cases diagnosed during 

the screening program that are interval diagnoses as opposed to screen detections.  This 

proportion is expected to be larger when a cancer is faster-developing.  Recall that an 

interval case arises when the entire preclinical duration falls between two screening tests 

or when a subject is diagnosed by symptoms after a previous false negative test.  For the 

entire preclinical duration to fall between two screening tests, the preclinical duration can 

be no longer than the screening interval (time between screens).  Moreover, the probability 

of a diagnosis by symptoms decreases as the number of screens increases, so, for a constant 

screening interval, the probability of an interval case is lower for longer preclinical 

durations.  Both situations – the entire preclinical duration falling between two screens or 

diagnosis by symptoms after a previous false negative – favor faster-developing cancers 



83 
 

with shorter preclinical durations, meaning that the proportion of interval cases will 

increase for shorter preclinical durations. 

The mean lead time measures the average amount of time earlier that cancer is 

diagnosed by screening compared to a diagnosis by clinical symptoms, and it can be 

estimated by the mean difference in time from entry to diagnosis between the treatment 

and control arms in the trial data.  Presumably, longer lead times will result from longer 

preclinical durations.  Consider two patients: patient A with a preclinical duration of one 

year and patient B with a preclinical duration of five years.  Each will be screened annually 

starting at 0.5 years into the preclinical duration.  If both patients are diagnosed with 

cancer at this first screen, patient A’s lead time is 0.5 years, and patient B’s lead time is 4.5 

years.  Although patient A is more likely to be diagnosed at this first screen due to a higher 

test sensitivity given that they are 50% of the way through their preclinical duration and 

patient B’s is only 10% complete, patient B could be diagnosed at any of the three 

subsequent annual screens and still have a longer lead time than patient A diagnosed at the 

first screen.  As such, longer preclinical durations present more opportunities for the 

screening test to diagnose cancer and will have longer lead times when such diagnoses 

occur. 

Because the pattern of diagnoses and mean lead time in a screening trial are 

observable, we can use this information to infer about the preclinical duration distribution.  

While our previous discussion has focused on how three such measures – the proportion of 

cases diagnosed at the first screen, the proportion of interval cases, and the mean lead time 

– vary with the relative length of the preclinical durations, our hope is that changes to 

individual preclinical duration distribution parameters – 𝑝, 𝜆𝐹 , or 𝜆𝑆 – will affect each of the 
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measures differently, thus allowing us to reliably estimate all three mixture distribution 

parameters rather than just an overall mean.  In Section 5.1, we will design an experiment 

to assess the effects of changes to preclinical duration distribution parameters (assuming a 

mixture of two exponential distributions) on the pattern of diagnoses and mean lead time 

in a simulated screening trial. 

 

5.1   Simulation Study 
 
We wanted to perform an experiment in which the three parameters in a mixture of two 

exponential distributions for preclinical durations were varied in order to evaluate their 

effects on the pattern of diagnoses and mean lead time in a screening trial.  With three 

parameters to assess, we decided to design a 53 factorial experiment.  The five levels for 

our three preclinical duration distribution parameters were as follows: 𝑝 = 0.1, 0.3, 0.5, 

0.7, or 0.9; 𝜆𝐹 = 1/(0.5 ∗ 365), 1/(0.75 ∗ 365), 1/(1 ∗ 365), 1/(1.5 ∗ 365), or 1/(2 ∗ 365); 

and 𝜆𝑆 = 1/(2 ∗ 365), 1/(3 ∗ 365), 1/(4 ∗ 365), 1/(5 ∗ 365), or 1/(7 ∗ 365).  For each 

combination of parameter values (125 possible scenarios), we would simulate 100 

screening trials in which the preclinical durations were generated from the specified 

distribution.   

 Each simulated screening trial was carried out using the same approach as 

described in Section 4.1.  In summary, preclinical durations were simulated from the 

mixture of two exponential distributions specified by the experimental variables, the time 

between the initiations of two preclinical durations was generated as a Poisson process at a 

rate of 210 new cancers per year, and any case whose preclinical duration overlapped with 

our screening window was included in both the treatment and control arm data 
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(presupposing no overdiagnosis).  For this study, we used a screening program of four 

annual screens, so screening occurred at the start of the simulated trial, as well as at the 

end of the first, second, and third years.  This screening program was selected to mirror the 

HIP trial [15] and the lung cancer screening arm of the PLCO [16].  A more detailed 

description of simulating the screening process can be reviewed in Section 4.1 or Figure 2 

of Kafadar and Prorok [46].  Eight response variables were recorded for each simulated 

trial: the mean lead time, the proportion of cases diagnosed at the each of the four screens, 

and the proportion of interval cases in each of the three between-screen intervals. 

 We discovered in Section 4 that the distribution of preclinical durations and test 

sensitivity have an interactive effect on the mean lead time in a screening trial.  Moreover, 

one of these models cannot be predicted without knowing the other, as the distribution of 

preclinical durations and test sensitivity are confounded in the screening trial’s pattern of 

diagnoses.  Therefore, we will have to assume a model for test sensitivity for our 

experiment without knowing the true sensitivities as a function of preclinical growth.  We 

decided on a model where the initial sensitivity at the start of the preclinical duration was 

20% and the sensitivity increased following the functional form of the Normal cdf to a 

maximum test sensitivity of 90% achieved three-quarters of the way through the 

preclinical duration.  Recognizing that our sensitivity model is only an educated guess, we 

will have to evaluate the sensitivity of our preclinical duration parameter estimates to a 

misspecification of the test sensitivity function later. 

 After carrying out our experiment, we found that the proportion of interval cases 

was roughly the same in each of the three between-screen intervals for a given preclinical 

duration distribution scenario.  The correlations between the proportions of interval cases 
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were 0.94 when comparing the first and second intervals, 0.94 when comparing the first 

and third intervals, and 0.95 when comparing the second and third intervals.   Thus, we 

decided to combine these three responses into one variable: the total proportion of interval 

cases.  This reduced our total number of response variables from eight to six. 

 To determine the significance of associations between the preclinical duration 

distribution parameters and our six response variables, we performed ANOVAs.  In each 

case, the ANOVA model included the three preclinical duration distribution parameters, as 

well as all two- and three-way interactions.  We treated each of the three preclinical 

duration distribution parameters as quantitative variables, rather than categorical, and 

estimated a linear effect for each; we had found little gain in sum of squares relative to the 

loss in degrees of freedom when treating these parameter levels as categorical variables.  

Figure 5.1 displays the ANOVA tables for this analysis.  Overall, we found that all three 

preclinical duration distribution parameters and all two-way interactions between these 

parameters had statistically significant effects on each of our six response variables.  This 

proves our original idea correct, that the mean lead time and pattern of diagnoses in a 

screening trial are affected by the distribution of preclinical durations. 

Reviewing the ANOVA results one-by-one, we see some interesting associations 

between our preclinical duration distribution parameters and the six summary measures 

of the pattern of diagnoses in a trial.  First, the 𝑅2 values are particularly high for the 

response variables of mean lead time (𝑅2 = 98%), the proportion of interval cases 

(𝑅2 = 95%), and the proportion of cases diagnosed at the first screen (𝑅2 = 95%).  This 

suggests that most of the trial-to-trial variability in these measures can be explained by the 

distribution of preclinical durations, so using these measures from a real trial should allow 
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Figure 5.1: Analysis of variance results for the effect of preclinical duration 
distribution parameters on mean lead time and the pattern of diagnoses.  
 
(a) Mean lead time 
 

Factor df SS MS F p-value 
𝑝  1 5,609 5,609 254,142.9 <0.0001 
𝜆𝐹  1 212 212 9,609.5 <0.0001 

𝜆𝑆  1 8,820 8,820 399,634.7 <0.0001 

𝑝 ∗ 𝜆𝐹  1 132 132 5,980.2 <0.0001 

𝑝 ∗ 𝜆𝑆  1 1,942 1,942 87,987.0 <0.0001 

𝜆𝐹 ∗ 𝜆𝑆  1 12 12 538.2 <0.0001 

𝑝 ∗ 𝜆𝐹 ∗ 𝜆𝑆  1 0 0 11.4 0.0007 
Error 12,492 276 0  
 
(b) Proportion of interval cases 
 

Factor df SS MS F p-value 
𝑝  1 81.7 81.7 113,400.0 <0.0001 
𝜆𝐹  1 39.9 39.9 55,330.0 <0.0001 

𝜆𝑆  1 18.8 18.8 26,040.0 <0.0001 

𝑝 ∗ 𝜆𝐹  1 18.4 18.4 25,510.0 <0.0001 

𝑝 ∗ 𝜆𝑆  1 3.1 3.1 4,388.0 <0.0001 

𝜆𝐹 ∗ 𝜆𝑆  1 0.2 0.2 302.9 <0.0001 

𝑝 ∗ 𝜆𝐹 ∗ 𝜆𝑆  1 0.0 0.0 0.5 0.50 
Error 12,492 9.0 0.0  
 
(c) Proportion of cases diagnosed at the first screen 
 

Factor df SS MS F p-value 
𝑝  1 32.9 32.9 128,100.0 <0.0001 
𝜆𝐹  1 7.8 7.8 30,490.0 <0.0001 

𝜆𝑆  1 14.9 14.9 58,030.0 <0.0001 

𝑝 ∗ 𝜆𝐹  1 3.6 3.6 13,990.0 <0.0001 

𝑝 ∗ 𝜆𝑆  1 3.9 3.9 15,090.0 <0.0001 

𝜆𝐹 ∗ 𝜆𝑆  1 0.1 0.1 185.0 <0.0001 

𝑝 ∗ 𝜆𝐹 ∗ 𝜆𝑆  1 0.0 0.0 0.4 0.51 
Error 12,492 3.2 0.0  

 

 

 

 



88 
 

(d) Proportion of cases diagnosed at the second screen 
 

Factor df SS MS F p-value 
𝑝  1 1.52 1.52 10,787.8 <0.0001 
𝜆𝐹  1 0.95 0.95 6,725.8 <0.0001 

𝜆𝑆  1 0.27 0.27 1,931.6 <0.0001 

𝑝 ∗ 𝜆𝐹  1 0.50 0.50 3,520.8 <0.0001 

𝑝 ∗ 𝜆𝑆  1 0.03 0.03 215.2 <0.0001 

𝜆𝐹 ∗ 𝜆𝑆  1 0.01 0.01 46.3 <0.0001 

𝑝 ∗ 𝜆𝐹 ∗ 𝜆𝑆  1 0.00 0.00 1.2 0.28 
Error 12,492 1.76 0.00  
 
(e) Proportion of cases diagnosed at the third screen 
 

Factor df SS MS F p-value 
𝑝  1 0.09 0.09 755.7 <0.0001 
𝜆𝐹  1 0.55 0.55 4,399.7 <0.0001 

𝜆𝑆  1 0.14 0.14 1,120.6 <0.0001 

𝑝 ∗ 𝜆𝐹  1 0.26 0.26 2,067.1 <0.0001 

𝑝 ∗ 𝜆𝑆  1 0.08 0.08 666.1 <0.0001 

𝜆𝐹 ∗ 𝜆𝑆  1 0.00 0.00 28.7 <0.0001 

𝑝 ∗ 𝜆𝐹 ∗ 𝜆𝑆  1 0.00 0.00 0.5 0.49 
Error 12,492 1.57 0.00  
 
(f) Proportion of cases diagnosed at the fourth screen 
 

Factor df SS MS F p-value 
𝑝  1 0.01 0.01 59.7 <0.0001 
𝜆𝐹  1 0.54 0.54 4,344.5 <0.0001 

𝜆𝑆  1 0.40 0.40 3,246.7 <0.0001 

𝑝 ∗ 𝜆𝐹  1 0.24 0.24 1,931.6 <0.0001 

𝑝 ∗ 𝜆𝑆  1 0.18 0.18 1,460.9 <0.0001 

𝜆𝐹 ∗ 𝜆𝑆  1 0.00 0.00 26.9 <0.0001 

𝑝 ∗ 𝜆𝐹 ∗ 𝜆𝑆  1 0.00 0.00 1.4 0.24 
Error 12,492 1.54 0.00  
 
Abbreviations: df, degrees of freedom; SS, sum of squares; MS, mean 
squares; F, F-statistic; 𝑝, proportion of fast-developing cases; 𝜆𝐹 , exponential 
rate parameter for fast-developing cases; 𝜆𝑆, exponential rate parameter for 
slow-developing cases. 
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us to pinpoint the preclinical duration distribution parameters fairly accurately.  Second, it 

seems that different preclinical parameters had the largest effect on different response 

variables.  The mean of the slow-developing cases and their proportion of the mixture 

distribution were the greatest sources of variability in mean lead time and the proportion 

of cases diagnosed at the first screen (Figures 5.1a and 5.1c, respectively), while the mean 

of the fast-developing cases and their proportion in the mixture distribution were the 

greatest sources of variability in the proportion of interval cases (Figure 5.1b).  Finally, 

regarding the proportions of cases diagnosed at the third and fourth screens (Figures 5.1e 

and 5.1f, respectively), the residual sums of squares are greater than the sums of squares 

accounted for by the preclinical duration parameters and their interactions.  This suggests 

that most of the variability from trial-to-trial in these two measures is “random” and not 

explained by the distribution of preclinical durations, so the proportions of cases diagnosed 

at the third and fourth screens may not be as useful to predict the distribution parameters. 

Figure 5.2 presents heatmaps of mean lead time, the proportion of interval cases, 

the proportion of cases diagnosed at the first screen, and the proportion of cases diagnosed 

at the second screen across the 125 experimental scenarios.  Each individual heatmap 

pertains to a certain proportion of fast-developing cases 𝑝, showing changes in a response 

measure with the mean slow-developing preclinical duration in years (1/(𝜆𝑆 ∗ 365)) on the 

x-axis and the mean fast-developing preclinical duration in years (1/(𝜆𝐹 ∗ 365)) on the y-

axis.  Moving from left-to-right and top-to-bottom across the heatmaps shows the effect of 

an increase in the proportion of fast-developing cases 𝑝. 

The heatmaps show several noteworthy trends.  Overall, as the preclinical durations 

increased, either for the fast-developing group, the slow-developing group, or due to a 
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Figure 5.2: Heatmaps of results for different preclinical duration distribution parameters. 
 
(a) Mean lead time 
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(b) Proportion of interval cases 
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(c) Proportion of cases diagnosed at the first screen 
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(d) Proportion of cases diagnosed at the second screen 
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change in the proportion of fast-developing cases, we saw that mean lead time increased, 

the proportion of interval cases decreased, and the proportion of cases diagnosed at both 

the first and second screens increased.  We also observed interesting trends for the 

extreme preclinical duration distributions, where the proportion of fast-developing cases is 

either 10% or 90%.  When only 10% of the cases are fast-developing, we see that the 

response measures are largely unaffected by a change in the mean preclinical duration for 

the fast-developing group; only the slow-developing group mean matters.  For the mean 

lead time, it seems that the mean of the fast-developing group does not have much of an 

effect until over 50% of the cases are fast-developing.  Furthermore, when 90% of the cases 

are fast-developing, we see that mean lead time is the only measure still affected 

whatsoever by the mean of the slow-developing cases; the proportion of interval cases, the 

proportion of cases diagnosed at the first screen, and the proportion of cases diagnosed at 

the second screen are only affected by the mean of the fast-developing cases.  This suggests 

that we may struggle to identify the mean of the smaller component of the mixture 

distribution when the larger component is so dominant.  Finally, when comparing trials in 

which the overall mean preclinical duration is roughly the same, we are able to 

differentiate between the distribution parameters; three examples are shown in Figure 5.3.  

In all three cases, the mean preclinical duration is approximately three years, but the mean 

lead time and pattern of diagnoses vary greatly across the three trial scenarios.  This is 

further evidence suggesting that we should be able to separately identify all three 

preclinical duration distribution parameters from the mean lead time and pattern of 

diagnoses in a trial. 
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Figure 5.3: Comparing results in scenarios with a similar overall preclinical duration 
distribution mean. 
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Proportion 
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at screen 1 

Proportion 
diagnosed 
at screen 2 

0.5 2 4 3.0 2.03 0.16 0.31 0.165 
0.5 1 5 3.0 2.37 0.21 0.29 0.157 
0.7 0.75 5 3.025 1.62 0.33 0.22 0.141 

 

 

5.2   Building a Predictive Model 
 
The results from Section 5.1 suggested that the parameters of the distribution of preclinical 

durations could be inferred from the mean lead time and pattern of diagnoses in a trial.  

This is an important finding that can lead to valuable insights about the underlying disease 

process in the at-risk population covered by the screening trial.  We further discuss the 

importance of these implications in Section 5.4.  We wanted to use our 12,500 simulated 

screening trials to create a predictive model so that the unobservable preclinical duration 

parameters could be estimated from new trial data based on the trial’s observed 

characteristics.  The challenge of developing such a model is that we are trying to jointly 

estimate three variables – 𝑝, 1/(𝜆𝐹 ∗ 365), and 1/(𝜆𝑆 ∗ 365) – rather than a single response.  

To do so, we will use multivariate least-squares linear regression.   

For multiple linear regression with a univariate response, we specify the 

relationship between explanatory and response variables in matrix form as 

 

 𝒚 = 𝑿𝒃 + 𝒆. (5.1) 
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𝒚 is a 𝑛 ∗ 1 vector of responses.  𝑿 = [𝟏𝒏, 𝒙𝟏, … , 𝒙𝒑] is a 𝑛 ∗ (𝑝 + 1) matrix in which each of 

the final 𝑝 columns corresponds to one of the explanatory variables used to predict 𝒚 (the 

first column of 1’s in 𝑿 is included to estimate an intercept for 𝒚); the rows correspond to 

the individual observations.  𝒃 = [𝑏0, 𝑏1, … , 𝑏𝑝]𝑇  is a (𝑝 + 1) ∗ 1 vector of coefficients 

specifying the relationship between 𝑿 and 𝒚, and 𝒆 is a 𝑛 ∗ 1 vector of the prediction errors 

between 𝑿𝒃 and 𝒚.  Using the least-squares method, 𝒃 is estimated so that the sum of 

squared prediction errors, or 𝒆𝑇𝒆, is minimized, i.e.  

 

 �̂� = (𝑿𝑇𝑿)−1𝑿𝑇𝒚. (5.2) 

 

Multivariate least-squares linear regression [47] expands this method from a one-

dimensional response 𝒚 to a 𝑘-dimensional response 𝒀 = [𝒚𝟏, … , 𝒚𝒌].  Because the same 

explanatory variables are used to predict this multivariate response as were used in the 

univariate case, 𝑿 remains the same.  However, 𝒃 now expands to a (𝑝 + 1) ∗ 𝑘 matrix 

𝑩 = [𝒃𝟏, … , 𝒃𝒌], where each column 𝒃𝒋 contains the (𝑝 + 1) coefficients for a different 

response 𝒚𝒋.  The matrix of residuals 𝒆 also expands to a 𝑛 ∗ 𝑘 matrix 𝑬 = [𝒆𝟏, … , 𝒆𝒌], as 

prediction errors are now being made for 𝑘 responses per observation.  The least-squares 

solution still remains the same with 

 

 �̂� = (𝑿𝑇𝑿)−1𝑿𝑇𝒀. (5.3) 

 

The result of multivariate least-squares regression is 𝑘 independent regression equations, 

one for each response 𝒚𝒋: 
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 �̂�𝑖𝑗 = �̂�0𝑗 + ∑ �̂�𝑚𝑗𝑥𝑖𝑚
𝑝
𝑚=1 . (5.4) 

 

We can apply the multivariate least-squares linear regression method to our 𝑘 = 3 

dimensional response 𝒀 = [𝒑, 𝟏/(𝝀𝑭 ∗ 𝟑𝟔𝟓), 𝟏/(𝝀𝑺 ∗ 𝟑𝟔𝟓)].  𝑿 will be a 12,500 ∗ 7 matrix, 

as we have 12,500 simulated trials with six measures recorded from each: the mean lead 

time, the proportion of interval cases, and the proportion of cases diagnosed at each of four 

screens.  The resulting coefficient estimates are displayed in Figure 5.4.  We found that 

adding interactions between our six measures did not improve the model fit, so these terms 

were excluded.  The 𝑅2 values of the individual regression models were 51% for the 

proportion of fast-developing cases, 41% for the mean of the fast-developing cases, and 

66% for the mean of the slow-developing cases.  Given some of the high 𝑅2 values we 

calculated from the ANOVA tables in Figure 5.1, which suggested that the preclinical 

duration distribution parameters and their interactions explained over 90% of the 

variability in three of our measures (mean lead time, proportion of interval cases, and 

proportion of cases diagnosed at the first screen), the 𝑅2 values for the regression models 

to predict the preclinical parameters using those very measures seem awfully low.  Perhaps 

one explanation is that the three regression equations were estimated independently, 

meaning that they did not take into account the correlation between the response 

variables.  For example, the proportion of fast-developing cases and the mean of the fast-

developing cases will be estimated separately based on the mean lead time and pattern of 

diagnoses in a trial even though these two parameters are most definitely dependent on 

one another.   
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Figure 5.4: Coefficients for the multivariate least-squares regression model to predict 
preclinical duration distribution parameters. 
 
Response 𝒑 𝟏/(𝝀𝑭 ∗ 𝟑𝟔𝟓) 𝟏/(𝝀𝑺 ∗ 𝟑𝟔𝟓) 
Intercept -0.49 3.81 10.02 
Mean lead time 0.07 -0.23 2.07 
Proportion of interval cases 1.75 -5.66 -3.84 
Proportion diagnosed at first screen -1.44 -2.49 -21.94 
Proportion diagnosed at second screen 1.30 -1.68 -9.98 
Proportion diagnosed at third screen 2.09 0.13 -6.66 
Proportion diagnosed at fourth screen 2.56 0.68 -4.79 
 

 
 

5.3   Evaluating the Predictive Model: Simulated Examples 
 
To evaluate the accuracy of the multivariate regression model we developed in Section 5.2, 

we wanted to run simulations to assess how it performs for various preclinical duration 

distributions.  We will simulate eight screening trials under a variety of preclinical duration 

distributions, following the same simulation procedure as described in Section 5.1.  Our 

goal is to determine the prediction accuracy of our model for different combinations of 

small, moderate, and large values for 𝑝, 1/(𝜆𝐹 ∗ 365), and 1/(𝜆𝑆 ∗ 365).  The eight scenarios 

are generalized as follows: 

A. slow disease progression 

B. most cases are slow-developing with a few extremely fast 

C. half of cases are very slow-developing, rest are moderately fast 

D. half of cases are very slow-developing, half are very fast-developing 

E. moderate paced disease progression 

F. half of cases are very fast-developing, rest are moderately slow 

G. most cases are fast-developing with a few extremely slow 

H. fast disease progression 
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Figure 5.5: Eight simulated scenarios to test our multivariate regression model. 
 

Scenario 𝒑 
𝟏

𝝀𝑭∗𝟑𝟔𝟓
  

𝟏

𝝀𝑺∗𝟑𝟔𝟓
  

Mean 
Lead 
Time 

Prop. 
Interval 

Cases 

Prop. 
Screen 

1 

Prop. 
Screen 

2 

Prop. 
Screen 

3 

Prop. 
Screen 

4 
A 0.3 1.5 5 3.00 0.12 0.35 0.175 0.148 0.109 
B 0.1 0.5 5 3.31 0.12 0.37 0.177 0.122 0.119 
C 0.5 1 7 3.54 0.18 0.32 0.164 0.129 0.114 
D 0.5 0.5 7 3.75 0.23 0.31 0.158 0.122 0.104 
E 0.5 1 4 1.73 0.22 0.25 0.184 0.140 0.127 
F 0.5 0.5 4 1.81 0.28 0.25 0.144 0.127 0.115 
G 0.9 0.75 7 0.97 0.43 0.15 0.148 0.109 0.118 
H 0.7 0.75 3 0.97 0.35 0.22 0.112 0.141 0.126 
 

    

Figure 5.5 displays the parameters of the eight screening trial scenarios, as well as 

the mean lead time and pattern of diagnoses for each simulated trial. Before proceeding to 

predict the preclinical duration distribution parameters, we checked whether any of these 

individual trials deviated significantly from what is expected given the preclinical duration 

distribution parameters; in comparing these eight results to the mean results from 100 

trials in our heatmaps in Figure 5.2, we found that there were no major differences.  Thus, 

we would expect our model predictions to be fairly accurate, as none of our simulated trials 

produced an extreme result that deviated greatly from the sample data. 

Figure 5.6 compares the true parameter values to the parameter values predicted by 

our multivariate regression model.  Overall, the prediction errors made by our model were 

modest in size.  However, when the mean of the fast-developing cases was set to 0.5 years, 

the smallest value of this parameter in our simulated data, the model would consistently 

overestimate this value.  This same trend of considerable misestimation was generally not 

observed for extreme values of the mean of the slow-developing cases, and the model’s 

predictions were much more accurate for the mean of the fast-developing cases when the  
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Figure 5.6: The prediction results for our eight simulated scenarios. 
 

Scenario 𝒑 
𝟏

𝝀𝑭∗𝟑𝟔𝟓
  

𝟏

𝝀𝑺∗𝟑𝟔𝟓
  �̂� 

𝟏

�̂�𝑭∗𝟑𝟔𝟓
  

𝟏

�̂�𝑺∗𝟑𝟔𝟓
  

A 0.3 1.5 5 0.25 1.37 4.85 
B 0.1 0.5 5 0.23 1.24 5.21 
C 0.5 1 7 0.40 0.98 6.51 
D 0.5 0.5 7 0.46 0.72 7.21 
E 0.5 1 4 0.52 1.35 3.89 
F 0.5 0.5 4 0.54 1.03 4.45 
G 0.9 0.75 7 0.85 0.63 4.36 
H 0.7 0.75 3 0.64 0.96 3.12 
 

 

true mean was larger.  Additionally, in the extremely imbalanced mixture distributions 

from Scenarios B and G, the model struggled to accurately predict the mean of the smaller 

component of the mixture distribution.  In Scenario B, where just 10% of cases were fast-

developing, the mean of this smaller component was grossly overestimated, as was the 

proportion of fast-developing cases.  Similarly, in scenario G, where just 10% of cases were 

slow-developing, the mean of these cases was underestimated considerably.  This follows a 

trend we saw in the heatmaps in which the mean of the smaller component of the mixture 

distribution had little-to-no effect on the trial’s mean lead time and pattern of diagnoses, 

which would make it more difficult to estimate. 

 

5.4   Discussion 
 
Section 3 found that the observed clinical durations in three historic screening trials could 

be modelled using a mixture of two exponential distributions, which suggests that 

unobserved but correlated preclinical durations could feasibly be modelled by this same 

mixture distribution, as well.  In Section 5, we set out to determine whether the parameters 

of this mixture distribution for preclinical durations could be estimated based on the 
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pattern of diagnoses in a trial.  Section 5.1 carried out a factorial experiment to evaluate 

how changes to the three preclinical duration distribution parameters would affect the 

mean lead time, proportion of interval cases, and proportion of diagnoses at each screen in 

a trial.  We found that there was a highly significant interactive effect between the 

parameters on all of our trial outcome measures.  Section 5.2 used multivariate least-

squares linear regression to develop a model to predict the preclinical duration parameters 

based on the simulated trial results from Section 5.1, and Section 5.3 evaluated the 

accuracy of the predictive model using new simulated trials under a variety of preclinical 

duration distributions.  We found that our model was fairly accurate except in some 

extreme distribution scenarios. 

 To our knowledge, ours is the first study to predict the distribution of preclinical 

durations based on the observable pattern of diagnoses in trial data.  Whether or not a 

screening test is beneficial, our study shows that the results of a screening trial can inform 

us about the nature of the underlying disease in the at-risk population covered by the trial.  

This finding is also important because it will allow real trials to be more accurately 

modelled in the simulated setting.  Some attributes, such as the length-biased sampling 

effect on the screen-detections in a trial, which is highly dependent on the distribution of 

preclinical durations, can only be estimated through simulations.  If the mean lead time and 

pattern of diagnoses from a real screening trial can be used to predict the distribution of 

preclinical durations, this distribution can then be used to estimate the length-biased 

sampling effect on the trial.  The relationship between the distribution of preclinical 

durations and length-biased sampling effect will be explored further in Section 6. 
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 Despite the novelty of our research, we did expect the predictive model developed 

in Section 5.2 to be more accurate.  While the prediction errors in Section 5.3 for extreme 

scenarios – such as a highly imbalanced mixture distribution of preclinical durations – 

were reasonable given the trends observed in the simulation study heatmaps, the 

prediction errors for more moderate distributions of preclinical durations are not as easily 

understood.  Because we found such minimal differences in the mean lead time and pattern 

of diagnoses between the individual simulated trials in Section 5.3 and the averages from 

100 such trials in Section 5.1, it seems that a user-driven “trial-and-error” approach to 

match observed trial outcomes to a preclinical duration distribution could be more 

accurate than our predictive model.  Perhaps the best explanation for the prediction errors 

is our choice of methodology to develop the predictive model.  Multivariate least-squares 

linear regression estimates each parameter independently, but, as evidenced by the 

significant interactive effects between the parameters on trial outcomes in Figure 5.1, it is 

clear that dependencies exist between the three parameter specifications for a given mean 

lead time and pattern of diagnoses.  To improve our predictive model, a method for 

correlated responses should be considered, which will be discussed further in Section 7.2. 

Another potential cause of prediction error in estimating preclinical duration 

distribution parameters went unaddressed in our simulated examples in Section 5.3: the 

screening test sensitivity.  The simulation study we designed in Section 5.1 assumed a 

certain model for sensitivity, and each of our simulated examples was carried out using the 

same function; thus, we did not evaluate how the prediction errors would change when the 

model for test sensitivity was misspecified.  We discovered in Section 4 that, when test 

sensitivity is a function of preclinical growth, most attributes of the sensitivity model have 



103 
 

little-to-no effect on the mean lead time of a screening trial, which suggests that 

misspecification of one of these attributes would not have a detrimental effect on the 

prediction for the preclinical duration distribution.  However, the initial test sensitivity at 

the start of the preclinical duration did significantly affect the mean lead time of the trial.  

While we did not explore the effect of a misspecified starting sensitivity on the predicted 

preclinical duration distribution parameters in Section 5, we will assess its impact on the 

length-biased sampling effect in Section 6.   

Our prediction process was based on simulated trial data generated using the same 

screening program as the HIP trial and the lung cancer screening arm of the PLCO.  

Unfortunately, predictions for the distributions of preclinical durations for these trials are 

complicated by two additional factors: refusals and overdiagnosis.  Both are complex to 

model in a simulation, as described below. 

In treatment arm of the HIP trial, 120 of the women diagnosed with cancer, 29% of 

all treatment arm cases, refused screening.  This is an exceedingly high rate, much higher 

than the 12% and 11% of refusals among lung and ovarian cancer treatment arm diagnoses 

in the PLCO, respectively.  Because the predictive model built from our simulated trials 

assumed no refusals, we would need to assume how these subjects would have been 

diagnosed had they not refused screening.  For example, if we assume that it was 

completely random for a subject to refuse screening, we could delete these 120 

observations from the data.  If we assume that the refusals would not have been screen-

detected, we could categorize them as interval or post-screening cases based on the length 

of time between their enrollment in the trial and diagnosis.  However, when the proportion 

of refusals is as high as it is in the HIP trial, any estimate of the mean lead time, proportion 
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of interval cases, or proportion of cases diagnosed at each screen would be highly 

dependent on how we classified the refusals.  We decided that it was best to not make such 

conditional predictions from the HIP trial data.  Even if we wanted to adjust the design of 

our simulation study to include a certain percentage of refusals, we would still need to 

make some assumption regarding the mechanism for why subjects are refusing treatment.  

Because such a high rate of refusals seems to be a unique issue to the HIP trial that does not 

persist in more recent trials like the PLCO, we feel that this does not necessarily warrant 

too much further investigation. 

The lung cancer screening results in the PLCO had overdiagnoses from the chest X-

ray diagnostic test.  Recall that an overdiagnosis occurs when a subject is diagnosed by 

screening with a cancer that never would have progressed to an advanced enough stage to 

be diagnosed in the absence of screening.  As a result, there is no matching subject in the 

control arm of the trial for the overdiagnosed screen-detected subject.  At the end of the 

thirteen-year follow-up period in the PLCO, 1,801 subjects had been diagnosed with lung 

cancer in the treatment arm, while only 1,719 had been diagnosed in the control arm.  This 

difference of eighty-two in cumulative cancer incidence can be attributed to overdiagnosis.  

Not only does overdiagnosis lead to a surplus of diagnoses in the treatment arm, but it also 

makes the trial’s catch-up point unidentifiable.   When the treatment and control arms are 

compared at the end of the follow-up period rather than at the catch-up point, there is an 

excess of post-screening detections in the treatment arm that dilute the benefit of 

screening.  Thus, when a trial includes overdiagnoses, the mean lead time, mean benefit 

time, or even the pattern of diagnoses through catch-up cannot be accurately estimated, as 

these measures are affected by both the overdiagnoses and the high number of post-
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screening detections in the treatment arm.  This explains why we were unable to predict 

the parameters of the distribution of preclinical durations in the lung cancer screening arm 

of the PLCO.   

The design of our simulation study in Section 5.1 could be modified to include a 

certain percentage of refusals or overdiagnoses.  With respect to refusals, a useful direction 

might be to identify characteristics among the available covariates that could predict a 

participant's predilection to refuse treatment.  For example, past studies may suggest that 

the rate varies with age, and a future simulation could properly incorporate a certain 

percentage of refusers per age group.  Similarly, other covariates may inform the likelihood 

of a case being overdiagnosed.  Preclinical duration is an obvious example, as slower-

developing cases are more likely to be overdiagnosed than faster-developing cases by 

definition; generating overdiagnoses in simulations based on preclinical duration length is 

discussed in more detail in Section 7.2.  Other factors, perhaps including a participant's 

weight or comorbidities, could also be useful predictors for creating a more realistic 

simulation of overdiagnoses.  These ideas could be explored in future studies. 
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6. Estimating the Length-Biased Sampling Effect 
 
In Section 5, we found that, assuming the preclinical durations of a certain cancer follow a 

mixture of two exponential distributions, we can predict the parameters of this mixture 

distribution based on the pattern of diagnosis times in screening trial data.  Given the 

results from Section 3, that the clinical durations from three historic screening trials could 

all be modelled using this same mixture of two exponential distributions, we believe that 

adopting this mixture distribution for the preclinical durations is a reasonable assumption 

because of the plausibly strong correlation between a subject’s preclinical and clinical 

durations.  Thus, we can estimate two key components in the model for cancer growth – 

the distributions of preclinical and clinical durations – based on the pattern of diagnoses 

and survival times in real screening trial data, with just the correlation between these two 

components left to be estimated (a challenge which will be discussed further in Section 

7.2). 

 These developments are especially impactful because both Kafadar and Prorok [29] 

and Heltshe et al [12] found that the joint distribution of preclinical and clinical durations 

had a great impact on the length-biased sampling effect in a randomized controlled 

screening trial.  However, neither study modelled these durations using a mixture of two 

exponential distributions.  The distributions used – the bivariate gamma and bivariate 

lognormal, respectively – seemed to be selected for simplicity or model flexibility, as 

neither study verified that their assumed distribution was actually a good fit for cancer 

growth periods.  We believe that the simulation studies carried out by Kafadar and Prorok 

and Heltshe et al should be reassessed using our mixture distribution to generate cancer 
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growth periods, as our model has been proven to fit the distribution of these durations 

well. 

 Recall that there are two quantities of interest when assessing the length-biased 

sampling effect on a screening trial.  𝐸[𝑌∗]/𝐸[𝑌] measures how much longer the average 

preclinical duration is for a screen-detected case relative to the overall mean preclinical 

duration, and 𝐸[𝑍∗]/𝐸[𝑍] measures how much longer the average clinical duration is for a 

screen-detected case relative to the overall mean clinical duration.  Unfortunately, without 

specifying a correlation between the preclinical and clinical durations, 𝐸[𝑍∗]/𝐸[𝑍] cannot 

be estimated, as it is unknown which clinical durations would match with the screen-

detected preclinical durations.  Because we have formulated a model for the preclinical and 

clinical durations based on real trial data, we do not want to hazard a speculative guess at 

the correlation structure between these two cancer growth periods.  As a result, the 

simulation studies we design in Sections 6.1 and 6.2 will focus solely on 𝐸[𝑌∗]/𝐸[𝑌] and 

identifying the factors that augment this length-biased sampling effect. 

 

6.1   Simulation Study: Preclinical Duration Distribution and Sensitivity 
on 𝑬[𝒀∗]/𝑬[𝒀] 

 
In our first simulation study, we assess the significance of preclinical duration distribution 

parameters and test sensitivity model on the length-biased sampling effect 𝐸[𝑌∗]/𝐸[𝑌].  

With regards to the preclinical duration distribution, we will assume that these times 

follow a mixture of two exponential distributions, so there will be three parameters varied 

in our study: 𝑝, the proportion of fast-developing cases; 𝜆𝐹 , the rate parameter for the fast-

developing cases; and 𝜆𝑆, the rate parameter for the slow-developing cases.  For the test 

sensitivity model, we discussed in Section 4 that a realistic test sensitivity model would 
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allow sensitivity to increase as the preclinical duration progresses, and we discovered that 

the only attribute of such a model that meaningfully affected the pattern of diagnoses in a 

trial is the initial test sensitivity at the start of the preclinical duration.  Hence, in our 

simulation study, the starting sensitivity will be the only attribute of the sensitivity model 

that we evaluate; across all scenarios, the maximum test sensitivity will be 90%, the 

maximum test sensitivity will be first achieved three-quarters of the way through the 

preclinical duration, and test sensitivity will increase with preclinical growth following a 

Normal cdf function. 

 We once again decided to use a factorial design for our simulation study, with four 

varied factors.  For the preclinical duration distribution parameters, we defined five levels 

each: 𝑝 = 0.1, 0.3, 0.5, 0.7, or 0.9; 𝜆𝐹 = 1/(0.5 ∗ 365), 1/(0.75 ∗ 365), 1/(1 ∗ 365), 

1/(1.5 ∗ 365), or 1/(2 ∗ 365); and 𝜆𝑆 = 1/(2 ∗ 365), 1/(3 ∗ 365), 1/(4 ∗ 365), 1/(5 ∗ 365), 

or 1/(7 ∗ 365).  For the starting test sensitivity, we defined two levels: 𝛽0 = 0.1 or 0.3.  In 

total, this created 250 possible combinations of levels, and each scenario was simulated 

100 times for replication of the results. 

 Each simulated screening trial was conducted using the same approach as described 

in Section 4.1.  In summary, preclinical durations were simulated from the specified 

mixture of two exponential distributions, the time between the initiations of two preclinical 

durations was generated as a Poisson process at a rate of 210 new cancers per year, and 

any case whose preclinical duration overlapped with our screening window was included 

in both the treatment and control arm data (presupposing no overdiagnosis).  For this 

study, we used a screening program of five annual screens, so screening occurred at the 

start of the simulated trial, as well as at the end of the first, second, third and fourth years.  
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At each screen, cases were tested for cancer with sensitivity that was a function of 

preclinical growth starting at the specified initial sensitivity.  A more detailed description of 

simulating the screening process can be reviewed in Section 4.1 or Figure 2 of Kafadar and 

Prorok [46].  The response variable for each simulated trial was �̅�∗/�̅�, the observed ratio of 

mean screen-detected preclinical duration to overall mean preclinical duration. 

 Figure 6.1 presents heatmaps of our study results.  Each individual heatmap 

pertains to a certain combination of 𝑝 and starting sensitivity, showing changes in �̅�∗/�̅� 

with the mean slow-developing preclinical duration in years (1/(𝜆𝑆 ∗ 365)) on the x-axis 

and the mean fast-developing preclinical duration in years (1/(𝜆𝐹 ∗ 365)) on the y-axis.  

Moving from the left heatmap to the right heatmap shows the effect of an increase in 

starting test sensitivity from 10% to 30%, and moving down the rows of heatmaps shows 

the effect of an increase in the proportion of fast-developing cases 𝑝.  Overall, �̅�∗/�̅� ranges 

from 1.03 to 1.78.  A low value of �̅�∗/�̅� like 1.03 suggests that the screen-detected 

preclinical durations are not much longer than average, which means that the length-

biased sampling effect is minimal.  On the other hand, a value of �̅�∗/�̅� as high as 1.78 

suggests that the mean screen-detected preclinical duration is over 75% longer than the 

average preclinical duration, in which case the length-biased sampling effect is large.   

There heatmaps showed several noteworthy trends.  First, it appears that the 

length-biased sampling effect is more severe when the preclinical durations are shorter.  

�̅�∗/�̅� increases when the proportion of fast-developing cases increases, the mean fast-

developing preclinical duration decreases, or the mean slow-developing preclinical 

duration decreases.  Second, it seems that there is an interactive effect between the 

preclinical duration distribution parameters on �̅�∗/�̅�.   When 𝑝 is low, changes to 𝜆𝑆 have a  
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Figure 6.1: Heatmaps of the length-biased sampling effect �̅�∗/�̅� for different combinations of 
preclinical duration distribution parameters and starting test sensitivity.  
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large impact on the length-biased sampling effect, while changes to 𝜆𝐹 do not.  When 𝑝 is 

high, changes to 𝜆𝐹 have a large impact on the length-biased sampling effect, while changes 

to 𝜆𝑆 do not.  Finally, varying the starting test sensitivity appears to result in a minimal 

change in �̅�∗/�̅�, which suggests that realistic changes to the sensitivity model do not have a 

major impact on the length-biased sampling effect. 

 To determine the significance of these associations viewed in the heatmaps, we 

performed an ANOVA on the variable �̅�∗/�̅�.  Analysis of the log-ratio may have better 

interpretability in some scenarios, but the ANOVA results see minimal change.  The ANOVA 

model included the three preclinical duration distribution parameters and starting test 

sensitivity, as well as all two-, three-, and four-way interactions.  We treated each of the 

three preclinical duration distribution parameters as quantitative variables, rather than 

categorical, and estimated a linear effect for each; we had found that there was little gain in 

sum of squares relative to the loss in degrees of freedom when treating these parameter 

levels as categorical variables.  Figure 6.2 displays the ANOVA table for this analysis.  All 

four factors, as well as most of the two-way interactions and some of the three-way 

interactions, had a statistically significant effect on �̅�∗/�̅�, though the three preclinical 

duration distribution parameters had a much greater effect on �̅�∗/�̅� than the starting test 

sensitivity.  Of the preclinical parameters, the proportion of fast-developing cases 𝑝 had the 

greatest effect, followed by the rate parameter for the fast-developing cases 𝜆𝐹  and, finally, 

the rate parameter for the slow-developing cases 𝜆𝑆.  The most significant interaction terms 

also corresponded to those two- and three-way interactions between preclinical 

parameters, confirming our observation from the heatmaps that there is an interactive 

effect between the preclinical duration distribution parameters on �̅�∗/�̅�. 
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Figure 6.2: Analysis of variance results for the effect of preclinical duration 
distribution parameters and starting test sensitivity on �̅�∗/�̅�.  
 

Factor df SS MS F p-value 
Sensitivity 1 0.1 0.1 23.8 <0.0001 
𝜆𝐹  1 173.0 173.0 56,109.8 <0.0001 

𝜆𝑆  1 42.2 42.2 13,688.1 <0.0001 

𝑝  1 274.1 274.1 88,934.3 <0.0001 

Sensitivity ∗ 𝜆𝐹 1 0.0 0.0 0.9 0.34 

Sensitivity ∗ 𝜆𝑆 1 0.6 0.6 189.5 <0.0001 

Sensitivity ∗ 𝑝 1 0.0 0.0 11.4 0.0007 

𝜆𝐹 ∗ 𝜆𝑆  1 0.6 0.6 199.3 <0.0001 

𝜆𝐹 ∗ 𝑝  1 96.5 96.5 31,304.3 <0.0001 

𝜆𝑆 ∗ 𝑝  1 7.7 7.7 2,493.4 <0.0001 

Sensitivity ∗ 𝜆𝐹 ∗ 𝜆𝑆 1 0.0 0.0 6.5 0.01 
Sensitivity ∗ 𝜆𝐹 ∗ 𝑝 1 0.0 0.0 0.1 0.75 
Sensitivity ∗ 𝜆𝑆 ∗ 𝑝 1 0.0 0.0 9.1 0.003 
𝜆𝐹 ∗ 𝜆𝑆 ∗ 𝑝  1 0.2 0.2 67.2 <0.0001 

Sensitivity ∗ 𝜆𝐹 ∗ 𝜆𝑆 ∗ 𝑝 1 0.0 0.0 3.7 0.05 
Error 24,984 77.0 0.0  
 
Abbreviations: df, degrees of freedom; SS, sum of squares; MS, mean 
squares; F, F-statistic. 
 

 

It is worth noting that some factors and their interactions appeared to be highly 

statistically significant despite explaining very little of the variability in the length-biased 

sampling effect.  An explanation for this phenomenon is the extremely large sample size 

ofthis experiment; with 250 possible combinations of factor levels and 100 replicates of 

each scenario, our total sample size was 25,000 simulated screening trials.  This drove the 

residual degrees of freedom very high, resulting in low mean squared error, which allows 

even the smallest of effects to appear statistically significant.  This explains why a factor 

like starting sensitivity, which had minimal effect on �̅�∗/�̅� in the heatmaps and a low sum 

of squares in the ANOVA, could be deemed significant.  
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6.2   Simulation Study: Preclinical Duration Distribution and Screening 
Program on 𝑬[𝒀∗]/𝑬[𝒀] 

 
We discovered in our first simulation study in Section 6.1 that changes to preclinical 

duration distribution parameters had a great impact on the length-biased sampling effect 

𝐸[𝑌∗]/𝐸[𝑌], whereas realistic changes to the starting value of a function that models test 

sensitivity based on preclinical growth had minimal impact on 𝐸[𝑌∗]/𝐸[𝑌].  These results 

suggest that, as long as the model for screening test sensitivity starts within a reasonable 

range, we can focus primarily on the preclinical duration parameters when quantifying the 

length-biased sampling effect.  However, we know from Kafadar and Prorok [29] and 

Heltshe et al [12] that 𝐸[𝑌∗]/𝐸[𝑌] is also highly affected by the screening program applied 

in a trial.  Because we want to reexamine the conclusions from these two studies when the 

preclinical durations are generated from a mixture of two exponential distributions, we 

now also want to assess the effect of the screening program on 𝐸[𝑌∗]/𝐸[𝑌]. 

 In our second simulation study, the three preclinical duration distribution 

parameters (𝑝, 𝜆𝐹 , and 𝜆𝑆) and the screening program are varied to evaluate changes in the 

length-biased sampling effect.  This second study was again conducted using a factorial 

design, just as the first.  Each of the preclinical duration distribution parameters was 

allowed to vary between the same five levels as defined in Section 6.1.  With regards to the 

screening program, each case would be screened for seven years, but the screening interval 

had three levels: Δ = 1, 2, or 3.  When Δ = 1, subjects were screened at the start of the trial, 

as well as after years 1, 2, 3, 4, 5, and 6, for a total of seven screens; when Δ = 2, subjects 

were screened at the start of the trial, as well as after years 2, 4, and 6, for a total of four 

screens; and, when Δ = 3, subjects were screened at the start of the trial, as well as after 
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years 3 and 6, for a total of three screens.  With five levels for each preclinical duration 

distribution parameter and three levels for the screening interval, we created 375 possible 

combinations, and each scenario was simulated 100 times for replication of the results. 

 This second simulation study was carried out using the exact same approach as the 

first one described in Section 6.1.  However, the screening program now varied while the 

function for test sensitivity remained constant.  For this study, sensitivity begins at 20% at 

the start of a subject’s preclinical duration and first reaches the maximum sensitivity of 

90% three-quarters of the way through the preclinical duration; the increase in test 

sensitivity with preclinical growth was modelled using a Normal cdf function. 

 Figure 6.3 presents heatmaps of our study results.  Each individual heatmap 

pertains to a certain combination of 𝑝 and Δ, showing changes in �̅�∗/�̅� with the mean slow-

developing preclinical duration in years (1/(𝜆𝑆 ∗ 365)) on the x-axis and the mean fast-

developing preclinical duration in years (1/(𝜆𝐹 ∗ 365)) on the y-axis.  Moving from left-to-

right and top-to-bottom on a page of heatmaps shows the effect of an increase in the 

proportion of fast-developing cases 𝑝, and moving from page-to-page of heatmaps shows 

the effect of an increase in the screening interval Δ.  Overall, �̅�∗/�̅� ranges from 1.06 to 2.57.  

While the smallest observed ratio is roughly the same as in the first simulation study, the 

largest is much higher now that Δ may be as large as three years.  This suggests that the 

screening program can have a major impact on the length-biased sampling effect in a 

screening trial.  A value of �̅�∗/�̅� greater than 2 implies that the mean screen-detected 

preclinical duration is over twice as long as the average preclinical duration.   

Generally, the scenarios with these extremely large length-biased sampling effects 

tend to match an unrealistically long screening interval with a very fast-growing cancer.   
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Figure 6.3: Heatmaps of the length-biased sampling effect �̅�∗/�̅� for different combinations 
of preclinical duration distribution parameters and screening interval. 
 

 
 

 

 
 

 

 



117 
 

 
 

 

 
 

 

 



118 
 

 
 

 

 
 

 

 
 

 



119 
 

For example, the largest value of �̅�∗/�̅� occurs with 𝑝 = 0.9, 𝜆𝐹 = 1/(0.5 ∗ 365), 

𝜆𝑠 = 1/(7 ∗ 365), and Δ = 3; in this scenario, the mean preclinical duration is 1.15 years, 

yet patients are only being screened every three years.  In reality, such a fast-developing 

cancer would have to be screened more often, as far too many subjects would be diagnosed 

in between screens with such a large interval Δ.  When evaluating the length-biased 

sampling effects estimated by our simulations, it is important to recognize that not all 

scenarios match a reasonable screening interval to the distribution of preclinical durations. 

As with the previous heatmaps, these heatmaps suggest several important trends, 

some familiar from the first simulation study and some new.  First, it still appears that the 

length-biased sampling effect is more severe when the preclinical durations are shorter 

and that there is an interactive effect between the preclinical duration distribution 

parameters on �̅�∗/�̅�.  Second, the length-biased sampling effect is also more severe when 

the screening interval is longer.  With a greater time period in between screens, it is likely 

that fewer cases are being screen-detected and more interval cases are arising.  As more 

fast-developing cases are diagnosed in between screens, the mean screen-detected 

preclinical duration �̅�∗ will increase.  Finally, it seems that there may be an interactive 

effect between preclinical duration distribution parameters and the screening interval, as 

well.  The magnitude of changes �̅�∗/�̅� resulting from changes in a preclinical parameter 

appears to be dependent on the value of Δ, such that small changes to a preclinical 

parameter have a greater effect on �̅�∗/�̅� when Δ is larger. 

We may also compare results in Figure 6.1 to similar scenarios with Δ = 1 in Figure 

6.3.  If all preclinical duration distribution parameters are the same between two 

comparison scenarios, then the only difference is the starting sensitivity (10 or 30% for our 
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first simulation study vs. 20% for our second simulation study) and the number of annual 

screens (five for our first simulation study vs. seven for our second simulation study).  

Because we know that the starting sensitivity has a minimal effect on �̅�∗/�̅�, any differences 

we see are most likely explained by the change in the number of screens.  For most cases, 

we see that adding additional screens increases the length-biased sampling effect, though 

this increase is usually very small, no larger than 0.05.  However, in extreme scenarios 

where the preclinical durations are predominantly very fast with a small fraction of very 

slow cases – consider 𝑝 = 0.9, 1/(𝜆𝐹 ∗ 365) = 0.5, and 1/(𝜆𝑆 ∗ 365) = 7 – the increase in 

number of screens leads to a much larger increase in �̅�∗/�̅� greater than 0.1.  In general, we 

can conclude that adding additional screens will augment the length-biased sampling effect 

in a trial, though this increase is usually trivial. 

To determine the significance of these associations viewed in Figure 6.3, we 

performed an ANOVA on the variable �̅�∗/�̅�.  Analysis of the log-ratio may have better 

interpretability in some scenarios, but the ANOVA results see minimal change.  The ANOVA 

model included the three preclinical duration distribution parameters and screening 

interval, as well as all two-, three-, and four-way interactions.  Similar to the ANOVA for our 

first simulation study in Section 6.1, we treated each of the four factors as quantitative 

variables, rather than categorical, and estimated a linear effect for each, as there was little 

gain in sum of squares relative to the loss in degrees of freedom when treating these 

variables as categorical.  Figure 6.4 displays the ANOVA table for this analysis.  All four 

factors, as well as the large majority of the interaction terms, had statistically significant 

effects on �̅�∗/�̅�.  Of the four individual effects, the proportion of fast-developing cases 𝑝 had 

the greatest impact, followed by the rate parameter for the fast-developing cases 𝜆𝐹 , the  
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Figure 6.4: Analysis of variance results for the effect of preclinical 
duration distribution parameters and screening interval on �̅�∗/�̅�.  
 

Factor df SS MS F p-value 
Δ  1 360.4 360.4 55,800.0 <0.0001 
𝜆𝐹  1 561.2 561.2 86,870.0 <0.0001 

𝜆𝑆  1 84.3 84.3 13,060.0 <0.0001 

𝑝  1 885.9 885.9 137,100.0 <0.0001 

Δ ∗ 𝜆𝐹  1 16.1 16.1 2,497.0 <0.0001 

Δ ∗ 𝜆𝑆  1 2.6 2.6 403.2 <0.0001 

Δ ∗ 𝑝  1 35.9 35.9 5,559.0 <0.0001 

𝜆𝐹 ∗ 𝜆𝑆  1 0.0 0.0 0.1 0.72 

𝜆𝐹 ∗ 𝑝  1 298.4 298.4 46,190.0 <0.0001 

𝜆𝑆 ∗ 𝑝  1 55.9 55.9 8,661.0 <0.0001 

Δ ∗ 𝜆𝐹 ∗ 𝜆𝑆  1 0.1 0.1 9.4 0.002 

Δ ∗ 𝜆𝐹 ∗ 𝑝  1 10.7 10.7 1,663.0 <0.0001 

Δ ∗ 𝜆𝑆 ∗ 𝑝  1 6.0 6.0 926.6 <0.0001 

𝜆𝐹 ∗ 𝜆𝑆 ∗ 𝑝  1 4.6 4.6 708.1 <0.0001 

Δ ∗ 𝜆𝐹 ∗ 𝜆𝑆 ∗ 𝑝  1 0.8 0.8 118.0 <0.0001 

Error 37,484 242.1 0.0  
 
Abbreviations: df, degrees of freedom; SS, sum of squares; MS, mean 
squares; F, F-statistic. 
 

 

screening interval Δ, and, finally, the rate parameter for the slow-developing cases 𝜆𝑆.  

Moreover, as we hypothesized from the heatmaps, there were significant interactions 

between the preclinical parameters, as well as significant interactions between preclinical 

parameters and the screening interval.  However, some of the statistically significant 

interaction terms actually had low sums of squares, suggesting that they explain very little 

of the variability in �̅�∗/�̅�; nonetheless, even the smallest effects would be determined 

statistically significant given our sample size of 37,500 simulated trials. 
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6.3   Sensitivity Analysis 
 
In Section 6.2, we carried out a simulation study and generated heatmaps that could be 

used to estimate the length-biased sampling effect given a certain screening program and 

preclinical duration distribution.  Because we derived a method for estimating preclinical 

duration distribution parameters using the pattern of diagnoses from real trial data in 

Section 5, we can now use such parameter estimates to quantify 𝐸[𝑌∗]/𝐸[𝑌] in said trials.  

However, we know that our method for estimating preclinical duration parameters is not 

exact, and the parameters can be misestimated in some cases.  As such, it is important to 

assess the sensitivity of the estimate of the length-biased sampling effect to a 

misspecification of preclinical duration distribution parameters. 

 For this analysis, we will revisit the eight simulated examples from Section 5.3.  For 

each scenario, we know the true preclinical duration distribution parameters, and these 

can be used to determine the true mean length-biased sampling effect 𝐸[𝑌∗]/𝐸[𝑌] for such 

a distribution.  We also have the estimated parameters from each simulated trial scenario, 

and we can also use our heatmaps to determine the mean length-biased sampling effect for 

this estimated distribution.  Comparing the two results will allow us to evaluate the 

sensitivity of 𝐸[𝑌∗]/𝐸[𝑌] to parameter misspecification.  It is worth noting that the 

simulated examples in Section 5.3 were trials of four annual screens, whereas the estimates 

of 𝐸[𝑌∗]/𝐸[𝑌] from Section 6.2 were from trials of seven annual screens.  Although 

𝐸[𝑌∗]/𝐸[𝑌] would change with the number of screens, we will ignore this for now, as our 

primary concern is the sensitivity of 𝐸[𝑌∗]/𝐸[𝑌] to preclinical duration distribution 

parameter misspecification. 
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Figure 6.5: Sensitivity of 𝐸[𝑌∗]/𝐸[𝑌] to misspecification of the preclinical duration 
distribution parameters. 
 
(a) Comparing the true parameters to their estimates for each scenario with differences 
highlighted in red 
 

Scenario 
True Parameters Estimated Parameters 

𝒑 
𝟏

𝝀𝑭∗𝟑𝟔𝟓
  

𝟏

𝝀𝑺∗𝟑𝟔𝟓
  �̂� 

𝟏

�̂�𝑭∗𝟑𝟔𝟓
  

𝟏

�̂�𝑺∗𝟑𝟔𝟓
  

A 0.3 1.5 5 0.3 1 5 
B 0.1 0.5 5 0.3 1.5 5 
C 0.5 1 7 0.3 1 7 
D 0.5 0.5 7 0.5 0.75 7 
E 0.5 1 4 0.5 1 3 
F 0.5 0.5 4 0.5 1 5 
G 0.9 0.75 7 0.9 0.75 4 
H 0.7 0.75 3 0.7 1 3 
 
(b) Comparing the true 𝐸[𝑌∗]/𝐸[𝑌] to the estimate under misspecified parameters with 
relative errors in parenthesis. 
 

Scenario True 𝑬[𝒀∗]/𝑬[𝒀] Estimated 𝑬[𝒀∗]/𝑬[𝒀] 
A 1.13 1.17 (4%) 
B 1.12 1.13 (1%) 
C 1.20 1.13 (6%) 
D 1.32 1.25 (5%) 
E 1.26 1.29 (2%) 
F 1.41 1.23 (13%) 
G 1.57 1.56 (1%) 
H 1.45 1.35 (7%) 
 

 

Because not all of our parameter estimates match with one of the five levels we 

tested for each parameter when calculating 𝐸[𝑌∗]/𝐸[𝑌] in Section 6.2, they were rounded 

to a nearby level for this sensitivity analysis.  The true parameters and rounded parameter 

estimates are displayed in Figure 6.5a.  We see that one parameter is misspecified in some 

scenarios, while multiple parameters may be misestimated in others.  Compared to the 

actual parameter estimates in Figure 5.6 of Section 5.3, we see that our rounding generally 

worsens the magnitude of prediction errors for our parameters.  This suggests that any 
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differences we see between true and estimated 𝐸[𝑌∗]/𝐸[𝑌] for our example scenarios are 

likely to be larger than the differences we would see in practice from reasonable parameter 

misspecification.  

Figure 6.5b compares 𝐸[𝑌∗]/𝐸[𝑌] under the true and estimated parameter values 

for each scenario.  We see that the effect of parameter misspecification is small in most 

scenarios with five of the eight relative errors less than 5%.  The relative errors are larger 

for the misestimates in scenarios C, F, and H.  The error in scenario C is driven by a 

misspecification of the proportion of fast-developing cases, which matches with our 

conclusion from Figure 6.4 that this parameter has the greatest effect on 𝐸[𝑌∗]/𝐸[𝑌].  The 

proportion of fast-developing cases is also misspecified in scenario B, but this 

overestimation appears to be balanced out by simultaneously overestimating the mean of 

these fast-developing cases.  In scenario F, both subgroup means are overestimated while 

the proportion of fast-developing cases is correctly specified, meaning that preclinical 

durations from the estimated distribution would be much longer than preclinical durations 

from the true distribution, which explains the underestimated length-biased sampling 

effect.  Finally for scenario H, the mean of the fast-developing cases is misspecified, and, 

because the distribution is predominantly fast-developing, this has a larger effect on 

𝐸[𝑌∗]/𝐸[𝑌].  We conclude that 𝐸[𝑌∗]/𝐸[𝑌] is not particularly sensitive to minor preclinical 

duration distribution parameter misspecifications unless these errors pertain to the 

proportion of fast-developing cases or the mean of the larger component in the mixture 

distribution.  
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6.4   Discussion 
 
Section 5 found that the parameters of an exponential mixture distribution of preclinical 

durations for a certain cancer could be estimated using the pattern of diagnoses in a 

screening trial.  In Section 6, we set out to estimate the length-biased sampling effect on 

screen-detected preclinical durations in a trial based on their underlying distribution.  The 

simulation study results in Sections 6.1 and 6.2 suggest than the preclinical duration 

distribution parameters and the screening interval all have a great impact on 𝐸[𝑌∗]/𝐸[𝑌], 

while reasonable changes to the model for screening test sensitivity have a minimal effect 

on the length-biased sampling effect.  Furthermore, Section 6.3 found that major errors 

needed to be made in the specification of preclinical duration distribution parameters in 

order for the length-biased sampling effect to be significantly misestimated.  Combining the 

results from Sections 6.1 and 6.3 suggests that misspecifying the test sensitivity has a 

minimal impact on the length-biased sampling effect, and any resulting misestimation of 

preclinical parameters due to misspecified sensitivity would also have a small effect on 

𝐸[𝑌∗]/𝐸[𝑌] so long as the error is minor. 

 We compared our estimates for 𝐸[𝑌∗]/𝐸[𝑌] to the results from Kafadar and Prorok 

[29] in similar scenarios.  Their study considered much more drastically different 

preclinical duration distributions, but their scenarios A, B, and E presented examples 

where the mean of the fast-developing cases, the mean of the slow-developing cases, and 

the proportion of fast-developing cases matched with a combination of parameter levels 

observed in our simulation studies.  Comparing the results from Figure 5 in their paper to 

Figure 6.3 in ours shows that the differences in estimates for 𝐸[𝑌∗]/𝐸[𝑌] are moderate in 

most cases.  One explanation for such differences could be that Kafadar and Prorok 
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assumed constant test sensitivity instead of determining sensitivity based on preclinical 

growth.  However, the general proximity of the estimates between the two studies is 

particularly interesting because Kafadar and Prorok simulated preclinical durations from a 

mixture of gamma distributions, while we simulated preclinical durations from a mixture of 

exponential distributions.  This suggests that the distribution type for preclinical durations 

may have a much lesser impact on the length-biased sampling effect than the mean(s) of 

said distribution.  Although we did not consider a misspecification of the distribution type 

in our sensitivity analysis, it seems that such an error would have a minimal effect on 

𝐸[𝑌∗]/𝐸[𝑌] so long as the distributions have similar means. 

 We also compared conclusions with Heltshe et al [12].  Heltshe et al found larger 

differences in the length-biased sampling effect when comparing trials with constant 

sensitivity to those where sensitivity was a function of preclinical growth, but smaller 

differences when minor realistic adjustments were made to this preclinical growth-related 

test sensitivity model.  This is similar to our conclusion that adjusting the initial test 

sensitivity at the start of the preclinical duration had a minor effect on 𝐸[𝑌∗]/𝐸[𝑌].  

Additionally, we compared our estimates for 𝐸[𝑌∗]/𝐸[𝑌] to the results from Heltshe et al in 

similar scenarios.  Coincidentally, scenarios A, B, and E again presented examples where 

the mean of the fast-developing cases, the mean of the slow-developing cases, and the 

proportion of fast-developing cases matched with a combination of parameter levels 

observed in our simulation studies.  Comparing the results from Table 5 in their paper to 

Figure 6.3 in ours shows that the differences in estimates for 𝐸[𝑌∗]/𝐸[𝑌] are rather small.  

The minor differences we see could be attributed to Heltshe et al’s more quickly increasing 

test sensitivity function or the fact that they simulated preclinical durations from a mixture 
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of lognormal distributions instead of exponentials.  Regardless, the fact that these 

differences were so small again suggests that the distribution type for preclinical durations 

may have a much lesser impact on the length-biased sampling effect than the mean(s) of 

said distribution. 

Because we did not specify the correlation between preclinical and clinical duration, 

we were unable to quantify the length-biased sampling effect on the screen-detected 

clinical durations, or 𝐸[𝑍∗]/𝐸[𝑍], as we do not know which clinical durations match with 

which preclinical durations.  Remember that 𝐸[𝑍∗]/𝐸[𝑍] is particularly important for 

evaluating the effect of length-biased sampling on benefit time, as the benefit time 

compares survival from diagnosis between screened and unscreened subjects, and an 

estimate may be inflated if the screen-detected subjects have longer clinical durations than 

their unscreened counterparts.  Focusing solely on simulating the diagnosis times from 

screening in the preclinical durations, we were able to estimate 𝐸[𝑌∗]/𝐸[𝑌], length-biased 

sampling effect on the screen-detected preclinical durations, which is informative for the 

effect of length-biased sampling on lead time.  Lead time compares differences in time to 

diagnosis between screened and unscreened subjects, and an estimate may be inflated if 

the screen-detected subjects have longer preclinical durations than their unscreened 

counterparts.  If we believe benefit time to be correlated with lead time, then knowing 

𝐸[𝑌∗]/𝐸[𝑌] could still give an indication of 𝐸[𝑍∗]/𝐸[𝑍].  However, this idea should be 

studied further, as several other factors, including the correlation between preclinical and 

clinical durations, likely affect the relationship between 𝐸[𝑌∗]/𝐸[𝑌] and 𝐸[𝑍∗]/𝐸[𝑍]. 
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7. Conclusions and Future Research 
 
7.1   Conclusions 
 
Before a cancer screening test is recommended to the general at-risk population, it is 

evaluated through a randomized controlled screening trial, where estimates of the mean 

lead and benefit times from screening may be calculated.  However, cancers with longer 

preclinical durations are more likely to be screen-detected than faster-developing cases, so 

the screen-detected cancers in a trial are a length-biased sample of all cancers in the 

population, which causes the aforementioned measures to be overestimated.  Furthermore, 

we know that the severity of the length-biased sampling effect is highly dependent on the 

joint distribution of preclinical and clinical durations from previous simulation studies [12, 

29].  Thus, we set out to develop better methods of estimating these distributions so that 

the length-biased sampling effect on a real trial can be more accurately assessed. 

 In Section 3, we analyzed clinical durations from the control arms of three historic 

screening trials – the HIP trial and the lung and ovarian cancer screening arms of the PLCO 

– and found that no common survival distribution approximated the data well.  This 

suggested that clinical durations may be modelled better by a mixture distribution, where 

one group of cases is faster-developing and the other is slower-developing.  We developed 

an iterative procedure to estimate the three parameters in a mixture of two exponential 

distributions and recommended common sense adjustments to make in the presence of 

heavy censoring.  Our method would be best described as exploratory and user-driven, and 

it is involves no likelihood maximization like the E-M algorithm commonly used to specify 

mixture distribution parameters, but it is much simpler to use.  Applying our procedure, we 
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found that a mixture of two exponential distributions approximated the clinical durations 

well for all three historic screening trials, and we believe that our method could also be 

applied to other survival time data in the future. 

 Discovering that clinical durations for multiple cancer types could be modelled 

using a mixture of two exponential distributions was a key result for our research, as we 

leveraged this finding to generate preclinical durations from the same type of distribution.  

The seemingly strong correlation between a subject’s preclinical and clinical duration made 

us feel comfortable with this distribution assumption.  Although preclinical durations are 

unobservable, making parameter estimation more difficult than it is for clinical durations, 

we believed that the mean lead time and pattern of diagnoses in a trial would allude to the 

preclinical parameter values.  Our simulation study in Section 5 illustrated a highly 

significant interactive effect between the three parameters of a mixture of two exponential 

distributions on trial outcomes.  We used these simulated trials to train a multivariate 

regression model to predict the preclinical duration distribution parameters based on the 

mean lead time, proportion of interval cases, and proportion of cases diagnosed at each 

screen in a trial.  Our model was able to predict the preclinical duration distribution 

parameters fairly accurately in most scenarios, though it did struggle somewhat 

understandably when estimating the mean of the smaller component of the mixture 

distribution in extremely imbalanced scenarios. 

 Returning to the primary goal of our research, we wanted to assess the length-

biased sampling effect under a variety of preclinical duration distribution scenarios in 

Section 6.  We found that changes to this distribution had a significant effect on the mean 

length of screen-detected preclinical durations relative to the average preclinical duration.  
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Specifically, when the preclinical durations become shorter due to a change in any 

distribution parameter, the length-biased sampling effect becomes more severe.  Moreover, 

the length-biased sampling effect becomes more severe for a given preclinical duration 

distribution when the screening interval is increased.  While these findings are similar to 

previous studies, the advantage of our approach is that the length-biased sampling effect 

for a real trial could be estimated from the distribution of preclinical durations in that trial, 

which we can predict using the model from Section 5. 

 We recognized that our model predictions for preclinical duration distribution 

parameters in Section 5 were not exact, and we showed in Section 4 that realistic changes 

to the assumed test sensitivity function could also have an impact on the trial outcomes we 

used to predict these parameters.  To evaluate the impact of such misspecifications on the 

estimated length-biased sampling effect, we carried out a sensitivity analysis in Section 6.3.  

Test sensitivity misspecification had a trivial impact on the length-biased sampling effect, 

and we found that larger errors needed to be made in estimating the mixing proportion or 

the mean of the larger mixture distribution component in order for the length-biased 

sampling effect to be significantly misestimated for a given preclinical duration 

distribution.  Overall, our results from the limited scenarios we considered show promise 

towards being able to quantify the length-biased sampling effect on a real screening trial. 

 

7.2   Challenges and Future Research 
 
Although our research has produced many novel and significant results, the project was not 

without its challenges, and we want to conclude with some areas for improvement and 

further study.  
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 Perhaps the biggest highlight of our research came in Section 5 when we discovered 

that the parameters of the distribution of preclinical durations could be predicted based on 

the mean lead time and pattern of diagnoses in a trial.  To our knowledge, we are the first 

to address this association and attempt to develop a predictive model for preclinical 

parameters that can be used on real trial data.  However, the prediction accuracy of our 

model was not as high as we would have expected.  Multivariate least-squares linear 

regression fit three separate regression equations – one for each parameter to be estimated 

– such that each equation minimized the sum of squared residuals across our 12,500 

simulated trials for the parameter in question.  As a result, when using new data to predict 

preclinical duration distributions as we did in Section 5.3, each parameter was estimated 

independently.  We know that, conditional on the mean lead time and pattern of diagnoses, 

there are dependencies, and perhaps strong ones, between the three preclinical duration 

parameters.  For example, if the estimate for the proportion of fast-developing cases were 

to increase, we would expect the mean of the fast-developing cases would have to increase 

as well if the mean lead time and pattern of diagnoses were to be maintained.  This 

suggests that a method for correlated responses would create a more accurate predictive 

model than multivariate least-squares linear regression.  Moreover, we believe that the 

functional relationship between the preclinical duration distribution parameters 𝑌 and the 

mean lead time and pattern of diagnoses in a trial 𝑋 should be examined more closely.  

Fitting a nonlinear function to 𝑋 could also improve the prediction accuracy of the model.  

In all, we know that our discovery of a link between the distribution of preclinical durations 

and the mean lead time and pattern of diagnoses in a trial is a step in the right direction, 
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but further work is needed to improve on a model to predict these preclinical parameters 

from trial outcomes. 

We also failed to thoroughly consider other mixture distributions besides the 

mixture of two exponentials when modelling the cancer growth periods.  Discovering in 

Section 3 that a mixture of two exponential distributions fit the clinical durations from 

three historic screening trials well was an important result for our project, as we 

proceeded to assume that the same distribution type could be used to model the 

unobservable preclinical durations.  The mixture of two exponential distributions 

approximated very well the clinical durations from the HIP trial, PLCO-Lung, and PLCO-

Ovarian, but of course mixtures of other distributions would involve more parameters to be 

estimated and hence may yield better fits.  In Section 6, we evaluated the sensitivity of the 

length-biased sampling effect 𝐸[𝑌∗]/𝐸[𝑌] to misspecification of the initial test sensitivity or 

preclinical duration distribution parameters, but we did not consider a misspecification of 

the form of this distribution.  When comparing our estimates for 𝐸[𝑌∗]/𝐸[𝑌] to the results 

from similar scenarios in Kafadar and Prorok [29] and Heltshe et al [12], we found similar 

estimates despite these studies modelling the preclinical durations using the gamma and 

lognormal distributions, respectively.  These parallels suggest that other attributes of the 

distribution of preclinical durations, such as the proportion of fast-developing cases or the 

subgroup means, are driving the length-biased sampling effect 𝐸[𝑌∗]/𝐸[𝑌] rather than the 

form of the distribution, which would mean that modelling the preclinical durations with a 

different mixture distribution would change very little in our results and conclusions.  

Nonetheless, other mixture distributions to model preclinical and clinical durations should 

be explored in future work. 



133 
 

Another limitation of our project is that we were not able to fully specify the joint 

distribution of preclinical and clinical durations.  We developed an exploratory method in 

Section 3 to estimate the parameters of a mixture of two exponential distributions fit to 

observed clinical durations, and we created a predictive model using simulated trials in 

Section 5 to estimate the same parameters for preclinical durations based on the pattern of 

diagnoses in a trial.  However, we did not attempt to estimate the correlation between 

preclinical and clinical durations necessary to complete the joint distribution.  The 

correlation helps to determine which preclinical durations match with which clinical 

durations.  Without specifying the correlation between preclinical and clinical durations in 

Section 6, we were unable to estimate the length-biased sampling effect on the clinical 

durations, 𝐸[𝑍∗]/𝐸[𝑍], which is particularly informative for the bias of mean benefit time 

estimates.  The simulation studies from Kafadar and Prorok [29] and Heltshe et al [12] 

found that changes to the assumed correlation had a significant effect on 𝐸[𝑍∗]/𝐸[𝑍]. 

 A dissertation committee member has suggested using a transition matrix to help 

specify the correlation between preclinical and clinical durations.  Assuming that there are 

two states to both the preclinical and clinical phases – fast-developing (𝐹) or slow-

developing (𝑆) – a transition matrix between the phases would look something like 

 

 𝑃 = [
𝑃𝐹𝐹 𝑃𝐹𝑆

𝑃𝑆𝐹 𝑃𝑆𝑆
]. (7.1) 

 

Starting with those slow-developing cases in the preclinical phase, we would expect 𝑃𝑆𝐹 , 

the probability of transitioning from slow preclinical growth to fast clinical growth, to be 

very low and, consequently, 𝑃𝑆𝑆, the probability of transitioning from slow preclinical 
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growth to slow clinical growth, to be very high; perhaps we may even set 𝑃𝑆𝐹 = 0 and 

𝑃𝑆𝑆 = 1.  For fast-developing cases in the preclinical phase, it makes sense that the clinical 

phase could be either short or long; a fast-developing cancer could continue to progress 

quickly after diagnosis, or its development could slow down due to an effective treatment.  

Thus, 𝑃𝐹𝐹 and 𝑃𝐹𝑆 would need to be selected based on the likelihood of effective treatment 

for a fast-progressing disease.  Knowledge of the proportion of fast-developing cases in 

both the preclinical and clinical phases, estimates of which we discussed in Sections 5 and 

3, respectively, could also assist in specifying 𝑃𝐹𝐹 and 𝑃𝐹𝑆 for the transition matrix. 

 Additionally, we considered avoiding specification of the correlation between 

preclinical and clinical duration entirely, instead estimating the functional relationship 

between the mean lead time and mean benefit time.  Lead time is a function of only the 

screening program (including test sensitivity) and the preclinical duration, meaning that, 

once the effect of length-biased sampling on the screen-detected preclinical durations is 

estimated, a debiased estimate of mean lead time could be derived, perhaps by reweighting 

each observation.  If lead time and benefit time were associated, then the debiased estimate 

of mean benefit time could potentially be predicted from this debiased mean lead time.  

Intuitively, this association makes sense, as a longer lead time means that the cancer was 

detected earlier at a less-advanced stage, so there is a greater likelihood of successful 

treatment and a long benefit time.  To evaluate this idea, we would need to graphically 

compare lead and benefit times from real trial data.  However, because an individual lead 

or benefit time is unobservable, we would need to assess the relationship between mean 

lead and benefit times.  Moreover, because the lead and benefit times are also dependent 

on the cancer type and the screening program, we could not compare mean lead and 
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benefit times across trials.  We considered using Bootstrap resampling on an individual 

screening trial’s data to generate many pairs of estimated mean lead and benefit times, 

from which we could assess the relationship between these two measures.  The flaw in this 

approach is that Bootstrap resampling does not ensure comparable case groups for 

estimation, as there is no guarantee that the matching cases from the treatment and control 

arm will both be selected; any relationship between mean lead and benefit time could be 

attributed to sampling bias rather than a true association between the variables.  

Regrettably, we were unable to devise another approach that would avoid bias in assessing 

the relationship between mean lead and benefit time. 

Finally, while we were able to quantify the effects of length-biased sampling on the 

screen-detected preclinical durations using data-driven estimates for the distribution of 

preclinical durations, we largely ignored the second source of bias in screening trials, 

overdiagnosis.  While some screening trials seem to present no cases of overdiagnosis, such 

as the HIP trial [10, 33] and National Lung Screening Trial (NLST) [48], overdiagnosis is an 

issue in almost all other trials, including the lung and ovarian cancer screening arms of the 

PLCO [19,41].  When a trial includes overdiagnoses, the catch-up point cannot be identified, 

so reliable estimates cannot be calculated for the mean lead time, mean benefit time, or 

even the pattern of diagnoses, all of which are limited by both the overdiagnoses 

themselves and the high number of post-screening detections in the treatment arm when 

the catch-up point cannot be determined.  As a result, in Sections 5 and 6 of this report, we 

were unable to make predictions regarding the distribution of preclinical durations or the 

length-biased sampling effect for lung and ovarian cancers in the PLCO. 
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None of our simulation studies included overdiagnoses because we ensured that 

every screen-detected cancer had its unscreened match included in the control arm of our 

simulated trial.  This ensured that cancer incidence would be the same between both study 

arms.  However, we have an idea for how to generate overdiagnoses in a simulated 

screening trial.  When simulating preclinical durations, we would classify any duration 

longer than some time point 𝑚 to be an overdiagnosis.  The challenge with our idea is the 

choice of 𝑚.  It would make sense to choose a very large value for 𝑚 so that, had the 

overdiagnosed case not been screen-detected, the preclinical duration would have 

outlasted the follow-up period of the trial, as a real-world overdiagnosed case would never 

complete its preclinical duration.  Furthermore, 𝑚 also could be selected so that the 

relative frequency of overdiagnoses matches with a comparison real trial, where the 

number of overdiagnoses is estimated by the difference in cancer incidence between the 

treatment and control arms.  The overdiagnosed cases would be included in the simulated 

treatment arm but not the control arm.  We could assess the effect of these overdiagnoses 

on mean lead and benefit time similarly to how the length-biased sampling effect is 

currently studied.  Such simulated data could also be used to develop more thoughtful 

methods for identifying overdiagnosed cases in real trial data.  Given the significance of the 

effect of overdiagnoses on trial outcomes and the prevalence of overdiagnoses in real 

screening trials, this is an area of study that merits great consideration. 
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