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Abstract

Economists have long acknowledged that the population’s imprecise and subjective perceptions of the economy follow true economic
indicators. Researchers have primarily studied this phenomenon through the application of consumer confidence surveys to traditional
econometric models. Fuzzy time series models are an alternative modeling paradigm that have been shown to accurately forecast
financial and economic movements by leveraging qualitative and pattern-based reasoning inherent to human decision making. Despite
this, nobody has assessed if simulating consumers’ qualitative economic perceptions with fuzzy time series is a viable approach to
forecasting their purchasing decisions. This paper addresses the gap in the literature by applying multivariate economic fuzzy time
series to forecast vehicle purchases in the United States. We evaluated the utility of our approach by comparing the fuzzy time series
models to Long-Short-Term-Memory (LSTM) and Vector Autoregressive (VAR) time series models. Results show that the fuzzy
time series models perform comparatively or significantly better than LSTM and VAR models in out-of-sample forecasts of vehicle
sales. These results suggest that the fuzzy time series approach could have significant future utility for forecasting and interpreting
aggregate consumer purchasing trends by imitating their rationality.

Keywords: Fuzzy time series, econometrics, consumer confidence, fuzzy logic, LSTM

1. Introduction

Research has shown that most Americans lack knowledge of
precise economic figures. In everyday conversations and news
coverage, economic phenomenon are frequently described in
qualitative terms (e.g. “the housing market is tight”; “stocks
are falling”; “unemployment is low”). However, it is incorrect
to assume that Americans are unaware of changing economic
situations; their knowledge base, rather, is synthesized in non-
quantitative terms. The need for anything more than vague
descriptions of national statistics is seemingly unimportant to
the purchasing decisions of average Americans.

Curtin (2019) documented the ignorance of specific eco-
nomic knowledge during the Great Financial Crisis. In both
2007 and 2009, survey respondents were asked to provide the
current rate of three readily published economic statistics: un-
employment, Consumer Price Index (CPI), and Gross Domestic
Product (GDP). Curtin’s hypothesis was that attentiveness to
economic statistics would increase during a highly publicized
recession. Instead, only knowledge about the unemployment
rate significantly increased (47% to 58%), while GDP remained
roughly unchanged (23% to 25%), and CPI decreased (27%
to 22%). Additionally, Curtin found, news media often report
economic news in qualitative terms, “summarizing the latest
statistic by using subjective phrases, such as economic growth
had improved or worsened”. Boydstun et al. (2018) established
that there is a strong relationship between media tone (cate-
gorized as “positive”, “neutral”, or “negative”) and consumer
sentiment, even when controlled for by variations in leading
economic indicators.

Despite widespread unfamiliarity with economic statistics,
research has shown that Americans are keenly aware of eco-
nomic changes. The strongest evidence of this phenomenon is
documented in the work on consumer confidence. Consumer
confidence surveys were originally designed in the late 1940s by
Katona as a “means to directly incorporate empirical measures of
consumer expectations into models of [discretionary] spending
and saving behavior” (Curtin, 2007). Consumer confidence is
largely measured by surveys that use verbal, qualitative, descrip-
tions of economics statistics. In the literature, the University
of Michigan Index of Consumer Sentiment (ICS) is the most
studied metric of consumer confidence. The survey underlying
the ICS asks participants to verbally describe their personal fi-
nancial situation and forecast future economic changes, which
are binned under terms like “positive”, “negative”, or “uncer-
tain”, and synthesized into a single summary measure (Index
Calculations, University of Michigan).

Formal statistical analysis has consistently shown that con-
sumer confidence is an accurate reflection of the economy. While
seemingly imprecise, the three-point verbal scale utilized by the
ICS is highly correlated with real economic statistics (Curtin,
2007). Barnes and Olivei (2017) showed that principal com-
ponents of the ICS have statistically significant correlation to
fundamental economic variables. They also asserted that confi-
dence measures contain information in economic variance out-
side of traditional fundamental indicators. Carroll et al. (1994)
concluded that consumer confidence can be used to accurately
forecast spending using time series models. However, they show,
consumer confidence surveys contributed marginal information
to forecasts when controlled for by leading economic indicators.
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To date, the research utilizing qualitative economic percep-
tion for spending forecasts has relied heavily on consumer confi-
dence surveys like the ICS, despite documented methodological
flaws in the surveys themselves. Dominitz and Manski (2004)
argue the synthesis of a single consumer confidence index value
results in substantial information loss. Pickering et al. (1973)
point out the high degree of multicollinearity in consumer confi-
dence survey questions, a problem which is compounded by the
summation of the questions into a single index value. They addi-
tionally express concerns about the potential for information loss
in only 3-4 response variables for each survey question. Their
work points to a requirement for up to 11 response variables
being “necessary to optimize information transmission”.

Rather than use consumer confidence surveys, the contri-
bution of this work is to mirror the approximate economic per-
ceptions of consumers by directly modeling imprecision into
quantitative economic variables themselves. Imprecision in the
time series can be computed using Fuzzy Time Series models
(FTSM). It was our hypothesis that, by virtue of using fuzzy
logic (a logic designed to capture the imprecision of human rea-
soning), FTSMs could simulate consumers’ subjective economic
perceptions without the need for a confidence survey.

This is accomplished by transforming the time series of
fundamental economic variables into interval-based variables
representing imprecise linguistic descriptions. The quantitative
economic time series are mapped to the new ”fuzzy” variables,
creating a ”fuzzy time series” representing a non-quantitative
perception of economic changes (see Figure 1). Time series
fits and forecasts are determined by identifying patterns in the
relational changes in the fuzzy variables.

This work attempts to see if mimicking consumers’ impre-
cise economic rationality is an accurate modeling alternative for
forecasting their purchasing decisions. Not only can this method
offer insight into how qualitative perception of the economy
impacts consumer purchasing decisions, it removes the issues
inherent in using a survey-based consumer confidence medium.

The primary research question of this work is as follows:
when forecasting consumer purchasing decisions that are in-
fluenced by an imprecise perception of the economy, does the
qualitative treatment of a time series explicit to FTSMs result
in a more accurate forecast than other time series models? As
a barometer of modeling accuracy, Long-Short-Term-Memory
(LSTM) and Vector Autoregressive (VAR) models are addition-
ally fit for comparison.

2. Background

This section introduces the model paradigms tested (FTSM,
LSTM, and VAR), and why they are selected for forecasting
discretionary consumer purchases.

2.1. Fuzzy Logic and Fuzzy Time Series
Fuzzy logic has emerged as one of the preeminent methods

of integrating human decision making and qualitative rational-
ization into complex systems modeling. Introduced by Zadeh
in the 1960s, fuzzy logic is “concerned with the formal princi-
ples of approximate reasoning”; more specifically, “modeling

the imprecise modes of reasoning that play an essential role
in the remarkable human ability to make rational decisions in
an environment of uncertainty and imprecision” (Zadeh, 1988).
The power of fuzzy logic lies within its ability to describe quan-
titative variables in qualitative terms with varying degrees of
precision. Linguistic predicates of a quantitative variable are
established with distributions. These formalize the relationship
between the verbal descriptions and the quantitative values of
the variable.

Fuzzy time series models utilize the concepts of fuzzy set
theory to describe temporal changes in non-numerical terms.
Song and Chissom (1993) introduced the concept of fuzzy time
series. Fuzzy time series map the values of a quantitative time
series into intervals that represent linguistic descriptions. The
two primary methods of establishing the intervals are to use
equal length and uniform sets, or through utilizing a c-means
algorithm (Duru and Yoshida, 2012). While increasing the num-
ber of intervals represents increased precision, it increases both
the complexity and noise of the model. This work adopts the
simplicity of uniform set to test the sensitivity of the number of
intervals on the model accuracy.

Definition 1: Let F(t) be an univariate fuzzy time series. The
fuzzy logical relationship is represented by:

F(t–n), . . . ,F(t–2),F(t–1)! F(t) (1)

Figure 1: Representation of an univariate fuzzy time series

Arguably, the most important step in the construction of
FTSMs is establishing the fuzzy relationships: the driver of
the temporal changes in the time series. The complexity of the
relationships is a function of the number of intervals and the
number of variables in the model. Song and Chissom’s (1993)
method of computing fuzzy relations uses a min-max operation
of matrix transpositions that does not translate easily to complex
FTSMs. This work alternatively adopts an approach introduced
by Egrioglu et al. (2009) that uses a feedforward neural network
to establish the fuzzy relationships. Their method is especially
efficient for high order and multivariate time series.

Definition 2 Let F and G1, G2, ..., Gk=1 be k-multivariate
fuzzy time series. The fuzzy logical relationship is represented
by:

(F(t–1),G1(t–1)G2(t–1)...Gk–1(t–1)), ...,
(F(t–n),G1(t–n)G2(t–n)...Gk = 1(t–n))! F(t)

(2)

At each time-step, a fuzzy interval can be converted back
into a quantitative value, a process called defuzzification. The
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method of defuzzification in this work adopts the mid-point
approach used by Egrioglu et al. (2009), which is discussed in
detail in the Methods section.

FTSMs have been applied with success to economic and
financial forecasting, although the vast majority of the work
has been focused on stock indices. Some successful applica-
tions to non-stock forecasts include the application of FTSMs
to Taiwan’s Export Orders Index (EOI) by Huang et al. (2019),
and of short-term crude oil forecasting by Zhang et al. (2010).
Little in the literature has been published on applications of
multivariate FTSMs for non-stock econometrics, and even less
with an emphasis on the qualitative rationality of the participants
influencing the movements of time series.

2.1.1. LSTM Time Series Models
With the use of a neural-network to identify the fuzzy re-

lationships in FTSMs, it is appropriate to compare the results
of this work’s FTSMs with a different neural network time se-
ries modeling paradigm. Recurrent neural networks (RNN) are
supervised machine learning models that differ from other neu-
ral network modeling paradigms due to their ability to loop
information, effectively enabling memory of past patterns. This
allows the network to access past data when solving for node
weights. However, exploding and vanishing gradient descent
problems have been well documented with RNNs (Hochreiter
and Schmidhuber, 1997).

To overcome gradient descent problems, a special type of
RNN called the Long-Short-Term-Memory (LSTM) model was
created. While LSTM models contain an outer loop indicative of
other RNNs, LSTM models contain memory cells which allow
gradients to flow through time, rather than be lost or diminished.
The key premise behind LSTM models is the use of memory
gates to handle long-term and complex dependencies. This
makes it possible to store information for a longer period of time
and helps to reduce gradient problems.

A high-level explanation of LSTM unit composition follows
(for a more detailed description, see (Van Houdt et al., 2020)):

Figure 2: Vanilla LSTM Unit (Van Houdt, 2020)

The traditional LSTM unit is composed of a cell, an input
gate, an output gate, and a forget gate (see Figure 2). The input
gate and forget gate determine which information from the time-
step should be retained in memory and which information should
be removed from previous cell states. The parsed information
from the input and forget gate are then synthesized together with
the previous time-step input and the previous cell value. The

updated cell state is combined with the current time-step input
and the previous model output. This is passed to the output gate.

LSTM models have the ability to store and recall mem-
ory that mimics the sequence-classification of the brain (Bao
et al., 2017). This is particularly useful for handling datasets
with both obvious patterns – like cyclical business conditions
and seasonality – with more sporadic patterns – like the mem-
ory of non-cyclical economic occurrences that could influence
spending habits. Strong performance of financial and economic
LSTM time series models is well documented. Siami-Namini
et al. (2018) found that LSTM models consistently outperformed
ARIMA models (which are a standard in economic forecasting)
for forecasting international stock index returns. Ala’raj et al.
(2021) showed that a bidirectional LSTM model was the most
accurate amongst other neural network paradigms for forecast-
ing credit card payment delinquencies. There are countless
other published applications of LSTM models in the fields of
economics and finance.

2.2. Vector Autoregressive Models
In more traditional econometrics literature, reduced-form

vector autoregressive models are used to estimate time series
utilizing multiple economic variables. VAR models are standard
in describing economic movements, and many of the papers
cited in this work, including Carroll et al. (1994), Barnes and
Olivei (2017), and Bram and Ludvigson (1998) utilize this model
paradigm. Reduced-form VAR models express all combinations
of the variables involved as a set, or vector, of related, simulta-
neous regressions. In other words, reduced-form VAR estimates
each variable’s time series as a linear function of its own past
values, as well as the past values of the other variables in the
model. The respective regressions are estimated using ordinary
least squares. Correlation between the variables is essential,
otherwise the inclusion of an uncorrelated variable would result
in no additional explanatory information in the estimated time
series. As discussed in the Methods section, a Granger Causal-
ity test was conducted to check the correlation of the variables
selected. For the purpose of this study, only the estimated model
parameters and results for vehicle sales were examined.

3. Methods

3.1. Variable Selection and Transformation
The dependent variable chosen for this paper is the monthly

percentage change in total vehicle sales in the United States.
Vehicle sales represent a large discretionary purchase by con-
sumers; the timing and type of vehicle purchased may be mo-
tivated by qualitative perceptions of economic strength. To
simulate consumers’ imprecise economic perception, three ex-
ogenous economic variables were chosen that are commonly
digested in both the media and in the marketplace: Gross Domes-
tic Product (GDP), Personal Consumption Expenditure (PCE),
and Real Disposable Income (RDI). In colloquial terms, GDP
can be thought of as aggregate output of the economy, PCE as
the level of inflation, and RDI as excess consumer liquidity.
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All data was downloaded from the St. Louis Federal Reserve
Economic Data (FRED) website. The frequency of the time se-
ries was monthly, spanning from January, 1978 to December,
2019. To account for the changing economic expectations of
consumers, models were fit and tested in three periods: 1) Jan-
uary, 1978 – July, 1990; 2) January, 1992 – July, 2002; and 3)
January, 2004 – July, 2018. Common practice is to train a model
on a sample set and test the model on an out-of-sample set. The
out-of-sample accuracy is the primary gauge for the forecasting
power and generalizability of a model. The last 36 months of
each period were selected as the out-of-sample testing set.

It is standard practice in econometrics to take the log-difference
of economic variables to satisfy stationarity tests. While many
researchers utilizing FTSMs disregard stationarity as unimpor-
tant (Duru and Yoshida, 2012), the log difference of all variables
in this work was taken in accordance to works like Carroll et al.
(1994), although formal stationarity tests were not conducted.

The time series were then smoothed with a 3-month moving
average. Finally, the values were normalized between 0 and
1. A Granger Causality test concluded that all variables were
significant at the 95% confidence level for predicting future
vehicle sales. Partial autocorrelation tests of the variables were
conducted to inform significance of lags 2, 3, and 4 as significant
at the 95% confidence level. Lags 2, 3, and 4 are used as model
parameters.

3.2. Fuzzy Time Series Model Design
The architecture of the model is a feed forward neural net-

work with one input layer, one hidden dense layer, and one
output layer. The dimensions of the input layer were dependent
on the number of lags tested for each model. The optimal num-
ber of nodes and epochs for both the input and dense layer were
determined by training and validating the model on each period,
and selected based on the MSE of the testing sets. The network
consisted of one input layer with 32 neurons, one dense layer
with 4 neurons, and was trained on 1000 epochs.

Fuzzy intervals from 3 to 12 are tested in this work, describ-
ing highly-imprecise linguistic economic perception (e.g. “low”,
“average”, “high”) to highly-precise linguistic economic percep-
tion (e.g. “historically low”, “significantly low”, “moderately
low”, “slightly below average”, “average”, ..., etc.).

The model was trained on the fuzzy time series of the three
economic variables as well as vehicle sales, which gave an output
of the predicted fuzzy time series for all four variables. For the
purposes of this analysis, only the predicted fuzzy time series of
vehicle sales was studied. Specifics of the process are outlined
below.

Step 1. Define fuzzy sets by partitioning each time series into n
subintervals. For this step, the time series were bounded by an
additional 5% of their respective range of values. The intervals
were evenly spaced and non-overlapping. n = [3,12] were tested.

Step 2. Fuzzify the observations. Each quantitative value of
a time series was mapped to the corresponding fuzzy set to
establish the fuzzy time series.

Step 3. Establish the fuzzy relationships and train the model.
To establish fuzzy relationships, a feed forward neural network
was employed. The model was trained on the training set for
each period.

Step 4. Testing the model. Each trained model was fed the
respective period’s fuzzified testing set and was set aside for
defuzzification.

Step 5. Defuzzification of the model outputs. The output of the
FTSMs was a non-integer number for each time step, represent-
ing a specific point of precision within a fuzzy interval. This
differs from previous work, where the output of FTSMs was
the integer corresponding to the midpoint of a fuzzy interval.
Consequently, the defuzzification for a fuzzy-forecast Xi is as
follows:

Defuzzification. Let N be the fuzzy interval corresponding to
the rounded-down integer of Xi. Let M be the fuzzy interval
corresponding to the rounded-up integer of Xi. Let IN and
IM be the midpoint of the respective fuzzy-intervals N and M.
Defuzzification is calculated as:

((Xi �N) · (IM� IN))+ IN (3)

3.3. LSTM Model Design
The LSTM model consisted of one input LSTM layer, one

dense layer, and one output layer. The dimensions of the input
layer were dependent on the number of lags for each model.
The output layer consisted of four nodes, one for each of the
four variables. The output type was a continuous number, the
predicted monthly percentage change of the variables. Only the
output of vehicle sales was considered for this work. Similarly
to the FTSM, the optimal number of nodes and epochs was
for both the input and dense layer were determined by training
and testing the model on each different period and selecting the
optimal combination for the testing set. The optimal nodes for
the LSTM and dense layer respectively were 32 and 8. The
model was trained on 1000 epochs.

3.4. Performance Metrics
Mean squared error (MSE; Equation 4) and mean absolute

percentage error (MAPE; Equation 5) were used to calculate
error on the training and testing sets for both models. Both
error metrics are standard in both the econometrics and machine
learning literature.

MSE =
1
n

n

Â
i=1

(yi � ŷi)
2 (4)

MAPE =
1
n

n

Â
i=1

����
yi � ŷi

yi

���� (5)
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4. Results

Unsurprisingly, for the fits of the FTSM and LSTM models
in the training period (see Tables 1 and 2), there is a general trend
of improved fit as the number of model parameters increases.
However, for the FTSMs, the results indicate that the best model
fit is not necessarily the one with the highest level of precision
(i.e. the greatest number of fuzzy intervals). Interval I(10) had
the lowest MAPE of the FTSMs in Period 1, while I(7) and
I(11) had the lowest MAPE in the training set for Periods 2 and
3, respectively. Granted, this performance in error is largely
marginal.

The LSTM and VAR models produce more accurate results
in the training sets than most FTSMs in Periods 2 and 3, with
LSTM models outperforming all others significantly in Period
1. Interestingly, an order of VAR(2) produces some of the most
accurate VAR models in the three training periods, while an
order of VAR(3) produces the worst model in all three training
periods. PACF tests show significance of all three lag orders
tested. The difference in model accuracy of the training sets
appears to largely be a function of capturing more of the sudden
variance during periods of sharp changes in monthly vehicle
sales (See Figures 3, 4, 5). The LSTM models capture this
variance most accurately, while the FTSMs modestly follow the
shape of time series during these periods of volatility, and the
VAR models often approximating a straight line through the
mean of the time series.

The FTS and LSTM models were evaluated twenty times in
the testing sets, with the average of the error metrics recorded
below. Since VAR estimates coefficients using OLS, there is
no reason to run the VAR model testing sets more than once;
the error metrics for the VAR trials are included as well. In
the testing sets, the FTSMs broadly outperformed the LSTM
models; the FTSMs outperformed the VAR models in Periods 1
and 2, but were bettered by the VAR(2) model in Period 3, albeit
marginally (see Tables 3 4). The best FTSMs for Periods 1 and 2
are approximately twice as accurate as the best LSTM model fits,
which is surprising given their similar architecture. In Period 3,
all three modeling paradigms performed exceptionally well with
single-digit MAPE error rates, the difference in error between
them being largely marginal.

It is important to note the range of errors between the three
periods, which is correlated directly to the respective variance
of the time series in the different testing periods (see Figure 7
7 for more information). For example, the Period 2 testing set
contained both the maximum and minimum value of the entire
period set (both training and testing), which occur within just
a few sequential months. The error rate of the Period 2 testing
set is thus skewed by this massive volatility and absence in the
training set, while, conversely, the Period 2 training period has
the lowest error.

The most complex FTSMs do not appear to be optimal given
that the results in Tables 3 and 4 indicate that simpler models are
highly generalizable and accurate. For instance, in Period 1, I(7)
produces the most accurate model in the testing set and performs
strong across all lags. For Period 2, I(5) and I(9) produce accu-
rate models across all lags, while again I(7) produces the best

Figure 3: Period 1 Train Time Series

Figure 4: Period 2 Train Time Series

Figure 5: Period 3 Train Time Series

model measured by MAPE. For Period 3, the I(9) through I(12)
all produce consistently accurate models, while I(6) produces
the best model measured by MAPE.

Additional investigation into the best subset models was
conducted. Table 5 is a direct comparison of the best model
parameters, according to training MSE. One exception is for
Period 3, where the FTSM with Interval 11 and Lag 2 was
selected over the one with Interval 12 and Lag 2 due to the poor
training fit of Interval 12. The best models were then trained and
tested 100 times to quantify the variance of the out-of-sample
test results. The FTSM models had significantly less variance in
the model test results, as shown in Figures 9, 10, and 11).
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Table 1: Training MSE
Period 1 Train (8/78 - 6/87) Period 2 Train (6/92 - 6/99) Period 3 Train (6/04 - 6/15)

Lag 2 Lag 3 Lag 4 Lag 2 Lag 3 Lag 4 Lag 2 Lag 3 Lag 4

Interval 3 0.02370 0.02425 0.02339 0.00821 0.00867 0.00836 0.01341 0.01297 0.01106
Interval 4 0.02515 0.01885 0.01861 0.01009 0.00845 0.00885 0.01164 0.01151 0.01110
Interval 5 0.02526 0.01837 0.01749 0.00740 0.00739 0.00688 0.01146 0.01069 0.01078
Interval 6 0.02272 0.02102 0.01835 0.00923 0.00812 0.00734 0.01021 0.01059 0.00888
Interval 7 0.02421 0.01877 0.01694 0.00843 0.00777 0.00528 0.01002 0.01080 0.00963
Interval 8 0.02410 0.01840 0.01680 0.00867 0.00771 0.00619 0.01093 0.01023 0.01017
Interval 9 0.02264 0.02100 0.01994 0.00841 0.00802 0.00633 0.01086 0.01040 0.01020
Interval 10 0.02421 0.01778 0.01625 0.00804 0.00791 0.00661 0.00939 0.00922 0.00892
Interval 11 0.02528 0.02148 0.01858 0.00852 0.00848 0.00719 0.00983 0.01010 0.00973
Interval 12 0.02223 0.01820 0.01532 0.00837 0.00824 0.00610 0.01004 0.00984 0.00896
LSTM 0.01875 0.01178 0.00810 0.00701 0.00480 0.00429 0.00838 0.00491 0.00458
VAR 0.01936 0.04427 0.03519 0.00614 0.01423 0.00755 0.00790 0.01439 0.01293

Table 2: Training MAPE
Period 1 Train (8/78 - 6/87) Period 2 Train (6/92 - 6/99) Period 3 Train (6/04 - 6/15)

Lag 2 Lag 3 Lag 4 Lag 2 Lag 3 Lag 4 Lag 2 Lag 3 Lag 4

Interval 3 0.63417 0.57731 0.58571 0.14174 0.15022 0.15023 0.67620 0.63456 0.59505
Interval 4 0.77942 0.66432 0.66618 0.15453 0.13970 0.15012 0.61454 0.48417 0.45942
Interval 5 0.63586 0.51818 0.51689 0.13790 0.13436 0.13352 0.54959 0.40032 0.41441
Interval 6 0.58304 0.49050 0.50515 0.14597 0.13646 0.12943 0.51818 0.42748 0.41456
Interval 7 0.64176 0.54127 0.53987 0.14600 0.13718 0.11781 0.40637 0.49686 0.47034
Interval 8 0.67647 0.56826 0.57079 0.14016 0.13344 0.12167 0.53792 0.39233 0.39192
Interval 9 0.54317 0.49278 0.48444 0.14178 0.13921 0.12546 0.56325 0.44960 0.44759
Interval 10 0.58228 0.49010 0.45035 0.13896 0.14192 0.12877 0.38292 0.37365 0.39046
Interval 11 0.64872 0.60525 0.59464 0.14497 0.13817 0.13285 0.34993 0.33912 0.34381
Interval 12 0.56994 0.50015 0.46590 0.14174 0.14019 0.12532 0.52458 0.42041 0.41491
LSTM 0.44864 0.40152 0.29926 0.13281 0.10990 0.10466 0.46774 0.32723 0.33364
VAR 0.73307 1.04238 0.90426 0.12830 0.19070 0.13705 0.56782 0.76164 0.70258

Table 3: Testing MSE
Period 1 Test (11/87 - 7/90) Period 2 Test (11/99 - 7/02) Period 3 Test (11/15 - 7/18)

Lag 2 Lag 3 Lag 4 Lag 2 Lag 3 Lag 4 Lag 2 Lag 3 Lag 4

Interval 3 0.01331 0.01593 0.01822 0.02947 0.03494 0.03309 0.00521 0.00502 0.00464
Interval 4 0.01690 0.01532 0.01474 0.03745 0.04718 0.04703 0.00332 0.00215 0.00179
Interval 5 0.01360 0.01681 0.02366 0.02075 0.02229 0.02872 0.00399 0.00422 0.00528
Interval 6 0.01646 0.01615 0.01766 0.03346 0.03404 0.02911 0.00240 0.00190 0.00260
Interval 7 0.01421 0.01188 0.01304 0.02974 0.03379 0.02697 0.00233 0.00321 0.00413
Interval 8 0.01540 0.01697 0.01609 0.03301 0.03426 0.02908 0.00278 0.00265 0.00285
Interval 9 0.01745 0.01514 0.01552 0.02713 0.02439 0.02303 0.00206 0.00225 0.00210
Interval 10 0.01573 0.01794 0.01988 0.03013 0.03043 0.02919 0.00269 0.00277 0.00210
Interval 11 0.01578 0.01432 0.01862 0.03070 0.03278 0.03197 0.00220 0.00240 0.00211
Interval 12 0.01645 0.01723 0.01560 0.03297 0.03248 0.02775 0.00176 0.00200 0.00207
LSTM 0.02323 0.02542 0.04978 0.03374 0.03305 0.04753 0.00212 0.00208 0.00241
VAR 0.01249 0.02659 0.02334 0.01941 0.03926 0.02067 0.00085 0.00165 0.00170

Table 4: Testing MAPE
Period 1 Test (11/87 - 7/90) Period 2 Test (11/99 - 7/02) Period 3 Test (11/15 - 7/18)

Lag 2 Lag 3 Lag 4 Lag 2 Lag 3 Lag 4 Lag 2 Lag 3 Lag 4

Interval 3 0.20352 0.22721 0.23891 1.34452 1.85266 1.86666 0.15340 0.15029 0.14151
Interval 4 0.24105 0.24220 0.23625 1.67323 1.46380 1.43177 0.09862 0.08449 0.08135
Interval 5 0.20462 0.21845 0.24492 1.34524 1.04728 0.93655 0.12380 0.12938 0.14464
Interval 6 0.23515 0.22418 0.24062 1.47179 1.43226 1.59098 0.08890 0.07450 0.09133
Interval 7 0.21600 0.18327 0.19242 1.44139 1.46222 0.85533 0.08555 0.10820 0.12489
Interval 8 0.21502 0.22411 0.21126 1.53537 1.26548 1.24811 0.10086 0.10262 0.10458
Interval 9 0.24392 0.22444 0.22486 1.33403 1.30160 1.06942 0.08366 0.08848 0.08569
Interval 10 0.23651 0.25194 0.23974 1.55611 1.30446 1.23910 0.10061 0.09823 0.08495
Interval 11 0.23264 0.22131 0.23019 1.51870 1.37338 1.49411 0.08631 0.09432 0.08342
Interval 12 0.22674 0.22392 0.19982 1.54320 1.26848 1.02940 0.07490 0.08435 0.08335
LSTM 0.28074 0.29888 0.36989 1.68853 1.60820 2.14253 0.08067 0.08081 0.08313
VAR 0.20777 0.29246 0.29426 1.35408 2.07079 1.48217 0.05351 0.07512 0.07402

6



Table 5: Best Subsets
Period 1 Test (11/87 - 7/90) Period 2 Test (11/99 - 7/02) Period 3 Test (11/15 - 7/18)

Best Model MSE MAPE Best Model MSE MAPE Best Model MSE MAPE
FTSM (I7L3) 0.01188 0.18327 FTSM (I5L3) 0.02229 1.04728 FTSM (I11L2) 0.00220 0.08631
LSTM(L2) 0.02323 0.28074 LSTM (L3) 0.03374 1.60820 LSTM (L3) 0.00208 0.08081
VAR (L2) 0.01249 0.20777 VAR (L2) 0.01941 1.35408 VAR (L2) 0.00085 0.05351

Figure 6: Period 1 Test Time Series

Figure 7: Period 2 Test Time Series

Figure 8: Period 3 Test Time Series

5. Discussion and Conclusion

The FTSM paradigm produced accurate consumer spending
models that performed comparatively or better than the LSTM
and VAR counterparts in out-of-sample forecasting. This finding
was validated across the consistency of three different test and

Figure 9: Period 1 Test MSE

Figure 10: Period 2 Test MSE

Figure 11: Period 3 Test MSE

training sets, which accounted for varying economic conditions
and adjustments in consumer perception. However, the inconsis-
tency of the results does not indicate strongly that, at least in this
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small sample size, consumers universally perceive economic
sensitivity under a particular degree of precision. While the
purpose of this paper was to introduce the application of fuzzy
time series to a consumer rationality domain, a much larger
study utilizing a range of independent and dependant variables is
required to make a conclusion on consumers aggregate precision
of economic perception.

The main conclusion of this work is that the dynamics inher-
ent in fuzzy time series permit an accurate method of predicting
consumer purchases, and should be considered as a time series
modeling alternative to Long-Short-Term-Memory and Vector
Autoregression. This paper shows that simulating consumers’
imprecise perceptions of the economy can be leveraged to cap-
ture patterns in their future spending habits with a high degree
of accuracy. These results suggest that the fuzzy time series
approach could have significant future utility for forecasting ag-
gregate consumer purchasing trends, an area that requires more
research.

The forecasting power attributed to the fuzzy logic mechan-
ics of the FTSM is additionally supported by relative comparison
of the neural-network model architecture of the LSTM models.
Both models were trained on identical node and epoch parame-
ters; all else equal, the LSTM model has features of precision
absent in the FTSM, while the FTSM intentionally muddies
the precision of the model inputs. Formal statistical tests of
comparison between the model accuracies were not conducted
due to the lack of power in only three testing periods. VAR
models, despite their relative simplicity, continue to be highly
dependable economics time series models, and the results of this
work support this.

Other important findings of this work concern the selection
of the number of fuzzy intervals as a model parameter. Firstly,
the results of the training and test fits show that the optimal test
parameters can be informed by the accuracy of the parameters
in the training sets. For example, in Period 2, I(7) was an outlier
of accuracy in both the test and training sets; in Period 3, the
same could be said about I(11). This should not be considered a
hard-set rule, however, as the results are not so consistent as to
inform the best testing model purely on training fit. Secondly,
simplistic FTSMs, i.e. those with a fewer number of intervals,
are highly generalizable and produce accurate out-of-sample fits.
It is not clear why the optimal number of intervals in the FTSMs
varied widely between the periods. This is an area that requires
additional investigation.

Another potential area of future research would incorpo-
rate increased levels of imprecision common to traditional fuzzy
logic models. Specifically, overlapping fuzzy intervals that could
quantify membership between more than one interval. Overlap-
ping intervals, or membership functions as they are referred to
in traditional fuzzy logic literature, permit ambiguous quantifi-
cation and description of fuzzy predicates. While this is not a
standard approach in current FTS research, it fits well within
the humanistic decision making framework this paper leverages,
and is a potential area for increased model accuracy.

While it is difficult to pinpoint if the power of the FTSMs
in this domain is a function of mirroring consumer rationality
or purely a function of model mechanics, the results of this

work show that FTSMs are a promising modeling alternative to
forecasting consumer purchases, and should motivate additional
research in this area.
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