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Abstract 

 

High-entropy alloy (HEA), also known as Complex Concentrated Alloy (CCA) or Multi-

principal Elements Alloys (MPEA), is a type of metallic material with multiple principal elements. 

Compared to conventional alloys, HEA engenders vast opportunities for designing new materials 

with desirable structural and functional properties such as mechanical properties, thermal/electric 

conductivity, corrosion resistance, super-conductivity, radiation absorption, and hydrogen storage. 

However, the HEA compositional space is exceedingly large due to the nature of possessing 

multiple principal elements. Therefore, fundamental challenges arise in efficiently exploiting 

compositions with exceptional features. HEA compositions and processing methods control the 

formation of HEA phases, including solid-solution phases (SS) and intermetallic phases (IM). 

Phases of HEA determine the properties and need to be carefully designed. In this dissertation, we 

will discuss Machine Learning (ML) based HEA phase prediction methods, interpretation of HEA 

phase formation, HEA properties prediction, high-throughput HEA design methodology, and 

experimental synthesis of HEA with desired properties. 

As HEA phase prediction methods have evolved from single physic-based parameters to 

first-principles calculations and ML approaches, the accuracy and capability of the HEA phase 

prediction methods are continuously improving. However, the prediction of HEA phases, 

especially the IM, is still underdeveloped due to the expensive computing power needed for first-

principles calculations, or the lack of appropriate ML features and the limited dataset needed for 

ML approaches. To address these issues, we developed novel ML models with detailed phase 

classification and high accuracies, where nine phase categories can be predicted with accuracies 

close to 90 %. This model utilizes an innovative set of phenomenological ML features mined from 

binary phase diagrams and the feature engineering technique. 86 new HEAs were synthesized to 

validate the model's accuracy. The HEA phase formation interpretation has significant scientific 
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importance. ML normally provide accurate predictions without disclosing the science behind it. 

Therefore, we identified and interpreted the key scientific factors controlling IM formation, 

guiding the HEA design and in-depth studies on phase formation. 

The prediction of HEA properties includes melting temperature, density, cost, and 

mechanical properties (e.g., hardness, tensile/compression yield strength, and fracture strain). 

Various prediction methods will be introduced for different properties. Based on the phase and 

property prediction models, a comprehensive high-throughput HEA design method is developed 

to search for compositions with desired phase and properties. Through the use of this method, a 

series of HEAs have been designed specifically for marine environments, demonstrating the 

effectiveness of the method. 

 

 

 

 

 

 

 

 

 

 

 



v 

 

Acknowledgements 

 

Over the past twenty-eight years, I have been learning and attempting to make a small 

corner of science accessible to the world. During this process, I was fortunate to receive significant 

support from talented and professional people. It is my pleasure to express my gratitude to them 

and specifically acknowledge a few individuals here. 

Firstly, my sincere gratitude goes to my advisor, Prof. S. Joseph Poon, for his constant 

support and guidance. Critical thinking, enthusiasm, diligence, creativity, leadership, and 

collaboration are what I learned over these years, and I will keep them in mind as I move forward. 

I want to express my gratitude to Professors John R. Scully, Sean R. Agnew, and Peter K. 

Liaw for sharing their knowledge and experience during collaboration. In addition, I would like to 

thank the members of my research and dissertation committees, Professors Simonetta Liuti, Gia-

Wei Chern, Utpal Chatterjee, and John R. Scully, for their insightful comments and inspiring 

questions during the committee meeting and thesis defense. 

It has been a pleasure to share our laboratory with my colleagues Wei Zhou, Dr. Sheng 

Gao, Dr. Xixiao Hu, Dr. Chung Ting Ma, Diego Ibarra Hoyos, and Dr. Mousumi Mitra. The 

beautiful plasma in the vacuum chamber, the cleanroom we built together, and the shiny metal 

samples we synthesized will always be cherished memories for me. Moreover, I would like to 

thank Mark A. Wischhusen, Samuel B. Inman, Xuesong Fan, and Dr. Rui Feng for the projects on 

which we collaborated and produced fascinating results. And last but not least, thank you, Dr. 

Andrew M. Cheung, for being my very close friend and helping me with alloy synthesis and 

manuscript development.  

Over the years, my friendships with members of the Physics department, basketball team, 

pilot community, and other communities have been valuable to me. Despite not being able to 

mention everyone here, please accept my sincere gratitude. 

Most importantly, I want to express my gratitude to my family, Dehua Qi, Yindi Zhang, 

and Yiyuan Qi. Throughout my life, they have always encouraged me to pursue my dreams without 

fear. And a special thank you to my girlfriend Dr. Xiaohan Du. Having your love, companionship, 

and emotional support is the most valuable thing in life. They will always be in my heart.  

(Support: This work is supported by the Office of Naval Research grant N00014-18-1-2621.) 



vi 

 

Content 

Abstract ......................................................................................................................................... iii 

Acknowledgements ....................................................................................................................... v 

Content .......................................................................................................................................... vi 

List of Figures ............................................................................................................................... ix 

List of Tables .............................................................................................................................. xiii 

Chapter 1 Introduction ........................................................................................................... 1 

1.1 Introduction to high entropy alloys ..................................................................... 1 

1.2 High entropy alloy phases ................................................................................... 2 

1.3 High entropy alloy properties and applications .................................................. 3 

1.4 Challenges in high entropy alloy research .......................................................... 4 

1.5 Structure of this thesis ......................................................................................... 5 

Chapter 2 Review on High Entropy Alloys Phase Prediction Methods ............................. 7 

2.1 Background ......................................................................................................... 7 

2.2 Empirical parameters .......................................................................................... 8 

2.2.1 Free energy parameters ................................................................................... 8 

2.2.2 Parameters from Hume-Rothery rules .......................................................... 12 

2.2.3 Other parameters ........................................................................................... 16 

2.2.4 Correlation between the parameters and phase formation ............................ 16 

2.3 Thermodynamic and first-principles calculations ............................................. 18 

2.3.1 CALPHAD .................................................................................................... 18 

2.3.2 Ab-initio simulations and density functional theory ..................................... 19 

2.4 Machine learning and statistical studies ........................................................... 20 

2.5 Methods comparison and synergetic use .......................................................... 33 



vii 

 

Chapter 3 Machine Learning Phase Prediction with Engineered Phase Diagrams-based, 

Thermodynamic, and Hume-Rothery Rule Features .............................................................. 34 

3.1 Database introduction ....................................................................................... 34 

3.2 Phase diagram-based parameters ...................................................................... 35 

3.2.1 Overview ....................................................................................................... 35 

3.2.2 Melting temperature and phase formation temperature ................................ 36 

3.2.3 Phase field parameters and phase separation parameter ............................... 37 

3.2.4 Visualization of the phase fields in parameter space .................................... 40 

3.2.5 Machine learning based on phenomenological features ............................... 42 

3.3 Feature engineering and IM prediction ............................................................. 44 

3.3.1 Overview ....................................................................................................... 44 

3.3.2 Feature engineering method .......................................................................... 46 

3.3.3 Results and discussion .................................................................................. 48 

3.4 Phase formation interpretation .......................................................................... 54 

3.5 Experimental validation for the models ............................................................ 59 

3.5.1 Experiment methods ..................................................................................... 59 

3.5.2 Summary of validation results ...................................................................... 59 

Chapter 4 Review on High Entropy Alloys Properties Prediction Methods ................... 68 

4.1 Density, cost, and melting Temperature ........................................................... 68 

4.2 Hardness ............................................................................................................ 68 

4.3 Strength and ductility ........................................................................................ 70 

Chapter 5 High-throughput High Entropy Alloys Design Model .................................... 74 

Chapter 6 High Entropy Alloys Synthesis and Characterization ..................................... 76 

6.1 Overview ........................................................................................................... 76 

6.2 Experiment methods ......................................................................................... 76 

6.2.1 Alloy synthesis .............................................................................................. 76 

6.2.2 Encapsulation, annealing and quenching ...................................................... 78 



viii 

 

6.3 HEA designed for marine environment ............................................................ 79 

Chapter 7 Summary and outlook ........................................................................................ 82 

Reference ..................................................................................................................................... 83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

List of Figures 

Figure 1.1: Ashby plot comparing the tensile yield strength and fracture toughness among different 

material systems. High entropy alloys generally show better properties. Figure from Gludovatz 

met al.20 ........................................................................................................................................... 4 

Figure 1.2: (a) Compression yield strength, (b) Compression yield strength normalized by density 

versus the measurement temperature. Haynes 230, INCONEL 718, and MAR-M 247 are 

commercial super alloys with their tensile data shown as comparison. Figures from D.B. Miracle 

and O.N. Senkov3. ........................................................................................................................... 4 

Figure 2.1: (a) Plot of the distribution of FCC, BCC, HCP, and multi-phase HEAs for parameters 

γ and δ. The criteria for forming a single SS phase are bounded by γ ≥  1 and δ <  6 %. (b) 

Equimolar HEAs with BCC, HCP, and FCC predicted phases were obtained from three 9-element 

blocks in the periodic table. Figures from Pei et al. 65 .................................................................. 12 

Figure 2.2: The plot of the distribution of HEA phases for parameter sm and Km. Figure from 

Toda-Caraballo and Rivera-Díaz-Del-Castillo 40.......................................................................... 15 

Figure 2.3: Plots comparing different empirical parameter effects in separating HEA phases. 

Figure from Gao et al 39. ............................................................................................................... 17 

Figure 2.4: GP probability as a single-phase alloy plotted against radius mismatch, δ to separate 

alloys into different phases. The criteria for forming a single-phase alloy are represented with 

dashed lines. Figure from Pei et al 65. ........................................................................................... 22 

Figure 2.5: Correlations between features and the appearance of (a) AM, (b) IM, and (c) SS phases. 

Red and blue colors represent positive and negative correlations, respectively. Figure from Zhou 

et al 53. ........................................................................................................................................... 24 

Figure 2.6: Flowchart from Zhang et al. 129 describing the GA method to best select ML algorithms 

and features for HEA selection. First, (a) is the ML feature pool with 70 features that can influence 

the phase formation. Second, (b) is the commonly used ML algorithms pool. Third, (c) is the GA 

process, where the optima combinations of features and ML algorithm is obtained. And lastly, (d) 

is the optimized output. ................................................................................................................. 26 

Figure 2.7: (A) Cross entropy loss corresponding to each ML feature on the vertical axis. Large 

cross entropy loss represents higher importance in ML. (B) Ceteris Paribus profile for NbTaTiV. 

Plots demonstrate how feature values influence the phase prediction predicted by ML. Horizontal 

axes are the features’ value. Vertical axes are the ML predicted phase content of NbTaTiV. Line 

colors represent different phases: blue, Multiphase; violet, Amorphous; cyan, FCC; orange, 

BCC+FCC; light blue, HCP; red, BCC; green, IM. Figures from Lee et al139. ............................ 27 

Figure 2.8: (a) Regression analysis of the training and testing data. The predicted values and the 

target (actual phase constitution) values are the y and x-axes. (b)-(c) Element content distributions 

of different elements for the 400 predicted near-eutectic HEAs. Figures from Wu et al 131. ....... 29 

Figure 2.9: Prediction performance of Kube’s method. SSSI is the parameter representing a phase 

stabilizing effect. Negative SSSI favors BCC/B2 phase formation, while positive SSSI favors a 



x 

 

FCC phase formation. Blue (bottom), red (middle), and green (top) histogram bar plots correspond 

to BCC/B2, BCC+FCC/B2+FCC, and FCC phases, respectively. BCC/B2 and FCC HEAs are 

mostly separated by their SSSI values, while the mixed BCC/FCC phases still mix with other 

phases. The overall correct classification rate (CCR) is 89 %. Figure from Kube et al 46. .......... 29 

Figure 2.10: (A). The number of publications on ML-based HEA phase prediction versus year. 

Individual years’ publication subtotals are listed on the plot. (B). Summary of how current ML-

based HEA phase prediction models classify phases. Symbols aligned vertically represent phase 

categories in one model. There are 36 models in the plot. Models that predict specific numbers of 

phase categories are grouped in columns. Phase categories are on the vertical axis. Categories with 

yellow background and red text represent specific phase structures; Categories with white 

background and black text represent different groups of unspecified structural phases. The last two 

columns of red diamonds represent the models in this work, with higher level-of-detail phase 

categories. The column of seven red diamonds represents the multi-phase prediction model that 

classifies seven phases. The classification method is further expanded to nine categories by four 

high-accuracy sub-models, represented by the column of nine red diamonds. The phase categories 

are labeled by abbreviations: FCC+BCC: Mixed FCC-BCC phase; SS: Solid solution phase; AM: 

Amorphous; IM: Intermetallic phase; + sign represents that other phases may form simultaneously 

with the specific IM. B2 phase generally has two types in HEA: AlNi9 and Al-X-Y15. The two 

columns labeled with “This Work” will be presented in Section 3.3. .......................................... 31 

Figure 3.1: Example of finding binary liquidus temperature (TCr-Ni = 1700K) on Cr-Ni binary phase 

diagram at Cr % : Ni % = 6 : 4. .................................................................................................... 37 

Figure 3.2: Demonstration of the binary phase field percentage calculation. The binary phase 

diagram Cr-Ni is used to determine the fractions of BCC and FCC phases for the HEA 

Al2CoCrCuNi. The binary phase field percentages of BCC and FCC phases are represented as 

A2Cr − Ni and A1Cr − Ni, respectively. Figure from Qi et al 55. ................................................ 38 

Figure 3.3: Two binary phase diagrams used to determine the binary phase separation percentage 

for HEA Al2CoCrCuNi. (a) Phase diagram of Cr-Cu to show a complete phase separation effect. 

(b) Overlay of the Co-Cu phase diagram illustrating the line segment method to determine the 

SeparationCo − Cu for the HEA Al2CoCrCuNi. Figure from Qi et al 55. ................................... 39 

Figure 3.4: Visualizations of partitions among phases A1, A2, and A1+A2, AlNi type B2+, and 

A3. (a) PFPA1, PFPA2, and PFPB2 are plotted for A1, A2, A1+A2, and AlNi type B2+HEAs; (b) 

PFPA1, PFPA2, and PFPB2 are plotted for A1 and A2 HEAs; (c) PFPA1, PFPA2, and PFPB2 are plotted 

for phase regions of A1 and A1+A2 HEAs; (d) PFPA1, PFPA2, and PSP are plotted for phase regions 

of A2 and A1+A2 HEAs; (e)-(h) PFPA1, PFPA2, and PFPB2 are plotted to highlight the AlNi type 

B2+ phase region relative to the A1, A2, and A1+A2 phase regions; and (h) PFPA1, PFPA2, and 

PFPA3 are plotted for phase regions of A3 and Non-A3 (not forming A3 phase) HEAs.............. 41 

Figure 3.5: Parameters PFPSigma and PFPLaves plotted for IM+ and Non-IM HEAs, where Non-IM 

includes A1, A2, A3, A1+A2, and AlNi type B2+. Figure from Qi et al 55. ................................ 42 

Figure 3.6: ML prediction success rates for HEAs in different phases are plotted. The shaded 

regions are the confidence bands for prediction success rates for different training set percentages. 



xi 

 

The width of the confidence bands represents one sigma deviation from the average prediction 

success rate. Figure from Qi et al38. .............................................................................................. 43 

Figure 3.7: Two-layer method for predicting HEA phases. Pathways of modeling, with resulting 

classification accuracy (parentheses) for each model, are shown. ................................................ 45 

Figure 3.8: Process of feature engineering: (A) Feature expansion method; (B) PCC values reflect 

the linear correlations between two features; (C) Intrinsic method: LR with L1 regularization to 

eliminate features irrelevant to phase formation; (D) Wrapper method: SL selecting several best 

features for ML. ............................................................................................................................ 48 

Figure 3.9: (A) Overall classification error of multi-phase prediction model (first layer) versus the 

number of top-ranked features is plotted with error bars (standard deviation). Results with and 

without FE are shown. (B) Classification errors for individual phase categories versus the number 

of engineered features. (C) The number of HEA data in the database and each phase category. (D) 

Comparison of fifteen ML HEA phase prediction models. Models with index number 1-14 are 

from Li et al52, Xiong et al.147, Di et al.130, Krishna et al.148, Islam et al.50, Xiong et al.147, Risal et 

al.149, Roy et al.150, Agarwal et al.54, Huang et al.51, Xiong et al.147, Jaiswal et al.145, Lee et al.146, 

and Lee et al.139, respectively. Accuracy values are labeled on the left vertical axis. Gray bar height 

represents the OneR accuracy. Green bar height represents the accuracy improvement from OneR 

accuracy to ML accuracy. Gray and green bars’ total height represents the ML accuracy. The Blue 

dashed line represents the number of phase categories (right vertical axis). Below the plot is a list 

of references, numbers of data and features, and the phase categories for each model. A1, A2, A3, 

B2, SP, MP, AM, and IM are abbreviations for FCC, BCC, HCP, AlNi type B2, single phase, 

multi-phase, amorphous, and intermetallic phases. ...................................................................... 50 

Figure 3.10: ML classification error decreases as the number of engineered features increases. The 

comparisons of the errors are presented for: (A) Laves+, and (B) Sigma+ models, among using 

Random Over-sampling, ADASYN, SMOTE, and Under-sampling methods. Error bars are 

presented in both plots. ................................................................................................................. 52 

Figure 3.11: ML classification error decreases as the number of engineered features increases. The 

comparisons of the results between using and not using FE are presented for: (A) Sigma +; (B) 

Laves +; (C) Heusler +; and (D) Al-X-Y B2 + prediction models. Error bars (standard deviation) 

are presented in all plots. Small error bars may be invisible in figure (D). .................................. 53 

Figure 3.12: Feature importance in determining different phases’ formation. Figures A-D are 

plotted for Heusler, Al-X-Y type B2, Laves, and Sigma phases. Yellow and blue backgrounds 

correspond to HR and Thermo features. Error bars (standard deviation) are shown.................... 57 

Figure 3.13: HEA distribution probability density functions based on the values of the three most 

important top-ranked features. The horizontal axis represents feature values. The vertical axis 

represents distribution probability density. Insets are box plots showing the relative positions of 

the two categories’ distribution. The upper and lower bounds of box plots are labeled if different 

from the main plots. Figures H1-H3 show the HEA distribution based on VEC, Φ, and E2E0 

values in the Heusler+ prediction model. Figures B1-3 show the HEA distribution based on η, 

∆Smix, and Ω values in the Al-X-Y type B2+ prediction model. Figures L1-L3 show the HEA 



xii 

 

distribution based on E2E0, η, and δ values in the Laves+ prediction model. Figures S1-3 show 

the HEA distribution based on η, VEC, and ∆χ values in the Sigma+ prediction model. ............ 58 

Figure 3.14: XRD patterns for newly synthesized validation HEAs. ........................................... 67 

Figure 4.1: Plots from Wen et al 49. (a) Comparison between the predicted and the experimental 

hardness values of the HEAs in both training and test dataset. (b) The predicted hardness values 

versus the measured values for the alloys of the original 155 training data and those synthesized 

in successive seven rounds of iterations. ...................................................................................... 70 

Figure 4.2: (A-C) Values of γusf, γsurf, and D parameters against valence electron concentration 

of multiple binary refractory element systems. (D-E) Comparison of γusf and γsurf values from 

ML prediction and DFT calculation. (F) γusf values against D parameters, indicating the strength 

against the ductility of alloys. (G) Experiment results of fracture strain against the D parameter 

values of alloys. Figure from Hu et al. 155..................................................................................... 72 

Figure 5.1: Structure of the high-throughput HEA design model. ............................................... 74 

Figure 6.1: Schematic diagrams of: A - Arc melting, and B – Suction casting systems. The colored 

circles in figure A represent raw materials in the crucible, while their sizes indicate the densities 

of the materials. Materials of low density are covered by materials of high density. The dashed line 

in figure B represents the air tunnel inside the mold. Alloy will be sucked into the tunnel and 

solidified into the desired shape. ................................................................................................... 77 

Figure 6.2: Schematic diagrams of the process of sample encapsulation. .................................... 78 

Figure 6.3: (A) X-ray diffraction (XRD) patterns of the HEAs designed for marine environment. 

(B) E-log(i) curves obtained during upward polarization of CCAs in 0.01 M NaCl after a 600 s 

application of a −1.3 VSCE potential compared to CoCrFeMnNi and 316L. (C) Scanning electron 

microscope (SEM) images of the HEAs. Figures from Inman et al. 21 ........................................ 81 

 

 

 

 

 

 

 

 

 



xiii 

 

List of Tables 

Table 2.1: Summary of the current statistical and ML methods for predicting HEA phases.  

Abbreviations of the algorithms are: ANFIS (Adaptive Neuro-Fuzzy Interface System), ANN 

(Artificial Neural Network), CALPHAD (Calculation of Phase Diagrams), CNN (Convolutional 

Neural Network), GA (Genetic Algorithm), GP (Gaussian Processes), KNN (K-nearest Neighbors), 

MLFFNN (Supervised Multi-layer Feed-forward Neural Network), and SVM (Support Vector 

Machine). The ML classification algorithms, the ML features, the phase categories defined in each 

ML method, the prediction success rates, and the references to the work are listed. In the phase 

categories column, the total count of HEAs in each phase category is listed, if the information was 

available. ....................................................................................................................................... 31 

Table 3.1: Engineered Features selected for phase prediction. ..................................................... 51 

Table 3.2: Validation HEAs compositions, phase prediction results, and experimental phase 

characterization results obtained from XRD are listed. The number subscripts in compositions are 

elemental atomic percentages. Detailed phase contents are listed in the experimental results 

column. True or False in Laves+, Sigma+, Al-X-Y B2+, and Heusler+ prediction columns 

represent forming or not forming the corresponding IM, respectively. Abbreviations AlNi B2+, 

A1, A2, Mix A1-A2, Al-X-Y B2+, and L21 represent the AlNi type B2 forming with other solid 

solution phases, disordered FCC_A1 phase, BCC_A2 phase, mixed A1-A2 phase (coexistence of 

multiple A1 or A2, or mixture of A1 and A2), Al-X-Y type B2+ forming with other phases, and 

Heusler phase. The incorrect predictions are underlined and bolded. .......................................... 60 

Table 6.1: The initial element palette and grid search step size in marine environment HEA design.

....................................................................................................................................................... 79 

Table 6.2: Compositions of HEAs designed for marine environment. Cantor alloy and 316L 

stainless steel are the benchmarks for corrosion resistance study. ............................................... 80 



 

 

1 

Chapter 1 Introduction 

1.1 Introduction to high entropy alloys 

Metallic material has been utilized and optimized by humans since the discovery of bronze. 

Most alloys were developed based on one principal element with small amounts of other alloying 

elements. Examples are stainless steel, aluminum-based alloys, and nickel-based superalloys. The 

attempts to make multi-principle element alloys (MPEA) can be dated back to the last century, 

while the outbreak in this field started in 2004 when Dr. Brian Cantor1 and Dr. Jien-Wei Yeh2 

independently found two MPEAs in single face-centered cubic structure. The nature of multiple 

principal elements results in more thermodynamic microscopic configurations and a higher 

configurational entropy. Therefore, this type of alloy is also known as High Entropy Alloy (HEA) 

or Complex Component Alloy (CCA). We will use “HEA” to represent this type of alloys in this 

thesis. 

The early definition of HEA is that the alloy composes at least five elements, and the 

concentration of each element is between 5 and 35 at.%3. Subsequently, these limitations were 

lifted and HEA now represents any alloy with multiple principal elements3.  

Four “Core Effects” of HEA were proposed by Yeh4 as the high-entropy effect, the lattice 

distortion effect, the sluggish diffusion effect,  and the “cocktail” effect as the four core effects for 

HEA. HEA’s high entropy can suppress ordered intermetallic phases (IM) formation and stabilize 

disordered solid solution phases (SS). Compared to the conventional alloy with one principal 

element, HEA generally has an increased lattice distortion due to the atomic size mismatch among 

the different elements. The severe lattice distortion leads to effects such as broadened peaks in X-

ray diffraction (XRD) patterns, increased material hardness and strength, and higher 

electrical/thermal resistance. The sluggish diffusion reflects the slow atomic diffusion in HEA, 

which requires a longer time or a higher temperature to reach the thermal equilibrium state. Finally, 

the ‘cocktail’ effect generally reminds people of the unexpected excellent properties obtained from 
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HEA. This encourages people to search the unconventional elemental combinations for 

unexpected outcomes. 

1.2 High entropy alloy phases 

Phases (crystal structures) of HEA can be classified in a variety of ways. The first 

classification system is based on the number of phases. HEA phases can be classified as amorphous 

phase (AM), single phase (SP), and mixed phase (MP). AM corresponds to the alloy without long-

range ordered crystal structure, such as the metallic glass. SP or MP corresponds to alloys with 

single or multiple phases. The HEA phases in the second classification system can be classified as 

SS and IM. SS corresponds to the phases where atoms randomly occupy the lattice sites. Examples 

are disordered face-centered cubic (FCC), disordered body-centered cubic (BCC), and disordered 

hexagonal-close-packed structure (HCP). IM corresponds to the phases with long-range ordering, 

where certain atoms tend to occupy specific sites on the lattice. Common ordered IM in HEA 

include B2, L12, L21 (or Heusler), Laves (C14, C15, C15b, and C36), Sigma (D8b), χ(A12), and η 

(D024) phases.  

HEA phases are important in determining structural and functional properties.  For example, 

FCC phases are normally ductile. Heusler5 and B2 phases can improve the HEA structural and 

functional properties6–10. Heusler phases are known for their wide range of multifunctional 

properties, including magneto-optical, magnetocaloric, and spintronic properties5. In addition, the 

Heusler phase is reported to have a superior creep resistance11,12, and its presence in a HEA SS 

host can improve the mechanical properties8,13,14. The B2 phase in HEAs generally consists of two 

types: AlNi type9 and Al-X-Y type (X and Y are specific groups of refractory elements)15. The 

AlNi type is widely used as a strengthening precipitate in HEAs9, while the Al-X-Y type can 

improve high-temperature mechanical properties, lower physical density and cost, and enhance 

oxidization-resistance over the traditional disordered BCC refractory HEAs15. On the other hand, 

some IM, such as Sigma and Laves phases, are well-known for their embrittling effects16,17.  

The composition of HEA plays a major role in determining phase formation. Nevertheless, 

different phases can be formed by the same alloy composition. On the one hand, the equilibrium 

phases at different solidification temperatures are normally different. Therefore, the annealing 
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temperature should be controlled to form the correct phase. On the other hand, HEA synthesis may 

result in meta-stable instead of equilibrium phases due to rapid solidification in fast cooling. Other 

processing techniques, such as rolling and hot pressing, can also adjust phase morphologies. 

Therefore, it is essential to design compositions and processing techniques carefully to obtain HEA 

with the desired phase. 

1.3 High entropy alloy properties and applications 

HEA properties include structural properties and functional properties. 

The structural properties include, but are not limited to, compression or tensile strain and 

stress, hardness, and toughness at cryogenic, room, or high temperatures. Figure 1.1 shows that 

some HEAs have better tensile mechanical properties than conventional alloys. With the formation 

of certain IM (e.g., Sigma and Laves), HEA Vickers hardness can be improved to the values of 

greater than 600 Hv from 100 - 200 Hv with a single FCC phase18,19. In addition, refractory HEAs 

possess excellent high-temperature functional properties. According to the Figure 1.2, some 

refractory HEAs retain high compressive yield strength up to 1000 ℃, making them the ideal 

materials in the gas turbine industry. 
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Figure 1.1: Ashby plot comparing the tensile yield strength and fracture toughness among different 

material systems. High entropy alloys generally show better properties. Figure from Gludovatz 

met al.20 

 

 
 

Figure 1.2: (a) Compression yield strength, (b) Compression yield strength normalized by density 

versus the measurement temperature. Haynes 230, INCONEL 718, and MAR-M 247 are 

commercial super alloys with their tensile data shown as comparison. Figures from D.B. Miracle 

and O.N. Senkov3. 

 

HEAs also have great functional properties, such as the corrosion resistance21–23, irradiation 

resistance24, thermal25, electrical26,27, and magnetic27–29 properties. In addition, HEAs’ applications 

as superconducting material30, hydrogen storage material31–33, catalysts34, and thermoelectric35–37  

material have also been explored extensively.  

Other fundamental properties, such as density and cost, are also critical in material 

selection. Alloy design is an art where multiple materials properties should be optimized 

simultaneously. Exploration, exploitation, optimization, and trade-off are the cores of this art. 

1.4 Challenges in high entropy alloy research 

The greatest challenge in HEA is efficiently exploiting the exceedingly large compositional 

space. For example, using only the 20 common metallic elements on the periodic tables can form 
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over 20,000 ternary, quaternary, and quinary element combinations. The number of compositions 

can amount to trillion possibilities when considering the atomic percentage variation or higher-

order alloy systems. However, over the past 20 years, only ~1,000 HEA systems have been 

experimentally studied38. Therefore, the trial-and-error method is outdated for finding the desired 

HEA in the vast compositional space. The high-throughput simulation and high-throughput 

experimentation may solve this issue. 

To save experimental efforts, high-throughput simulation method designs HEAs by 

predicting phases and properties. Simulation tools such as Monte Carlo (MC), ab-intio simulation, 

Density Function Theorem (DFT), Calculation of Phase Diagrams (CALPHAD), and Machine 

learning (ML) are widely used. They are, however, challenged by problems such as the 

unsatisfactory accuracy, a large amount of computation power, and the absence of thermodynamic 

databases. In this thesis, we will introduce various phase and properties prediction methods. They 

will be integrated as a high-throughput HEA design model. 

High-throughput experimentation synthesizes and characterizes the gradient of 

compositions during the experiment. Chemical vapor depositions, sputtering, and additive 

manufacturing are the common synthesis techniques. These methods can quickly enlarge the 

experimental database and may identify the composition with desired properties. However, the 

large-scale alloy synthesis in high-throughput experiment may behave differently from the with 

traditional casting methods.  

1.5 Structure of this thesis 

This thesis will review the methodologies for predicting the HEA phase and properties, 

and then introduce our methods. The major HEA phase prediction methods over the past 20 years 

are reviewed in Chapter 2, including the single parameters, first-principles and thermodynamic 

calculations, and ML methods. Our ML phase prediction models are introduced in Chapter 3, 

which covers the creation of ML features, the construction of feature engineering algorithms, the 

interpretation of features, and the experimental validation. The prediction methods for various 

HEA properties are reviewed in Chapter 4. Chapter 5 presents a high-throughput HEA design 

method that can search for HEAs with desired phase and properties. The experimental techniques 
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used in our research are introduced in Chapter 6, along with some experimental results for the 

HEAs we designed. Finally, Chapter 7 is the summary and outlook. 
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Chapter 2 Review on High Entropy Alloys Phase 

Prediction Methods  

2.1 Background 

The formation of high-entropy phases is primarily controlled by thermodynamic and 

kinetic factors. For understanding the growing number of HEAs, empirical methods that utilized 

atomistic and thermodynamic parameters were introduced to investigate HEA compositional 

regions 3,39,40. The empirical approaches were later complemented by first-principles calculations 

41 and Calculation of Phase Diagrams (CALPHAD) 42,43 to shed light on the thermodynamic factor 

of HEA formation. Monte Carlo simulations showed promising results in predicting the formation 

of intermetallic phases and the evolution of phase structures with temperature 44. Despite progress 

in understanding the formation trend of HEAs, much of the alloy design for HEAs still relies on 

trial-and-error experimentation. Recently, there have been increasing efforts in employing data-

driven methods to exploit the growing data set of HEAs. Some initial methods included the 

utilization of statistical models complemented with thermodynamics45, and as well as high-

throughput experimentation 46,47 designed to underpin the HEA phase formation trend. The thin 

film deposition method employed in the high-throughput study tended to result in the metastable 

HEA phases. Meanwhile, the utilization of machine learning (ML) models has demonstrated some 

initial promise in phase prediction and property design (e.g., high hardness)48,49. Most ML has 

focused on supervised learning with different models, such as the support vector machine 

(SVM)48–53 and artificial neural network (ANN)50,53,54. The ML models were trained using 

atomistic and thermodynamic parameters. Despite some success in categorizing the compositional 

regions of certain solid solution phases (SS) and intermetallic phases (IM), the predictions often 

fell short of differentiating between the specific phases. On the other hand, a ML model that 

utilized phenomenological features obtained from binary phase diagrams was found to achieve 

high accuracy in categorizing specific phase formation 55.    

The various computation and experimentation methodologies will continue to develop 

towards advancing the science and design of high-entropy alloys. In view of this promising 
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development, this chapter serves as a timely report of the status of progress in harnessing the high-

dimensional composition space of HEAs as a requisite for designing the desired properties.  

In this chapter, Section 2.2 will provide a comprehensive review of the various empirical 

parameters relevant to phase formation. Section 2.3 will introduce several typical first-principles 

calculation methods in phase prediction. Section 2.4 will provide a comprehensive review of the 

ML models for HEA phase prediction. Section 2.5 will compare the three types of methods. 

2.2 Empirical parameters 

Empirical parameters can reflect the HEA phase formation tendency from aspects of the 

minimization of Gibbs Free Energy, Hume-Rothery rules, electronic configuration, and lattice 

strain. These empirical parameters, defined and discussed in Sections 0-2.2.3, were used 

individually or in conjunction to determine HEA phases. The correlations between these 

parameters and the HEA phases formed are analyzed in Section 2.2.4. 

2.2.1 Free energy parameters 

The phases favored during the solidification of a HEA possess the lowest Gibbs free energy 

of mixing (∆Gmix). Parameters associated with ∆Gmix are the mixing entropy (∆Smix), the mixing 

enthalpy (∆Hmix), and labeled parameters Ω, ϕ, Φ, η, and k1
cr, defined in Eqn. 2.2 - 2.8. ∆Gmix is 

defined as 

∆Gmix =  ∆Hmix − T∆Smix 2.1 

where T is the phase formation temperature. The ∆Smix for forming a single or multiple SS is 

approximated as the configurational entropy56 (∆SC) and is calculated according to Boltzmann’s 

hypothesis (Eqn. 2.2): 

∆Smix ≈ ∆SC =  −R∑ci ln(ci)

N

i=1

 2.2 

where R is the gas constant and ci is the atomic percentage of the i-th element for a N-component 

system. The definitions of ci  and N are the same throughout this chapter. A SS formation is 

energetically favored over an IM formation when the ∆Smix term is larger.  
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The ∆Hmix term represents the chemical compatibility among the elements in HEAs 57. For 

HEAs, the ∆Hmix for forming a SS is typically calculated from Miedema’s model 58 (Eqn. 2.3): 

∆Hmix = ∑ 4 ΔHi,j
mix cicj

N

i=1,i≠j

 2.3 

where ΔHI,j
mix is the binary mixing enthalpy of an i-j elemental pair. An increase in the negativity 

of ∆Hmix increases the probability of forming an IM. A positive ∆Hmix indicates an immiscibility 

among certain elements, which could lead to phase separation. As shown in Figure 2.3a, 

−16
kJ

mol
< ∆Hmix < +5

kJ

mol
  is the criterion proposed for forming a single SS 39. 

∆Gmix is determined by the entropy and enthalpy terms. Whether SS or IM formation is 

favored is dependent on the interplay of these two terms. The parameters Ω and ϕ are used to 

compare the magnitudes of the entropy and enthalpy terms. Zhang et al. 59 defined the Ω-parameter 

as 

Ω =
Tm∆Smix
|∆Hmix|

  2.4 

where Tm =  ∑ ci Tmi

N
i=1  is the HEA melting temperature and Tmi

 is the melting temperature of the 

i-th element. A large Tm∆Smix or  |∆Hmix| term stabilizes SS or IM formation, respectively. When 

Ω >  1 59, as shown in Figure 2.3b, a SS formation is favored. 

Ye et al. 60 defined the ϕ-parameter. The total configurational entropy of mixing (∆ST) is 

defined as ∆ST = ∆SC + ∆SE, where ∆SC is the configurational entropy of mixing for an ideal gas 

and ∆SE is the excessive entropy of mixing 61. ∆ST deviates from the approximation of ∆ST ≈ ∆SC 

due to the influence of factors such as differences in atomic size and the packing fraction. ∆SE, 

usually negative, is introduced to represent this deviation and ∆ST is adjusted by its absolute 

magnitude, ∆ST = ∆SC − |∆SE|. The parameter ϕ defined as 

ϕ = 
∆SC − |

∆Hmix
Tm

|

|∆SE|
> 1 

2.5 

is the result of combining ∆ST and Ω. Based on existing values of known HEAs, shown in Figure 

2.3c, ϕ > 7 is the proposed range for SS formation 39.  

Instead of only comparing the enthalpy and entropy terms for predicting the formation of 

SS or IM, the parameters Φ, η, and k1
cr were defined by examining difference in ∆Gmix. King et al. 
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62 defined the Φ-parameter to compare the ∆Gmix for forming a fully disordered SS (∆GSS) with 

the ∆Gmix for IM formation or phase segregation (∆Gmax). The Φ-parameter is defined as 

Φ =  
∆GSS

−|Gmax|
 2.6 

where |∆Gmax| represents the absolute magnitude of the larger of the following two values: the 

lowest possible negative ∆Gmix when the strongest binary compound forms, or the highest possible 

positive ∆Gmix  when a phase is segregated due to the positive mixing enthalpy between two 

specific constituent elements. When Φ >  1, then SS formation is favored.  

Troparevsky et al. 63 defined a parameter, later labeled by others as η, that is a first order 

approximation used to compare the ∆Gmix for forming SS and IM. The ∆Hmix for SS formation 

and the ∆Smix  for forming IM are usually small. Thus, the entropy contribution −Tann∆Smix , 

where Tann is the annealing temperature of a HEA, is used to approximate the ∆Gmix for forming 

SS. The enthalpy of formation (∆Hf), the most negative binary mixing enthalpy for IM formation 

among the constituent element pairs derived from density functional theory (DFT) calculations, is 

used to approximate the ∆Gmix for forming IM. η is then defined as 

η =
−Tann∆Smix

|∆Hf|
  2.7 

where an increasingly larger value of the parameter indicates a favorability for forming a SS. η >

 0.19 39 is the proposed lower boundary for the region of SS formation as seen in Figure 2.3c. 

Similar to the formulation of η, Senkov and Miracle 64 developed parameters to compare 

the ∆Gmix  for forming SS and IM. Their approach was less approximate. Their criterion for 

forming SS is  ∆Hmix − T∆Smix < ∆HIM − T∆SIM , where ∆Hmix  and ∆HIM  are the mixing 

enthalpies, and ∆Smix and ∆SIM are the mixing entropies for forming SS and IM, respectively. 

 ∆SIM for the IM is approximated to be 0.6∆Smix. This relation of a simple thermodynamic criterion 

can be expressed as 

k1
cr = 1 −

0.4T ∆Smix
∆Hmix

>  
∆HIM
∆Hmix

 2.8 

The parameters k1
cr  and 

∆HIM

∆Hmix
 are plotted in Figure 2.3d. When k1

cr  >  
∆HIM

∆Hmix
,  a SS 

formation is favored.  

Pei et al. 65 defined the parameter γ to compare the ∆Gmix for forming single phases and 

multi-phases. In γ’s calculation, ∆Gmix =  ∆Hmix − αTm∆Sc, where α is a scaling parameter. The 
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∆Hmix definition varies from other methods by using a combination of the formation enthalpy 

calculated based on the Lennard-Jones potential, and the strain-induced energy calculated from the 

Kanzaki force 66. For any given composition, ∆Hmix was calculated for FCC, BCC, HCP, and 

simple cubic structures. The minimum ∆Hmix was adopted to calculate ∆Gmix. For the entropy 

term, the real system entropy was typically smaller than ∆Sc, and the real temperature when the 

SS was stable could be below Tm . Consequently, α  is a scale-down factor for the entropy 

contribution from the ideal to the real conditions. Optimum phase separation occurred at a value 

of α = 0.25. For a N-component HEA, the ∆Gmix was calculated for all the constituent binaries 

(∆G2) and the HEA (∆GN). The uniform SS formation ability depended on ∆GN and the smallest 

∆G2 value, min(∆G2). Thus, γ was defined as 

γ =

{
 

 
∆GN

min(∆G2)
, if min(∆G2) < 0;

−
∆GN

min(∆G2)
, if ∆GN < 0 andmin(∆G2) > 0;

 2.9 

The criterion for forming the SS was γ ≥  1. γ was used to test 296 existing HEAs in BCC, 

FCC, HCP, and multi-phases. While 73 % were classified correctly, when jointly using γ and the 

radius mismatch (δ <  6 % , defined in Section 2.2.2), 81 % consistency was obtained, as 

demonstrated in Figure 2.1a. The validity of γ was further confirmed by using CALPHAD. γ was 

calculated for each of the 1,146 equimolar HEAs. The compositions were selected, as seen in 

Figure 2.1b, from three 9-element blocks in the periodic table. From these blocks, 266 single SS 

HEAs with 74 BCC, 145 HCP, and 47 FCC phases were obtained. Of the 266 predicted HEAs, 

only 77 could be validated with CALPHAD due to the limitations of the thermal databases. 

However, the 77 had a high validation consistency of 94 %. 
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Figure 2.1: (a) Plot of the distribution of FCC, BCC, HCP, and multi-phase HEAs for parameters 

γ and δ. The criteria for forming a single SS phase are bounded by γ ≥  1 and δ <  6 %. (b) 

Equimolar HEAs with BCC, HCP, and FCC predicted phases were obtained from three 9-element 

blocks in the periodic table. Figures from Pei et al. 65 

 

2.2.2 Parameters from Hume-Rothery rules 

According to the Hume-Rothery rules 67, the formation of a SS is influenced by radius 

mismatch, electronegativity mismatch, and electron concentration among the constituent elements. 

Based on this theory, to study HEAs, several parameters that can influence the phase formation 

were defined. 

The intrinsic residual strain, caused by the radius difference, makes the multi-phase 

formation possible. Parameters δ, √< ε2 >, 
E2

E0
, sm, and Km , defined below, relate HEA phase 

formation to intrinsic strain.  
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Small radii differences between constituent elements, equivalent to small lattice distortions, 

favor the formation of the SS. The radius mismatch of an alloy (δ) 57 is calculated by 

δ =  √∑ci  [1 −
ri

∑  cj rj
N
j=1

]

2N

i=1

 2.10 

where ri is the atomic radius of the i-th element. δ < 6 % 39 is the region for SS formation, as seen 

in Figure 2.3a.  

Ye et al. 68 developed a geometric model to calculate the root-mean-square residual strain 

√< ε2 > from other parameters such as the atomic percentage, atomic size, and packing density. 

The mean-square is defined as residual strain < ε2 > =  ∑ ciεi
2N

i=1 , where εi is the residual strain 

of the i-th element in a N-component system. After derivation, εi can be expressed as 

εi =
∑ ωijcj
N
j=1

∑ Aikck
N
k=1

−
4πηideal

Ni∑ Aikck
N
k=1

 2.11 

where ωij  is the solid angle subtended by j-th element around the i-th element with ωij =

2π[1 −
√ri(ri+2rj)

ri+2rj
], rj is the atomic radius of the j-th element, Aik is a dimensionless constant with 

Aik =
2πxik

(xik+1)2√xik(xik+2)
 for i-th and k-th elements, ηideal is the ideal atomic packing fraction and 

is computed by ηideal =
1

2
∑ ∑ cjciNi [1 −

√xij(xij+2)

xij+1
]N

j=1
N
i=1 , xij=ri/rj is the atomic radius ratio, and 

Ni  is the coordinate number of the i-th atom. A significantly large √< ε2 >  leads to lattice 

distortions that disrupt single-phase lattices and form multi-phase lattices.  

Wang et al. 69 defined another parameter 
E2

E0
 related to the intrinsic elastic strain energy. In 

an ideal N-component uniform HEA lattice, the average atomic radius is r̅ =  ∑  ci ri
N
i=1 . In a real 

lattice, atoms are displaced from r̅. The dimensionless strain is calculated to be ∆d =
|ri+rj−2r̅|

2r̅
. 

The dimensionless parameter 
E2

E0
 is defined as  

E2
E0
∝  (∆d)2 =  ∑

cicj|ri + rj − 2r̅|
2

(2r̅)2

N

j≥i

 2.12 
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where a low value of 
E2

E0
, similar to small values of √< ε2 >, favors the SS formation. Figure 2.3e 

is a plot of 
E2

E0
 and √< ε2 >  for HEAs with different phases. It demonstrates that when 

E2

E0
<13.6× 10−4 and √< ε2 > <  6.1 %, single-phase HEAs tend to form 39. 

Interatomic spacing mismatch (sm) and the bulk modulus mismatch (Km) were developed 

by Toda-Caraballo et al. 40,70 with 

sm = ∑∑cicj |1 −
sij
d

slat
|

N

j=1

N

i=1

 2.13 

 

and 

Km = ∑∑cicj |1 −
Kij
d

Klat
|

N

j=1

N

i=1

 2.14 

where sij
d and Kij

d are two matrices representing the interatomic spacing and bulk modulus for i-j 

atom pairs, Klat is the bulk modulus of the lattice, and slat is the mean interatomic distance across 

the lattice. Figure 2.2 shows the HEA phase separation based on parameters sm and Km. In the 

plot, SS tend to from when sm is small. This result, again, implies that small lattice distortion 

prompts the SS formation. As for the influence of Km, the FCC phase tends to form when Km <

 4, while BCC phase forms when Km >  4, implying that the different forces acting on atoms in a 

FCC lattice are closer to being homogeneous than those acting on a BCC lattice.  
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Figure 2.2: The plot of the distribution of HEA phases for parameter sm and Km. Figure from 

Toda-Caraballo and Rivera-Díaz-Del-Castillo 40. 

 

In addition to the effects from the intrinsic strain, electronegativity difference (∆χ) and 

electron configuration are also considered. A small ∆χ has been shown to promote SS formation71. 

∆χ is defined as  

∆χ = √∑𝑐i  [χi −∑ cj χj

𝑁

j=1

]

2
𝑁

i=1

 2.15 

where χi is the i-th HEA element electronegativity. Dong et al. 72 showed that the formation of the 

Topological Close-Packed (TCP) phases such as Sigma, Laves, and μ phases can be influenced by 

∆χ when ∆χ >  0.133. 

Another parameter is the electron concentration, which has two definitions according to 

Guo et al 73. The first one is 
𝑒

𝑎
 which is the average number of itinerant electrons per atom: 

 

𝑒

𝑎
 =∑ci  (

𝑒

𝑎
)
i

N

i=1

 
2.16 
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where (
𝑒

𝑎
)
i
 is the itinerant electrons per atom of the i-th element. The second one is the valence 

electron concentration (VEC) 73–75 which is the total number of electrons including the d-electrons 

held in the valence band. VEC is defined as 

VEC = ∑ci VECi

N

i=1

 2.17 

where VECi is the VEC of the i-th element. VEC was found to be superior to 
𝑒

𝑎
 in predicting HEA 

phases. Figure 2.3f shows that BCC phases form when VEC <  6, FCC phases form when VEC >

 7.8, and mixed FCC-BCC phases form when 6 <  VEC <  7.8 39. Tsai et al. 75 applied VEC to a 

study on 𝜎 phase formation. They discovered that 6.88 <  VEC <  7.84 is the 𝜎-prone formation 

region for HEAs containing Cr or V.  

 

2.2.3 Other parameters 

The average value of a d-orbital energy level (Md̅̅ ̅̅ ) was proposed by Lu et al. 76 Md̅̅ ̅̅  is 

related to the electronegativity and metallic atomic radii. The TCP formation is influenced by Md̅̅ ̅̅ . 

TCP phases form when Md̅̅ ̅̅  >  1.09 and no TCP formation occurs when Md̅̅ ̅̅  <  0.95.  

Poletti et al.77 proposed the parameter μ = Tm TSC⁄ , where TSC  is the spinodal 

decomposition temperature. A large gap between Tm and TSC can prompt the single SS formation 

at high temperatures. As a result, μ >  1.5 is the proposed region for single SS formation.  

 

2.2.4 Correlation between the parameters and phase formation 

Gao et al.39 compared the effectiveness of these empirical parameters by coupling and 

plotting them in Figure 2.3. Although the correlation between the parameters and the phase 

formation exists, precise phase predictions based solely on pairs of these parameters is challenging. 

Different phases on the plots overlap with ambiguous separation. Additionally, specific phase 

content in certain categories, such as “multi-phase” and “IM,” were not included. However, these 

empirical parameters provide fundamental ideas for applying ML to HEA phase formation 

research. These parameters are related to different aspects of phase formation. Many ML methods 
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utilize these parameters to consider all the phase formation factors comprehensively and this 

results in improved predictions. Further details are found in Section 2.4. 

 
Figure 2.3: Plots comparing different empirical parameter effects in separating HEA phases. 

Figure from Gao et al 39.  
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2.3 Thermodynamic and first-principles calculations 

Thermodynamic methods, such as the CALPAHD and Monte Carlo (MC) simulations, 

simulate the phase formation by minimizing the Gibbs free energy of mixing and adopting 

thermodynamic database obtained from experiments or other fundamental simulations. The more 

fundamental first-principles calculations methods, such as the ab-initio calculations and DFT, 

predict the phase formation by simulating the interactions between fundamental particles, such as 

the electrons and nuclei, using the well-established physical principles. This section highlights a 

few studies on HEA phase formation prediction using CALPHAD, and ab-initio calculations/DFT.  

 

2.3.1 CALPHAD 

CALPHAD 78–80 is a direct method for determining HEA phase formation. It is a powerful 

methodology that is employed to predict phase formation and thermodynamic properties such as 

the composition or temperature boundaries for phase transformations, and precipitation nucleation 

barrier 81. Thermodynamic databases, which are the core of CALPHAD, are obtained either from 

experimental data or DFT results 78. In order to have accurate HEA phase predictions, the database 

should ideally include thermodynamic data from lower-order binary or ternary systems 42 that can 

be extrapolated 82 to simulate higher-order multi-component HEA systems.  

As a prediction method that gives detailed phase information, CALPHAD is used widely 

23,42,43,74,78,83–91 in exploring vast compositional spaces. However, due to the vast compositional 

space in which HEAs lie, a limitation for the use of CALPHAD is the availability of sufficiently 

complete binary and ternary thermodynamic databases 42,92. Current multi-component alloy 

databases are designed for traditional alloy systems based primarily on elements such as Al, Fe, 

Ni and Ti. Complete data for a multitude of ternary systems have yet to be acquired. Without this 

data, the predictions will not be fully accurate. Additionally, the veracity of the CALPHAD phase 

predictions drops when miscibility gaps or IM are present in the phase diagrams 81. 
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2.3.2 Ab-initio simulations and density functional theory 

Ab-initio simulations 41 predict the thermodynamic and mechanical properties 93–103 of 

HEAs. These properties are determined from simulated electron density which was found using 

DFT. DFT provides an approximated solution to the Schrodinger equation of a simulated alloy 

system. An advantage of ab-initio calculations is that they rely on the fundamental quantum 

mechanical properties of the system, and no experimental nor empirical inputs are needed. 

However, ab-initio simulations can be computationally intensive methods. Furthermore, in 

practical use, they are usually used collaboratively with experimental results or other simulation 

methods like CALPHAD. 

DFT calculations can provide binary phase formation information such as the formation 

energy 63 or bonding strengths 87–89. Strong binary bonding indicates IM formation during 

solidification. A large positive binary formation energy indicates a potential phase separation. 

These empirical values can be used as a guide for finding systems with homogeneous binary pairs 

that tend to form SS. However, these methods usually do not distinguish between different SS 

phases such as the FCC, BCC, or HCP phases.  

Ab-initio simulations can calculate ∆Gmix for forming a specific phase. These results have 

improved accuracy over results using only empirical parameters ∆Hmix and ∆Smix. For a given 

composition and phase, the contributions to ∆Gmix  from the electronic energy, magnetic free 

energy, atomic vibration free energy, and the configurational entropy can all be computed with 

certain approximations at various temperatures 104–106. Ideally, the ∆Gmix selected from the phase 

formation determination process is the most negative of all possible phase configurations 

calculated. In practice, determining all the phase configurations is not possible or computationally 

exorbitant. 

Alternatively, specific strategies have been used to expedite the simulation process 41. The 

first approach is the combination of ab-initio and existing experimental results. For example, the 

experiment results from AlCoCrFeNi-type HEAs reveal that the FCC, BCC, and FCC+BCC 

phases are the phases that can form 107. Based on these experimental results, Tian et al. 104 used 

ab-initio calculations to determine the ∆Gmix for forming FCC and BCC phases in AlCoCrFeNi-

type HEAs. They then inferred the theoretical compositional space to form FCC, BCC, and mixed 

FCC+BCC phases. Another approach is enumerating the most probable phases. Wang et al. 108 
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used this approach to study the phase formation of MoNbTaVW. They computed the ∆Gmix at 

given temperatures for 178 phases. The calculated ∆Gmix values were analyzed to determine the 

phase stabilities, phase separation tendencies, and order-disorder transitions. The third approach is 

studying binary phase diagrams 109,110. For example, Rogal et al. 109 from inspection of constituent 

binary phase diagrams selected the D019 and HCP phases as candidate phases for the HEA 

Al15Hf25Sc10Tr25Zr25. DFT calculations show that the HCP to D019 phase transition occurs at 1230 

K, which is in agreement with the experimental result. 

Computations of long-range order (LRO) and short-range order (SRO) in HEAs provide 

valuable information. Ab-initio calculations, coupled with MC or molecular dynamics (MD) 

simulations, are used for chemical order studies to determine order-disorder transition 

temperatures 97,99,108,109,111–122. Santodonato et al. 44 used MC simulations with inputted DFT results 

63 to determine, in the HEA AlxCoCrFeNi system with variations in Al content, the change in the 

phase transformation temperature for the precipitation of B2 phase from the BCC phase. Lederer 

et al. 123 developed a high-throughput ab-initio method to search for potential disordered SS HEAs 

from 1,240 candidates. The ab-initio results from AFLOW124, a software framework for high-

throughput calculations of crystal structure properties, are then incorporated with a generalized 

quasi-chemical approximation model125, generating a temperature-dependent HEA order 

parameter. The order-disorder transition temperatures were estimated based on the change of this 

parameter. Furthermore, for a HEA the comparison between the order-disorder transition and 

melting temperatures was indicative of the predicted disordered SS formation tendency. The 

accuracy of the model was corroborated with MC simulations, experimental data, and CALPHAD, 

showing high agreement in both SS system predictions and transition temperature predictions. 

 

2.4 Machine learning and statistical studies 

Since the discovery of HEAs in 2004 1,56, a large number of HEAs and their phases have 

been reported. The rapidly expanding database, in recent years, made it possible to bring ML into 

this field 45,46,50–54,65,98,126–135. ML, in general, is capable of extracting non-linear correlation 

between input and output data. When applied to HEAs it can be utilized to discover patterns in the 



 

 

21 

large amounts of existing HEA data. For ML, each HEA datum includes values of features and a 

class. The class is the HEA phase. The features are correlated with the phase formation and are 

utilized to make phase predictions. ML algorithms are methods capable of identifying patterns 

between the input features and the HEA phases. Based on these connections, phase predictions for 

new HEAs are given. In ML, choosing informative, discriminating, and independent features is 

crucial to the training process of an algorithm. The algorithms examine feature-phase relationships 

in a portion of the whole database called a training set. After that, ML makes and verifies the 

predictions for HEAs in the remaining database called a test set. A prediction success rate is 

generated from the ability of the training set to predict the test set correctly. The current HEA ML 

prediction methods can differ by three different aspects: (1) the features used, (2) the algorithms 

used to analyze the training database, or (3) the HEA phase classifications. 

Tancret et al. 45 combined empirical parameters (∆χ, VEC, Km, ∆Hmix, δ, μ, e a⁄ , Ω, and 

Sm ), Gaussian processes (GP) ML algorithm, and CALPHAD to find a robust method of 

identifying single-phase HEAs in a database with 322 HEAs. The use solely of empirical 

parameters or CALPAHD is not reliable in phase prediction. Nevertheless, the combination of the 

two with GP can be useful. GP with empirical features first returns the probability for a HEA being 

a single-phase SS. When this probability for a HEA was higher than 0.59, CALPHAD would be 

applied to predict the phase. All HEAs were found to be single-phase SS when both predictions 

agree. However, many single-phase SS HEAs were misidentified as mixed phase HEAs by this 

method, this led to the absence of potential useful HEAs from the predictions. 

GP was also used by Pei et al. 65 in classifying alloys as a multi-phase or a single-phase. 

Single-phase alloys were further classified as a BCC, FCC, or HCP phase. The database included 

1,252 alloys ranging from binary alloys to multi-component HEAs. The database was partitioned 

into 627 multi-phase alloys and 625 in the single-phase alloys. The atomic percentage weighted 

averages of 85 elemental properties composed the features pool. Initially, ten features were 

selected based on their relevance for making GP phase classification decisions. Then different 

combinations of features were tested until only the optimum features remained. This method 

returned a prediction accuracy of 93 %. Molar volume, bulk modulus, electronegativity, melting 

temperature, valence, vaporization heat, and thermal conductivity were determined to be the most 

relevant features. GP returned a probability for each alloy indicating its tendency to form a single 
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phase. This GP probability was plotted against δ in Figure 2.4, where GP probability >  0.5 and 

δ <  6 % were the criteria for forming a single phase.  

 

 
 

Figure 2.4: GP probability as a single-phase alloy plotted against radius mismatch, δ to separate 

alloys into different phases. The criteria for forming a single-phase alloy are represented with 

dashed lines. Figure from Pei et al 65.  

 

Islam et al. 50 used empirical parameters as the ML features as well, but with an ANN ML 

algorithm. The 118 HEAs used were classified as 64 SS, 21 IM, and 33 amorphous (AM) phases. 

ANN predictions showed that the relevance with the phase formation between different features 

increases in the following order: ∆Smix, δ, ∆Hmix, ∆χ, and VEC. The ANN prediction accuracy 

was 83 %. Like prior mentioned methods, detailed phase content is still not predictable with this 

method. 

Huang et al. 51 used five empirical parameters VEC, ∆χ, ∆Hmix , ∆Smix , and 𝛿  as ML 

features. The 401 HEAs used were classified as 174 SS, 173 SS+IM, and 54 IM HEAs. Three 

kinds of ML algorithms were used; (1) k-nearest neighbors (KNN) returned a prediction accuracy 

no larger than 68.6 %, (2) SVM returned an accuracy of 64.3 %, and (3) supervised multi-layer 

feed-forward neural network (MLFFNN) returned an accuracy of 74.3 %. Binary classifications 
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of phases between SS and IM, SS and SS+IM, as well as IM and SS+IM, were also conducted 

with MLFFNN, returning accuracies of 86.7 %, 78.9 %, and 94.3 %, respectively. Of the empirical 

parameters used, 𝛿 and VEC were of greater importance than the others. According to the authors, 

additional features will improve the accuracy.  

Similarly, Li and Guo 52 used SVM with empirical parameters to classify a database 

containing 18 BCC, 43 FCC, and 261 other phases called NSP (not forming single SS) HEAs. 

Different combinations of ML features among candidates {VEC, 𝛿, ∆Hmix, ∆Smix, ∆χ, ∆H𝑓, Tm} 

were used. The feature combination of {VEC, 𝛿, ∆Hmix, ∆Smix, Tm} was found to give the best 

prediction accuracy of 90.69 %. The test accuracy increases by > 5 % when the training data set 

percentage increased from 50 % to 90 %. This indicates that the performance of the model can be 

further increased by including additional future experimental data. When the training set 

percentage was 90 %, the accuracies for BCC, FCC, and NSP phase predictions were 60 %, 75 %, 

and 97.79 %, respectively. The error in the performance occurred due to missed predictions 

between FCC and NSP, or BCC and NSP phases. The method excelled at separating BCC and 

FCC HEAs. 

Agarwal and Prasada Rao 54 used an adaptive neuro-fuzzy interface system (ANFIS), a 

hybrid method using an ANN ML algorithm and fuzzy logic, to predict HEAs with BCC, FCC, 

and multi-phases. Two sets of input features were used. The first used compositions of HEAs and 

returned a prediction accuracy of 84.21 %. The second used empirical parameters VEC, 𝛿, ∆Hmix, 

∆Smix, ϕ, and √< 휀2 > and returned a prediction accuracy of 80 %. In the second model, the 

importance of each feature was ranked by removing one individual empirical feature and 

calculating the prediction accuracy drop due to the absence. The ranking of importance of the 

empirical features was determined to be √< ε2 > >  VEC >  δ >  ϕ >  ∆Hmix  =  ∆Smix. By 

systemically changing the value of one feature while keeping the other features unaltered, the 

phase prediction results from ANFIS could reflect how the change of each feature affects the phase 

formation. For example, BCC phase formation is favored over FCC phase formation when 𝛿 

increases. 

Zhou et al. 53 used three algorithms to study the phase formation rules. They were ANN, 

one-dimensional convolutional neural network (CNN), and SVM. The database used was 

composed of 13 empirical features and 601 as-cast binary, ternary, quaternary, and higher-order 
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alloys. The ML model studied the appearance of SS, IM, and AM phases in HEAs. Multiple 

positive phase predictions would indicate a combination of those predicted phases. The testing 

accuracies of three algorithms on predicting the appearances of the SS, IM, and AM phases were 

all near or above 95 %. Correlations between features and the appearance of a phase were 

examined by a compound transformation function. It was derived from linear transformation 

matrices and biases among the input, hidden, and output layers in the ANN model. As can be seen 

in Figure 2.5, certain features were found to be strongly correlated to specific phase appearances. 

For example, large values for Tm and the standard deviation of binary ∆Hmix (σ∆H) promote the 

formation of the AM phase while suppressing the formation of the IM. And while ∆Smix promotes, 

δ suppresses the SS formation. Experimental results using (FeCrNi)10-x(ZrCu)x further validated 

this model, however, the results are cooling rate sensitive.  

 
 

Figure 2.5: Correlations between features and the appearance of (a) AM, (b) IM, and (c) SS phases. 

Red and blue colors represent positive and negative correlations, respectively. Figure from Zhou 

et al 53. 



 

 

25 

 

Recently, there has been an increase in studies utilizing feature engineering and active 

learning 98,99,129,136,137. Feature engineering is an approach to mathematically expanding the ML 

feature pool. A large number of features are synthesized from a limited basis set of features. Then 

a down-selected combination of features is chosen, which returns the highest accuracy. Active 

learning is an approach that can experimentally expand the database under the guidance of ML 

and improve prediction accuracy. They have been applied in the following works. 

Zhang et al. 129 utilized the genetic algorithm (GA) method to select the best combinations 

of ML features and models systemically. In their classification I, a 550 HEA database was 

classified into SS and non-solid solution (NSS) phases. In their classification II, the SS HEAs were 

further divided into FCC, BCC, and dual phases (DP), a combination of FCC and BCC phases. A 

flowchart for this work is shown in Figure 2.6. The pool of features and models was composed of 

70 features and nine common ML classification algorithms. The results from their computations 

showed that only a minimum of four features were required to produce an accurate prediction. The 

Pearson correlation coefficients 138, which measures the statistical relationships between two 

continuous variables, were calculated among the 70 features to remove the redundant features. For 

each ML algorithm, the GA systemically changed the four features used and determined the feature 

combination returning the best prediction accuracy. All nine algorithms were optimized in the 

same manner, and the best model was selected. Classification I and II eventually had accuracies 

of 88.7 % and 91.3 %, respectively. Active learning was further employed to refine their 

predictions. Ten new HEAs, whose predicted phases had high uncertainties from ML, were 

experimentally prepared and measured for their phases. After adding the new data into the database, 

the ML prediction accuracy increased. This implies that iterating the active learning steps can 

improve the ML accuracy. 
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Figure 2.6: Flowchart from Zhang et al. 129 describing the GA method to best select ML algorithms 

and features for HEA selection. First, (a) is the ML feature pool with 70 features that can influence 

the phase formation. Second, (b) is the commonly used ML algorithms pool. Third, (c) is the GA 

process, where the optima combinations of features and ML algorithm is obtained. And lastly, (d) 

is the optimized output. 

 

Dai et al. 130 explored feature engineering with empirical features to improve the prediction 

ability. First, specific features were highly correlated with each other based on their Pearson 

correlation coefficients. Feature pairs such as √< 휀2 >  and 𝛿  had large Pearson correlation 

coefficients and one redundant feature should be removed. With this method, 14 candidate features 

were down-selected to nine features. Second, from the nine features, a pool of 30,450 non-linear 

features was generated. These non-linear features were calculated by the following relationships: 

√|𝑥|, 𝑥2, 𝑥3, and log(1+|x|) for feature x, or multiplying two or three of these features together. A 

recursive feature elimination method was used to eliminate the irrelevant features, and 20 features 

were left. To compare the two feature pools, a database with 407 HEAs and a simple linear 

regression ML algorithm were employed to classify the HEAs into BCC, FCC, HCP, multi-phase, 

and AM phase categories. The highest ML prediction accuracies obtained from using the original 

nine features and the 20 engineered features were 75 % and 86 %. The constructed non-linear 

features outperformed the original features. This work shows that feature engineering can improve 

the feature-phase relationship to increase the accuracy of predictions. 
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Recently, Lee et al139 applied ML techniques, ensemble learning, post hoc model 

interpretability of black-box models, and clustering analysis to interpret the HEA phase formation. 

Lee et al. identified the most important features and tuned the parameter values to show how the 

phase formation is influenced. The work is valuable in that it reveals how different features can 

influence phase formation. 

 

Figure 2.7: (A) Cross entropy loss corresponding to each ML feature on the vertical axis. Large 

cross entropy loss represents higher importance in ML. (B) Ceteris Paribus profile for NbTaTiV. 

Plots demonstrate how feature values influence the phase prediction predicted by ML. Horizontal 

axes are the features’ value. Vertical axes are the ML predicted phase content of NbTaTiV. Line 

colors represent different phases: blue, Multiphase; violet, Amorphous; cyan, FCC; orange, 

BCC+FCC; light blue, HCP; red, BCC; green, IM. Figures from Lee et al139. 

 

The works mentioned above show that the empirical parameters are frequently selected as 

features for ML methods. The following ML methods limit features to only the HEA compositions 

or their elemental components.   

Wu et al. 131 designed a eutectic HEA system, AlCoCrFeNi, using ANN. Their database 

contained 311 eutectic HEAs predicted by CALPHAD and 10 HEAs discovered by experiments. 

Their data was divided into training and test sets of 75 % and 25 %, respectively. The input features 

consisted of the atomic percentages of the five elements in each HEA. The output was a normalized 

number between -1 and +1: a negative value represented the formation of a hypereutectic B2 

primary HEA, 0 was the formation of an eutectic HEA, and a positive value represented the 

formation of a hypoeutectic FCC HEA. As shown in Figure 2.8a, the predicted values and the 

target values are in agreement. The ML showed high phase constitution prediction ability, and 400 

new near-eutectic HEAs were predicted. Figure 2.8(b-c) are the element content distributions of 

A B
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different elements for the new near-eutectic HEAs. In Figure 2.8b, the Al and Cr content 

distributions are clustered in certain ranges, while the Co, Ni, and Fe content distributions are near 

evenly distributed. Figure 2.8c shows correlations between different element content distributions. 

A strong content correlation for Al-Cr is noted. Additional findings also seen from Figure 2.8: Al 

was identified as the most relevant element to determine the phase constitution; Cr is associated 

with Al content to influence the eutectic formation; Co, Ni, and Fe are miscible elements 

influencing the eutectic formation by tuning their average VEC value; and a high VEC favors a 

FCC phase formation while a low VEC favors a B2 phase formation. From their work, an effective 

eutectic HEA design pathway was presented, and several HEAs exhibiting strengths of ∼1300 

MPa and elongation of ∼20 % were made. 
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Figure 2.8: (a) Regression analysis of the training and testing data. The predicted values and the 

target (actual phase constitution) values are the y and x-axes. (b)-(c) Element content distributions 

of different elements for the 400 predicted near-eutectic HEAs. Figures from Wu et al 131.  

 

Kube et al. 46 used a linear ordinal logistic regression method to predict the HEA phases 

based on their compositions. After optimization, the values were assigned to elements representing 

their strength in stabilizing BCC or FCC phases. The average of these stabilizing effects, denoted 

as solid solution selection index (SSSI), determined HEA phase formation tendencies. As shown 

in Figure 2.9, this method separates the BCC and FCC HEAs, but not the mixed BCC+FCC HEAs. 

The results showed that certain elements have an influence on stabilizing specific phases. There 

are three particular limitations to this method. First, the HEA database used for training sets was 

produced from high-throughput sputter depositions, which as a method can extend the 

compositional range of SS formation due to the rapid quench nature of sputtering as opposed to 

phase formation from traditional alloying methods. Second, the elements involved in this study 

were confined to Al, Cr, Mn, Fe, Co, Ni, and Cu with the effect of other elements on phase 

formation needing further study. And final limitation is that the phases predicted by this method 

are only BCC, FCC, and their mixtures while other phases are not accounted for. 

 

 
Figure 2.9: Prediction performance of Kube’s method. SSSI is the parameter representing a phase 

stabilizing effect. Negative SSSI favors BCC/B2 phase formation, while positive SSSI favors a 

FCC phase formation. Blue (bottom), red (middle), and green (top) histogram bar plots correspond 

to BCC/B2, BCC+FCC/B2+FCC, and FCC phases, respectively. BCC/B2 and FCC HEAs are 

mostly separated by their SSSI values, while the mixed BCC/FCC phases still mix with other 

phases. The overall correct classification rate (CCR) is 89 %. Figure from Kube et al 46.  
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The prior mentioned statistical and ML methods are summarized in Table 2.1. For ML, the 

empirical parameters are the most frequently used features. ML combinations of these features 

yield an improved robust prediction ability as opposed to any of the features used individually.  

Figure 2.10 provides a summary on: (A) the number of ML HEA phase prediction 

publications each year; (B) the phase classifications used in these works. Two issues exist in the 

current ML phase classification models, namely, a low number of phase categories, and in some 

cases, a low level of detail within a classified category; that is, the categories are general instead 

of specific. As discussed in more detail below, many models only classify HEA phases into no 

more than three categories, because as additional categories are included, there is an increase in 

the complexity and the challenge of attaining high accuracy increases. Only FCC, BCC, 

FCC+BCC, and HCP categories in these models (Figure 2.10B) represent specific phases. More 

general categories, such as SS, AM, IM, and single/multi-phase, correspond to unspecified 

structural phase groups. The low level of categorization detail gives limited guidance for HEA 

design, i.e., when a HEA is categorized as IM, it can be either B2 (ordered BCC), Laves, Sigma, 

or Mu phase. This limit may result from the limited database availability of less common phases.  

The two challenges mentioned above still remain unsolved in the literatures: (1) Can we 

achieve a more specific/detailed IM classification? (2) Can we predict more phase categories 

simultaneously and accurately to guide HEA design? They will be addressed in Chapter 3. 
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Figure 2.10: (A). The number of publications on ML-based HEA phase prediction versus year. 

Individual years’ publication subtotals are listed on the plot. (B). Summary of how current ML-

based HEA phase prediction models classify phases. Symbols aligned vertically represent phase 

categories in one model. There are 36 models in the plot. Models that predict specific numbers of 

phase categories are grouped in columns. Phase categories are on the vertical axis. Categories with 

yellow background and red text represent specific phase structures; Categories with white 

background and black text represent different groups of unspecified structural phases. The last two 

columns of red diamonds represent the models in this work, with higher level-of-detail phase 

categories. The column of seven red diamonds represents the multi-phase prediction model that 

classifies seven phases. The classification method is further expanded to nine categories by four 

high-accuracy sub-models, represented by the column of nine red diamonds. The phase categories 

are labeled by abbreviations: FCC+BCC: Mixed FCC-BCC phase; SS: Solid solution phase; AM: 

Amorphous; IM: Intermetallic phase; + sign represents that other phases may form simultaneously 

with the specific IM. B2 phase generally has two types in HEA: AlNi9 and Al-X-Y15. The two 

columns labeled with “This Work” will be presented in Section 3.3. 

 

Table 2.1: Summary of the current statistical and ML methods for predicting HEA phases.  

Abbreviations of the algorithms are: ANFIS (Adaptive Neuro-Fuzzy Interface System), ANN 

(Artificial Neural Network), CALPHAD (Calculation of Phase Diagrams), CNN (Convolutional 

Neural Network), GA (Genetic Algorithm), GP (Gaussian Processes), KNN (K-nearest Neighbors), 

MLFFNN (Supervised Multi-layer Feed-forward Neural Network), and SVM (Support Vector 

Machine). The ML classification algorithms, the ML features, the phase categories defined in each 

ML method, the prediction success rates, and the references to the work are listed. In the phase 
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categories column, the total count of HEAs in each phase category is listed, if the information was 

available. 

 

 

 

 

Classification 

Algorithms 
Features 

Phase Categories 

(count reported) 

Overall Success 

Rate 
Ref. 

ANFIS HEA Compositions HEA: BCC, FCC, and 

Multi-phase 

84.21 % Agarwal 

and Prasada 

Rao54 ANFIS VEC, 𝛿, ∆Hmix, ∆Smix, ϕ, 

and √< 휀2 > 

80 % 

ANN HEA Compositions HEA (321): 

Hypereutectic, Eutectic, 

and Hypoeutectic 

N/A Wu et al.131 

ANN ∆Smix, δ, ∆Hmix, ∆χ, and 

VEC 

HEA: SS (64), IM (21), 

and AM (33) 

83 % Islam et al.50 

ANN, CNN, and 

SVM 

13 Empirical Parameters HEA (601): SS, IM, and 

AM 

> 95 % Zhou et al.53 

Feature Engineering 

+ Simple Linear 

Regression 

20 Features engineered 

from 14 Empirical 

Parameters 

HEA: BCC (43), FCC 

(48), HCP (16), Multi-

phase (237), and AM (63) 

86 % Dai et al.130 

GA + Active 

Learning 

4 Features downselected 

from 70 Features by 

Feature Engineering 

HEA (550): SS, and NSS 88.7 % Zhang et 

al.129 

SS HEAs: FCC, BCC, and 

DP 

91.3 % 

GP + CALPHAD ∆χ, VEC, Km, ∆Hmix, δ, 

μ, e a⁄ , Ω, and Sm 

HEA (322): Single SS, 

and Other phases 

63 % to 80 % (single 

SS, CALPHAD 

database dependent) 

Tancret et 

al.45 

GP Atomic Percentage 

Weighted Averages of 85 

Elemental Properties 

HEA & Non-HEA 

(1,252): BCC, FCC, HCP, 

and Multi-phase 

93 % Pei et al.65 

KNN, MLFFNN, 

SVM 
∆Smix, δ, ∆Hmix, ∆χ, and 

VEC 

HEA: SS (174), SS+IM 

(173), and IM (54) 

74.3 % (MLFFNN), 

68.6 % (KNN), 

64.3 % (SVM) 

Huang et 

al.51 

SVM ∆Smix, δ, ∆Hmix,Tm, and 

VEC 

HEA: BCC (18), FCC 

(43), and non-single-

phase (261) 

60 % (BCC), 

75 % (FCC),  

97.79 % (NSP) 

Li and Guo 
52 

Linear Ordinal 

Logistic Regression 

HEA Compositions 

(generated from sputtering 

deposition) 

HEA: BCC or B2 (762), 

FCC (553), and Mixed 

BCC or B2 + FCC (446) 

89 % Kube et al.46 
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2.5 Methods comparison and synergetic use 

Empirical parameters are ineffective in predicting HEA phases as shown in Section 2.2.4. 

The thermodynamic methods normally provide accurate and detailed phase formation prediction, 

such as the phase content, volume fractions, transformation temperatures, and element distribution 

among phases. However, the time and computational power required by these methods are 

enormous. This makes high-throughput screening for promising HEAs time-consuming. On the 

other hand, ML is not computationally intensive and gives accurate phase prediction results. ML 

is the ideal method for high-throughput composition screening.  

At the current stage, the synergetic use of these methods should be considered. For example, 

ML models could conduct high-throughput screening in the vast compositional space and search 

for compositions with desired phases and properties; first-principles and thermodynamic methods 

then conduct fine adjustments on these compositions for further optimizations.  
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Chapter 3 Machine Learning Phase Prediction with 

Engineered Phase Diagrams-based, Thermodynamic, and 

Hume-Rothery Rule Features 

Recall that machine learning (ML) is a process that applies algorithms to quantify the 

correlation between features and results (HEA phases, in this case). The chapter will focus on 

improving two crucial parts of ML: features and algorithms.   

Firstly, we innovatively developed a set of phenomenological ML features based on binary 

alloy phase diagrams (Section 0). Then, we further improved the prediction capability using the 

feature engineering technique (Section 3.3). Furthermore, we interpreted the ML results and 

identified the most important scientific parameters controlling each phase’s formation (Section 

3.4). Finally, all the ML prediction models are experimentally validated by newly synthesized 

HEAs (Section 3.5). This model will be the basis of further HEA design work.  

3.1 Database introduction 

Currently, over 1,100 reported HEAs are in the updated version of the prior reported 

comprehensive database 55. Only a subset of 828 of the HEAs was used. They fulfilled two 

requirements: (1) they were in either as-cast or high-temperature annealed states, and (2) they 

include the common HEA phases with broad homogeneity regions, e.g., FCC, BCC, HCP, B2, 

Heusler (L21), Sigma, or Laves phases. HEAs were classified based on their phase content into 

nine categories (category label and data counts in parentheses):  

1. Single disordered FCC (A1, 132), 

2. Single disordered BCC (A2, 178), 

3. Single disordered HCP (A3, 14), 

4. Mixed disordered FCC+BCC, including the commingling of A1s, A2s, or the coexistence of 

A1s and A2s (A1+A2, 72), 

5. AlNi type B2 mixed with other disordered SS (AlNi type B2+, 291), 
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6. Al-X-Y type B2 mixed with other phases (Al-X-Y type B2+, 52), 

7. Heusler mixed with other phases (Heusler+, 77), 

8. Sigma mixed with other phases (Sigma+, 52), 

9. Laves mixed with other phases (Laves+, 96). 

Two things needed to be addressed. Firstly, the database is based on experiments where 

certain errors must exist. The actual alloy compositions can be different from the nominal 

compositions due to elements vaporization and contamination during alloy preparation. The actual 

compositions are normally not disclosed in the literature, so the nominal values are commonly 

used in ML feature computation. Besides, phase characterization methods and instruments differ 

among the research groups, inducing error again. X-Ray Diffraction (XRD) is commonly used for 

phase characterization. However, the background noise may mask the diffraction peaks from the 

minor phases, limiting their identification. Although transmission electron microscopy (TEM) can 

provide more reliable phase detection, it is not frequently used due to the significant experimental 

effort. These above-mentioned factors may lead to conflicting experimental results for the same 

alloy from different groups. In that case, we will keep the results from more reliable experiment 

works (e.g., using TEM results instead of XRD results if both are available). Secondly, the HEA 

database is constantly expanding. Generally, including more training data can increase ML 

prediction capability. However, considering the already high ML accuracies shown in this chapter, 

any accuracy improvement from further expanding the training dataset will likely be marginal. We 

believe the current database size is enough for predicting the nine categories. However, it is still 

important to include more data for a certain type of alloys of interest and increase the prediction 

capability. 

3.2 Phase diagram-based parameters 

3.2.1 Overview 

As shown in Table 2.1, HEA compositions and empirical parameters are commonly used 

as ML features. Departing from these features, we developed phenomenological features using 

binary phase diagrams to predict the HEA phases. The advantage of using binary phase diagrams 



 

 

36 

to assess phase stability is that they can readily provide direct and realistic information about the 

roles of individual elemental components on phase formation. Experimentally determined binary 

phase diagrams contain information on the crystal structure, elemental mixing, and phase 

separation over temperature and composition ranges. They have encoded within them the 

information for equilibrium binary phase formation. Information for the prediction of the phase of 

a HEA can be extrapolated from the set of all possible constituent binary phase diagrams.  

Here, the effectiveness of the proposed method will be demonstrated by introducing 

physically meaningful phenomenological parameters that can be conveniently accessed from 

binary phase diagrams. These parameters are used to demarcate the phases forming regions for 

HEAs. The seven phase categories studied here are those with homogeneity ranges in the phase 

diagrams: FCC (A1), BCC (A2), HCP (A3), mixed FCC-BCC (A1+A2), AlNi type B2+, Laves+, 

and Sigma+. Al-X-Y type B2+ and Heusler+ HEAs are not studied in this section because they 

normally do not appear on binary phase diagrams. They will be addressed in the next section, 

Section 3.3. 

3.2.2 Melting temperature and phase formation temperature 

Alloy homogenized phases are known to be different under different temperatures. Alloy 

starts solidification when cooling down from the melting temperature Tm, and the phase will keep 

evolving at high temperature due to the large atomic kinetic energies. At certain temperature, the 

rapid phase evolution ceases, and the phases formed are retained at lower temperatures. Such 

temperature is defined as the phase formation temperature (Tpf).  

For the annealed HEAs, the phases formed during annealing are locked in with rapid 

quenching, and Tpf is assigned the final annealing temperature. The phenomenological parameters 

that controlled the phase formation were calculated based on the Tpf value. For the as-cast HEAs, 

the undercooling temperature extends to 0.8 Tm. Tpf was approximated as Tpf = 0.8 Tm, which 

optimized the results for the ML predictions 55 using these parameters. 

The Tm is calculated from the liquidus temperatures in binary phase diagrams. ci and cj are 

the atomic percentages of the elements i and j. For the binary pair i-j, binary liquidus temperatures 

T i−j can be found at the composition where i and j element relative ratio is ci ∶  cj. Tm of the whole 

system will be calculated by: 
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Tm =  
∑ Ti−j × ci × cji≠j

∑ ci × cji≠j
  3.1 

An example of calculating  T i−j is given in Figure 3.1. TCr-Ni is found to be 1700K on Cr-

Ni binary phase diagram when Cr % : Ni % = 6 : 4. The technique of image processing is to scan 

all pixels on the diagram along the binary compositional line from the highest temperature. The 

first pixel with a color is the liquids point. 

 

Figure 3.1: Example of finding binary liquidus temperature (TCr-Ni = 1700K) on Cr-Ni binary phase 

diagram at Cr % : Ni % = 6 : 4.  

 

3.2.3 Phase field parameters and phase separation parameter 

When the temperature is above or equal to Tpf, atoms are free to exchange neighbors due 

to high atomic mobility. The neighbors of each atom are random. The alloy mixture is essentially 

ergodic and local atoms have nearly equal probabilities of sampling any binary configurations on 

the relevant phase diagrams. As such, the probability of forming a phase X locally for i-j elements 

can be determined by the binary phase field percentage of phase X on an i-j phase diagram and is 

denoted as Xi−j. 

The local probabilities of forming a specific phase from all atomic pairs can be integrated 

to yield an overall probability. The probability of forming a phase X for the HEA is the Phase Field 

Parameter (PFPX), and it is calculated as the weighted average of all constituent Xi−j by Eqn. 3.2. 
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PFPX =  
∑ Xi−j × ci × cj i≠j

∑ ci × cj  i≠j
÷ 100 % 3.2 

In this method, the PFPX values have been calculated for the targeted phases, and they are 

denoted as PFPA1, PFPA2, PFPB2, PFPA3, PFPLaves, and PFPSigma. 

HEA Al2CoCrCuNi is presented as an example to determine the phase field percentages 

used to calculate PFPX. This HEA has a predicted Tm = 1569 K and the phases are assumed to be 

locked at Tpf = 1255 K. In Figure 3.2, it is seen that high concentrations of Cr favor BCC phase 

formation, while high concentrations of Ni favor FCC phase formation. Under the assumption of 

equally sampling all binary configurations, the probability of Cr-Ni binary favoring BCC phase 

formation locally is the binary phase field percentage of the BCC phase. This percentage is the 

line segment between the two intersection points of an isotherm at Tpf  and the compositional 

boundary of the BCC phase. In this case, it is approximately 5 % for the BCC phase and 

approximately 44 % for the FCC phase. 

 

Figure 3.2: Demonstration of the binary phase field percentage calculation. The binary phase 

diagram Cr-Ni is used to determine the fractions of BCC and FCC phases for the HEA 

Al2CoCrCuNi. The binary phase field percentages of BCC and FCC phases are represented as 

A2Cr−Ni and A1Cr−Ni, respectively. Figure from Qi et al 55.  

 

These binary phase field percentages are then used to calculate PFPX, which will be used 

to visualize separations in the HEA phase space. The above calculation method can be applied to 

any phase diagram and for any type of phase.  
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If a miscibility gap exists in phase diagrams, this interatomic repulsion can lead to phase 

separation in HEAs 140,141 and the formation of multiple coexisting phases such as FCC+BCC. The 

binary phase separation percentage on the binary phase diagram represents the probability of the 

two elements being separated into two different phases in the HEA. For a given phase diagram, an 

isothermal line drawn at Tpf is composed of two parts. The first is the binary phase separation 

percentage denoted as Separationi−j and the remainder of the line is defined as the elemental 

mixing denoted as Mixingi−j for an i-j binary system. If the phase separation is absent from a phase 

diagram, then Separationi−j = 0 %. To calculate the Phase Separation Parameter (PSP) for a HEA 

the following equation is used 

PSP =  
∑ Separationi−j × ci × cji≠j

∑ Mixingi−j × ci × cji≠j
  3.3 

where the Separationi−j and Mixingi−j are used from the HEA constituent binary systems. 

Separationi−j and Mixingi−j are illustrated using the same HEA as used to calculate binary 

phases field for PFPX. Figure 3.3 shows two binary phase diagrams of the Al2CoCrCuNi HEA with 

different separation effects. In Figure 3.3a, the large positive ∆Hmix of the Cr-Cu binary prevents 

them from having a mixing effect. In HEAs, Cu and Cr tend to reside in the different phases. In 

Figure 3.3b, a large separation effect exists for the Co-Cu binary due to the positive ∆Hmix with a 

small mixing effect occurring at high temperatures. The Cr-Cu binary phase diagram at Tpf has a 

SeparationCr−Cu = 100 % and MixingCr−Cu =  0 %, and in the Co-Cu binary phase diagram 

SeparationCo−Cu = 92 % and MixingCo−Cu = 8 %. 

 

Figure 3.3: Two binary phase diagrams used to determine the binary phase separation percentage 

for HEA Al2CoCrCuNi. (a) Phase diagram of Cr-Cu to show a complete phase separation effect. 
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(b) Overlay of the Co-Cu phase diagram illustrating the line segment method to determine the 

SeparationCo−Cu for the HEA Al2CoCrCuNi. Figure from Qi et al 55. 

 

3.2.4 Visualization of the phase fields in parameter space 

PFPX parameters were calculated for six phases A1, A2, A3, AlNi type B2, Sigma, and 

Laves. The addition of PSP parameter makes seven parameters in total: PFPA1, PFPA2, PFPB2, 

PFPA3, PFPLaves, PFPSigma, and PSP. A 7-dimension space with parameter axes was constructed to 

visualize the distribution of HEA phases. To visualize the position of a HEA in this 7D space, 

several projections in 2D and 3D space were selected. These plots show the partitioning of phase 

regions for two results based on (1) SS and (2) IM. 

The HEAs in categories A1, A2, A1+A2, AlNi type B2+, and A3 were plotted for various 

combinations of the phase parameters. Figure 3.4 shows different plotted views highlighting HEA 

phase region separations. These views were selected based on the three parameters which best 

highlighted distinct HEA phase region separations. Figure 3.4a is a combination of the A1, A2, 

A1+A2, and AlNi type B2+ HEA phase regions. In Figure 3.4b, A1 and A2 HEAs are separated 

into high PFPA1 or PFPA2 regions. A high PFPA1 or PFPA2 value stabilizes A1 or A2 phase 

formation, respectively. The A1+A2 HEAs, in Figure 3.4c-d, are mostly in a region where neither 

PFPA1 nor PFPA2 is dominant. In Figure 3.4d, the higher PSP values for A1+A2 HEAs result in 

separation from the A2 HEAs. PSP prompts the formation of multiple phases due to the elemental 

repulsion. In Figure 3.4e-g, the phase regions of AlNi type B2+ HEAs are plotted against phase 

regions of A1, A2, and A1+A2 HEAs, respectively. PFPB2 is used to predict AlNi type B2 

formation. AlNi type B2+ HEAs are all located in a region with relatively higher PFPB2 values. 

This indicates that having a high PFPB2 value corresponds to having a high probability of forming 

the B2 phase in a HEA. Figure 3.4f shows that all A3 HEAs are separated from the other phases 

because of high PFPA3 values indicating a higher chance of forming A3.  
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Figure 3.4: Visualizations of partitions among phases A1, A2, and A1+A2, AlNi type B2+, and 

A3. (a) PFPA1, PFPA2, and PFPB2 are plotted for A1, A2, A1+A2, and AlNi type B2+HEAs; (b) 

PFPA1, PFPA2, and PFPB2 are plotted for A1 and A2 HEAs; (c) PFPA1, PFPA2, and PFPB2 are plotted 

for phase regions of A1 and A1+A2 HEAs; (d) PFPA1, PFPA2, and PSP are plotted for phase regions 

of A2 and A1+A2 HEAs; (e)-(h) PFPA1, PFPA2, and PFPB2 are plotted to highlight the AlNi type 
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B2+ phase region relative to the A1, A2, and A1+A2 phase regions; and (h) PFPA1, PFPA2, and 

PFPA3 are plotted for phase regions of A3 and Non-A3 (not forming A3 phase) HEAs. 

Sigma and Laves phases are the two predominant intermetallic phases present in HEAs, 

based on intermetallic phases present in the HEA database. In Figure 3.5, we group HEAs with 

Laves and Sigma phase as category IM+. HEAs without IM formation (Non-IM) HEAs were 

plotted with IM+ HEAs on a plot with axes PFPSigma and PFPLaves. Although there is overlap 

between the phase distribution regions of the IM+ and Non-IM HEAs, IM+ HEAs exist in a region 

with large PFPSigma or PFPLaves values.  

 

Figure 3.5: Parameters PFPSigma and PFPLaves plotted for IM+ and Non-IM HEAs, where Non-IM 

includes A1, A2, A3, A1+A2, and AlNi type B2+. Figure from Qi et al 55.  

 

The visualization methods for IM and SS HEA phases show that a large PFPX value 

generally coincides with the formation of phase X. A large PSP value corresponds with phase 

separation and multiple phase formations. Different phase regions have overlaps on these plots. 

Due to the inherent limitations of visualizing seven parameters in 3D space, a better method was 

needed. Next, a ML model built based on PSP and PFP will be presented to give a quantitative 

evaluation of the effectiveness of these parameters.   

3.2.5 Machine learning based on phenomenological features 

The prior defined seven phenomenological phase-diagram based parameters were fed into 

a ML method as features and they were jointly used to make phase predictions. The ML algorithm 

called Random Forest was used. The HEA database used was divided into training and test sets, 



 

 

43 

with training set percentages ranging from 10 % to 90 %. Test sets were composed of the remainder 

of the database.   

The phase prediction success rates are shown in Figure 3.6. The HEA phase categories are 

A1, A2, A3, A1+A2, AlNi type B2+, and IM+ (by grouping Sigma+ and Laves+ HEAs). With the 

training set percentage being 90 %, the overall prediction success rate is 83 %. The prediction 

accuracy was generally higher for the single-phase A1, A2, and A3 and the ordered AlNi type B2 

phase HEAs. The prediction accuracy of the A1+A2 mixed phase is relatively low. The features 

are closely correlated to the phase formation. The prediction accuracy decreases only slightly when 

the training set percentage decreases from 90 % to 50 %. The prediction is accurate even with a 

small training set. Including new HEAs may only marginally increase the accuracy for these 

features. When the training set percentage is below 50 %, the success rates drop due to the small 

training dataset size. 

Overall, the phenomenological features are shown to be effective in predicting the phases 

with large homogeneity regions on phase diagrams. In next section, we will introduce a ML 

technique, feature engineering, that will further increase the ML accuracy and predict other phases 

not presenting on the binary phase diagrams. 

  

Figure 3.6: ML prediction success rates for HEAs in different phases are plotted. The shaded 

regions are the confidence bands for prediction success rates for different training set percentages. 

The width of the confidence bands represents one sigma deviation from the average prediction 

success rate. Figure from Qi et al38.  
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3.3 Feature engineering and IM prediction 

3.3.1 Overview 

At the end of Section 2.4, we discussed the ML HEA phase prediction models in the 

literatures and identify two problems: (1) Can we achieve a more specific/detailed IM 

classification? (2) Can we predict more phase categories simultaneously and accurately to guide 

HEA design?  

Detailed IM classification and prediction are certainly important in advancing the ML 

design of HEA beyond the common phases. Current knowledge indicates that Laves, Sigma, B2, 

and Heusler (L21) phases are four of the most common IM in HEA142. As discussed in Section 1.2, 

B2 and Heusler can be beneficial to HEA properties, while Sigma and Laves phases are normally 

unfavored due to their embrittling effects16,17. The need to achieve the predictive formation of 

beneficial IM while avoiding the unfavorable IM has led us to develop a more accurate and 

interpretable phase prediction method.  

Feature engineering (FE), which has been underused in data science-driven materials 

research, has been successfully adapted to formulating superconducting critical temperature 

equations143 and designing HEA130. HEA phase prediction is a complex problem that may not be 

efficiently executed by using individual features alone. Rather, features should interact with each 

other to expand the feature pool and transform the feature space through which the classification 

error is reduced. Thus, FE is applied in our work.  

In this section, we will describe a FE strategy that synergistically blends phase diagram-

based (PD) features (Section 3.2.3), thermodynamic (Thermo) features (Section 0), and Hume-

Rothery rule (HR) features (Section 2.2.2) to interpret and predict the formation of different HEA 

phases. The feature engineering-based method enhances the accuracy of the ML models to near 

90 % for nine HEA phases categories: FCC(A1), BCC(A2), HCP(A3), mixed FCC-BCC (A1+A2), 

AlNi type B2+, Laves+, Sigma+, Al-X-Y type B2+ and Heusler+ HEAs. As such, the present 

method predicts more phase categories with a higher level of specificity and accuracy than other 

reported methods to date.  
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The HEA phase classification methodology utilizes a two-layer method, as illustrated in 

Figure 3.7. The first layer corresponds with the multi-phase prediction model for SS (FCC, BCC, 

HCP, FCC+BCC) and common IM (AlNi type B2+, Laves+, and Sigma+). The model has an 

overall accuracy of 84 % in classifying specific phases in 835 HEAs. In particular, the accuracy 

for AlNi type B2+ is high at 90% while the accuracies for Laves+ and Sigma+ are lowered by ~10% 

from previous results in Section 3.2.5 where only PD features are used without FE. Accordingly, 

the second layer consists of four models that are grouped into two pairs for IM prediction. If a 

HEA is predicted as one of the commonly occurring Laves+ or Sigma+ in the first layer, then the 

verification from two models in the second layer, as shown on the left in Figure 3.7, will result in 

accuracies above 90 % for both phases. On the other hand, if the multi-phase prediction model 

predicts no Laves+ or Sigma+ formation, two other models will evaluate whether the HEA can 

form IM Heusler or Al-X-Y type B2 phases, with accuracies of 92 % and 80 %, respectively. In 

other words, the two-layer method herein can predict single-phase HEAs as well as HEA 

composites comprising specific phases with high accuracy. 

 

 

Figure 3.7: Two-layer method for predicting HEA phases. Pathways of modeling, with resulting 

classification accuracy (parentheses) for each model, are shown.  
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3.3.2 Feature engineering method 

Feature engineering is a technique for developing and identifying the best math variations 

of raw features. The process includes feature construction, transformation, reduction, and selection.  

The feature construction process collects the individual raw physical features that may 

influence phase formation. All relevant raw features are included regardless of the degree of 

importance they possess in determining the phase. Unimportant features are filtered out in the later 

steps. 

The feature transformation process (Figure 3.8A) transforms the raw features by first 

constructing mathematical variations x2,  x−1, √x, ln(x), and ex for each feature X. The different 

expressions can mathematically change how features influence the phase prediction in ML 

algorithms. For example, ln(x) or ex may reduce or inflate the effect of the outliers compared to 

using feature X. Then, the feature pool is further expanded by grouping any two math variations, 

A and B, using operations A+B, A-B, A/B, and AB. This step creates some synergetic effects from 

multiple features. For example, the comparison effects (A-B, A/B) or joint effects (A+B, AB) may 

bring new insights into phase prediction. At this point, the feature transformation constructs a huge 

feature pool, which potentially includes engineered features more qualified for phase prediction 

than the raw features. The current work expands 17 raw features to ~ 25,000 engineered features. 

Then to select the best features from the pool, a systematic method including feature reduction and 

selection is provided below. The feature reduction and selection methods contain filtering, intrinsic, 

and wrapper methods: 

1. Filtering method:  

The Pearson Correlation Coefficient (PCC) between two features indicates their linear 

correlation strength. As shown in Figure 3.8B, PCC values approaching +1, -1, or 0 indicates a 

strong positive, strong negative, or no linear correlation. Strongly correlated features are 

considered to be inter-substitutable in ML. Therefore, only one feature is kept from any pair with 

|PCC| > 0.9 in this work. 

2. Intrinsic method:  

Direct feature selection from the filtered-out features is computationally expensive and 

unnecessary as many features are irrelevant to phase formation. Therefore, a rapid ML method, 
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logistic regression (LR) with L1 (or Lasso) regularization, is used to remove the irrelevant features 

(Figure 3.8C). This algorithm will minimize the total prediction cost as follows:  

J(W⃗⃗⃗ ) =  
1

m
 ∑Cost[hw⃗⃗⃗ (F⃗ 

(j)), y(j)]

m

j=1

+  γ∑|wi |

n

i=1

 3.4 

Herein, J(W⃗⃗⃗ ) is the prediction cost with feature weight vector W⃗⃗⃗ = [w1,w2,… ,wn  ]. The 

first term is LR prediction cost Cost[hw⃗⃗⃗ (F⃗ 
(j)), y(j)], which is directly related to the classification 

error, wherein the cost function of predicting the j-th sample as hw⃗⃗⃗ (F⃗ 
(j)) while the correct category 

is y(j). hw⃗⃗⃗ (F⃗ 
(j)) is obtained based on feature weights W⃗⃗⃗  and feature values F⃗ (j). m is the total 

sample count in the dataset. The second term is the regularization cost. n is the number of features. 

γ is the regularization strength. wi is the i-th feature’s weight in W⃗⃗⃗ . To reduce J(W⃗⃗⃗ ), the first term 

tends to use more features to reduce the prediction error, while the second term tends to invalidate 

more features by zeroing their weight wi. The trade-off between the two terms will activate the 

minimum number of essential features in ML. Tuning γ changes the regularization strength and 

regulates the number of selected/activated features. After this step, about 100 features are retained.  

 

3. Wrapper method: 

Sequential learning (SL), shown in Figure 3.8D, selects the best features iteratively from 

~100 features. ML models built with different combinations of features are evaluated by the 

average f1 error from thirty rounds of 5-fold cross-validations with different random seeds. SL 

starts with an empty feature set in the first round, tests each feature independently, and picks the 

feature with the lowest classification error. In the subsequent rounds, each unselected feature is 

tested combinatorically with the previously picked ones. Finally, the best feature combination to 

minimize the classification error is constructed. 
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Figure 3.8: Process of feature engineering: (A) Feature expansion method; (B) PCC values reflect 

the linear correlations between two features; (C) Intrinsic method: LR with L1 regularization to 

eliminate features irrelevant to phase formation; (D) Wrapper method: SL selecting several best 

features for ML. 

 

3.3.3 Results and discussion 

A total of 17 thermodynamic (Thermo), Hume-Rothery rule (HR), and phase diagram-

based (PD) features are used as the raw features in this work. They are: PD features PFPA1, PFPA2, 

PFPA3, PFPB2, PFPLaves, PFPSigma, and PSP,  Thermo features ∆Smix
2, ∆Hmix

57, Ω59, Φ62, η63, and 

k1
cr64, and HR features δ57, 

E2

E0
 69, ∆χ71, and VEC73,74,144 are used.  

Part 1: Multi-phase Prediction Model 

As described in the methodology section, the multi-phase prediction model in the first layer 

(Figure 3.7) has seven categories: FCC, BCC, HCP, FCC+BCC, AlNi type B2+, Laves+, and 

Sigma+. The Random Forest classification algorithm is used to perform sequential learning (SL). 

Thirty rounds of SL were conducted. Figure 3.9A shows the overall classification errors and the 

error bars (standard deviation) plotted against the number of top-ranked raw features (labeled as 

“No FE”) and engineered features (labeled as “FE”), respectively. We only keep the first six 
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engineered features to train the ML prediction model because adding more features only increases 

the risk of over-fitting disproportionately to the diminishing gains in accuracy. A list of these 

features is presented in Table 3.1. The FE classification error with six features is 0.161, 10 % 

smaller than the error without FE. Figure 3.9B shows the classification errors of the individual 

phase category plotted against the number of top-ranked engineered features. HCP, AlNi type B2+, 

FCC, and BCC predictions have lower errors while FCC+BCC, Sigma+, and Laves+ predictions 

are relatively less accurate. Therefore, the IM formation needs to be verified by the models 

discussed in the next section. 

We have collected ~ 40 ML models on HEA phase prediction studied by other researchers, 

1550–52,54,130,139,145–150 of which that best represent advances in terms of model accuracy and 

complexity are summarized and compared with our work in Figure 3.9D. The comparison is based 

on criteria: OneR accuracy, ML accuracy, the level of detail on phase categories, the number of 

phase categories, and the number of features.  

OneR accuracy is a baseline accuracy to show the data complexity of a classification model. 

In general, the models with fewer categories and more biased data distribution are less complex 

and have higher accuracy. The accuracy of OneR is computed in Eqn. 3.5. 

OneR accuracy =  
# of data in the largest category

# of data in the entire database
 3.5 

OneR predicts all HEAs to be the phase with the most data. For example, in a database 

with 70 phases A and 30 phase B HEAs, the most accurate random guess is predicting all HEAs 

to be in phase A with an OneR accuracy of 0.7. A high OneR accuracy indicates that the database 

lacks complexity, and the model can easily obtain high accuracy. As a result, instead of using the 

ML accuracy, using the accuracy improvement from OneR accuracy to ML accuracy is a better 

evaluation metric of the model effectiveness. As shown in Figure 3.9D, our model has the second-

lowest OneR baseline accuracy (gray bar height), among the highest accuracy improvement by 

ML (green height), and an overall accuracy (green and gray bars total height) of 0.84. At the same 

time, our model can classify more phase categories (seven, shown by the blue dashed line.) with a 

much higher level of category detail while using fewer features (six) than the other models. 

Moreover, we also address the important phase categories AlNi type B2+, Laves+, and Sigma+, 

which have been rarely attempted by ML. Overall, our FE-assisted ML model shows high 

capability in classifying HEA phases compared to the current models.  
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Figure 3.9: (A) Overall classification error of multi-phase prediction model (first layer) versus the 

number of top-ranked features is plotted with error bars (standard deviation). Results with and 

without FE are shown. (B) Classification errors for individual phase categories versus the number 

of engineered features. (C) The number of HEA data in the database and each phase category. (D) 

Comparison of fifteen ML HEA phase prediction models. Models with index number 1-14 are 

from Li et al52, Xiong et al.147, Di et al.130, Krishna et al.148, Islam et al.50, Xiong et al.147, Risal et 

al.149, Roy et al.150, Agarwal et al.54, Huang et al.51, Xiong et al.147, Jaiswal et al.145, Lee et al.146, 
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and Lee et al.139, respectively. Accuracy values are labeled on the left vertical axis. Gray bar height 

represents the OneR accuracy. Green bar height represents the accuracy improvement from OneR 

accuracy to ML accuracy. Gray and green bars’ total height represents the ML accuracy. The Blue 

dashed line represents the number of phase categories (right vertical axis). Below the plot is a list 

of references, numbers of data and features, and the phase categories for each model. A1, A2, A3, 

B2, SP, MP, AM, and IM are abbreviations for FCC, BCC, HCP, AlNi type B2, single phase, 

multi-phase, amorphous, and intermetallic phases. 

 

 

Table 3.1: Engineered Features selected for phase prediction. 

Prediction Model Features 

Multi-phase 
η, PFPA1 − e

PFPA3 , 
E2

E0
∙ ∆Hmix, ∆χ

2 ∙ √PFPLaves, PFPSigma ∙ Φ, 

PFPA3/e
δ 

Laves+ k1
cr/ln (PFPLaves), ∆Hmix ∙ √Ω, PFPLaves ∙ PFPA1, Φ ∙ √PFPLaves 

Sigma + ∆χ2 ∙ ln (PFPSigma), ∆χ ∙ VEC
2, PFPA1 ∙ √PFPA3, PFPB2

2/ln (PSP) 

Heusler + δ/ Φ, PFPSigma ∙ ∆Hmix
2
,  PFPB2/PFPA2

2, PFPB2 ∙ PFPA3 

Al-X-Y type B2+ η + ∆χ, ∆Smix ∙ VEC
2, PSP ∙ PFPA3 

 

 

Part 2: Laves+, Sigma+, Heusler+, and Al-X-Y Type B2+ Prediction Models 

The four models in the second layer (Figure 3.7) use Support Vector Machine as the 

classification algorithms. For the Sigma+ and Laves+ prediction models, the appreciable 

imbalanced data distributions require special handling. For example, the Sigma+ prediction model 

database consists of 52 Sigma-containing HEAs (HEASigma) and 783 HEAs without the Sigma 

phase (HEANo-Sigma). The imbalance makes the ML model biased to the dominant category HEANo-

Sigma and adversely affects the predictions for HEASigma. Conventional methods of handling 

imbalanced databases include under-sampling, and over-sampling methods such as the Random 

Over-sampling, Adaptive Synthetic Sampling Approach for Imbalanced Learning (ADASYN)151 

and Synthetic Minority Over-sampling Technique (SMOTE) 152.  

The Four methods of handling imbalanced databases are compared using errors from 5-

fold cross validations. Random Over-sampling method randomly generates new samples by 

repeating the samples in the minor dataset. ADASYN151 and SMOTE152 are synthetic over-
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sampling methods, which create virtual samples based on samples in the minor database. Under-

sampling method randomly draws samples from the major dataset, to form a balanced training 

database with the minor dataset. 

As shown in Figure 3.10, the under-sampling method shows the lowest error compared to 

other over-sampling methods. More importantly, although under-sampling method may have info 

loss due to data removal in the majority class in each round of simulation, this information loss 

can be overcome by bootstrapping the database and training multiple ML models based on the 

bootstrapped sub-database. Random Over-sampling method that creates repeated data for minority 

class may cause overfitting. ADASYN and SMOTE would expand the minority class by creating 

virtual data that are not physically existed. These new data do not have any physical meaning. 

Based on these reasons, we choose under-sampling as our unbalanced database handling method. 

 

Figure 3.10: ML classification error decreases as the number of engineered features increases. The 

comparisons of the errors are presented for: (A) Laves+, and (B) Sigma+ models, among using Random 

Over-sampling, ADASYN, SMOTE, and Under-sampling methods. Error bars are presented in both plots. 

 

 

The under-sampling method will randomly pick 52 samples from the HEANo-Sigma to 

constitute a ML database with the 52 HEASigma. Thirty rounds of random samplings followed by 

sequential learning (SL) are conducted, and the average performance is presented.  

Similarly, the Laves+ prediction model database consists of 96 Laves-containing HEAs 

(HEALaves) and 739 HEAs without the Laves phase (HEANo-Laves). HEANo-Laves are under-sampled 
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to 96 to constitute a ML database with the 96 HEALaves in each of the thirty random sampling 

rounds. 

Figure 3.11A and B show how errors decrease with more features and compare the results 

with and without FE for Sigma+ and Laves+ predictions. In both models, only the first four 

engineered features will be kept for ML prediction, and we obtain low errors of 0.06 and 0.08 for 

Sigma+ and Laves+ predictions, respectively. FE suppresses the error by around 0.05 from No-FE 

results. The four features giving lowest error among the thirty rounds are presented in Table 3.1.  

 

Figure 3.11: ML classification error decreases as the number of engineered features increases. The 

comparisons of the results between using and not using FE are presented for: (A) Sigma +; (B) 

Laves +; (C) Heusler +; and (D) Al-X-Y B2 + prediction models. Error bars (standard deviation) 

are presented in all plots. Small error bars may be invisible in figure (D). 

 

A Heusler phase has a general composition X2YZ, where X, Y, and Z symbolize specific 

groups of elements in the periodic table153. The database constitutes 77 HEAs containing the 
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Heusler phase (HEAL21), and 109 HEAs without the Heusler phase (HEANon-L21). HEANon-L21 are 

selected based on the criteria: (1) they include appropriate X, Y, and Z elements for forming the 

Heusler phase; and (2) they are annealed to ascertain the non-emergence of the Heusler phase. 

Thirty rounds of SL are conducted. The average classification errors for using FE and not using 

FE are presented in Figure 3.11C. As more features are included, FE error becomes saturated, and 

No-FE error increases due to over-fitting. The top-ranked four engineered features (listed in Table 

3.1) are kept for ML prediction with a classification error of 0.08. FE suppresses the error by 0.05 

over No FE.  

The refractory Al-X-Y type B2 phase comprises at least three components: X is Ti, Zr, or 

Hf; and Y is Cr, Mo, Nb, or V15. The database consists of 52 HEAs with Al-X-Y type B2 phase 

(HEAAlXY-B2) and 35 without Al-X-Y type B2 phase (HEANon-AlXY-B2) but having Al, X, and Y 

elements. From thirty rounds of SL, the average classification errors for using FE and not using 

FE are presented in Figure 3.11D. As more features are included, the FE error continuously drops 

while the No-FE error increases rapidly due to over-fitting. The best three engineered features 

(listed in Table 3.1) are kept with a classification error of 0.2.  

3.4 Phase formation interpretation 

Although ML is a powerful classification tool, it is a black box and does not show the input 

and output relationships. Therefore, appropriate techniques are needed to evaluate the features’ 

importance in determining phase formation.  

Two sample T-test is the traditional statistical method to show the correlations between the 

features and phase categories. The permutation method shuffles each feature’s values at a time and 

uses the error increase as the feature importance. The feature elimination method determines the 

feature importance by dropping a feature and computing the classification error increase or the 

prediction score decrease139. The single accuracy method uses only one feature for ML at a time 

and takes the prediction accuracy as the importance of the feature. The frequency selection method 

creates bootstrapping samples of the database, trains ML models on each of them, and uses the 

frequency of feature appearance in the bootstrapping models to represent the importance. 
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Additionally, specific ML algorithms, such as the LR, support vector machine (SVM), and neuron 

network (NN), can take the optimized feature weights as their importance scores.  

The single accuracy method is utilized in this work. Although FE is found to reduce the 

prediction error, the feature variants generated are not amenable to direct physical meaning 

interpretation. Therefore, FE is not applied in this part. Moreover, PD features as 

phenomenological parameters are primarily effective in predicting SS phases in either the single-

phase or mixed-phase state38,55 without direct inferring physical mechanism of phase formation. 

On the other hand, Thermo and HR features can reflect the physics and are deemed to play an 

important role in the classification of specific IM. Therefore, we will identify the three most 

important IM formation determining Thermo and HR features from the feature importance values 

shown in Figure 3.12, and plot the HEA distribution probability density function based on the 

values of these features in Figure 3.13 to interpret their influence on specific IM formation.  

From Figure 3.12A, the Heusler phase formation is mainly controlled by VEC, Φ, and 
E2

E0
. 

HEAL21 generally have lower VEC values than HEANon-L21 (Figure 3.13-H1). The low VEC implies 

that a BCC-prone environment73,74,144 is favored for the Heusler phase formation, potentially due 

to the structural similarity between the Heusler and BCC lattices. Φ is a Thermo feature controlling 

IM/SS formation tendency. IM formation is favored when Φ is small62. Figure 3.13-H2 shows that 

HEAL21 are generally low in Φ and energetically favored to form IM. Finally, HEAL21 generally 

have larger 
E2

E0
 values (Figure 3.13-H3), which represent larger atomic size difference69. This 

makes specific elements, such as Al, whose atomic size is different from the transition-metal 

elements, confined to certain sites on a crystal lattice, forming the ordered Heusler phase.  

 

Al-X-Y type B2 formation is predominantly controlled by η, ∆Smix, and Ω (Figure 3.12B). 

HEAAlXY-B2 generally have more negative η values (Figure 3.13-B1), which indicates the IM 

formation tendency, consistent with DFT results63. HEAAlXY-B2 also have a wide ∆Smix distribution 

spectrum (Figure 3.13-B2) while HEANon-AlXY-B2 are clustered at the high ∆Smix  value region. 

Higher ∆Smix  prompts the disordering and suppresses the ordered HEAAlXY-B2 formation. Ω is 

another Thermo feature showing the SS and IM formation tendencies59. HEAAlXY-B2 generally have 

low Ω values (Figure 3.13-B3), which favors the ordered IM such as the B2 formation. More 

importantly, all three dominant features are thermodynamic, and HR features show limited 
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influence. Electron environment-related HR features, VEC and ∆χ, are found to be correlated to 

FCC, BCC39, and topological close-packed Sigma and Laves72,144 but not B2 formation. Lattice 

distortion-related HR features, 
E2

E0
 and δ, are relatively more important for predicting the IM with 

non-cubic structures (e.g., Laves) which can accommodate the severe atomic size mismatch. The 

B2 phase retains the BCC structure, where small lattice distortion should be expected for both 

disordered BCC and B2 phases. Despite the low effectiveness of the HR features, the key to ML 

predicting Al-X-Y type B2 is to distinguish it from the disordered BCC, where enthalpy and 

thermodynamic consideration are proven to be crucial in determining BCC/B2 ordering by a 

Monte Carlo and DFT combined study44. Our ML model draws a similar conclusion. In future, 

first-principles methods such as ab-initio simulations and DFT are promising to give an accurate, 

in-depth analysis of the order-disorder transition of such alloy systems.  

For the Laves phase formation, 
E2

E0
, η, δ, and Hmix are the four most important features 

(Figure 3.12C). 
E2

E0
 and δ both indicate the atomic size difference and the internal strain. As shown 

in Figure 3.13-L1 and L3, HEALaves have higher atomic size mismatches than the HEANon-Laves. 

The severe lattice distortion favors the ordered IM formation. From the thermodynamic aspects, 

the inset box plot in Figure 3.13-L2 shows that HEALaves all cluster at a region with low η absolute 

values while HEANon-Laves has wide η distribution. Besides, HEALaves also show more negative 

Hmix values than HEANon-Laves. The η and Hmix distribution trends of HEALaves favors the IM 

formation.  

Figure 3.12D shows that multiple features have weak impacts on Sigma formation. 

However, when these features are combined using FE, a low classification error of 0.05 is attained, 

illustrating the efficacy of the FE methodology used herein. The important roles of these features 

can be seen primarily in η, VEC, ∆χ, and Hmix as examples. The inset of Figure 3.13-S1 shows 

that HEASigma cluster at a region with low η absolute values, indicating a higher IM formation 

tendency. Similarly, HEASigma shows more negative Hmix values that favors IM formation. The 

influence of VEC, and ∆χ, both electron-related features, is shown in Figure 3.13-S2 and S3. It is 

previously reported that the formation of the topological close-packed Sigma phase formation is 

favored when ∆χ > 0.13372 and 6.88 < VEC < 7.84144. The current work obtains similar results 

based on a larger database. The first, second (i.e., median), and third quartiles of VEC distribution 
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are 7.36, 7.61, and 7.86 (7.36 < VEC < 7.86 is the region for the middle 50 % of the distribution). 

This new Sigma-prone VEC region overlaps the FCC-prone VEC region39. A further review of the 

database also shows that ~80 % of HEASigma contain FCC phase. Finally, the larger ∆χ values of 

HEASigma provide clear separation from the HEANon-Sigma. Therefore, one should consider 

decreasing the electronegativity discrepancy of the constituent elements to avoid Sigma formation 

during HEA design. The current work identifies the electron configuration as the most important 

HR factor in controlling Sigma formation.  

 

Figure 3.12: Feature importance in determining different phases’ formation. Figures A-D are 

plotted for Heusler, Al-X-Y type B2, Laves, and Sigma phases. Yellow and blue backgrounds 

correspond to HR and Thermo features. Error bars (standard deviation) are shown. 
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Figure 3.13: HEA distribution probability density functions based on the values of the three most 

important top-ranked features. The horizontal axis represents feature values. The vertical axis 

represents distribution probability density. Insets are box plots showing the relative positions of 

the two categories’ distribution. The upper and lower bounds of box plots are labeled if different 

from the main plots. Figures H1-H3 show the HEA distribution based on VEC, Φ, and 
E2

E0
 values 

in the Heusler+ prediction model. Figures B1-3 show the HEA distribution based on η, ∆Smix, and 

Ω values in the Al-X-Y type B2+ prediction model. Figures L1-L3 show the HEA distribution 

based on 
E2

E0
, η , and δ  values in the Laves+ prediction model. Figures S1-3 show the HEA 

distribution based on η, VEC, and ∆χ values in the Sigma+ prediction model. 
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3.5 Experimental validation for the models 

3.5.1 Experiment methods 

Alloys for validation were synthesized using arc melting (Section 0). Raw materials with 

a minimum purity of 99.97 wt.% were placed into a water-cooled copper crucible. Raw materials 

were melted five times under a high purity argon atmosphere. Each melt was conducted for a 

minimum of a minute. The sample was flipped over between melts to ensure homogeneity. All 

HEAs were characterized in the as-cast state, consistent with most data used in training the 

presented ML models. The ML models are set in the high-temperature ranges most suitable for as-

cast alloys or alloys annealed at high temperatures, e.g., ~ 0.8 of the melting temperatures55. Finally, 

alloys were polished using grinding papers with grit sizes 180, 320, 600, and 1200. X-Ray 

Diffraction (XRD) measurements were conducted on a PANalytical Empyrean diffractometer with 

Cu Kα radiation and a scanning rate of ~0.15 degree/s. 

3.5.2 Summary of validation results 

Experimental validation is important to provide an unbiased evaluation of a ML model 

trained on available databases. As such, the palette of elements for the validation alloys should be 

an unbiased representation of the compositional space where the model is trained. Accordingly, of 

the 86 validation alloys, the multi-phase prediction model will have 60 alloys (Table 3.2A) with 

randomly chosen compositions based on the common element in the training database, located 

both inside and outside the feature space covered by the current database. The distributions of 

validation HEAs in each predicted phase category are proportional to the database phase 

distribution. 50 alloys are predicted correctly, giving a validation accuracy of 83 %. Since the 

Laves+, Sigma+, and multi-phase prediction models are trained on the same database, the same 60 

HEAs also validate the Laves+ and Sigma+ models, with validation accuracies of 92 % and 95 %, 

respectively (Table 3.2A). To validate the Al-X-Y B2+ prediction model, another 14 new HEAs 

containing the Al-X-Y type B2 phase essential elements are randomly chosen that involves two or 

more refractory elements (Table 3.2B). For Al-X-Y type B2 formation, 12 out of the 14 HEAs are 

predicted correctly with an accuracy of 86 %. For a similar consideration, another 12 HEAs (Table 
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3.2C) containing the Heusler phase essential elements were synthesized to validate the Heusler+ 

prediction model. For the Heusler phase formation, 11 out of the 12 HEAs are predicted correctly, 

with an accuracy of 92 %. Overall, the validation accuracies essentially match the classification 

accuracies. All the XRD patterns can be found in the Figure 3.14. 

 

 

Table 3.2: Validation HEAs compositions, phase prediction results, and experimental phase 

characterization results obtained from XRD are listed. The number subscripts in compositions are 

elemental atomic percentages. Detailed phase contents are listed in the experimental results 

column. True or False in Laves+, Sigma+, Al-X-Y B2+, and Heusler+ prediction columns 

represent forming or not forming the corresponding IM, respectively. Abbreviations AlNi B2+, 

A1, A2, Mix A1-A2, Al-X-Y B2+, and L21 represent the AlNi type B2 forming with other solid 

solution phases, disordered FCC_A1 phase, BCC_A2 phase, mixed A1-A2 phase (coexistence of 

multiple A1 or A2, or mixture of A1 and A2), Al-X-Y type B2+ forming with other phases, and 

Heusler phase. The incorrect predictions are underlined and bolded. 

 

A. Multi-phase, Laves+, and Sigma+ prediction models validation HEAs 

Composition 
Multi-phase 

Prediction 
Laves+ Prediction Sigma+ Prediction Experimental results 

Ag20Al20Cr20Mn20Ni20 AlNi B2+ False False B2+A1 

Ag5Al38Cr19Mn19Ni19 AlNi B2+ False False B2+A1 

Al5Co20Cr10Fe40Ni20Ti5 AlNi B2+ True False A1 

Al10Co20Cu20Fe20Ni20V10 AlNi B2+ False False B2+A1 

Al11Co22Cr11Cu11Ni33V12 AlNi B2+ False True B2+A1 

Al15Cr15Mo15Ni46W9 AlNi B2+ False False B2+A1+A2 

Al15Cr31Fe31Mn15Ni8 AlNi B2+ False False B2 

Al16Co20Fe20Mn18Ni20V6 AlNi B2+ False False B2 

Al16Co21Cr21Fe21Ni21 AlNi B2+ False False B2+A1 

Al16Cr16Fe16Mn16Ni31V5 AlNi B2+ False False B2 

Al19Cr19Cu19Fe19Ni19Si5 AlNi B2+ False False B2+A1+A2 

Al20Co20Cr20Fe20Mn20 AlNi B2+ False False B2 

Al21Co11Cr21Cu5Fe21Mn21 AlNi B2+ False False B2 

Al22Co26Fe26Ni26 AlNi B2+ False False A2 

Al23Co23Cu23Fe23V8 AlNi B2+ False False B2+A1 

Al23Cu23Fe23Ni23V8 AlNi B2+ False False B2+A1 

Al24Co24Cu23Ni23Ti6 AlNi B2+ False False B2+A1 

Al25Co25Cr25Fe25 AlNi B2+ False False B2 

Al25Cu25Fe25Ni25 AlNi B2+ False False B2+A1 

Al29Co29Cu13Fe29 AlNi B2+ False False B2+A1 

Al33Co17Nb33Ni17 AlNi B2+ False False B2+Laves 

Co7Ta31Ti31V31 BCC False False A2 

Cr6Ti56V19Zr19 BCC False False A2 

Cr25Mo25Ti25V25 BCC False False A2 
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Cr33Mo22Nb12V33 BCC False False A2 

Hf25Nb25Ta25Zr25 BCC False False A2 

Hf30Nb30Ti30V10 BCC False False A2 

Hf30Ta30Ti30V10 BCC False False A2 

Mo29Nb13Ti29V29 BCC False False A2 

Nb22Ta22Ti22V22Zr12 BCC False False A2 

Nb29Ta29Ti29Zr13 BCC False False A2 

Co15Cr15Fe15Mn15Ni32V8 FCC False True A1 

Co18Cu18Fe18Mn18Ni18V10 FCC False False A1+A1 

Co19Cr29Fe29Ni19Si4 FCC False False A1 

Co21Cr11Fe42Ni21Ti5 FCC True False A1 

Co22Fe22Mn12Ni44 FCC False False A1 

Co24Cr24Fe24Ni24Si4 FCC False False A1 

Co24Fe24Ni47V5 FCC False False A1 

Co25Cr8Cu5Fe25Ni25V12 FCC False False A1 

Cr19Cu19Fe19Mn18Ni19Ti6 FCC True False A1+A2 

Al4Cr32Cu32Fe11Mn21 MIX A1-A2 False False A1+A2 

Al8Cr56Fe14Mn22 MIX A1-A2 False False A2 

Al10Co20Cr10Cu20Mn20Ni20 MIX A1-A2 False False A1+A2 

Al24Co24Cr23Fe23Ti6 MIX A1-A2 False False B2 

Co16Cr16Cu16Fe16Mn14Ni16Ti6 MIX A1-A2 False False A1+A1 

Co25Cr25Cu25Fe25 MIX A1-A2 False False A1+A1+Unknown 

Cr25Cu25Fe25Mn25 MIX A1-A2 False False A1+A2 

Cr40Fe40Mn10Ni10 MIX A1-A2 False False A2 

Co20Fe20Mn20Ni20Ti10V10 Laves+ True False Laves+A2 

Co20Fe20Mo20Ni20Ti20 Laves+ True False Laves+A1+A2 

Co21Cr21Cu21Mn16Ti21 Laves+ True False Laves+A1 

Co25Cr25Fe25Nb13Ti12 Laves+ True False Laves+A1+A2 

Cr20Nb20Ni20Ti20Zr20 Laves+ True False Laves+A2 

Cr40Fe20Ni20Ti20 Laves+ True False Laves+A1+A2 

Cu17Fe17Mn17Ni17Ti32 Laves+ True False Laves+A1+A2 

Co15Cr15Cu8Fe15Ni31Ti8V8 Sigma+ True True A1 

Co18Cr18Fe18Mo18Ni18V10 Sigma+ False True Sigma+A1 

Co20Cr20Fe20Mo20V20 Sigma+ False True Sigma+A2 

Co26Cr26Fe26Mo22 Sigma+ False True Sigma+A2 

Cu20Fe20Mn20Ni20V20 Sigma+ False True Sigma+A1 

 

B. Al-X-Y type B2+ prediction model validation HEAs 

Composition 
Al-X-Y B2 + 

prediction 

Experimental 

results 

 

Composition 
Al-X-Y B2 + 

prediction 

Experimental 

results 

Al10Hf20Nb22Ti33V15 True B2 Al30Nb20Ta15Ti20V10Zr5 True B2 

Al15Hf25Nb32Ti28 True B2 Al30Nb20Ta20Ti20Zr10 True B2+Unknown 

Al20Hf24Nb29Ti27 True B2 Al4Hf6Nb42Ti18V24W6 False A2 

Al23Hf23Nb23Ti23V8 True B2 Al8Cr15Mo15Nb15Ti15V32 False A2 

Al23Hf23Ta23Ti23V8 True B2 Al10Hf18Nb18Ta18Ti18Zr18 False A2 



 

 

62 

Al26Mo21Nb11Ti21V21 True A2 Al32Nb17Ta17Ti17V17 False B2 

Al30Mo20Nb20Ti30 True B2 Al6Nb21Ta21Ti21V21Zr10 False A2 

 

C. Heusler+ prediction model validation HEAs 

Composition 
Heusler+ 

prediction 

Experimental 

results 

 

Composition 
Heusler+ 

prediction 

Experimental 

results 

Al10Co25Fe25Mn25Ti15 True A2+Unknown Al25Cr10Fe20Mn10Ni20Ti15 True L21 

Al10Cr5Fe45Mn12Ni20Ti8 True L21+A1 Al10Co20Mn20Ni30Ti10 False A1+A2 

Al12Co28Fe19Ni29Ti12 True L21+A1 Al10Co30Fe20Ni32Ti8 False A1 

Al14Cr4Fe17Mn4Mo1Ni44Ti16 True L21+A1 Al15Co30Fe30Ni10Ti15 False B2 

Al15Cr10Fe30Ni30Ti15 True L21+A2 Al20Fe10Mn30Ni40 False B2+A1 

Al15Fe40Mn20Ni10Ti10 True L21 Al7Co30Fe30Mn25Ti8 False B2+A1 
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Figure 3.14: XRD patterns for newly synthesized validation HEAs.  
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Chapter 4 Review on High Entropy Alloys Properties 

Prediction Methods 

This chapter will cover prediction models of  fundamental properties like density, cost, and 

melting point as well as mechanical properties like hardness, strength, and fracture strain. 

4.1 Density, cost, and melting Temperature 

Alloy density is estimated by:   

1

ρalloy
 =  ∑

wt.%i 

ρiall element i
 4.1 

where 𝜌𝑎𝑙𝑙𝑜𝑦  and 𝜌𝑖  are the densities of the alloy and the i-th element, wt.%𝑖  is the weight 

percentage of the i-th element. 

Alloy cost is calculated from:  

Costalloy  =  ∑ wt.%i
all element i

× Costi 4.2 

where Costalloy  and Costi  are the cost of the alloy and the i-th element, wt.%𝑖  is the weight 

percentage of the i-th element.  

Melting temperature Tm of the alloy can be estimated using Eqn. 3.1 in Section 3.2.2. 

4.2 Hardness 

An empirical relationship between hardness and tensile strength for bulk metallic glass154 

may provide an quick and rough estimate of the HEA hardness. It is found that: 

𝐻𝑉 ≈ 3 σUTS 4.3 
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where 𝐻𝑉 and  σUTS are the Vickers hardness and ultimate tensile strength (UTS) of the metallic 

glass. This relationship works empirically for bulk metallic glass when σUTS is between 1 Gpa and 

5 Gpa. However, one should obtain the σUTS before estimating hardness. 

Recently, there are emerging efforts for using machine learning (ML) models to design 

HEAs with improved mechanical properties, principally hardness and strength. Chang et al. 48 used 

the artificial neuron network (ANN) ML algorithm to predict the hardness of HEAs and find new 

compositions with optimized hardness. Ninety-one HEAs containing Al, Co, Cr, Cu, Fe, Ni, Mn, 

and Mo with hardness data reported were contained in the database. The solid density, hardness, 

and atomic mass of each element, weighted by the atomic percentage of that element, were the 

features input in ANN. The ML model showed great agreement between the predicted and the 

experimental hardness results, with a value of 0.94 for the Pearson correlation coefficient. For 

designing new alloys with high hardness, a simulated annealing algorithm was adopted to change 

the composition systematically for finding global maximum hardness. HEAs designed from this 

model showed improvements in hardness. A general trend that the hardness increases for the same 

alloy system when the phase transforms from FCC to FCC+BCC to BCC+B2 is found. The similar 

method can be applied to other element systems.  

Wen et al. 49 developed a robust ML method of making HEAs with high hardness. A radial 

basis function kernel (svr.r) ML model was used. ML features were the HEA compositions 

together with the empirical parameters e a⁄ , modulus mismatch, and the sixth square of the work 

function defined by the author. The dataset was composed of 155 AlCoCrCuFeNi HEA systems 

and their hardness values. As can be seen in Figure 4.1a, the method gave reliable hardness 

prediction results. After that, an iterating process was used to find the HEA with the highest 

hardness. In each iteration, ML could sample the HEA composition space and find three new HEAs 

with the highest predicted hardness. The hardness values of the new HEAs were then measured 

experimentally and added into the training dataset for the next iteration of ML. After seven 

iterations, 21 new HEAs with high hardness were obtained. Their hardness values compared to the 

original 155 systems were plotted in Figure 4.1(b). The HEA Al47Co20Cr18Cu5Fe5Ni5 with the 

highest hardness was obtained in the fourth iteration. Its hardness was 883 HV, which was 14 % 

higher than the highest hardness value of 775 HV in the original training data. 
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Figure 4.1: Plots from Wen et al 49. (a) Comparison between the predicted and the experimental 

hardness values of the HEAs in both training and test dataset. (b) The predicted hardness values 

versus the measured values for the alloys of the original 155 training data and those synthesized 

in successive seven rounds of iterations.  

 

4.3 Strength and ductility 

The strength and ductility of alloys can be influenced by many factors. Intrinsically, 

stronger atomic bonding corresponds to the higher strength of a single lattice. Furthermore, factors 
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such as the phase, grain boundary segregation, and grain size can all influence the strength and 

ductility of HEAs. 

Many mechanical properties prediction models are based on the assumption of single-phase 

formation, i.e., the HEA will be in either a single FCC or BCC phase. In a recent important study, 

Hu et al. 155 reveals the correlation between the D-parameter and ductility. D-parameter is defined 

as  
γsurf

γusf
, where γsurf is the surface energy and γusf is the unstable stacking fault (USF) energy. 

Alloys with high D parameter values tend to be intrinsically ductile. The calculation of γsurf and 

γusf  are accomplished by DFT, which is tedious and time-consuming. Alternatively, they 

developed a ML regression model and achieved high consistency between the ML predicted values 

and DFT calculation results. Finally, they showed that the D parameter strongly correlates to the 

compression fracture strain of HEAs from the experimental results.  

As shown in Figure 4.2A-C, values of γusf, γsurf, and D parameters calculated from DFT 

are plotted against valence electron concentration (VEC) of multiple binary refractory element 

systems. It is interesting to note that all three curves have parabolic shapes with extreme values 

around VEC = 6. The D parameter curves indicate that either low or high VEC values are needed 

to form intrinsically ductile BCC HEAs. Figure 4.2D-E shows the great match of γusf and γsurf 

values between ML prediction and DFT calculation. Thus, by extrapolating from the DFT 

calculated values of 106 binary, ternary, and quaternary BCC alloys, ML was able to calculate D 

parameters for higher-order HEA systems. Figure 4.2F shows the γusf values against D parameters. 

USF energy indicates the material’s ability to resist deformation, while D parameter indicates the 

ductility. Figure 4.2F reproduces the typical strength-ductility reciprocal relationship in alloys. 

Finally, Figure 4.2G shows the alloy fracture strain experimental results against the D parameter 

values. Generally, larger D parameter values correspond to greater fracture strains. Overall, this 

work provides valuable guidance in searching for ductile HEAs. The D parameter can be used in 

the future work to give exact value prediction on HEA mechanical properties.  
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Figure 4.2: (A-C) Values of γusf, γsurf, and D parameters against valence electron concentration 

of multiple binary refractory element systems. (D-E) Comparison of γusf and γsurf values from 

ML prediction and DFT calculation. (F) γusf values against D parameters, indicating the strength 

against the ductility of alloys. (G) Experiment results of fracture strain against the D parameter 

values of alloys. Figure from Hu et al. 155 

 

ML has been widely applied to directly predict the strength and ductility of conventional 

alloys. For example, Dey et al. 156 used the ML ANN algorithm, inputting alloy compositions and 

processing parameters, to obtain the Pareto solutions for aluminum alloys with optimized strength 

and ductility. Similarly, Mohanty et al. 157 applied the ANN algorithm with the input of 

compositions and processing parameters for cold rolled interstitial free (IF) steel sheets, and 

successfully predicted the yield strength, tensile strength, and % elongation. It is expected that 

many well-developed machine learning models will be developed in the coming years to predict 

the strength and ductility of HEAs. 

In addition to the intrinsic factors that affect ductility and strength, we will discuss other 

factors as well. Firstly, properties prediction models normally assume a single SS formation, 

whereas most HEAs form composite phases. The precipitation of Laves and Sigma can easily 

A
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embrittle the alloy158. On the other hand, grain size and morphology are also important. Alloys 

with small grains and fine precipitation of IM can maintain ductility and be significantly 

strengthened159. Furthermore, grain boundary segregation, a phenomenon in which elements such 

as oxygen accumulate at grain boundaries, can embrittle the alloy160. It is important to consider all 

these aspects when optimizing the mechanical properties of alloys. 
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Chapter 5 High-throughput High Entropy Alloys Design 

Model 

We are now able to solve the problem of finding suitable HEAs from a vast compositional 

space with the phase and property prediction models. The structure of the high-throughput HEA 

design model is in Figure 5.1. 

 

Figure 5.1: Structure of the high-throughput HEA design model. 

 

According to the alloy design requirements, the metallurgist should first construct the 

element palette and input the desired phase and properties (density, melting temperature, cost, 

strain, strength, etc.) into the program. The program generates all possible compositions based on 

a grid search. ML models for predicting phases and properties can then be applied to screen out 

some compositions based on whether they meet the phase and property requirements. The selected 

compositions will then be scored according to their properties, and the compositions with the 

highest scores will be sent for experimental validation. 
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Here is an example of how to set up the input to the program of the high-temperature 

functional material design. Firstly, Al-containing refractory HEAs (Al-RHEA)15 can be the ideal 

candidate because they generally have high melting temperatures, and the Al-X-Y B2 phase 

formed in Al-RHEA can help maintain mechanical properties at elevated temperatures. The 

element palette will include elements such as Al, Ti, Cr, Zr, Nb, Hf, V, etc. The desired 

microstructure should include the Al-X-Y B2 phase and exclude Laves and Sigma phases as they 

can embrittle the alloys. The desired properties can include melting temperature > 2000 ℃ and 

compression strain > 30 % to guarantee certain compression ductility. 

The main advantage of this method is its efficiency, i.e., its ability to search a vast space 

of compositional possibilities within a short computation time. However, certain limitations still 

exist. As discussed in Section 2.5, ML phase prediction doesn’t provide information on phase 

volume fractions, transformation temperatures, and element distribution among phases. This 

information is crucial in optimizing the mechanical and corrosion resistance properties and should 

be obtained from CALPHAD in more detailed alloy optimization. In addition, many properties 

prediction models are developed based on assumptions that HEA forms single FCC or BCC phases, 

and their predicted values may be inaccurate if HEA forms a composite phase. In spite of this, the 

predictions of these properties are still helpful because they provide a comparison among the 

compositions. 
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Chapter 6 High Entropy Alloys Synthesis and 

Characterization 

6.1 Overview 

This chapter will describe the various experimental methods in alloy synthesis and 

characterization. After that, the experiment results of a series of HEAs designed for the marine 

environment will be discussed. 

6.2 Experiment methods 

6.2.1 Alloy synthesis 

Alloys are synthesized from pure elements with high purities (normally > 99.9 wt. %). Arc 

melting is our primary tool to melt pure elements into alloys. A schematic diagram of the arc 

melting is provided in Figure 6.1A. The raw materials (elements) should be placed properly before 

closing the chamber. Generally, light materials should be covered by heavy materials in the 

crucible. Liquid light and heavy materials will move up and down in the liquid state, improving 

the mixing of the elements. 

At first, the arc melting chamber is vacuumed to 300 mTorr. Then, the chamber will be 

backfilled with high purity argon gas and vacuumed again to 500 mTorr. This backfilling operation 

will be repeated at least three times to decrease the oxygen percentage in the residual gas inside 

the chamber. The chamber will eventually be vacuumed to 30 mTorr and then refilled with argon 

to 15 mBar in order to sustain the electric arc. Oxygen-gathering material such as Zr or Ti should 

be melted before the alloy to eliminate residual oxygen. The alloy will be melted at least three 

times. Each melt lasts for at least 30 seconds, and the alloy should be flipped between two melts. 

It is recommended to cool down the system after melting for several minutes before opening the 

chamber. 
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Figure 6.1: Schematic diagrams of: A - Arc melting, and B – Suction casting systems. The colored 

circles in figure A represent raw materials in the crucible, while their sizes indicate the densities 

of the materials. Materials of low density are covered by materials of high density. The dashed line 

in figure B represents the air tunnel inside the mold. Alloy will be sucked into the tunnel and 

solidified into the desired shape. 

 

Suction casting can provide fast cooling and cast alloys into the desired shapes. As shown 

in Figure 6.1B, the suction casting instrument includes three chambers. The upper and lower 

chambers are connected with a highly heat-conductive copper mold. Inside the mold is an air tunnel. 

Liquid alloy will then be sucked into the tunnel and solidified into the desired shape. Valves 1 and 

2 control the connections between the three chambers. 

Valve 1, 2, and the pump valve are initially opened while the three chambers are vacuumed 

and backfilled three times following the same procedure in the arc melting. After closing the pump 

valve and valve 2, the reservoir is isolated. The upper and lower chambers are still connected and 

will be backfilled with argon gas to the atmospheric pressure (1 atm) to sustain the arc during 

melting. At this stage, Pup = Pdown = 1 atm and PR = 30 mTorr. Next, the alloy is melted, with valve 

1 being closed and valve 2 being opened. The Pdown drops immediately when the lower chamber 

is isolated from the upper chamber but connected to the reservoir. The pressure difference between 
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Pup and Pdown will suck the alloy into the air tunnel. The solidification finishes in a brief time due 

to the high heat conductivity of the copper mold. 

6.2.2 Encapsulation, annealing and quenching 

Annealing is conducted in a furnace with samples encapsulated into quartz tubes. 

Figure 6.2 is the schematic diagram for the process of sample encapsulation. The alloy and 

a piece of Ta foil are placed inside the tube. Ta foil can gather oxygen during annealing. The high 

melting temperature of Ta (3020℃) guarantees it will not contaminate the alloy under a regular 

annealing temperature below 1100 ℃. The flame softens the tube and a narrow neck forms under 

the pulling force. The tube is then vacuumed and backfilled with argon gas three times, following 

the same procedure in the arc melting. Once the desired vacuum level is reached, the user can seal 

the tube either with a high vacuum inside or after backfilling a certain amount of argon. Finally, 

by heating the narrow neck again and pulling the tube, the upper and lower portions disconnect, 

and the lower portion is completely sealed.   

 

Figure 6.2: Schematic diagrams of the process of sample encapsulation. 

 

After the annealing, water quenching is normally required to retain the homogenized phase 

at the annealing temperature due to its high cooling rate. The quartz tube should be quickly 

Ta foil

Flame

Alloy

Pump Pump
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removed from the furnace and dipped into a bucket of water. It is important to break the tube inside 

the water in order to quench the alloy directly by the water. 

6.3 HEA designed for marine environment 

We designed a series of HEAs for the marine environment. The alloy requirements are low 

density, low cost, high strength, ductility, and good corrosion resistance. Low-cost elements Fe, 

Mn, and Al can be used as much as possible. Corrosion-resistant elements such as Cr, Mo, and Ti 

should be added. Low density can be achieved by including Al and Ti. Ductility and strength can 

be achieved by forming composite FCC+B2/Heusler. FCC phase guarantees ductility, while the 

B2 and Heusler precipitation can strengthen the alloys. FCC stabilizing elements are Co, Ni, and 

Mn. The addition of Al and Ti can induce B2 or Heusler phase. The element palette was 

constructed as Al, Co, Cr, Fe, Mn, Mo, Ni, and Ti (Table 6.1). Desired phases are FCC, B2, and 

Heusler, rejecting Laves and Sigma phases as they will embrittle the alloys. At the same time, we 

will control the density below 7.5 g/cc and cost below 5.5 U.S. dollars/kg. 

 

Table 6.1: The initial element palette and grid search step size in marine environment HEA design. 

Element Al Co Cr Fe Mn Mo Ni Ti 

Scanning range 

(at. %) 
3 - 15 0 - 20 5 - 15 20 - 50 1 - 10 1 - 6 10 - 40 

0 - 60 

(balance) 

Scanning Step size 

(at. %) 
3 5 5 5 2 2 5 balance 

 

Using the method introduced in Chapter 5, four HEAs with varying Mn contents were 

designed21. Their compositions with the labels are listed in Table 6.2. Figure 6.3A and C are the 

XRD patterns and SEM images of the four HEAs. Their phases are FCC+B2, where fine B2 IM 

precipitates (dark particles in Figure 6.3C) are distributed evenly in the FCC matrix (light 

background in Figure 6.3C). This morphology can potentially strengthen the alloys and maintain 

the ductility. Figure 6.3B shows the corrosion resistance of the HEAs compared to the two 

benchmarks, HEA-Cantor and 316L. In particular, HEA-0.25Mn shows better corrosion resistance 
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than other HEAs and the benchmarks, based on the evidence of lower current density in the passive 

potential domain and higher pitting potential. 

 

Table 6.2: Compositions of HEAs designed for marine environment. Cantor alloy and 316L 

stainless steel are the benchmarks for corrosion resistance study. 

Composition Label 

Al0.3Cr0.5Fe2Mn0Mo0.15Ni1.5Ti0.3 HEA-0Mn 

Al0.3Cr0.5Fe2Mn0.25Mo0.15Ni1.5Ti0.3 HEA-0.25Mn 

Al0.3Cr0.5Fe2Mn0.5Mo0.15Ni1.5Ti0.3 HEA-0.5Mn 

Al0.3Cr0.5Fe2Mn1Mo0.15Ni1.5Ti0.3 HEA-1Mn 

CoCrFeMnNi HEA-Cantor 

316L stainless steel 316L 
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Figure 6.3: (A) X-ray diffraction (XRD) patterns of the HEAs designed for marine environment. 

(B) E-log(i) curves obtained during upward polarization of CCAs in 0.01 M NaCl after a 600 s 

application of a −1.3 VSCE potential compared to CoCrFeMnNi and 316L. (C) Scanning electron 

microscope (SEM) images of the HEAs. Figures from Inman et al. 21 
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Chapter 7 Summary and outlook 

This thesis introduces high entropy alloys (HEA) phase and properties prediction methods, 

high-throughput HEA design model, and design results. We reviewed three types of phase 

prediction methods using single parameters, thermodynamic and first-principles calculations, and 

machine learning (ML). Based on the limitations of the current phase prediction methods, we 

developed ML models using phase diagram-based phenomenological parameters and feature 

engineering techniques. As a result, we achieved high accuracies (80 % ~ 90 %) in predicting the 

common solid solution (SS) and intermetallic (IM) phase and also interpreted the physical factors 

controlling each phase’s formation. Based on the phase and properties prediction methods, we 

built a high-throughput HEA design model which can automatically screen all compositions and 

find the ones with desired phase and properties. A series of HEAs were finally designed for the 

marine environment. The experiment results validate the effectiveness of this model. 

In the future, we expect to see the following developments in HEA research. Firstly, 

integrated phase and properties models with the synergetic use of ML, CALPHAD, and first-

principles calculations will be applied to alloy design. As a result, they can rapidly locate the 

optimal compositions, and perform detailed and comprehensive analyses or optimization of phase 

and properties. Secondly, more HEA properties can be predicted accurately, especially using ML. 

ML was first applied to HEA phase prediction in 2016 and has matured recently as a result of the 

growing database on HEA phase. There will be a similar growth trend for ML HEA property 

prediction models. Lastly, the development of high-throughput experiments will expand the 

database and study the HEAs in compositional space that have seldom been explored. Therefore, 

more HEAs with exceptional properties will be discovered, pushing the limits of current materials. 
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