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Abstract

A System for Recognizing Complete and Partial in Home Activities
and Monitoring Activity Quality

by Ifat Afrin Emi

Affordable home health care systems are extremely important for early diagnosis of disease and
to track patient recovery. As part of these systems, the ADL score calculated from activities of
daily livings (ADL) and instrumented activities of daily livings (IADL) provide valuable statis-
tics about the functional and cognitive ability of patients and elderly citizens, which is required
for deciding treatments and services. However, most of the existing available systems impose
constraints on sensor values, the types of detected activities (no parallel/interleaved/joint ac-
tivities), or the number of users, which reduce the robustness of the system in the real world
settings. Moreover, in order to provide a holistic solution for monitoring activities, it is im-
portant not only to provide information about complete activities but also detect attempted
incomplete/partial activity instances and report the errors.

In this dissertation, we have designed, implemented and evaluated a novel activity recog-
nition and person identification system named SARRIMA, a rule-based general framework
QuActive for modeling activity, a system for recognizing activity steps, and an activity quality
monitoring system based on the QuActive framework for identifying partial/incorrectly per-
formed activities and finding the errors within the activities (missing steps, wrong steps, wrong
orders, and delays within and between activity steps). We show that by incorporating time dif-
ference while segmenting the occupancy episodes and feeding those segments in Apriori rule
association machine learning technique, the system is able to work in homes with multiple
people and detect interleaved and parallel activities with higher performance than supervised
machine learning systems. Moreover, we provide proof that by modeling activities in terms of
activity steps and using grammar rules, it is possible to capture the different variation of the
same activity. The grammar rules also enable to find the missing steps or errors due to per-
forming wrong activity steps or doing them in the wrong order. Finally, we provide evidence
that using user’s activity history and occupancy correlation information, it is possible to infer
which user performed an activity event for a significant number (the number varies in different
datasets based on user lifestyle and sensor settings) of activity instances even when there is no
direct person identification information available. Our evaluation in different public datasets
and collected data from lab shows that our system performs better than the state-of-the-art ac-
tivity recognition systems and is able to provide activity quality information of both complete
and incomplete activities.
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Chapter 1

Introduction
U.S. Health Care Costs Skyrocketed to $3.65 Trillion in 2018, and according to the latest analysis
from U.S. federal government the expenditure will get even worse in future years [1]. The
major portion of this expenditure consists of hospital bills, physicians and clinic checkup, and
drugs; whereas only 3% goes to home health care. This is very unfortunate, since by tracking
the progression of sickness many deaths could be prevented as the top 9 leading causes of
death in USA is due to some type of disease . Many of these chronic diseases are prevalent
in elderly citizens. According to government profile [2], 28% of older American citizens live
alone and 57% live with their spouse. Often, the spouse is the primary caregiver although the
spouse himself/herself needs care. Having a 24 hour care provider is not possible for most
families. Although there are home health care agencies that keep track of these people, their
traditional procedure is one weekly call and a single monthly visit. Therefore, most of the time
these elderly people are on their own. Even when elderly citizens or younger patients live with
other family members, the adults have to go out for work and during major portion of the day
there is no one to monitor them. Therefore, the importance of home health monitoring system
is crucial in our community. With the advancement of technology, cheaper, and better sensors
are available in the market, and new and efficient algorithms are being discovered everyday.
Thus, we have the chance for making affordable home health care system for mass population
and promise them a better future.

Most of the commercially available home monitoring systems today are still quite simple.
Most of them involve fall detection from motion sensors or just pressing a button which au-
tomatically calls for help. Despite being simplistic in nature, these systems can play vital role
if the person is mostly physically capable and has cognitive awareness to act upon in case of
emergency. However, the systems cannot track the progression of disease or be effective when
the person is hurt/unable to act for any reason. On the other hand, due to the benefits of health
monitoring systems, the research community has explored this field from different directions.
A major portion of this research focuses on detecting the in activities of daily living (ADL)
for self-care and instrumental activities of daily living (IADL) for fundamental livings. The
ability to perform ADLs and IADLs successfully is considered as a major criterion to access
the condition of stroke patients and patients suffering from depression, Alzheimer, orthopedic,
neurological or sensory deficits [3]–[5]. Besides, in the case of older citizens, these criteria have
been found to be significant predictors of admission to a nursing home, use of paid home care,
use of hospital services, use of physician services, insurance coverage, and mortality [6]. Ac-
cording to government profile of older Americans [2], on average 92% of the institutionalized
and 40% of the non-institutionalized older citizens have difficulty in performing one or more
ADLs and this percentage becomes higher as they grow older. Therefore, detecting and recog-
nizing ADLs are important for detecting early symptoms of disease, the improvement of access
to prescribed medication, providing exact medical history to physicians, and as an important
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preliminary step in systems for assistance in performing ADLs. In this thesis, our major goal is
to build a system that detects and recognizes in home activities, can be deployed in home, and
perform better than the state-of-the art systems.

Many current activity recognition systems [7], [8] make too many simplifying assumptions
about the environment and the number of users that either limit the types of recognized activi-
ties, or is tailored to perform well in simple situations such as single person homes and with no
concurrent activities [9], [10]. It is necessary to consider interleaved, parallel, and co-operative
activities for more robust and realistic activity recognition that also perform accurately in pres-
ence of more than one individual. The presence of multiple people creates complexities since
the number of overlapping and parallel activities increase. It becomes challenging to find the
correlation between sensors to specific activity, since a sensor can be triggered by any of the
parallel activities. Again, difficulty arises because each person has their own way of perform-
ing an activity [11]. Therefore, as part of this thesis we investigate how modifying existing
algorithm enables a system to operate in home with multiple persons.We also built our sys-
tems to be general so that in is able to recognize activities performed sequentially, intertwined,
or parallelly.

In order to provide sufficient information about ADLs/IADLs, we need to look into the
details of the activity process. To show the significance of the monitoring activity process, the
researchers [12] performed an experiment where they brought healthy people, patients with
mild cognitive impairment, and Alzheimer patients in lab and asked them to perform a series
of tasks where each task constitutes of specific order of steps. They found activities of daily liv-
ing (ADL) as a good predictor of early detection of cognitive impairment as people with higher
degree of dementia tend to leave out more steps and/or make more mistakes in the order of
steps. Alzheimer is one of the leading disease to death and an estimated 5.7 million Americans
of all ages are living with Alzheimer’s dementia currently at USA. Since it does not have any
cure and can only be slowed down with early diagnosis and proper monitoring, we focused our
thesis to find quality of activities from Alzheimer’s patients ADL and IADL. Although, many
researchers highlight the importance of behavior detection in homes and many claims to have
indirect advantage of providing ADL statistics, as far as we know there has not been any system
directly focused on this particular problem of tracking activity steps. Behavior monitoring re-
search is available on specific activities such as observing sleeping patterns, or estimating loco-
motive activeness from motion sensors We also found work on closely related field of anomaly
detection where the system is trained to observe a single residence activity and find specific
patterns related to time, duration, and correlation among the performed activities. Later, any
activity data that does not match with those patterns are reported as having an anomaly. How-
ever, none of the current activity recognition systems identify partially completed activities or
the missing steps in the overall activity process, but rather recognize whether an activity has
occurred or not. Again, finding activity quality in home monitoring is not as straight forward
as the experiment shown in lab [13], since there is no fixed sequence of steps for activities, and
a particular activity can be performed in a number of possible ways. Again, since some activity
steps are optional or dependent on the preference of the user, it is not easy finding the actual
missing steps as those steps might be omitted intentionally. Another problem is that the steps
of an activity are not as clearly defined in the real world. Therefore, in this thesis we look into
the problem of detecting activity steps from sensors and wearables, and define the relation of
steps to activity. We also perform detail analysis on the quality of performed activities and find
whether steps are missing/wrong/out of order as well as suggest the closest match having the
correct step sequence.
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Another important task of in home activity monitoring system is to identify which person
performed the activity, since we would like to know the activity quality of the person of interest
for whom the system would be deployed. Although, person identification is straightforward
when using wearable sensors for activity recognition, not all elderly people or patients com-
plies carrying additional devices while performing all the activities. Therefore, as part of our
thesis we also looked in to person identification problem when only in situ sensors are used.
We studied the limitation of using only binary sensors and how much improvement is possible
when considering activity history data or limited number of specialized sensors.

In most existing monitoring system, the resulting information is not acted upon in any di-
rect or real-time manner. However, by more intimately bringing the human into a feedback
loop, there is great potential to use interventions and notifications to improve human activities.
For example, by reporting emergency situations, such as ‘You forgot to turn off the stove’, the
home health care systems can keep patients safe. Also, by reminding later steps of an activity
when the patient forgets, the system can assist up to certain extent. Therefore, we also examine
how to integrate a static reminder system Medrem [14] in our activity recognition and quality
monitoring system. We inspect which additional parameters are required for event based noti-
fication and how to categorize the notification that ensures safety without creating annoyance,
and serves the user in best possible way.

1.1 Challenges and Scope

In this section, we address a number of challenges in building a system for monitoring the activ-
ity quality and recognizing the activity. Although each of the later chapters provides additional
details related to particular problem, we briefly summarize some of the key issues here.

• First of all, what is the quality of an activity? In this thesis, we are only interested in
the quality of ADLs and IADLs performed in a home setting. When a physician deter-
mines that activity quality of a patient has degraded, he makes judgement based on many
complicated factors, clinical knowledge, and applying judgment based on both logical
thinking and intuition. However, how can a system know what the activity quality is?
What are the parameters? How can it be measured? In order to address this challenge, we
looked in to the literature from clinical community and came up with two major elements
as quality metrics, activity steps and time. An anomaly on any or both of these factors
are considered important in evaluating the quality of an activity. Most importantly, both
of these elements can be measured by sensing devices.

• In order to address the first challenge we assume that all activities are composed of some
specific steps. The second question is how to define an activity step? Within an activity
where does each step start and where does it end? How fine grained should the steps be?
The details of this answer is given in section 3.2. Here, we would like to mention the two
key requirement for defining activity steps in our thesis,

– Each activity step should be detectable by the sensing system.
– Activity steps are considered as a unit, i.e., a step is either done or not done, but

cannot be half done.

• Third, how to model the activity process in terms of activity steps. The activity process
also varies depending on person, environment, or situation. Different activities often
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have similar steps, and steps performed in a different order might result in the same or a
different activity. Thus, the process of mapping steps to distinct activities that are capable
of handling these variations is vital. Another challenge is addressing the deviation from
usual activity processes. For example, if a certain step is missing or performed out of or-
der, then is the activity incomplete, wrongly performed, or still a valid activity performed
in a different way? It is a question on how to keep a general structure of a particular ac-
tivity which is performed in different ways? (Chapter 6)

• How to identify the prospective/incomplete activity when one or more steps are miss-
ing, or performed out of order? How can we use the activity recognition framework for
monitoring the quality of an activity? How to find which steps are missing or done out of
order? What happens if we consider interleaved and parallel activities and steps from dif-
ferent activity occurring between the steps of the particular activity? What role does the
timing parameters play in activity quality? Depending on different activity types, what
modifications/considerations are required? For example, delay between steps within a
single activity have different significance depending on whether the activity was per-
formed in parallel with something else or not (Chapter 6 and 7).

• Another major challenge is recognizing activity steps. Different type of challenges are
observed when detecting activity steps from in situ vs wearable sensors. Since the dura-
tion of an activity step can be very short, identifying distinguishable features time series
sensor data becomes harder. Also, compared to the number of types of activities, there
are larger numbers of different activity steps. Although for simplification, we assume
that the a particular activity step is same irrespective of the high level activity where it
occurs, and is general for different users and context, in reality variation arises dues to
those factors (Chapter 5).

• Activity recognition in a single person home itself is very difficult. The presence of multi-
ple people creates additional complexities. The amount of overlapping and parallel activ-
ities increase [15] as number of people in a home increases; it makes detecting activities
from raw sensors more difficult, since a sensor can be triggered by multiple concurrent
activities. Again, difficulty in recognizing activities arises because different persons per-
form an activity in different ways [11]. Chapter 4 discusses our solution to deal with
multiple people.

• A final question is when to send the notification if the system detects some activity steps
of a particular activity where the later steps are missing. Now, should the system send a
reminder about missing steps? What if the user is actually planing to do the steps later
(interleaved activity)? Then, sending reminders often may annoy the user. However, if
the user actually has forgotten the steps, how long should the system wait before sending
a reminder? To solve the problem, we have prioritize notifications based on safety critical,
inconvenience, and poor quality of the resultant activity due to the missing steps. If a
missing step is forgetting to turn off the stove, then an alarm is generated immediately,
whereas forgetting to put the sugar in the coffee is not considered as important.
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1.2 Thesis Statement and System Overview

1.2.1 Statement

"It is possible to detect activities (ADLs and IADLs) and activity types (interleaved, parallel, or sequen-
tial) and have higher performance than existing state-of-art systems by detecting the sequence of activity
steps and modeling the steps in terms of time probabilistic context free grammar. Moreover, this approach
enables detecting partially completed or incorrectly performed activities and is able to report the quality
of the attempted or completed activity."

More specifically, this dissertation investigates the following suppositions:

1. We assume, ADLs and IADLs are performed in sequence of activity steps. The variation
of different activity instances of the same activity occur when steps are performed in
different order or when choosing alternative steps or dropping the optional steps while
performing the activity. We hypothesis that it is possible to capture all such variations
with grammar rules and represent an activity with a single time probabilistic context free
grammar.

2. By detecting sequence of activity steps, we can detect which activity was performed irre-
spective of the way it was performed. Moreover, we can know whether multiple activities
were performed in parallel or sequentially one after other by observing the distance be-
tween consecutive activity steps.

3. Since the grammar rules define the relationship among different activity steps with in
an activity, we can also detect the quality of the performed ADL and IADL instances by
tracking which steps were missing, repetitive, wrongly performed, and calculating the
length of individual steps and delays in between consecutive steps.

4. We also hypothesize that user identification is limited when only passive binary sensors
are used despite considering user behavior and activity history data. However, adding
limited number of specialized sensors can make a huge improvement in the person iden-
tification process.

1.2.2 System Overview

In order to prove our hypothesis, we have built several systems: SARRIMA, QuActive, Ac-
tivity Step Recognizer, and Activity Quality Monitor. A conceptual integration of all the com-
ponents/subsystems of these systems is shown in Figure 1.1. Since each of our systems have
modular components and similar subsystem structure, this integration is possible.

The bottom layer of all our systems is the Event/Gesture Detection Module. It takes data
from binary/specialized sensors and wearable data streams and uses the sensor mapping in-
formation and data processing algorithms to detect specific sensing events or gesture segments.
These event are used in the upper layers for detecting activity steps (QuActive Chapter 6) or
might be directly used for detecting the high level activity directly (SARRIMA Chapter 4).

The next layer of our conceptual framework is the ’Activity Step Detection and Recognition’
module. Although, activity can be recognized directly from the sensor events, detecting activ-
ity steps are vital when activities can be done partially or with error. Therefore, Activity Step
Recognition module recognizes all possible steps that might have occurred during a specific
time frame. In this thesis, we applied standard state-of-the-art machine learning algorithms
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FIGURE 1.1: Conceptual integration of all the systems:
SARRIMA, Activity Step Recognizer, QuActive Framework

and System for monitoring the quality

for detecting the steps. However, empirical experiments were done to fine tune the parameter
thresholds for better performance. Since the accuracy of overall system depends on the accu-
racy of detecting individual steps, the wrongly detected steps are filtered in the upper layers
by matching with applicable grammar rules.

The Activity Modeling Framework (QuActive ) models the different activity instances of the
same activity class by using grammar rules, and captures both the structure and the variations
within a specific activity. The details are provided in Chapter 6.

The core of the whole system is the Activity Recognition Module. While recognizing which
activity was performed, it also finds the way a certain activity was performed as well as any
discrepancies (missing/wrong step, delay, etc.) that occurred while performing the activity.

In order to provide proper feedback and also track personalized history it is important to
find out what activity was performed by whom, and the person identification module assign
individual to corresponding activities (SARRIMA).

The user notification system has been designed to generate reminders and notifications
(Medrem [14]). Coupling the system as part of overall system makes it possible to generate
notification based on specific activity quality events recognized by the underlying subsystems.
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1.3 Contributions

The contributions of this dissertation are the following:

1. We modify a state of the art ADL recognition system AALO [16] for single person home
and make it applicable to be used in a multi-person environment without sacrificing it’s
capability to detect parallel and overlapped activities. Our system, SARRIMA, uses lo-
cation and temporal information to detect ADLs and achieves average accuracy as high
as 97% in all the tested public datasets with multiple people (CASAS, ARAS). SARRIMA
performs better than other contemporary systems applied on the same datasets [17].

2. We present a solution to recognize the user of each activity from only passive binary
sensors. However, since the accuracy of such solutions vary depending on the home,
number and type of sensors, and the behavior and relationship of users - we perform
a simulation to show how much improvement can be made by adding limited number
of non-binary passive sensors. Very high accuracy can be achieved only by replacing or
adding very few non-binary passive sensors [18].

3. This thesis presents QuActive, a novel activity modeling framework that utilizes fine
grained information (activity steps) of the activity process. We show that the framework
can capture variations of performing an activity in different ways with a single time prob-
abilistic context free grammar (TPCFG). We show how different instances of the same
activity creates different parse trees that can be generated by the same grammar defini-
tion. The concept of grammar is modified to be applicable to the activity recognition field
and each of the grammar terms are described with respect of activity, activity steps, and
correlation of steps within the activity (Chapter 6). The grammar also captures the sub-
structure of in home activity where some steps are required to be perform in certain order
whereas some can be performed in multiple places within an activity or in random order.

4. We performed a study on recognizing activity steps from in situ z-wave binary sensor
and from wearable smart watches. We outlined the challenges of both approaches and
provided a comparison of using each method vs the other. Finding steps from gesture
events from data streams of wearable device opens the opportunity to capture lots of
fine grained steps and micro behavior. But it is extremely challenging even for a single
user due to the sheer number of possible steps that can occur. On the other hand, a
binary sensor provides straight forward outcome of particular events, but not all type of
events/activity steps can be captured by these sensors. While applying standard machine
learning techniques, we realized that the problem is not trivial. Therefore, we have noted
all our lessons learned and the various challenges we found in real home deployment
and expect our experience will serve as important guidelines for the future researchers.

5. We implemented a system that incorporates a QuActive framework to recognize activity,
monitor quality, and notify users. The QuActive framework is applied to three different
public datasets of interleaved activities, parallel and co-operative activities, and dataset
with activities monitoring cognitive decline. We show that even if activity steps are not
detected correctly, by taking into account of all possible steps, combining inputs from
both wearable and in situ sensors, we can achieve very high accuracy of activity recog-
nition if we assume the activities were done correctly. Our evaluations on three datasets
show that QuActive outperforms the state-of-the-art techniques for all of these datasets.
The system has also been deployed in a real home in a semi-controlled setting. The results
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show that QuActive recognizes more than 90% of the defined activity steps with a hybrid
sensing platform (in situ and wearable), and the grammar detects 98.6% of the defined
activities from the recognized activity steps.

6. We showed how activity quality monitoring can be achieved by defining quality parame-
ters for ADL/IADL performed by Alzheimer’s patient. We show how different episodes
with error types can be separated and how the activity steps of multiple activity within
the episode can be separated. We present our solution for searching and validating activ-
ity step sequences. Our evaluation shows the solution works in recognizing both com-
plete and partial activity and is able to identify the reasons of discrepancies in case of
incomplete activities.

7. We collaborated with developing a voice based medication reminder system, Med-Rem
[14]. As part of this thesis, we show how to modify the medication reminder system as
event base activity notification subsystem and integrate it as part of the activity recog-
nition and quality monitoring system. The notification subsystem provides alerts about
activities, informs user about missing steps, and stores user feedback.

8. As part of our experiments, we deployed both in-situ and wearable sensors and have col-
lected data from lab and real home settings. We used video for tracking the ground truth
and later annotated the datasets to label activities and activity steps within those activ-
ities. Since there has not been many datasets that have activity steps information, these
anotated datasets are extremely valuable and can be used later for further exploration by
the research community.

1.4 Thesis Outline

The rest of the dissertation is organized as follows:

• Chapter 2 introduces the state of the art research related to activity detection and recogni-
tion, research on activity step detection and recognition, research on grammar, ontology,
and rule based systems, and research on home monitoring and notification systems.

• Chapter 3 describes different terminologies related to activity definition and activity tax-
onomy based on different context, and details about activity steps and related terms used
for describing portions of activities. It provides insights on the terminologies on context
free grammars, probabilities, and rules. Finally, a brief description is given on the data
structures and algorithms used in our system on top of which we extended our research.

• Chapter 4 presents the details of different components of SARRIMA, a novel activity
recognition system in multiperson homes, and it’s evaluation.

• Chapter 5 details the challenges on recognizing activity steps and provides a comparison
and analysis of using in-situ vs wearable sensors for recognition of activity steps.

• Chapter 6 describes QuActive Framework for modeling activities and it’s performance in
different datasets and collected data from a home setting.

• Chapter 7 provides the details on how activity steps are tracked from activity process,
specially missing steps, repetitive steps, wrong steps, and wrong order of steps with in
an activity and it’s evaluation results.
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• Chapter 8 describes the notification system and it’s performance. It also provide addi-
tional details about how the system works as part of the overall activity recognition and
quality monitoring system, and necessary parameters to provide event based notification.

• Chapter 9 concludes this dissertation with a summary of the contributions and provides
a number of possible directions for future work.
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Chapter 2

Related Work

In this chapter, we describe the ‘state-of-the-art’ systems and research techniques most relevant
to our thesis. While reviewing the literature, we wanted to provide information about both
the latest or current technology, as well as the research works that has inspired and used a
lot in later works and pushed the frontier. The related work is divided in several sections.
First, we discuss the available home health care systems (2.1) and research related to activity
detection and recognition (2.2). Then, we describe the works that looked in to the details of
the activity process (2.3). Finally, we present research related to notification systems (2.4) and
quality monitoring systems (2.5). In each of the sections, we identify the unique aspects of our
work, in comparison with the described state-of-art research.

2.1 Home Monitoring Systems

There are smart home systems for security, energy management, and other specific applications
that are summarized well in a survey paper There are large scale health monitoring systems,
such as CodeBlue that are not used in home but in hospital or care facilities. In this section, we
are only interested in in-home systems for health and behavior monitoring.

2.1.1 Research Testbeds

Georgia Tech’s AwareHome [59] combined context-aware and ubiquitous sensing, computer
vision-based monitoring, and acoustic tracking of people to monitor health. The Gator Tech
Smart House at the University of Florida was a laboratory house created to assist older adults
in maximizing their independence and maintaining a higher quality of life [60]. AlarmNet
is an assisted living and residential monitoring system for pervasive and adaptive healthcare
based on an extensible, heterogeneous network architecture targeting ad-hoc, wide-scale de-
ployments [62]. Empath is an extensible, multimodal, largely passive behavioral monitoring
system that is useful to caregivers in order to monitor their patient’s behavior, and thereby track
their well-being and their response to treatment and therapies. The system not only served as
a testbed, but worked well in real home deployments with real patients. However, empath
mainly tracks two aspects of behavior - one is a sleep tracking module and another is mood
tracking from voice data. Therefore, it is fundamentally different than our quality monitoring
system that tracks activities of daily livings.
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2.1.2 Commercial Products

Various companies have also developed home monitoring systems for medical purposes which
can help patients get proper medical help from home. PHILIPS provides Lifeline [66] with
Auto Alert for elderly people. It is a help button that automatically places a call for help if it
detects a fall. Intel-GE Care Innovations has developed Care Innovations QuietCare [67] that
uses advanced motion sensor technology that learns the daily activity patterns of residents
and sends alerts to help caregivers respond to potentially urgent situations and major routine
changes. However, their system is limited as it only monitors the residents’ room / zone level
occupancy patterns. The WellAware [64] system provides commodity sensors to track sleep
quality, activity levels, bathroom visits, and basic physiological information. BeClose [65] is
another home monitoring system designed especially for the elderly. The system consists of a
number of motion sensors as well as a bed pressure pad as well as a panic button that notifies
authorities if there is something wrong. The user interface is built on the web platform and it
presents a dashboard showing caregivers their patient’s sleep patterns, movement, and weight.
If the patient’s behavior is anomalous, such as if they are not getting out of bed after a certain
time or whether they are leaving the house too little or too much, a concerned relative can check
on them.

2.2 Research in Activity Detection and Recognition

2.2.1 Different Sensing Platforms

Wearable Sensing

A lot of work on activity recognition are done using wearable sensors or devices that can be
easily carried. Examples include smart phone, smart watch, Fitbit, Ubifit, and RFID devices
[19]–[21]. A major advantage of this approach lies in multiperson scenerio where a person can
be identification based on unique device ID. However, most of the activities recognized by this
process are mainly physical activities or concentrates on the detection of a particular ADL. For
example, Google activity recognition APP in mobile phone provides limited information about
the user‘s activity, such as whether the user is on foot, in a car, on a bicycle, or still. There are
are apps that track walking, running, or sleeping. Fitbit and Ubitfit are used to track exercise. A
wearable necklace is used to detect eating [22]. Therefore, wearble sensors are useful to detect
particular type of activities, but have limitation in scenarios where a number of variety ADLs
are needed to be recognized. Moreover, they are not comfortable; users often forget to wear
them, and scaling the system to multiple persons is energy and cost consuming. Nonetheless,
the popularity of wearables are rising and many claims that the benefits out-weights the dis-
advantages, specially as wearbles are becoming powerful in terms of computational capability
and more energy efficient everyday.

Infrastructure based Sensing

Infrastructure based sensors, such as ElectroSense or HydroSense [23] are useful to detect par-
ticular type of activities that consume the same resource. The advantages of these sensors
are that they are single-point, which reduce both the installation cost and overall system cost.
However, these approaches require significant configuration and training effort from the end
user, high cost sensors, and have not yet been evaluated in in-situ home environments. Most
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importantly, these sensors cannot be used to recognize all the different classes of ADLs and
IADLs, since the same resource is not used in all the activities.

Image based Recognition

A lot of work in Activity Recognition is based on image processing and analyzing data from
cameras [24]. However, in this approach the main problems are limited coverage area, obsta-
cles, complexity of recognition due to user’s angular variation while performing activity, and
higher cost. requirement of a huge amount of data processing, Moreover, the system is costly in
terms of data processing and required memory. The biggest concern is the violation of privacy
- since most ADLs are private.

Wireless Sensor Network

A lot of activity recognition systems or studies use wireless sensor installed in a surrounding
environment. This approach is preferred by users since activities are monitored passively by
detecting human-to-object interaction and not tracking the human directly. However, diverse
physical activities that do not involve interaction with everyday objects can not be recognized.
Moreover, there is a limitation on the number of objects that can be instrumented for detection.

2.2.2 Different Algorithms and Techniques

Irrespective of what type of sensing platform is used, a significant proportion of research on
activity recognition has focused on the learning techniques/detection algorithms used to infer
resident activities from the sensor data.

Machine Learning Methods

The existing research of recognizing activities of daily living with ubiquitous sensors uses
different statistical and probabilistic approaches [25], [26]. The common supervised machine
learning algorithms used in ADL recognition are Hidden Markov Model (HMM), semi HMM,
Naive Bayes Classifier (NBC), and conditional random field (CRF) [13], [27]. Since NBC do
not retain any timing information, some researchers use Dynamic NBC for activity detection.
Again, the problem with HMM is when the sub-activities of a complex activity are also com-
plex activities (such as cooking) the performance decreases, since in that case the hidden layers
are not directly observable [28]. Both HMM and CRF are focused on the sensor sequence and
are less flexible in incorporating variability of activities. The major drawback of a supervised
method is that tremendous effort in data labeling is required during the training period, which
is not always feasible for patients or elderly people, and specially for research with short term
pilot studies. On the other hand, algorithms like item set mining disregard the sequence in-
formation of sensors and number of occurrences of a particular sensor which are useful infor-
mation necessary for defining the detailed steps. Thus, although the algorithms are capable of
detecting and reporting activities, no information is provided about the activity process. More-
over, for certain closely related activities (brushing teeth and shaving) the systems show poor
performance in activity detection.
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Grammar, Ontology, and Rule based Activity Recognition Systems

The use of Context Free Grammar (CFG) in defining and recognizing human activities is not
new. Previously, Li [29] presented a grammar-based Fall Detection framework that can rec-
ognize slow falls and better differentiate falls from other fall like activity. In paper [30] the
authors use a CFG to recognize human action from video footage by co-relating sequence of
human pose. Again, papers [31], [32] demonstrate how cooking activity can be better recog-
nized from imote camera by associating it (using CFG) with accessing food, serving food, and
cleaning activities. In their later works, the authors showed [8] how a Probabilistic CFG can
be used to define and find the relationships among all the activities of daily living from video
data. Probabilistic CFG has also been used in surveillance system [33] in order to determine
unusual activities. Paper [34] uses a stochastic CFG to recognize a multitask activity (playing
blackjack) from video data. However, none of the work addresses the issues of recognizing a
variety of activities and monitoring activity process quality from a general framework.

2.3 Research in Detecting and Recognizing Activity Steps

The research work that focuses on garnering fine-grained information about activities are mostly
done is vision and using image processing. The papers [35], [36] describe a dataset of fine
grained cooking activities from video image processing. The main motivation of the works is
to create necessary image processing capability for an assistive cooking robot to detect cooking
steps. Paper [37] describes a smart kitchen where each appliance can wirelessly communicate
with each other and partially automate the later steps of an activity if the initial steps are de-
tected. However, the steps are static defined steps and no framework is defined to relate the
different steps of an activity. Paper [7] describes fine grained ADL detection from RFID tags
and defines models to associate different objects with different activities. However, the focus of
the paper is to relate objects with activities; whereas our work concentrates on relating different
steps of an activity and extracting more information about each step.

2.4 Notification and Reminder Systems

To avoid missing important tasks, people use different kinds of reminders, ranging from tradi-
tional methods like notes to technology enabled systems like text messages and smart phone
apps. With the ubiquity of cell phones, particularly with the recent proliferation of smart phone
usage, the use of these devices for medication alerts and tracking has received significant at-
tention from different stakeholders including patients, caregivers, developers and researchers.
Text messages are used for health intervention in several studies [38][39][40]. The text message
based systems are not convenient for user interactions, and so these systems are inflexible in
re-scheduling reminders, and tracking medication. Most of the limitations of the smart phone
based systems, as mentioned earlier, are also applicable for the text message based systems.

A number of smart phone applications with different features are available in the app stores
for providing medication reminders and tracking intakes [41] [42]. A functionality review of
229 of the apps, as reported in [43], shows that many of the apps lack important features like
re-scheduling, medication pictures, and data export. For example, only 17% of the apps offered
an option to re-schedule or postpone a reminder. Researchers have also designed, developed
and evaluated smart phone based reminder and tracking systems. For example, Wedjat [44]
is a smart phone based system that provides reminders and tracks medication intakes. It also
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provides potential drug-drug/drug-food interaction information to the users. UbiMed [45]
presents a solution that incorporates smart phone apps to provide reminders, and to support
the tracking of prescribed medication for the aging and disabled population. As described
earlier, smart phone based systems for medication reminder and tracking come with a number
of limitations. A feasibility study [46] reveals some of the limitations.

Smart wearable devices like smart watches and wrist bands are usually enriched with many
features like touch screens, microphones, sensors, BlueTooth and Wi/Fi. These devices are be-
ing used widely in healthcare applications including activity tracking, wellbeing monitoring,
and reminders. Harmony [47] is a hand wash monitoring and reminder system that uses the
sensors available in the smart watches to monitor the hand wash activities of the users. When-
ever a user enters into or leaves areas like patient rooms and toilets, where hands should be
washed before entering and/or after leaving, the watch detects the location from the signals of
the Bluetooth beacons placed in the areas. If a user forgets to wash hands when it is required,
the watch provides a reminder. A diary like system for diabetes patients is presented in [48]
that uses both smartphones and smartwatches to log information from, and provide reminders
to diabetes patients. SPARK[49] is a framework that combines smartphones and smartwatches
together in monitoring symptoms of patients with Parkinson Disease. It also supports physi-
cians in providing tele-interventions to the patients. Fabian et al [50] proposes to use pictures
of the drugs on the display of the wrist device to reduce confusion of the patients when mul-
tiple drugs need to be taken. These systems use only the small display of the wrist device,
and so can not provide detailed information related to a reminder using the wrist device only.
Also the wrist devices used in the systems do not support rescheduling the reminders. Most
of these reminder and tracking systems are aimed for specific group of patients or users. In
contrast, MedRem is a general purpose medication reminder and tracking system that can be
customized according to the patients’ needs. It incorporates speech recognition and text-to-
speech technologies along with intelligent interface design to overcome the limitations of the
small display of the wrist devices as well as to provide useful features like reminder reschedul-
ing and medication tracking.

2.5 Research in Activity Quality Monitoring

A lot of research claims detecting activities of daily livings for monitoring quality of life. How-
ever, they do not measure the quality directly. Several clinical studies access quality of life of
particular patients by questionnaires or survey about their daily life [51].

Most of the research in Activity Quality Monitoring are tailored to particular activity. For
example, paper [52] examines sleep quality and correlation of sleep quality with incontinence
events of Alzheimer patient’s. There are several works that study sleeping behavior of patients
with sleep apnea [53]. A person at the primary phase of Parkinson’s tends to make small and
shuffled steps, and may also experience difficulties in performing key walking events, such as
starting, stopping, and turning [54]. Therefore, there have been works focused on walking be-
havior and gait monitoring [55]. Paper [56] provides a comprehensive study on remote patient
monitoring where the patients always have to wear sensors that constantly tracks their vital
signs. However, those studies are helpful only for patients with severe injury. Moreover, they
are not suitable for long term monitoring of daily life.

Although, we did not find any system that specifically monitors activity quality by consid-
ering fine grained information, we found some closely related work on behavior monitoring
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and anomaly detection. The main idea in these research works is to train the system with ac-
tivity data for certain amount of time (several weeks) and consider those pattern as normal be-
havior. Later, the system tracks activity and any deviation from those pattern is reported as an
anomaly. Now, different researchers consider different aspect of data as behavior. Anderson et
al. [57] define sequence of activities as behaviors and learn those behaviors. They also support
combining multiple days of activities to detect anomalies that occur over the time. However,
they do not consider durations of each of the activities or the intervals among activities. Jakkula
et al. [58] use temporal mining to learn different temporal relations among different activities.
Holmes [59] considers daily routine, activity duration, and change of routine in week days vs
weekends. However, the activity anomaly research mainly focuses on the relationship of the
activities within a day and in which sequence they occur and report anomaly from a broader
perspective, but do not look in to the details of activity steps for determining the quality of of
a particular activity.

Review paper [60] looked into one hundred seventy-five unique studies that monitored
the ADLs of elderly people and preferably measured some clinical outcomes such as ability to
predict key events that require intervention. They found most studies reported on technical
improvements in methods for detecting changes in ADL, few, if any, determined the benefits to
the patient of telemonitoring for changes in ADL or correlation with any physiological changes.
Therefore, we believe our work on activity quality monitoring will be valuable from clinical
perspective and encourage more researchers in this important direction.
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Chapter 3

Background and Terminology

3.1 Activity Recognition

The area of activity recognition is quite diverse and broad. There is a tremendous diversity of
concepts that are classified as activities in the literature (section 2.2). Some define activity as
‘performing/doing’ something, whereas some define it as the ’result/state’ of something being
done. Therefore, activity recognition is performed from a user’s perspective as well as from
user to object interaction and detecting the changed state of objects.

FIGURE 3.1: Action, environment, and activity

3.1.1 Physical Activity vs. Daily Living Activities

Gesture and physical activity recognition are often labeled as activity recognition. However,
there is some core difference between these activities vs. activities of daily living.

Physical Activities and Gestures

Physical activity is defined as any bodily movement produced by skeletal muscles that require
energy expenditure. For example, walking, running, cycling, exercising, etc. On the other
hand, a ’gesture’ is defined as a movement of part of the body, especially a hand or the head, to
express an idea or meaning. Often these types of activities are referred to as ’actions’. A lot of
these actions are used while performing activities of daily living. For example, some activities
are opening a door, opening a cabinet, picking up an item, push an item, pull an item, carry an
item, throw an item, etc. Again, when the action involves more than one person, it is referred
to as ‘interaction’. For example, shaking hands, talking to someone, handing item to someone,
etc. Figure 3.2 shows how action and interactions result in an activity.
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Activities Daily Living and Instrumental Activities Daily Living

Activities of daily living (ADLs or ADL) is a term used in healthcare to refer to people’s daily
self-care activities. Health professionals often use a person’s ability or inability to perform
ADLs as a measurement of their functional status, particularly concerning people post-injury,
with disabilities and the elderly. On the other hand, instrumental activities of daily living
(IADLs) are not necessary for fundamental functioning, but they let an individual live inde-
pendently in a community. The table 3.1 lists some ADLs and IADLs from everyday life.

TABLE 3.1: Example of Activities of Daily Livings and Instrumental Activities of
Daily Livings

Basic ADLs Instrumental ADLs
Sleeping Work at computer, work at desk
Eating Preparing Meals
Toileting Washing Dishes
Showering Laundry
Dressing Watching TV
Brushing Cleaning the house
Moving Study

Write letters, cards
Make phone call, talk on phone
Drive car, bus or ride in car, bus
Play board game, play card game

3.1.2 Activity Types: Sequential, Interleaved, and Parallel

Sequential Activities

Activities that are performed one after another are called sequential activities. Each individual
activity is completed before starting the next one; therefore, no two activities occur together.
For example, in the morning if a person gets out of bed, go to the washroom, brushes teeth,
gets dressed, prepares food, eats food, and leaves the house, then the person has performed all
these activities sequentially.

Interleaved Activities

Certain real-life activities may be interleaved. For instance, while cooking, if there is a call from
a friend, people pause cooking for a while, and after talking to their friend, they come back to
the kitchen and continue to cook.

Parallel Activities

When multiple activities occur at the same time, those activities are referred to as parallel activ-
ities. Users usually switch back and forth among multiple activities. For example, if someone
watches TV while eating, or washes dishes while cooking food.
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(A) Physical Activities (B) Activities of Daily Living (ADL

FIGURE 3.2

3.1.3 Activity Steps

The concept of activity steps comes from the desire to look into the details of an activity process.
First, we provide similar definitions from the literature and then provide the definition and
properties of an activity step that we consider for this thesis.

Atomic Activity

Atomic activity: is a body part movement sequence where the movement is limited to the finite
temporal window and variation of movement limited to a small space. Example: a cycle of
walking i. Four activities: walking, marching, line-walking, kicking while walking Ii. Single
letter utterance: 13 letters

Sub Activity and complex activity

A sub-activity is an activity making up part of a larger activity. When a large activity is made
up of parts, where each part can also be identified as an activity is called a complex activity.
For example, cooking a meal is a complex activity where sub activities might include cleaning
ingredients, chopping ingredients, heating water, mixing ingredients, using the stove, etc.

Micro-activity

In paper a micro-activity (µAc) or an activity step is defined as the smallest activity step that
cannot be decomposed any further. Therefore, a µAc is equivalent to an atomic activity or a
simple activity defined in the state-of the-art literature, but in a broader sense which includes
both objects and gestures. The following statements hold true for a µAc:

i An activity can be broken into one or more µAcs. So, a µAc can be an activity itself. For
example, ‘heating water’ can itself be an activity or a µAc of ‘making tea’.

ii µAcs cannot be done partially, i.e., once started a µAc has to be finished, or otherwise it is
disregarded.

iii µAcs can occur in different activities. For example, the µAc ‘using water’ can be a part of
the activity ‘washing dishes’ or the activity ‘mopping the floor’.
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iv Although every activity is associated with one or more users, and every µAc is associated
with some activity, the µAc itself might be independent of a user. For example, a user
triggers the switch to boil water, but ‘water boiling’ itself is independent, and the user may
do something else during that time.

In this thesis, we consider the definition of µAc as an activity step. Besides, we also consider
whether the step can be detected from the sensing perspective or not.

3.2 Grammar and Rules

3.2.1 AI: Rule-based Systems

In computer science, rule-based systems are used as a way to store and manipulate knowledge
to interpret information in a useful way. They are often used in artificial intelligence applica-
tions and research.

A typical rule-based system has four basic components:

• A list of rules or rule base, which is a specific type of knowledge base.

• An inference engine or semantic reasoner, which infers information or takes action based
on the interaction of input and the rule base. The interpreter executes a production system
program by performing the following match-resolve-act cycle.

• Match: In this first phase, the left-hand sides of all productions are matched against the
contents of working memory. As a result, a conflict set is obtained, which consists of in-
stantiations of all satisfied productions. An instantiation of productions is an ordered list of
working memory elements that satisfy the left-hand side of the production.

• Conflict-Resolution: In the second phase, one of the production instantiations in the conflict
set is chosen for execution. If no productions are satisfied, the interpreter halts.

• Act: In the third phase, the actions of the production selected in the conflict-resolution phase
are executed. These actions may change the contents of working memory. At the end of this
phase, execution returns to the first phase.

Temporary working memory. A user interface or other connection to the outside world
through which input and output signals are received and sent.

In AI, the most common method for defining rules are Prepositional Logic and First Order
Logic. Prepositional Logic deals with propositions (which can be true or false) and argument
flow. Compound propositions are formed by connecting propositions by logical connectives.
The propositions without logical connectives are called atomic propositions. The main differ-
ence between propositional and first-order logic is that first-order logic uses quantified vari-
ables over non-logical objects and allows the use of sentences that contain variables so that
rather than propositions it uses sentences with variables and quantifiers. Some researchers
have used this logical reasoning for activity recognition, where there described variables in
terms of sensors and used proposition and connectivity’s to come to a conclusion about which
activity was performed.
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3.2.2 Formal Grammar

In formal language theory, a grammar is a set of production rules for strings in a formal lan-
guage. The rules describe how to form strings from the language’s alphabet that are valid
according to the language’s syntax. A grammar does not describe the meaning of the strings or
what can be done with them in whatever context—only their form.

FIGURE 3.3: Four types of grammar defined by Noam Chomsky

Syntax of Grammars

A grammar is a type of language generator. It is expressed as < VN ; VT; Start; R >, where

• VN is a finite set of nonterminal symbols. Nonterminals are represented with words starting
with a capital letter.

• VT is a finite set of terminal symbols. Terminals are represented with words starting with
lower-case letters.

• VN \VT = ∆. V = VN [VT is called the vocabulary and V⇤ is the set of all strings of symbols
in V including the string of length zero.

• Start 2 VN is the start symbol.

• R is a finite nonempty subset of VN ⇥ V⇤ called the production rules. Each production rule
is in the form of aAg! bBq

Depending on which symbols are allowed in each side of the production rules, Noam
Chomsky described the hierarchy of formal languages with four types of grammars (Figure
3.3). For example, in context-free grammar (Type-2), only a single nonterminal can be in the
left side of the production rule, whereas the right side of the rule can have both terminal and
nonterminal symbols.

3.3 Algorithms

In this dissertation, we have worked on top of the algorithms that have been used in other
fields. Although sometimes we modified a variation of the algorithm based on state-of-the-art
papers, here we will describe only the basic ideas and classical versions of the methods.
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3.3.1 Frequent Itemset and Association Rule Mining

Association Rule Learning (ARL) is a rule-based machine learning method for discovering in-
teresting relations between variables in large databases. It searches for frequent items such
that the set of items appear together frequently in a transaction or relation. This technique
is often used in transactional and relational database applications. In contrast, with sequence
mining, association rule learning typically does not consider the order of items either within a
transaction or across transactions.

The idea that same activities usually trigger the same set of sensors in a home instrumented
with in-situ sensors, several researchers have been interested in applying the concept of rule
mining in ADL and IADL recognition [16]. We explored this idea in chapter 4. Here, we list
some of the essential definitions for Association Rule Mining:

Support: It is a measure of how frequently the itemset appears in the dataset. Support
tells about usefulness and certainty of rules. The support of X with respect to T is defined as
the proportion of transactions t in the dataset which contains the itemset X. For example, 5%
Support of some rule means total 5% of transactions in the database follow the rule.

Support(X) =
|{t 2 T; X ✓ t}|

|T|
Support_count(X) : Number of transactions in which X appears. If X is A union B, then it is

the number of transactions in which A and B both are present
Confidence: Confidence is an indication of how often the rule has been found to be true.

For example, A confidence of 60% means that 60% of the customers who purchased milk and
bread also bought butter.

Con f idence(A! B) = Support_count(A [ B)/Support_count(A)

If a rule satisfies both minimum support and minimum confidence, it is a strong rule.
.
Maximal Itemset: An itemset is maximal frequent if none of its supersets are frequent.
Closed Itemset: An itemset is closed if none of its immediate supersets have same support

count same as Itemset.
K- Itemset: Itemset which contains K items is a K-itemset. So it can be said that an itemset

is frequent if the corresponding support count is greater than the minimum support count.

Apriori Algorithm

Apriori is a frequent itemset mining algorithm for association rule learning. It proceeds by
identifying the frequent individual items in the database and extending them to larger and
larger item sets as long as those itemsets appear sufficiently often in the database. Figure 3.4
shows the pseudo code of Apriori algorithm.

Apriori Property: All subsets of a frequent itemset must be frequent. If an itemset is infre-
quent, all its supersets will be infrequent.

Apriori uses a breadth-first search strategy to count the support of itemsets and uses a can-
didate generation function which exploits the downward closure property of support.
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FIGURE 3.4: Apriori itemset mining and rule learning algorithm

3.3.2 Pattern matching with Regular Expression

In computer science, pattern matching is the act of checking a given sequence of tokens for
the presence of the constituents of some pattern. Sequence patterns (e.g., a text string) are of-
ten described using regular expressions and matched using techniques such as backtracking.
Sequence patterns are very popular in text editors, and other applications (DNA matching, ge-
netic coding analysis, etc.) of these pattern searching are mostly a variation of string-searching
algorithms.

Finite Set of Pattern There are many applications where a pattern can be represented
finitely. For example, string searching, plagiarism checking, etc. The best finite pattern search-
ing algorithms are -

1. Aho–Corasick string matching algorithm (extension of Knuth-Morris-Pratt)
2. Commentz-Walter algorithm (extension of Boyer-Moore)
3. Set-BOM (extension of Backward Oracle Matching)
4. Rabin–Karp string search algorithm
Most of these algorithms are made faster by using hash or pre-computation to skip ahead.

Therefore, in the best cases, the algorithms complete within a linear time limit. The difference
between these algorithms lies in how they pre-process the patterns.

Regular Expressions: The patterns that can not be enumerated finitely are represented usu-
ally by a regular grammar or regular expression. Regular expressions use meta-characters or
quantifiers to repeat certain symbols and therefore are able to produce infinite number of se-
quence. Figure 3.5 shows a pattern matching algorithm which may contain the meta character
’*’ kleen star. If a literal character is followed by ’*’, that character can be repeated zero or more
times. The algorithm shown in figure 3.5 is a variation of the dynamic algorithm version of
String Edit Distance algorithm.

3.3.3 Machine Learning Algorithms

We compared our approach with existing literature which uses the same dataset for evaluation
but uses a different approach. The baseline papers used different supervised machine learning
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FIGURE 3.5: Regular expression matching with kleen star

models, such as the Hidden Markov Model and Naive Bayes. While experimenting with ac-
tivity step recognizers we tried different popular machine learning methods used for gesture
recognition from wearable devices in the literature. We summarize some of the methods here -

Hidden Markov Model The HMM is a popular tool for modeling data that can be charac-
terized by an underlying process generating a sequence of observations, such as sensor events.
HMMs are generative probabilistic models consisting of a hidden variable and an observable
variable at each time step. In the context of modeling activities, the hidden variable is the
activity and the observable variables are the sensor events or the features extracted from the
sensor events. The HMM facilitates computation of the probability that a particular activity
model produced the entire sensor sequence, as well as the state (activity) sequence that was
most likely to have produced the observations (sensor events).

Naive Bayes Classifier: This is a probabilistic classifier, which is simple to develop and
can be executed rapidly. However, it is based on the weak assumption of feature indepen-
dence. The Naïve Bayes classifier assumes that the acceleration data from the sensor has a
Gaussian distribution whose mean and variance depend on class set. In the training stage, all
the related mean and variance in different hypotheses are calculated and the Gaussian model
for activities is built. During the testing stage, given a segment of raw data, the activity with the
maximum probability based on the equation below is identified. In the following equation, H1,
H2,.., Hn represents the features extracted from accelerometers, and C is the objective activity.
Although it might work well for recognizing some activity classes, the assumption of feature
independence usually results in reducing the overall recognition accuracy.

argmaxc(P(C = c|H1, H2, H3, ...Hn)) = argmaxc
1
Z

P(C)
n

Â
i=1

P(Hi|C)

Decision Tree This is a decision support tool using a tree-like model, which is used to describe
decisions, their outcomes, and costs. This algorithm works by examining the discriminatory
ability of features to create a set of rules which ultimately leads to a complete classification sys-
tem. In the training stage, the construction of the decision tree is usually based on the feature
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selection algorithm. In the testing stage, a tree traversal algorithm is used for classification.
In [12], the Decision Tree classifier was used to recognize 20 activities with the time and fre-
quency features and obtained the recognition accuracy of 84% which was the highest among
the evaluated classifiers.

Random Forest Random forest uses multiples decision trees with different feature emphasis
and various parameters to come up with an aggregated decision.

K-Nearest Neighbors It can be used to classify a large number of different activities. How-
ever, the on-line execution is slower than the Decision Trees classifier due to the distance eval-
uation requirements. The k-nearest neighbor classifier has been used for activity recognition in
several studies

3.4 Hardware and Software

3.4.1 Sensing Modalities

Activities are recognized using different sensing modalities and some of the variations are al-
ready described in related works. In this section, we describe the devices we used as part of
our data collection or the sensors found in the datasets we used.

In situ sensors

Binary: As part of our data collection procedure, we used z-wave door sensors and motion
sensors developed by Aeon Labs. We also used custom made z-wave binary pressure pads
that use commercial door sensors available in the market and converts the pressure to a binary
value. All of these sensors are binary sensors. Therefore, they are simple and easy to install as
well as consuming less power. Each of the sensors lasts almost a year using two AAA batteries.
The door sensors were installed on home doors, the refrigerator door, microwave door, cabi-
nets, dressers, water taps, stove knobs, and so on. The pressure pads were put on chairs and
sofas. The motion sensors were placed at different places of each room and the hallways. The
values triggered by the sensor was collected by a z-wave modem (Aeon Labs DSA02203-ZWUS
Z-Wave Z-Stick Series 2 USB Dongle) developed by Aeon Labs. We connected up to 30 devices
with a single modem. The modem is connected to a usb port of a laptop and our program reads
the data from the usb port.

Although we did not use any non-binary in situ sensors during our data collection process,
the public datasets we used for evaluation had some additional binary and non-binary sensors.
For example, an electricity usage sensor provides the percentage of electric usage periodically.

Wearable

We used the Samsung gear s smartwatch as a wearable device. The smartwatch has an inertial
measurement unit (IMU) with sensors integrated within the board. We used a sampling rate
of 50Hz and collected time series data from the accelerometer, gyroscope, and magnetometer.
The watch data was sent to a laptop via WiFi.

3.4.2 Software Environments

In our thesis, we have used the following software tools for building the system components
and evaluating the data at different stages of development.
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(A) Door sensor (B) Motion sensor (C) Z-wave modem

(D) smart watch
(E) Inertial Measurement Unit

(IMU)

FIGURE 3.6: The first row shows Aeotec z-wave door sensor, motion sensor, and
modem respectively by Aeon Labs. The next row shows Samsung Gear S smart-
watch and an inertial measurement unit (IMU) with accelerometer, gyroscope,

and magnetometer within the watch.

3.4.3 Netbeans IDE with Java 1.8

NetBeans is an integrated development environment (IDE) for Java. NetBeans allows applica-
tions to be developed from a set of modular software components called modules. We used
Netbeans IDE that supports JDK 8 features, such as lambda expressions, repeatable annota-
tions, compact profiles, etc. However, none of the exclusive features from Java 1.8 were used;
therefore our program will also run on any IDE supporting Java 7 or 8.

3.4.4 Matlab

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and pro-
prietary programming language developed by MathWorks. MATLAB allows matrix manipu-
lations, plotting of functions and data, implementation of algorithms, the creation of user in-
terfaces, and interfacing with programs written in other languages, including C, C++, C, Java,
Fortran, and Python.
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3.4.5 Weka

We used the Waikato Environment for Knowledge Analysis (Weka) for applying machine learn-
ing algorithms. Weka is a suite of machine learning software written in Java, developed at
the University of Waikato, New Zealand. It is free software licensed under the GNU General
Public License. Weka supports several standard data mining tasks, more specifically, data pre-
processing, clustering, classification, regression, visualization, and feature selection. Weka API
can also be used within a Java program by importing the package.
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Chapter 4

SARRIMA: Smart ADL Recognizer
and Resident Identifier
in Multi-resident Accommodations

The ability of performing in-home activities successfully is used as an important factor in de-
ciding treatments and services for patients and elderly citizens. However, most of the in-home
activity monitoring systems are designed for single-resident house. The presence of multiple
people creates higher numbers of parallel and overlapping activities, and introduces additional
complexities in defining and recognizing activity instances. In this chapter, we present the de-
sign, implementation and evaluation of SARRIMA, a system that recognizes activity instances
and assigns those activities to a person in two-resident homes using only passive sensors. We
evaluate the efficiency of SARRIMA in two different public datasets (data from real homes)
with multiple residents. We also show how the person assignment accuracy varies as a func-
tion of the similarity of behavior of the two people living together and of the types of passive
sensors installed.

The rest of the chapter is organized as follows. We briefly describe the motivation of the
work in section 4.1, followed by the contribution (chapter 4.2). Section 4.3 provides a high-
level system description of SARRIMA and our approach for dealing with multiple people.
Finally, the evaluation and discussion is presented in section 4.4and section 4.5 concludes the
paper.

4.1 Motivation

Systems for measuring Activities of Daily Livings (ADL) and Instrumental Activities of Daily
Livings (IADL) play a significant role in home health-care. ADL refer to the daily self-care ac-
tivities performed by an individual; examples include eating, sleeping, showering, dressing,
toileting, and transferring. On the other hand, IADL refer to a more complex set of activities
that are not fundamental, but very important for independent living - such as preparing din-
ner, cleaning the house, talking on the phone, and managing finance. The ability to perform
ADLs and IADLs successfully is considered as an important criterion to access the condition
of stroke patients and patients suffering from depression, Alzheimer, orthopedic, neurological
or sensory deficits [3]–[5]. Besides, in the case of older citizens, these criteria are significant
predictors of admission to a nursing home, use of paid home care, use of hospital services,
use of physician services, insurance coverage, and mortality [6]. According to a 2013 govern-
ment profile of older Americans [2], on average 92% of the institutionalized and 40% of the
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non-institutionalized older citizens have difficulty in performing one or more ADLs, and this
percentage becomes higher as they grow older. Therefore, detecting and recognizing ADLs are
essential for detecting early symptoms of a disease, the improvement of access to prescribed
medication, providing the exact medical history to physicians, and as a crucial preliminary step
in systems for assistance in performing ADLs.

ADL detection systems are commonly designed for single-user residences. Although 28%
of older American citizens live in single-resident homes, most of the older citizens (57%) live
with their spouse [2]. Therefore, most homes require ADL systems that can perform accurately
in the presence of more than one individual. However, the presence of multiple people creates
additional complexities. The amount of overlapping and parallel activities increase [15] as the
number of people in a home increases; it makes detecting activities from raw sensors more
difficult since a sensor can be triggered by multiple activities. Again, difficulty in recognizing
activities arises because different persons perform an activity in different ways [11]. The cost
of scaling an existing ADL recognition system might grow exponentially if each individual has
to be dealt with separately. Identifying people without using privacy an invasive device is also
extremely challenging.

One way of tackling the challenges of multiple people scenario is to use RFID technol-
ogy and wearable sensors for activity detection and consider each person separately [61], [62].
However, the expectation of elderly people or patients carrying additional devices while per-
forming all the activities is often unreasonable. Moreover, this approach makes the user uncom-
fortable and does not work if the user forgets to wear/use the device. This approach cannot
detect visitors and requires additional equipment each time a new user enters the system. An-
other way of handling multiple users is by using a camera [24] for both ADL recognition and
user identification. However, in this approach the main problems are limited coverage area,
obstacles, the complexity of recognition due to user’s angular variation while performing an
activity, higher cost, the requirement of a massive amount of data processing, and the violation
of privacy - since most ADLs are private. Besides, the works in both vision and wearable sen-
sors are mainly focused on physical activities or gestures from which the ADLs are inferred.
Thus, activities that have similar physical movements require more nuanced analysis and more
computational resources.

4.2 Contributions

In this thesis chapter, we present SARRIMA, a system that recognizes ADLs from passive
wireless sensors installed in multi-resident homes. The system is evaluated in multiple ex-
isting data-sets [13], [27] of ADLs performed by multiple residents in real homes. The main
contribution can be summarized as -

• We modify a state of the art ADL recognition system AALO [16] for a single person
home and make it applicable to be used in a multi-person environment without sacri-
ficing its capability to detect parallel and overlapped activities. The novel segmenta-
tion algorithm utilizes both the location and temporal information for segmenting occu-
pancy episodes which enables the system to detect ADLs and IADLs when more than
one person is present as well as in constrained apartment where several activities occur
in the same room. The system achieves average accuracy as high as 97% in all the tested
datasets. SARRIMA performs better than other contemporary systems applied on the
same datasets [17].
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• We present a solution to recognize the user of each activity from only passive binary
sensors. The idea that a particular user have certain way of performing some activity lets
us utilize the behavioral history data and identify the person based on different set of
triggered sensors. In this paper, we introduce the concept of occupancy sessions, which
utilizes the location information of users residing in different room at a particular time.
The system identifies a significant percentage of activity user by cross referencing with
other already assigned occupancy episodes in the same occupancy session. However,
since the accuracy of such solutions vary depending on the home, number, and type of
sensors, and the behavior and relationship of users - we perform a simulation to show
how much improvement can be made by adding a limited number of non-binary passive
sensors. Very high accuracy can be achieved only by replacing or adding very few non-
binary passive sensors.

We tested the system with data from two-residence homes.However, we believe that the
system will work in homes with more residence, although the accuracy might be lower. Nonethe-
less, there are not many homes where there are more than two residents and where ADL recog-
nition is required.

4.3 System Assumptions and Overview

SARRIMA operates based on the assumption of spatial, temporal, and object regularity of
ADLs, i.e., “particular activities of daily living are usually performed in some specific room area and
generally occur at the same time of day and ofter same objects are used to perform a particular activity”.
Although not all activities are always performed in the same area (examples include talking on
cell phones, having a conversation, or cleaning the house), most of the ADLs do. Therefore,
those IADLs (like talking on cell phones) are out of the scope of this work. The temporal regu-
larity is useful to differentiate activities like preparing breakfast or preparing dinner but is not
a hard requirement. If certain activities (watching TV, drinking water) do not have this regular-
ity, they will still be recognized by the system where the time of day parameter associated with
that activity class will be considered NULL. If an activity class does not follow object regularity,
then multiple class definitions are created by SARRIMA for the same activity class. Table 3.1
shows the activity classes recognized by SARRIMA.

In the SARRIMA deployment setting, sensors are positioned around the place where a
particular ADLs take place. Therefore based on the spatial assumption, a specific set of sensors
get triggered whenever that ADL is performed. This approach has already been applied on
single-person residences [16], but the presence of multiple people introduces randomness and
therefore complexity in defining the Activity Classes. Figure 4.1 shows the overall architecture
of SARRIMA.

Sensing Layer: The purpose of this layer is to sample the sensors, process and organize the
data in terms of sensor values, corresponding time-stamps information, and associated room
IDs. The processed information is transferred to the next layer.

Creating Occupancy Episodes: The time duration intervals during when someone is present
in a room are defined as ‘Occupancy Episodes’. The system assumes that activities in a room
occur only during these occupancy episodes, i.e., when someone is present in the room. Occu-
pancy episodes are determined from the sensor firing timestamps.
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FIGURE 4.1: Overall system architecture of SARRIMA

Activity Recognition Module: This module recognizes what activities are performed in
each of the occupancy episodes of each room based on the definitions of activity classes. Activ-
ity classes are defined in terms of the set of sensors which fire during performing the activity
and the temporal statistics (start time and duration) of the activity class if the activity instances
of that class show any temporal regularity.

Person Identification Module: This module identifies the user of an activity by exploiting
the difference of users in performing the activity, the relationship among the recognized activi-
ties, and the relative position of each user in the home setting. The system is provided with the
information of the number of users in that house and an associated ID for each user.

Output: The output of SARRIMA gives a list of hActivity, PersonIDi pairs for each room.

4.3.1 Sensing Layer

In our system setting, all the sensors are assumed to be non-wearable wireless sensors. Exam-
ples include (but not limited to) contact sensors, motion sensors, binary pressure pads, infrared
sensors, and temperature sensors. The type and number of sensors may vary from house to
house. The sensing layer of SARRIMA takes raw sensor data as input. It is also provided with
the information of room ID associated with each sensor during the initialization of the system.
If the sensor setting changes, the information needs to be updated, and the system needs reset-
ting. Sensing layer processes the input data and creates a sequence of pairs of the form (si, t1i,
t2i, vi, rn) where sensor si is deployed in room rn, and has the value vi from time-stamp t1i to
time-stamp t2i. The data is sorted in the ascending order of start time.

FIGURE 4.2: Training Framework for Defining Activity Classes
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4.3.2 Occupancy Episodes

In a single resident home, sensors fire only in the room where the user is present. Therefore,
occupancy episodes can be calculated by grouping the consecutive sensor firings from the same
room and taking the time interval of the first and the last sensor firing timestamp. However,
in a multiple resident homes the sensors firing in a particular occupancy episode will not be
consecutive due to the presence of other users in other rooms. Therefore, the actual leaving
and entering moment unrecognizable and ambiguity arise in determining the exact duration
of occupancy episode. This ambiguity is resolved by considering the assumption: "A user is
unlikely to leave while performing an activity and if no sensor fires for a certain amount of time, then
the room is empty." Therefore, ’occupancy episodes’ is created in two steps:

Room-wise Separation: In this step, SARRIMA separates the sensor events of different
rooms into different files. Therefore, each file contains a collection of sensor events sequentially
listed based on the starting timestamp (t1i) of the corresponding room.

Consider time difference of consecutive sensor firing: This time limit is defined as timeThreshold.
If a sensor fires after that time, then a new occupancy episode starts. Therefore, the time dif-
ference between two consecutive sensor firings in an occupancy episode is always less than or
equal to the timeThreshold of that room.

Thus, each occupancy episode of a room is a specific time duration and during that dura-
tion sensors fire depending on what activities were performed at that time. Therefore, an ‘Oc-
cupancy Episode’ is represented in the form (roomId, startTime, duration, usedSensors) where
usedSensors is the set of sensors that fired during the episode. Based on the object regularity
assumption, if a certain set of sensors in the list of usedSensors are frequent, then those sensors
fired due to performing a particular ADL.

4.3.3 Defining ADL Classes

Before proceeding to the following sections, here, we shall briefly describe how SARRIMA
uses the training framework (Figure 4.2) of AALO [16] to define activity classes. The activity
classes of SARRIMA are defined in terms of the sensors used, and the temporal (if any) charac-
teristics (start time and duration) associated with the activity class. The frequency item sets (the
unique combination of sensor sets that fires together) are determined by applying the itemset
mining algorithm APRIORI [63]. To determine the temporal characteristics of an activity class,
SARRIMA applies the density-based clustering algorithm DBSCAN [64] which does not need
to specify the number clusters in advance. This is important since the numbers of different
activity classes in each room are not predefined. Now, for each frequent itemset FIi of a room,
SARRIMA runs DBSCAN separately on the set of tuples (startTimeik, durationik); here k = (1, 2,
... , number o f occupancy episodes) where FIi occurs. Each attribute of each tuple is normalized
before clustering. In DBSCAN, the number of clusters depends on the threshold parameter.
SARRIMA calculates and uses the lowest threshold parameter that gives the maximum num-
ber of clusters but a minimum number of unrecognized instances for each FIi. Each of the
clusters signifies a particular activity class. The system outputs all the clusters with associated
parameters to the user for labeling. Therefore after labeling, each activity class Ai is repre-
sented by the tuple (usedSensorsi, meanStartTimei, meanDurationi, neighborhoodRadiusi,labeli,
personIDoptional). Here, personIDoptional indicates the user (if any) associated with the activity.
If the activity class definition is general for all users, then personIDoptional is null.
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4.3.4 Activity Recognition

SARRIMA uses the following steps to recognize activity instances of each occupancy episodes:
Step 1: It finds all the activity classes whose usedSensorsi is a subset of the sensors fired

during that occupancy episode.

• If there is no such class, then the recognized activity instance is NULL.

• If a single class matches the condition, then the Activity ID of that class is marked.

• Otherwise, go to Step 2.

Step 2: This step checks the temporal characteristics of the matched classes. If the starttime
and duration of the occupancy episode is within the neighborhoodRadiusi of the (meanStartTimei,
meanDurationi) of an activity class, then the Activity ID of that class is marked. However, the
duration feature has given less importance since the duration of an occupancy episode varies
based on the value of timeThreshold used for calculating it.

Multiple ADL instance might be recognized for a particular occupancy episode. This hap-
pens because the user may do multiple activities in the same occupancy episode, or multiple
users doing different activities can be present in the same occupancy episode.

4.3.5 Person Identification

The purpose of this module is to identify the person who performed the activity. It is done in
three main steps by incorporating the following information:

Step 1: User Differentiating features.
Step 2: Relative position of the users.
Step 3: The relationship among the recognized activities.

Each of the steps is described below:

User Differentiating Features

In this step, SARRIMA uses the information gathered from the sensors directly or indirectly to
identify a user. The success of the identification process in later steps depends on this step.

Step 1a: Behavioral Difference We consider the behavioral difference as the unique way a
person performs an activity. However, in this work, the difference is only considered in terms
of the sensors fired, duration, or time of the activity performed. Usually, these differences are
marked during the user labeling step of training. Therefore, the labeling is used to identify a
user of an activity.

Step 1b: Biometric Difference The behavioral difference in performing activities are not
prominent in all households. Therefore, additional specialized sensors might be required to
identify a user. The most common low-cost passive sensors used for this purpose are height
sensors, weight sensors, microphones, or videos. Since the success of user identification in
later steps depends on Step 1, introducing specialized sensors might be necessary for certain
households.

Relative Position of the Users

The main idea behind this step is to link the occupancy episodes of each user (i.e., separate the
episodes of a different user) without directly identifying the user. For example, if SARRIMA
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FIGURE 4.3: Creating occupancy sessions

detects two activities being performed in two different rooms at the same time, then those
activities are being performed by two different users.

Step 2a: Creating Occupancy Sessions An occupancy session is a collection of back-to-
back and overlapping occupancy episodes from all the rooms of the house. We introduce the
term occupancy session to define a smaller time frame where all the occupancy episodes can
be linked or separated from each other based on the associated user. The start time of an
Occupancy Session is the start time of the earliest occupancy episode and the end time is the
end time of the occupancy episode that finishes after all episodes in that session has finished.
Now, as long as a new occupancy episode overlaps with one or more episodes occurring in a
different room, it can be separated from those and therefore included in the same occupancy
session. Whenever SARRIMA finds an occupancy episode that starts after all the previous
episodes of the session have finished, it increments the current session number and adds the
occupancy episode in a new session. The process continues until all the occupancy episodes
are placed under some occupancy session.

Step 2b: Co-relating Occupancy Episodes (Activity groups) The occupancy episodes of a
particular session can be separated or co-related based on their spatial and timing parameters.
The rules for co-relating occupancy episodes in a particular session are described below. The
description assumes a two-person setting for simplicity. 1

• Occupancy episodes in different room: The occupancy episodes of a particular person
should never overlap, since he/she cannot be in multiple rooms at the same time. There-
fore, if the system detects two occupancy episodes occurring at the same time in two
different rooms, then it places the two occupancy episodes in separate groups. For ex-
ample, in figure 4.3, occupancy episode with activity b is placed in a different group than
activity c, c in a different group than e, and e in a different group than f . Therefore, in
a two user setting, the occupancy episodes with a,b, and e are co-related and the activity

1In a n-person setting, the problem of linking/separating occupancy episodes can be solved be converting it
to a graph problem. Here, the episodes can be considered as nodes and the episodes occurring at the same times
will have edges. The n activity groups can be found by dividing the complement of the graph into n-maximally
connected sub-components.



36
Chapter 4. SARRIMA: Smart ADL Recognizer

and Resident Identifier
in Multi-resident Accommodations

instances performed by the same user, whereas the occupancy episodes with c and f are
co-related and performed by the remaining user.

• Occupancy episodes in same room: All activities detected in a particular occupancy
episode is assumed to be done by the user present in that episode. However, if the sys-
tem detects only a single occupancy episode at a particular time, then most likely all the
residents are in the same room. In that case, it is assumed that the activity can be done by
any user and thus no assignments are made. For example, the user of activity d in Figure
4.3 cannot be determined with certainty.

The set of co-relating occupancy episodes in the same occupancy session is defined as an ac-
tivity group. Theoretically, all the occupancy episodes of a particular session can be determined
by detecting the user of any occupancy episode (from Step 1) within that session. However, if
the initial information is wrong then all the episodes will be incorrectly marked. Therefore,
SARRIMA marks an entire session if it has several marked occupancy episodes. Otherwise, no
assignment is done for the unmarked episodes of that session.

The Relationship among the Recognized Activities.

Step 3a: Similar activities For certain activity classes, if the existence of activity instances from
the same class is detected within a certain time in two different groups, then the activities
are considered to be performed by two different users. For example, A and B are groups in
occupancy session 1 and C and D are groups in occupancy session 2. If the system detects brush-
ing teeth in both groups A and D, then SARRIMA merges the two sessions where groups A
and C are merged into one larger group and groups B and D are merged into another larger
group.

Step 3b: Complementing activities Some activities instances frequently occur together. For
example, people go to toilet after waking up in the morning or before going to bed. Similarly,
using a wardrobe can be detected before/after taking a shower. If these complementing activity
instances are detected within certain time periods, then SARRIMA considers these activities to
be performed by the same user.

The unmarked episodes are marked in the same way as it is done after Step 2.

4.3.6 Parallel and Overlapping Activities

SARRIMA retains the detection capability of AALO in finding the parallel and overlapping
activities. However, the user of the activities can not be identified in all the scenarios. If two
or more activity instances occur at the same time, then they are called parallel activities. In
a multi-user scenario, it is very common and the number of such instances increases as the
number of user increases. SARRIMA detects parallel activities by detecting all possible activity
instances in a particular time frame (occupancy episode). It assigns all activities to a user if
he/she is the only one present. However, if multiple users are detected in the same episode,
the system refrains from making any user assignment (unless it matches personalized activity
class definition) and considers all the detected persons as a probable performer of the activity



4.4. Evaluation and Discussion 37

4.4 Evaluation and Discussion

There are two publicly available datasets for recognizing ADLs from passive wireless sensors
which have homes with more than one person [13], [27]. Each of the datasets has data from
multiple homes and labeled ground truth for different sets of activities. The homes have differ-
ent floor-plans, different types of sensors, and different demographics. Table 3.1 shows some
example activities annotated in the datasets. The ARAS dataset [27] has a total of two months
of data of 27 different type of activities; collected from two real homes - House A and House
B. The sensor types included contact sensors, force sensors, photocells, pressure mats, dis-
tance sensors, sonar distance, IR, and temparature sensors. Each of the CASAS [13] datasets
("CASAS Spring 2009 multiperson dataset" and CASAS Summer 2010 multiperson dataset") have
three months of data of 11 different type of activities. Seventy-two sensors were deployed
in each of the houses which includes motion sensors, door/contact sensors, and temperature
sensors.

The algorithms of SARRIMA are implemented on MATLAB. We used cross validation tech-
nique where one-fifth of the data was considered as the training sample size.

4.4.1 Results: Activity Detection

SARRIMA assigns one or more activity instances to each occupancy episode based on the trig-
gered sensor set and the temporal features of that episode. To minimize the number of false
positives, occupancy episodes with very small durations (length10s) are filtered before mak-
ing the assignment.

FIGURE 4.4: Percentage of activity instances of Activity Classes recognized cor-
rectly in CASAS Spring 2009, CASAS Summer 2010, ARAS House A, and ARAS

House B (time_threshold = 2 minutes)

Figure 4.4 shows the percentage of accuracy of recognizing instances of different ADL
classes in four different houses. The missing columns in figure 4.4 indicates that no ground
truth labeling is found for the corresponding activity class in that particular dataset. We see
that SARRIMA achieved 97.34% and 98.15% accuracy on average respectively on the CASAS
Spring and Summer dataset. The accuracy is higher than HMM and SHMM (92% on aver-
age) applied on the same dataset [13]. In ARAS houses, the activity classes have more fine
grained definition. For example, ‘preparing breakfast‘, ‘preparing lunch‘, and ‘preparing din-
ner‘ instead of ‘preparing meal‘ or ‘toileting‘, ‘brushing‘, and ‘shaving‘ instead of just ‘personal
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hygiene‘. Therefore, relatively lower accuracy is achieved when considering these activity class
definitions (average accuracy of 87% for House A and 95.3% for House B). The reason is the
activity class instances of one user is often confused with an closely related activity class of
another user. However, the average accuracy of activity detection is more than 98% in both
houses when general ADL class definition (similar to CASAS houses) is considered.

FIGURE 4.5: False positive of reported activity instances ARAS (House B)
(time_threshold = 2 minutes)

CASAS had less than 2% false positives for any activity instances. Whereas, higher number
of false positives is observed in the ARAS dataset due to more fine grained definition of each of
the activities (figure 4.5). We notice that less false positives occurs in House B for certain activity
classes which were often performed together (eating breakfast or dinner). Whereas the activity
’Watching TV’ has zero false positive in House A due to the choice of sensor (Infrared sensor
to detect TV light instead of pressure pad to detect user in the couch) to detect it. The number
of false positive in bathroom and kitchen reduces when higher timeThreshold is considered for
creating occupancy episodes. However, in that case occupancy episodes have longer duration
and therefore longer activity duration is reported for some activity instances.

4.4.2 Results: Person Identification

Most activity instances of the CASAS dataset do not have user specific ground truth except
for sleep, work, and bed_to_toilet. However, the two users in CASAS always performed the
sleep, work, and bed_to_toilet in separate rooms. Therefore, SARRIMA recognizes the user of
annotated user specific instances just by checking room location. Consequently, we achieve a
100% accuracy for this simple home living situation.

ARAS has more complex activity class definitions and all the activities of each user is la-
beled. Therefore, the following evaluation will focus only on ARAS datasets.

User Assignment from Behavioral Difference
SARRIMA uses the behavioral difference of users to define a personalized activity class.

For example, in House A the two people sleep in two different room and have different times
for using the toilet in the morning and at night due to difference sleeping schedule. On the
other hand, in House B Person 2 always sleeps on the left side of the bed and ‘preparing meal‘
is always done by person 1.

Figure 4.6 shows the percentage of activity instances assigned correctly to a user for partic-
ular activity classes based on behavior difference. Although the accuracy is as high as 100% for
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FIGURE 4.6: Accuracy of user identification from behavioral difference for par-
ticular activity classes where difference is observed in users way of doing the

activities (ARAS Dataset).

some activity classes (Sleeping and Dressing), low accuracy is observed for the classes where
user behavior is not consistent (’Watching TV’ from different location in the room). Here, we
want to note that the user behavior will not be same in every resident and thus there might
not be any identifiable difference between two users performing the same activity. However,
if differences exist in term of the sensor activated or the time of the activity, then the system
recognizes the differences. The labeling of the classes helps to identify the differences of user
behavior. The labeling is done only once after the framework generates the cluster. Therefore,
not much extra user effort is required for this step.

TABLE 4.1: Effect of user identification using behavioral information and episode
linking (threshold = 3 min) for a single day in ARAS House B

User identified correctly
in percent of episodes
(Behavioral) (Correlating)

Bed 100% -
Bath 0 47.3%
Living 37.5% 31.8%
Kitchen 0 42.85%
Hall 0 40%

Linking Occupancy Episodes SARRIMA correlates occupancy episodes of the same user
based on the overlapping episodes of different rooms. This steps identifies additional activity
instances for which no user behaiviral difference is obsevered. Table 4.1 shows the episode in-
formation of a randomly chosen day from Aras (House B). The first column shows the percent-
age of occupancy episodes correctly identified in each room by SARRIMA based on behavior
alone. The second column shows the percentage of additional episodes where a user is cor-
rectly identified by using the SARRIMA feature of linking the episodes with already identified
ones. This shows the value of this feature of SARRIMA.
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(A) (B)

FIGURE 4.7: Person Identification Accurracy (threshold=2 min) (a) House A (b)
House B

Simulating Biometric Difference As mentioned in section 4.3.5, the accuracy of person iden-
tification of linking episodes depend on already identified episodes. However, for most of the
activity classes there was no identifiable behavioral difference and the datasets do not have
sensors that can differentiate user based on biometric features. Therefore, we have simulated
sensor readings to show how changing or adding a few sensors can have huge effect on accu-
racy.

Weight sensor: We have chosen to simulate weight sensor (specialized pressure pads) since
ARAS dataset already have a few binary pressure pads. We have simulated the data using ac-
tual data and user annotation information, where the pressure pad shows actual user weight
instead of a binary value. The pressure pads in the bedroom did not provide additional in-
formation since bedroom activities are already included in the definition of the personalized
Activity class. However, the pressure pads on the dining room chair identifies the user who is
eating a meal and the pressure pads in the living room identify the user of activities ‘Watching
TV‘, and ‘study‘.

Microphones: A common biometric feature to distinguish between user is speech and recent
works show [65] that users can be distinguished with over 85% even with utterance length of
2s and the accuracy gets higher with longer speech sample. Due to privacy concern, we only
considered the position of the microphone in kitchen or living room. Again, since there is no
certainty whether the user will talk or not. We filtered the occupancy episodes with less than
five minutes based on the assumption that nobody talked during those episodes. SARRIMA
does not have algorithms for speaker identification, but uses an external tool for this purpose
[65].

Figure 4.7 shows the percentage of activities correctly assigned to each person of House A
and House B. The accuracy is not high enough if only binary sensors are considered, however
it increases significantly just by replacing the binary pressure pads with non binary ones and
adding one or two microphones. We can observe from the figure that the effect of adding
specialized sensors on accuracy varies from person to person and that using only a few of them
can help to increase the accuracy to near 100%.

The ARAS datasets have been used in other research work for ADL and person identifi-
cation. In the paper [27], the researchers used a hidden Markov model (HMM) and obtained
an average accuracy of 61.5% for House A (with min=46.3% and max=88.4%) and 76.2% (with
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min=31.1% and max=96.7%) for House B. In paper [17], the researches applied an incremental
decision tree model and obtained classification accuracy 40% for House A and 82% for House
B. The low accuracy in these previous works demonstrates the significant difficulties in person
assignment. SARRIMA performs significantly better than these systems with adding few spe-
cialized passive sensors. Although, other systems might have performed very high with these
extra sensors, their requirement in labeling all the activity instances during training period
makes them difficult to use in actual homes.

4.5 Conclusion

In this chapter, we presented SARRIMA, a system for detecting activities of daily livings in
the presence of multiple people. For the given datasets, SARRIMA is capable of detecting 97%
of the activities on average which is higher than a HMM (92%), and it also reports parallel and
overlapping activities. Importantly, SARRIMA identifies the user of the activity without using
wearable sensors or RFID tags. The paper shows how SARRIMA achieves very high accuracy
for person identification by using a history of personal behavior, linking occupancy intervals
across rooms, and by including appropriate sensors in good locations when necessary.
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Chapter 5

Activity Step Recognition:
Challenges and Lessons Learned

In this chapter, we present our experience and lessons learned while designing the "Activity
Step Detection and Recognition System", and collecting data in real home settings. Detect-
ing activity steps itself is not essential unless utilized for other purposes. Therefore, the step
recognition system is coupled with an activity recognition or activity quality monitoring sys-
tem (chapter 6 and 7). However, the main goal of the chapter is not to describe the performance
results of activity step recognition, but to highlight the unique challenges it offers (section 5.2).
We elaborate on our experience and the design decisions we made while building the system.
We also discuss our idea for handling or minimizing some of the challenges and the effective-
ness of those techniques (section 5.3).

5.1 Introduction

While working on the problem of activity recognition we noticed that often activity recognition
accuracy lowers when very similar activities are present in the set. Such as ‘Brushing Teeth’ and
‘Shaving’. Such activities are very different from a human perspective, but almost identical
from system/sensing perspective. Therefore, we hypothesized that if we gather enough fine-
grained information about each activity by defining and recognizing activity steps, then we
would be able to differentiate similar activities. Moreover, our intuition told us that such the
research of activity steps would have an impact on future applications in different areas:

1. Differentiating activities of two persons if the steps are different.
2. Identifying sudden behavioral changes if activities are done differently.
3. Providing health-related information about Alzheimer disease if steps are missing or

wrong.

Therefore, in this chapter, we look into the details of finding activity steps from sensor data.
We used existing data sets for evaluation. But since the idea of activity step is new, it has not
been explored in a large scale. Most of the publicly available data with in-home ADL/IADL
provides only the ground truth of the start and the end of the performed activity, but not what
steps occurred in between. Very few datasets have the notion of an activity step, but the ground
truth of each step is not always labeled. Therefore, we could perform analysis up to a certain
extent. To look into the problem more deeply, we decided to design experiments from scratch.
Although, this gave us a lot of freedom in defining what activity steps to detect, or what sensors
to use - the decision for choosing from the vast open opportunities was not easy. Therefore, in
this chapter, we explain our reason for each design decision.
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As our research goal was not focused on activity step recognition, but its utility at a higher
level, we used traditional machine learning algorithms established in activity recognition and
applied them for recognizing activity steps. When detecting activity steps from in situ sen-
sors, we user our version of Apriori item set mining described in chapter 4. However, instead
of outputting a particular activity, the algorithm outputs activity steps. Activity and gesture
recognition from a wearable in the literature mostly uses HMM supervised machine learning
[66]–[68]. In addition to applying HMM, we also applied other standard supervised methods
such as Naive Bayes, Decision Tree, Random Forest and K-NN (chapter 3 section 3.2)

However, we were disappointed with the preliminary evaluation results. As we investi-
gated the reason, we identified exciting observations. In our field, often the researchers collect-
ing the data are not the same persons who perform the analysis. Therefore, when something
goes wrong, they can only assume the reason, but could hardly find concrete evidence. As
being part of both the data collection team and the data analysis team provided us with in-
sight into why certain things did not work out as we expected. We looked back into the videos
for collecting ground truth for finding evidence supporting our intuition. Although we plan
to publish the data after de-identifying, the videos cannot be made public for privacy issues.
Thus, we believe that our experience and observations are valuable to document for future
researchers.

Later, some of the problems were resolved or mitigated by applying innovative fixes (sec-
tion 5.3). However, many of the challenges still need attention from the research community.

5.2 Challenges

In this section, we describe the challenges we faced during the project. A lot of these challenges
are also observed in high-level activity recognition from sensors, but the complexity level is
higher when recognizing portions of activity, i.e., activity steps. Besides, there are some unique
challenges we observed particularly in this area. We also mention our idea or insight on han-
dling certain complexities, or the reason for choosing a particular trade-off option.

5.2.1 Activity Step Definition

Q. How to find detailed information about performing an activity? What is the level of gran-
ularity in collecting fine-grained information of the activity process? We all know activities

are performed in small steps. However, there is no strict scientific term defining an activity
step. Some researchers have shared their own ideas about the topic. In chapter 3 section 3.1.3,
we elaborated some of the related terms. However, the definitions are often molded in a way
that serves the purpose of the researcher’s study objective. Since our ultimate objective is to
use the activity steps for monitoring activity quality, we looked into the literature document-
ing activity process of dementia patients who has difficulty in performing steps or misses the
activity step [13]. A physiologist was observing and keeping notes of the activity quality. One
of the examples of an activity step was Writing a birthday card left on the table. As a computer
scientist, we stumbled upon such definitions of an activity step. Because a human can under-
stand when a person is having difficulty in writing, but with the current technology how can
a system identify such random events? Therefore, from computer science and system design
perspective, an activity step must be recognizable in terms of current technology, i.e., the un-
derlying sensing system. Another condition we deem necessary is the atomicity. Because if
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an activity step can be partially done, then the level of granularity has to be even finer; which
introduces unnecessary complexity. Therefore, in this thesis, we define an activity step as,

"An activity step is a portion of an activity considered as a unit which cannot be done
partially and is recognizable by sensing technology."

5.2.2 Sensing Technology

Q. What sensors are best for detecting activity steps of in-home ADL and IADL?
As the above definition mentions, a system recognizing activity steps is as versatile as the

underlying sensing platform’s capability permits. Therefore, choosing the appropriate sensors
is extremely important.

In the activity recognition literature, different sensing technology has been explored. Some
of them are summarized in chapter 2 section 2.2. However, in many cases activities are inferred
from the result. But if we want to detect partially finished activities or attempted activities,
the results are not always evident. Therefore, recognizing activity steps requires more sophis-
ticated capability.

If we look into the previous example of Writing a birthday card left on the table, a motion
sensor or a pressure pad on the chair is able to detect if a person is near the table or sits on the
chair. A smart wearable is able to detect hand motion. But detecting the writing itself is very
tricky, especially for a general purpose system detecting all sorts of gesture events.

We experimented with different in-situ and wearable sensors in the lab and our personal
houses before deciding which ones to use for data collection in a real home setting. Here we
list our experience and explanation of different case studies.

In-situ Sensing Platform

Passive in-situ sensors are popular in the field of activity recognition for preserving the privacy
of the users, because they do not store any user-identifiable features. However, there is a vast
number of available in-situ sensors, which ones to choose?

In our earlier experiments for detecting activities from in-situ sensors, we had used the X-10
sensing platform. However, X-10 sensors had limitations in the number of devices a modem
can operate simultaneously. Moreover, missing sensor values make it difficult to have clean
data and reduces the robustness of the system. In contrast, the off the shelf Z-wave binary
sensors are much better for robustness issues. Therefore, we used the z-wave technology in
our experiment. The z-wave sensors also looked prettier, which might seem a trivial fact, but
is actually quite important when sensors are deployed in real homes of non-research people.
However, there are some limitations of these sensors when we use them for recognizing activity
steps:

Effectiveness: Not all activity steps can be recognized with passive binary sensors. For
example, caregivers of patient’s with mild cognitive impairment mention that often the patient
forgets to put ingredients in their cooking. For instance, they might forget to add coffee in the
cup. But how can a binary in-situ sensor detect it?

One way of solving the problem can be using item sensors, which works like small pres-
sure pads for objects. We can detect whether the coffee container has been replaced with item
sensors, but it would require putting the container exactly in the same place every time. Even
healthy adults are not that consistent. If some other container is put instead, the item sensor
cannot tell the difference.
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Thus, "an in-situ sensor is effective only when the state of the object being monitored is changed".
However, not all the in situ sensors are uniformly useful in serving their purpose. The

usefulness depends both on sensor’s power and how they are used.

1. Door sensors and Pressure pads: Door sensors were used for detecting opening and clos-
ing of refrigerator doors, microwave-oven, cupboard, drawers, dressers, sliding doors,
water taps, and oven knobs. Pressure pads were put on top of the study chair, dining
chair, sofa, and under the bed cover to detect whether someone is sitting on it. We found
these sensors to be very helpful in satisfying our goal.

2. Motion sensor: We placed motion sensors in different places of the home to track user
location. Although, the sensor values provide an overall idea about someone’s presence
when a person stays at a particular place for some time, but often misses if the person just
passes by. Therefore, they are not helpful in providing the trajectory path of a user. In a
single-user environment, if the person moves very slowly (assuming a person with move-
ment problem), the motion sensor is helpful, but it still does not provide user-direction
information. Besides, a motion sensor can tell the presence of a person and might give an
idea about what activity is being performed if only a single activity occurs in that area.
However, it is not helpful in providing information related to which activity steps were
done and which were not.

Instrumentation Difficulty: Instrumenting the environment is another issue we had to face
while working with z-wave sensors. First of all, not all objects can be instrumented; therefore
not all object state change can be measured. In long term deployment, attaching sensors is also
a problem, since they seem to fall off with repetitive usage of the object. Besides, deploying
in-situ sensors in a home requires effort, and since every house is different, the deployment
also requires thinking in terms of the sensor layout plan. The same strategy does not always
work in all apartments. For example, we could attach a door sensor with stove knob in some
homes but not all, because the way the stove knob was designed differently.

Quantity: Another limitation of using in-situ sensors is that there can only be a certain num-
ber of sensors that can be put in the environment. For example, the z-wave modem we used
let us attaching 30 z-wave devices. In a sense, the number is quite high for a small apartment.
However, in big houses 30 sensors might not be enough. Moreover, the cost of the sensing
platform increases proportionally as the number grows. The deployment also becomes more
laborious, since each sensor has to be attached individually. Thus, we have to limit the number
of in-situ sensors.

Nonetheless, in-situ binary sensors are relatively cheap. The battery of each sensor lasts
one year before needing a replacement. Most importantly, some of the events (from door sen-
sor/pressure pads) are detected with absolute certainty. Finally, there is no extra effort needed
for de-identification since it preserves privacy by default. Therefore, we used z-wave door
sensors, binary pressure pads, and motion sensors (figure ??) in our experiment.

Hybrid Sensing Platform: RFID

The main idea behind looking into RFID sensors was to instrument as many objects as pos-
sible with low cost. We found examples in the literature where RFID tags were attached in
items, and a person carrying an RFID reader triggered unique codes by touching individual
objects In other words, an RFID tag triggers the same code each time it is near an RFID reader,
and the code is unique for each RFID tag. Therefore, we purchased both low-frequency and
high-frequency tags, and both low frequency RFID reader (we refrain from mentioning the
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name) and a high-frequency RFID reader (Chafon 13.56MHz Mini USB HF RFID Mifare IC
Card Reader). The reader is reported to have a range of 5cm-9cm. However, we finally decided
to not use the technology for the following reasons:

Difficulty Handling the RFID Reader: RFID reader works by generating code when it is
placed near to an object. Therefore, we first tried putting the reader around our hand like
a smartwatch. However, it did not work due to the increased distance of the reader from
the object being held. Next, we tried attaching the Reader with our gloves, which seem to
somewhat serve our purpose.

However, the other problem was that the reader itself does not have processing power.
Therefore, we had to connect it with a windows tab (the RFID Reader driver is written for
Windows OS) via a USB cable. We needed to carry the tab around us which was very uncom-
fortable.

Usefulness of RFID tags: We experimented with two types of tags having respective low-
frequency (range 125 – 134 kHz) and high frequency (13.56 MHz). We did not use ultra high-
frequency RFID tags because if all the objects near the RFID reader sends code, then we cannot
uniquely identify what object was used.

The low-frequency tags were very cheap, very thin, and could easily be attached with ob-
jects. However, the low-frequency RFID reader was very bulky. The biggest problem was, it
took 12 to 15 tries to generate one code. Probably there were other better tags and readers, but
the prospective did not look very promising.

The high-frequency tags have the shape and size of credit cards and was effective in gen-
erating codes. The main problem was attaching them to object since the cards were flat and
hard.

Tag and Reader Distance: Although the Chafon RFID Reader is supposed to read tags
within 5cm-9cm, we found it requires to be within 2cm near of the medium frequency tags.
Therefore, if the object was handled in a way where the tag was on the different side no code
was generated. The reader also did not generate any code when the object was handled really
fast. Therefore, we had to move very consciously and hold object keeping in the mind that we
want the code to be generated. That makes a user movement too restrictive and will likely not
work in a real home.

Here, we want to mention that we are not implying that RFID technology is not practical. It
is very widely used in different applications. It just did not serve our purpose. There are other
RFID readers and tags available in the market which claims to provide better performance. But
those were costly, and since our main objective is to help to build a system serving affordable
health-care, we did not try them out. It also requires concentrated study specifically in that area
and out of scope from our actual objective.

Wearable Sensing Platform: Smartwatch

In recent years, there has been a tremendous advancement in the field of wearable technology.
Small, powerful devices filled with various sensors are available in the market. Moreover, since
most in-home daily self-care activities are performed with hand, using a hand worn wearable
device opens up vast opportunity in detecting very fine-grained steps. Therefore, in our data
collection sessions, we used a smartwatch in addition to in-situ sensors for detecting a number
of variety of activity steps.

In our enthusiasm of exploring the opportunity given by off-the-shelf smartwatch device,
we defined activity with a lot of details and labeled 54 different activity steps or gesture events
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to be recognized from wearable sensors. Figure 3.2 shows the signals from the x-axis of the
accelerometer (top) and the x-axis of gyroscope respectively (bottom) for different every day
activity steps. However, while performing the data analysis and applying classification algo-
rithms, we realized that we might have defined too many activity steps. Many of the challenges
specific to wearable sensors are due to the reasons mentioned in later paragraphs. Therefore,
we will not re-iterate them here and proceed to the next section.

5.2.3 Number of Classes of Activity Step

This particular challenge is closely related to the first challenge mentioned above, i.e., the def-
inition of an activity step. In a particular home, the number of ADL classes are fixed and
depending on datasets there are 5/6 ADL classes defined. Even though there is a higher num-
ber of IADL classes, the IADLs performed at home are limited. On the other hand, depending
on how rich the underlying sensing platform is and how granular the activity process is di-
vided into steps, there can be a large number of possible activity step classes. For example,
‘stirring’,‘ chopping ingredients’,‘ opening door’, ‘closing cabinets’, ‘typing’, ‘rinsing an item’,
‘storing an item’, ‘sweeping the floor’, ‘wiping a surface’, and so on. As the number of differ-
ent classes increases, the probability of misclassification becomes higher. Moreover, it becomes
very complex for gathering training data for all the different classes of activity steps.

5.2.4 Same vs. Similar Activity Steps

Ideally, the same activity step should give consistent signal across all the different types of
activities. However, it is not always true for all the activity steps. For example, ‘stirring’ while
making coffee is not always same as ‘stirring’ while cooking due to the difference in pot size
and the thickness of the content. One might argue that these two types of ‘stirring’ should
be considered as different activity steps. In that case, the complexity arises by creating huge
number of activity steps classes. Moreover, finding all such different classes is neither possible
nor practical.

On the other hand, some different class of activity steps are very close in terms of signal.
For example, in figure 3.2, we see that completing different activities ‘Adding Sugar’ in a cup
of coffee with a spoon has a similar signal with ‘Sitting on a Sofa’. Although, to human eye
the signal in the image might look distinguishable, from algorithms point they are very similar.
Especially, when it is classifying all the different instances of ‘Sitting on a Sofa’ from all the
different instances of ‘Adding Sugar’.

5.2.5 Data Processing

Segmentation

Due to the sheer number of different activity steps possible there are steps that have very short
duration (sudden spike in data) and long duration. It is confusing figuring out whether a sud-
den movement is an activity step with small duration or part of a continuous activity step with
a larger duration? It makes the time series data processing harder in terms of framing and win-
dowing, i.e. finding the size and starting position of the window. Again, a fixed length window
is not a option since a larger window size will miss the many activity steps with smaller dura-
tion and a small size window only captures portion of long activity steps, the decision of how
to vary the window size is very crucial.
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(A) Hand at Resting Position (B) Reading paper (C) Scrolling Slightly with a
Mouse

(D) Walking (E) Sitting on a Sofa (F) Standing from a Sofa

(G) Typing (H) Brushing Teeth (I) Rinsing a Mug

(J) Adding Sugar
/stirring.png

(K) Stirring (L) Turning Stove On

(M) Opening a Sliding Door (N) Closing a Sliding Door

FIGURE 5.1: The above images show time series data of accelerometer x-axis and
gyroscope x-axis corresponding to different gestures. The snapshots are taken
from the ‘Chonoviz’ visualization software tool. The x-axis labels in each image
show time in 1s intervals (except (l) which shows in 0.5s intervals). The y-axis
show the normalized value of the accelerometer and the gyroscope in a fitted

zoomed position.
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Classification

Identifying distinguishable features to classify activity steps is very difficult due to the sheer
number of possible classes. On top of it, the system requires separating meaningless gestures
from from actual activity step. For example, during the day people often move their hands
subconsciously to do things like touching the hair, scratching nose, or popping finger joints.
Often, these gesture signals create confusion recognizing the activity step and the activity being
performed. Again, processing every spike detected from gesture signal is energy inefficient and
creates a lot of false positives.

Energy

The biggest problem of using a wearable device is energy consumption. Many smartwatch
application developers deal with this problem by making the watch sleep and periodically
collecting data. This method does not work in our case, since finding all the different activity
steps needs the watch to collect data continuously. It creates a huge bottleneck in terms of
energy consumption. Another way of dealing with energy problem is to turn off the sensors
(such as, gyroscope) that consume more energy. This is also not possible for us since even using
all the sensors it is hard to classify and recognized activity steps. A lot of researchers sample
data at low frequency to preserve battery life. However, as mentioned above, some activity
steps are very short in duration. To capture the signals generated from those steps, a higher
sampling rate is required which drains the battery faster.

5.2.6 Human Factor

As part of data collection and data processing, we had the chance to observe and understand
many human factors that otherwise go unnoticed. The challenges below are spotted when
collecting data of human actions. Although we only used a smartwatch on the hand, many of
the challenges are also applicable to other wearable sensing devices as well.

Biometric difference

Each person is unique in some way. However, a person’s biometric difference, such as the
difference in height, weight, and strength, changes the smartwatch signals in case of some
activity or activity steps. For example, a tall person operates differently in a kitchen than a
shorter person. The weight and strength also cause the signal to vary from person to person
when the activity being performed requires a lot of movement and strength, such as cleaning
the house. Age is also a factor since both kids and seniors operate differently than the young
or middle-aged person. Therefore, training a system in the lab with healthy adults do not give
the same performance when evaluating activities of an elderly person at home.

Hand motion

The smartwatch signal captures hand motion. However, the hand motion signal is different
when the same activity step is performed faster or slower. Positioning the hand in different
angles also creates a distinction. We also observed that some people keep the wrist fixed and
moves the whole arm, whereas others move the wrist or finger a lot which changes the relative
arm movement. This arm vs. wrist movement is noticeably observed in activities like typing
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in a keyboard. But this variable also affects performing activities with tools such as stirring
with a spatula or washing dishes with a sponge. Another interesting faction is movement in
other body parts sometimes create motion in hand. For example, movement is found in the
acceleration signal from the smartwatch of a resting person in sofa whose legs were bouncing
back and forth.

User Energy Level

While collecting data from the same person for several days, we noticed that based on her
mood or energy level, the way s
he performs changes. The change is mostly in terms of speed. Since a tired person with low en-
ergy acts slower. Therefore, the difference is observed in activity speed from late night activities
vs. activities performed before going to work. Another reason might be that in the morning, a
person tends to hurry to reach timely for work and therefore acts faster.

Personal Preference or Habit

Personal preferences or habit changes the wearable sensors single pattern in an interesting
way. For example, while collecting data, we observed when a person retrieves something from
the lower cabinets, some bend their torso, while others sit and reach out for the item from the
cabinet. Therefore, the activity step ‘retrieving an item’ is not the same for those two cases. Such
examples are not due to biometric differences, because we observed both tall and short person
behaving either way. Thus, these ways of doing things are mostly due to habit or personal
preference.

Parallel Actions

Human is able to multitask seamlessly. The tasks we are talking about are not always the dif-
ferent ADL/IADLs. Therefore, from a system point of view many tasks are invisible. However,
they do affect the activities at hand, some more than the others. For example, when a person
is performing an activity while having a conversation with someone or laughing, for some ac-
tivity the signal differs. It happens because while talking the person takes many small pauses
from the activity and the speed also changes. Sometimes an angle in a specific sensor axis is
observed when the user periodically moves and faces the person he/she is having a conversa-
tion with. These parallel actions are less observable when in a single person home. But a single
person may also read or watch tablet while doing an activity.

There are likely to be features independent of scenarios described above, but finding those
features require separate attention and collecting data having those various examples.

5.2.7 Appliance Arrangement

The position of furniture, appliance, drawer, or shelve matters when detecting activity steps
that uses them. For example, opening lower cabinets definitively produces different signal than
the operating the higher ones. Similarly, retrieving items from drawers or shelves at different
heights produce different signals. Although, these challenges are intuitive, but when defining
activity such as ‘opening a cabinet’ or ‘retrieving an item’, the problems become evident.

Another complexity is observed when a person operates the appliance from a different lo-
cation or position. Here, the location boundary is very small. For example, when someone is
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only washing the dishes, he/she usually washes items standing in from of the basin. However,
when the same person needs to rinse an item while cleaning or cooking, we noticed changes in
the signal. We found the reason for this variation is because of the change in relative position-
ing. For example, the user just tilts his/her body a little bit to reach out to the sink and quickly
washes the item. Thereby, creating a difference in motion signature

5.3 Ideas and Lessons Learned

In this section, we summarize our lessons learned after facing so many challenges. These
lessons helped us to grow and think from a different perspective. We hope documenting the
lessons helps others too.

5.3.1 Scope of the Problem

After spending a considerable amount of time and effort in identifying all the different kind of
activity steps, we understood recognition of activity step, in general, is not a trivial problem.
The huge number of possible activity steps and the challenges found in classifying the steps is
tremendous. Since our ultimate goal was to detect the quality of the in-home ADL/IADLs, we
tried to encompass everything that fits in the scope. However, for future researchers, it would
be advantageous to select a small number of activities and identify steps from those activities
only. Making this selection would require expert opinion based on the application. For exam-
ple, a doctor or caregiver close to an Alzheimer patient could help select the activities where
the patient has a problem completing it. Moreover, if the activity occurs in a certain place in
the home or a certain time of day, then every other convoluting gestures can be ignored. How-
ever, the purpose of recognizing activity steps vary based on the target application. Therefore,
picking a particular challenge from our given that is unavoidable in the target application and
focusing on solving it would result in better performance in that area.

5.3.2 Importance of Sensing Platform

An activity step needs to be recognizable, and therefore the choice of sensor is critical. The de-
cision of which sensors to use depends on what activity steps are defined. Inversely, defining
the classes of activity step requires information about the sensing capability. Therefore, these
two major decisions are coupled and interdependent. As we have listed in the previous sec-
tion, each choice has it’s own advantages and disadvantages; therefore the is no right answer.
However, the researcher should not make a choice randomly and consider carefully based on
the application in hand.

5.3.3 Necessity of Clean Data

In our experiment, we let the users move freely according to their own will. Although we
provided a list of high-level activities that require to be performed, we did not specify the
activity steps or made them taking a pause from switching one step to another. The reason
was to make the experiment as close to the real environment as possible. However, we later
realized that only natural data is not good enough for training the system due to the all the
variations that occur. Therefore, we had to conduct experiments with constraint environment
define some specific activity step and collect data for each activity step separately. Training
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the system by using both the clean data and data from the home setting performed better in
identifying activity steps.

5.3.4 Advantage of Sensor Fusion

One of our key idea of solving the time-series data processing was to apply sensor fusion. Since
we were already collecting data from both in-situ and wearable sensors, we planned to use this
hybrid platform in our advantage.

Data Segmentation

To address the problem of finding variable window size, we imported the sensor values from
in-situ sensing data and superimposed the values detected from the environment sensors, i.e.,
Z-wave contact sensors, pressure pads, and motion sensors on top of wearable time-series data.
The discrete values/ value change from the sensor gives a good idea about the start and end
time of the activity step. For example, a person might open the refrigerator to retrieve an
item (short duration), store groceries (long duration), or to clean the refrigerator (very long
duration). Again, the duration of storing the groceries or cleaning the refrigerator is not fixed
in all different instances. However, since the door sensor attached on the refrigerator door
triggers both when opening or closing the freeze, we use that time for windowing the time
series data to find the activity step from the wearable device. This gives us an idea of when the
activity is being performed and focus on recognizing activity steps from the time series data
around that time. Therefore, a lot of unnecessary processing is avoided.

Class Reduction

Another advantage of using the in situ sensors is that it gives an overall idea about what ac-
tivity is being performed. However, since it cannot tell all the activity steps, wearable data is
helpful. By using sensor fusion, the possible number of activity steps that could occur can be
eliminated and the remaining classes of activity steps become more manageable. For exam-
ple, we previously mentioned that ‘sitting on a sofa’ gave a similar signature to ‘adding sugar’
activity step. We can easily find our what step actually occurred by looking into the value of
the pressure pad sensor on the sofa and the door sensor attached to the cabinet containing the
sugar case.

Energy Salvation of Wearable

Energy can be saved if wearable sensors collect data only after getting a command from the
main system. The main system may send the command whenever it detects in situ sensors
triggering. However, since we processed our data offline and received data from both types of
sensor platform independently, we did not apply this technique. Nonetheless, the technique
could be useful for future researchers

One disadvantage of using hybrid sensing is the additional cost and dealing with the dis-
advantages of both platforms. For example, wearables need to be adequately charged and
deploying and maintaining lots of in-situ sensors still requires effort. However, it is up to the
researcher and user of the system to decide whether the advantage outperforms the disadvan-
tages.
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Chapter 6

Activity Quality Framework

In order to notify users about potentially unsafe situations and to track mistakes or efficiency
performing activities, it is crucial to monitor the quality of performing an activity and identify
the missing/wrong steps. However, the state-of-the-art activity recognition frameworks ignore
such details and impose constraints on sensor values, the types of detected activities (no par-
allel/interleaved/joint activities), or the number of users, which reduce the robustness of the
system in the real world settings. Therefore, in this chapter, we present QuActive, a grammar-
based general purpose framework for modeling activities and activity steps that retains the
details of the activity process, quantifies activity quality, and notifies users about missing steps
and unsafe situations. To show the versatility of QuActive, we evaluate the framework on
three different public datasets that have interleaved activities, parallel and co-operative activ-
ities, and activities of cognitively declined patients with quality information labeled. In all
cases, QuActive outperforms the state-of-the-art techniques applied to these data sets. Besides,
we have deployed the system in a real home and collected data in a semi-controlled setting to
evaluate the performance of the system in real environments.

The rest of the chapter is organized as follows. We briefly describe the motivation and
challenges of the work in section 6.1, followed by the contribution (chapter 6.2). Section 6.3
describes the QuActive framework and our approach, and section 6.4 describes the QuActive
system design and implementation. Finally, the evaluation and discussion are presented in
section 6.5.

6.1 Motivation and Challenges

In today’s smart world, wearable and in-situ sensors are being used to monitor humans and
recognize many types of activities. In most cases, the resulting information is not acted upon
in any direct or real-time manner. However, by more intimately bringing the human into a
feedback loop, there is an excellent potential to use interventions and notifications to improve
human activities. For example, by focusing on the activity steps of an activity, it is possible
to detect the quality of a performed activity instance and dynamically react to improve that
activity, if necessary. This human-in-the-loop Real-Time reaction is important in home health
care systems to keep patients safe, in industrial process monitoring systems of factory workers
to ensure the safety of workers and the quality of products, and so on. Without considering the
activity steps of an activity, controlling the quality of the activity is difficult.

Most current activity recognition systems recognize whether an activity has occurred or
not, but do not identify partially completed activities or the missing steps in the overall activity
process. Hence, they cannot easily offer notifications and interventions in real-time to improve
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performance. In addition, many current systems [7], [8] make too many simplifying assump-
tions about the environment, the number of users, etc. that either limit the types of recognized
activities, or tailor the system to perform well in simple situations such as single person homes
and no concurrent activities [9], [10]. It is necessary to consider interleaved, parallel, and co-
operative activities for more robust and realistic activity recognition.

Our first hypothesis is that pushing the activity recognition constraints to a lower level
solves the limitations of many existing systems. In this paper, we consider the fact that activities
are composed of activity steps, where a user can perform only one activity steps at a time but
can switch in between performing activity steps of a particular activity and do portions of
other activities. For example, someone can chop ingredients for a meal, feed the dog, and then
come back to use the ingredients for cooking. The activity steps provide important information
about the high-level activities, such as whether the activity is complete or partially complete,
the different ways a certain activity is performed, whether the activity has missing steps, how
a missing step affects the overall activity quality, and how intermediate delays among µAcs
might influence the overall activity quality. Therefore, this chapter addresses the problem of
detecting activity steps in realistic settings and how to incorporate the human-in-the-loop by
offering real-time notifications to improve performance. Since a step of an activity involves
using objects resulting from specific gestures by a person, QuActive incorporates information
from both wearable and in-situ sensors.

One challenge is how to model the activity process in terms of activity steps. The steps
within an activity can occur in parallel or sequentially. The activity process also varies depend-
ing on the person, environment, or situation. Different activities often have similar activity
steps, and steps performed in a different order might result in the same or a different activity.
Thus, the process of mapping activity steps to distinct activities capable of handling these vari-
ations is vital. Another challenge is addressing the deviation from normal activity processes.
For example, if a particular step is missing or performed out of order, then is the activity in-
complete, wrongly performed, or still a valid activity performed differently? How to keep a
general structure of a particular activity which is performed in different ways? How to identify
the prospective/incomplete activity when one or more steps are missing? Finally, how and
when to bring the user more intimately into the loop via notifications and interventions?

To address the mentioned challenges, the QuActive framework is created based on a Tempo-
ral Probabilistic Context-Free Grammar (TPCFG) to define the activity process (details in 6.3.2
and 6.3.3). The context-free grammar (CFG) follows the basic definition from literature [69] that
includes terminals, nonterminals, and rules. However, the terms are tailored for defining par-
ticular activities and activity steps. The grammar outlines a general structure for each activity.
Activities (nonterminals) and activity steps (nonterminals) are generated from rules. Rules are
applied iteratively until terminal symbols (sensor values) are reached. Any future activity in-
stance is recognized from the defined grammar representation. Again, to capture the variation
of performing the same activity, multiple rules are added to represent the same nonterminal
term. If an activity is performed in several ways, then a probability (P) is associated with each
of the rules defining the same nonterminal. The timing parameter (T) is used to capture the
time information [70] of each activity step as well as the time difference among two consec-
utive steps. Rules have notifications attached to them. Thus, QuActive utilizes the grammar
structure to handle the challenges of modeling variations of activity process of the same activ-
ity. In addition, the QuActive system implementation defines parameters and thresholds for
generating notifications.
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6.2 Contributions

In this thesis chapter, we summarize the main contributions of this work:

1. This chapter presents QuActive, a novel activity modeling framework that utilizes fine-
grained information about the activity process and uses that for notifications. QuActive is
capable of monitoring activity quality and reporting prospective activity in case of missing
steps and other realities in contrast to other state-of-the-art detection systems [18], [71].

2. We implemented a system that incorporates a QuActive framework to recognize in-home
activities, monitors the quality of the finished or partially completed activity, and notifies
users. The notification subsystem modifies the latest voice-based medication reminder sys-
tem, Med-Rem [14], to an activity reminder system that provides audio alerts about activi-
ties, informs the user about missing steps, and stores user feedback.

3. The QuActive framework is applied to three different public datasets of interleaved activ-
ities, parallel and co-operative activities, and monitoring cognitive decline (missing steps
and activity quality). QuActive outperforms the state-of-the-art techniques for all of these
datasets.

4. The system has also been deployed in a real home in a semi-controlled setting. The results
show that QuActive recognizes more than 90% of the defined activity steps and the grammar
detects 98.6% of the defined activities from the recognized steps.

6.3 QuActive Framework

The core of the presented system is the QuActive framework. As mentioned before, the frame-
work is based on Timed Probabilistic Context-Free Grammar (TPCFG). The rules of the gram-
mar define activity steps in terms of the processed sensor information and activities in terms
of the activity steps. Since grammar rules are applied iteratively, intermediate stages of rec-
ognized activities are defined as partial activities. The QuActive framework has the following
advantages:

• Manage Variation: Multiple rules are added to represent the same activity that is performed
in different ways. For example, making coffee ‘using a coffee maker’ or ‘using hot water and
instant coffee packs’ have different grammar representations.

• Handles randomness: While making tea, the activity steps of ‘adding sugar’, ‘adding milk’,
‘adding tea’, and ‘pouring hot water’ do not require any specific order. However, ‘heating
water’ must be done before ‘pouring hot water’, and ‘stirring’ is always the last step. These
collections of ordered and unordered terms are handled in the QuActive framework.

• Reusable: Some activity steps of an activity process are observed in other activities. For ex-
ample, ‘adding sugar’ occurs in ‘making tea’ or ‘baking cake’. Thus, activity step definitions
are reused in defining new activities.

• Extensible: People may perform activities differently due to a change of habit. The activity
process may also change when new technology or different appliances/objects are used.
These changes can be handled just by adding new rules to QuActive, without requiring
changes to the overall framework.
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Section 6.3.3 presents the general structure of the QuActive framework in terms of TPCFG
symbols irrespective of any activity class and section 6.3.4 describes an example grammar of
particular activity class (‘Making Coffee’). But before that section 6.3.1 defines an activity step
and section 6.3.2 gives a mathematical definition of PCFG from the literature.

6.3.1 Definition and Properties of Activity Steps

An activity step is the smallest activity step that cannot be decomposed any further. Thechapter
assumes the definition and properties of micro � activity mentioned in chapter 3 section 3.1.3
as the definition of an activity step. We re-iterate the properties here for readers convenience.

The following statements hold true for a µAc (activity step):

i An activity can be broken into one or more µAcs. So, a µAc can be an activity itself. For
example, ‘heating water’ can itself be an activity or a µAc of ‘making tea’.

ii µAcs cannot be done partially, i.e., once started a µAc has to be finished, or otherwise it is
disregarded.

iii µAcs can occur in different activities. For example, the µAc ‘using water’ can be a part of
the activity ‘washing dishes’ or the activity ‘mopping the floor’.

iv Although every activity is associated with one or more users, and every µAc is associated
with some activity, the µAc itself might be independent of a user. For example, a user
triggers the switch to boil water, but water boiling itself is independent, and the user may
do something else during that time.

6.3.2 Timed Probabilistic Context Free Grammar

A context free grammar (CFG) is a type of language generator. It is expressed as < VN ; VT; Start; R >,
where

• VN is a finite set of nonterminal symbols. Nonterminals are represented with words starting
with a capital letter.

• VT is a finite set of terminal symbols. Terminals are represented with words starting with
lower-case letters.

• VN \VT = ∆. V = VN [VT is called the vocabulary and V⇤ is the set of all strings of symbols
in V including the string of length zero.

• Start 2 VN is the start symbol.

• R is a finite nonempty subset of VN ⇥V⇤ called the production rules.

A CFG where multiple rules define the same non-terminal can be extended to a probabilistic
CFG [69] as an ordered five-tuple < VN ; VT; Start; R; P >, where

• The production rules are paired with a set of probabilities {pij} that satisfy the following
rules.

– For each production rule Rij 2 R, there is one and only one probability pij 2 P.
– 0 < pij  1 8i,j
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– For every i with 1 < i  |Vn|, S1jni pij = 1, where ni is the number of productions with
the i-th nonterminal on the left-hand side.

Timed PCFG is an extension of PCFG where timing information is incorporated into the
grammar rules [70].

6.3.3 TPCFG for Detecting Activity

In this section, a general definition of TPCFG for an activity class is provided. Each activity
class has a separate set of rules that follow this general structure. The terminals of the grammar
are sensor values and rules are iteratively applied until the terminals are reached. The activities
and activity steps are nonterminals. The following rules show how an activity can be composed
of a sequence of steps.

Activity ! ActivityStep TmDiff PartialActivity
Activity ! ActivityStep

PartialActivity ! ActivityStep TmDiff PartialActivity
PartialActivity ! Activity

Here, the rules for ‘PartialActivity’ are necessary for generating an unambiguous grammar.
After iteratively applying the rules, all ‘PartialActivity’s are decomposed until only the activity
steps are left. The nonterminal ‘TmDiff’ indicates the time difference between two consecutive
steps. A negative duration value of ‘TmDiff’ indicates an overlap between the two activity
steps. For example, heating water while adding coffee can occur in parallel.

An activity step can be associated with more than one sensor, since several sensor events
can occur at the same time. For example, several motion sensors can be triggered when a user
enters a particular location.

ActivityStep ! Event
Event ! (Event, Event)
Event ! (Sensor,Time,Value)

The above rules show how each activity step is associated with one or more sensor events.
The comma separated tuple indicates that the sensor events are independent of each other.
Each sensor event indicates the change of a particular sensor value at some specific time or
during a specific duration.

Sensor ! InsituSensor | Wearable
InsituSensor ! motionSensorID | contactSensorID

| tempSensorID | pressurePadID
Wearable ! smartWatchID

Now, a sensor is either a wearable device or an in-situ sensor. The above rules show a sensor
setting where a smartwatch is used as a wearable device, and motion sensors, contact sensors,
temperature sensors, and pressure pads are used as in-situ sensors.
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The value of the sensor is either a numeric value (0 or 1 of a binary pressure pad sensor) or
values of a list of features extracted from the continuous sensor signal (e.g., features calculated
from the accelerometer or the gyroscope data of a smartwatch).

Value ! num | feature

Although ‘Time’ and ‘Tmdiff’ both provide timing information, one is associated with a
sensor event and the other indicates the time difference between two consecutive steps as men-
tioned earlier. The nonterminal ‘Time’ is associated with each sensor event. The starttime
indicates the time when the sensor value changes and duration indicates how long the sensor
value remained constant (or was above/below threshold in case of continuous data).

Time ! (starttime, duration)
TmDiff ! (starttime, duration)

Grammars defined for all the activity classes maintain this described structure. The gram-
mar described here does not show the probability (P) for simplicity. The probability is associ-
ated with each rule when multiple rules define the same nonterminal.

MakingCoffee(p11) ! (UsingDrinkware) (UsingUtensil)
(UsingHotWater) (AddingItems)
(Stirring)

MakingCoffee(p12) ! (UsingDrinkware) (UsingUtensil)
(AddingItems) (UsingHotWater)
(Stirring)

UsingDrinkware(p21) ! (MovingObjectGestureEvent)
UsingDrinkware(p22) ! (OpenCupboardEvent)

(MovingObjectGestureEvent)
UsingUtensil(p31) ! (MovingObjectGestureEvent)
UsingUtensil(p32) ! (OpenUtensilDrawerEvent)

(MovingObjectGestureEvent)
UsingHotWater(p41) ! PouringWaterGesture
UsingHotWater(p42) ! HeatingWater

PouringWaterGesture
AddingItems(p51) ! AddingItems⇤
AddingItems(p52) ! AddingItem
AddingItem(p61) ! AddingItemGesture
AddingItem(p62) ! OpenCupboardEvent

RetrievingItemGesture AddingItem
AddingItem(p63) ! PouringLiquidGesture
Adding Item(p64) ! OpenRefrigeratorEvent

RetrievingItemGesture AddingItem

TABLE 6.1: TPCFG for activity ‘Making Coffee’.
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6.3.4 Example Grammar and Parse Tree

Table 6.1 shows one example of possible different rules for making coffee with start symbol as
‘MakingCo f f ee0. To make the rules clear, the timing parameter has not been shown. However,
each event is associated with the Time(starttime, duration) information and each rule contains
the TmDi f f information between two consecutive terms on the right side of the rule. As we can
see, multiple rules cover different situations such as when the items or utensils are retrieved
from the refrigerator, cupboards, or drawers, as opposed to already being placed on the coun-
tertop. The associated probability represents the probability of that situation occurring. If a
high probability rule does not match, other relevant rules are applied. One limitation of the
system is that it cannot identify the exact added item. For example, if somebody adds only
sugar instead of coffee, QuActive still recognizes the Activity ‘Making Coffee’. However, the
limitation is associated with the sensing system and not directly related to the QuActive frame-
work. In the future, if the sensing capability enables distinguishing each item, then similar
rules can be added to make the grammar richer.

(A) The parse tree shows a way of ‘Making Coffee’ in which no sugar or milk is added in the
coffee, and the coffee is added in between heating and pouring water. It also assumes that
the drinkware, utensils, and ingredients (mug, spoon, and coffee) are already placed on the

countertop,i.e., no object is retrieved from the cabinet or the drawer.

(B) The parse tree shows a situation where multiple items (milk, coffee, sugar) are added in
the coffee and only one item (sugar) is retrieved from the cabinet.

FIGURE 6.1: Example parse trees showing different ways of performing the same
activity (‘Making Coffee’).
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Figure 6.1 shows two examples parse trees depicting ‘Making Coffee’ in two different sit-
uations. In the first tree, only coffee is added whereas in the second tree milk, and sugar are
added to the coffee. However, in both situations, it is assumed that drinkware (mug) and the
utensil (spoon) are already placed on the countertop. A different and larger parse tree will be
generated in situations where the drinkware and the utensil need to be retrieved from their
storage places. The intermediate levels of the tree show nodes related to partial/sub-activities.
However, some order is maintained in all the different situations. For example, heating water
always precedes pouring water (although other activity steps can take place in between) in or-
der to identify the higher level activity ‘Using Hot Water’. Again, stirring is always performed
last. Although timing information has not been shown explicitly, each low-level event retains
time information which propagates up to the root (highest level activity) of the tree.

6.4 System Design

In this section, we describe the system architecture that uses the QuActive framework to rec-
ognize fine-grained activity steps, construct high-level activities, and extract activity quality
parameters.

6.4.1 Sensing Layer

The sensing layer consists of both in-situ sensors and wearable sensors for collecting detailed
activity information. Wearable sensors are placed on a user’s body to collect gesture informa-
tion related to the activities. The system assumes a smartwatch as the wearable device contain-
ing accelerometer, gyroscope, and magnetometer. On the other hand, binary contact switches,
binary pressure pads, motion sensors, and temperature sensors work as in-situ sensor nodes.
Therefore, the sensing layer collects human motion that causes an activity as well as events
related to the effect of resulting activities on the surrounding environment.

6.4.2 Event Layer

This layer preprocesses the sensor data and lists all sensor events. Whenever the status of a
sensor is changed, an event is triggered. For example, a pressure pad triggers the event ‘occu-
pied’ if somebody sits on it and triggers ‘empty’ whenever the person leaves. The environment
sensors are assumed to generate discrete sensor events. On the other hand, the sensors in the
smartwatch generate continuous data streams at a particular sampling rate. A threshold value
is used to filter the normalized time series data where no significant motion is detected by the
accelerometer and gyroscope. The filtered segments denote possible gesture events. Time in-
formation from environment sensors is provided to identify segments where gestures are more
likely related to some activity step as well as to trim segments to find the approximate start and
end time of a gesture. For example, by aligning the contact sensor events ‘opening refrigerator’
and ‘closing refrigerator’ with wearable sensor data, QuActive finds signals related to ‘storing
groceries’ and ‘retrieving groceries’.

6.4.3 Activity Step Layer

This layer constructs the activity steps or possible steps from the information provided by the
event layer. Although a user can leave in the middle of an activity, based on the properties
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FIGURE 6.2: System Architecture for detecting and recognizing activity steps and
high level activities based on QuActive Framework.

of the activity step - a user cannot leave in the middle of performing a step. Therefore, an
activity step is either complete or not done at all. Any incomplete information is ignored. To
detect activities from sensors and gesture events, the QuActive grammar is applied to event
data. Grammar rules associating data with activity steps are created from training data and
user labeling. Upon detecting problems (such as taking too long to perform a particular step),
information is passed to the notification layer.

6.4.4 Activity Layer

QuActive consists of grammar rules for each activity mapping to one or more activity steps.
The rules are defined based on real-world observations as well as state-of-the-art definitions
(particularly in ADL research in vision) relating activities with steps [36]. Each rule is assigned
a default probability. Training is necessary to calculate the probability values from a particular
real-world deployment.
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The Activity Layer applies QuActive grammar rules to find the activities that occurred.
Sometimes low-level activities are combined to a higher level activity.So, rules are applied it-
eratively until no new activities are observed. If an activity rule matches up to a certain level,
where the steps are not part of any other activity, QuActive assumes that a certain activity was
started, but not finished. Since the grammar preserves time information and activity step or-
der, the activity quality parameters are extracted from these values. The activity complexity
is determined based on how many iterations were performed to construct the activity. The
activity and activity step timing information is used to classify the activity type whereas the
quality parameters are used to create notifications. The priority of the notification is relevant to
the severity of the problem in terms of safety (e.g., leaving the stove on), inconvenience (e.g.,
forgetting to put coffee in the coffee machine), or other issues (e.g., taking too long). It should
be noted that QuActive distinguishes similar activity steps by correlating with different in-situ
sensors triggered by the action or matching the activity steps with grammar rules relevant to
high-level activities. However, if no specific in-situ sensor is triggered and two parallel activi-
ties with similar steps occur, then QuActive is unable to identify the exact activity step.

QuActive Database: The rules for mapping activity steps with each activity class are ap-
plied separately for every activity class. In this paper, this mapping has been done manually.
However, if the sensor setting and activity list are similar, existing rules are applied for future
activity instances. For example, during the evaluation of dataset 6.5.1, the rules created for
dataset 6.5.1 were used. On the other hand, once a activity step is defined for a setting, it is
not redefined for every activity. For example, in our experiment the ‘Stirring’ step is found
in the activities ‘Cooking’ and ‘Making Tea’. The ‘Stirring’ step is mapped to the stirring ges-
ture event, whereas the gesture event detection is done by labeling the smartwatch data and
applying a decision tree with five-fold cross-validation.

6.4.5 Feedback - A Notification Layer

The smart-watch based notification subsystem is an extension of the MedRem voice-based med-
ication reminder system [14]. However, instead of only medication reminders, the system re-
minds users about activity problems. Moreover, MedRem is a stand-alone system whereas
the QuActive notification system receives information about the activity parameters assuming
that the watch has WiFi capability. In addition to providing reminders about activities, the
sub-system generates notifications based on the notification ID. For example, missing activities
trigger question like “Have you performed ‘Activity X’?" whereas missing steps trigger question
like “Have you missed ‘step y’ when doing ‘Activity X?’" where the ‘y’ and ‘X’ are replaced with the
corresponding parameters received from the Activity Layer. User’s answer is stored and then
sent back to the Activity Layer for further tracking. Therefore, the QuActive system intervenes
with the user through informed notification.
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6.5 Evaluation and Results

6.5.1 Datasets

We used the following datasets to evaluate the performance of QuActive. All these datasets
have motion sensors, contact sensors, item sensors, temperature sensors, and water sensors
installed in a smart home apartment.

Interleaved ADL

Dataset [72] contains activity information from 20 users. Each participant first performs the
activities 1 to 8 defined in Table 6.3 independently, and then multiple activities concurrently.
Therefore, the steps of multiple activities are intertwined. The details of the steps are provided
to the participants. Table 6.2 shows an example of given instructions for the activity ‘Preparing
soup’.

Multiresident ADL

Dataset [73] has information about parallel and co-operative activities. Here, each individual
performs activities 1,2,5,9,10,11,12 (Table 6.3) independently, but two persons act in parallel.
Therefore, steps of activities from different users are observed at the same time. In addition,
activities 13 to 16 are performed jointly (co-operative activity), where the steps are either done
individually (playing checkers) or together (moving furniture).

Cognitive assessment activity data

In dataset [12], 65 healthy and 14 cognitively impaired people are selected for the data collec-
tion process based on initial screening and questionnaires. Then, each participant is asked to
complete the activities 1 to 8 defined in table 6.3 step by step. The dataset annotates the ground
truth by labeling each sensor value with corresponding activities and sub-activities. Each ac-
tivity is scored by expert clinicians from 1 to 8 based on the level of completeness. Moreover,
the users are also diagnosed by the clinicians as healthy, as patients with mild cognitive im-
pairment (MCI), or as patients with dementia based on the interviews, questionnaires, and
performed tasks. All this information is used as the ground truth for the analysis.

Activity Steps: Preparing Soup
1. Retrieve materials from cupboard "A"
2. Fill measuring cup with water
3. Boil water in microwave
4. Pour water into a cup of noodles
5. Retrieve pitcher of water from refrigerator
6. Pour a glass of water
7. Return pitcher of water
8. Wait for the water to simmer in the cup of noodles
9. Bring all items to dining room table

TABLE 6.2: Example of activity steps within the activity ‘Preparing soup’ in-
structed to be performed by a user [72], [73].
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Interleaved Activity List (dataset 6.5.1 and 6.5.1)
1. Sweeping the kitchen and dusting the living room.
2. Obtaining medicine containers and a weekly

medicine dispenser, filling the dispenser
according to the directions.

3. Writing a birthday card, enclosing a check
and writing the address on an envelope.

4. Finding the appropriate DVD and watching
the corresponding news clip.

5. Obtaining a watering can and watering
all plants in the living space.

6. Answering the phone and responding to questions.
7. Preparing a cup of soup using the microwave.
8. Picking a complete outfit for an interview from a

selection of clothing.
Multiresident Independent, Parallel, and
Co-operative ADLs (dataset 6.5.1)
1,2, and 5 (from the above list)

9. Reading magazine in living room sofa
10. Preparing dinner
11. Setting dining table
12. Hanging up clothes in closet
13. Moving furniture
14. Playing checkers
15. Paying bills
16 Gathering and packing picnic supplies

Activity List: Collected Data (dataset 6.5.2)
17. Study (sitting on study chair, using typing motion)
19. Watching TV (sitting on living room sofa,

occasional hand gesture for using remote)
20. Making tea (using cabinets and refrigerator,

heating water, gesture of stirring and putting items)
21. Eating (sitting on dining chair, hand gesture of eating)
22. Washing dishes (using tap, scrubbing dishes,

rinsing dishes)
23. Cooking (using cabinets, refrigerator, microwave,

oven, and hand gesture for cutting, stirring)
24. Dressing (choosing outfit from closet,

motion for changing clothes)

TABLE 6.3: Activity List used for evaluation in different datasets and the collected
data.

6.5.2 Data Collection

To evaluate the performance of QuActive in a real home setting, we have deployed the system
in a real home and collected data from four users. All the users were healthy young adults from
both gender groups (males and females). We used z-wave pressure pads, contact sensors, and
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motion sensors for collecting environmental information. The pressure pads were placed on
the living room sofa, dining room chairs, and study chairs. The contact sensors were attached
to the cabinets, microwave, oven, refrigerator, freezer, and closets. The data was collected in
a semi-controlled setting, and the users were instructed to perform the activities 17-24 (table
6.3). The experiment was not entirely controlled since we did not specify the exact steps to
complete the activities or constrain their movement in any way. Users were free to perform
the activities in their own way and were not required to start/stop each activity step from a
resting position. Before each data collection session, the user wore an Android smartwatch on
his/her dominant hand. The accelerometer and the gyroscope sensors (sampling rate 50Hz) in
the watch were used to capture the hand gestures relevant to activity steps (chapter ??). Since
each watch has a specific ID, it can be used to identify users in multi-user scenarios. However,
in this experiment, multiple users did not perform activities at the same time. Therefore, the
collected dataset has independent and interleaved activities from a single user setting. Table
6.3 shows some example steps observed during the activity process.

Another assumption made in this paper is that an activity step itself cannot be discon-
tinuous, i.e., a step is either done or not. However, the activity steps within an activity can
be discontinuous. The framework assumes that each ‘TmDiff’ parameter has a defined limit.
QuActive assumes that the activity is not completed if the time is exceeded. The parameter
value needs to be defined from training data from long term deployments. However, we did
not have enough data necessary to define the parameter. We plan to accomplish this in the
future. To collect the ground truth data, an observer video recorded the session, and the time
series sensor data were annotated from the video using ‘Chronoviz’ software [74].

FIGURE 6.3: Recognizing interleaved (high level) activities using HMM, NBC
[72], QuActive with and without (QuActive') location information incorporated
in the grammar. The figure shows the percent of sensor data labeled correctly

with respect to ground truth labeling.
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6.5.3 Results and Discussions

Evaluation on the Datasets

Figure 6.3 shows a comparison of QuActive with NB and HMM classifiers [72] applied to the
interleaved ADL dataset. Here, every fourth bar shows the performance of QuActive when the
location information (using the location of the sensors) is incorporated as part of the grammar,
and the third bars in each activity bar set shows when the location information is disregarded
(QuActive'). In paper [72], the authors show that Naive Bayes and HMM classifiers achieve
an average accuracy of 66.08% and 71.01% respectively in detecting activities performed in
an interleaved manner. The grammar in QuActive is constructed only with the activity steps
defined from instruction disregarding the user’s location. Although location is not needed to
detect most activities, it clarifies when the context is essential. For example, ‘Watering Plants’
and ‘Sweeping Living Room’ use different equipment, but the same closet sensor is triggered
while retrieving/storing the equipment. Thus, adding the location information (‘kitchen to
living’ or ‘in living’) in between the closet sensor trigger provides context about the prospective
use of the equipment. With location information incorporated in the grammar, almost all the
activities are detected perfectly. However, the accuracy in the graph shows less than 100%,
since the exact start time and end time of the steps are not always aligned with the ground
truth data. Therefore, there is less accuracy in terms of the percentage of sensor values labeled
correctly with the corresponding activity.

FIGURE 6.4: Average accuracy in recognizing instances of independent, parallel,
and joint activities using HMM [73] and QuActive on a multiresident dataset.

Figure 6.4 shows the performance of QuActive in multi-person setting, where some activi-
ties are performed jointly, and some are done independently but in parallel. Here, the baseline
is the average performance of the user-independent HMM classifier. Authors in the paper [73]
show that a user-specific classifier increases the accuracy of activity detection for that user by
about 20% on average, but the performance of the system decreases in detecting the activities
of the other user. Thus, the average performances of user-independent and user-specific HMM
models are almost the same. On the other hand, QuActive performs very well in this dataset,
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because it filters irrelevant activity steps that do not match the grammar structure. In other
words, unless the activity steps in other users’ activity match the activity steps of a particu-
lar user, they do not affect the activity detection process of that user and thus yields higher
accuracy.

In paper [12], the researchers show the activities of daily living (ADL) as a good predictor
of early detection of cognitive impairment. They extract 38 features from the sensor dataset
and show that using leave-one-out cross-validation accuracy of 86% is achieved in predicting
the cognitive state. However, their process requires a lot of data from cognitive impaired and
healthy persons for feature generation and training. Although we do not apply QuActive to
determine the cognitive status of a person, Figure 6.5 shows how the value of the quality pa-
rameters defined in QuActive varies in healthy, MCI, and dementia patients in this dataset.

FIGURE 6.5: The average number of missing steps in performing activities by
healthy, mildly cognitively impaired, and dementia patients. The stripped col-
umn values considers the effect of missing activities in calculating missing steps

and the solid column values disregards missing activities.

The solid columns in Figure 6.5 show the average number of missing steps per activity from
the performed activity instances. The striped column shows the average number of missing
steps considering the total activities, i.e., the effect of a missing activity is also considered.
Similar differences are observed considering the activity duration and total duration between
two consecutive activities. The figure shows the validity of considering missing steps and
missing activities in identifying stages of dementia with a general purpose activity recognition
framework. Thus, a grammar defined from the descriptions, that does not need huge training
data and complex algorithms can also be a powerful tool in detecting how activity quality
degrades over time.

Evaluation on Experimental Data

We collected a total of 67 activity instances of activities 17 to 24 (Table 6.3) from four users in
our experiments. Although only one user performed an activity at a time, she/he occasion-
ally performed more than one activity in parallel. The experiment settings have both z-wave
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FIGURE 6.6: Filtering the falsely recognized activity steps in subsequent layers of
the system.

sensors and smartwatch data for gesture recognition. QuActive recognizes all the steps that are
defined only in terms of z-wave sensors, such as ‘Sitting on the sofa’, ‘Opening the refrigerator’
etc. However, in our experiment, only the in situ sensors do not give all information required
for detecting all the activity steps.

For example, ‘Opening cabinet’ and ‘Closing cabinet’ are detected from the contact sensors,
but differentiating between ‘storing item in the cabinet’ or ‘retrieving an item from the cabi-
net’ requires additional information which can be extracted from the hand motion. However,
detecting activity steps from a continuous stream of sensor data itself is a challenging prob-
lem and the accuracy depends on the collected data and the threshold values for determining
the cut-off point. In our experiments for detecting activity steps, we choose a lower threshold
value to get a high percentage of true positives despite having a high false negative rate and
therefore a lower recall. For evaluation purposes, we use a state-of-the-art supervised algo-
rithm (Decision Tree C4.5) for gesture recognition and five-fold cross-validation irrespective of
the user. However, coupling the gesture events with the in situ sensors filters a lot of the falsely
recognized gestures. If the same gesture signal indicates more than one possible activity steps,
the one matching with the defined grammar is recognized, and the rest are eliminated.

Figure 6.6 shows examples of a number of possible gesture events recognized from raw
signal and how the number of irrelevant gestures are filtered at different stages, i.e., after asso-
ciating with in situ sensors and finally mapping with grammar rules. Figure ?? (Appendix A)
shows time series data corresponding to some example gesture events.

Table 6.4 shows the precision and recall of activity instances recognized correctly despite
each user performing the activities in their own way. The accuracies of detecting high-level
activities are 91% to 98%, which shows the promise of the QuActive system.
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Activity Precision Recall
Making Tea 0.95 0.88
Washing Dishes 0.96 0.87
Cooking 0.91 0.84
Eating 0.93 0.95
Dressing 0.97 0.96
Study 0.98 0.99
Watching TV 0.98 0.98

TABLE 6.4: Average performance of QuActive in recognizing activity instances
from all users

Notification Subsystem

The notification subsystem has been implemented and evaluated separately from the activity
recognition subsystem. In the implementation, once a notification is required, the notifica-
tion subsystem delivers it to a smartwatch 100% of the time and properly records the user
responses. The responses vary depending on the notification type. For example, if the notifica-
tion is a reminder to add coffee to the coffee maker the user might respond, “OK done." Or if
the notification suggests that they forgot to take their noon medication, the user might respond
“I’ll do it later." However, a user study that shows how effective the notifications are in actually
improving health or performance of daily activities is beyond the scope of this thesis.

6.6 Conclusions

QuActive is a CPS monitoring and notification system for activities of daily living (ADL), de-
veloped based on a temporal, probabilistic, context-free grammar. It addresses the complexities
of concurrent and parallel activities, and multiple person situations. It identifies activities ir-
respective of the activity errors, i.e., missing steps, delayed steps, and out of order steps in
activities. Using several datasets, the performance of QuActive is shown to be (average accu-
racy of 95%) significantly above than the two baselines (accuracy of 66% and 71% respectively)
from the literature. Another interesting observation is that despite having very low accuracy
of gesture recognition events, by incorporating data from a number of in-situ sensors gesture
events classification can be improved. Moreover, by applying structured grammar rule, high
accuracy of activity recognition can be achieved by discarding misclassified activity steps.
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Chapter 7

Activity Quality Monitoring

In this chapter, we address the problem of in-home activity quality monitoring focusing on a
particular application, detecting the discrepancies observed in ADL/IADL performed by de-
mentia patients. We provide a detailed definition of activity quality in terms of our objective
and explain our solution and implementation details for handling the problem.

The rest of the chapter is organized as follows. We briefly describe the motivation of the
work in section 7.1. We describe the scope of our work in section 7.3, followed by our solution
and implementation details in section 7.4 and 7.5 respectively. Finally, the chapter concludes
by providing the details of evaluation and discussion ( section 7.6).

7.1 Motivation

In 2018, an estimated 5.7 million Americans of all ages were living with Alzheimer’s dementia,
which is the 6th leading cause of death in the United States [75]. Despite being very common,
Alzheimer is tough to diagnose since it is a slowly progressing disease. However, the recent ad-
vancement in technology has enabled the research community from different domains to work
on solutions which can at least detect the symptoms as early as possible and thereby slow down
the progression of this terrible illness. One of the common detectable outcomes of this illness is
the inability to complete familiar daily tasks. The behavioral scientists and psychologists have
observed and identified several inconsistencies that Alzheimer patients exhibit while perform-
ing activities of daily livings (ADL) and instrumental activities of daily living (IADL). Due to
the loss of memory and decreased judgment, these patients often forget steps while perform-
ing an activity, misplace objects, do things out of order, or repeat the same steps over and over
again Moreover, due to confusion they often take longer to complete an activity or certain ac-
tivity steps which requires attention and judgment skills. Therefore, home activity recognition
and health care systems which can detect the mentioned inconsistencies are extremely helpful
in diagnosing the early signs of Alzheimer as well as tracking the progression of this deadly
disease.

Although there are a lot of interesting works on the domain of activity recognition research
not much is observed in finding the quality of an activity process. In this chapter, we specifically
focus on the problem of finding missing activity steps, wrong steps, and other inconsistencies
observed in Alzheimer’s patient in different scenarios (figure 7.1). In literature, the research
approach of detecting and recognizing ADL and IADL are divided into two broad categories -
data-driven approach and knowledge-driven approach In the data-driven approach, an activ-
ity is recognized from wearable or in situ sensor data by using different learning algorithms.
Even though data-driven approach is the standard and accepted practice, certain applications
require the knowledge of expert or specialized learning algorithms to represent activity steps
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in terms of knowledge base and relate the steps with specific activity rules (Context Free Gram-
mar, AI ontology, etc.). Moreover, it requires an enormous amount of data, proper labeling, and
effective training to learn from the data and develop practical specialized algorithms. Since the
diagnosis of Alzheimer disease requires information about activity steps, this particular ap-
plication requires knowledge driven or at least the hybrid approach for recognizing activities
such that the activity steps can be clearly defined and the relationship among the steps well
represented.

FIGURE 7.1: Complexity of solution space (identifying activity or activity at-
tempt) with increasing difficulty of problem space (presence of different types

of error)

In this chapter, we assume that the system is provided with the knowledge base and rule in-
formation about each activity. Now, if the system is given input of a stream of detected activity
steps, will it be able to output which activity the user wanted to perform? Activity recognition
from detected activity steps itself is very challenging due to similarities of different rules, or
some of the same activity steps being found in more than one activity. However, the prob-
lem becomes even more complicated when we assume that not all activity steps are present,
and/or some of the steps were done out of order or as a result of a mistake. Although, there is
some work which shows straightforward ways of detecting missing steps from activities with
sequential steps 3.2, none of them considers the variety of errors that can happen in real life
complex scenarios or is vague about how exactly the solution will work in the presence of the
combination of different types of errors (figure 7.1). The presence of different types of errors
increases the complexity of detecting an activity even when the activities are done by a single
person sequentially. Complexity increases if we assume that the activity steps from different
activities can interleave or activities are done in parallel. In the presence of multiple users, the
problem becomes even more complicated.

To address the mention challenges, in this chapter, we provide a solution for recognizing
both complete and partial activities from the sequence of detected activity steps. Our solution
shows how comparing a particular sequence with activity patterns defined by rules is able to
find out the error that occur within the activity. We also provide details of system implementa-
tion and technique for storing and searching already observed sequences efficiently.
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7.2 Contributions

The main contribution of this thesis chapter is

• We describe the activity quality monitoring problem for a specific application, accessing
the activity quality of patients with dementia, and define parameters for clearly quanti-
fying activity qualities.

• We provide a solution for addressing the challenge of recognizing incomplete activities
due to missing/wrong step, wrong order, repetition of unnecessary steps, etc. We provide

– Filtering technique for effectively separating activity episodes of different error types.
Also, method for separating activity steps from different activities.

– Validation technique by converting the infinite pattern matching problem from string
domain to activity recognition. We adjust the solution by selecting and modifying
the quantifiers to represent infinite patterns in activity recognition domain.

– We provide effective storing different types of instances observed for the same activ-
ity and method for searching previously observed similar valid and invalid exam-
ples.

• We provided details of the implementation of our solution and describe the purpose of
defining each parameters, and how the major functions work.

• We evaluated our solution in a public dataset with Cognitive Assessment Activity Data
from healthy adults and patients with dementia. We also collected data from our lab and
simulated the different error types to evaluate our system in different scenarios.

7.3 Problem, Background & Scope

7.3.1 Problem Description

The main focus of this paper is to detect the inconsistencies related to the activities of daily
living (ADLs) and instrumental activities of daily living (IADLs) of Alzheimer’s patient with
dementia. The signs observed in ADL/IADL as a potential indicator of the disease can be
divided into two main criteria - activity steps and delay. First, we list the anomalies related to
activity steps -

1. Missing an activity step: The healthcare providers have marked missing step from ADL/
IADL as a potential sign of illness, since they indicate lower functional (difficulty in per-
forming an activity step) or cognitive (forgetfulness) ability. The family members of
Alzheimer’s patient mention patients leaving the stove on, leaving the water running,
or forgetting to finish an activity, i.e., missing the steps that are at the end of an activity.

2. Repeating steps unnecessarily: Repetition is another common characteristics of Alzheimer
patients because they forget already completing the activity steps. For example, putting
ingredients (salt, pepper, sugar, etc.) again while cooking. This behavior can be haz-
ardous in some cases. For example, taking a drug/ medication dose more than the pre-
scribed amount that controls blood pressure or insulin level, or frequently eat despite
having dietary restrictions.
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One of the challenges in identifying repeated steps is that for some activities the repetition
is part of the process, such as sweeping movements while cleaning the floor. Again, some
steps occur for a certain number of times, but repeating more than some limit indicates
an abnormality. For example, adding coffee in the cup while making coffee.

The most common form of repetition is observed when the patient is speaking since
he/she repeats sentences due to forgetfulness. However, since we do not consider speak-
ing as a part of daily in-home activities, recognizing the repetition in speech is out of the
scope of this paper.

3. Doing a step out of order: Steps within an activity can be performed in different orders
based on people’s preference. However, in some cases, the order is very important. For
example, sometimes patients need to measure specific physiological parameters measure-
ments before/after having medications, or might need to have medicine in an empty/full
stomach. In those situations, ordering of the steps will be necessary, where the steps may
belong to same/different activities

4. Wrong step: Sometimes an Alzheimer patients start an activity and in middle of it start
doing a different one, or performs an entirely irrelevant step within an activity. For exam-
ple, putting the keys inside the refrigerator or boiling/heating the mobile phone which
can be very dangerous.

Clinicians and researchers also identified an abnormality in activity duration as quality
parameters related to sign of illness. Here, we consider finding which steps takes too long and
whether there is a long pause between two consecutive steps.

1. Taking too long in performing a particular step: Since Alzheimer causes functional de-
cline, the patients often take longer to perform activity steps. Again, due to cognitive dec-
lination, the seemingly simple task appears to be very complicated to them. For example,
just merely dressing up becomes an complex activity with so many steps, i.e., opening
the drawer/closet, selecting a cloth, unbuttoning the shirt/dress, making the dress in-
side out or outside in, putting it on, then buttoning the shirt, putting the right button in
the corresponding holes, and so on. The family members of Alzheimer’s patients report
observing their struggle in buttoning the shirt or difficulty in tying shoelaces

2. Delay between intermediate steps: Delay between steps are also seen because either the
patient temporarily forgets about what he/she was doing or needs time before the next
step due to reduced functional ability. Again, while doing multiple activities, a conscious
healthy person will switch back to the original activity and complete it before its too late,
but Alzheimer’s patient has difficulty in multitasking.

7.3.2 Activity Grammar

In order to find what activity was performed, the system needs to know what activity is or
some form of information to compare or contrast the incoming input. In this paper, we use the
concept of grammar to create a patterns for each activity and compare whether the stream of
activity steps conforms with the defined patterns. For general languages, a ‘grammar’ is a set
of rules that is used for proper conversation with each other. Similarly in computer science,
‘grammar’ is a mathematical model defining some rules for accurately writing a computer
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language. According to Noam Chomsky, any grammar ’G’ is formally defined as a tuple of
< S; S; V; R > where
• S is the start symbol. From an activity recognition perspective, it would be the unique sym-

bol representing the Activity class.
• S is a finite set of terminal symbols. In our case, this is the set of all possible activity steps

within an activity class that may occur in different variations of the activity.
• V is a finite set of nonterminals. Nonterminals are used as intermediate symbols that can be

broken into one or more terminal or nonterminals.
• R is a finite nonempty subset of VN ⇥V⇤ called the production rules. These rules are used to

define how each of the symbols relates to each other. In the case of our application, the rules
are useful in establishing the structure of activity steps within an activity class. Multiple
rules are used to capture the variations of multiple ways of doing a particular activity.
The differences in different types of grammars are determined based on how constrained

the rules are. For example, rules in any form of context-free grammar (CFG) ensures that the
left side of the rule has only a single nonterminal symbol. Paper 3.2 shows that a time proba-
bilistic CFG, a variation of CFG, is capable of modeling activity in terms of activity steps and
recognizing the activity later when steps are detected.

However, depending on how the rules are defined in a CFG, it sometimes creates ambigu-
ity. To avoid ambiguity a left derivative grammar or a right derivation grammar is used. Such
languages are called regular languages and can be recognized by regular grammar, which is a
subset of context-free grammar. CFGs are recognized using pushdown automata, and regular
grammars are recognized by deterministic/nondeterministic finite state automata (dfa/nfa) or
regular expressions. Any dfa can be converted to nfa and nfa can be converted to a regular ex-
pression. Therefore, there is always a regular expression that recognizes the regular language.

Regular expressions (regex) are used as a powerful tool for pattern matching in many ar-
eas, most importantly in text mining or string searching. In standard form, regular expressions
have literal characters and meta characters, where each meta character has a special mean-
ing. The metacharacters can be of different types, such as single character, quantifiers, and
position characters. In order to compensate some of the limitations of the earlier versions of
regular expressions, many current compilers use extended regular expressions (ERE) which
have additional meta characters and allow counting of characters or specifying certain ranges.
Again, many implementations allow grouping subexpressions with parentheses and recalling
the value they match in the same expression (backreferences). Thereby these expressions have
the power that far exceeds recognizing only the regular languages. However, which metachar-
acters are available in a particular environment depends on the regex engine.

In our studies, we have found that most of the everyday activities can be defined using a
regular grammar. The exceptional cases which require stronger grammars mainly need keep-
ing track of the number of steps or repetition counts. Therefore, we use extended regular ex-
pressions (ERT) to define each activity pattern and search the patterns from the input stream
of activity steps. Table 7.1 shows the metacharacters (quantifiers) we used in our program and
their functionality described in the string matching domain. The ERT for each activity is de-
fined using the metacharacters and activity steps. We only used different quantifiers among
the metacharacters. We built methods for supporting only the quantifiers that are useful for
our purpose.

Instead of comparing literal characters we build methods for comparing activity steps.
Moreover, we have included features for subgrouping and multiple altercation paths variable
sizes by allowing recursion and backtracking. The following example shows how different
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metacharacters are useful in capturing the variation and structure of activity steps in daily ac-
tivities. In section 7.4.2, we explain how this powerful tool is used for finding the activity step
related to anomalies observed in Alzheimer’s patients ADL/IADLs.

Usage of Metacharater in Activity Modeling
i The Kleen star, *, captures the activities where steps are repeated without any specific

count. Such as sweeping movement while cleaning the floor.
ii The question mark, ?, is used for defining optional activity steps.

iii The count, {n}, is used to define activity steps that should maintain specific counts.
iv The {min,max} is used to define activity steps that are repeated within a certain range.
v Altercation [abc] allows us to chose a single activity step from all the given options within

a square bracket, such as [‘add sugar’ ‘add honey’] while making coffee.
vi Alternation and subgrouping (ab|bdef|egh) allow taking alternative pathways when

the same activities are performed in different ways.
Since extended regular expression (ERE) are powerful in expressing and generating lan-

guages, we use this tool to create ERE corresponding to activities from a dataset description of
activities, activity steps, sensor settings, and building layouts during our evaluation. An excel-
lent future study can be learning the ERE from observed training examples, which requires a
considerable amount of data to be general enough for handling all cases.

7.3.3 System Inputs and Outputs

Knowledge base: What does the system know?

The system knows:
1. The set of activities of daily living (ADLs) and instrumental activities of daily living

(IADLs) that occur throughout the day in a particular setting.
2. Grammar or Extended Regular Expression (ERE) associated with each activity.
3. What activity steps occur in a particular activity class, i.e., the terminal set Si of each

activity class.

Quantifiers Functionality
Kleen star * Matches the preceding element zero or more times.
At least once + Matches the preceding element one or more times.
Optional ? Matches the preceding element zero or one times.
Count {n} Matches the preceding n number of times.
Range {min,max} Matches the preceding atleast ’min’ number of times

and atmost ’max’ number of times.
Altercation [abc] Matches either one of the characters with in the

square brackets.
Subgrouping (ab|bcde|efg) Matches either one of the paths separated by | with

in the parenthesis.

TABLE 7.1: Functionality of meta characters in extended regular expressions.
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Inputs

The input of the system is a stream of activity steps detected over the day. There are properties
associated with each of the identified steps, such as start time, duration, time gap from the
previous step, and the sensor events or gesture from which the steps was identified. The actual
process of steps detection is out of the scope of this paper. The lower level system/subsystem
might have used any sensor setting (in situ sensors, wearables, or hybrid setting with multi-
modal sensors) or any algorithmic or machine learning approach. The system will take the
inputs from the activity step detection system/subsystem as facts and start processing from
there. For example, if a step is missing, the system will not concern itself whether there was a
detection error or not and report it as a missing step.

Preprocessing Input: Activity Episodes

The input stream of activity steps recognized by lower-level system component is divided into
smaller chunks based on the timing parameter, i.e., the time difference between two consecutive
activity steps. We name these sequences as activity episodes 3.2.

What timing threshold to use?: Ideally, we would like to have a threshold such that all the
delays between two consecutive steps of the same activity would be less than the threshold,
whereas the delay between the end time of an activity and the start time of the next activity
would be higher than the threshold. But in reality that is impossible. Some of the difficulties
are:

1. The distribution of time difference between the steps within a particular activities vary
widely depending on the activity type, person, or situation.

2. The delay between two consecutive activities are also not consistent and can be very short,
especially at particular times of days. For example, a person’s morning routine might be
using the washroom, doing exercise, taking a shower, preparing a meal, having breakfast,
washing dishes, getting dressed for work, etc. within an hour or two.

3. Depending on the available data, the distribution of the activity and activity steps can be
very different. Thus, no fixed time threshold works on all activities.

In this paper we consider the optimal time threshold considered by paper [76], which ranges
with in 2 to 3 minutes. Depending on the dataset, the exact value might shift a bit.

Outputs

The system answers of the following questions-
1. What activity was performed, or attempted to perform?
2. What was the performed sequence?
3. Was it performed correctly?
4. What errors occurred?
5. What was the closet correct sequence?
6. Was there any timing anomaly?
These outputs are then stored and any change in parameters and statistics are updated after

getting the result.



80 Chapter 7. Activity Quality Monitoring

7.3.4 Number of people and activities

Number of Users

The system is designed mainly for one user (patient), but there can be other people in the
environment. Hence, we tested our system with datasets of a single person who have issues
completing ADL/IADL correctly. However, we simulated incorrect activities in the dataset
having multiple people but assume that only one person’s ADL/IADL has anomalies.

Activity Types and Occurrence Boundary

Depending on how closely in time the activities are performed, the following types of activity
are observed in a single episode.

1. Single Activity:
This is the ideal case where each activity episode has one activity instance. We proceed analysis
assuming a single activity instance and check whether that activity has occurred without any
errors, or it has missing steps, wrong steps, etc.

2. Multiple Activities:
There can be more than one activity within a particular activity episode.

Sequential Activities: When people perform activities immediately after finishing the pre-
vious one, the two activities do not have enough of a gap and are found sequentially in the
same episode.

Parallel Activities: When users perform more than one activity in parallel, i.e., steps of
other activities in between the current activity, the steps of both activity instances are grouped
together within a single episode.

Irrespective of the number of people in the systems, we assume there is no more than two
activities at a time.

7.4 Solution

In this section, we explain how we solve the problem of recognizing activity and evaluating
the quality of an activity instance. Figure 7.2 shows the overall process of our approach. Before
entering the algorithm, the input streams of activity steps are divided into smaller chunks of
manageable sequences called activity episodes (section 7.3.3). The algorithm takes each activity
episode, E, as input and regenerates the output parameters of E. The whole process can be
divided into three main phases:

i Selection Phase: We perform some filtering and selection to determine whether there is
a chance of instance of a particular ADL/IADL occurring within the episode and make
necessary modifications of the input sequence if needed (box 1c - 1h).

ii Decision and Validation Phase: In the next phase, a decision is made whether a particular
instance of activity class Ai is found and performed correctly or not (box 2a - 2b).

iii Result Adjustment and Storing Phase: Finally, the algorithm traces back the result to the
original episode and merges information if necessary, checks for a time-related anomaly,
and stores the result (box 3a - 3e).
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FIGURE 7.2: The overall process of recognizing activity instances and finding the
quality parameters.

7.4.1 Selection Phase

Searching

The straightforward way of deciding whether a particular activity occurred in episode E is
comparing with the already known activity sequences of that class. Therefore, in the first step
(box 1b), our algorithm quickly performs a search in the stored list of activity instances to find
the exact match. If no such match is found, then it means this particular sequence has never
been observed. Initially, nothing is stored, and therefore no match will be found. As the system
keeps on running, the same sequences are observed again. Thus, a lot of the processing steps
can be skipped (goes directly to step 3a).
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Filtering and Selecting

If a particular ADL/IADL of class Ai occurs in activity segment E, then all the activity steps
observed in E will belong to the set of possible steps found in class Ai. Thus, the condition
{E} ⇢ Si must be true (box 1c); here

• Si is the set of terminal symbols of the grammar defining activity class Ai

• {E} represents the set of activity steps in E without considering the order or count.
Although, the condition holds true for correctly performed activity instances, satisfying the
condition doesn’t always mean that the activity was done perfectly. The instances of Ai that
have specific error types (missing steps/ repeated steps/ wrong order of steps) also satisfy the
condition. Therefore, further validation is required (sends to step 2a). Here, note that even if
E denotes some activity instance performed correctly, it still doesn’t have to be equal to the
nonterminal set Si, because not all steps are mandatory in a valid activity instance.

However, an instance of Ai still might have occurred in E when the condition {E} ⇢ Si
isn’t satisfied, due to the following reasons:

1. The user mistakenly performs a step from another activity (wrong step).
2. Activities from other classes are also being performed parallelly in addition to the activity

instance of Ai.
Whichever of the above cases might have occurred; there should be many steps in E which
belongs to class Ai. That is why in the next step (box 1d), we check the degree of similarity
between the activity class, Ai, with the activity episode, E, using a similarity match function
(section 4.3). If not enough similarity is found, the algorithm decides that no instances of class
Ai are in E (box 2b). Now, if E has a very high similarity match, then which of the two cases
(wrong step vs. multiple activities) mentioned above occurred?

If there are very few extra steps in episode E that does not belong to class Ai, then those few
steps were likely just wrong ones since there will not be enough steps for another activity. In
contrast, too many extra steps in episode E indicate the existence of multiple activities.

Separating steps of Different Activities

The validation method assumes that each activity episode contains steps from a single activity
instance. Therefore, before passing to that phase, we need to separate the steps of multiple
activities or remove the extra wrong step/steps. This way we create dummy episodes that
satisfy the requirement for entering the validation method. These dummy episodes are then
passed to the algorithm for reevaluation, and the results are traced back to the original episode
later.

Single Activity with Wrong Steps
In order to create an activity sequence where all steps belong to class Ai, we remove the wrong
steps from E using the operation

E0 = E� (E� Si)
This deduced episode E0 is called a dummy episode. Since the dummy episode satisfies the

condition {E} ⇢ Si, it is fed back to the start of the algorithm.

Separating steps of Multiple Activities
Suppose, there is activity instance of class Aj in addition to class Ai. Now, while creating

dummy episodes we have to base it on the similarity between the two class.
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Ai and Aj are disjoint
That means there is no common steps between these two classes. Therefore, the steps can be
easily separated by creating the following dummy episodes:

Ei = E – ({E}� Si)
Ej = E- Si

Here, ({E}� Si) is the set of steps in E that does not belong to Ai.
Ai and Aj have common steps

Now, depending on where the common steps belong there can be a few possibilities. Therefore,
we create dummy episodes both with and without the common steps:

Ei1 = E – Sj
Ei2 = Ei1+(Si \ Sj)
Ej1 = E – Si
Ej2 = Ej1+(Si \ Sj)

The algorithm feeds back all four of the dummy episodes for further processing, and any
error is readjusted later (see section 7.4.3).

7.4.2 Decision and Validation Phase

The validation method takes activity episode, E and the grammar of activity class, Ai as input
(box 2a). It assumes there is a single instance of Ai occurring in E. The method checks whether
the step sequence preserves the structure of the activity class or not. In case of a mismatch,
the method also finds what errors occurred based on the grammar definition. The basic idea is
to modify the regular expression matching algorithms of strings that are similar to String edit
distance. We use dynamic programming to store the intermediate results.
- Whenever literal characters (in this case activity steps) are found in expression, it is matched
with the current step from the activity sequence.
- For quantifiers ‘?’, ‘*’, or ‘+’ there is a choice of continuing the matching with latest literal or
skipping and proceeding to the next character.
- Quantifiers defining count and range require matching the latest literal character some the
specified number of times.
- An altercation with single alternative steps is also handled by checking whether any of the
steps specified within the square bracket have occurred.
- However, if alternations and subgroupings are encountered, then it is necessary to check the
different alternative paths. Therefore, we use recursion to save the latest state of matching and
explore a specific path. If the path ends up leading to a perfect match, the algorithm exits.
Otherwise, our method backtracks to the latest saved state and chooses any available path
which hasn’t been explored yet.
The detailed algorithm is given in section 4.3.

If E matches with an activity Ai without any error, then no other classes are considered for
a match and after completing the third phase of the process the algorithm exits. However, if
the instance in E occurs with error, then the whole process is repeated, and other classes are
checked for a perfect match.

Similarly, when the algorithm decides that a particular instance of class Ai does not belong
in episode E (box 2b), it checks for the next class and repeats the same process. When no viable
class is found, the episode is listed as a random sequence (box 3e)
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7.4.3 Result Adjustment and Storing Phase

Error Adjustment

After activity detection is completed, the third phase of the process begins. If dummy episodes
are created to separate steps of different activity instances, then adjustments are made by con-
sidering the information from the original activity episode and how the division was done.

Single Activity with Wrong Steps Now, if we think carefully, we see that there can be two
types of wrong steps.
1. Extra Step: If E0 matches a valid listed sequence perfectly, then the wrong steps within E

are extra steps.
2. Substitute Step: If there are some steps missing from E0, then the wrong step within E are

most likely done instead of the missing step.
Therefore, based on the output of errors found for E0, the error in E is readjusted.
Episodes with Multiple Activities
After the processing of the dummy episodes, the results in E is readjusted. Careful checking

is required when both classes withing the episode have common steps so that the same step is
not reported as part of both activities. We also check whether the activity instances can be
combined as the original activity episode E (i.e., which combination of the dummy episodes
from each activity class occurred).

Combining Instances Together
Additional error adjustment is performed by examining subsequent episodes up to a specific
time window. For example, checking is performed to see whether there is one activity instance
with missing steps at the end, and another instance from the same activity class with missing
steps at the beginning. Then, if those two instances are done within a certain time threshold,
then the system combines those activity instances as one with no missing step but having a
significant delay between steps.

Timing information for Quality

After all the discrepancies related to activity steps are sorted out, the algorithm proceeds in
finding time-related abnormalities. These abnormalities are detected by comparing the timing
parameters (start time and duration) of each activity step. There can be two types of delay:
1. Delay of a particular step: If the user takes longer than usual performing a particular

activity steps, then it is considered a delay.
2. Delay between steps: While determining this type of delay, the system needs to consider

whether the user was performing steps from some other activity or not.
In order to find the delay, the system has to provide with a range within which the duration
should fall. Otherwise, initially, no delay related error is reported. Later, when enough exam-
ples are observed, the delay is determined by comparing with the history of data from which a
duration distribution is calculated.

After the results are finalized, the newly observed sequences are stored. If a sequence al-
ready exists in the storage, then the statistic of the duration of the activity step and delay be-
tween consecutive steps are updated.
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Storage for Efficiency and Statistics

Once an activity sequence has been recognized, there is no need for going through the same
process again. There can be up to so many variations, and often patients who perform activities
with errors, tend to make the same mistakes. Therefore, storing the result provides a faster
evaluation. To search the result efficiently, we use a dictionary.

7.4.4 Verification by Expert

It is not always possible to receive user feedback, and therefore the verification part is optional
in our system. However, if at least periodically (once in several weeks) an expert opinion can
be received for the unseen sequences, then it would be extremely valuable. When generating
expressions using a grammar, syntax analysis and semantic analysis both are required. For
example, "I play chocolate" give a valid sentence structure but illogical meaning. Similarly,
even if the grammar shows the activity sequence as valid, it may or may not be practical.
Especially, since a lot of activities are user dependent, and a person close to a patient will be
able to identify problems that others can not tell.

7.5 Implementation Details

In this section, we describe the implementation details of some of the major classes and impor-
tant functions. The implementation was done using Netbeans IDE 8.2 with JDK 1.8.

7.5.1 Entity Classes

The goal of this system to recognize in-home ADL/IADLs. However, we have to differentiate
the different instances of the same activity class. For example, each time a person eats, a new
activity instance should be recognized. One way of implementing it would be creating a class
for each high-level activity, and create a new object belonging to the class. For example, we
can hard code classes named as ’Making Coffee’, and create an object each time the system rec-
ognizes making coffee. However, that would make the system too constrained since different
homes may have different activities and due to a difference in sensor setting the steps of the
activity will also be different. It is not possible to know and create classes for every ADL/IADL
in the world. Therefore, we separate the high-level activity class definition from the class that
generates activity instances. The system has two different classes ‘ActivityGrammar’ and ’Ac-
tivity’. If a dataset/home setting is designed to recognized ‘N’ different high-level activities,
then the system creates ’N’ objects of the ‘ActivityGrammar’ class corresponding to those high-
level activity classes. On the other hand, any recognized instance is represented by an object of
the ‘Activity’ class. However, each object of the ’Activity’ class has a variable associated with
the ‘ActivityGrammar’ class. Therefore, our system is general in terms of the underlying sens-
ing environment and works irrespective of the ADL/IADL defined for a specific home setting.

ActivityGrammar Class The ActivityGrammar class defines the meta information of each
high-level activity. One object of this class is created for a given list of ADL/IADL in a par-
ticular dataset/home setting during the initialization phase of the system. Each object has a
unique id and corresponding class name. Variables symbols, terminals, rules, and probabil-
ity are used to define the corresponding grammar of the class. The variable regularExpression
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defines the same regular expression of the activity class, which is either provided directly in-
stead of the grammar or is generated from the grammar rules. The time information variables
durationRange defines the acceptable duration length of the total activity, whereas delayTimeout
defines the timing threshold between two steps within this activity class.

Error Codes
No Error 0

Missing Step 1
Repetition 2

Wrong Step 3
Wrong Order 4

Deley within a Step 5
Deley between Steps 6

TABLE 7.2

Activity Class Whenever an activity instance is
recognized, a new object of the ‘Activity’ class is
created. The created object is associated with an ob-
ject from the ‘ActivityGrammar’ class whose regu-
lar expression matched or is the closest match with
the provided list of activity step sequence belong-
ing to the ‘Activity’ class object. The startTime and
duration variable stores instance specific timing in-
formation, i.e., when the activity was performed
and how long did it take to finish. The stepCount
is the length of the activity instance or the number
of activity steps within the activity instance. The
errorcode is used to indicate the error observed in that specific activity instance (table 3.2). If
no error is found, the errorcode is zero, and a single digit code is assigned for any specific error
type. If more that one type of error is found, then the codes are appended. The deviationNumber
is the minimum number of steps required to insert/delete/change to convert an invalid activ-
ity step sequence to a valid one. If no error is observed, then the variable ’isNormal’ is set to
true. The ‘activityOccurnceIndex’ is used for storing information of activity type, i.e., whether
the activity was interleaved in between other activity instances, performed in parallel with one
or more activities, or occurred by itself.

ActivityStep Class ‘ActivityStep’ is another entity class similar to the ‘Activity’ class. Each
object of ‘ActivityStep’ is a step detected by the underlying system components. Each object of
this class also has time-related variables storing the start time and the duration of the step. The
class related statistics of activity steps are stored within the teminal set of the ActivityGrammar
object. Each time an activity step instance is encountered, the ‘updateStatistics’ function up-
dates the relevant timing information of the ‘ActivitySte’p objects of the terminal set of corre-
sponding high-level activity. Therefore, if the same activity step occurs in different high-level
activities, the related statistics would be different.

ActivityEpisode Class The input stream of activity steps is divided into chunks of steps
sequence, each chunk a named activity episode. The object of ’ActivityEpisode’ represents
each such chunk. The ‘startTime’ of an episode is the minimum ‘startTime’ among all the
activity steps within the episode. The duration is found by subtracting the startTime from the
maximum endTime as calculated from the sequence of activity steps. The ‘length’ indicates the
number of activity steps in the given chunk of a sequence. Initially, the variable ‘assigned’ is
false. After the episode is passed through the main algorithm and an outcome, i.e., the possible
activity class, is found, then the variable is set to true. However, the main algorithm checks
for other possible matches unless a match is found without any error. In that case, the variable
isNormal will be set to true, and no further analysis will be performed on that specific activity
episode. All the possible matches are listed under the outcome object belonging to the episode.
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(A) Instance classes

(B) Metadata class

(C) Input Output classes

FIGURE 7.3: Definition of different entity classes
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Utility Classes

There are other utility classes for reading the grammar/regular expression and for reading the
input. The input file may contain only the raw sensor value. In that case, the reader trans-
fers the data to the activity steps recognizer which generates a sequence of activity steps. The
EpisodeCreator class contains the functions for iterating through the continuous stream of ac-
tivity steps and generating individual activity episodes (object of the ActivityEpisode class).
These episode objects are considered as the unit of processing.

7.5.2 Major Functions

Since Java is an object oriented language, each functionality is wrapped around some class.
The code system functionality is wrapped around a singleton class object of ’ActivityMonitor’.
The ‘ActivityMonitor’ class has all the functions described in the solution section (figure 7.2).
Here, we will only describe the process of validation and storing and searching of previously
observed activity sequences.

Validation: Pattern Matching

The validation function takes two input parameters, an extended regular expression (ERE) cor-
responding to some high-level activity class and an activity episode (or dummy episode) as-
sumed to have a single activity instance. The validation function first modifies the ERE and
then compares the given sequence of activity steps within the activity episode.

Modifying the Extended Regular Expression (ERE) The input ERE is a string array where
each element is a name of some activity step or a meta-character or a quantifier from table 3.2.
However, some of the quantifiers can be defined in terms of other quantifiers. The purpose of
modifying ERE is to reduce the type of different quantifiers. Suppose, S denotes a particular
activity step, then the modification logic follows:

• The plus ’+’ quantifier is replaced by appending a single occurrence before a kleen star
’*’. S+ = SS⇤

• The count {n} is modified by inserting n occurrences of the preceding activity step. S{5}
= SSSSS

• The range {min,max} is modified by inserting min occurrences of the preceding activity
step, follow by (max�min optional occurrences of the preceding activity step S{3, 6} =
SSSS?S?S?

• The altercation [S1 S2 S3] is modified by alternation without subgrouping. [S1S2S3] =
(S1|S2|S3)

Therefore, the matching algorithm needs to deal with only the quantifiers ?,*,|, and paren-
thesis for indicating subgrouping. Matching Logic The matching logic is similar to the string

edit distance algorithm where instead of matching a char, we are matching activity step object.
However, the special cases, i.e., quantifiers, they have to be handled separately. We use the
dynamic programming version of edit distance algorithm. We use a two-dimensional Boolean
array storing the match information, and a two-dimensional String array ‘path’ for storing the
path from where it generated.
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1. If pattern.get(j) == sequence.get(i) : dp[i][j] = dp[i-1][j-1];

2. If pattern.get(j) == ’?’ : there are two sub conditions:

(a) If pattern.get(j-1) != sequence.get(i) : dp[i][j] = dp[i][j-2]
In this case, sequence.get(i)* only counts as empty

(b) If pattern.get(i-1) == sequence.get(i)) : dp[i][j] = dp[i][j-1]
In this case, sequence.get(i)* counts as single step

or dp[i][j] = dp[i][j-2]
In this case, sequence.get(i)* counts as empty

3. If pattern.get(j) == ‘*’: there are two sub conditions:

(a) If pattern.get(j-1) != sequence.get(i) : dp[i][j] = dp[i][j-2] //in this case, sequence.get(i)*
only counts as empty

(b) If pattern.get(i-1) == sequence.get(i)) : dp[i][j] = dp[i-1][j]
In this case, sequence.get(i)* counts as multiple steps

or dp[i][j] = dp[i][j-1]
In this case, sequence.get(i)* counts as single step

or dp[i][j] = dp[i][j-2]
In this case, sequence.get(i)* counts as empty

Similarly, the path array is assigned with the direction from which it comes, i.e.,

1. If dp[i][j] = dp[i-1][j-1], then path[i][j] =-

2. If dp[i][j] = dp[i-1][j], then path[i][j] = 

3. If dp[i][j] = dp[i][j-1], then path[i][j] = "

4. If dp[i][j] = dp[i][j-2], then path[i][j] = ""

If the dp[pattern.size()][sequence.size()] is true, then a match is found. Otherwise, the path
array is used to backtrack and visit alternative paths for a possible match.

Recursion and Backtracking Recursion is performed for two reasons:

1. handling alternation and subgrouping defined by the ERE

2. exploring a alternative path by editing the input sequence for a prospective match when
a mismatch for a particular activity step occurs.

The different variations of recursion change the two-dimension arrays dp and path. There-
fore, we create a wrapper function and a separate recursive function. The wrapper function
initializes the parameters, create the dp and path arrays, and pass them by calling the recursive
function. On the other hand, each time the recursive function calls itself, it clones the partially
populated dp and path arrays, and passes the cloned object. Another point to note is that
the recursive call does not start examining the sequence and pattern from the initial position.
Therefore, a variable startI and startJ is passed from where the called function starts checking
and populating the arrays.

Whenever alternation and subgrouping occurs, the pattern.get(j) == ’(’ is observed. There-
fore, the algorithm recursively calls itself for each of the subgroups by initializing the ‘startJ’
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varable to the start of each subgroup, i.e., the pattern index immediately following ’(’ and ’|’.
A special variable ’alternating’ is set and passed as a parameter. Therefore, the called function
realizes that it is exploring one of the alternative paths. Thus, it discards anything from the
pattern when ’|’ is found until the quantifier ’)’ is observed, and reset the ’alternating’ variable
to false.

Sequence editing is achieved by

1. If sequence.get(i) has an unnecessary activity step, call with startI = i+1 and startJ=j.

2. If sequence.get(i) has a missing activity step, call with startI = i and startJ=j+1. Mark the
activity step of pattern.get(j) as a missing one.

3. If sequence.get(i) has a wrong activity step, call with startI = i+1 and startJ=j+1. Mark the
activity step of sequence.get(i) as a incorrect step that occurred instead of pattern.get(j).
Modify dp[i][j]=true and mark path[i][j]=’’ indicating modification.

4. Sequence with wrong order observed both missing step at one place and extra step at
other place while matching.

The algorithm also keeps track of the minimum edits. Therefore, whenever number of
edits in a particular path exceeds the previous minimum, then path is not explored any more.
Moreover, we initialize the maximumedit as a function of the sequence length and the pattern
length, which guaranties that at a certain point of time, the memory stack will no have more
than the maximumedit number of recursive functions and the exploration path always ends.

Storing and Searching

We created a dictionary for storing the valid and invalid examples. Since only prefix matching
is not enough, we decided to use HashMap for storing and searching. Moreover, there can
only be a certain number of variations. Therefore, the overhead is not much and the search
is very fast. The dictionary also stores statistical information for checking abnormality. The
dictionary class maintains two separate lists for observed valid and invalid activity instances.
The hashtable has the following <Key, Value> pair:
Key: A string is generated from the sequence of observed activity steps. This string is used as
the key for searching.
Value: As a value, we create an instance of the output class. Each instance of the output class
has the following associated information: - Activity class where the instance belongs.
- Standard activity instance with the particular sequence of activity steps.
- Time statistics (min, max, average, standard deviation) for the delay between steps and dura-
tion of each step.
- Occurrence Count

If a particular sequence is observed for the first time, then a key and an object of the output
class is created. After that, whenever the same sequence is observed, only the ’Occurrence
Count’ is incremented and time statistics updated.
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7.6 Evaluation and Discussion

In this section, we describe how we evaluated our solution using the following data:
1. CASAS Dataset: Cognitive Assessment Activity Data This is a publicly available dataset

with ADLs/IADLs with data from a total of 400 participants. The participant population
includes both healthy adults and patients with mild or moderate dementia.

2. Collected Data: We collected data in real home-setting from four different users. Al-
though the users were all healthy adults, we could simulate the different error types in
the data based on activity step labeling.

Number Activity Class
1 Sweep the kitchen and dust the living room
2 Obtain a set of medicines and a weekly medicine dispenser, fill as per directions.
3 Write a birthday card, enclose a check and address an envelope.
4 Find the appropriate DVD and watch the corresponding news clip.
5 Obtain a watering can and water all plants in the living space.
6 Answer the phone and respond to questions pertaining to the video from task 4.
7 Prepare a cup of soup using the microwave.
8 Pick a complete outfit for an interview from a selection of clothing.
9 Check the wattage of a desk lamp and replace the bulb.
10 Wash hands with soap at the kitchen sink.
11 Wash and dry all kitchen countertop surfaces.
12 Place a phone call to a recording and write down the recipe heard.
13 Sort and fold a basketful of clothing containing men’s, women’s and children’s articles.
14 Prepare a bowl of oatmeal on the stovetop from the directions given in task 12.
15 Sort and file a small collection of billing statements.
16 Setup hands for a card game, answer the phone and describe the rules of the game.

TABLE 7.3: The ADL/IADL classes in the CASAS Dataset with cognitive assess-
ment activity data.

7.6.1 CASAS Dataset: Cognitive Assessment Activity Data

There are not many activity recognition datasets that have the notion of steps. Although some
datasets with labeled activity steps are available in vision research, we did not find any dataset
with ADL and IADL where the activity steps are labeled except the ’Cognitive Assessment Ac-
tivity Data’ collected by Washinton State University from Kyoto testbed. The dataset contains
data from 400 participant where the population had healthy and dementia patients. We chose
this dataset beacause

• The dataset had activities defined in steps sequence.
• It had real patients with dementia. Therefore, it has activities with abnormalities such as

missing steps and delay.
The testbed was instrumented with passive binary, and non-binary sensors and the volun-

teers were brought to the testbed area for participating in the study. The table ?? lists the activi-
ties each participant had to perform during a data collection session. Before each activity, some-
one from the data collection team would describe the steps required to be performed for that
particular activity. An observer continuously monitored the ADLs/IADLs being performed
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Preparing Soup Instructions Defined Rules
1) Participant moves to the kitchen START
2) Participant removes materials PrepareOatmeal ->

from cupboard (retrieve pot from the cupboard)
3) Participant locates pot (turns on stove)
4) Participant turns on stove (fill pot with water)
5) Participant fills pot with water (put oatmeal into pot)
6) Participant puts oatmeal into pot (stir oatmeal)
7) Participants times one minute (put item in the bowl)
8) Participant stirs oatmeal (turn stove off)
9) Participant puts oatmeal into bowl (put multiple items in the Bowl)
10) Participant turns stove off $
11) Participant puts sugar in oatmeal retrieve pot from from cupboard ->
12) Participant puts raisin in oatmeal (open cupboard)
13) Participant throws raisin box (locate item)

in trashcan (retrieve item)
(close cupboard)

$
fill pot with water->
(turn on the tap)
(fill pot)
(turn off the tap)
$
retrieve item->
(retrieve pot)
$
put multiple items in the bowl->
(put item in the bowl)
(put multiple items in the bowl)
$
put item in the bowl ->
(put oatmeal in bowl)
$
put item in the bowl ->
(put sugar in bowl)
$
put item in the bowl ->
(put raisin in bowl)
$
put item in the bowl -> 2
$
END

TABLE 7.4: Example of activity steps and some grammar rules of the activity
‘Preparing Oatmeal’ instructed to be performed by a user.
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and collected ground truth. The data files are numbered per participant which lists triplets
<time, sensor, value>, and the fourth column (optional) is the label of activity start/stop, activ-
ity step start/stop, and instruction start/stop.

We created grammar rules for each activity just by looking at the description of the pro-
vided steps without looking into any data. The first column of table 7.4 shows one example of
providing instruction for performing the ADL ‘’ which clearly defines the activity steps, and
the second column shows the defined grammar rules. Here, notice the first rule where the ac-
tivity step ’turn on stove’ takes place before ’fill pot with water’ and ’turn of stove’ takes place
after ’put oatmeal into a bowl’. Even when these two steps are interchanged, it doesn’t matter.
Therefore, we also defined additional rules that take care of these alternative scenarios. How-
ever, since in this particular dataset the ordering is strictly defined, those extra rules were not
necessary.

After accumulating the instructions of all the ADL?IADL, we listed the classes of activity
steps that occur in the dataset. Although our algorithm assumes that the input would be ac-
tivity steps, in this case, the input is raw sensor values. Therefore, we assigned sensor/sensors
from the given sensor layout by the authors and using Apriori itemset mining algorithm for
each activity steps. Although detecting activity steps is not the main focus of this chapter, this
preprocessing step needed to be done before we could proceed to evaluate our core solution.
One of the difficulty with correlating sensors with the given activity steps was that there was no
clear one to one/ one to many mapping from the activity steps to the sensors. In fact, some of
the activity steps were too abstract and could not be related to any sensor, for instance ‘stir oat-
meal’. On the other hand, several activity steps were too close that same sensors get triggered
by those activity steps, such as, ‘retrieves broom from supply closet ’ and ‘retrieves watering
can from supply closet ’ only let us know the person was near the supply closet but not what
item he/she retrieved. Therefore, we revisit the grammar definition and omit the activity steps
that could not be detected from the sensor settings and combine the activity steps from different
activity to a single recognizable step and try out both activity steps when a particular sensor is
same for both steps.

Results: Recognizing Complete and Incomplete Activities

The figure 7.6.1 shows the result where blue solid columns are percentage of activity instances
in the dataset performed correctly and orange solid column shows percentage of activity in-
stances in the dataset performed partially or incorrectly. We represent our evaluation result
with striped column where blue, orange, and solid white boxes indicate reported percentage
of complete activity instances, percentage of incomplete activity instances, and percentage of
instances not recognized. We used percentage because not every activity was performed by ev-
erybody, and therefore the total number of instances in the dataset for each ADL/IADL classes
vary.

We find many interesting observation such as for sweeping or filling medicines our solu-
tion performed poorly in detecting activity instances that were not performed correctly. Any
instance it recognized was reported as a correct instance. Because sensors in the dataset cannot
still detect difficulty in performing activity. It could only detect ‘using supply closet’ for fetch-
ing broom or ‘opening medicine cabinet’ from door sensors. The activities ‘preparing soup’
and ‘preparing’ oatmeal shows the highest percentage of error, probably because these two
activities have the most number of steps defined by the researchers of this dataset. In case of
‘Preparing Oatmeal’ our algorithm performed poorly mainly because the grammar we defined
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FIGURE 7.4: Percentage of activities correctly recognized (true positive) and per-
centage of quality correctly assessed

[72]

considers adding raisin/sugar as optional steps, so when those steps are missing, it still marks
the activity as complete. For some classes there was not any way we could differentiate the
rules of different activity classes in terms of recognizable activity steps. For example, we could
detect ‘talking on the phone’, but not what he/she is talking or whether the person received the
call or dialed the number. Both for ‘washing and drying’ and in case of ‘talking on the phone’,
we missed lots of instances, because unless there is sensor value triggered, our algorithm can-
not tell whether somebody attempted to do something or not.

Discussion

Complexity of the Grammar It is interesting to find out that grammar can be designed just
from the description of the sensor setting. Moreover, the activities in this particular dataset
could be described by a regular grammar. Therefore, converting the grammar rules to the
extended regular expression (ERE) works and provides greater advantage in matching the de-
tected sequence with the grammar.

Importance of Sensors Many of the missing activity steps could not be recognized due to
the inability of recognizing those steps with the sensor, and therefore modifying the grammar
rules without those steps. If the researcher has the liberty to design the whole system and
choose sensors, then the performance of the system will be much higher.
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Importance of Choosing the right Activities Activity 6,12, 16 provides us only with the
information of ’using the phone’. All other steps are not detectable by the sensors, and there-
fore is not very helpful in identifying the missing steps or other anomalies from the activity.
Whereas activities such as 7 or 14 have more elaborate descriptions and have steps that are
both detectable and significant in evaluating patients condition without a human observer.

7.6.2 Collected Data

There is a scarcity of public dataset with ADL/IADL instances which labels activity steps or
has the notion of steps. Therefore, to evaluate our solution, we designed experiments to collect
ADL/IADL data from home and investigate what activity steps occur. Based on data collection
description from the literature and our own experience in collecting data for recognizing activ-
ity steps, we created a testbed by instrumenting sensors in a real home. We collected activities
listed in table 7.5 from four users. All the users were healthy young adults from both gender
groups (males and females). A user was wearing multiple waerable sensors in both hands , a
sensor like a necklace, and a sensor on the bend. She/he was free to perform more than one
activities in parallel. The experiment was not entirely controlled since we did not specify the
exact steps to complete the activities or constrain their movement in any way. In fact, one rea-
son for data collection was to observe the variety of activity steps that occur in home settings.
Users were free to perform the activities in their own way and were not required to start/stop

Activity List: Collected Data Example Activity Steps
1. Study sitting on the study chair

using keyboard
making typing motion

2. Watching TV sitting on living room sofa
occasional hand gesture for using remote

3. Making Tea using cabinets
using refrigerator
heating water
gesture of stirring
gesture of putting items

4. Eating sitting on the dining chair
hand gesture of eating

5. Washing Dishes using tap
scrubbing dishes
rinsing dishes

6. Cooking using cabinets
using refrigerator
using microwave
using oven
hand gesture for chopping ingredients
hand gesture for stirring

7. Dressing choosing outfit from closet
motion for changing clothes

TABLE 7.5: ADL/IADL classes observed in the Collected Dataset
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FIGURE 7.5: Percentage of incomplete activities correctly recognized (true posi-
tive) when steps are missing

each activity step from a resting position. Each data collection session was about one hour long.
A user participated in multiple sessions.

To collect the ground truth data, an observer recorded video of each session. Later, all the
activities and activity steps were annotated from the video using ‘Chronoviz’ software [74].
Since the purpose of this chapter to provide analysis on how to detect activities and find activ-
ity quality from activity steps, we use the labeled ground truth of activity steps as our input.
However, we only use the steps that are recognizable by the underlying sensing system, al-
though we assumed that all the steps would be correctly identified.

Results: Recognizing Complete Activities

In chapter 6 section 6.5 we have already shown the results of activity recognition based on only
the activity steps that were correctly identified by the lower components. The accuracies of
detecting high-level activities are 91% to 98% using grammar rules.

Therefore, when we assumed all activity steps are correctly identified and used the ground
truth label as sensor input, all the activity instances were detected. In fact, the complex ADL
classes where low performance was observed before due to low accuracy in activity steps recog-
nition were more easily detected. For example, ‘cooking’ and ‘making coffee’ triggers similar
set of in-situ sensors, but cooking has a lot more activity steps within it which are hard to
recognize. But could easily identified when details about the user activity steps are provided.

Here, we want to point out that although data was collected in a real home setting and
without constraining the movements and steps, the result still does not reflect the actual world.
Because here the activity classes were defined and within the data collection session the user
was performing activities only from the given list. For example, sitting on dining chair during
data collection was observed only during ‘eating’ activity. But in the real world often activity
classes will be encountered that are not defined by the grammar. In those case, human-in-the-
loop (the optional verification step described in section 3.2) would be helpful.
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Moreover, although each users performed activities differently, the ERE rules are able to
recognize all the different variations. However, the since the defined activity classes are quite
different, therefore the grammar rule could easily differentiate the instances from different type
of activity classes easily.

Results: Recognizing Activities with Errors

Since we collected data from only healthy adults, none of the activity instances had an error.
Therefore, to we created a simulated dataset by injecting errors in the stream of activity steps
from the collected data. We randomly dropped first one and then a total two steps respectively
from each activity instances. . The figure 3.2 shows how our algorithm recognized partially
complete activities.

We found that missing activity steps from longer activities vs. shorter activities (in terms of
the number of activity steps) affects the performance in activity recognition. Because activity
instances that already have very few steps, missing a high number of steps indicates that the
number of steps performed by the user was very few (or none). On the other hand, missing
two steps did not affect the accuracy of cooking. Again, what activity steps got deleted matters.
For instance, while washing dishes the step ’turn on tap’ and ‘turn off tap’ are very important.
Again, activities that have variations in definition is not fixed in particular location are also
hard to detect. For example, we considered two definitions of ‘Studying’, one is working on
a computer and the other is reading any book on sofa or bed. Since reading itself cannot be
detected when the activity step detecting ‘sitting on a sofa’ is not found, there is no other ac-
tivity step remaining detecting those variations of the instance. Similar problem is observed in
specific variations of instances of ‘Watching TV’ and ‘Dressing’ class.
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Chapter 8

Notification System

Medication adherence is extremely important for effective health outcomes. One of the main
reasons behind poor medication adherence is forgetfulness, and reminder systems are usually
used to address the problem. This chapter presents MedRem, a novel medication reminder
and tracking system on wearable wrist devices. The system is handy and interactive, and it
is enriched with several useful features. To address the limitations of the tiny display size of
the wrist devices, MedRem incorporates speech recognition and text-to-speech features along
with clever interface design. Users interact with the system using their voice commands as
well as using the display available on the device. A dictionary based training approach is used
on top of the state of the art speech recognition systems to reduce the errors in recognizing
the commands from the users. The system is evaluated for both native and non-native English
speakers. The error rates for recognizing voice commands are 6.43% and 20.9% for the native
and the non-native speakers, respectvely, when a off-the-shelf speech recognition system is
used. MedRem reduces the error rates to nearly zero percent for the both types of user through
a dictionary based training approach. On average, only 1.25 and 15 training commands are
required to achieve this performance for the native and the non-native speakers, respectively.

The rest of the chapter is organized as follows. Section 6.1 introduces the problem and sec-
tion 6.2 highlights the contributions. Section 6.3 describes the QuActive framework and our
approach, and section 6.4 describes the QuActive system design and implementation. Finally,
the evaluation and discussion are presented in section 6.5.

8.1 Motivation

Proper adherence to prescribed medications is extremely important for health outcomes. The
possible consequences of poor medication adherence include reduced effectiveness of treat-
ments, deterioration of health conditions, longer recovery time, increased cost, irrecoverable
damages to health, hospitalization, and even death. Despite the severe consequences, the med-
ication adherence rate among patients is significantly low [77] [78] [79]. World Health Orga-
nization (WHO) reports that the adherence to long-term therapy for chronic illnesses in devel-
oped countries averages 50%, and the rates are even lower for the developing countries [77].
Poor medication adherence is a public health problem, and WHO identifies it as a worldwide
problem of striking magnitude[77]. About 33-69% percent of all the medication-related hospital
admissions in the United States result from poor medication adherence [80].

One of the main reasons for poor medication adherence is forgetfulness. People often forget
to take medication at an appropriate time, and even sometimes make mistakes to take proper
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dosages. Though forgetfulness is more prevalent in people with a reduced cognitive ability
such as the elderly, it is also very common to healthy and young people, as because many
factors beyond cognitive ability like daily routine, habits, and changes in medication regimen
result in the forgetfulness regarding medication. For example, though irregular use of contra-
ceptive pill increases the risk of unintended pregnancy, 68.1% of the participants of a study
reported missing one or more pills, and 48.9% reported missing two or more during a 3-month
study period [81]. In the study, the average age of the participants is 20.9 years, and forget-
fulness is listed as one of the main reasons for missing the pills. Several studies show that
medication adherence is improved significantly with the use of automated reminder systems
[82][83][84].

A number of smartphone applications for medication reminder and tracking are available
in the app stores [41] [42]. Researchers have also designed, developed and evaluated reminder
systems using smartphones [44][45]. However, smartphone apps are not convenient and ef-
fective enough for medication reminder and tracking. Though smartphones can be used by
one hand when it is laid on or hanged against some surfaces, most of the times users need to
hold the phone by one hand and use it by another. Even for only viewing some notifications,
the phone usually needs to be grabbed. Occupation of the hands for using the phones, and
the attention required to use the apps justify that smartphone-based systems are significantly
intrusive, and are not convenient, particularly for long-term and complex medication regimen.
Also, smartphones provide limited effectiveness in different contexts. A user is very likely
to miss a reminder at home when the phone is far enough from his/her position at the time
the reminder is given. For example, a user may miss a reminder when he/she is busy in the
kitchen, but the phone is in the bedroom far away from the kitchen. For contexts like listening
to songs, TVs or videos, the user may not perceive the reminder even if the phone is located
near him/her. The limitations of the smartphone based reminder systems in such contexts are
revealed by a feasibility study [46]. In many situations like in meetings and classrooms, smart-
phones often need to be kept silent, and users often forget to return the devices back to the
non-silent mode when silence is not required anymore. It is very likely that a user misses some
reminders in such scenarios.

This thesis chapter presents MedRem, a novel medication reminder and tracking system on
wearable wrist devices. As the device is placed on the wrist, it is free from the above-mentioned
limitations of the smartphones. However, one of the significant challenges in developing in-
teractive systems for wrist devices is their form factor. The touch screens available on these
devices are tiny, and they are much smaller compared to smartphones and tablet computers.
MedRem enables interactions with the users by incorporating speech recognition and text-to-
speech features along with intelligent interface design. It uses the microphone and the speaker
along with the touch screen available on the wrist devices to take inputs from and give outputs
to the users. The tiny display of the device is used for minimal inputs and outputs, while a user
can retrieve and provide more information from/to the system through voice commands. Per-
sonalized models are built and updated over time to reduce errors in recognizing users’ voice
commands, and thus better user experience is provided.
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8.2 Contributions

This chapter highlights the contributions of the notification subsystem:

• A novel medication reminder and tracking system on wearable wrist devices that is more
handy and less intrusive compared to existing systems.

• User interactions are enabled by incorporating text-to-speech and speech recognition fea-
tures along with clever interface design.

• It is a general purpose reminder and tracking system that can be customized according
to the patients’ needs.

• A novel dictionary based training approach is used on top of the state of the art speech
recognition systems to reduce the errors in recognizing the voice commands from the
users.

• The technical accuracy of the system is evaluated for both native and non-native English
speakers in controlled experiments.

• The dictionary based training approach reduces error rates to nearly zero percent for both
the native and the non-native speakers with only 1.25 and 15 training commands on aver-
age, respectively. In contrast, the error rates of using the off-the-shelf speech recognition
systems with no training are 6.43% and 20.9%, respectively.

8.3 System Description

MedRem is a highly flexible, customizable, and automated system. Most of the functionalities
of the system can be configured and customized easily using a cloud platform. Configurations
and updates from the cloud are automatically downloaded to the wrist device, and data from
the device is also automatically uploaded to the cloud platform. The uploaded data can be used
by the caregivers, physicians and other legitimate stakeholders for different purposes including
monitoring medication adherence of the user.

8.3.1 Operating Script

The core of MedRem is the Operating Script (OS) that contains the list of reminders for the user
along with necessary settings and information. When required, the OS is updated in the cloud,
and the system on the watch fetches the updates automatically. There are two components of
the OS, general settings and reminder list. General settings include OS identification number,
last date and time the OS is updated, user name, and user preferences that are applicable to
all the reminders. Each of the entries of the reminder list contains details of a reminder with
fields like id, type, time, message and so on. Reminder specific settings are also available in the
corresponding entry. The number and values of the fields in an entry depend on the specific
reminder. An example of an entry in the reminder list is shown Figure 8.1. The “type" and
“time" fields indicate that the reminder is provided daily at 2:00 pm, and the “display symbol"
field indicates the symbol that is displayed on the wrist device when the reminder is given.
The “message" field contains the message that is provided for the reminder, and the “details"
field contains more information about the medication. Some other fields from this example
reminder entry are discussed later in this paper.
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FIGURE 8.1: Example of a reminder entry in the Operating Script (OS) in JSON
format

8.3.2 Reminder Life Cycle

MedRem allows the users to reschedule or postpone a reminder. When a reminder is provided,
if the user doesn’t respond to it or doesn’t confirm that the medication is taken, the reminder
for that medication is rescheduled at a later time according to the settings of the reminder. In
case the user explicitly asks the system to reschedule the reminder at a later time of his/her
preference, it is rescheduled according to user’s preference instead of the default settings.

A reminder is rescheduled again and again until any of the following occur:

• The user confirms that the medication is taken

• The user explicitly asks the system to stop rescheduling the reminder

• A predefined period of time is elapsed from the original schedule time of the reminder.

For example, the repetition interval and period of the reminder of Figure 8.1 are defined
as 20 minutes and 5 hours, respectively. So, the reminder is given first at the specified time at
2:00 pm, and it is repeated periodically with a 20 minute interval for up to 5 hours. If the user
confirms that the medication has been taken, or he/she asks the system to stop the repetitions,
the reminder is not repeated any more. The default repetition interval for the reminder is
changed according to user’s preferences, if there is any. As an example, consider a scenario
when the user is driving and a reminder is provided, but the user needs one more hour to take
the medications. In this case, the user can ask the system to remind him/her after one hour
instead of the default interval. This feature allows the user to avoid unnecessary reminders.
The life cycle of a reminder is illustrated in Figure 8.2.

The repetitions of a reminder help the user not to forget the medication, as well as being
useful for tracking medication intake through the confirmation from the user. Stopping the
repetitions after a certain period, which is configurable, ensures that a reminder is not repeated
irrelevantly or unnecessarily. For example, the medication that is supposed to be taken at 2:00
pm may be ineffective after 7:00 pm. So, providing reminder of the medication afer 7:00 pm is
irrelevant. The repetition period as well as the repetition interval can be different for different
medication reminders.
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FIGURE 8.2: Life cycle of a reminder

8.3.3 Reminder Session

A reminder session starts when the system provides a reminder alert to the user, and it ends
when the interaction between the user and the device for the reminder is finished. If a user
doesn’t respond within some duration after the reminder alert is given, the session terminates
automatically. During a reminder session, a user can interact with the system using the touch
screen and/or voice commands. When a user uses voice commands, the responses from the
system are also given in voice through the speaker of the wrist device.

8.3.4 System Architecture

As mentioned earlier, MedRem uses a microphone and a speaker along with the touch screen
for taking inputs from and providing outputs to the user. The microphone and the speaker
work as input and output media respectively, whereas the touch screen works as both. MedRem
is composed of several modules namely I/O Manager, Network Manager, Schedule Manager,
Session Manager and Storage Manager. The architecture of the system is shown in Figure 8.3.

The I/O Manager takes inputs from the user, and provides the data to the Session Manager.
It also updates the display and speaks through the speaker following the data from the Session
Manager. The Schedule Manager is responsible for scheduling the reminders. It maintains a
dynamic list of Repeated Reminders(RR) that contains information about the reminders that
need to be repeated. Using the OS and the RR, the Schedule Manager schedules the next re-
minder session, and details of the next reminder session are sent to the Session Manager that
starts the next session according to the schedule. The Session Manager manages the whole
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FIGURE 8.3: System Architecture

workflow of a reminder session, including the recognition of the voice commands. It stores
necessary information like medication intake confirmations to the storage. Data is stored tem-
porarily on the device, and the Network Manager uploads the data to the cloud periodically.
It is also responsible to look for and download the updates available in the cloud. The Storage
Manager helps to organize, store and retrieve data to/from the storage.

8.4 Solutions

8.4.1 Alerts

A major problem of the smart phone based systems is that a user may miss important reminders
in different contexts as described earlier. To provide an alert, MedRem vibrates the device.
Since the device is attached with the wrist, the user gets the alert if the device is worn. The
vibration duration is configurable, and it is set to two seconds by default.

8.4.2 User Interaction

Interactions through Touch Screen

Due to the form-factor, the information displayed on the screen of the wrist device is kept
limited to very few symbols and words, possibly within one or two so that they are bigger in
size, and require very little attention or effort from the user to understand. Different symbols
and texts are used for different types of reminders. For example, a symbol of a pill is shown
when the user is reminded to take a pill, and a symbol of an inhaler is shown when the user
needs to use that. Customized symbols for the reminders of different kinds of medications
help the user to better comprehend about why the reminder is given, particularly when the
user needs to take multiple types of medications with different dosages. Examples of reminder
symbols are shown in Figure 8.4. If a reminder is provided for multiple medications, the total
number of medications is also displayed on the screen, as shown in Figures 8.4(c) and 8.4(d).
When a user needs to be provided with critical information like changes of medicine, dosage
or schedule, the display is blinked so that the user can easily understand that some important
information for him/her is available there.
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FIGURE 8.4: Some example symbols for a reminder (a) one pill (b) inhaler (c) two
pills (d) two pills and the inhaler

FIGURE 8.5: Example of multiple display pages for a reminder

MedRem not only provides reminders, but also tracks medication intakes. Whenever a
reminder is provided, either a fresh reminder or a repeating reminder, if the user has already
taken the medications, he/she confirms just by clicking the display. It ensures medication
tracking with minimum intervention. If the user hasn’t taken the medication, the reminder
session can be closed by double clicking on the display, or just by leaving as it is. For the later
case, the system automatically closes the reminder session as well as the display after some
predefined time period. If medication intake is not confirmed, the reminder is rescheduled at a
later, as described earlier.

In cases when a reminder is given for multiple medications, a display page for each of the
medications is available in addition to the combined display, as shown in Figure 8.5. Users can
navigate between different pages through sweeping the display to the left or to the right. If the
user has taken all the medications when the reminder is provided, he/she confirms it just by
clicking on the combined display (Figure 8.5(a)). However, if the user has taken some of the
medications, that can be confirmed by navigating to and clicking on the corresponding pages.
This navigation feature enables easy tracking of partial medication intakes.

Though possible interactions through touch screens are limited, the interactions supported
in MedRem the screens are very useful when the users do not need or prefer voice interactions.
Most of the times, the user understands the reminder by just getting the vibration and/or
looking at the display.

Interaction through Voice Commands

There are cases when the touch screen in not feasible for exchanging information between the
user and the system. MedRem addresses the limitation of the touch screen through enabling
voice interactions. Listed below are some of the scenarios when voice interactions are used.

• When the display flips, the user understands that there is some important information
there. The user can command the system to provide the information.

• The user needs more information about a reminder beyond what is displayed on the
screen.
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• The user needs to reschedule the reminder at a later time of his/her preference.

• The user need to record some information related to the medication.

• The hands of the user are occupied, and the user wants to confirm medication intake.

To ensure that MedRem doesn’t talk in the contexts where the user doesn’t want it to, voice
interaction is started during a reminder session only when the user provide some specific com-
mands, known as ‘session initiators’. For example, users can use any of the words of “System",
“Reminder" or “Device" as session initiator. After providing a reminder, if the system recognizes
any of these session initiators, it starts talking with the user.

For any voice commands, except the session initiators, MedRem doesn’t require strict for-
mat, and so the users only have to memorize few keywords, called the ‘command keywords’
that are defined for different purposes. The user needs to include corresponding keywords in
the voice command for the specific purpose. For example, if a user wants to reschedule a re-
minder after half an hour, possible expressions or commands include, but not limited to:
“Remind me a f ter hal f an hour"
“Remind a f ter thirty minutes"
“Please ask me a f ter hal f hour"

However, these commands need to include any of the keywords “remind" and “ask", as well
as it should include a specific interval. In cases when the user provides some information or
instructions to the system like medication intake confirmation or to reschedule a reminder, the
system repeats what it recognizes to make sure that the information is not recorded incorrectly.
A user can repeat the command in case it is not recognized correctly by the system. A user can
repeatedly ask the system for the same information even within the same reminder session.

It should be noted that ‘Command’ or ‘Voice Command’ in this paper denotes the word
or the sequence of words that a user speaks to the system. The sentence “I0ve taken medicine"
is also considered to be a command here. Examples of command keywords, their purposes,
and some possible voice commands associated with the keywords are listed in Table 8.1. The
command keywords along with their purposes are configurable in MedRem. Even the session
initiator keywords can be changed. This feature allows to provide customized options for any
user or user group.

Unlike other voice commands, a user can optionally add only any of the words “Hi" or
“Hello" in front of the session initiators. This restriction reduces the possibility of starting voice
interaction during natural conversations in the user’s environment where the user does not
intend to start voice interaction with the system, but he/she or someone else nearby utters the
session initiator keywords.

8.4.3 Voice Command Recognition

For recognizing voice commands, MedRem uses off-the-shelf speech recognition tools that are
available in the smart wrist devices like the Android Speech Recognizer [85] for the Android
powered watches. However, the actual commands provided by the users, and the words gener-
ated by the speech recognition system often differ significantly, particularly for the non-native
speakers. Though the problem is less severe for the native speakers, the errors reduce usability
of the system, and thus they result poor user experiences. In this paper, the actual text rep-
resentation of a voice command, and the text output of the speech recognition system for that
command are denoted as Actual Command Text (ACT) and Recognized Command Text (RCT),
respectively.
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TABLE 8.1: Examples of Command keywords, their purposes, regular expres-
sions and related commands

Command
Keywords

Purpose Regular Expression Example Com-
mands

System |
Device |
Reminder

Session Initiator (Hi|Hello)? (System |
Reminder | Device)

System
Hello Reminder

detail | more To get more information
about the medication

*(detail | more)*

Details please
Give me more

information
Tell me details

repeat | what |
say again

To ask the system to repeat
what it just told

*(repeat | what | say *
again)*

Say it again please
Please repeat it
What?

done | taken Confirm that the medication
is taken

*(done | taken)* I’ve taken it
I’m done

yes | no Answer to a yes/no ques-
tion from the system

(yes|no)*
yes
yes, I’ve taken
no

okay | ok |
thank

To confirm the system that
required information has
been received

*(okay | ok | thank)*
Okay
Thank you
Okay thanks

remind | ask
+ later | after
specific time

To ask the system to remind
later (after predefined time
interval) or after the interval
the user prefers.

*(remind|ask)*
(later | after TIME)*
TIME!

NUM hour (and)?
NUM minute
| NUM hour
| NUM minute

NUM!
number (and half)
| half

Remind me after
half hour

Ask me after
one hour and
thirty minute

Please remind
me later

don’t remind To ask the system not to re-
mind again

*(don’t remind)*

Don’t remind
again

Please don’t
remind
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To support the users to provide voice commands in a more natural way, regular expressions
based techniques are used in the system. A set of regular expressions are defined correspond-
ing to the command keywords. Table 8.1 shows some command keywords along with the
corresponding regular expressions. An ACT or a RCT is defined as valid if it matches with one
and only one of the regular expressions in the system, otherwise it is invalid.

The voice command recognition process in MedRem is depicted in Figure 8.6. Whenever a
user provides a voice command to the system, the speech recognition tool is used to retrieve
the RCT for that command. The voice command is recognized if the RTC is valid that means if
RCT matches with one and only one of the regular expressions, otherwise a dictionary search
is carried out as described later. An ACT and its RCT often differs, and different RCTs may be
generated for the same ACT. So, it is likely that an RCT is invalid though the corresponding
ACT is valid that means the voice command from the user is valid.

FIGURE 8.6: Voice command recognition process

MedRem uses a personalized dictionary on top of the speech recognition system to reduce
the errors in recognizing the intended voice commands. The dictionary maps an invalid RCT
to a corresponding valid ACT. When an invalid RCT is generated by the speech recognizer,
the dictionary is searched for the RCT. If it is found, the command is recognized by the cor-
responding ACT in the dictionary. Otherwise, the command is not recognized. To train the
system for a valid command that is not recognized by the system, the user needs to provide the
system with both the voice command and the corresponding ACT. Text inputs are required to
enter an ACT to the system, which is not feasible to be done in the wrist devices. So, the user
provides the voice command to the wrist device, and inputs corresponding ACT using devices
with a larger display like a smartphone or a desktop computer. The watch is connected with
the larger device using Bluetooth and/or WiFi. The ACT provided by the user is tested for
validity first, and if the ACT is valid, the RCT generated from the voice command as well as
the ACT are entered into the dictionary. When the same invalid RCT is generated again from
a voice command, the command is recognized using the valid ACT from the dictionary. Thus,
the errors in recognizing voice commands are reduced through personalized training.

The training is a continuous process. However, the average number of training commands
required to achieve nearly zero error rate is not very high even for the non-native speakers
due to the fact that limited number of command keywords are defined in the system, and the
varieties of commands used by the users are usually not very large.

8.4.4 Cloud Connectivity

The wearable devices used in MedRem are equipped with Bluetooth and Wi-Fi capability. In
cases where Wi-Fi access is available, MedRem uses it to connect to the cloud. Otherwise, the
wrist device is connected to a smartphone using Bluetooth, and then the system connects to the
cloud through the smartphone.
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8.4.5 Energy Efficiency

Due to the form factor of the wrist devices, the capacity of the batteries available in the devices
is usually very limited. So, any system for these devices needs to be energy efficient. MedRem
uses the display, the microphone and the speaker only during the reminder sessions. A re-
minder session typically runs for very short time, usually less than a minute. As stated before,
if a user doesn’t respond to a reminder within a predefined time period after the reminder is
given, the reminder session terminates automatically. The time period is configurable, and it is
set to 10 seconds by default. When a reminder session ends, MedRem schedules the next re-
minder, notifies the underlying operating system of the device about the schedule, and moves
to hibernate state. The underlying operating system wakes MedRem up according to the sched-
ule. So, the energy consumption by MedRem depends upon how many reminders need to
be provided within a time period, and how long the reminder sessions run. The total time
MedRem runs per day is likely to be few minutes, and so it doesn’t consume significant energy.

To save energy, automatic upload or download of data to/from the cloud is carried out very
sparsely, only once a day by default. However, the frequency can be configured according to
the need of the users. In case a user needs MedRem to upload/download data immediately,
that can be done just by pressing a button available in the MedRem app in the wrist device.
This approach of data exchange between the wrist device and the cloud platform ensures that
very less energy is consumed while the needs of the users are not compromised.

8.5 Experiment

A prototype of MedRem has been developed using ASUS Zenwatch2, an Android powered
smart watch that comes with a microphone, a speaker, and a 1.63 inch touch screen. The Text-
to-speech and Speech Recognition features available in the Android platform have been used
in the prototype.

8.5.1 Data Collection

Data has been collected from 4 native and 6 non-native English speakers. The participants in
the study include undergraduate students, graduate students, faculty and a housewife. The
command keywords listed in Table 8.1 have been used for the experiment. The participants
are provided with mock reminders on the smart watch, and they interact with the system us-
ing voice commands. The experiments are carried out in a semi-controlled environment where
the actual voice commands provided by the users to the system (the ACTs) and the command
text generated by the Android Speech Recognizer (the RCTs) are recorded by a second per-
son. There is no constraint on the number or order of commands to be used for each of the
reminders. Total 292 reminders are provided to the participants, and a total of 1142 commands
from the participants are recorded for the reminders. 182 of these commands can not be rec-
ognized by the prototype that uses the Android Speech Recognizer only with no training or
dictionary. It should be noted that the participants use several commands in a reminder, on
average, for the purpose of the experiment. Also, similar commands are repeated during many
of reminder sessions. In real deployments, the average number of voice commands used in a
reminder will likely be smaller.
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8.5.2 Analysis

The performance of the system in recognizing the voice commands is evaluated for two types
of training approaches: leave one person out (LOPO) training and personalized training. Here,
accuracy is defined as

accuracy =
Number o f commands recognized

Total number o f commands

As usual, error rate is defined as, error rate = 1� accuracy
In the LOPO training, commands of each of the subjects are tested using a dictionary that

is trained by the unrecognized commands (the invalid RCTs) of the other subjects. Figure 8.7
shows the error rates both when only the speech recognizer is used and when the dictionary
built from the LOPO training, called the LOPO dictionary, is used on top of the speech recog-
nizer. As shown in the figure, the error rates are 6.43% and 20.9% for the native and non-native
speakers, respectively, when no dictionary is used. Using the LOPO dictionary with the speech
recognizer reduces the error rates to 2.96%, and 12.88% for the native and the non-native speak-
ers, respectively. As several of the invalid RCTs of a subject do not matches with those from the
other subjects, it is manifested that many of the errors are not generic, rather they are person
specific.

FIGURE 8.7: Error rates in recognizing intended voice commands with speech
recognizer only (No training) and with using speech recognizer with leave-one-

person-out (LOPO) training

For the personalized training, the dictionary for a user is built and updated with the un-
recognized commands from him/her in the temporal order the commands are provided. The
RCTs and the corresponding ACTs are used for the training. The updated dictionary is used to
recognize the subsequent commands from the subject when the corresponding RCT is found
to be invalid. Initially the dictionary is empty, and it is updated over time. Figure 8.8 illustrates
how errors are reduced with the average number of commands that are used in training the
system. The error rates are reduced to nearly zero after using 1.25 and 15 commands, on aver-
age, for the training of a native speaker and a non-native speaker, respectively. Once the system
is trained for an unrecognized command, the command is recognized later if the same RCT is
generated even though the RCT is invalid. So, the error rates reduces if the system is trained
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FIGURE 8.8: Reduction of error rates with personalized training

over time. As limited number of command keywords are defined in the system, and the vari-
eties of the commands (using the same set of keywords) used by the users are usually not very
large, the average number of training commands required to achieve nearly zero error rate is
not high. The required training efforts for a user depends on the variety of commands used by
the user as well as the factors like pronunciation and accent of the user that are associated with
speech recognition accuracy.

8.6 Discussion

As expected, the error rate of speech recognition by the state of the art system is much higher
for non-native speakers compared to native speakers. The performance of the speech recog-
nizer may also differ for native speakers with different accents. The dictionary based training
approach enables MedRem to be robust in recognizing command even from non-native speak-
ers. Though the system is evaluated using English language only, the design of the system is
language independent. Beyond the purpose of a medication reminder and tracker, MedRem
can be used for other purposes like providing reminders for exercise and other daily activities,
and for tracking well-being of the users. For example, MedRem can be configured to ask the
users periodically about their physiological conditions, and to record the users’ feedbacks.

One of the limitations of our experiments is the lack of real world deployment. Previously
unseen problems along with new issues are often observed when a system is used in real world
settings. The effectiveness of MedRem in improving medication adherence has not been ex-
plored in this study. However, studies show that automated reminder systems are effective in
improving medication adherence, as mentioned before. Considering that MedRem comes with
several useful features, and it overcomes many of the limitations of the existing automated sys-
tems, it would be more effective in improving medication adherence compared to the state of
the arts. MedRem can be extremely useful for people with visual impairment, Essential Tremor,
Parkinson Disease, and/or other disabilities. In the future, different aspects of MedRem like its
effectiveness and usability will be studied through long term and real world deployments.

To reduce interventions in tracking medication intake, automatic medication tracking fea-
tures can be integrated into the system. The sensors like the accelerometers and the gyroscopes
embedded into the wrist devices can be used to monitor medication intake through tracking
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the hand movement of the users. Automatic tracking of the medication using the wrist device
will be explored in future endeavors.

Smart wrist devices can be used for multiple useful purposes beyond just as a timepiece,
and so the use of these devices has proliferated in the recent years. MedRem can be installed
as an additional application on these devices with no/very low additional cost.

8.7 Conclusion

This chapter presents MedRem, a novel medication reminder and tracking system on wrist de-
vices. State of the art speech recognition tools are combined with novel approaches that makes
the system very usable and robust. Experimental results show that with very little efforts from
the users, only 1.25 and 15 training commands on average for native and non-native English
speakers, respectively, MedRem achieves nearly zero percent error rate in recognizing users’
voice commands. As literature shows that medication adherence is improved significantly
with the use of automated reminder systems [82][83][84], and as MedRem overcomes many of
the limitations of the state of the art, this system would be very effective toward improving
medication adherence.
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Chapter 9

Conclusion

In this thesis, we addressed the problem of monitoring quality of activities of daily livings
(ADL) and instrumented activities of daily livings (IADL) in a home settings. We presented
a solution for the problem that does not sacrifice the performance of the activity recognition
process and is capable of handling various activity types and number of people. As part of
the thesis, we developed four systems and performed experiments to evaluate the algorithms
and approaches used in our systems. If we look from broader perspective, we can identify
two key areas in Home Monitoring System research where the work in our dissertation have
made the most impact. The first one is the research on activity recognition. A lot of interesting
works were already available when we started investigating this area. We build our thesis
on top of those methods and systems. We identified the problems and parameters that were
not fully explored and observed some interesting results. In contrast, we did not find many
work on the research of activity quality monitoring, specially targeted to in-home ADLs and
IADLs. Therefore, we needed to define specific parameters and plan the experiments carefully
by studying related research works. In this chapter, we will summarize our findings and the
observations, as well as provide ideas for future exploration.

9.1 Summary

In this section, we summarize the results and observations from the studies of activity detection
and recognition and activity quality monitoring.

9.1.1 Research on Activity Recognition

Novel Segmentation Algorithm

As part of our system SARRIMA, we enhanced the location based apriori algorithm for activity
detection by modifying the segmentation algorithm. The modified algorithm considers time
difference of sensor triggering in addition to sensor location information. Thereby, making
the system work in broader scenarios such as with multiple persons, or constraint apartments
where many activity instances are performed within a single room. We see that SARRIMA
achieved 97.34% and 98.15% accuracy on average, respectively, on the CASAS Spring and Sum-
mer dataset. The accuracy is higher than HMM and SHMM (92% on average) applied on the
same dataset [7]. In the ARAS datasets, SARRIMA acheived average accuracy of 87% for House
A and 95.3%for House B when considering differentiating activity sub-class, but achieved av-
erage accuracy of more than 98% on activity recognition in both houses when considering only
high level activity class. For example, recognizing a high level class ‘preparing meal’ gives
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higher performance instead of recognizing the sub-classes ‘preparing breakfast‘, ‘preparing
lunch‘, and ‘preparing dinner‘ of the high level class.

Techniques for Person Identification without Specialized Sensors

In SARRIMA, we identified the person who performed the activity from in-situ binary sensors.
We observed that in houses (CASAS Spring and Summer datasets) where person to person in-
teraction is much less and each person has their own room and separate routine, the process
of identification is simpler since different set of in-situ sensors are triggered by each person or
their activity timing is very different. However, the problem is very tricky in houses (ARAS)
where the residents lifestyle is shared. The percentage of activities where a person could be
identified were very low and by considering binary sensors this percentage could be increased
up to a certain extent. We showed how adding very few specialized sensors the percentage
number of person to activity assignment almost doubles by using the correlation information
among the occupancy episodes. Here, we would like to mention and clarify that SARRIMA
refrained from assigning person to activity randomly. Therefore, if we consider the effective-
ness of person identification in terms of only the activity instances where assignments were
made instead of total activity instances, the accuracy is quite high. Therefore, the technique of
occupancy episode correlation and using user behavioral data shows promise in person iden-
tification research.

A Novel Framework for Activity Recognition based on Grammar

We designed and implemented a novel activity recognition framework, QuActive, which mod-
els in-home activities in terms of activity steps. The framework uses grammar rules for estab-
lishing relationships among the activity steps within an activity and thereby handles random-
ness and manages variations of the different activity instances belonging to the same activity
class. The framework is reusable and extensible, since changes can be handled just by adding
new rules. Our evaluation on three different data sets shows that the framework is capable of
handling different activity types and outperforms the state-of-the-art techniques for all of these
datasets. The system was also deployed in a real home and in a semi-controlled setting and it
could detect 98.6% of the defined activity instances.

9.1.2 Research on Activity Quality Monitoring

Defining Quality Parameters and Developing a System for Quality Monitoring

The main purpose of monitoring in-home activities as part of home health-care systems is to
provide information for early detection of diseases. The existing studies focus more on improv-
ing the technical aspects of the system but are ambiguous about how the collected information
could help. Therefore, as part of this thesis, we attempted to understand the quality of daily
in-home activities and defined clear and measurable parameters for accessing the quality of a
performed activity. Since recognizing activities when the activity process is not complete or
erroneous is challenging, we provided a novel solution that handled the problem. We have
also implemented our solution and developed a system that recognizes both completed and
partial activities and reports the errors. We tested our system by simulating error in our col-
lected dataset and also with a public dataset having erroneous activity instances from dementia
patients.
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Comprehensive Studies on Understanding Activity Steps in Daily Life

Recognizing activity steps is extremely important for finding the quality of an activity. How-
ever, as it turns out the solution to the problem is not very straightforward. In this thesis, we
have documented all the challenges we faced while working on a solution. We have elaborated
our attempts in using different sensing modules and the interesting facts we noticed as part of
the data collection procedure. We also provided examples to help others understand our point.
The ideas for tacking/minimizing some of the problems and our lessons learned have also been
cataloged. We believe the provided guidelines will be beneficial to future researchers.

9.2 Future Work

No systems are perfect. Yet, the realization of imperfection gives the opportunity to learn and
improve. Our experience while working on the projects in this dissertation have led us to
different interesting insights and possible research directions. There are some obvious choices,
such as applying our method in other datasets or using different parameters for the algorithms.
However, in this section we want to list some ideas we believe are worth exploring. We not only
provide research directions for computer science majors, but also exciting future works from
various perspectives.

9.2.1 Studies in Detection and Recognition of Activity Steps
One of the core components of our activity quality monitoring system is detecting and identi-
fying activity steps. The success of the upper layer modules depends on the correctness and
confidence level of the activity step recognition process. Although, we used classical machine
learning algorithms and feature sets, the performance results were below expectation on var-
ious scenarios. One of the reasons for this limitation might be the lack of data. Thus, we
encourage further studies concentrating specifically in this area, which would likely provide
favorable results. Applying more advanced machine learning algorithms and performing fea-
ture engineering might be another alternative path to overcome the data limitation. Again,
since labeling data for all the different activity steps is really exhausting and prone to error,
techniques that use weak labels in other areas of research can also be applied to this particular
problem.

9.2.2 Real World Deployment with Alzheimer’s’ Patients
One of the most important applications of monitoring activity quality is early detection of de-
mentia to prevent the rapid decline of functional and cognitive ability. However, the actual
effectiveness of the system cannot be fully realized unless tested in the field and deployed in
the house of real Alzheimer’s’ Patients for monitoring the progression of dementia. This new
direction requires collaboration and expertise from both clinicians’ and engineers’. It would
be helpful to know which activity steps monitoring would be sufficient for activity quality as-
sessment of dementia patients. How should we design a system and choose sensors targeted
for those steps thereby reducing cost and complexity? How much impact does the notification
system have in the patients’ life? Surveys and statistics will also be helpful for social and be-
havioral studies. In our work, we provided parameters for activity quality, but did not make
any inference about the dementia stage. Once the system is in the field, the experience and
observation will be valuable in determining automatic dementia screening to a certain extent.
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9.2.3 Grammar Learning from Activity Data
Another limitation of our work is that we did not learn the grammar rules due to lack of data
exemplifying the various use cases. We mitigated this limitation by creating rules after consid-
ering the description of sensor settings in the datasets provided by the researchers and the de-
fined activity steps used in their experiments. However, in today’s world technology is driven
by data and once additional data is available, an exciting research direction would be learn-
ing the grammar rules/expression from a large set of real world examples. In our work, we
used a variation of the Apriori rule mining technique for sensor association with the activity. It
would be interesting to find out whether Apriori or other mining and association rule learning
methods can be used to learn the grammar rules from the data.

9.2.4 Multiple People
In this dissertation, we presented an approach that works in a multi person home. However,
our evaluation considers two person scenarios. Although, we are confident that the technique
will be applicable in homes with more than two people, the performance of the system might
drop. In scenarios with a large number of people additional considerations might have to be
taken. For example, monitoring activity quality in nursing homes or elderly facilities would
have a unique set of challenges and would require further investigation. As part of our studies
in multiple homes, we showed effectiveness of using different sensors in person identification.
However, we could only simulate the specialized sensors of those where the same binary sen-
sors were used in the environment. Therefore, additional studies comparing and contrasting
the effectiveness of all the common person identification sensors would help engineers make
more informed choice about sensor settings depending on the application requirements.

9.2.5 System Robustness

Various aspects of the system can be modified to make the system more robust.

Missing Data vs Missing Activity Steps

In the real world, it is not possible to detect all the activity steps with 100% accuracy. Therefore,
the system would report missing activity steps when in reality the activity step could be mis-
classified. Although we provided an analysis of how activity step recognition accuracy affects
activity recognition accuracy in this thesis, we did not analyze its effect on activity quality
monitoring. Therefore, studies evaluating which percentage of missing sensor data or error in
lower level recognition significantly affects the performance of the activity quality monitoring
system up to which extent would make the future systems more robust.

Real Time Constraint

In this thesis, we performed evaluation offline from previously collected data or on public
datasets. We believe the performance of the system will be the same with real time constraints,
but additional testing and validations are necessary. Again, although our system has timing
threshold parameters for different types of notifications, it would be interesting to find out what
values for those timing thresholds are most effective in the real world. Moreover, it should be
studied whether dynamically changing the time thresholds helps in any way.
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Handling Exceptional Cases

Our system performance is evaluated based on specific assumptions and there can be real
world exceptional examples which goes against those assumptions, such as incoherent behav-
ior from a drunk person, or the activity routine of an extremely busy person. For example, a
mother with several small children might perform ADLs in the middle of the night after all the
kids have gone to bed. We ignored those extreme cases since they were out of the scope of our
research. However, monitoring activity quality for alcoholism or for detecting post pregnancy
depression, we will have to consider those cases and change the system settings accordingly.

9.2.6 Applications in Related Areas

Finally, we want to list some example applications outside the home environment where there
is a notion of activity steps and requirement of performing the steps in a specific order or
having partial ordering among the subset of steps. Most of the listed examples are related to
the healthcare domain, although similar applications are observed in other domains as well.

Emergency Medical Responders (EMT)

An emergency medical responder is a person with specialized training who is among the first
to arrive and provide assistance at the scene of an emergency, such as an accident, natural
disaster, or other situations calling for medical assistance. In other words, s/he is the first
responder aiding injury or illness. Whenever an EMT arrives, s/he has a checklist with specific
tasks which need to be performed. Although the checklist might vary slightly depending on
the situation or in different organizations, tracking these steps is very helpful. A activity quality
monitoring system tailored for this scenario would not only be able to assist the first responder
by reminding the tasks one after another, it can store and show the information to the physician
treating the patient later.

Nursing Activity Monitoring

In smart hospitals, nursing activities are monitored for tracking the quality of service and the
well-being of patients. Nurses/physicians perform operations based on the patient chart of
previous activity steps and sometimes within a specific time limit. Thus, the grammar can be
modeled on different nursing steps to identify the steps already performed on a patient, then
notify the nurses who are responsible for the next steps.

Surgical Procedure Monitoring

Surgical operations are often done by a group of people where each person has a specific role to
play. Although the activity step performed by each person is usually predefined, performing
it depends on the condition of the patient and the activity step performed by other physicians
and nurses before him/her. During long surgical operations, doctors can change shifts or leave
temporarily in the middle of the operation. Thus, a system monitoring all the steps and their
quality during an operation is extremely helpful for the surgeon group as well as ensuring
better safety of the patient.
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Worker Training

Training programs are common in factories, culinary activities, nursing, laboratory, and many
other settings. It is natural for a trainee to miss steps or perform steps in the wrong order.
Hence, our system can help in such scenarios by monitoring the progress of the trainees and
providing real-time notifications and immediate feedback that improves training.

In all the above examples, we can use the system developed in this dissertation with little or
no modification by training on activity steps relevant to the particular application, and report
whether any required activity steps were missing or done incorrectly. Therefore, we believe
this dissertation serves as an important component and provides directions in many future
research.
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