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Abstract—In this paper, we detail our experimentation with 
the SafeBench reinforcement learning tool and the CARLA 
self-driving simulator. Our goal is to lay the groundwork for 

future research in developing a model that can be used to 
provide substantial evidence in court cases involving 
autonomous vehicles. To do this, we first implemented CARLA 
to accurately simulate and generate crash data. We then set up 

SafeBench to dynamically generate crash data based on a few 
base crashes, using reinforcement learning to train the CARLA 
agent. We observed the agent’s performance across different 
scenarios and generated several figures to visualize the 

improvement in performance over time. We also discuss the 

limitations of our approach and potential areas for future work. 
Overall, our research advances the understanding and use of 

explainable AI in autonomous vehicle accident cases and 
provides valuable insights for lawyers and other professionals 
in the field. The ability to uncover the key factors influencing 

AI decisions in traffic accidents can help lawyers more 
effectively defend clients with self-driving cars in tort litigation 
and provide a more thorough and persuasive explanation for 
traffic accident cases. Furthermore, our work serves as the 
foundation for future research in this area, enabling the 

development of more comprehensive and accurate models for 
explaining the decision-making process of autonomous 

vehicles. 
Index Terms—SafeBench, CARLA, XAI, explainable AI, 

soft actor-critic 

I. INTRODUCTION 

AI is becoming increasingly prevalent in our 
everyday lives and is expected to become a major 
factor in the coming decades. Self-driving cars are 
among the most popular applications of AI, and as 
adoption of these cars increases, so does the number 
of legal cases involving them. In these cases, lawyers 
are often tasked with defending clients with self-
driving cars and are required to bring on expert 
witnesses to testify for the car’s decision process. 
However, due to AI being a black box, this results in 
a naive understanding of the AI’s decision process 
and juries ruling against clients with self-driving 
cars. Additionally, as self-driving cars become more 
prevalent, lawyers will need more expert witnesses 

to testify for their clients, which will become an 
increasing problem as the demand for AI experts 
outgrows their supply. 

In this paper, we detail out our experimentation 
with SafeBench through the CARLA self-driving 
simulator. We will show the gradual improvement in 
performance as a result of SafeBench’s 
reinforcement learning, and detail how that lays the 
groundwork for future research. We will also 
elaborate on future research to develop a model that 
determines a list of factors for car crashes and can be 
used to provide substantial evidence in a court case, 
allowing lawyers to reference these primary causes 
and provide substantial evidence that can be used in 
court cases. 

II. RELATED WORK 

The application of explainable AI in tort litigation 
has been explored in the past. For example, [2] 
proposed a model that uses the “black box” of a self-
driving car to uncover the primary causes of a crash. 

In addition to the work mentioned in the previous 
paragraph, there have been several other notable 
efforts to apply explainable AI in the context of self-
driving car accidents. For instance, [3] evaluates a 
method for generating human-readable explanations 
of the decisions made by a self-driving car, using 
natural language generation techniques. This 
approach allows for greater transparency and 
accountability in the decision-making process of 
autonomous vehicles. Another example is [3], which 
presents a framework for explaining the behavior of 
self-driving cars. This framework allows for the 
identification of the key factors that led to a 
particular decision or action taken by the vehicle, 
providing a more comprehensive understanding of 
the underlying reasons behind the car’s behavior. 

Overall, the use of explainable AI in the context of 
self-driving car accidents has garnered significant 
attention in recent years, with researchers proposing 



various methods and approaches for generating 
human-readable explanations of the decisions and 
actions taken by autonomous vehicles. These efforts 
aim to improve the transparency and accountability 
of self-driving cars, ultimately leading to greater 
trust and acceptance of this technology. 

III. METHODOLOGY 

To solve the lawyer’s problem, we first set up 
CARLA version 9.11.0 to be able to accurately 
simulate crashes. An earlier version of this software 
is shown in Fig. 1. Then, we implement SafeBench 
into CARLA and verify that it can dynamically 
generate crash data based on a few base crashes. We 
will then use 10 of SafeBench’s trials to train the 
CARLA agent using each of its given 8 scenarios, 
shown in Fig. 2 and observe the rate of improvement 
for these different scenarios. This will aid later 
papers by providing the most complicated scenarios 
for self-driving agents that could correlate to 
likelihood of crashes. 

 

Fig. 1. Rudimentary visual of a CARLA simulation involving an 
autonomous vehicle and a pedestrian 

Further, the SafeBench architecture is structured 
as seen in Fig. 3, which required us to clone the 
GitHub repository, initialize the docker container, 

 

Fig. 2. 8 scenarios to be trained on 

and repeatedly output the results using the overall 
score provided, which was transformed to Excel and 
plotted. This overall score was a normalized linear 
combination of 10 metrics: collision rate, frequency 
of running red lights/stop signs, average distance 
driven off road, route-following stability, average 
percentage of route completion, average time to 
complete route, average acceleration, average yaw 
velocity, and lane invasion frequency. Here, a higher 
score near 1 implies better performance on average 
between these metrics. 

 

Fig. 3. Wireframe of the SafeBench architecture 

After the results and conclusions of this paper, we 
plan on implementing a novel research paper’s out-
of-distribution detection algorithm on said generated 
crashes, which will clearly highlight the most 
influential factors determining the AI’s decision and 
form a prioritized list of substantial factors lawyers 
can use to defend clients with self-driving cars. With 
this, we can run this out-of-distribution model on all 
the simulations provided by SafeBench to prove the 



model’s effectiveness in detecting out-of-distribution 
data points. 

Expanding further, we will train CARLA across 
additional scenarios, using weather conditions or 
anomaly traffic situations as independent variables. 
By providing additional training, our model can 
better explain the reasons behind traffic accidents, 
such as where training may have been inadequate or 
where certain scenarios were overlooked. This can 
help provide more accurate and comprehensive 
explanations for traffic accident cases in tort 
litigation. 

IV. EXPERIMENTS 

The purpose of this paper was to analyze the 
results of training a reinforcement learning agent 
using the CARLA autonomous driving simulator and 
SafeBench. In particular, we examined how the 
agent’s performance improved over a series of 
training steps as it was evaluated in a variety of 
different scenarios. The policy used for the RL agent 
was the Soft Actor-Critic Policy (SAC), which is an 
RL algorithm that uses 2 Q-Tables and Entropy 
Regularization alongside stochastic experiments to 
learn an optimal policy via off-policy learning. The 
mechanism for this policy is shown in Fig. 5. To this 
end, we generated a graph showing the evaluation 
results across 10 training steps for 8 different 
scenarios. 

 

Fig. 4. General diagram for the SAC policy 

We began by outlining the process for testing the 
agent in various scenarios. Each of these scenarios 
was composed of a set of conditions that the agent 
had to navigate in order to reach the goal. 

For example, in the “following-distance” scenario 
the agent had to maintain a safe following distance 
from the lead vehicle. Similarly, in the “speed-limit” 

scenario the agent had to adhere to the speed limit. 
Once the agent had been trained and evaluated in 
each of the scenarios, the evaluation results were 
recorded and plotted against the number of training 
steps. We expect the graph to show a general 
improvement in the evaluation results as the number 
of training steps increase due to the fact that the agent 
should be able to learn from its experience and 
improve its performance as it is exposed to more 
scenarios per the SAC policy. This graph will allow 
us to compare the performance of the agent in 
different scenarios over the same number of training 
steps, enabling us to determine which scenarios 
require the least learning effort for the agent and 
which scenarios are the most difficult for the agent to 
master. 

V. RESULTS 

The purpose of this paper was to analyze the 
results of training a reinforcement learning (RL) 
agent using the CARLA autonomous driving 
simulator and SafeBench. Looking at the 8 scenarios 
over each training iteration, we generated a graph of 
each scenario’s score relative to its training iteration, 
as shown in Fig. 2. We show the exact results in 
Table. I. 

 

Fig. 5. Line graph demonstrating each scenario’s overall score after 
each training iteration 

Over all the training scenarios, although learning 
did happen, only Straight Obstacle, Vehicle Passing, 
and Unprotected Left-turn showed improvement in 
their overall scores while Turning Obstacle, Lane 
Changing, Red-light Running, Right-Turn, and 
Crossing Negotiation actually showing diminishing 

 

 

 



TABLE I 
OVERALL SCORE VS. TRAINING ITERATIONS FOR EACH SCENARIO 

Training 

Step 
Scenario 

SO TO LC 
1 0.376876624 0.868103329 0.856828999 
2 0.431565177 0.870692585 0.799507216 
3 0.445271435 0.670208128 0.802436532 
4 0.451001413 0.596069807 0.802199332 
5 0.455020163 0.648180217 0.731885346 
6 0.458233252 0.601176536 0.684743822 
7 0.460197287 0.653649608 0.651535023 
8 0.460860893 0.616977412 0.688004034 
9 0.462543392 0.589065219 0.660084564 

10 0.459812311 0.574435773 0.638893596 
Training 

Step 
Scenario 

VP RLR ULT 
1 0.464569348 0.476318166 0.481521147 
2 0.396119809 0.471867902 0.47445008 
3 0.423071856 0.473161848 0.475923114 
4 0.433044515 0.469725752 0.476951438 
5 0.421499477 0.470582824 0.476389389 
6 0.426616784 0.471415227 0.53533472 
7 0.43191347 0.457288705 0.523362227 
8 0.437359938 0.459814367 0.514210217 
9 0.470187107 0.462266234 0.50875195 

10 0.467678597 0.462385488 0.50229386 

 Training 

Step 
Scenario  

RT CN 
1 0.871080867 0.467912458 

 2 0.618150985 0.423924052  

 3 0.501134174 0.404738676  

 4 0.440438987 0.397253887  

 5 0.424542083 0.392140833  

 6 0.414551142 0.389964999  

 7 0.407432544 0.387567732  

 8 0.402527609 0.385936266  

 9 0.398767104 0.383699162  

 10 0.395740418 0.382588017  

scores as training increased. Despite this, we assume 
that overall learning did happen as the SAC policy is 
designed to minimize the probability of failure over 
each successive stochastic training step. We notice 
that the successful scenarios that did improve 
generally start with a score below 0.40. This 
indicates to us that these were scenarios that were 

difficult to learn and usually crashed on the first run, 
minimizing the overall score at start. Additionally, 
since we see considerable improvements at each run, 
we also conclude that these scenarios are easily 
avoidable scenarios the model quickly learned from. 
This makes sense considering these scenarios are 
Straight Obstacle, Vehicle Passing, and Unprotected 

Left-turn, which only require minor adjustments to 
avoid the crash. On the other hand, the most notable 
offenders of our expected results is shown in Turning 
Obstacle, Lane Changing, and Right-turn. These 
scenarios start with an overall score above 0.80, 
indicating that the agent performed nearly optimally 
given the 10 evaluation factors. Despite this, the 
score quickly dropped, which lets us conclude that 
the initial score was a lucky pass and that the agent 
didn’t truly learn the optimal strategy. This also 
makes sense in the context of being initially avoided, 
and then diminished score as the model experiments 
towards finding an objective solution, as minimal 
adjustments are not either necessary or enough to 
find an optimal path. For these 3 scenarios, the car is 
required to slow down as the only solution to avoid a 
crash. Additionally, pedestrians are especially 
difficult to see, so we are not surprised the car had 
such a difficulty with this scenario. Finally, Lane 
Changing, which has both cars in front of the ego 
vehicle, is likely difficult for the car to control as it 
wants to speed up to maximize its objective function. 
Thus, it takes more iterations to learn that speeding 
up will always lead to crashes. Finally, we notice that 
the best final score across all 8 scenarios was the 
Lane Changing scenario while the worst performing 
scenario was the Crossing Negotiation scenario. 
Lane Changing started with a high overall score and 
ended with the highest overall score, indicating that 
this scenario was not necessarily a lucky guess, but 
that the optimal policy involving its initial actions 
was well chosen. Since the 2 cars are relatively 
obvious to the ego vehicle, we weren’t necessarily 
surprised by this. The ego vehicle has plenty of time 
to evaluate and react to the situation, unlike many of 
the other scenarios, allowing it more time and 
confidence to find the optimal solution. On the other 
hand, the Crossing Negotiation is more difficult to 
interpret for the car, as the agent needs to evaluate 
whether the opposing car will cross the intersection 
or not. This is known to be a difficult scenario for AI 
agents to evaluate, so we are not surprised that this 



scenario not only had the lowest overall score, but 
also had a low overall starting score. 

VI. CONCLUSION 

For simple scenarios, the results of our analysis 
demonstrated that the agent was able to learn from its 
experience and improve its performance as it was 
exposed to more trials. We observed a general 
improvement in the evaluation results as the number 
of training steps increased, with some scenarios 
requiring the agent to learn more complex tasks and 
showing a slower, or diminishing, rate of 
improvement relative to the 10 scores the overall 
score evaluates. We were also able to compare the 
performance of the agent in different scenarios over 
the same number of training steps, enabling us to 
determine which scenarios require the most learning 
effort for the agent and which scenarios are the most 
difficult for the agent to master. 

Thus, our project successfully set up the 
infrastructure necessary to run further experiments to 
reveal a model to provide additional explainability to 
self-driving vehicle AI decision-making in tort 
litigation. By training the agent using SafeBench’s 
trials on the CARLA simulator, we revealed a 
gradual improvement in the agent’s ability to remain 
safe on the road. As adoption of self-driving cars 
continues to grow within the coming decades, 
leveraging AI to determine factors can streamline the 
judicial process by bypassing the need to wait for an 
expert witness to be available. This will prove to be 
frontier work in the space of explainable AI used in 
tort litigation. 

In the future, we plan to continue our research on 
the primary factors behind car crashes involving self-
driving cars with the goal of improving the 
explainability of AI systems for use in tort litigation. 
We plan to implement the novel research papers and 
to accurately determine the primary factors behind 
car crashes. In particular, we will use the work of [1] 
to explore the use of out-of-detection models to 
detect anomalies in training that could lead to car 
accidents. 

From this, we plan on developing a model that 
would provide a prioritized list of substantial factors 
that lawyers can use to defend clients with self 
driving cars, helping explain to judges and juries the 
AI’s decision process more thoroughly without the 
need for expert AI witnesses. Our model would also 
provide a prioritized list of substantial factors that 

lawyers can use to defend clients with self-driving 
cars, helping explain to judges and juries the AI’s 
decision process more thoroughly without the need 
for expert AI witnesses. We believe that this model 
will provide valuable evidence in a court case by 
allowing lawyers to point to primary and substantial 
factors behind a self-driving car crash. Additionally, 
this model will shed light on the reasons for why the 
AI agent was potentially hindered, allowing juries to 
better understand the inner workings of AI agents. 
This also loosens the burden on AI expert witnesses 
that will have to come in and stand trial in self-
driving car accidents. 

Furthermore, we plan to expand the scope of our 
research to include other factors that may impact the 
safety of self-driving cars, such as weather 
conditions and road infrastructure. This analysis 
would enable us to understand the relationship 
between the number of training steps and the 
evaluation results for various scenarios and to 
identify scenarios in which the agent required the 
most learning effort. We believe that by considering 
these additional factors, we can provide a more 
comprehensive analysis of the causes of car crashes 
and develop more effective strategies for mitigating 
these risks. 
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