
Enhancing Code: Refactoring and Adding Type Hints

CS4991 Capstone Report, 2023

Matthew Beck
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia, USA
mtb2tgk@virginia.edu

ABSTRACT
When working in an agile environment, a
company’s repository can become dense and
repetitive. Additionally, the incorrect types of
variables can be used when using Python. To
combat this while interning with a team at a
Boston-based technology firm, I refactored
the code to eliminate redundant functionality
sourced from different locations in the code. I
added type hints to make the code safer.
Additionally, I went through my team’s entire
API and added type hints to the method
signatures. By refactoring the code, I
eliminated hundreds of lines of code and
made the repository less dense. Adding type
hints enabled developers to perform static
type checking while enhancing
autocompletion in developers’ IDE. In the
future, more code needs to be refactored, and
more type hints added.

1. INTRODUCTION
Group work often leads to chaos, and certain
aspects, such as organization and
communication, must be remembered to
promote productive work. This is also true for
agile software development. Multiple people
work on different facets of the project
simultaneously, resulting in a code repository
that begins to be filled with redundant code.
Additionally, when using a dynamically typed
language such as Python, the project becomes
vulnerable to incorrect types used throughout
the code, introducing bugs.

During my internship this past summer, I
quickly joined a team and was assigned to
work on their testing platform. Problems were
apparent throughout their code: the same
functionality was written in multiple
locations, all of the function's callers
performed the same actions post-call, and
incorrect types were being passed in various
locations. These issues are critical to address
because of the bugs introduced, the potential
for bugs, and the overall decrease in
developer productivity. Transforming a
repository to a concise, type-safe code allows
developers to work efficiently and focus on
their projects. My approach to this problem
was adding type hints to their testing API
while refactoring their code to have related
functionality in the same place.

2. RELATEDWORKS
The dynamically typed state of Python and
the problems that may arise because of it are
very well documented. These issues involve
scoping problems and a need for early
feedback (Lewis, 2021). These problems can
be combated with Python’s introduction of
type hinting in version 3.5. According to
CodersLegacy, adding type hints to Python
code has many benefits, such as improving
readability, debugging, and IDEs. Issues with
instituting type hints include the time it takes
to add post-production and an increase in
startup time.

mailto:mtb2tgk@virginia.edu


The concept of refactoring code has been
around since the beginning of computer
science, with its benefits heavily researched
and documented. Gillis (n.d.) details precisely
how refactoring not only makes the
developers’ lives easier but also makes the
code better and less prone to bugs.
Refactoring code has been shown to increase
readability while reducing complexities.
Refactoring makes the code cleaner, more
efficient, and maintainable. Perhaps the
biggest reason to refactor code is the benefit
of developers knowing where standard core
functionality lies, dramatically improving
efficiency and allowing them to focus on the
most significant problems.

3. PROJECT DESIGN

3.1 TYPE HINTS
In Python’s documentation, type hints were
added in PEP 484. This type hinting enables
static type checking for third-party
applications. The structure of adding type
hints to function declarations involves
inserting a colon after each parameter
followed by their respective type. The return
type can be included by inserting an arrow
and the return type between the closing
parenthesis and colon of the function header.

Figure 1: Type Hinting Example

In Figure 1: Type Hinting Example, a
greeting function is being defined. This
function takes one parameter called name,
which is of string type. The parameter name
is of string type due to the “: str” added after
the parameter. It is also known that this
function returns a string as dictated by adding
“-> str.”

During my summer internship at a
Boston-based technology firm, I worked with
my team’s testing platform to use the
framework laid out to add type hints. I was
tasked with adding type hints to the main API
within the testing platform. To start this
project, I began with a discovery phase.
During this phase, I spent ample time getting
well acquainted with the code within the API,
which stretches across approximately 30 files.
When working within an Agile environment,
you break down projects into tasks called
stories. These stories are typically atomic and
are assigned a story point, a Fibonacci scale
of approximately the complexity of the task.
For example, a story with 1 point is
considered trivial and can be completed
within an hour or two.

Meanwhile, a story with 5 points is
considered complex and may take up to a
week or more to complete. My manager left
the decision up to me whether I wanted to
break the project into multiple less complex
stories or one significant story covering the
entire project. I decided to group the files
based on their dependencies during my
discovery phase. One file within the
repository contained over 3000 lines of code
and was the most complex, so I left this story
to last to ensure that all of the related
dependencies would be type-hinted by the
time I began work on that file. For most of
these stories, I gave a story point of 3,
indicating that I anticipated resolving the
story within the week, while for some of the
more significant stories, I gave 5 points.

Once the discovery phase was complete and
approved by my teammates, I was allowed to
begin typing hinting the API. I went story by
story, completing each group of files in each
story. For each function in a file, I inspected
how parameters were used and how the
function's return was used to determine the
type. This often involved going from function



call to function call to determine how each
function was being used and the types being
passed.

Once I completed my initial pass of the files,
I went back through to ensure everything
appeared accurate. After that, I used a Python
third-party extension named Mypy. This
extension enables static type checking, which
I used on each file. Mypy would return errors
if the return type of a function did not match
how it was being used as a parameter in
another function.

The company I was working for had a testing
requirement for adding tests into the
framework. The authoring engineer had to
run iterative tests to ensure that the test they
had created was accurate. However, since my
changes affected the entire testing framework,
I was required to run the whole test suite
comprising over 2,500 tests. This was by far
the most time-consuming part of the project,
but necessary to ensure that my changes were
stable.

3.2 Refactoring Code
My second major project of the summer
included refactoring a variety of functions
found within the same API. This project
began like the type hinting project with a
discovery phase. During this discovery phase,
I looked throughout the API for redundant
functionality with the help of my mentor.
Once redundant code was identified, I was
tasked with deriving a plan to merge the
functionality to create a more cohesive API.
Once I had derived a plan and the plan had
been approved, I went through with
implementing my plan and then testing the
changes I had made.

One of the most considerable functions I had
refactored was finding an expression within
log records. Two functions performed this
functionality in slightly different ways. One

instance was passed a time stamp, the path to
the log record, and the expression to be
found. It started at that time stamp in the log
record and then searched until the end of the
file for the given expression. The other way
they implemented this was by using an object
called a log follower. You should provide the
log file when this log follower was
instantiated. Then, when searching for a given
expression, you would call a function that
would explore the file for the expression from
when the log follower was instantiated until
the end of the file.

I merged the timestamp functionality into the
log follower methods, mainly with how it was
being called. I inspected where the find log
record method was being called and where
they were creating a timestamp. At this point,
I replaced the creation of a timestamp with an
instantiation of a log follower. Then, where
the actual find log record method was being
called, I replaced it with a call to the log
followers method

Some obstacles were encountered through
this process. Specifically, a problem occurred
when a timestamp was retrieved before the
log file was created. Since the log file was yet
to be made, a log follower could not be
instantiated on that log file. To overcome this,
I worked with my mentor to use the existing
functionality of the log follower functions to
start at the beginning of the file.

4. RESULTS
Once I finished a project during my
internship, I presented the results to the rest
of the team. For the type-hinting project, I
demonstrated how static type checking could
be used to check the dependencies of types
throughout the code. Additionally, I showed
how the developers’ integrated development
environments had improved auto-completion,
allowing them to complete their code more
efficiently and accurately. While I was



finishing the addition of the type hints, I
encountered various bugs in the code. In one
instance, a parameter was passed as a boolean
and then overwritten as an integer. This
parameter was used later in the function as a
parameter to another function that expected a
boolean. Correcting this made the code more
stable and improved the team’s testing results.

Through refactoring the code, the team saw a
variety of benefits. These benefits ranged
from return types that were easier to work
with to more consistent code that improved
the readability and the developers’
understanding of the code. Overall, my
changes dramatically helped the developers
on my team to spend less time worrying about
types and which functions to use, allowing
them to focus directly on solving more
complex problems.

5. CONCLUSION
When I joined my team at the beginning of
the internship senior members expressed their
concerns over type safety, readability and
efficiency of their code repository. I added
type hints to their main API which allowed
the use of static type checkers. Additionally,
by adding these type hints, developers’ IDEs
became more intuitive with their
autocompletion becoming more
comprehensive. I also refactored code within
the repository, combining like functions and
cleaning output types. Through refactoring
the code, the repository is more readable and
understandable, allowing the developers to
focus on the main task at hand. Overall my
additions allowed the developers on my team
to become more efficient and work at a higher
level.

6. FUTUREWORK
The repository where I completed my work is
very dense. Hence, I was unable to fully
refactor all of the code over the course of the
summer. For future steps, more refactoring

should be performed in order to improve the
repository while reducing its density.

Additionally, the company made heavy use of
context managers in their code. Due to the
version of python they were using, I was
unable to add appropriate type hints to these
functions. As they take steps to upgrade the
version of python they are using, type hints
should then be added to the context manager
methods

REFERENCES

CodersLegacy. Benefits of type hinting in
Python. (n.d.) Retrieved September 29,
2023, from
https://coderslegacy.com/python/benefits-
of-type-hinting/

Gillis, A. S. (n.d.). What is refactoring (code
refactoring)? TechTarget. Retrieved
September 29, 2023, from
https://www.techtarget.com/searchapparc
hitecture/definition/refactoring

Lewis, M. (2021, December 9). The struggle
of dynamically typed languages. Medium.
Mark Lewis. Retrieved September 29,
2023, from
https://drmarkclewis.medium.com/the-str
uggle-of-dynamically-typed-languages-ef
91a87164a1

https://coderslegacy.com/python/benefits-of-type-hinting/
https://coderslegacy.com/python/benefits-of-type-hinting/
https://drmarkclewis.medium.com/the-struggle-of-dynamically-typed-languages-ef91a87164a1
https://drmarkclewis.medium.com/the-struggle-of-dynamically-typed-languages-ef91a87164a1
https://drmarkclewis.medium.com/the-struggle-of-dynamically-typed-languages-ef91a87164a1

