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ABSTRACT

Frustrated magnets are a class of substances in which exchange interactions between neighboring

spins (magnetic moments) cannot be simultaneously satisfied, leading to an extensive degeneracy

in the ground state manifold. Frustration gives rise to many exotic phenomena, a prominent one

being classical spin liquids (CSLs).

In this thesis we present an extensive numerical study on finding a new classical spin liquid in

which the collective flux degrees of freedom break the translation symmetry of the honeycomb

lattice. This exotic phase exists in frustrated spin-orbit magnets where a dominant off-diagonal

exchange, called Γ term, results in a macroscopic ground-state degeneracy at the classical level.

We demonstrate that the system undergoes a phase transition corresponding to plaquette ordering of

hexagonal fluxes, driven by thermal order-by-disorder at a critical temperature TC ∼ 0.04|Γ|. We

performed extensive Monte Carlo simulations and finite-size analysis to investigate the nature of

the plaquette-ordering transition. We also study the dynamical behavior of fluxes and the influence

of other types of interactions on the phase transition.

Next we have investigated the spin dynamics of a classical Heisenberg antiferromagnet with nearest-

neighbor interactions on a quasi-two-dimensional kagome bilayer. This geometrically frustrated

lattice consists of two kagome layers connected by a triangular-lattice layer. We combine Monte

Carlo method with precessional spin dynamics simulations to compute the dynamical structure fac-

tor of the classical spin liquid and study the thermal and dilution effects. The low frequency and

long wavelength dynamics of the classical spin liquid in kagome bilayer is dominated by spin dif-

fusion. We discuss the implications of our work for the glassy behaviors observed in the frustrated

magnet SrCr9pGa12−9pO19 (SCGO).
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CHAPTER 1

INTRODUCTION

1.1 Overview

The earliest known reference to magnetism comes from 6th century BC, when the Greek philoso-

pher Thales of Miletus tried to explain the magical properties of lodestones (Fe2O3) which were

known to attract iron and other lodestones. From there, the first documented use of lodestones

in the form of compass is attributed to Shen Kuo in 1088. However, the study on the origins of

magnetism flourished in the 18th and 19th century with the works by Gauss, Coulomb, Oersted,

Ampére, Faraday and Maxwell. The modern understanding of magnetism originates from the work

of Marie Curie and Pierre Weiss. While Curie investigated the effects of temperature on magnetic

materials, Weiss developed a theory on magnetism based on the micromagnets in magnetic ma-

terials. This proceeded with the development of quantum mechanics in the 20th century that laid

the foundation for the theory of the motion and interactions of electrons in atoms. The present day

understanding of the origins of magnetism is accredited to the theoretical models developed by

Ernest Ising and Werner Heisenberg.

Magnetization in materials arise from two kinds of motions of electrons in atoms, one is the or-

bital motion of electron around the nucleus and other is the spin of the electron around its axis.

The electron’s orbital and spin motion individually bestow a magnetic moment on the electron

causing it to behave as a tiny magnet. Isolated magnetic moments have a much different behav-

ior than a collection of magnetic moments interacting with each other. This combined with the

diversity of magnetic interactions present in real materials opens up the possibility of existence of

a rich variety of phenomena. For example, localized magnetic moments get parallelly aligned in

ferromagnets giving them an observable macroscopic moment. On the other hand, such ordering
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is absent in ordered antiferromagnets, which is why they were discovered only in 1949 neutron

diffraction measurement of MnO by Clifford Shull and Stuart Smart, long after the development

of the microscopic theory of interacting spins by Louis Néel in the 1930’s.

Today we have come a long way from the trivial antiferromagntic phenomenon. A very interesting

and complex pattern can be illustrated on a triangular lattice housing Ising spins with antiferro-

magnetic exchange interactions. Two of the spins align themselves in anti-parallel directions to

minimize the energy. However, it is impossible to align the third spin such that it minimizes the in-

teraction energy with both the other spins concurrently. This is one of the simplest systems where

we see a conflict in the correlations induced by the local interactions and the spatial geometry. Such

an occurrence i.e. the absence of a unique ground state is termed as frustration particularly geo-

metric frustration as it originates from the conflict between lattice geometry and spin interactions.

It has been observed in the case of Kitaev-type models that frustration can also originate from

highly anisotropic exchange interactions. Frustration often gives rise to many exotic phenomena,

a prominent one being spin liquids.

The study of frustrated magnets and the search for both quantum and classical spin liquid systems

in theory as well as experiments is an actively pursued field of research. Spin liquids may be under-

stood as the study of disordered equilibrium states of spin systems, where the traditional magnetic

long range ordered is suppressed due the presence of strong zero point fluctuations even at very

low to absolute zero temperatures. Characterizing a spin liquid state emerging in strongly inter-

acting spin systems and constructing the phase diagram requires a thorough manual study of the

model. This makes it a very lucrative subject on two fronts. On the applications side, this subject

sheds further light on the burgeoning field of identifying potential spin liquid candidates. On the

fundamental understanding front, the different correlations and phases seen in frustrated magnets

helps us organize their behavior in the variety of materials around us. As discussed above, the

spin liquid state in conventional cooperative paramagnets emerges due to geometrical frustration

or in the case of Kitaev-type models it originates from highly anisotropic exchange interactions. In
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this thesis, I present the study of two very different types of spin systems that exist in the classical

spin liquid state originating from the two above mentioned conditions. I have made an extensive

search into their collective behavior evident in their correlation functions. Along with these, I have

observed the dynamical response of these spin liquids using energy conserving Landau Lifshitz

dynamics. Dynamic responses and correlations are usually probed directly in experiments like

neutron scattering.

1.2 Thesis Layout

1.2.1 Theory of Frustration and Classical Spin Liquids

Chapter 2 contains a brief overview the origins of frustration in magnets, along with their proper-

ties and experimental signatures. These characteristics are elucidated using some of the most well

known examples of classical spin liquids systems including the Kitaev model on a honeycomb lat-

tice and antiferromagnetic Heisenberg interaction on both Pyrochlore and Kagome lattices.

1.2.2 Numerical Methods

Chapter 3 explains the details of the simulations and numerical methods. I have used Monte Carlo

simulations to sample the degenerate ground state manifold of spin liquids. Here I have explained

why and how we can apply the Monte Carlo simulations to these seemingly stochastic systems.

I have also discussed the theory explaining precessional dynamics of the spins in presence of

magnetic interactions using Landau Lifshitz dynamics.

1.2.3 Classical Spin Liquid System I: Off-diagonal Gamma interaction on a Honeycomb lat-

tice

In chapter 4, we report a new classical spin liquid in which the collective flux degrees of freedom

break the translation symmetry of the honeycomb lattice. This interesting phase exists in frustrated

spin-orbit magnets where a dominant off-diagonal exchange, called the Γ term, results in an exten-

sive ground-state degeneracy at the classical level. We show that this phase transition corresponds
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to plaquette ordering of hexagonal fluxes. We investigate the nature of the phase transition using

Monte Carlo simulations and finite-size analysis. We also study the dynamical behavior of fluxes

and the influence of other types of interactions on the phase transition. We employ Landau-Lifshitz

dynamics to evaluate dynamical spin structure factor and study the excitations in this new classical

liquid phase.

1.2.4 Classical Spin Liquid System II: Anti-Ferromagnetic Heisenberg interaction on a quasi-2D

Kagome bilayer

In chapter 5 we study the spin dynamics of a classical Heisenberg antiferromagnet with nearest-

neighbor interactions on a quasi-two-dimensional kagome bilayer. This geometrically frustrated

lattice consists of two kagome layers connected by a triangular-lattice linking layer. By combining

Monte Carlo simulations with precessional spin dynamics simulations, we investigate the dynam-

ical structure factor, the diffusive behavior and the changes in these behaviors in a site-diluted

system.

1.3 Publications

• Hidden Plaquette Order in a Classical Spin Liquid Stabilized by Strong Off-Diagonal Ex-

change. Phys. Rev. Lett. 122, 257204 (2019)

• Spin dynamics of the antiferromagnetic Heisenberg model on a kagome bilayer. Phys. Rev.

B 103, 224402 (2021)

• Honeycomb-lattice Gamma model in a magnetic field: hidden Néel order and spin-flop tran-

sition. arXiv:2106.16121 (2021)

• Machine learning dynamics of phase separation in correlated electron magnets arXiv:2006.04205

(2020)
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CHAPTER 2

ORIGINS OF MAGNETISM AND FRUSTRATION

This chapter describes the origins of magnetism in materials and frustration in magnets. Here I

have discussed in detail about the characterization of spin liquids, their corresponding experimental

signatures and their dynamical responses. I have concluded the theoretical overview with some

famous examples of classical spin liquid systems.

2.1 Microscopic Origins of Local Magnetic Moments

2.1.1 Single electron spin and magnetic moment

Magnetization in materials arise from electron’s orbital motion and its spin about it’s axis. Both

these motions independently bestow a magnetic moment on the electron causing it to behave as

a tiny magnet. We known from Stern-Gerlach experiments that electrons carry a spin S = 1
2

and

magnetic moment m. For all cases presented in this thesis electron’s spins are considered isolated

from influence of the nuclei.

(a) Orbital motion magnetic moment:

Magnetic moment m is one of the most fundamental concept in magnetism. In the classical regime

we can equate magnetic moment to a current carrying loop of wire as given in Figure 2.1.

A generalized equation for magnetic moment at distance r from the loop of current carrying wire

[1] is depicted by the following equation,

m =
1

2

∫
r× j(r)d3r (2.1)

where j(r) represents the current density for a current I per unit area, at a distance r in space. This

20



Figure 2.1: Magnetic moment produced by current carrying loop

can be rewritten as follows,

m =
1

2

∫
r× Idl = I

∫
dA (2.2)

As a result magnetic moment of the loop is given by m = Iπr2. When the given current is

comprised of a charge q of mass M moving with velocity v, we can rewrite the orbital magnetic

moment ml generated by the dipole as follows,

ml =
q

2M
Mrv =

q

2M
L =

−e

2M
L (2.3)

where, L represents the angular momentum. Thus the magnetic moment of an electron carrying

loop is antiparallel to the orbital angular momentum. In quantum mechanics, the orbital angular

momentum is quantized in units of ℏ, where we define the “Bohr magneton" µB as,

µB =
eℏ
2M

(2.4)

and hence,

ml = −µB
L

ℏ
(2.5)

The orbital angular momentum L is given by, ℏ
√
l(l + 1) where l (= 0,1,2,....) represents the

orbital quantum number.

(b) Spin magnetic moment:
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Electrons carry a magnetic moment ms and an intrinsic angular momentum S, even when they

move in a straight line or, are present in the atomic s-state (l=0). Classically origins of such

intrinsic magnetic moment could be attributed to the spinning charged body. Similar to the orbital

angular momentum L, S is given by ℏ
√
s(s+ 1) where s represents the spin quantum number.

The total angular momentum of atomic state is given by J = L + S , which is essentially the

sum of total orbital angular momentum and total spin angular momentum. But the total magnetic

moment is given by m = −µB

ℏ L+ 2S.

In magnetic atoms with many electrons, the spin and orbital angular momentum couple due to spin

orbit interactions like λL · S. As a result the total magnetic moment (L+ 2S) can be expressed in

the form of J as,

ms = −gjµB
J

ℏ
(2.6)

where gj is called the Landé g-factor,

gj = 1 +
j(j + 1) + s(s+ 1)− l(l + 1)

2j(j + 1)
(2.7)

gj ≈ 2 for spin only (l=0) cases. The factor of 2 can be derived from relativistic Dirac quantum

theory and gj = 1 for pure orbital (s = 0) motion.

2.1.2 Magnetic moment in applied field

Induced magnetic field B is linearly related to applied magnetic field, H in vacuum as given by

B = µ0H. Where µ0 = 4π × 10e − 7NA−2 is the permeability of free space. Magnetization

M known as magnetic moment per unit volume is given by, B = µ0(H + M). Magnetization

is directly proportional to applied magnetic field in linear materials M = χH, where χ is a di-

mensionless quantity called susceptibility. As a result induced magnetic field can be rewritten as

B = µ0(1 + χ)H = µ0µrH, where µr is the relative permeability of the material.
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Figure 2.2: Different types of magnetic ordering (a) Paramagnetism, (b) Ferromagnetism, (c) Anti-
Ferromagnetism and (d) Ferrimagnetism.

The energy of a material of magnetic moment µ in a field B is given by,

E = −µ ·B (2.8)

The value depends on the relative direction of the magnetic moment w.r.t to the applied field.

2.2 Magnetic Interactions

The different kinds of interaction between magnetic moments, leads to a variety of ordered phases

like ferromagnetism, anti-ferromagnetism and ferrimagnetism as shown in Figure 2.2. These inter-

actions at the quantum scale are a result of electrons being indistinguishable and following Fermi

Dirac statistics. Some of the examples of such interactions are,

Direct exchange: Orbital overlap between two atoms leads to correlation in their electrons. Such
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Figure 2.3: Dipole magnetization

an interaction is termed as direct exchange. Here Coulomb repulsion is minimum and electrons

are spatially separated and antiparallel thus satisfying the Pauli’s exclusion principle.

Superexchange: An interaction facilitated by intermediate ligand or anion is termed as a superex-

change interaction. They are usually antiferromagnetic in nature. The nature of the interaction

depends on the nature of the geometry and alignment of the orbitals. Such interactions are short

ranged and limited within closest range of nearest neighbors.

Dipole-Dipole interaction In the regime of classical electromagnetism, dipole dipole interaction

is a long range interaction.

m = − µ0

4π|r312|
(3(m1 · ˆr12)(m2 · ˆr12)− (m1 ·m2)) (2.9)

The energy diminishes rapidly as a function of 1/r3ij . Atomic distances are at the scale of Å

and the energy scales are in the range of 10−4 eV. These energy scales are much smaller than

inter-atomic interaction energies. We see the effects of dipole dipole interaction at very small

temperatures (T < 1K). Most known magnetic ordering occurs at much higher temperatures of

T > 300K, by effective coupling of neighbouring ions from quantum effects emanating from

exchange interactions.
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2.3 Magnetic Ordering: Collective Magnetic Structures

As discussed dipole-dipole interaction between the magnetic moments of electrons is too weak [2]

to explain magnetic order at high temperatures. Origin of the interactions that causes the neigh-

boring magnetic dipoles to affect each other’s orientation comes from the interplay of Coulomb

interaction and Pauli’s exclusion principle. The magnetic materials are further classified to into

types based on their response to external magnetic field and the relative orientation of the spins in

different temperature regimes.

Diamagnetism

Diamagnetism is a property of all materials. Its contribution to the material’s response in a mag-

netic field is negligible. In diamagnetic materials all electrons in the outer orbit are paired. As a

result, they have a zero net magnetic moment. In presence of an applied magnetic field, the in-

duced magnetic field (magnetization M) is in the opposite direction of the applied field causing a

repulsive force. Figure 2.4 for magnetization with external field H shows a negative susceptibility.

Susceptibility in diamagnetic materials is independent of temperature T.

Figure 2.4: Magnetization and Susceptibility in Diamagnetic materials

Paramagnetism

Paramagnetism in materials originates form partially filled orbitals. As a result they have a net

magnetic dipole moment and act as tiny magnets, see Figure 2.2(a). These dipole moments do not
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interact with each other. In an external magnetic field the electron spins partially align themselves

parallel to the applied field resulting in a positive magnetization and positive susceptibility, thereby

causing a net attraction force.

Figure 2.5: Magnetization and Susceptibility in Paramagnetic materials

At sufficiently high temperatures, the thermal energy can disturb the magnetic dipole alignment of

the spins. This means susceptibility depends on temperature. The relation between susceptibility

and temperature is given by Curies’s law, where susceptibility is inversely proportional to the

absolute temperature as shown in Figure 2.5.

Curie’s Law :

χ =
NAg

2
jµ

2
B

3kBT
J(J + 1) (2.10)

Where NA is the Avogadro’s number, kB represents the Boltzmann constant and J represents the

total angular momentum.

Ferromangetism

Atomic moments in ferromagnets strongly interact with their neighboring moments as opposed to

those in paramagnets. Their respective electronic exchange interactions result in parallel or an-

tiparallel alignment of atomic moments, see Figure 2.2(b). These exchange forces are of the order

of 1000 Tesla. Magnetic fields are quantum mechanical in nature due to the relative alignments

of electron spins. In Ferromagnetic materials the atomic moments parallelly align resulting in a

high net magnetization. Susceptibility is large and consequently magnetization increases massively
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with applied field H intensity. Despite very large electronic exchange forces in ferromagnets, at

higher temperatures, thermal energy eventually overcomes the exchange interaction energy and

produces a randomizing effect and the material starts exhibiting paramagnetic behavior. The tran-

sition temperature is called the Curie temperature (TC). Curie-Weiss law describes the behavior of

the ferromagnets in the paramagnetic regime.

Curie-Weiss Law:

χ =
C

T − θW
(2.11)

where C represents the Curie constant given by C = NAµ
2/3kB, with µ given by µ = gJ

√
J(J + 1)µB.

θW is the Weiss constant, with same dimensions as that of temperature. For θW > 0 magnetic inter-

actions in the material lies in the ferromagnetic regime, whereas for θW < 0 magnetic interactions

are antiferromagnetic in nature. θW = −TN represents the Néel temperature.

Figure 2.6: Magnetization and Susceptibility in Ferromagnetic materials. It behaves as a paramag-

net above Curie temperature TC .

Antiferromagnetism

Antiferromagnets behave like paramagnets above a critical temperature called Néel temperature

TN , but with a negative intercept indicating negative exchange interactions. Below TN the suscep-

tibility is small, where the temperature dependence is very different from paramagnets as shown

in Figure 2.7. In an antiferromagnetic material if there are two sublattices A and B, the moments
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align themselves opposite to each other such that the net moment is zero, see Figure 2.2(c).

Figure 2.7: Magnetization and Susceptibility in antiferromagnetic materials. Susceptibility is small

below TN

Ferrimagnetism

In ferrimagnetic materials, if there are two sublattices A and B, the moments align themselves

opposite to each other such that there exists a net moment, see Figure 2.2(d). As a result they be-

have similar to ferromagnets including spontaneous magnetization, hysteresis, Curie temperature

behavior etc, but with a different magnetic ordering and smaller effects. The 1/χ values are almost

negligible below the critical temperature called Neél temperature TN .

Figure 2.8: Magnetization and Susceptibility in in Ferrimagnetic materials. 1
χ

is very close to zero

below the Néel temperature.
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2.4 Frustration

As we saw in the previous sections, magnetic interactions often lead to ordering in a system. Ther-

mal fluctuations at high temperatures above a certain critical temperature TC can break ordering

and project the system into a paramagnetic state. However, fluctuations can also have different

origins that lead to destruction or repression of order, that consequently contributes to frustration

in a system.

In the field of magnetism the word frustration was first introduced to describe the impossibility of

simultaneously satisfying all competing exchange processes between localized magnetic moments

or spins [3]. This leads to macroscopic degeneracy in ground state configurations. This may lead

to formation of fluid like states of matter called spin liquids. Degeneracy is considered to be a

defining trait of frustration.

The word fluctuation refers to random reorientation of the spin with time. These can be thermal

or quantum in nature. Classical spins are identified as spins with larger magnitude(S >> 1
2
).

In the classical regime, the thermal excitations drive the spins to move around in the degenerate

ground state configurations. At very low temperatures T and consequently at low energies KBT

classical fluctuations die away and the spins freeze or reach an ordered state. For very small spins

S ∼ 1
2

fluctuations fall under the quantum regime where the uncertainty principle produces zero-

point motion which perseveres down to T = 0K. Quantum fluctuations result in a state called

quantum spin liquid which is a superimposed state in which spins point in multiple directions at

the same time. In summary fluctuations in spin liquids persists down to absolute zero temperature.

In spite of the persisting frustration, constituent spins in a spin liquid are highly correlated as their

movement is restricted inside the the ground state manifold.

The term spin liquid is coined to draw an analogy between the different phases of matter and states

of magnet. For example a paramagnet which occurs at higher temperatures with uncorrelated

constituent spins can be related to the gaseous phase of matter. Similarly at low temperatures Néel

state can be represented as analogous to solid state of matter in relation to the broken isotropic
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symmetry, distinguished by a local order parameter and existence of long range order. Following

the same trend, we expect that local correlations in spin liquids similar to their classical fluid

counterparts. However as we will observe spin liquids exhibit far more interesting features and

long range correlation behaviors.

Frustration in antiferromagnets usually have simple geometric origins like triangular lattices where

it is impossible to have a single unique minimum energy configuration with anti aligned Ising spins

satisfied for each neighboring pair of spins. Whereas more exotic Hamiltonians with anisotropic

exchange interactions between nearest neighbor spins can also contribute to the degeneracy in

ground states and thereby frustration in the system like well know Kitaev Model on the Honeycomb

lattice [4]

Research has shown that solid state materials known as Mott insulators are great candidates for the

presence of spin liquids states. With the presence of high spin orbit coupling the electrons in them

are the localized to the individual atomic or molecular orbitals.

2.5 Geometric Frustration

Geometrically frustrated magnets, the term coined by Ramirez [5] are a class of materials that ex-

hibit frustration effects originating from the contradiction between the lattice geometry and energy

minimizing long range magnetic order. A lattice is a collection of sites housing the spins connected

to each other by bonds (exchange interactions).

In this section we see the effect of antiferromagnetic exchange interaction between Ising spins on

two types of lattices, bipartite lattices and lattices formed by triangular motifs called simplex struc-

tures. A lattice is bipartite when it can be divided into sublattices such that spins in one sublattice

only interacts with the spins in the other sublattice and simplexes are defined as a unit of three

spins on a triangular lattice or a unit of four spins forming a tetrahedron on a corner sharing three

dimensional lattice. Properties of Ising antiferromagnets on simplexes, in triangular or tetrahedral

lattices differ from their counterparts on bipartite lattices (cubic, honeycomb etc).
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Figure 2.9: Frustration: Ising spins with antiferromagnetic nearest neighbor interaction (a) Un-
frustrated (1) honeycomb and (2) square lattice. (b) Frustrated systems: (1) Triangular lattice: 6
equivalent ground state configurations. (2) Tetrahedral lattice: 6 equivalent ground states

As depicted in Figure 2.9, we have several examples of lattices where the nearest neighbor Ising

spins on each of the lattices experience antiferromagnetic exchange interaction. Anti-parallel align-

ment of the adjacent spins minimizes the energy of each bond. The spins on the bipartite lattices

as shown in Figure 2.9 (a) can get ordered in a Néel state [6], thus giving rise to a long range or-

dered unfrustrated system with one unique ground state. Whereas in the triangular and tetrahedral

lattices, formation of Néel state is not possible. We see in Figure 2.9 (b)-(1), all three pairs of

spins on the triangular simplex cannot be simultaneously antiparallel and we end with 6 equivalent

ground state configurations. In Figure 2.9 (b)-(2) we can observe a similar frustration effect in

the three dimensional system of four antiferromagentic Ising spins on a tetrahedron. There are 6

degenerate ground state configurations. Each minimum energy state consists of 2 spins pointing

up and 2 spins pointing down, such that for each state we have 2 satisfied bonds (antiparallel spins)

and 1 unsatisfied bond (parallel spins). On two dimensional and three dimensional systems (with

simplex building blocks), these degeneracies keep multiplying and lead to large scale frustrated
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Figure 2.10: Spin Orbit facilitated anisotropic bond directional exchanges. Here the exchange in-
teraction depends on the spatial orientation direction of the bond. The spins cannot orient amongst
themselves to simultaneously minimize all interactions, thus gicing rise to frustration.

systems with intensified fluctuations and repressed magnetic ordering.

2.6 Frustrated Magnetism from Anisotropy in Exchange Interactions

Instead of frustration originating from lattice geometry, anisotropy in exchange interaction can

also contribute to frustration in a system. An example of such an interaction is shown in Figure

2.10, where Ising spins have ferromagnetic exchange interaction. Spin exchange energies are

dependent on spatial directions of the bonds along the orthogonal axes and cannot all be satisfied

simultaneously, thus leading to a frustrated system. Kitaev materials are famous examples of such

frustrated system .

2.6.1 Spin-orbit interaction driven Mott insulators

Partially filled 4d and 5d shells in transition metal oxides lead to very interesting interactions be-

tween spin, electronic and orbital degrees of freedom. These interplay appear as a result of spin
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orbit interactions, crystal field effects and electronic correlations [7]. Every material may vary in

its bias towards the stronger effect exhibited by any of the above three different kinds of interac-

tions. Mott insulators have local magnetic moments arising from high spin orbit coupling, which

collectively give rise to unconventional phases in magnetic materials, including spin liquid states.

Experimentally j = 1/2 Mott insulators[8] that exhibit bond directional exchange interactions are

good likely candidates to look for spin liquids, as the electrons are localized and isolated to their

atomic or molecular orbitals and maintain their spin degrees of freedom.

2.6.2 Bond directional exchange interactions

All Kitaev materials represent a class of materials containing bond directional exchange inter-

actions, which dominate over all other coupling exchange energies. These interactions are much

similar to the interaction shown in Figure 2.10 where we see direction dependent Ising interactions.

Like geometric frustration, anisotropic exchange interaction leads to frustration arising from bonds

that cannot be simultaneously satisfied. These further contribute to inhibit magnetic ordering and

consequently degeneracy in ground states, that gives rise to a phase called spin liquid. For exam-

ple, the classical Kitaev model on the honeycomb lattice does not undergo any phase transition at

finite temperatures [9, 10], however it exhibits an extensively degenerate ground state manifold at

absolute zero temperature [11].

The microscopic origins of the bond directional exchange interactions in d5 transitional metals has

been extensively studied by Khaliullin [12] and later for Kitaev materials specifically by Jackeli

and Khaliullin [13]. The Hamiltonian describing the interactions in Kitaev materials that includes

several terms between magnetic moments in Mott insulators (j = 1/2), is given by the following

equation,

H = −
∑

γ−bonds

JSiSj +KSγ
i S

γ
j + Γ(Sα

i S
β
j + Sα

j S
β
i ) (2.12)

where the summation is over all nearest neighbor spins forming the bonds ⟨i, j⟩, along the di-
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Figure 2.11: (a) Kitaev Model with Kx, Ky and Kz interaction strengths along the 3 different
bonds. (b)Schematic phase diagram of the Kitaev model. Depending on the relative strength of
the interaction constants, the matter fermion excitations either form gapped spin liquid phase or a
gapless spin liquid phase(blue shaded region). The gapless phase emerges around the red point of
isotropic interactions Kx = Ky = Kz.

rections where each bond direction is represented by γ = (x,y, z). The Heisenberg exchange

interaction strength is given by J and the bond-directional interactions include two terms with K

representing the strength of Kitaev interaction, where the γ components of the nearest neighbor

spins interact with each other along a γ-bond and Γ represents the strength of the off diagonal

exchange between nearest neighbors. The relative strengths for the interactions vary in materials.

For Kitaev materials like j = 1/2 Mott insulators, we have K > J,Γ and |K/J | ∼ 4. In this thesis,

I present the study of the pure Gamma model, with Γ = 1 and J = K = 0, where we see the

emergence of a unique classical spin liquid phase.

2.6.3 Kitaev model

The pure Kitaev model consists of nearest neighbor spins coupled in bond directional interactions

exchanges given by the following Hamiltonian.

HKitaev = −
∑

γ−bonds

KγS
γ
i S

γ
j (2.13)
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The spin S = 1/2 model as studied by Alexei Kitaev is defined on a honeycomb lattice as shown

in Figure 2.11(a). It is also a rare microscopic model that is exactly solvable using fermionisation

procedure, where spin 1/2 moments are expressed in terms of Majorana fermion operators [4]. In

the honeycomb lattice, we can see one spin engaged in three kinds of bonds. It is very evident that

the system is frustrated from the anisotropic interaction exchanges, such that it is impossible for

a spin at one site to simultaneously satisfy three different energies on three different bonds. The

model contains both gapped and gapless spin liquid phases, depending on the relative strength of

the coupling interactions of the three bond types, see Figure 2.11. The Majorana fermions exist

in a gapless state called Majorana metal near the point of equal interaction strength in the three

different bonds(Kx = Ky = Kz). In a honeycomb lattice with Kitaev interaction this Majorana

metal state is a semi metal state displaying Dirac cone dispersion. On the other hand if one of

the interaction exchanges is dominant, e.g. Kz along the line Kz = Kx +Ky, a new gapped spin

liquid phase emerges. There is an active pursuit for Kitaev materials in lieu of synthesising new

spin liquid materials. A classical variant of the model with additional terms, like a Heisenberg-

Kitaev model has also been extensively studied [10, 14–16].

2.7 Properties of Frustration

This section highlights some of the common traits exhibited by frustrated magnetic systems.

2.7.1 Ground state degeneracy

Extensive ground state degeneracy is an identifying trait in frustrated magnets. The existence of

degeneracy is not a consequence of symmetry. The degree of degeneracy varies with different

geometries and different natures of spins (Ising, Heisenberg). An Ising spin as discussed above

has 2 states (+ve or -ve) and we get a discrete number of ground states, whereas a Heisenberg

spin can take any direction in the three dimensional space, as a result we have continuous de-

grees of freedom within the ground state manifold. We saw in the previous section that a lattice

is composed of a cluster of spins called simplexes. In 2 dimensional systems like triangular or
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Figure 2.12: A ground state configuration with zero total magnetic moment for a frustrated simplex
of four classical Heisenberg spins

kagome lattices the simplexes are triangles, whereas in a pyrochlore lattice the simplex structure is

a tetrahedron. Intuitively, minimizing the energy of each unit separately should give us a minimum

energy configuration of the whole lattice.

H = J
∑
<ij>

SiSj =
J

2

Nα∑
α

L2 + const. where L =

q∑
i=1

Si (2.14)

Let say we have a Heisenberg interaction between spins given by equation 2.14. This can be

rewritten in terms of the sum total of squares of the net magnetization of spins of each simplex

given by Lα, where q represents the numbers of spins on a simplex and Nα is the number of

simplexes in the lattice. For J < 0 (antiferromagnetic interaction), having the net magnetization

Lα = 0 for each simplex gives us the energy minimizing condition for the whole lattice. For

simplexes with spins q > 2, it becomes impossible to minimize the interaction (JSiSj) between

all pairs simultaneously. For example, in a system with antiferromagnetic interaction between

Heisenberg spins on a tetrahedron simplex, the ground state condition is given by L =
∑4

i=1 Si =

S1 + S2 + S3 + S4 = 0. The Figure 2.12 represents an arrangement of spins such that the net

moment is zero. There can be many different ways to achieve this ground state constraint. Overall

the system possesses two internal degrees of freedom θ and ϕ and three rotational degrees of

freedom due to the symmetry of the Hamiltonian. To scale this circumstantial existence of ground

state degeneracy from a simplex structure to an extended lattice, we enumerate the degrees of
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freedom (d.o.f) in the system [17, 18]. The d.o.f in a ground state configuration D are given by

subtracting all energy minimizing constraints K from the total degrees of freedom F. Each spin has

F = NS(d − 1) degrees of freedom, d is the dimension of each spin and NS is the total numbers

of spins. If q spins form a corner sharing cluster or a simplex, the number of clusters NC is given

by Nc = 2NS

q
. The ground state constraint of Lα = 0 gives K = dNC . We can solve for D by

satisfying these constraints simultaneously provided they are linearly independent.

D = F −K = [
q

2
(d− 1)− n]NC (2.15)

For Heisenberg spins with d = 3 and q = 4, We have F = 2NS . Then the number of degrees

of freedom in the ground state manifold are D = F − K = NC = NS

2
. In summary, D is

extensive.

2.7.2 Experimental signatures of frustration

We learnt in the preceding sections that, frustration leads to extensive degeneracy in ground states

which in turn prevents long range ordering or reduces it even at very low temperatures. Experimen-

tally, we can see the presence of frustration while measuring temperature dependence of magnetic

susceptibility [5]. Susceptibility χ is defined as the ratio of magnetization w.r.t the strength of

applied magnetic field. χ at higher temperatures is given by the Curie-Weiss law eq 2.16, where

θCW determines the energy scale of magnetic interactions. θCW > 0 in ferromagnets and θCW < 0

in antiferromagnets. The system exists in a paramagnetic phase for temperatures T > θCW . In

an antiferromagnetic system in absence of frustration, we observe a phase transition from param-

agnetic state to long range ordered at Néel state. The onset of Néel order appears at temperature

TN ∼ |θCW |. Whereas in a frustrated phase, the ordering either doesn’t happen or the system

remains paramagnetic upto very low temperatures TN << |θCW |.

χ =
1

T − θCW

(2.16)
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Figure 2.13: Experimental χ characteristics of geometrically frustrated systems

We define TC as the transition temperature at low temperatures for any kind of ordering or freezing.

Then the ratio f [5] gives us a measure of the extent of frustration.

f = −|θCW |
TC

(2.17)

A frustrated system in the range of temperatures θCW > T > TC exists in a strongly fluctuating but

correlated state called cooperative paramagnet [19] or a “spin liquid". In an ideal spin liquid where

there is no ordering even at T = 0K, the ratio f indicates the degree of frustration is infinite.

2.7.3 Order-by-disorder

The word fluctuation denotes changes in spin configuration that deviates it from the ground state.

Zero mode refers to frequencies in which fluctuations are within harmonic approximation around

a ground state configuration. While soft modes refers to non zero frequencies with higher order

(anharmonic) orthogonal fluctuations.

In frustrated magnets, where the degeneracy is not a consequence of symmetry, the fluctuation

spectrum around each ground state varies. It is highly probable for ground states with smallest

excitation frequency and high density of soft modes around it to be selected, because such states

are characterized with minimal energy and highest entropy. As a result in presence of fluctuations
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Figure 2.14: Schematic view of the phase space. X and Y represent the coordinates parallel and
perpendicular to the black curve that represents the ground state manifold

instead of suppressing order, the system is inclined to stay near a ground state with largest number

of soft modes, thereby promoting an ordered configuration, a phenomenon referred to as order-by-

disorder [20, 21].

We can understand order-by-disorder from Figure 2.14. On the left side we have a schematic

representation of the phase space. The solid line in black represents the ground state manifold.

A narrow band in color around the ground state manifold represents the accessible states at low

temperatures. Similarly on the right we have the same conventions representing the accessible

ground state manifold. Here some of the accessible states are concentrated in a bulge with high

density of soft modes and rest of them are distributed around the ground state manifold. When

the fluctuations select the ground states near the bulge, we see order-by-disorder that can be tested

using Monte Carlo simulations.

2.7.4 Ground state correlations in frustrated magnets and pinch points

Geometrically frustrated magnets like classical Heisenberg model on a Pyrochlore lattice do not

undergo order-by-disorder and move around in the entire ground state manifold. We find that the

fluctuations in the ground state manifold lead to long range correlations amongst the ground states

of frustrated magnets. The existence of long range interactions between the ground states sounds
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Figure 2.15: Pinch point (denoted by the circle) observed in a dynamic correlation function in an
antiferromagnetic Heisenberg system in a quasi-2D Kagome bilayer lattice

counter intuitive because of the presence of large number of ground state degrees of freedom. But

it has been observed that there are indeed long range correlations in models with bipartite lat-

tices[18], like in the pyrochlore lattice. At finite temperatures thermal fluctuations out of ground

state manifold have a correlation length ξ. The value for ξ at low temperatures varies as ξ ∼ T 1/2

in a Heisenberg model and exponentially in an Ising model. These correlations give rise to sharp

features, termed as pinch points in the reciprocal space correlation functions. The source of these

singularities can be attributed to the ground-state constraints Eq. (2.14), which translates into a

solenoid condition ∇ · B = 0 for an emergent “magnetic" or flux field that is a coarse-grained

representation of the spin configuration. This in turn gives rise to an anisotropic dipolar-like cor-

relation of the flux field, which manifests itself as the pinch-point singularity in the reciprocal

space [22–24].

We can measure reciprocal space correlations in diffusion neutron scattering experiments where

the partial cross section is directly proportional to the spin-spin correlations (section 2.10). The
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pinch point features distinguishes the diffraction patterns of frustrated system from a paramagnet

and are relatively weaker than the Bragg peaks arising from Néel order. One such example of pinch

points is observed in a spin-spin correlation in momentum space defined by dynamic correlation

function (S(q, t)), see Eq. 2.18. We have an instance of the dynamic correlation function at time

t = 0 in an antiferromagnetic Heisenberg system, in a quasi-2D Kagome bilayer lattice given in

Figure 2.15 that clearly shows the sharp pinch point features.

S(q, t) = ⟨Sq(t) · S∗
q(0)⟩ (2.18)

where Sq(t) ≡
∑

i Si(t) exp(iq · ri)/
√
N is the spatial Fourier transform of the instantaneous spin

configuration, and ⟨· · · ⟩ denotes the ensemble average over independent initial states of a given

temperature. At finite temperatures the width of the pinch points are inversely proportional to the

correlation length.

2.8 Examples of Geometrically Frustrated Systems

Some very well known examples of frustrated magnetic lattices with 2D and 3D triangular mo-

tifs.

1. Triangular lattice

A ground state in a triangular lattice with Heisenberg antiferromagnetic interactions between spins

must satisfy the condition given by Eq. 2.14, i.e. energy minimization requires

∑
i∈△

Si = 0 (2.19)

This condition manifests into a ground state called "
√
3 ×

√
3" depicted in Figure 2.16. In this

particular ground state, the lattice can be described as a composition of three different sublattices

with a lattice constant
√
3 times the lattice constant of the original lattice. A system is called
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Figure 2.16:
√
3×

√
3 Ground state in a Triangular lattice

frustrated in the presence of extensive degeneracy of ground states. Our next step is to check the

degeneracy in the
√
3×

√
3 state shown in Figure 2.16.

In a generic ground state, every spin on any triangular simplex in the lattice is at 120° degrees to

each other and lie on the same plane to satisfy the constraint in Eq. 2.19. In a minimum energy

configuration, the spins on the entire lattice are universally coplanar and fixing the spins on one

triangle, uniquely determines all the spins on the lattice. The degrees of freedom for such a ground

state are the choice of chirality(selecting from two possible orientations) and the common plane

angle for the spins. Other than them,
√
3×

√
3 state is unique and does not posses extensive ground

state degeneracy. In summary, lacking extensive ground states degeneracy, an antiferromagnetic

Heisenberg triangular lattice is not frustrated. Interestingly, Ising spins however, on a triangular

lattice gives rise to an extensively degenerate ground state [25].

2. Kagome lattice

Similar to the triangular lattice, the constraint Eq. 2.14 applies to the ground states of Heisenberg

antiferromagnet Hamiltonian on a Kagome lattice. As a result, for each triangular simplex, the

spins are at 120° with each other. However unlike in a triangular lattice, adjacent triangles only

share one spin. Therefore, in a ground state configuration, two neighboring triangular plaquettes

need not share a universal common plane. We also see the existence of nonplanar ground state

42



Figure 2.17: Coplanar Ground state configurations in a antiferromagnetic Kagome Heisenberg
model

configurations in the Kagome lattice, unlike the definite coplanar order in triangular lattice, where

all triangles have the same plane even at long distances.

There are two coplanar chiral states depicted in Figure 2.17 which can be described by a single

wave vector q = 0 state and
√
3 ×

√
3 state with q = (4π

3
, 0). These two states out of the many

coplanar ground states were hypothesized to be selected by order-by-disorder [26] at even lower

temperatures. However simulations revealed that the ground state spins configurations move to a

non chiral spin configuration from any of q = 0 or
√
3×

√
3 states [27].

2.9 Spin Dynamics

Frustrated magnet in a cooperative paramagnetic phase moves around in its ground state manifold.

An imminent question arises about its dynamics, that how do the spins move in time to shift from

one ground state configuration to the next. We can use harmonic spinwave theory on a ground state

configuration to analyse the low temperature dynamics.

Spin excitations in the ground state configurations in an ordered magnetic system can be interpreted
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as oscillations of the spin vectors within the harmonic approximation i.e. around their equilibrium

positions. These oscillations are brought about by small spin deviation, orthogonal to the equilib-

rium spin direction. These quantized fluctuations of the spins called magnons have translational

symmetry that gives them wave like spatial composition, propagating through the system. Figure

2.18 shows such an oscillation in a Ferromagnetic system, where all spins are parallel in its ground

state. The dispersion frequency of the oscillation can be calculated from the spin Hamiltonian

using torque equations for spin angular momentum from classical mechanics.

Figure 2.18: A schematic view of a spin wave.

Ground state spin configurations in frustrated systems usually do not have long range order. There-

fore spinwave dynamics like need to numerically simulated. In frustrated systems, the excitations

in the harmonic approximation limit predicts two range of frequencies. While one frequency type is

for the frequency spectrum similar to conventional magnets with an upper limit of f ∼ O(JS/ℏ),

the other frequency spectrum are associated to the zero modes associated to the ground state fluc-

tuation in the x-direction Figure 2.14.

To numerically predict the time dependent motion of the interacting spins, we first calculate the

effective field on each spin in the presence of exchange field set up by its nearest neighbors.

Heff,i = −(∇Etotal)i = −∂H
∂Si

(2.20)

If we have a energy conserving system, the spin trajectory of ith spin in time t is given by the
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Landau Lifshitz equation,

dSi(t)

dt
= −Si(t)×Heff,i(t) (2.21)

Details regarding the derivation and conditions are explained in section 3.2

Time dependent behavior of correlation functions in frustrated systems have many exciting charac-

teristics, as opposed to ordered magnetic systems. For example correlations relax far more rapidly

on a Heisenberg antiferromagnetic system on a Kagome lattice as opposed to that on a square

lattice. In cooperative magnets, fluctuation from one ground state to another(movement along x

direction in the ground state phase space Figure 2.14) occurs at relatively short time scales. On the

other hand in ordered magnets, dynamics (excitations around an ordered state) i.e. reorienting an

existing magnetic ordering happens at much longer time scales.

As explained above, the ground state oscillations have zero frequency in the harmonic approxima-

tion. On considering anharmonic effects (soft modes: excitations along the y-direction in Figure

2.14), at low temperatures we see three important separation of time scales, the excitation spectrum

width (1/J), excitation lifetime (1/
√
TJ) and the relaxation time of the Autocorrelation function

(τ = 1/T ) [17]. The dynamics in such systems is identical to diffusion dynamics, where the

Autocorrelation functional Eq. 2.22 is exponential.

⟨S(t)S(0)⟩ = exp(−cT t) (2.22)

where ⟨...⟩ denotes the statistical average over starting points i.e. large number of ground state

configurations.
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2.10 Neutrons as Probe

Neutrons are electrically neutral, which lets them penetrate into materials. Their magnetic mo-

ments can however interact with magnetic materials. As a result neutron scattering is a great

experimental technique to study correlated magnetic materials. The partial differential scattering

cross section also called the neutron scattering cross section is proportional to the dynamic struc-

ture factor (S(q, ω)) which is the Fourier transform in space and time of spin-spin correlation

function.

The partial neutron scattering cross section is defined as the total number of neutron scattered per

unit time by the sample, into a unit solid angle dΩ in a particular direction. It is given by d2σ
dΩdEf

,

where σ represents total number of neutrons scattered per unit time by the sample, the dσ/dΩ

gives the differential cross section, which is a time averaged position of all nuclei in the sample

and dEf represents the change in neutron energy. Static structure factor(S((q), t)) is given by

Fourier transform of summation of the spins into momentum space.

S((q), t) =

∫
dreq.·rM(r, t) (2.23)

where Magnetization density is M(r, t) =
∑

i Si(t) is the summation of all spins.

The dynamic structure factor is given by,

S((q), ω) =

∫
dte−iωt⟨M(−q, 0) ·M(q, t) (2.24)

We see characteristics of ordered moments from neutron elastic scattering, while inelastic scat-

tering shows us fluctuating(frustrated) moments. Features seen in the dynamic structure factor

S(q, ω) have important experimental relevance. For example, as seen in Figure 2.19, we see a plot

for frequency ω dependence of S(q, ω) and its respective Fourier transformation that indicate their

spin-spin correlation behavior. Figure 2.20 shows the plot for Q dependence of S(q, ω). It shows
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Figure 2.19: Time dependent Spin spin correlation characteristics as inferred from neutron scatter-
ing cross section. The relaxation time Γ in the energy spectrum of S(Q,ω) is inversely related to
the lifetime of the excitation τ .

that we can predict the spatial dependence of the correlations by observing the Q dependence of

S(q, ω). Correlation length is inversely proportional to the Q- width of S(q, ω). As a result if

S(q, ω) is broader than the Q - resolution, then correlations are short ranged. Whereas a narrow

Q - width S(q, ω) would indicate long ranged spatial correlations.
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Figure 2.20: Two point Spin spin correlation characteristics as inferred from neutron scattering
cross section. The linewidth κ in momentum exchange of S(Q,ω) is inversely proportional to the
correlation length ξ.
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CHAPTER 3

NUMERICAL METHODS

In this chapter I have introduced the numerical methods used in the simulation of spin configu-

rations. We use Monte Carlo algorithms to attain the spin configurations in frustrated magnets

and Landau Lifshitz dynamics to calculate the spin trajectory in time. We have used a very fast

and stable semi implicit integration algorithm to calculate the spin dynamics. The following sec-

tions explain the spin update schemes used in the Monte Carlo simulations and the steps of the

integration algorithm.

3.1 Monte Carlo Simulations

Monte Carlo simulations [28] use statistical sampling to explore the states of exotic systems from

the Boltzmann distribution of the problem.

3.1.1 Markov chain Monte Carlo

Lets denote a spin configuration of an entire system at a given instant by vector X.

X(0) → X(1) → . . . X(a) → X(b) → . . . → X(NMC) (3.1)

To get a required target spin configuration according to thermal distribution p(x) we implement

a stochastic process that takes a randomly generated initial spin configuration through series of

Monte Carlo NMC steps to reach the desired state. At each update from a state a we probabilisti-

cally generate a new state b. This process is called a Markov chain process [29], if the transition

probability P (a → b) does not depend on the previous history of system prior to its state a and de-

pends solely on the states a and b. A Markovian chain process satisfies two properties - ergodicity
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and detailed balance.

Ergodicity ensures that all possible states of a system are reachable during the Monte Carlo process

through any sequence of transitions. Say at an instant in time, the state represented by X(a) has a

distribution pa. After one Markovian update the new distribution will be p
′
a. Therefore,

p
′

a = pa +
∑
j

[pjP (Xj → Xa)− paP (pa → Xj)] (3.2)

Here the terms in the right side of the Eq. 3.2 represents the influx and exflux to and from the

current configuration X(a). If the system is in equilibrium in Monte Carlo simulations, the con-

figurations are sampled in a stationary thermal distribution form. This ensures that the net flux is

zero and we end up with a detailed balance condition that balances each update with its reverse as

shown below.

pjP (Xj → Xi) = piP (pi → Xj) ∀i¬j (3.3)

In classical systems, Boltzmann distribution is used to describe the equilibrium distributions where

energy of the system is temperature dependent. Using the Maxwell-Boltzmann statistics, the prob-

ability of a system existing in a state a with internal energy Ea at equilibrium is given by,

pa =
1

Z
e−βEa (3.4)

Where β = 1
kT

, k = 1.38e−23JK−1 is the Boltzmann constant and Z =
∑

a e
−βEa is the partition

function. The expectation value of an observable quantity O studied in classical systems is an

average of the values of the observables across different states of the system,

⟨Q⟩ = 1

Z
Qae

−βEa (3.5)

Now coming back to our condition of detailed balance given by Eq. 3.3, satisfying the equation

following a Boltzmann distribution we have,
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P (Xi → Xj)

P (Xj → Xi)
= e−β(Ei−Ej) (3.6)

Updating a spin configuration from one state to another is guided through selection probabilities

and acceptance probabilities for the new configuration. These combined together determine the

transition probability, represented as follows,

P (Xi → Xj) = Pselection(Xi → Xj)Aacceptance(Xi → Xj) (3.7)

where P (Xi → Xj) represents the transition probability from state i to state j; Pselection(Xi → Xj)

represents the probability of selection of configuration j given the configuration i, based on con-

venient algorithms to generate possible updates and; Aacceptance(Xi → Xj) represents the fraction

of transitions from i → j that should be accepted. Aacceptance(Xi → Xj) should be as close to 1 as

possible while maintaining the detailed balance and Boltzmann distribution as in Eq 3.6.

It is possible to write Eq. 3.2 in matrix format p′
= Tp, where T = P (Xj → Xi) > 0 is the

transition matrix. p = Tp represents the equilibrium state and has a non degenerate eigenvalue of

1 with P (Xi) > 0 ∀i. This implies that given any random initial spin configuration the system

will converge to the desired configuration at thermal equilibrium. The Monte Carlo time steps for

reaching equilibrium is given by the second largest length of the eigenvalue. In simulations, this

equilibrium time is determined heuristically.

3.1.2 Metropolis-Hastings algorithm

It is one of the most popular and efficient Markov chain Monte Carlo methods which involve single

spin update at every time step. This algorithm ensures ergodicity with the indefinite possibility of

updating one spin at a time and reaching any state from any random state. The original algorithm

was developed by Nicholas Metropolis in 1953 [29, 30] using Boltzmann distribution and then

extended to general cases of other distributions in 1970 by W.K. Hastings. The Pselection mentioned
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in Eq. 3.7 is a random selection of spin site chosen for possible update. Given the sites are all

equivalent, Pselection = 1
N

with N being the total spins in the system. We rename the probability

of selection of a state as function g i.e. g ≡ Pselection. One Monte Carlo step constitutes running

the single spin update step N times. Then from the condition of detailed balance in Eq. 3.3 and

transition probability in Eq. 3.7 we get,

P (Xi → Xj)

P (Xj → Xi)
=

g(Xi → Xj)Aacceptance(Xi → Xj)

g(Xj → Xi)Aacceptance(Xj → Xi)
=

Aacceptance(Xi → Xj)

Aacceptance(Xj → Xi)
= e−β(Ei−Ej)

(3.8)

The ratio of the acceptance probabilities can be set to anything as long as they together satisfy the

detailed balance Eq. 3.8. Very small acceptance ratios would lead to wasted computation. To avoid

that, the larger acceptance probability is set to 1 and the other is balanced accordingly.

With every spin update attempt, we have three possible scenarios. One where ∆E = Ei−Ej > 0,

β = 1/kT > 0 leads to eβ∆E < 1. As a result, since P (Xj → Xi) > P (Xi → Xj) we set

P (Xj → Xi) = 1. On the other hand if ∆E < 0 we can set P (Xi → Xj) to 1. In the last possible

scenario there is no change in energy i.e. ∆E = 0. If ∆E < 0, the possible spin update causes

a decrease in energy, the acceptance probability for the new spin is 1. However if the spin update

cause increase in energy of the system, the new spin has a weighted w acceptance probability with

w = e−β∆E . To implement this acceptance probability, we generate a random number r between

0 ≤ r < 1 , such that we accept the new spin if r < w.

To summarise, the entire Metropolis algorithm step by step consists of the following,

1. Compute the energy of the system given a spin configuration.

2. Random selection of a site of the lattice.

3. A new spin vector S′
i is proposed, with conserved length and changed orientation.

4. We calculate the ∆E. If ∆ ≤ 0, we accept the new spin configuration.

5. If ∆ > 0, we define weight w = e−β∆E and generate a random number r such that 0 ≤ r <
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1.

6. We accept the new spin if r < w. Otherwise we make no change in the configuration. All these

conclude one metropolis step.

We repeat the above steps N = Total spins times to complete One Monte Carlo step. Number of

Monte Carlo steps to thermalise a system at a given temperature T is determined heuristically such

that when the energy of the system stops changing and decreasing with consequent Monte Carlo

steps, we have reached equilibrium.

Calculating ∆E for the entire lattice at every Metropolis step is computationally expensive. The

Only change if energy comes for the nearest neighbors. To save computation time over unused

calculations, we calculate the change in energy coming for the k number of nearest neighbors of

the ith random chosen spin for possible update. An example of energy change in case of Heisenberg

interaction is given in Eq. 3.9.

∆E = −J
∑
k

S′
iSk − (−J

∑
k

SiSk) (3.9)

In case of a system with Ising spin, the proposed new spin vector is randomly selected between +1

and -1. While in an Heisenberg spin the new spin S′
i update is generated as follows,

S′
i =


√
1− cos2 θ cosϕ

√
1− cos2 θ sinϕ

cos θ

 (3.10)

Where the angles are randomly generated according to ϕ ∈ Uniform(0, 2π) and θ ∈ Uniform

(cos θ0, 1). When we generate a new spin at low temperatures, we don’t want a high energy dif-

ference as that would lower acceptance rates and cause a significant slow down in reaching a tem-

perature appropriate thermal equilibrium ground state configuration. To avoid this slowing down,
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we can propose an updated new spin S′
i inside a cone around the original spin Sk with an angular

deviation of 2θ0, such that |S′
i − Si| = 2 sin θ0

2
. A smaller deviation would give larger acceptance

rates.

3.1.3 Measurement statistics

The common quantities that are measured at one particular temperature T at a time during the

Monte Carlo simulations include energy, magnetization, specific heat and susceptibility. As dis-

cussed previously, we define one Monte Carlo step as a metropolis sweep over N lattice sites for

spin updates. Say the total number of Monte Carlo steps used is MCST. Out of these steps, some

initial Monte Carlo steps MCS0 which are about 10% of the total are discarded. Using the remain-

ing Monte Carlo steps MCSn, values of energy and magnetization are calculated by accumulating

their values after every Monte Carlo step. This gives the expectation value of any measurable

quantity ⟨O⟩ averaged over MCSn steps.

The Magnetization M(T ) at a temperature T for a lattice of N total spins calculated per spin is

defined as follows,

M(T ) =
1

N

〈∣∣∣∣ N∑
i=1

Si

∣∣∣∣
〉

(3.11)

Magnetic Susceptibility per spin is defined as,

χ(T ) = βN(⟨M(T )2⟩ − ⟨M(T )⟩2) (3.12)

Specific heat capacity per spin is defined as,

C(T ) =
β2

N
(⟨E(T )2⟩ − ⟨E(T )⟩2) (3.13)
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3.1.4 Phase transitions and critical phenomenon

Phase transitions are one of phenomenon studied using Monte Carlo Algorithms. A phase transi-

tion is defined as the change in phase of a thermodynamic system in presence of external stimuli in

form of pressure or temperature. Transitions between states of matter like solid, liquid and gas, be-

tween magnetic states like paramagnetic and ferromagnetic are some common examples of phase

transitions.

The free energy before and after the transition are described by two different functions. As a result

the energy dependent thermodynamic observables have different properties before and after the

transition. Consequently near the transition point, we observe unusual behavior, like in divergence

of observed quantities and critical slowing down. Such behavior is frequently observed in the

measurement of heat capacity in form of sudden infinite values, erratic jumps or discontinuity in

the derivative of specific heat capacity.

Phase transitions are broadly divided into two categories - first order transition and second order

transition. In first order transitions, properties like density, magnetization or energy as a function

of either pressure or temperature while crossing the transition point have sudden discontinuity.

During such transitions, the system undergoes a change in internal energy either by loosing or ab-

sorbing a definite amount of energy in the form of latent heat. While the system undergoes transfer

of heat, it exists in a mixed phase regime. On the other hand, in second order transitions a system

changes from one state to another without any discontinuity or sudden erratic behavior in the above

properties. These continuous phase transitions are characterised by critical exponents usually as-

sociated with broken symmetry before and after the phase transition. The number attached to the

order type of phase transition comes from the count of derivative of free energy which shows the

first discontinuous behavior.

Phase transitions are characterized by order parameters such that as a system goes from un-ordered

phase to an ordered phase, a particular defined property called order parameter goes from zero

value to a non zero value.
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Figure 3.1: Characteristics of magnetization m, specific heat capacity C and susceptibility χ in
(a) First Order phase transition: Discontinuity in magnetization curve with a sudden jump of ∆m,
discontinuity and in specific heat/ susceptibility curves with different amplitudes before and after
the transition. (b) Second Order phase transition: Smooth magnetization curve, No change in
amplitude for C or χ at the transition
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Correlation functions have interesting properties near phase transitions. We measure the spatial

correlation between regions separated by a distance r using a function given by,

CS = ⟨S(0)S(r)⟩ (3.14)

which is the probability of finding a quantity S with same value at two different lattice sites sepa-

rated by distance r. Correlation length ξ diverges near the critical point that points to the presence

of long wavelength fluctuations. Consequently, the divergence of ξ also leads to a phenomenon

called critical slowing down near the phase transition, where the system takes a long time to change

from one configuration to another. This time is defined as the relaxation time τ . Near the phase

transition we have long relaxation time proportional to some power of ξ. We can describe the

critical slowing down with the following equations.

τ ∝ ξz (3.15)

where z is the dynamical critical exponent [28]. Correlation length ξ is dependent on the lattice

size L such that, in a lattice of finite length L, the correlation length and decorrelation time both

display peaks with steep slopes near the critical point.

τ ∝ Lz (3.16)

Near the phase transition critical temperature TC the temperature varying properties like magne-

tization M , specific heat CV and susceptibility χ can be described by the following power law

equations.

M = M0ε
β (3.17)

where M0 is a constant, β is the critical exponent and ε = |1− T/TC |. Similarly, in some systems

the discontinuity in internal energy w.r.t temperature near the phase transition manifests itself as
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sharp peaks in the specific heat curve that can be characterised by critical exponent α (see Figure

3.1).

CV = C0ε
−α (3.18)

The magnetic susceptibility in absence of external magnetic field is given by,

χ = χ0ε
−γ (3.19)

and the correlation length follows,

ξ = ξ0ε
−ν (3.20)

3.1.5 Finite size scaling

So far we have considered the expected behavior of the systems in the thermodynamic limit

L−1 → 0, where L is the linear size of a system. In such systems, we expect the occurrence

of singularity at the critical temperature TC where the correlation length ξ → ∞. In practise

simulating very large systems that can mimic the behavior of infinite systems is computationally

prohibitive. In most cases, we encounter finite size effects while simulating finite L systems like

difficulty in identifying the power law behavior of the observables, very subtle or non existence of

sharp peaks at the discontinuities existing near critical temperatures. The observables like magneti-

sation, susceptibilty and specific heat capacity as seen in Figure 3.2 (a), (c) and (e) can be scaled

appropriately and are used to estimate the critical exponents and critical temperatures.

Finite size scaling is a way of extracting values for the critical exponents and estimate the critical

temperature TC . In finite size systems, as the correlation length approaches L, the susceptibility

also gets cut-off. Therefore as long as ξ ≪ L, the finite system size will not effect the behavior of

observations as compared to the systems close to thermodynamic limit. Since correlation length in

limited by system size, if we have ξ ≡ L finite size effects become more apparent.

Near the transition temperature TC , the role of correlation length in scaling formulas like Eq. 3.17,
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Figure 3.2: Critical exponents for phase transition in an Ising model on a 2D square lattice. Simu-
lations for lattice sizes L = 8, 12, 16. Transition temperature TC = 2.269 (a) and (b) Magnetization
m:β = 1

8
,(c) and (d) Susceptibility χ:γ = 7

8
, (e) and (f) Specific heat capacity: α = 0
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3.18 and 3.19 becomes dependent on the finite system size L. We can write Eq. 3.20 in terms of L

where ε = |1−T/TC | ∝ ξ−1/ν → L−1/ν . As a result we can rewrite the scaling laws in terms of L.

This concept is familiarly called finite size scaling. For example χ(T, L), a function of temperature

and system size can be written in terms of the scaling variable x = (1−T/TC)L
1/ν where T −TC

is called the reduced temperature such that χ(T, L) = Lγ/νf(x). As a direct consequence of this

scaling, plots of χ(T, L)Lν/γ w.r.t to the scaling variable x for different temperatures T and system

size L collapse on a single curve. Similar scaling observation is seen for specific heat CVL
ν/β vs

x and magnetization mLνβ vs x. This scaling behavior is verified in Figure 3.2 for Ising model on

a 2D square lattice.

3.2 Spin Dynamics

3.2.1 Spin trajectory: Landau-Lifshitz equation

To simulate the trajectories of spin vectors in time, we need to solve for the equations of motion

for the spins. The starting point of the semiclassical equations of motion for a spin in the presence

of exchange field is set up by its nearest neighbors. This nearest neighbor field on ith spin Si is

called the effective Hamiltonian.

Heff,i = −(∇E)i = −δH
δSi

(3.21)

where H is the system spin interaction Hamiltonian and E gives the energy of the spin configura-

tion. Quantum mechanical operator that governs the dynamics of a spin vector S is given by the

commutator,

iℏ
∂S

∂t
= [S,H] (3.22)

The classical regime equivalent that defines the commutator for the spin system is given by Poisson

60



Figure 3.3: Lamor Spin precessional motion.Spin precesses around the effective field Heff (a)
Undamped - Energy conserving (b)Damped

bracket relations. {
Sα
i , S

β
j

}
= ϵαβγδijS

γ
i (3.23)

Using the above commutator equation in conjunction with the Hamiltonian H we get a vector

component α wise equation,

{
Sα
i ,H

}
= ℏ

∂Sα
i

∂t
=

N∑
j=1

ϵαβγδij
∂H
∂Sβ

j

Sγ
i =

(∂H
∂Si

× Si

)α (3.24)

Using the equation for the net effective Hamiltonian on each spin as a result of its nearest neighbors

from Eq. 3.21 we get

ℏ
∂Si

∂t
= −∂H

∂Si

× Si = −Si ×Heff,i (3.25)

Eq. 3.25 gives a trajectory of spin motion which is described in Figure 3.3 (a). The energy con-

serving motion where the spin vector changes direction on a circular path while the its magnitude

is conserved in time is called Larmor precession.

However to simulate more realistic physical behavior, it requires a damping term that mimics the

energy dissipation behavior. Landau and Lifshitz introduced the damping term of strength λ to the

spin equation of motion as given below,

∂Si

∂t
=

1

ℏ
(Heff,i × Si) +

λ

ℏ
(Heff,i × Si)× Si (3.26)
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The damped spin motion is described in Figure 3.3 (b) The damping force FD points towards the

local minimum along the the direction of effective field Heff,i.

I study spin dynamics in presence of two different types of interaction Hamiltonians on two dif-

ferent lattices. One of them is the Gamma model on a Honeycomb lattice 4.1 and the other one

is antiferromagnetic Heisenberg interaction on a Kagome bilayer 5.1. Each of them have a well

defined effective Hamiltonian based on their nearest neighbor interactions, which helps us easily

formulate the equations of motion for spin dynamics.

3.2.2 Numerical implementation: Semi implicit integration of Landau-Lifshitz equation

There are many different ways of solving a partial differential equation using either analytical or

numerical solution. While analytical solution gives us the exact answer, it is complicated and

sometimes impossible to find a closed explicit analytical solution for complex interactions and

N-body problems. As a result N-body differential equations like Landau-Lifshitz are solved nu-

merically.

There are many numerical integration methods to simulate the time dynamics. While we evaluate

a method to use, the foremost characteristics that render weight to any integration method are

stability and speed(less iterations). An ideal technique will give a stable and precise solution as

well use less iteration steps(larger dt). Explicit integration methods are easy to implement and

faster than their implicit counterparts but less stable. The deterministic Landau-Lifshitz equation

in form of dimensionless ith spin vector variable (S)i is given by,

∂Si

∂t
= −Si ×Heff,i − αSi × [Si ×Heff,i] i = 1, 2, ...n spins (3.27)

Where the Bi is the effective field and α is the damping factor. Writing this in differential form we

get,
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dSi = Si × ai(S)dt (3.28)

where ai(S), S ∈ R3n, is 3 dimensional vector function of S defined in Eq. 3.31.

I have used a semi implicit (SIB) method introduced by Mentink et al [31]. in 2010. While stan-

dard mid point implicit integration methods have high stability, they are very slow as it requires

solving 3N coupled questions in three dimensions. Here’s where the semi implicit method is ad-

vantageous that is appropriately stable even over comparatively larger time steps. The method has

some unique properties like it conserves the spin length and solves the 3 linear coupled equations

at every time step.

The SIB method is two step integral solver. The first step is called a predictor followed by a

corrector step. The predictor step follows after the Euler method and is modified to intrinsically

preserve the spin length. In the next steps we will use the following convention to represent the

spins. The ith spin vector (Si = (Sx
i , S

y
i , S

z
i )) at time step k is Si

k. The intermediate predictor at

time k step is the spin vector Pk
i

Pk
i = Sk

i + h
Sk
i +Pk

i

2
× ak

i (S
k
i ) (3.29)

Then we have the corrector step and the updated spin vector at time step k + 1 becomes,

Sk+1
i = Sk

i + h
Sk
i +Pk+1

i

2
× ak

i

(Sk
i +Pk

i

2

)
i = 1, 2, ...n spins, k = 1, 2, ...N time steps

(3.30)

where ai(S) is a function of vector S and Hi(S) is the effective field at spin i which is also a

function of the variable S.

ak
i (S

k
i ) = −Hi,eff (S

k
i )− αSi ×Hi,eff (S

k
i ) (3.31)
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ak
i

(Sk
i +Pk

i

2

)
= −Hi,eff

(Sk
i +Pk

i

2

)
− α

(Sk
i +Pk

i

2

)
×Hi,eff

(Sk
i +Pk

i

2

)
(3.32)

We represent ak
i (S

k
i ) at the predictor step as aP and at the corrector step as aC . Then we can

rewrite Eq. 3.29 in the matrix format (Eq. 3.33) to get the predictor step spin vector Pk
i at time

step k and Eq. 3.30 in the matrix format (Eq. 3.34) to get an updated spin vector Sk+1
i at time step

k + 1.


P k
i,x

P k
i,y

P k
i,z

 =


1 −h

2
aPi,z

h
2
aPi,y

h
2
aPi,z 1 −h

2
aPi,x

−h
2
aPi,y

h
2
aPi,x 1


−1 

1 h
2
aPi,z −h

2
aPi,y

−h
2
aPi,z 1 −h

2
aPi,x

h
2
aPi,y −h

2
aPi,x 1



Sk
i,x

Sk
i,y

Sk
i,z

 (3.33)


Sk+1
i,x

Sk+1
i,y

Sk+1
i,z

 =


1 −h

2
aCi,z

h
2
aCi,y

h
2
aCi,z 1 −h

2
aCi,x

−h
2
aCi,y

h
2
aCi,x 1


−1 

1 h
2
aCi,z −h

2
aCi,y

−h
2
aCi,z 1 −h

2
aCi,x

h
2
aCi,y −h

2
aCi,x 1



Sk
i,x

Sk
i,y

Sk
i,z

 (3.34)

Dynamics in this thesis is energy conserving and doesn’t involve any damping factor. As a result

we use α = 0 in Eq. 3.27 to simulate our spin dynamics.
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CHAPTER 4

HIDDEN PLAQUETTE ORDER IN CLASSICAL SPIN LIQUID STABILIZED BY

STRONG OFF-DIAGONAL EXCHANGE

4.1 Results summary

• We report a new classical spin liquid in which the collective flux degrees of freedom break

the translation symmetry of the honeycomb lattice.

• This exotic phase exists in the frustrated spin-orbit magnets where a dominant off-diagonal

exchange, called the Γ term, results in a macroscopic ground-state degeneracy at the classical

level.

• This phase transition is driven by thermal order-by-disorder at a critical temperature Tc ≈

0.04|Γ|. The transition reduces the emergent spherical spin-symmetry to a cubic one: spins

point predominantly toward the cubic axes, yet seem to remain disordered at T < Tc.

• We show that the phase transition corresponds to a hidden plaquette ordering of hexagonal

fluxes which explicitly breaks the cubic symmetry. Our results are confirmed by extensive

Monte Carlo simulations.

• We further compute the dynamical structure factors of the spin-liquid phase and reveal un-

usual dynamical properties of the hexagonal flux parameters.

4.2 Introduction

Mott insulators with strong spin-orbit coupling have generated considerable interest recently [32].

The local magnetic degrees of freedom in such materials are entities with significant orbital char-

acter. This special property leads to effective interactions that exhibit strong anisotropy in both
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real and pseudo-spin spaces, as described by novel Hamiltonians such as quantum compass or

120◦ models [33, 34]. A new type of magnetic frustration [35–37], which is different from the

well studied geometrical frustration [18, 26, 38, 39], originates from the nontrivial interplay be-

tween lattice geometry and anisotropic spin-orbital exchange. One recent representative example

is the spin-1/2 honeycomb Kitaev model [4] with Ising-like interactions involving different spin

components on the three distinct nearest-neighbor bonds. Remarkably, the Kitaev model is exactly

solvable and exhibits a quantum spin-liquid ground state with fractionalized excitations [4, 40, 41].

The classical limit of the Kitaev Hamiltonian also exhibits a macroscopic ground-state degeneracy

and interesting order-by-disorder phenomena [9, 14, 42, 43].

The recent enormous interest in frustrated spin-orbit magnets is triggered by the realization that

spin interactions in certain 4d and 5d Mott insulators are dominated by the anisotropic Kitaev-type

exchange [13, 44–46]. The presence of other spin interactions, notably the isotropic Heisenberg

exchange, in these compounds eventually drives the system into a magnetically ordered state de-

spite a dominate Kitaev term [47–58].

Nevertheless, the search for spin liquids in frustrated spin-orbit magnets continues. Experimen-

tally, tuning spin interactions by applying magnetic field [59–61] or pressure [62, 63] has been

attempted to suppress the magnetic order. On the theoretical side, it has been pointed out that

the off-diagonal exchange anisotropy, the so-called Γ term, plays a crucial role in the magnetic

behaviors of these spin-orbit Mott insulators [64–70]. In fact, the suppression of long-range order

in some compounds is suspected to be due to the increased strength of Γ interaction, instead of

the enhanced Kitaev-type exchange [71, 72]. This experimental tendency can be understood from

a recent theoretical work that shows a new classical spin liquid in the idealized Γ model on the

honeycomb lattice and its three-dimensional variants [73]. The rest of the work is organized as

follows. In section 4.3, we investigate the ground-state manifold of Γ-model on the honeycomb

lattice and discuss the results of the Monte Carlo simulation to investigate the thermodynamic be-

haviors of the model at low temperatures. In section 4.4 we characterize the continuous degenerate
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ground-state manifold. In the proceeding section 4.5, we investigate the emergent phase at low

temperatures that is facilitated by thermal order by disorder. Section 4.6 shows our calculations of

the zero modes and their relation to the specific heat of the degenerate manifold. In section 4.7, we

characterize the phase transition and the corresponding order parameter using Monte Carlo simu-

lations and finite size scaling. In sections 4.8 and 4.9, we compute the static and dynamic structure

factors and study the dynamical behavior of fluxes. We have also investigated the influence of

magnetic field on the Γ-model. The summary of the results are presented in section 4.10. We have

discussed the set up of the Honeycomb lattice for the implementation of the numerical methods in

Sec. 4.11. We conclude in Sec. 4.12 with a brief summary and outlook on future work. Our results

are published in [74].

4.3 Model and method

We investigate the thermodynamic behavior of the Γ model at low temperatures and demonstrate

a phase transition driven by order-by-disorder at Tc ≈ 0.04 |Γ|. Importantly, we show a hidden

plaquette order that breaks the lattice transition symmetry below Tc. To begin with, we consider the

Γ model on the honeycomb lattice, in which nearest-neighbor (NN) spin interaction is dominated

by the off-diagonal exchange term. It involves different spin-components on the three inequivalent

NN bonds, denoted as x, y, and z (see Fig. 4.1), on the honeycomb lattice:

H = Γ
∑
⟨ij⟩∥x

(Sy
i S

z
j + Sz

i S
y
j ) + Γ

∑
⟨ij⟩∥y

(Sz
i S

x
j + Sx

i S
z
j )

+Γ
∑
⟨ij⟩∥z

(Sx
i S

y
j + Sy

i S
x
j ). (4.1)

Here ⟨ij⟩ ∥ ξ denotes NN pairs along bond of type-ξ. Both signs of Γ are considered here, although

energetically the two cases are equivalent due to the bipartite nature of honeycomb lattice.

The classical ground states of Γ model are extensively degenerate [73], giving rise to a new type

of classical spin liquid which is different from the familiar cases in geometrically frustrated mag-
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Figure 4.1: Ground states of the Γ model on a honeycomb lattice. A generic ground state is
characterized by a directional vector n̂ = (a, b, c) and a set of Ising variables {ηα} defined on
individual hexagons. To construct a ground state, first we build a perfect

√
3×

√
3 order based on

the six inequivalent spins of the tripled unit cell: SA = (a, b, c), SB = (c, a, b), SC = (b, c, a),
SD = ζ(b, a, c), SE = ζ(a, c, b), and SF = ζ(c, b, a). Here ζ = −sgn(Γ). Next, go through
every hexagon and modify the component of its six spins: Sx

1 → ηSx
1 , Sy

2 → ηSy
2 , Sz

3 → ηSz
3 ,

Sx
4 → ηSx

4 , Sy
5 → ηSy

5 , and Sz
6 → ηSz

6 . In the example shown above, ζ = −1. The spins of shaded
hexagon at the lower left corner are: S1 = (a, b, c), S2 = ζ(b, a, c), S3 = (b, c, a), S4 = ζ(a, c, b),
S5 = (c, a, b), and S6 = ζ(c, b, a).

68



-1

-0.8

-0.6

-0.4

-0.2

 0

 0  1  2  3  4  5  6

E

T

E

 0

 0.2

 0.4

 0.6

 0.8

 0  1  2  3  4  5  6

C

T

C

T

(a)

(b)

Figure 4.2: (a) Energy density and (b) specific heat vs temperature of the Γ model down to
temperature T ∼ 0.05. Here both energy and temperatures are expressed in units of |Γ|.

nets.

We use Monte Carlo simulation to investigate the thermodynamic behaviors of the Γ model at low

temperatures. Standard Metropolis-Hastings algorithm based on local updates is used to sample

spin configurations in thermal equilibrium. Our MC simulations over a wide temperature range

show no sign of phase transition down to T ∼ 0.05|Γ| (Figure. 4.2).

Fig. 4.2 shows the energy density E and specific heat C versus T over a wide temperature range.

There is no sign of a phase transition down to temperatures as low as T ∼ 0.05|Γ|. The energy

density gradually approaches its minimum E0 = −|Γ|, while the specific heat shows a plateau-like

feature at T ≲ 0.1 |Γ|.

The static structure factor for Γ > 0 exhibits a broad minima at q = 0 at T = 0.05|Γ| (Figure

4.11). The absence of Bragg peaks is consistent with the spin-liquid picture. The fact that there
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is no pinch-point singularity, which is a unique feature of spin liquids in geometrically frustrated

magnets [22–24], also points to a different nature of the macroscopic degeneracy in Γ model. MC

simulations further find extremely short-ranged spin-spin correlation, which is similar to that seen

in Kitaev spin liquid [4, 42], but different from that of geometrically frustrated systems.

4.4 Ground state degeneracy

The characterization of the degenerate ground-state manifold has been discussed in great detail in

Ref. [73]. A generic ground state is specified by a directional vector n̂ = (a, b, c) and a set of Ising

variables {ηα} defined on individual hexagons; see Fig. 4.1.

In the classical limit, or without consideration of dynamical effects, these Ising variables are pure

gauge degrees of freedom and will remain disordered at all temperatures. An explicit procedure for

constructing the ground state is as follows. First, we use the unit vector n̂ to derive six inequivalent

spins SA, SB, · · · , SF for the tripled unit cell of a perfect
√
3×

√
3 long-range order. Next, we go

through every hexagon α in this periodic structure and modify the spin components: Sx
1 → ηSx

1 ,

Sy
2 → ηSy

2 , Sz
3 → ηSz

3 , Sx
4 → ηSx

4 , Sy
5 → ηSy

5 , and Sz
6 → ηSz

6 , where S1,··· ,6 are the six spins

surrounding the α-th hexagon. Note that the eight directions (±a,±b,±c) correspond to the same

n̂ as they are related by flipping the η variable. It is thus similar to the director in nematic liquid

crystal.

Since different ground states are labeled by discrete Ising variables {ηα}, it raises the question

whether the ground-state manifold is fully connected. The issue here is how one can move from

one ground state continuously to another, as simply changing η requires flipping spin component

which is a discrete process. It turns out continuous transformation of {ηα} can be achieved with the

aid of the directional vector n̂ = (a, b, c). To see this, we first note that each ηα is associated with

only one component of the unit vector n̂ in the ground state. Take the hexagon shown in Fig. 4.1

as an example. According to the ground-state rule, the local η only controls the ‘a’-component of

the six spins in this hexagon. As a result, all η-variables can be divided into three groups: type-A
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Figure 4.3: Snapshots of spin configurations above and below Tc = 0.0401|Γ|: (a) T = 0.05 and
(b) T = 0.03. In the low-T phase, spins predominately point toward the six cubic directions.

(respectively, B and C) for spin-components controlled by a (respectively, b and c). When one

of the component of n̂ vanishes, 1/3 of the η becomes idle. This feature allows us to construct

a continuous path from one set of η to another one η′ by rotating n̂ according to the sequence:

(a, b, c) → (0, b′, c′) → (a′′, 0, c′′) → (a′′′, b′′′, 0) → (a, b, c). After the first rotation, the vanishing

a component allows us to change 1/3 of the η variables (those associated with a-component) to

their counterpart in η′. Repeating similar process for the other two sets of η then completes the

transformation from η to η′ while keeping the n̂ vector in the same direction.

4.5 Emergent phase: Order by disorder

The above discussion also shows that without the rotational symmetry of n̂, different {ηα} becomes

disjoint from each other. Interestingly, our MC simulations find a freezing phenomenon of the

vector n̂ at a very low temperature Tc ≈ 0.04 |Γ|, as demonstrated in Fig. 4.3. At T > Tc, the

spins and n̂ exhibit an emergent spherical symmetry even at temperatures well below the exchange

energy scale |Γ|. This rotational symmetry is lost below Tc, and spins mainly point toward the

six cubic axes, or equivalently the directional vector freezes to one of the cubic directions, i.e.

n̂ ∼ (1, 0, 0), (0, 1, 0), or (0, 0, 1). As states parameterized by different n̂ are degenerate at the

mean-field level, the cubic directions are selected by thermal fluctuations through the order-by-

disorder mechanism. This can also be viewed as the entropic selection, resulting from an effective
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Figure 4.4: Plaquette order of hexagonal fluxes on honeycomb lattice. Shaded hexagons have
nonzero flux W ∼ 1, while empty hexagons have a vanishing W . Spins are orthogonal to each
other (with left handedness for ζ = −1) on each shaded hexagon; their specific directions depend
on the local η, as specified in the insets. The arrangement of hexagons with finite W corresponds
to the famous

√
3 ×

√
3 long-range order. Spins remain disordered due to uncorrelated ηα on the

shaded hexagons.

free energy Fani ∝ −(a4 + b4 + c4). Indeed, simple analysis in section 4.6 shows that these cubic

directions allow for the largest number of zero modes at the harmonic level. We note that similar

cubic anisotropy is also generated by quantum fluctuations [73].

As discussed above, there is a phase transition driven by thermal order-by-disorder at a low tem-

perature T ≈ 0.04. However, this is a rather weak phase transition over a narrow temperature

window. Numerically, it is quite easy to miss this transition in Monte Carlo simulations. Our first

hint of a possible phase transition at low temperatures is from the analysis of the autocorrelation

function defined as

A(t) =
1

N

N∑
i

⟨Si(t) · Si(0)⟩. (4.2)

Here time t is measured in Monte Carlo sweeps. Fig. 4.5 shows the auto-correlation function

obtained from Monte Carlo simulations at various temperatures. At small t, the auto-correlation

function A(t) decays exponentially. We then fit the different auto-correlation curves with the
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Figure 4.5: Auto-correlation function A(t) obtained from Monte Carlo simulations at different
temperatures. A∞ represents the steady-state value at large t, which corresponds to 20,000 Monte
Carlo sweeps numerically.

following simple function: A(t) = A∞ + B exp(−t/τ), where A∞ is the steady-state value as

t → ∞, and τ is a relaxation time. The temperature dependence of A∞ is shown in Fig. 4.6.

For T > Tc, we find A(t) → 0 at large time t → ∞. On the other hand, for T < Tc, the

auto-correlation function approaches a finite steady-state value A∞, indicating the presence of

long-range order.

4.6 Zero Mode and Specific Heat

For a given ground-state configuration {Si}, we introduce local reference frame (êxi , êyi , êzi ), such

that êzi is parallel to the spin direction Si. Next we consider small transverse spin fluctuations

parameterized by σi = (σx
i , σ

y
i ) such that

Si ≈ S(1− |σi|2/2S2) êzi + σx
i ê

x
i + σy

i ê
y
i . (4.3)
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Figure 4.6: Temperature dependence of A∞ (See in Fig:4.5). The finite value A∞ decreases with
increasing temperature and goes to zero at the transition temperature TC .
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Figure 4.7: Temperature dependence of specific heat C obtained by Monte Carlo simulations.
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Figure 4.8: Zero mode number, N0, as a function of ground state parameters (a, b, c).

Substituting this expansion into the Hamiltonian, the energy of the system can be expressed, up to

quadratic order in σ:

E(σi) = −NΓ +
∑
im,jn

Miα,jβ σ
m
i σn

j , (4.4)

where N = 2L2 is the total number of spins in the L× L honeycomb lattice and M is a 2N × 2N

matrix representing interactions of the spin fluctuations σi.

The spectrum {εℓ} of the harmonic fluctuations is obtained by diagonalizing the M matrix. Here

we are particularly interested in the number N0 of zero modes (εℓ = 0), since this number provides

a measure of the softness of spin fluctuations around a given ground state. As discussed in the

before, a ground state of the Γ model is parameterized by a unit vector n̂ = (a, b, c) and a set of

Ising variables {ηα}. The discrete Ising variables correspond to Gauge degrees of freedom and do

not affect the energy of the system (However, they do affect the dynamics of the system). Conse-

quently, in the following we set ηα = +1 and only consider the dependence of fluctuation spectrum
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on the orientation of the directional vector n̂ = (a, b, c). By direct diagonalisation of M for a finite

lattice, the number of zero modes N0 in the degenerate ground-state manifold parametrized by

(a, b, c) is shown in Fig. 4.8.

Three different cases can be identified in Fig. 4.8: (1) if a, b, c ̸= 0, then N0 = 2, which corre-

sponds to the trivial 2-dimensional global rotation of n̂ = (a, b, c). (2) if two of a, b, c are nonzero

while the third one vanishes, then N0 = 2 + N−6
6

. And finally, (3) if only one of a, b, c is nonzero,

then the number of zero modes is N0 = 2 + 2N−6
6

. The additional degeneracies in cases (2) and

(3) are related to the number of hexagons with idle η. In such situations, a local zero mode is asso-

ciated with each idle hexagon. This simple analysis shows that the cubic directions n̂ = (1, 0, 0),

(0, 1, 0), and (0, 0, 1) have softer spin fluctuations and will be favored entropically.

The number of zero modes is also related to the specific heat of the degenerate manifold. According

to equipartition theorem, each harmonic mode contributes kB/2 to the heat capacity. On the other

hand, the zero modes discussed above are obtained within the harmonic approximation. Taking into

account higher order terms, these modes are expected to behave generically according to ϵ(x) ∼

kx4, where x is the mode amplitude. Direct calculation shows that such soft mode contributes

kB/4 to the heat capacity [17]. Consequently, the specific heat is given by

C

kB
= lim

N→∞

(
2N −N0

N

1

2
+

N0

N

1

4

)
(4.5)

When T → 0, cubic axes are preferred, N0 = 2 + 2N−6
6

, thus C/kB = 11
12

≈ 0.917, which is

consistent with the simulated value, 0.918 at T = 0.001 (Fig. 4.7).

4.7 Emergent plaquette Order

It is crucial to note that although the spin-symmetry is seemingly reduced from spherical to cubic

when crossing Tc, this cannot be viewed as a true reduction of symmetries as the Γ model itself

is already cubic-symmetric. The apparent spherical symmetry at Tc < T < |Γ| is an emergent

property of the phase, which is due to spatial fluctuations of directional vector n̂(r). Another im-
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portant observation is that while the degeneracy associated with n̂ is lifted by thermal fluctuation,

a discrete macroscopic degeneracy persists due to the Ising gauge symmetry of {ηα}, especially

for classical spins. Consequently, spins remain disordered at T < Tc.

To resolve this issue and investigate the nature of the low-T phase, we first note that the cubic

spin-orbital symmetry of the Γ model is indeed broken below Tc, yet in a complicated pattern:

local spins have to pick one of the six cubic directions in a coordinated way while preserving the

gauge symmetry of {ηα}. A convenient local quantity to characterize the broken symmetry is the

flux variable defined on each hexagon [4]:

Wα = Sx
1 S

y
2 S

z
3 S

x
4 S

y
5 S

z
6 , (4.6)

where S1,··· ,6 are the six spins around the α hexagon. These fluxes play an important role in the

spin-1/2 Kitaev model as they are “integrals of motion” of the Hamiltonian [4]. In our case, the

flux Wα is similarly a gauge-invariant variable, that is independent of ηα. On the other hand, it can

be used to characterize the ordering of n̂. To see this, we note that in the ground state, they only

take on three different values [73]: WA = ζa6 for hexagons whose η is associated with component

a, and similarly WB = ζb6 and WC = ζc6 for the other two sets of hexagons, where ζ = −sgn(Γ).

As n̂ freezes to one of the cubic directions, 2/3 of the fluxes also vanish. Since hexagons of a

given type form an enlarged triangular lattice, the flux patten of the low-T phase, e.g. WA ≈ 1,

and WB ≈ WC ≈ 0, corresponds to a broken translation symmetry; see Fig. 4.4. Importantly,

the uncorrelated ηα on hexagons with nonzero W give rise to a disordered spin configuration. We

note in passing that plaquette orders with similar spatial pattern also exist as ground state in J1-J2

quantum S = 1/2 and S = 1 honeycomb Heisenberg model [75–78]. Our finding shows a rare

example of plaqutte ordering hidden in a classical spin liquid on honeycomb lattice.

The arrangement of hexagons with nonzero W shown in Fig. 4.4 suggests an order parameter

W̃ (Q) =
1

N

∑
α

Wα e
iQ·rα , (4.7)
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which is the Fourier transform at wavevector Q = (4π/3, 0), corresponding to
√
3×

√
3-order, for

characterizing the broken translation symmetry. A scalar order parameter is computed from the

Monte Carlo average of the Fourier component Q̃(Q):

Φ = ⟨|W̃ (Q)|⟩, (4.8)

We then performed extensive Monte Carlo simulations on systems with different size L = 30,

60, 90, 120 and 150 at temperatures around Tc to examine the critical behaviors; the results are

summarized in Fig. 4.9 reveal a clear phase transition. The specific heat shows clear finite-size

effect. Here the specific heat is computed according to the variance of energy H obtained from

Eq. 4.1 as given in eq 4.9.

C =
⟨H2⟩ − ⟨H⟩2

NT 2
(4.9)

The bracket ⟨...⟩ donates the Monte Carlo average.

The susceptibility and Binder cumulant of the order parameter are defined as

χ = N
⟨|W̃ (Q)|2⟩ − ⟨|W̃ (Q)|⟩2

T
(4.10)

B4 = 1− ⟨|W̃ (Q)|4⟩
3⟨|W̃ (Q)|2⟩2

(4.11)

In the ground state, it is expected that Φ = 1/3 and B4 = 2/3. This was confirmed by our

simulation at low temperature. The specific heat C and the susceptibility χ exhibit finite size

effects, where the peaks grow with increasing lattice size L.The scalar order parameter exhibits

characteristics of a second-order phase transition. The growth of the order parameter Φ below

Tc becomes sharper for large L systems, characteristic of a second-order phase transition. The

crossing point of the Binder cumulant curves indicates that Tc ≃ 0.0402|Γ|, which further confirms

78



Figure 4.9: Monte Carlo simulation of the translation symmetry breaking of flux variables. (a)
specific heat C, (b) order parameter Φ = ⟨|W̃ (Q)|⟩. The crossing point of the Binder curves
gives an estimate of Tc ≈ 0.0402. Critical exponents of the transition are obtained from finite-size
scaling: α = 0.167, β = 0.177, γ = 1.47, and ν = 0.863.
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Figure 4.10: Collapsing of the finite size scaled data. (a) specific heat C, (b) order parameter Φ
(c) the corresponding susceptibility χ, (d) Binder cumulant B4 as functions of scaled temperature.

a continuous phase transition see Figure 4.10.

Our finite-size scaling analysis produces fairly reasonable data-points collapsing (Figure 4.10),

further supporting a second-order phase transition at Tc. The critical exponents of this phase tran-

sition are determined from finite size scaling analysis by following standard procedures. Results of

the scaled data shown in Fig. 4.10. For example, the exponent ν can be determined from the data

collapsing of B4 versus scaled temperature L1/ν(T − Tc). The slope of linear fitting the maximum

values of specific heat Cmax as a function of lattice size L gives the value of α/ν. The ratios γ/ν
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and β/ν are obtained similarly from the χ and Φ curves. We obtain the following critical expo-

nents: α = 0.167, β = 0.177, γ = 1.47, ν = 0.863. These exponents also satisfy the hyperscaling

relation α + 2β + γ = 2. As shown in Fig. 4.10, fairly nice data collapsing is obtained using this

set of critical exponents. Since the plaqute-ordering is intimately related to a broken Z3 symmetry,

some of the critical exponents, e.g. ν and γ, obtained from finite-size scaling, shown in caption

of Fig. 4.10, are consistent with the 2D 3-state Potts universality class [79], although others show

noticeable deviations. This discrepancy could be due to the gauge degrees of freedom {ηα}, which

might have nontrivial effects on the critical behavior.

4.8 Static Structure Factor simulations

We can describe the static structure factor by the following correlation function,

S(q, 0) = ⟨Sq(0) · S∗
q(0)⟩ (4.12)

where ⟨· · · ⟩ denotes the ensemble average over independent initial states of a given temperature.

and Sq represents the spatial Fourier transform of the instantaneous spin configuration in three

dimensional complex vector form.

Sq =
1√
N

∑
i

Si(t = 0) exp(iq · ri) = C+ iS (4.13)

Then,

S(q, 0) = ⟨C− iS|C+ iS⟩ (4.14)

The structure factor is computed from the Fourier transform of the spin configuration, i.e. S(q) =

| 1
N

∑
i S(q) exp(iq · ri)|2. We plot the ensemble average of S(q) = C2 + S2. Where q =

m
L
b1 + n

L
b2 the reciprocal lattice wave vectors and position vector of each spin r gives us the

phase values exp(iq · ri) corresponding to each q. Both m and n belong in the range 0 ≤ m < L

and 0 ≤ n < L where L is the linear honeycomb lattice size.
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Figure 4.11: Static structure factor S(q) in the extended Brillioun zone for the Γ model at low
temperatures obtained from Monte Carlo simulations. Panels (a) and (b) are computed at T = 0.03
and T = 0.05 respectively for antiferromagnetic Γ > 0. Similar results for ferromagnetic Γ < 0
are shown in (c) T = 0.03, (d) T = 0.05.

82



Fig. 4.11 shows the static structure factor S(q) of the Γ model at low temperatures for both antifer-

romagnetic and ferromagnetic Γ. Importantly, the system exhibits rather distinct structure factors

above and below the critical Tc for both signs of Γ. We can see for the antiferromagnetic case

i.e. Γ > 0 (Fig. 4.11(a) and (b)) the minimum spectral weight lies at the Γ point in the brillioun

zone(BZ). We see the characteristic development of dark nearly circular patches at the centers of

the extended BZ especially at temperatures greater than TC . Intensity starts to concentrate on the

boundaries of the BZ. For T < TC spectral intensity outside the Γ point dark circular patch looks

uniform for rest of the BZ. For T > TC focusing on the bright BZ boundary regions, the maximum

spectral weight is found at the Y point, with a decrease in magnitude as we move towards the X

point, and a uniform drop-off as we move from the Y point to the Γ point origin of BZ. Static

structure factors for ferromagnetic interaction(Γ < 0) exhibit complete antipodal characteristics

from its antiferromagnetic counterpart. We see in Fig. 4.11(c) and (d) spectral intensity has its

maxima at the BZ centers. Intensity decreases as we move closer to the edges of the extended BZ.

For T > TC it is clearly visible that towards the edge of the BZ, intensity decreases when we move

from X point to Y point.

4.9 Spin dynamics

In this section we will discuss the details of the dynamical behaviors of the spin liquids above and

below the critical Tc. To this end, we employ the semiclassical Landau-Lifshitz (LL) dynamics

simulation, which has been successfully applied to compute the dynamical structure factor of vari-

ous classical spin liquids [17, 80, 81]. For T > Tc, MC simulations are used to prepare initial states

sampled from the Boltzmann distribution. We then perform energy-conserving LL simulation 4.15

to obtain trajectories of spins Si(t).

dSi

dt
= −Si ×

∂H
∂Si

, (4.15)

where H is the Hamiltonian of the Γ model. Here we do not include dissipation terms such as
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the Gilbert damping in our dynamical simulations, since we are interested in the un-damped os-

cillations of the excited states. The excitation energies can be extracted from these oscillations

through simple time-domain Fourier transform. An efficient semi-implicit algorithm [31] is em-

ployed to integrate the above LL equation. The high efficiency of the algorithm comes from fact

that it preserves the spin length at every time step and the energy values are well conserved with

time irrespective of the time length or time step size in the simulation. In our computations of the

structure factor, we consider a honeycomb lattice with 2 × 302 spins. A time step δt = 0.005 is

used (with |Γ| = 1).

The dynamical structure factor Sαβ(q, ω) is computed from the Fourier transform of the real-space

correlator ⟨Sα
i (t)S

β
j (0)⟩, where α, β = x, y, z, averaged over the initial states. As discussed above,

since ground states parameterized by different {ηα} are disconnected below Tc, an additional aver-

age over random {ηα} is introduced manually to improve the efficiency. It is worth noting that the

dependence of S(q, ω) on temperature mainly comes from different initial state sampling.

To compute the S(q, ω) at a given temperature T , we first perform Monte Carlo simulations to

sample equilibrium spin configuration at T . These spin states are then used as the initial condition

for the LL dynamical simulations, i.e. Si(t = 0) = S
(eq)
i (T ). Next, we perform dynamical

simulations based on LL equation to generate snapshots of the system Si(tn) at different times

tn = n∆t, where ∆t = 10δt is used. From these spin configurations, we compute the space-time

Fourier transform:

S(q, ω) =
1

N

∑
i

∫ T

0

Si(t)e
iq·ri e−iωtdt (4.16)

Here the integral over time is approximated by the discrete Riemann summation, and the upper

limit T = 500 is used. Due to periodic boundary condition used in our finite size simulations, we

consider only wavevectors q = m
L
b1 +

n
L
b2, where m,n are integers and b1, b2 are the primitive

vectors of the reciprocal lattice.

The diagonal part of the dynamical structure factor S(q, ω) ≡ ∑
α Sαα(q, ω) = |S(q, ω)|2 are
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shown in Fig. 4.12 for the two spin liquid phases for both ferromagnetic and antiferromagnetic

interactions in different temperature regimes along a few high-symmetry directions in the Brillouin

zone. The S(q, ω) at T > Tc shows broad continuum over a wide energy range in both cases. On

the other hand, structures of coherent quasi-particle dispersion can be seen at high energies for

S(q, ω) in the low-T phase. These coherent excitations in a liquid phase are reminiscent of the

electron pseudo-bands observed in liquid metals [82, 83]. Their origin can be traced to the robust

local or short-range ordering in a liquid state.

In each figure we have averaged over 100 different initial states for a 30 × 30 unit cells (1800

spins). It is expected that like the static structure factor graphs which are analogous to ω = 0

we see a minima in spectral weight at Γ point in the BZ for AFM case and a maxima for the FM

case. We also see sharp band structure like features at low temperatures which fade away at higher

temperatures. For both AFM and FM dynamical structure factors, the intensity accumulates most

prominently around the Γ point, and the line towards the K and M from Γ point holds equivalent

spectral weight intensity for lower frequency region (ω < 1). For temperatures lower than T =

0.05 the spectral intensity rapidly decreases in higher frequency region.

The off-diagonal dynamical structure factors Sαβ(q, ω) are simulated from the equations and given

in Figure 4.13,

Sαβ(q, ω) =

∫ T

0

Sαβ(q)e
−iωtdt (4.17)

where Sαβ(q) = Sα(q)Sβ(−q) + Sβ(q)Sα(−q).

Interestingly, the logarithmic plot of the off-diagonal Sxy(q, ω), shown in Fig. 4.14(a), exhibits

intriguing excitations associated with the high-symmetry points of the BZ. It is important to note

that a large signal also exists at the same high-symmetry points in the static structure factor. These

quasi-q-independent features thus seem to derive from coherent oscillations of the underlying pla-
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Figure 4.12: The diagonal part of the dynamical structure factor S(q, ω) = Sxx(q, ω) +
Syy(q, ω) + Szz(q, ω) computed from LL simulations for antiferromagnetic (top) and ferromag-
netic (bottom) Γ model. Panels (a)-(d) show dynamical structure factors S(q, ω) for Γ < 0 FM
regime plotted for T = 0.03, 0.05, 0.08, 0.1 (from left to right). Panels (e)-(h) show the S(q, ω)
for Γ > 0 AFM regime plotted for same temperature values T = 0.03, 0.05, 0.08, 0.1 (from left to
right).

Figure 4.13: Off-diagonal dynamical structure factor Sxy(q, ω) at T=0.01
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quette pattern.

To further investigate the source of these excitations, we compute the dynamical structure factor

of fluxes W(q, ω), which is defined as the space-time Fourier transform of the correlation function

⟨Wα(t)Wβ(0)⟩ given by equation,

W(q, ω) =

∫ T

0

W (q)e−iωtdt (4.18)

Interestingly, as shown in Fig. 4.14(b), similar momentum-specific excitations are observed in the

dynamical structure factor W(q, ω). In addition to the long-range order at the K-point, the finite

excitations associated with the Γ point result from the non-zero average ⟨W ⟩ ≈ 1/3 of the
√
3×

√
3

flux patterns, e.g. WA ≈ 1, and WB ≈ WC ≈ 0. Fig. 4.14(c) and its inset show the ω dependence

of the dynamical excitations W(Q, ω) with momentum fixed at Q = (4π/3, 0), corresponding to

the K point. Significant differences in the overall behavior can be seen in the two temperature

regimes above and below the critical Tc, in particular see the inset semi-log plot. Importantly,

we find distinct power-law behaviors W(Q, ω) ∼ 1/ωa in the two spin-liquid phases, with the

exponent a ≈ 1.5 at high temperatures, and a ≈ 1.22 in the flux-ordered phase. These finite

energy excitations at the ordering wavevector Q reflect the composite nature of the flux variables

that develop a long range order below Tc. Notably, they are in stark contrast to the dispersive

Goldstone modes of simple long-range magnetically ordered states.

Next we examine dynamical structure factors of low-T states that arise from possible quantum

order by disorder on the η degrees of freedom. As discussed in Ref. [73], real-space perturbation

calculation gives rise to an effective interaction among the Ising variables ηα:

HIsing = ϵΓ
∑
⟨αβ⟩

′ ηα ηβ (4.19)

87



0 10.5

!

!

L = 30, T = 0.01
0.1

0.0000001

0.0000010

0.0000100

0.0001000

0.0010000

0.0100000

0.1000000

1.0000000

 0.001  0.01  0.1  1  10

 
 

10-6

10-4

10-2

1

10-3 1010-2 110-1

!

!

(a)

(b)

q
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(c)

!�1.22
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

!�1.5
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

!�4.25
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W(Q,!)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

W(q,!)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Sxy(q,!)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

0.0000010

0.0000100

0.0001000

0.0010000

0.0100000

0.1000000

1.0000000

 0  1  2  310-6

10-4

10-2

1

0.1

0.01L = 30, T =

Figure 4.14: (a) Off-diagonal dynamical structure factor Sxy(q, ω) in logarithmic scale. (b)
Dynamical structure factor of flux variables W(q, ω) in logarithmic scale. Also note the log-scale
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Here ϵ is a positive numeric constant, the prime indicates that the summation is over hexagons

with nonzero average flux, i.e. ⟨Wα⟩ ̸= 0, which form an enlarged triangular lattice, and ⟨αβ⟩

denotes nearest-neighbor pair on the triangular lattice. The triangular lattice formed by hexagons

with nonzero W corresponds to the
√
3 ×

√
3 pattern. The above Hamiltonian Eq. (4.19) thus

describes an triangular Ising model with effective nearest-neighbor interaction Jeff = ϵΓ.

In the case of ferromagnetic Γ < 0 , the effective interaction in Eq. (4.19) leads to a uniform

ordering of the η variables, namely all ηα = +1 or ηα = −1. The long-range ordering of the

Ising variables combined with the plaquette ordering of the fluxes, which is equivalent to the or-

dering of the directional vector n̂ = (a, b, c), give rise to a long-range spin order of the
√
3 ×

√
3

type. Fig. 4.15 shows the dynamical structure factor S(q, ω) of this
√
3 ×

√
3 spin order with

FM Γ-interaction, obtained from our LL dynamical simulations. Small deviations are introduced

to the perfect
√
3 ×

√
3 order through Monte Carlo simulations at T = 10−4. As expected for a

state with long-range spin order, the S(q, ω) shows clear dispersions for the magnon quasiparticle

excitations.

On the other hand, the effective Ising model Eq. (4.19) with antiferromagnetic Γ > 0 is a highly

frustrated system, which is in fact one of the first studied geometrically frustrated magnets [25].

Essentially, since the AFM interaction between three Ising spins of an elementary triangle cannot

be simultaneously satisfied, there is at least a frustrated bond with parallel Ising spins on every

triangle. The number of degenerate ground states can be exactly computed using the transfer-

matrix method [25]; it grows exponentially with the system size, giving rise to a nonzero entropy

density of the degenerate ground states.

In order to compute the dynamical structure factor of the AFM Γ model, we perform Monte Carlo

simulations on the effective Ising model (4.19) to sample degenerate ground-state configurations

of the Ising variables ηα. A spin configuration is then constructed from these Ising variables and

a particular choice of the directional vector, say n̂ = (1, 0, 0); see Fig. 4.16 for an example.

Next we perform Monte Carlo simulations on the spin Γ-model Eq. (4.1) at T = 10−4 in order
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Figure 4.15: Dynamical structure factor at very low temperature T = 10−4 of the
√
3 ×

√
3 state

with uniform ηα = +1. This state is the ground state selected by quantum order by disorder in the
case of ferromagnetic Γ < 0.

Figure 4.16: Spins have cubic symmetry at low temperature, the resulting non-zero flux parameter
hexagons with W ∼ 1 (shaded) form an Ising triangular lattice. For each triangle made of 3 such
hexagons, the corresponding η’s are frustrated i.e. (+ +−) or (−−+) .
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Figure 4.17: Dynamical structure factor of the Gamma model averaged over 100 different {ηα}
configurations that are ground states of the AF Ising model Eq. (4.19); see also Fig. 4.16. Again, a
small perturbation is introduced through Monte Carlo simulations at low temperature T = 10−4.

to introduce small deviations to the ground state constructed from the η variables. Using this

slightly perturbed state as the initial condition, we perform LL dynamics simulations to compute

the dynamical structure factor. The resultant S(q, ω) shown in Fig. 4.17 is obtained by averaging

over 100 different AFM {ηα} configurations. We see sharp band structure and band gap like

features along the high symmetry line. In the ploted range of ω we can see clear discontinuity

(band gap like features) close to ω = 1, ω = 1.5 and ω = 3. These features appear relatively

periodic along the high symmetry line at higher ω values close to ω ∈ (3, 3.5).

4.10 Gamma model in a magnetic field

I have worked with Zhongzheng Tian and Zhijie Fan to study the effect of introducing magnetic

field along with the pure Γ-interaction term [84]. In this section I have highlighted some of the
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prominent results from our work. The Hamiltonian is represented by the following equation,

H = Γ
∑
γ

∑
⟨ij⟩∥γ

(Sα
i S

β
j + Sβ

i S
α
j )−H

∑
i

Si. (4.20)

where (α, β, γ) are permutations of (x, y, z) and the second term represents the Zeeman coupling

to a magnetic field H = Hn̂ in the n̂ ∥ [111] direction.

Frustrated magnets are easily prone to excitations in magnetic field. We found that the presence of

magnetic field in the high-symmetry direction lifts the macroscopic classical ground-state degen-

eracy of the honeycomb Γ model and induces a long-range magnetic order. For the ferromagnetic

Γ-exchange we observed that a simple spin-polarized state with spins aligning with the field direc-

tion is selected by the external field. Interestingly this particular ferromagnetic state also happens

to be one of the ground states of the zero-field Γ model [73]. On the other hand in case of anti-

ferromagnetic interaction a periodic
√
3 ×

√
3 magnetic order is selected by magnetic field. This

tripled unit cell has an exotic spin structure that can be described by a magnetic moment vector

and a hidden Néel order parameter, which is a spin-flop state of a bipartite antiferromagnet [84].

As a result, we can classify this as a spin-flop transition from plaquette-ordered spin liquid at low

field to a field driven long-range magnetic order.

The Néel vector is accompanied with O(2) degeneracy originating from its rotation symmetry.

Thermal or quantum fluctuations fractures this degeneracy into a six-fold degenerate ground state.

At sufficiently high fields, the ground-state Z6 symmetry breaking is attributed to two Berezinskii-

Kosterlitz-Thouless transitions that enclose a critical XY phase. Figure 4.18 shows the schematic

phase diagram of the classical Γ model in presence of a field H .

4.11 Numerical simulations

In this section I have discussed the details of the implementation of the lattice and numerical

methods.
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Figure 4.18: Schematic diagram of the Γ model.The different phases are color shaded as regimes
change with temperature T and strength of the magnetic field H . (I) Spin liquid with hexagonal
flux order that breaks the lattice translation symmetry [74]. (II) Long range

√
3 ×

√
3 magnetic

order with a tripled unit cell. (III) Critical XY phase with an emergent O(2) symmetry of Néel
vectors. (IV) Classical spin liquid with short ranged correlation that is smoothly connected to
high-T paramagnet and the polarized state at high field. (b) The transition from the plaquette spin
liquid to the

√
3×

√
3 magnetic order resembles a spin flop transition in bipartite antiferromagnet

with weak anisotropy.Figure reproduced from [84]
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Figure 4.19: Honeycomb lattice : basis vectors and the corresponding reciprocal lattice vectors.

Table 4.1: Nearest neighbor coordinates
s ↓ nn → 1 2 3
0 (X, Y, s=1) (X, Y+1, s=1) (X-1, Y+1, s=1)
1 (X, Y, s=0) (X+1, Y-1, s=0) (X, Y-1, s=0)

4.11.1 Lattice structure

We study the Gamma interaction on a honeycomb lattice. The basis vectors and corresponding

reciprocal lattice vectors are given in Figure 4.19. The unit cell consists of 2 spin sites, each of

which is considered a sublattice. This makes the total number of spins on a honeycomb lattice of

linear size L equal to NS = 2L2. The coordinates of the unit cell is represented by (X, Y ). Each

of the spins on a lattice are represented by position vectors r = Xa1 + Y a2 + ds[s], where ds(s)

given in Figure 4.19 represents the position vector of each of the two sublattice spins within each

unit cell.

Each spin on the unit cell has 3 nearest neighbors. We set the closest nearest neighbors individually

for each sublattice. The nearest neighbors are constructed as given below and the idea is illustrated

in the Figure 4.20. The coordinate construction for the nearest neighbour spins for the honeycomb

lattice are shown in Table 4.1, where (X, Y ) coordinate denotes the unit cell and s denotes the

sublattices. We consider only these neighbors for exchange interactions for both Monte Carlo

statistics and spin dynamics effective field.
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Figure 4.20: Nearest neighbors coordinates for each of the sublattices on a Honeycomb lattice.

4.11.2 Spin dynamics equations

The three dimensional Heisenberg spins experience Γ off-diagonal exchange interaction amongst

themselves as given in Eq. 4.1 and their time trajectories are given by the Landau Lifshitz equation

as given in Eq. 4.15. In this work we use the Mentink et al. SIB method [31] to integrate the Landau

Lifshitz equation and simulate the spin trajectory in time. In our system the the dynamics in energy

conserving and follow the method explained in section 3.2.2. The Γ interaction Hamiltonian in the

component form as given Eq. 4.1 leads to the following effective Hamiltonian.

Heff,i = −∂H
∂Si

= −
(
∂H
Six

,
∂H
Siy

,
∂H
Siz

)
= −Γ

(
(Sz

j∈y−bond + Sy
j∈z−bond)x̂

+ (Sx
j∈z−bond + Sz

j∈x−bond)ŷ + (Sy
j∈x−bond + Sx

j∈y−bond)ẑ

)
(4.21)
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Once we have the spin trajectories in time, we can use them to compute all kinds of dynamical

structure factor plots, for example Fig. 4.12 and 4.14 given by Eq.4.17 for the spins and Eq. 4.18

for the flux variables. These dynamical structure factor figures are plot along the high symmetry

points in the Brillouin zone(BZ). The BZ of a hexagonal lattice is also a hexagonal lattice. Details

of these simulations are given at the end of Section 5.7.3.

4.12 Discussion and Outlook

We have demonstrated that thermal order-by-disorder in honeycomb Γ-model drives a phase tran-

sition into a new spin liquid phase with a hidden flux long-range order. The same scenario also

applies to quantum order-by-disorder which generates a similar effective cubic anisotropy [73]. In

the presence of other perturbations, the degeneracy of the plaquette-ordered states is lifted. Specif-

ically, the antiferro-Kitaev exchange preserves the continuous degeneracy of n̂ = (a, b, c), while

lifting the discrete η degeneracy by selecting the uniform configuration. Interestingly. the discrete

degeneracy remains in the case of ferromagnetic Kitaev exchange. On the other hand, Heisenberg

interactions favors a ground state with n̂ = (1, 1, 1). However, the flux-ordered spin liquid is

expected to survive in a finite temperature window when these perturbations are small compared

with the dominant Γ term. Experimentally, one manifestation of plaquette ordering is the onset of

spin cubic anisotropy. However, this signal might be difficult to detect given the intrinsic cubic

symmetry of the system. Through coupling to other degrees of freedom in crystal, e.g. spin-lattice

coupling, the translation-symmetry breaking could produce Bragg peaks in neutron or X-ray scat-

tering.

The effects of quantum fluctuations have been extensively discussed in Ref. [73]. The relevant

energy scale of quantum order-by-disorder is T ∗ ∼ O(|Γ|S) for both the discrete η and continuous

n̂ variables [73]. As noted in the same study, the induced effective interaction between ηα remains

frustrated for antiferromagnetic Γ, so a similar flux-ordered spin liquid can be stabilized by pure

quantum fluctuations in this case. It is, however, unclear what is the scenario in the ferromag-

netic Γ model due to the closeness of the two energy scales. Restoring the spin length, the critical
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temperature for thermal order-by-disorder is Tc ∼ 0.04|Γ|S2. Our finding thus ensures the exis-

tence of the exotic flux-ordered spin liquid for large S at the temperature window T ∗ ≲ T ≲ Tc.

Finally, it is also of great interest to study similar flux-ordering in three-dimensional hyper- or

stripy-honeycomb lattices where some of the flux variables are defined on extended strings.
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CHAPTER 5

SPIN DYNAMICS OF THE ANTIFERROMAGNETIC HEISENBERG MODEL ON A

KAGOME BILAYER

5.1 Results summary

• In this work we present spin dynamical simulations of classical Heisenberg antiferromagnet

with nearest neighbor interactions on a quasi-two-dimensional kagome bilayer. This geo-

metrically frustrated lattice consists of two kagome layers connected by a triangular-lattice

linking layer.

• By combining Monte Carlo with precessional spin dynamics simulations, we compute the

dynamical structure factor of the classical spin liquid in kagome bilayer and investigate the

thermal and dilution effects. While the low frequency and long wavelength dynamics of the

cooperative paramagnetic phase is dominated by spin diffusion, weak magnon excitations

persist at higher energies, giving rise the half moon pattern in the dynamical structure factor.

• We also investigate the system in its site diluted form. The dynamical properties in the

presence of spin vacancies can be understood within the two population picture. The spin

diffusion of the “correlated" spin clusters is mainly driven by the zero-energy weather-van

modes, giving rise to an autocorrelation function that decays exponentially with time.

• Vacancies gives rise to a unique arrangement of spins called orphan spins. The diffusive

dynamics of the quasi-free “orphan" spins leads to a distinctive longer time power-law tail

in the autocorrelation function. We discuss the implications of our work for the glassy be-

haviors observed in the archetypal frustrated magnet SrCr9pGa12−9pO19 (SCGO).
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5.2 Introduction

The SCGO is one of the most intensely studied frustrated magnets [85–98]. Thermodynamically,

SCGO does not exhibit any signs of magnetic ordering down to temperatures Tg = 3.5–7 K,

depending weakly on the vacancy concentration x = 1 − p. Below Tg, the magnet enters an un-

conventional spin-glass phase. A cooperative paramagnetic regime, also known as a classical spin

liquid, emerges at temperatures below the Curie-Weiss constant ΘCW ≈ 500 K. Geometrically,

SCGO belongs to a class of frustrated Heisenberg antiferromagnets on the so-called bi-simplex

lattices [17, 18, 99, 100]. These are networks of corner-sharing simplexes such as triangles and

tetrahedra. Canonical examples include the pyrochlore [17, 18] and kagome [22, 26, 38, 101] an-

tiferromagnets. In SCGO, the Cr3+ ions with spin S = 3/2 reside on a two-dimensional lattice

consisting of corner-sharing tetrahedra and triangles, known as the kagome bilayer or pyrochlore

slab, as shown in Fig. 5.1. The strong short-range spin correlations in the low-temperature liquid

phase result from the constraints of zero total spin in every simplex, a condition that minimizes the

nearest-neighbor exchange interactions on such unit.

Considerable experimental efforts have been devoted to understanding the unusual spin glass phase

in SCGO [86–89, 92, 94–96, 98]. Despite the characteristic field-cooled and zero-field-cooled

hysteresis in the bulk susceptibility, several dynamical properties of its glassy phase are distinctly

different from those of conventional spin glasses. These include the quadratic T 2 behavior of the

specific heat [86, 87], the linear ω-dependent dynamical susceptibility χ′′ [92], and a significantly

weaker memory effect [102]. Taken together, these features suggest that SCGO belongs to a new

state of glassy magnets, dubbed the spin jam [98, 102], that include several other magnetic com-

pounds [103, 104]. The source of this unusual dynamical phase in SCGO, however, remains to

be clarified. One plausible scenario is that quantum fluctuations transform the macroscopic de-

generacy associated with the classical spin liquid of the kagome bilayer into the rugged energy

landscape of spin jam [98, 105]. It remains to be shown how the unusual glassy behaviors of the

spin jam evolve from the spin dynamics of the cooperative paramagnet.

99



Toward this goal, we present in this work the first systematic study of the dynamical properties

of the bilayer-kagome classical spin liquid. By combining Monte Carlo simulations with energy-

conserving Landau-Lifshitz dynamics, we compute the dynamical structure factor of the liquid

regime. At the energy scales of the exchange interaction, we find signals of spin-wave excitations

in the form of half moon pattern, replacing the pinch-point singularity of the static structure factor.

On the other hand, the low-energy dynamics is dominated by spin-diffusion driven mostly by the

zero-energy modes. The diffusion constant is found to depend weakly on temperature, but decrease

significantly with increasing vacancy densities.

Our results will also serve as an important benchmark against which dynamical behaviors induced

by other perturbations can be compared. Of particular interest are those perturbations, such as

quantum order-by-disorder, that give rise to glassy dynamics characteristic of either the conven-

tional spin-glass or the exotic spin-jam states. It is also worth noting that the dynamical properties

of classical spin liquid has been extensively studied for Heisenberg antiferromagnets on both py-

rochlore [17, 18, 106] and kagome lattices [80, 107–109]. Another aim of this work is to compare

the spin dynamics of bilayer kagome against these two well studied bi-simplex frustrated magnets.

The rest of the work is organized as follows. In section 5.3, we discuss the ground-state manifold of

Heisenberg antiferromagnet on the kagome bilayer. We also outline the numerical framework that

combines Monte Carlo simulation with energy-preserving Landau-Lifshitz dynamics method for

computing the dynamical structure factor of a classical spin liquid. Magnetic excitations revealed

from the dynamical structure factor are discussed in Sec. 5.4. In particular, half-moon features,

which are the dynamical manifestation of the famous pinch-point structure at finite energies, are

highlighted. Systematic analysis of the low-energy spin dynamics, which is dominated by diffusive

modes, is presented in Sec. 5.5. We present in Sec. 5.6 dynamical features due to quenched dis-

order introduced by vacancies. Of particular interest is the emergence of quasi-free orphan spins

that interact with each other through a week effective interaction mediated by the background spin-

liquid. We have discussed the set up of the kagome-bilayer lattice for the implementation of the

numerical methods in Sec. 5.7. We conclude in Sec. 5.8 with a brief summary and outlook on
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future work.Our results are published in [110].

5.3 Model and method

We consider the classical Heisenberg model with nearest neighbor interactions on the kagome

bilayer

H = J
∑
⟨ij⟩

Si · Sj (5.1)

Here J > 0 is the antiferromagnetic exchange, ⟨ij⟩ denotes nearest-neighbor pairs, and the clas-

sical spins Si are unit vectors. The kagome bilayer has a Bravais triangular lattice with a unit cell

consisting of two corner sharing tetrahedra of opposite orientation. The bases of the tetrahedra in

the two kagome layers are connected by triangle units; see Fig. 5.1. The triangle and tetrahedron

are the regular simplexes with q = 3 and q = 4 corners, respectively. Importantly, because of this

corner-sharing simplex structure, the exchange interaction can also be expressed as a sum of the

squared total spin of both types of simplexes

H =
J

2

∑
⊠

L2
⊠ +

∑
△

L2
△ + const. (5.2)

Here L⊠ =
∑

i∈⊠ Si denotes total spin in a tetrahedron, L△ =
∑

i∈△ Si denotes total spins of a

triangle, and
∑

⊠ and
∑

△ indicate summation over tetrahedra and triangles, respectively, in the

kagome-bilayer lattice. One can immediately see that the exchange energy is minimized by the

condition that total spin of every simplexes is zero:

L⊠ = L△ = 0, (5.3)

The ground-state condition is confirmed by our Monte Carlo simulations. The fact that a macro-

scopic number of spin configurations satisfy the minimum energy condition leads to a classical spin

liquid regime at temperatures T ≲ J . Indeed, our Monte Carlo simulations show no signs of phase
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Figure 5.1: Top: Lattice structure of kagome bilayer. It can be viewed as a quasi-two-dimensional
network of corner-sharing simplexes. There are two kinds of simplexes: tetrahedron and triangles,
both comes with two (opposite) orientations, as shown in the bottom panel. Spins in the ground
states satisfy the constraint that total spin in both types of simplexes is zero: L⊠ = L△ = 0.

transition down to temperatures T ≈ 0.001J , consistent with previous studies [111–114]. Instead,

a spin-disordered phase with strong short-range correlation is obtained at low temperatures.

In general, there are two types of spin dynamics in the liquid regime. At short time scales, or

high frequencies (ω ∼ J), there are spin-wave excitations corresponding to small amplitude devia-

tions from the ground-state manifold. These excitations are similar to the magnons in unfrustrated

magnets. On the other hand, the macroscopic number of zero modes, or the weather-vane modes,

that connect different ground states dominate the long-time dynamical behaviors of the frustrated

bi-simplex antiferromagnet. The resultant drifting of the system in the ground-state manifold gives

rise to spin-diffusion behaviors and an exponential decaying spin autocorrelation. In the following,

we discuss our simulation results within this general picture.

The equation of motion for classical spins is given by the Landau-Lifshitz equation

dSi

dt
= −Si ×

∂H
∂Si

= −J
∑
j

′ Si × Sj, (5.4)

where the prime indicates summation is restricted to the nearest neighbors of the i-th spin. Here
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we numerically integrate the Landau-Lifshitz equation to compute the dynamical structure factor

of the classical spin liquid. Low temperature Monte Carlo simulations are first used to obtain spin

configurations in equilibrium of a specified temperature. These are then used as the initial states

for the energy-conserving precession dynamics simulations. An efficient semi-implicit integration

algorithm [31] is employed to integrate the above Landau-Lifshitz equation. The high efficiency

of the algorithm comes from fact that it preserves the spin length at every time step and the energy

values are well conserved with time irrespective of the step size or the time span of the simula-

tion. From the numerically obtained spin trajectories Si(t), we compute the dynamical correlation

function S(q, t)

S(q, t) = ⟨Sq(t) · S∗
q(0)⟩, (5.5)

where Sq(t) ≡
∑

i Si(t) exp(iq · ri)/
√
N is the spatial Fourier transform of the instantaneous spin

configuration, and ⟨· · · ⟩ denotes the ensemble average over independent initial states of a given

temperature. The dynamical structure factor is then given by

S(q, ω) =

∫
S(q, t)e−iωtdt

=
1

N

∑
ij

∫
dt⟨Si(t) · Sj(0)⟩e−iωtdt, (5.6)

which is essentially the space-time Fourier transform of the spin-spin correlator Cij(t) ≡ ⟨Si(t) ·

Sj(0)⟩.

5.4 Magnons and half moon patterns

The intensity plot of the scaled dynamical structure factor β S(q, ω), where β = 1/T , is shown

in Fig. 5.2 for four different temperatures. The spin excitations are clearly dominated by the low-
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Figure 5.2: Temperature-scaled dynamical structure factor β S(q, ω) of the classical spin liquid
in the bilayer kagome antiferromagnet at four different temperatures: (a) T/J = 0.01, (b) 0.05, (c)
0.1, and (d) 0.6; here β = 1/T . The linear size of the simulated lattice is L = 30, with number of
spins N = 7× L2.
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energy quasi-static fluctuations that extend over most of the Brillouin zone; also see Fig. 5.3 for

the density plots of S(q, ω) in the reciprocal space at constant energies. At low temperatures,

the similar patterns of the quasi-static excitations indicating nontrivial scaling behaviors to be

discussed below. Moreover, the relatively weak excitations at higher energies ω ≳ J result from

the magnon fluctuations in the vicinity of an instantaneous ground state. Contrary to the kagome

antiferromagnets [80, 108], no sharp propagating modes can be seen in the dynamical structure

factor of the bilayer kagome.

The static structure factor, corresponding to Fig. 5.3(a) with ω = 0, exhibits sharp pinch points

which are a hallmark of highly correlated spin liquid in bi-simplex frustrated magnets. The source

of these singularities can be attributed to the ground-state constraints Eq. (5.3), which translates

into a solenoid condition ∇·B = 0 for an emergent “magnetic" or flux field that is a coarse-grained

representation of the spin configuration. This in turn gives rise to an anisotropic dipolar-like cor-

relation of the flux field, which manifests itself as the pinch-point singularity in the reciprocal

space [22–24].

At finite temperatures, the width of the pinch-point is roughly proportional to
√
T [115]. Interest-

ingly, the pinch point is also smeared with increasing ω, and is replaced by the so-called half moon

pattern at ω ≳ J , as shown in Fig. 5.3 (b) and (c). Similar features, called the “excitation rings"

have been observed in the finite-energy dynamical structure factor of the coplanar spin liquid phase

of kagome [108]. It has been pointed out that the half-moon can be viewed as the pinch-point with

a dispersive dynamical flux field [116]. These crescent patterns at high energies are the remnants

of the propagating magnons mentioned above. Compared with the coplanar phase in kagome, the

half-moon feature is much weaker in the liquid phase of bilayer kagome, indicating less rigid local

structures in the instantaneous ground state.
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Figure 5.3: Density plots of the dynamical structure factor S(q, ω) at T = 0.005 J in the recip-
rocal space: (a) ω = 0, (b) ω = J , and (c) 2J . The system size is L = 30. The dashed circles
indicate the pinch point at ω = 0, and the half moon pattern at higher energies.
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Figure 5.4: (a) The ensemble averaged spin autocorrelation function A(t) =
∑

i⟨Si(t) ·Si(0)⟩/N
on a L = 30 lattice for varying temperatures. (b) Extracted relaxation time τ of A(t) = exp(−t/τ)
as a function of temperature. The dashed line shows the power-law τ ∼ T−0.924 dependence.
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5.5 Spin diffusion

The relatively weak half moon excitations also indicate a dominating spin diffusive dynamics in

bilayer kagome. In general, spin diffusion dominates the excitation spectrum of disordered Heisen-

berg systems in the hydrodynamic limit [117, 118]. In frustrated magnets, this diffusion results

from the macroscopic number of zero-energy modes in the instantaneous ground state, causing the

system to wander around the degenerate manifold. One particular manifestation of this diffusion

is the decay of the spin autocorrelation function

A(t) =
1

N

∑
i

⟨Si(t) · Si(0)⟩ =
∑
q

S(q, t), (5.7)

where again ⟨· · · ⟩ is the thermal average, which is achieved through averaging over independent

initial states from Monte Carlo simulations. Fig. 5.4(a) shows A(t) as a function of time for various

temperatures obtained from a L = 30 system. The decay of the autocorrelation function is found

to be exponential A(t) ∼ exp(−t/τ) in the low temperature regime, and the numerically extracted

time constant τ is shown in Fig. 5.4(b) as a function of temperature.

The nearly linear segment in the log-log plot suggests a power-law dependence τ ∼ T−ζ , where the

numerically obtained exponent ζ = 0.924 ± 0.015, which is close to 1 as predicted by a soft-spin

Langevin dynamics model for frustrated magnets with macroscopic ground-state degeneracy [106].

The exponential decay with τ ∼ 1/T is consistent with the zero-mode driven spin-diffusion sce-

nario [17, 106], since the zero modes have no intrinsic energy scales, and the only relevant one

is set by the inverse temperature. This result is also in stark contrast to the high-T conventional

paramagnet in which the spin-diffusion is shown to produce a power-law tail in the autocorrelation

function [118–122].

While the microscopic mechanisms of spin-diffusion could be thermal or quantum fluctuations, or

the large number of zero modes in frustrated systems, fundamentally the diffusive spin dynamics is

related to the fact that the total spin density m =
∑

i Si/N is a constant of the equation of motion.
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(a) (b)S(q, t)

Figure 5.5: (a) Time dependence of the normalized dynamical correlation function
S(q, t)/S(q, 0) at T = 0.5J for various wave vectors close to the zone center. The simulated
system size is L = 60. (b) The inverse relaxation time τ−1

d extracted from panel (a) as a function
of |q|. For each wave vector the data is fitted to an exponentially decaying function.

By combining the continuity equation ∂m/∂t + ∇ · j = 0 with a phenomenological Fick’s law

for local spin current j = −D∇m, one arrives at the familiar diffusion equation for the magneti-

zation density. In the hydrodynamic regime, this introduces a diffusion timescale τd = 1/Dq2 for

perturbations characterized by wave vector q. This is indeed confirmed by our dynamical simu-

lations. Fig. 5.5(a) shows the time dependence of the dynamical correlation function S(q, t) for

various wave vectors. Each curve is obtained after averaging over 500 independent initial states

from Monte Carlo simulations. The correlation function is found to decay exponentially with time:

S(q, t) ∼ exp(−t/τd), where the numerically extracted relaxation time, shown in Fig. 5.5(b), is

isotropic in the reciprocal space and follows nicely the expected behavior τ−1
d = Dq2 for wave

vectors close to the Brillouin zone center.

More generally, here we try to understand our results using the hydrodynamic theory of the param-

agnetic state, which suggests a generalized dynamical susceptibility: χ(q, ω) = −χ(q)Dq2/(Dq2−

iω) [117, 123], where χ(q) is the static susceptibility at wave vector q and D is the spin diffusion

coefficient. The dynamical structural factor is obtained through the fluctuation-dissipation theo-

rem: S(q, ω) ≈ 2[nB(ω) + 1] Imχ(q, ω), where nB(ω) = 1/(eβω − 1). In the ω ≪ T regime,

assuming χ(q) ≈ χ is a constant for small q, the dynamical structure factor can be expressed in a
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scaling form

βq2S(q, ω) = χ
2D

(ω/q2)2 +D2
, (5.8)

A similar result can be obtained from the Langevin soft-spin model [106]. By plotting βq2S

versus ω/q2, we find nice data collapsing from curves of different wave vectors, as shown in

Fig. 5.6 (a) and (b), indicating a static susceptibility that indeed weakly depends on q for wave

vectors close to zone center. On the other hand, we find that the collapsing of data points from

different temperatures is not very satisfactory. Instead, we fit the collapsed data points from each

temperature with the Lorentzian scaling function in Eq. (5.8) and extract both the spin diffusion

coefficient D and static susceptibility χ. The temperature dependence of these two quantities

are shown in Fig. 5.6(c) and (d). The spin-diffusion coefficient decreases quite appreciably with

temperature, while the susceptibility remains roughly the same within the error bars.

5.6 Dilution effects

We next investigate the effect of dilution on the spin dynamics of the liquid phase. Previous studies

have indicated that dilution with non-magnetic vacancies does not induce the spin-glass behavior

of SCGO [99, 124]. In fact, the condition Eq. (5.3) is satisfied for every simplex, for both tetrahe-

dron and trinagle, in the ground states even for strong dilution [99]. Consequently, a macroscopic

degeneracy remains and the low-T phase seems well approximated by a Coulombic classical spin

liquid. To demonstrate this, we compute the dynamical structure factor of the diluted kagome bi-

layer using a combination of Monte Carlo simulations with the energy-conserving Landau-Lifshitz

dynamics simulations. Fig. 5.7 shows the computed S(q, ω) at T = 0.01J for four different va-

cancy concentrations. In addition to the thermal average over independent initial states, the S(q, ω)

of the diluted system is computed with a further average over the disorder, or different vacancy con-

figurations. Interestingly, we find no dramatic change to the calculated S(q, ω) even for vacancy

density as high as x = 0.5. The quasi-static excitations show similar patterns for all concentra-

tions, although both the energy of spin-wave-like excitations at large ω and the bandwidth of the
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110



(a

Γ

K
M

X
Y

3

2

1

0

Γ

K
M

X
Y

(a) x=0

3

2

1

0

!

!

(b) x=0.1

(c) x=0.3 (d) x=0.5

0.0

0.5

1.0

q q

Figure 5.7: Dynamical structure factor S(q, ω) of the classical spin liquid in the diluted bilayer
kagome antiferromagnet at T = 0.01 for four different vacancy concentrations: (a) x = 0 (no
dilution), (b) 0.1, (c) 0.3, and (d) 0.5. The linear size of the simulated lattice is L = 30. The density
plots for diluted systems (x ̸= 0) are further averaged over 50 different disorder configurations.

111



quasi-static excitations are slightly reduced with increasing vacancy concentrations.

Focusing on the small-ω and q regime, we found that the dynamical structure factor is still well

approximated by the scaling function of Eq. (5.8), as shown in Fig. 5.8(a) and (b), indicating

a dominating spin diffusion behavior. The diffusion coefficient D extracted from the data-point

collapsing is plotted in Fig. 5.8(c) as a function of x. The reduced diffusivity with increasing

vacancy concentration indicates a longer relaxation time τd = 1/Dq2, or a slower dynamics, caused

by the disorder, although the system remains liquid-like. Fig. 5.8(d) shows the extracted static

susceptibility χ in the q → 0 limit versus vacancy concentration x. This trend is consistent with the

two population picture since the quasi-free orphan spins dominate the low-T static susceptibility,

hence χ increases with the vacancy concentration.

Since the presence of vacancies does not change the liquid nature or the frustrated spin-interactions

in the kagome bilayer, it is unclear whether the non-magnetic impurities introduce any new dynam-

ical effect. On the other hand, the so-called orphan spins due to the dilution are known to induce

nontrivial effects on the equilibrium properties of the kagome bilayer [125]. The orphan spin cor-

responds to defect triangular simplex with only one surviving spin and two non-magnetic sites [99,

126]. An example of the orphan spin is shown in Fig. 5.9. One can also think of orphan spin as con-

necting a q = 3 triangular simplex and a q = 1 point simplex, which is the spin itself. The orphan

spin behaves as a quasi-free spin with a fractionalized length S/2 when perturbed by a magnetic

field [113, 114]. Experimentally, these seemingly isolated free spins in diluted SCGO produce

a Curie-like component in the static susceptibility even at temperatures well below ΘCW [125,

126]. Detailed Monte Carlo simulations uncover a complex spin texture surrounding the defect

simplex whose total spins indeed sum to S/2 [113, 114]. The fractionalized spin-texture also

provides a natural explanation for the short-range oscillating signal observed in nuclear magnetic

resonance [127].

An intuitive argument for the fractionalized S/2 orphan spins was originally given by Henley

from the viewpoint of bi-simplex structure [99]. Because each spin is shared by two simplexes
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Figure 5.8: Data points collapsing of the scaled dynamical structure factor βq2S versus ω/q2 for
diluted bilayer kagome with (a) x = 0.2 and (b) x = 0.3 vacancy concentrations at a temperature
T = 0.01J . The dashed lines correspond to the Lorentzian scaling function in Eq. (5.8). The
extracted diffusion coefficient D and static susceptibility χ (normalized with respect to x = 0) as
functions of the vacancy concentration are shown in panels (c) and (d), respectively.
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in the bi-simplex lattices such as the kagome-bilayer, the total magnetization can be written as

Mtot = 1
2

∑
α Lα, where α now runs over tetrahedral, triangular, and q = 1 simplexes in the

presence of orphan spins. In the ground states, total spin of each tetrahedron and triangle simplex

remains zero, as evidenced by Monte Carlo simulations [99]. As a result, the total magnetization

of the system becomes Mtot =
1
2

∑q=1
α Lα, where now the summation is restricted to q = 1 single-

point simplexes. As shown above, such q = 1 simplex is just the orphan spin itself, so we have

Mtot =
1
2

∑
i∈orphan Si, which also means that each orphan spin can be viewed as a quasi-free spin

with a fractionalized length S/2 when in a magnetic field [99].

A natural question then is what is the dynamical manifestation of these orphan spins. To this

end, we examine the spin-spin autocorrelation function A(t) defined in Eq. (5.7). Fig. 5.10 shows

the semi-log plot of autocorrelation functions with and without vacancies obtained from our dy-

namical simulations. In both cases, the initial decay of the autocorrelation can be well described

by an exponential function, i.e. A(t) ∼ e−t/τ for small t. However, while the exponential de-

cay persists to longer time-scales in the non-diluted system, the autocorrelation function of the

diluted magnet exhibits a long-time tail, indicating a significantly reduced decline rate of the spin-

autocorrelation.

This two-stage relaxation of the autocorrelation function can be understood in the framework of

the two population picture [125] discussed previously, namely, the classical spin liquid of kagome

bilayer can be viewed of consisting of the “correlated" population which forms momentless clus-

ters (L⊠ = L△ = 0) and the population of quasi-free “orphan" spins that weakly interact with each

other [114]. Of course, at very strong dilution, the set of free spins also include those completely

isolated magnetic ions [99]. Dynamically, these two populations of spins are expected to behave

differently. As discussed in Sec. 5.5, spin diffusion in the classical spin liquid, which is mainly

driven by the zero energy modes, results in an autocorrelation function A(t) which decays expo-

nentially with time. On the other hand, since the vacancy-induced orphan spins can be viewed as

nearly free spins, one expects their dynamical behavior to be similar to that of uncorrelated param-
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Figure 5.9: Orphan spin (red arrow) induced by vacancies in the kagome bilayer. An orphan
spin resides in defective triangular simplex, in which two of the spins are removed, in either of
the kagome layers. From the viewpoint of simplex, two adjacent vacancies in a triangle removes
one triangle simplex , but produces a q = 1 (point) simplex, which is the orphan spin itself and
transforming two neighboring tetrahedral into triangular simplexes.

agnet. Earlier works have shown that diffusion of Heisenberg spins in an uncorrelated paramagnet

leads to a power-law tail in the autocorrelation function, i.e. A(t) ∼ 1/tα [118–122], where the

exponent α depends strongly on the dimensionality. For 2D Heisenberg magnet, it is estimated to

be α ≈ 1.05± 0.025 [118].

To verify the above picture, we present detailed examination of both the short-time and long-time

behaviors of spin autocorrelation function for a diluted kagome bilayer with a vacancy density

x = 0.3. We performed extensive Monte Carlo and Landau-Lifshitz dynamics simulations on

a L = 48 lattice (with total number of spins N = 7 × L2 = 16128). Over 50 independent

realizations of the disorder were constructed, and for each vacancy configuration, 100 independent

initial spin states are prepared at the simulation temperatures. Fig. 5.11(a) shows semi-log plot

of spin-autocorrelation at various temperatures. At short time scale, the decrease of A(t) can be

reasonably approximated by an exponential decay A(t) ∼ e−t/τ(T ), similar to the undiluted case,

with a temperature-dependent decay time constant τ . The numerically extracted relaxation time τ ,

shown in Fig. 5.12(a), again exhibits a power-law dependence on temperature τ ∼ 1/T ζ , with an

exponent ζ ∼ 0.952 ± 0.017, which is similar to the undiluted case. As discussed in the previous
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Figure 5.10: Semi-log plot of autocorrelation function A(t) at T = 0.01 without vacancies (red)
and with 20% (green) and 30% vacancies (blue), obtained from Landau-Lifshitz dynamics simu-
lations of a L = 48 system. The black dashed line indicates an exponential decay A(t) ≈ e−t/τ at
small t.

section, the spherical approximation for the classical spin liquid predicts an exponent ζ = 1. It is

unclear whether the deviation here is due to finite-size effect or the soft-spin approximation.

At longer time scales, the decay of the auto-correlation function slows down and turns into a

power-law tail, A(t) ∼ A∞ + C(T )/tα with the same exponent α for different temperatures.

Interestingly, as shown in Fig. 5.12(b), the amplitude of this power-law tail also exhibits a power-

law dependence C ∼ 1/T η, with an exponent η = 2.123 ± 0.021. It is also worth noting that

the decay of spin auto-correlation saturates to a small but non-zero value at large times, as shown

in

Fig. 5.12(a). Similar results, which can be attributed to finite-size effect, have been reported in the

spin-dynamics of uncorrelated classical Heisenberg chains [121, 122].

To better understand the power-law decay and the origin of the nonzero asymptotic A∞ in the di-

luted systems, we consider the dynamics of an orphan spin. At any finite temperatures, the total

spin of individual simplex does not vanish identically, hence the ground-state condition Eq. (5.3) is
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not strictly satisfied. Indeed, the fluctuation of simplex magnetization is given by ⟨L2
α⟩ ∼ T/J [17,

114]. This also indicates a non-zero coupling between orphan spins and the background correlated

spin liquid. This residual coupling leads to incoherent precession of orphan spins and the exponen-

tial decay of the orphan-spin autocorrelation function. On the other hand, as shown in Ref. [114],

there is an emergent effective interaction between the orphan spins. At low enough temperatures,

their collective dynamics induced by this residual interaction thus slows down the exponential de-

cay of autocorrelation function that is caused by coupling to the background spin liquid, and turns

it into a power-law decay, similar to the anomalous spin diffusion in classical Heisenberg magnets

at high temperatures [118].

Interestingly, the exponent α ≈ 2.1 obtained from our numerical fitting is significantly different

from that of the 2D paramagnet. This unusual result could be attributed to the complex interac-

tion between the orphan spins. As demonstrated in Ref. [114], there is an emergent Heisenberg

exchange interaction between the orphan spins, that is determined by the charge-charge correlator

of the underlying Coulomb spin liquid. Moreover, the sign (FM vs AFM) depends on whether

the two orphan spins belong to the same kagome layer or not. It has been speculated whether

this complex and potentially frustrated interaction might lead to glassy dynamics at low temper-

atures. Indeed, although it is believed that the autocorrelation function of spin-glass exhibits an

stretched exponential decay at temperatures above the glass transition Tg, general scaling rules

near the glass transition point imply a cutoff power-law [128–132], such as the Ogielski form

A(t) ∼ t−α exp[−(λt)β], where the parameter λ → 0 as T → Tg. If the kagome-bilayer can be

viewed as exhibiting a glass transition at T = 0, as conventional 2D spin-glasses, the autocorre-

lation function might be dominated by a power-law behavior at intermediate time scale before it

is cut off by the stretched exponential. Further larger scale simulations are required to investigate

this scenario.

The power-law tail and the associated collective behaviors also depend strongly on the density

x of orphan spins. The effective interaction between two such defects separated by a distance r
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Figure 5.11: (a) Semi-log plot of the spin autocorrelation function A(t) =
∑

i⟨Si(t) ·Si(0)⟩/N of
L = 48 kagome-bilayer with 30% vacancy at varying temperatures. The dashed lines correspond
to the initial exponential decay of the autocorrelation function, i.e. A(t) ∼ exp(−t/τ) for small
t. (b) The log-log plot of same autocorrelation functions, with the asymptotic value at large time
subtracted, at varying temperatures. The dashed lines indicate power-law long-tails A(t) ∼ C/tα,
with an exponent α = 2.18.
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Figure 5.12: (a) The decay-time constant τ as a function of temperature T in log-log plot. The
solid line corresponds to a power-law dependence τ ∼ 1/T 0.953. (b) The amplitude C of the
power-law long-tail versus the temperature. The straight line of the log-log plot indicates a power-
law relationship C ∼ 1/T 2.123.

is given by Jeff(r) ∼ TJ (r/ξ(T )), where ξ ∼ 1/
√
T is the temperature-dependent correlation

length of the background spin liquid, and the function J (r) ∼ exp(−r) decays exponentially at

large distances [114]. The T -linear prefactor here indicates the entropic origin of the effective in-

teraction, namely Jeff arises from conformational entropy of the fluctuating background correlated

spins. Since the average distance between orphan spins scales as ℓ ∼ 1/
√
x, one thus obtains

an average interaction Jeff ∼ Jeff(ℓ) ∼ T exp(−
√

T/x), which becomes exponentially weak at

small vacancy percentages. Despite this weakened interaction, the collective behavior of orphan

spins would set in at a temperature that is of the order of the effective interaction. This gives the

condition: T ∗ ∼ Jeff(T
∗). Using the expression for Jeff above, one thus obtain a characteristic

temperature T ∗ ∼ x that decreases linearly with the reduced defect density. Physically, the thermal

correlation length at this T ∗ is comparable to inter-orphan-spin distance.

5.7 Numerical simulation

In This section we discuss the implementation of the lattice structure and spin dynamics.
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Figure 5.13: Triangular lattice basis vectors and the corresponding reciprocal lattice vectors.

Figure 5.14: Coordinates of the corner sharing bipyramid.

5.7.1 Lattice Structure

As mentioned in section 5.3, the kagome bilayer is a Bravais triangular lattice. Every vertex on the

triangular lattice is a unit cell consisting of two corner sharing oppositely oriented tetrahedra. The

basis vectors and corresponding reciprocal lattice vectors are given in Figure 5.13.

Each unit cell contains 7 spins as given in the Figure 5.14. Each of the 7 spins on the unit cell can

be considered as a sublattice “s" on its own. As a result, total number of spins on a lattice of linear

size L are NS = 7L2. The coordinates of the Bravais triangular lattice that house the bi-pyramid

unit cells are given by (X, Y ), see Figure 5.13. Each spin in the unit cell is given a 3 dimensional

position vector based on the basis vectors of the triangular lattice and the position (X, Y ) of the

120



Figure 5.15: Coordinates of nearest neighbors for each of the spins on a unit cell of a quasi-2D
Kagome bilayer lattice.

unit cell on the triangular lattice. A spin position vector is given by r = Xa1+Y a2+ds[s], where

ds[s] is the placement vector of spin within the unit cell. These values for each of the 7 spins are

given in Figure 5.14.

The spin at the center of the bi-pyramid has 6 nearest neighbors and the rest of the 6 spins on the

unit cell each have 5 nearest neighbors each. We set the closest nearest neighbors individually for

each sublattice. The nearest neighbors are constructed as given below and the idea is illustrated in

the Figure 5.15. The coordinates of the spins on the bipyramid (X, Y ) for sublattices s are shown

in the Table 5.1. We consider only these neighbors for exchange interactions, for both Monte Carlo

simulations and spin dynamics effective field.

After generating the lattice and fixing the nearest neighbours. Our next step is to generate temper-

ature thermalized ground state configurations. I have employed Metropolis Hastings single spin

update Monte Carlo algorithm to get ground state configurations for different temperatures. The

temperature specific configurations for the system were generated using temperature annealing
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Table 5.1: Nearest neighbor coordinates
s ↓ nn → 1 2 3 4 5 6
0 (X,Y,s=1) (X,Y,s=2) (X,Y,s=3) (X,Y,s=4) (X,Y,s=5) (X,Y,s=6)
1 (X,Y,s=0) (X,Y,s=2) (X,Y,s=3) (X,Y-1,s=2) (X-1,Y,s=3) NA
2 (X,Y,s=0) (X,Y,s=1) (X,Y,s=3) (X-1,Y,s=1) (X-1,Y+1,s=3) NA
3 (X,Y,s=0) (X,Y,s=1) (X,Y,s=2) (X+1,Y,s=1) (X+1,Y-1,s=2) NA
4 (X,Y,s=0) (X,Y,s=5) (X,Y,s=6) (X,Y+1,s=5) (X+1,Y,s=6) NA
5 (X,Y,s=0) (X,Y,s=4) (X,Y,s=6) (X,Y-1,s=4) (X+1,Y-1,s=6) NA
6 (X,Y,s=0) (X,Y,s=4) (X,Y,s=5) (X-1,Y,s=5) (X-1,Y+1,s=5) NA

method, where we start thermalizing the system from a higher temperature and slowly lower it,

thereby preventing the system from getting stuck at local minima and not reaching a ground state

configuration. We simulate the system dynamics using the ground state configurations as the initial

starting point.

5.7.2 Spin dynamics equations

The three dimensional Heisenberg spins experience antiferromagnetic Heisenberg interaction amongst

themselves, as given in Eq. 5.1 and their time trajectories are given by the Landau Lifshitz equa-

tion as given in Eq. 5.4. In this work we use the Mentink et al. SIB [31] method to integrate the

Landau Lifshitz equation and simulate the spin trajectory in time. In our system the the dynamics

is energy conserving and follow the method explained in section 3.2.2.

5.7.3 Structure factor simulations

Structure factor explained in Section 5.3 describes a correlation function as given in Eq. 5.5. We

plot the static and dynamic plots for the correlation function. The the correlation function in the

system’s ground state spin configuration at time snapshot t = 0, gives us the static structure factor.

We can describe the static structure factor by the following equation,

S(q, 0) = ⟨Sq(0) · S∗
q(0)⟩ (5.9)
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where ⟨· · · ⟩ denotes the ensemble average over independent initial states of a given temperature.

We can write Sq, the spatial Fourier transform of the instantaneous spin configuration in three

dimensional complex vector form as,

Sq =
1√
N

∑
i

Si(t = 0) exp(iq · ri) = C+ iS (5.10)

Then,

S(q, 0) = ⟨C− iS|C+ iS⟩ (5.11)

We plot the ensemble average of S(q) = C2+S2, where q = m
L
b1+

n
L
b2 represents the reciprocal

lattice wave vectors and position vector of each spin r gives us the phase values “exp(iq · ri)"

corresponding to each q. Both m and n belong in the range 0 ≤ m < L and 0 ≤ n < L where L

is the linear triangular lattice size. An example of a static structure factor plot is given in Figure

5.3 (a).

Figure 5.16: The Brillouin zone (BZ) of a triangular lattice is a hexagonal lattice. We plot the

dynamic structure factor values along the path of high symmetry points on the BZ.
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As seen in section 5.5, the dynamic structure factor given by Eq. 5.6 represents the time integral of

the space-time Fourier transform of the spin-spin correlator. Such plots can be made for any given

range of wave vectors. Some dynamic structure factor plots at specific frequencies ω are given in

Figure 5.3 (b) and (c). We have also studied the dynamic structure factor figures for specific values

of wave vectors q < 1 to check the limit of spin diffusion, see Figure 5.6. More conventionally,

to understand the important properties of the correlations in the spins, dynamic structure factor

plots in Figures 5.2 and 5.7 are computed along high symmetry points on the Brillouin zone. The

Brillouin zone of a triangular lattice is a hexagonal lattice. The path of the structure factor figure

is shown in Figure 5.16. The q coordinates of the high symmetry points for a hexagonal Brillouin

zone are given in Table 5.2

Table 5.2: High symmetry point on the hexagonal Brillouin zone

Point q-Coordinates

Γ
(
0, 0

)
K

(
2π
3
, 2π√

3

)
M

(
0, 2π√

3

)
Y

(
0, 4π√

3

)
X

(
π, π

√
3
)

5.8 Discussion and outlook

To summarize, we have extensively characterized the spin dynamics in the liquid phase of Heisen-

berg antiferromagnet on the kagome bilayer, which is relevant for the frustrated magnet SCGO.

By computing the dynamical structure factor at different temperatures and dilutions, we show that

the spin excitations are dominated by spin diffusion in the low energy, long time regime. The spin

diffusion constant depends weakly on temperature, but decreases with dilution. Another interest-

ing result is the half moon pattern of the dynamical structure factor with energy ω ≳ J . Similar

features have recently been observed in some pyrochlore compounds, it remains to be seen whether
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these remnants of the propagating spin waves can be observed in SCGO. Our simulations on di-

luted bilayer kagome shows that spin diffusion remains the dominant process in the presence of

site disorder. This result further confirms, from the dynamical viewpoint, that site-disorder itself

does not immediately cause glassy behaviors in the classical spin liquid, although the diffusion re-

laxation time becomes longer with increasing disorder. However, for disorder due to non-magnetic

vacancies, the presence of so-called orphan spins results in an intriguing power-law tail in the spin-

autocorrelation function. This power-law slow dynamics indicates that the system might be on the

verge of a glass transition, which could be induced by other perturbations.

As discussed above, our work offers important benchmark for future dynamics studies of kagome

bilayer that include other perturbations. Of particular interest are those perturbations that might

transform the classical spin liquid into either the conventional spin glass or the more exotic spin

jam. Indeed, since the diffusive spin dynamics in highly frustrated magnets is mainly driven by the

zero-energy modes, one expects a diminishing diffusivity when the number of such zero modes is

significantly reduced. For example, the entropic barrier in the coplanar phase of kagome reduces

the continuous weather-van modes to discrete zero modes defined on closed loops. It has been

proposed that the much slower relaxation of these discrete loops might give rise to glassiness

without intrinsic disorder in kagome [133, 134]. However, the coplanar phase induced by thermal

order-by-disorder seems to remain a classical spin liquid [80]. A transition into the glassy regime

might still occur at a lower temperature when the dynamics is dominated by quantum tunneling of

loops [133].

Contrary to kagome Heisenberg antiferromagnets, there is no thermal induced coplanar or collinear

phase in kagome bilayer. On the other hand, it has been proposed in Ref. [105] that a coplanar

regime, in which spins in each tetrahedron are collinear, can be induced by quantum fluctuations.

Moreover, different coplanar ground states can be mapped to discrete hexagonal tilings. Impor-

tantly, there is no continuous weather-van modes in this coplanar regime, and the only zero-energy

modes are system-wide extended strings [105]. As jamming transition often occurs in such con-
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strained discrete models, the resultant coplanar phase is dubbed the spin jam [98, 105]. It is argued

that quantum fluctuations transform the degenerate classical ground-state manifold into a rugged

landscape that is different from that of conventional spin glass. While this spin-jam picture seem

to explain some properties of SCGO and other similar glassy magnets, such as the much weaker

memory effect [102, 104], an important open question is to see how dynamical behaviors charac-

teristic to spin-jam evolve from the classical spin liquid, which will be left for future study.
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CONCLUSION

Frustration in spin systems arise when the interactions between neighboring magnetic moments

cannot be satisfied simultaneously. This can be a direct consequence of incompatibility between

magnetic interactions and the underlying geometry of the lattice or due to anisotropy in magnetic

interaction exchanges. Frustration gives rise to many exotic phenomena, a prominent one being

classical spin liquids (CSLs). CSLs are characterized by their extensive ground state degener-

acy and absence of ordered states even at very low temperatures upto absolute zero. Nonetheless

classical spin liquids are known to exhibit strong, algebraically decaying correlations. The degen-

eracy in the ground state manifold is quite accidental and not a consequence of symmetries in the

Hamiltonian.

In Chapter 4, I have explained the details of our research on frustrated spin-orbit magnets where

a dominant off-diagonal exchange, the so-called Γ term results in a classical spin liquid phase

with macroscopic ground-state degeneracy. We demonstrated that the system undergoes a phase

transition driven by thermal order-by-disorder at a critical temperature TC ∼ 0.04|Γ| corresponding

to plaquette ordering of hexagonal fluxes. We characterized the nature of the plaquette-ordering

transition using Monte Carlo simulations and finite-size analysis. We also studied the dynamical

behavior of fluxes and the influence of other types of interactions on the phase transition. Our

work was motivated by the recent enormous interest in frustrated spin-orbit magnets, where the

spin interactions in certain 4d and 5d Mott insulators are dominated by the anisotropic Kitaev-type

exchange. The results on the thermodynamic behavior of the pure Γ model will help in the search

for spin liquids in frustrated spin-orbit magnets as well add to the knowledge of exotic phases

found in frustrated systems.

In Chapter 5, we report on the spin dynamical simulations of the Heisenberg antiferromagnet with

nearest neighbor interactions on a quasi-2D kagome bilayer. SrCr9pGa12−9pO19 (SCGO) is one

127



of the most intensely studied frustrated magnets, which inspired our work on this system. Geo-

metrically, SCGO belongs to a class of frustrated Heisenberg antiferromagnets on the networks

of corner-sharing tetrahedra which enters an unconventional spin-glass phase below a certain low

temperature Tg ∼ 3.5 − 7K. Considerable efforts have been devoted to understanding the un-

usual spin glass phase in SCGO. We discuss the implications of our work for the glassy behaviors

observed in the archetypal frustrated magnet SCGO.

The Heisenberg antiferromagnet on the kagome bilayer exists in a classical spin liquid phase aris-

ing from geometric frustration. By combining Monte Carlo simulations with precessional spin

dynamics simulations, we computed the dynamical structure factor and investigated the thermal

and dilution effects. We have characterized the diffusion dynamics of the “correlated" spin clusters

as well as the site diluted system. The spin diffusion constant depends weakly on temperature,

but decreases with dilution. Our simulations on diluted bilayer kagome shows that spin diffusion

remains the dominant process in the presence of site disorder. We have further confirmed that from

the dynamical point of view, site-disorder itself does not cause glassy behaviors in the classical

spin liquid, although the diffusion relaxation time becomes longer with increasing disorder. Our

work provides important benchmark for future dynamics studies of kagome bilayer that include

other perturbations, particularly those perturbations that might transform the classical spin liquid

into either the conventional spin glass or the more exotic spin jam.
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