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Abstract 

After patients undergo a total laryngectomy, alternate methods of speech are necessary to facilitate normal communication. One 

non-invasive voice restoration method is the electrolarynx, which has fewer complications than other forms of voice restoration 

therapy but results in a lower quality of speech. The proposed solution to this dilemma is the creation of a dual-pipeline deep neural 

network (DNN) to translate lip movements and audio output from electrolarynx use into intelligible speech. Videos of study 

participants reciting the Rainbow Passage, a phonetically balanced passage, as well as speaking conversationally for sixty seconds 

were recorded with and without an electrolarynx. The audio pipeline iterated through a number of ways to extract the necessary 

audio data from each video, including Mel Frequency Cepstral Coefficients (MFCCs). A binary classification DNN was used to 

determine if the MFCCs were a good fit for distinguishing between electrolarynx and non-electrolarynx data. Despite a testing 

accuracy of 61%, it was determined that the error was not decreasing as iterations decreased, showing a lack of learning on the part 

of the DNN. The video pipeline utilized a software called DeepLabCut to predict points on the lip for both Rainbow Passage and 

conversational speech videos using a convolutional neural network (CNN) trained on frames labeled with four points on the lip. 

DeepLabCut effectively predicted these four points for the conversational speech videos, with a mean pixel error of 5.11 pixels. In 

summary, the audio pipeline successfully determined that MFCCs are not a viable audio analysis technique for this project, while 

the video pipeline was able to successfully predict four points on a lip for speakers with similar distances from the camera. The 

next steps in this project include researching other methods of audio analysis to extract essential features for the DNN, labeling the 

frames with the associated phoneme for the next steps in the video pipeline, and shortening the videos to facilitate this labeling 

process. 
 

Keywords:  electrolarynx, voice restoration therapies, DNN, MFCCs, DeepLabCut, neural network

Introduction 

Clinical Background 

Every year, over 3000 patients in the United States alone 

receive a total laryngectomy, which entails the removal of 

the vocal cords, due to laryngeal cancer1. During this 

procedure, the larynx is removed, and the trachea is 

separated from the throat, severing the connection between 

the lungs and the mouth. As a result, laryngectomees lose 

their ability to speak and are forced to acquire alternative 

means of communication. These possibilities include 

gesturing, writing, and voice restoration therapies. Any 

therapy involving voice restoration is preferred over a non-

verbal communication strategy since the ability to speak is 

associated with a higher quality of life2,3. The gold standard 

for voice restoration is the tracheoesophageal puncture 

(TEP), a surgical procedure that allows patients to redirect 

air out of their mouth. Despite its designation as the gold 

standard, roughly 25% of TEP recipients face 

complications, including recurring infections, pneumonia, 

and sometimes death 4,5. The onset of complications can 

range from soon after surgery to years later, reducing 

predictability6. 

An alternative to TEP is the electrolarynx, a battery-

operated device placed under the chin that emits vibrations 

that are transmitted through the skin to the throat. These 

vibrations are shaped into words using the lips, tongue, and 

teeth, creating a mechanical voice. The electrolarynx is 

preferred by some to other forms of voice restoration 

because it is non-invasive, has no complications, and is 

most cost-effective7.  Furthermore, it serves as an easy 

backup for those who face complications from other voice 

restoration therapies7. Similar to TEP, the electrolarynx 

comes with significant drawbacks. While it is considered 

the easiest and fastest voice restoration technique to learn, 

speaking with an electrolarynx effectively still takes 

significant time and effort from both the patient and a 

speech therapist, which taxes the healthcare system7. 
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Furthermore, the voice produced by the electrolarynx is 

mechanical, monotonic, and difficult to understand. This 

lack of intelligibility is exacerbated by the presence of 

generic vibrational noise that drowns out the voice of the 

speaker8,9. Additionally, the current electrolarynx requires 

users to operate the device with one hand and place the 

electrolarynx on the correct location on the throat, reducing 

accessibility10. 

Regardless of the voice restoration method used, 

laryngectomees experience a reduced quality of life for 

multiple reasons. Physically, laryngectomees struggle with 

difficulty swallowing and may be subject to postoperative 

chemotherapy if there is a recurrence of cancer. 

Emotionally, laryngectomees are taxed with the burden of 

permanently losing the ability to speak normally as well as 

the possibility of cancer recurrence9,11. Financially, 

laryngectomees must attend multiple sessions with a speech 

therapist in order to learn how to use the chosen voice 

restoration therapy, which can pose a considerable burden 

to those who are underinsured. Environmentally, it is 

difficult to communicate effectively in noisy settings due to 

the presence of generic vibrational noise and limited volume 

capacity; laryngectomees may also experience a reduction 

in quality of healthcare due to the inability to communicate 

clearly7,12,13. The burden placed on laryngectomees has led 

to social isolation and reports of fewer friends, increased 

mental health issues such as anxiety and depression, and 

decreased self-estimated quality of life scores among the 

population7,10,12,13. 

Technical Background 

In order to improve the quality of life of a laryngectomee to 

the highest extent possible, an ideal voice restoration 

therapy that combines low invasiveness, higher speech 

intelligibility, affordability, and accessibility is essential. 

Machine learning algorithms, particularly deep neural 

networks (DNNs), have the potential to achieve these four 

parameters by predicting speech from a variety of different 

markers and converting the predicted phonemes to 

intelligible, computer-generated speech. Neural networks in 

a nutshell are composed of an input layer, output layer, and 

a variable number of hidden layers; DNNs are characterized 

by the presence of at least two hidden layers. The network 

accepts an input from a training set where the correct output 

is already known and predicts the output by using 

calculations in each layer. The predicted output is compared 

to the known output, and the error rate is used to adjust the 

calculations that occur in the hidden layers. This occurs for 

a preset number of iterations determined by the user with 

the goal of getting the predicted output as close as possible 

to the known output. Once the DNN is trained, it can be used 

to predict values for data that does not have a known output. 

This project seeks to create and train a multi-pipeline DNN 

consisting of several convolutional neural networks (CNNs) 

and long short-term memory (LSTM) networks. The DNN 

will take both visual and auditory signals from videos of 

laryngectomees and non-laryngectomees, with and without 

an electrolarynx, to create a computer-generated, 

intelligible, “normal” voice with a wide range of volumes. 

Since this algorithm builds on the existing electrolarynx, it 

retains its non-invasive qualities. However, the wide range 

of volumes will greatly increase speech intelligibility, even 

in noisy settings. The creation of this algorithm comes with 

the intention to eventually implement the algorithm in a 

smartphone application, which will increase both the 

affordability and accessibility of the voice restoration 

therapies. This DNN has the potential to increase the quality 

of life of laryngectomees by increasing the extent of which 

they can communicate. 

Prior Research and Innovation 

While this project seeks to combine both visual and audio 

data to perform speech analysis, current research focuses 

primarily on either one or the other modality. Current 

research in artificial lip reading using visual data focuses on 

the implementation of artificial neural nets (ANNs) to 

achieve higher accuracy than human lip reading. LipNet 

used a combination of a convolutional neural network 

(CNN) and a recurrent neural network (RNN) to learn 

phonemes based on both spatial and temporal features. It 

improved on previous designs by combining feature 

extraction and prediction into a single pipeline rather than 

two wholly separate networks. It also predicted full 

sentences at a time rather than words. LipNet had a higher 

accuracy score than human lip-readers, which points to the 

implementation of deep learning models as the future of lip 

reading14. Another study used a Microsoft Kinect camera to 

track seventeen different points on the lip. This input was 

fed into an ANN and used to predict short phrases. The 

accuracy of this method was 77.2%, which is lower than 

other models. However, this study emphasized using low 

cost, portable materials, which is a step in the right direction 

for improving voice restoration methods1.  

Efforts to improve the electrolarynx have come from 

multiple different directions, mostly including the 

attenuation of generic vibrational noise from the 

electrolarynx, which detracts from the intelligibility of the 

actual speech, and creating a pitch range that more 

adequately represents the pitch of the voice of patients. 

Padmini proposed the use of Mel frequency cepstral 
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coefficients (MFCC) to extract essential features from 

electrolarynx output. The frequency of the electrolarynx 

would not be extracted with these essential features, thus 

attenuating generic vibrational noise8. Syrinx is a wearable 

artificial larynx that expands the frequency range of a 

traditional electrolarynx. Besides having an increased 

frequency range for the electrolarynx, Syrinx uses 

recordings of the user’s voice to determine a personalized 

vibrational frequency. Finally, the wearability of this 

artificial larynx solves the problem of needing an extra hand 

to operate the electrolarynx9. A different approach to the 

electrolarynx is the use of electromyography, where 

magnets are embedded in the mouth to capture 

electromagnetic data that predicts speech. This is obviously 

both invasive relative to the electrolarynx and 

uncomfortable.  

This project expands on the research above by creating an 

DNN that utilizes both video processing and audio 

processing rather than a single modality to predict speech as 

accurately as possible. Since lip movements and audio 

output from the electrolarynx are both very different data 

modalities, the project will be split into two separate 

pipelines. Each pipeline will predict a phoneme for that 

respective modality separately; the two pipelines will then 

be combined using ensemble learning for the final speech 

prediction. 

Materials and Methods 

Data Collection  

The given videos were supplied by Rachel Jonas, M.D. of 

the ENT department. They were pre-recorded by advisors 

to avoid extra IRB approval. Five participants of both sexes 

were included and per the IRB, all other information barring 

sex were excluded. To further preserve the anonymity of the 

participants, the upper half of the face was cropped out of 

the frame for all videos. The number of participants was 

chosen to be five due to the use of five participants in the 

Xbox Kinetic Speech program as described in the 

Introduction1. The participants chosen are all English-

speaking adults with functional larynges without diagnosed 

voice or speech pathology recruited personally by the 

designers of the study. Each speaker repeated the first three 

sentences of the Rainbow Passage while audiovisual output 

was recorded. After training by Holly Hess, a certified 

speech-pathologist, the participants re-read the passage 

using an electrolarynx while articulatory speech movement 

and acoustic output were again captured. The Rainbow 

Passage was chosen because it is short and phonetically 

balanced. In total, there are 52 electrolarynx based files and 

51 normal speaking files. The same participants were then 

used to record videos of conversational speech using the 

same methodology. Each participant had freedom to choose 

what they wanted to say for sixty seconds. All of these 

videos are located on a shared UVA dropbox folder. During 

this process, a Rivanna allocation, uvavoice, was purchased 

due to the high volume of computation necessary to train a 

DNN on high-dimensionality data such as images and audio 

clips.   

Audio Pipeline 

All the audio processing was done using Python 3.9. The 

audio was extracted from the videos using the scipy package 

on Python, which contains a module for signal processing. 

This wavfile module converted the videos into audio files 

with the .wav extension. The electrolarynx audio files were 

processed using a Butterworth filter, defined using modules 

in the scipy module, in order to remove background noise. 

The argument for the butter bandpass filter requires 

arguments for a low frequency, high frequency, and a cutoff 

frequency. The lower and higher limits were determined 

using trial and error using one recorded video per 

participant. These limits appeared to occur at 500 and 2000 

Hz, respectively.  

After noise removal, Mel Frequency Cepstral Coefficients 

(MFCCs) were initially created for all the videos also using 

the surfboard package, an open-source library for audio 

processing15. MFCCs were chosen to act as features for the 

Fig. 1. DNN for Binary Classification (left) and Multi-label Classification 

(right). The images above describe the layers in each DNN including the number 

of nodes and the layer’s respective activation functions. For the binary 
classification DNN (left), there are 4 total layers, with the hidden layers each 

having 64 nodes and a ReLU activation function. The output layer, since its 

binary classification, only has 1 node and a sigmoid activation function. 
Similarly, the multi-label classification DNN (right) has a total of 4 layers with 2 

hidden layers each with ReLU as the activation function; however, the number of 

nodes doubles as you go from layer 2 to layer 3, 48 and 96 nodes, respectively. 
In its output layer, there are 7 nodes since there are 7 possible labels, and since it 

is multi-label classification, a softmax activation function is used. 
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audio data because they are a popular spectral-based 

parameter used in audio processing. They represent the 

frequencies surrounding the human vocal range, where the 

values of the MFCCs amplify this range to improve 

clarity16. The matrices of coefficients, known as cepstral 

coefficients, contain information about the rate changes in 

the different spectrum bands. Positive coefficients indicate 

that the spectral energy of the audio is concentrated in low-

frequency regions. If the cepstral coefficients have a 

negative value, the spectral energy is concentrated in high-

frequency regions17. 
 

Binary Classification Using MFCCs 

In order to determine whether the MFCCs created useful 

features to distinguish between electrolarynx and non-

electrolarynx audio clips, binary classification was 

performed using a deep neural network (DNN). MFCCs for 

this task were generated using librosa, a python package 

designed for music and audio analysis. The neural network 

was created using the keras library and a Sequential model. 

The DNN consisted of an input layer, two hidden layers, and 

an output layer (Figure 1). The input consisted of 168 audio 

files, which were first passed into a flatten layer. The flatten 

layer prepares data to enter the neural network. The two 

hidden layers in this network consisted of dense layers with 

64 nodes each. This number of nodes was chosen because 

2n nodes show the best results in neural networks. These 

dense layers contain full connectivity between the previous 

layer and the current one. ReLU was chosen as the 

activation function in these layers because it is known to 

overcome the vanishing gradient problem and allow the 

model to learn faster and perform more efficiently. Finally, 

the neural network contained an output dense layer 

containing one node with a sigmoid activation function. 

One node was used because the goal of the network is binary 

classification. Since the sigmoid function exists only 

between 0 and 1, it performs well during binary 

classification (Figure 1). 
 

Multi-Label Classification Using Singular Words 

Since previous literature tends to classify animal sounds, 

single words, or emotions, the audio files were split into 

singular words from the beginning of the first sentence of 

The Rainbow Passage. The words include when, the, 

sunlight, strikes, raindrops, in, air. Audacity was used to 

manually split the audio files into separate words. These 

words were then passed into another DNN consisting of an 

input layer, two dense layers, and an output layer. The input 

flatten layer processed 18 audio clips into the network The 

two hidden layers consisted of dense layers with 48 and 96 

nodes, respectively, and ReLU as their activation function. 

The output dense layer consisted of 7 nodes with softmax as 

the activation function because there were 7 possible words. 

Softmax was chosen as the activation function because it is 

commonly used in multi-label classification. The network 

predicted which word the audio file contained (Figure 1). 

Video Pipeline 

The entirety of the video pipeline consisted of using a 

software called DeepLabCut to perform initial feature 

extraction from each of the Rainbow Passage videos 

followed by a convolutional neural network (CNN) that 

reduced the dimensionality of the image to four points and 

a long short-term memory network (LSTM) that predicted 

phonemes from lip positions. The output of the LSTM 

would be weighed in the final phoneme prediction after 

combination of the audio and video pipelines. 

 

Feature extraction using DeepLabCut 

DeepLabCut is a pose estimation software developed by the 

Mathis Lab that has been traditionally used to model small 

mammal movement but has the potential to be used to 

predict movement of body parts in humans as well. The 

software uses a representative set of labeled frames as 

training data to predict the specified labels in unlabeled 

videos. Thus, a small number of representative frames can 

be used to determine labels in long videos with thousands 

of frames. This results in the reduction of the dimensionality 

of each frame from thousands of pixels to the small number 

of labels, which can greatly reduce the computational 

expense of each frame in future neural networks (Figure 2). 
 

For this project, a total of four points on the lip were labeled: 

the upper, lower, left, and right corners of the lip (Figure 2). 

This number was chosen based on prior research with the 

intention to minimize computational expense while 

Fig. 2. DeepLabCut Labeled Frame. To get the labeled frame as seen above, 

DeepLabCut trains a ResNet CNN on manually labeled frames and then uses the 
trained model to make predictions on the upper, lower, left, and right corners of 

the lip.  
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maximizing the potential for accurately predicting the test 

set. Using the software, each Rainbow Passage video was 

split into several thousand frames, with the exact number of 

frames depending on the video. The frames were left 

uncropped since the speakers assumed a distance from the 

camera that was indicative of our final application. For each 

video, these frames were clustered into 50 clusters using k-

means clustering; the number of clusters was chosen to 

represent the 44 phonemes in the English language as well 

as several extra clusters to represent the possibility of 

slightly different mouth positions for any given phoneme.  

Due to the considerable time needed to manually label 50 

frames per video, five videos with an electrolarynx and five 

videos without an electrolarynx for each participant were 

randomly selected to be labeled using a random number 

generator. These 2500 frames were manually labeled with 

the four points on the lip. The frames served as the input for 

the next step in the pipeline, the CNN. 

 

ResNet CNN 

DeepLabCut has multiple options for which CNN is used to 

predict the lip positions; ResNet-50 was initially chosen due 

to the lower number of layers and faster training time. 

ResNet-50 has three defining features: convolutional layers, 

pooling, and fully connected layers. The 50 convolutional 

layers are used to extract the most important features of the 

image; the dot product of a small matrix called the kernel 

and small pixel sections of each image is found for all parts 

of the image in order to perform this step. Pooling is 

characterized by finding either the average or maximum 

value of a set of pixels in the image; this is done to reduce 

dimensionality of the image. A final fully connected layer 

with 1000 nodes resembles a normal neural network that 

classifies that reduced image. This classification was used 

to determine where each of the four points on the lip were 

for that particular image. 

This ResNet-50 model was trained on the 2500 labeled 

frames. To test for possible overfitting, or low error rates for 

training data but high rates for testing data, the remaining 

unlabeled frames from the Rainbow Passage videos that 

were not selected were used as a validation set. To ensure 

the usefulness of DeepLabCut before moving on to the next 

step in the pipeline, the model was tested on the recorded 

videos of conversational speech. Finally, to determine the 

necessity of a uniform speaker depth from the camera, the 

model was tested on frames from another open-source 

dataset, where the speakers were positioned farther away 

from the camera.  

DeepLabCut utilizes an error measurement called mean 

pixel error to determine the accuracy of the model. It does 

this by finding the mean distance in pixels between the 

predicted lip position labels and the actual lip position 

labels. A mean pixel error of less than 5 pixels is recognized 

to be an appropriate threshold for determining if the model 

can accurately predict the labels; this threshold was chosen 

as it is an approximate for pixel error in low-resolution 

cameras. The mean pixel error was recorded for each round 

of videos; final pictures and videos of predicted lip positions 

were also qualitatively judged for accuracy. 

 

Long Short-Term Memory Network 

The final step in the video pipeline was a long short-term 

memory network (LSTM) that took a set of lip positions for 

each video and predicted a phoneme for each frame. LSTM 

networks are unique in that they retain useful information 

about past data and use this information to inform the 

prediction of the current data. This quality makes LSTM 

networks particularly useful for speech recognition, where 

there are many strings of consecutive phonemes that occur 

frequently in English speech. The LSTM model would be 

implemented using PyTorch with an input size of 4 

(representing each of the four labeled points on the lip) and 

an output size of 1 (representing the predicted phoneme). 

The size of the hidden layer 

would be adjusted based on 

the accuracy of the model. 

Similar to the testing of the 

accuracy of DeepLabCut, the 

LSTM model would then be 

trained on the lip positions 

from the Rainbow Passage 

videos and tested on the 

conversational speech videos. 

Further testing includes using 

videos of laryngectomees 

speaking the Rainbow 
Fig. 3. Overall pipeline of project. This image shows the overall pipeline including the separation of the audio and video 

portions. The stop signs indicate what was achieved in the scope of this time.  
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Passage as well as speaking conversationally to ensure that 

the model is still effective for laryngectomees. For each 

video, the accuracy score of the model at correctly 

classifying phonemes will be determined for a variety of 

epoch lengths and hidden layer sizes. 

Pipeline Combination  

The audio and video pipeline each output a predicted 

phoneme for each frame of each video, which must then be 

analyzed and combined to predict a final phoneme. Since 

the audio and video pipelines could theoretically output 

different phonemes for a given frame, some form of 

ensemble learning is required to accurately predict the most 

correct phoneme for any given frame. Since the audio and 

video pipelines are separate throughout the entire process of 

predicting a phoneme from a given modality, the two can be 

viewed as separate prediction models, with one having the 

potential to be more accurate than the other. 

The solution to combining the two pipelines was to use a 

boosting algorithm. Boosting involves iteration through 

each classifier, determining the accuracy of each classifier, 

and weighting that prediction based on the accuracy of that 

classifier. AdaBoost will be used to perform this step as it is 

a common and familiar boosting algorithm that can be 

easily implemented in Python using scikit-learn. The 

accuracy of the final predicted phoneme will be measured 

and compared with the accuracy of the individual 

classifiers. If the accuracy is relatively low, the possibility 

of increasing the number of classifiers by iterating through 

the same classifier multiple times will be explored to 

improve the accuracy of our novel ensemble program 

(Figure 3). 

Results 

Audio Pipeline 

Binary Audio Classification 

The primary goal for audio classification was to be able to 

distinguish the Rainbow Passage sentences repeated by the 

participants. After realizing that training with the whole 

video and extracted MFCC’s was not feasible, it was 

determined that it would be important to see whether the 

MFCC’s provided valuable information in distinguishing 

between larynx and electrolarynx speech. Using this 

approach and the idea of binary classification deep learning, 

Rainbow Passage videos were labeled as either normal or 

electrolarynx, and the features for each was the matrix of 

coefficients given by the MFCCs. Using the 4-layer DNN 

described above, this binary classification yielded a training 

accuracy of 69% and a testing accuracy of 61%. Looking at 

the cross-entropy values, the training cross-entropy was 

0.59 and the testing cross-entropy was 0.73. Cross-entropy 

is one example of a loss function that describes how well 

the algorithm, whose output is a probability value between 

0 and 1, is classifying. Also known as log loss, the cross-

entropy loss increases as the difference between the 

predicted and actual label becomes larger. Ideally, a log loss 

of 0 correlates to a perfectly accurate model18. In this case, 

with both values being so small, it indicates that the 

classification being done by the model is essentially as 

random as a coin-toss, meaning that no learning is occurring 

(Figure 4).  

Fig. 4. Accuracy Graph for Binary Classification. This graph shows the test 

and train accuracy for the binary classification DNN over 50 epochs. The jump-

like tendencies of the graph are also another indication of random prediction and 

not model learning.   

 

Fig. 5. Confusion Matrix for Binary Classification. This graph shows the 

confusion matrix represented by the algorithm's predictions. Ideally, since actual 

predictions are plotted on the vertical axis and predicted values are plotted on the 
horizontal axis, the diagonal should be the darkest shaded since those represent 

areas where the actual and predictive values match. However, this confusion 

matrix has the highest values in the true negative and false negative sections 
rather than the true negative and true positive sections. This highlights how the 

network is not able to distinguish between normal and electrolarynx. 
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To further assess the classification of the DNN designed, a 

confusion matrix was generated. The confusion matrix, 

which plots actual labels against predicted labels, classified 

the test dataset into one of the four categories as shown in 

the figure below. For this particular classification, there 

were 23 true negatives and 8 false negatives, reaffirming 

that the algorithm was not actually learning, and that the 

prediction was happening somewhat randomly. Ideally, the 

highest values should be seen in the true negative and the 

true positive labels because these indicate correct 

predictions (Figure 5). 
 

Multi-Label Audio Classification 

As another thought experiment, a new DNN was developed 

with the intent of performing multi-label classification with 

the labels: when, the, sunlight, strikes, raindrops, in, air. 

This is the first part of the first sentence in the rainbow 

passage. The idea stems from literature published on audio 

classification with noisy data. Due to the additional noise, 

the most basic approach to take is to determine whether an 

algorithm can differentiate between singular words. Using 

this literature and the DNN based on the idea of multi-label 

classification, the training accuracy was 17% and the testing 

accuracy was 15%. The training cross-entropy was 2.33 and 

the testing cross-entropy was 2.48. Because the data only 

consisted of 18 videos, no immediate conclusions can be 

drawn from these results (Figure 6).  

Video Pipeline 

Rainbow Passage and Open-Source Data Set 

The first aim of this project was to design an artificial neural 

network by mapping English phonemes to visual and 

acoustic electrolarynx in individuals with functioning 

larynges using a prescribed reading passage. The first step 

in this process was to create a visual speech recognition 

network to track the movements of a subject’s lips as they 

were speaking the rainbow passage. The rainbow passage 

Fig. 6. Accuracy Graph for Multi-label Classification. Similar to the accuracy 
graph of the binary classification model, this graph shows the test and train 

accuracy over 50 epochs for multi-label classification. The repetition of the spike-

like pattern of the graph indicates that the algorithm is not truly learning and that 
its predictions are quite random. Due to the small size of the dataset, not real 

conclusions can be drawn.   

Fig. 7. Rainbow Passage and Open-Source Data Set Test and Training 

Frames. (A) A labeled training frame from the rainbow passage videos. The 
ResNet CNN is labeling the four points on the lip. (B) A labeled test frame 

from the rainbow passage video where the ResNet CNN is predicting and 

labeling the 4 points on the lip. (C) A labeled test frame from the open-source 
data set where the trained model is not accurately predicting and labeling the 

points on the lip but on the subject’s forehead and hair.  
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videos were used to train the ResNet CNN created by 

DeepLabCut because it contains all the English phonemes. 

DeepLabCut automatically splits the 2500 labeled rainbow 

passage video frames into a training and test set. 95% of the 

frames were used for training and the remaining 5% were 

utilized in the test set. After DeepLabCut created the 

training set, DeepLabCut trained on the labeled frames 

using the ResNet CNN with 500,000 iterations. After 

training on the rainbow passage was completed, 

DeepLabCut evaluated the trained ResNet CNN on the test 

set. As shown in Table 1, the mean pixel error for the 

training, 4.19 pixels, and test are close to five pixels 

meaning the trained model is accurately predicting the 4 

points on the lips. Additionally, as seen in Figure 7, the 

model is accurately predicted and labeled the 4 points on the 

lips of the participants. The test mean pixel error was greater 

than training pixel error due to the number of frames 

relegated to training compared to testing.  
 
Table 1. Mean Test Pixel Errors for Test Data. The above table displays results 

of the mean text pixel error for all three test data sets. The open-source data set 

had the highest mean pixel error. Both rainbow passage and conversational speech 
had mean pixel errors close to 5 pixels. The trained ResNet CNN was used to test 

on the data sets.  
Data Mean Test Error (pixels) 

Rainbow Passage 5.22 

Open-Source 134.65 

Conversational Speech 5.11 

 

After the trained ResNet CNN was validated using the test 

rainbow passage frames, the trained network was used to 

predict the 4 points on a lip on an open-source data set 

provided by our advisors. The open-source data set was 

used as another validation test set in order to see whether 

the trained network could predict points on videos that were 

not specifically recorded for this project. As seen in Table 

1, the mean test pixel error for the open-source data set is 

much greater than 5 pixels meaning the model is not 

accurately predicting the points on the lips. Furthermore, as 

seen in Figure 7, the model was predicting the 4 points close 

to the forehead of the participant rather than the lips. The 

lack of accuracy is attributed because the lips of the 

participants in the training videos were at a closer distance 

to the camera compared to the open-source data set.  

 

Conversational Speech 

The second aim of this project was to apply a trained ANN 

to conversational speech in laryngectomees. However, to 

achieve this aim, the trained ResNet CNN was first applied 

to videos of conversational speech recorded by participants 

in order to see whether the model can predict points on the 

lips on conversational speech. Conversational speech 

videos were used because conversational speech does not 

utilize all the phonemes and syllables in the English 

language. Again, as shown in Table 1, the mean pixel error 

for the conversational videos is close to five pixels meaning 

the trained model was accurately predicting the four points 

on the lips. Moreover, as depicted in Figure 8, the ResNet 

CNN is accurately labeling the four points on the lips of the 

participant during conversational speech.  

Discussion 

The goal of this project was to create a DNN combining 

audio and visual analysis of individuals with and without 

the electrolarynx. The DNN was meant to predict phonemes 

in the English language. Since MFCCs are a very common 

method to extract audio features, it was the method used for 

the audio pipeline. DeepLabCut was used to identify four 

points on the lip for the video pipeline. Although the results 

from the audio portion were lacking, the video portion 

showed a high level of accuracy.  

In order to improve the audio portion, new methods such as 

a Melspectrogram, Spectral Contrast, and Wavelet 

transforms can be used as features. Recently, more research 

has been performed using these methods for training neural 

networks instead of MFCCs. Artificial Intelligence has also 

shown more promise learning from images than MFCCs in 

this area of research. The methods listed above would 

produce images containing the information from the audio 

files similar to how MFCCs data can be displayed on a 

graph. Additionally, the multi-label classification 

performed with singular words showed a lot of promise. 

Since the clips containing singular words are shorter, it is 

easier for the neural network to learn this data. With 

singular words, the possibility for the words is also finite, 

allowing supervised learning to be more accessible. With a 

Fig. 8. Conversational Speech Frame. The above figure represents a frame from 

the conversational speech test data set. The four points on the lip represent the 
trained ResNet CNN’s labeled prediction. The model is making accurate 

predictions for all 4 points.  
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small bank of representative words in the English language, 

models could be trained with singular words rather than 

phrases, sentences, or paragraphs, which also take more 

processing power. After learning individual words, the 

model could graduate to more complex structures similar to 

how language processing has evolved. 

The next step in the video pipeline would be to associate 

groups of frames with labeled points to different phonemes 

or syllables. This process would also be facilitated with 

videos of singular words rather than several sentences, 

especially if the words are one syllable. Once the neural 

network has trained on simple syllables and achieved high 

accuracy, harder words can be added. More research needs 

to be performed regarding how to differentiate between 

visual sounds in the English language. For example, b and 

p, although audibly different, look very similar on video 

because of the positioning of the lips. 

Since the goal of this project is to create a device or an app 

that electrolarynx users can operate to improve their speech 

intelligibility, the diversity of the training data needs to 

increase. Currently, the training data includes only five 

subjects who speak English, resulting in only about 200 

videos. Machine learning models, in general, require 

thousands of inputs in the training set to reach high levels 

of accuracy and applicability. With only five subjects, the 

variety of ethnicities and accents represented by actual 

electrolarynx users is not present in the data. Since the 

videos only contain English words, this project is also not 

applicable to other languages and cannot be used fully by 

multilingual electrolarynx users or international users. 

Furthermore, all the videos are taken at the same distance 

from the face. Realistically, electrolarynx users might hold 

their phones at varying distances when using the app or 

device. Therefore, more data needs to be collected and 

trained to encompass a larger range of distances from the 

face and overcome other weaknesses in the current dataset. 

End Matter 
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