
Data Manipulation: Converting XER Files for Analysis

CS4991 Capstone Report, 2024

Vlad Tarashansky
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
vladtarashansky@gmail.com

ABSTRACT
Kroll Construction Expert Services needed to
analyze large-scale construction scheduling
data in a faster way than navigating the
scheduling software to settle legal disputes. To
present this data in a simple spreadsheet, Kroll
Government Solutions (KGS) created a
pipeline of python and SQL scripts to parse
XER files used by the common scheduling
software, Primavera, which was extremely
inefficient. My goal was to increase efficiency,
reliability, and create new features. Utilizing
my knowledge of memory-efficient data
structures, I was able to speed up the process.
I utilized increased error logging and
debugging to aid in correcting wrongly
formatted input files, and also created various
new features in the final output table. The
Expert Services team’s efficiency increased,
leading to more cases, clients, and profit. The
system still has room for more improvements
such as automating the reformatting of faulty
inputs and the running of consecutive steps.
Eventually, this system could be integrated
into a standalone tool that converts and creates
reports on any construction scheduling dataset,
eliminating the need for manual running and
troubleshooting each time.

1. INTRODUCTION
The question is not if, but for how long, a large
construction project will get delayed. Then the
problem is why and who should pay for it. Was
the delay due to weather conditions? Poor
planning? Mistakes in construction? Kroll

Construction Expert Services helps legal
teams settle such large construction disputes.
A major part of their work is analyzing and
reporting construction schedules to legal
teams. Many construction projects utilize a
scheduling software, Primavera P6. This
software exports data in proprietary .XER file
format. This format is not easily analyzable, so
Expert Services would open and view the data
inside Primavera, which proved to be tedious
and inefficient.

KGS had a working pipeline to parse and
reformat the .XER files. The system was slow
and required manual checking of each step.
My goal was to improve and streamline this
process. A more efficient process would
empower the legal team to focus on analysis
over data reformatting and serve more cases.
The task proved difficult because I had no
knowledge of the .XER file format, Primavera
software, structure of pipeline, and the creator
of the pipeline was no longer with the
company.

2. RELATED WORKS
A page in O’Reilly’s Python Cookbook
influenced the simplest and most significant
improvement in the pipeline. Blissett
discussed the difference between write() and
write_lines() in the Python Cookbook [1]. This
key difference influenced a change that made
the pipeline run in minutes rather than hours.

Djouallah offered a different approach to
viewing and analyzing .XER files, importing
the files directly into Excel using a special
macro [2]. This approach would work if the
goal were to edit and reconstruct the .XER file.
However, my work was to deconstruct,
reformat, and display into one final
spreadsheet. Using Excel directly would make
joining the tables difficult. Also, Djouallah did
not have a method for making the calendar
table data readable. The calendar table
contains essential information about the time
and amount of work done on the projects.

A forum on Winter’s planningplanet.com
discussed calendar data formatting. The forum
specifically discussed how to convert the
numbers within the data to dates. The numbers
were from Microsoft’s date function that
begins enumerating dates from 12/30/1899
[4]. The forum also supplied insight on the
formatting of the calendar data. Eagle [3] was
trying a similar process of reading the calendar
data in SQL.

3. PROJECT DESIGN
The Expert Services team employed the KGS
team to create a pipeline to extract data from
the .XER files into a comma-separated values
(csv) format. Expert Services would then
visualize and analyze the file in a Power BI
dashboard. The pipeline already existed when
I began my work at KGS. It ran for multiple
hours and required extensive manual checks to
see that it successfully parsed all the files. I
improved the efficiency of this pipeline.

3.1 XER File Format
Primavera’s .XER files serve as the database
that the software uses. The file is tab delimited
and has multiple tables with their respective
data. The first row contains metadata about the
project and when the file was created. The rest
of the file contains tables. The first column has
four attributes that specify what that row has.
These attributes are:

 %T: Table
 %F: Fields
 %R: Record
 %E: Last row in the XER file

The structure of each table is a table name row,
%T, followed by a row with the fields of that
table, %F, then records in that table, %R’s. A
table ends when the next row begins with the
next table’s name, %T. A %E row indicates the
XER is over.

3.2 Existing Pipeline
Projects received by KGS had multiple XER
files, each capturing a snapshot of the
construction schedule at a certain time. The
flow of the pipeline is as follows:

 Parse received XER files.
 Upload data to Oracle database
 Select, join, reformat, and create

meaningful fields.
 Export the final view as a deliverable

CSV file.

The pipeline did this in a 6-step process. Step
1 parses the .XER files. Step 2 combines and
uploads all tables with the same name from
different snapshots to an Oracle database. Step
3 creates a template calendar table. Step 4
populates the new calendar table with
expanded data from the original calendar table.
Step 5 cleans and standardizes the calendar
table. Step 6 extracts and combines data from
all the tables into one final view. Steps 1,2, and
4 use python. Steps 3,5, and 6 use SQL scripts.

3.2 Efficiency Problems
My first introduction to the process was a zip
folder with the code, a dataset, and short
instructions for running the process. After
troubleshooting, I successfully ran the process.
Step 1 took approximately 24 hours, and the
rest of the steps took about 3 hours combined.
The pipeline was a black box at this point, so I
began to understand the process. After
learning the information in section 3.1 and 3.2,

I was ready to begin finding inefficiencies
within the process. Because step 1 was the
slowest, I focused on it.

Step 1 is a multithreaded process that receives
a folder with XER files and outputs a folder of
text files. Groups of input files run
concurrently on separate threads. The code
reads each .XER file line by line to extract
tables into tab delimited text files. It creates a
table name from the %T row, then appends the
%F row and all subsequent %R rows without
their first column to a variable. When it reads
a new %T row the variable gets written to a
new text file in the output folder.

The code appeared fine. Why would this take
a full day to run fifty input files? At first, I tried
changing the number of threads, but this made
no difference in run time. After careful
consideration of the underlying mechanism of
string variables, the appending of rows to a
single string was clearly the issue. String
concatenation requires consecutive memory.
When a table has over a million rows, the
process was looking for consecutive memory
to store all those rows in a single string. This
was the root cause of the slowdown.

The write_lines() function was my attempted
solution to the problem. The string variable
that represented the rows in each table was
changed to an array where each element was a
row. Then I used the write_lines() function to
write the array to a new text file. After these
changes were made, the process was rerun on
the initial dataset. Step 1 ran in approximately
30 seconds.

3.3 Data Issues
When the next construction dispute came in, I
oversaw the running of the process. I ran it
with my new and improved code, however,
step one did not successfully parse each input
file. The issue was that the files held carriage
returns. The affected files would have a row

without a %T, %R, %F, or %E which would
cause that file to prematurely terminate
parsing. There was no error logging system.
To fix these issues, a person would need to
read hundreds of output files to see which
input stopped early, then search that XER file
for carriage returns and manually fix it. The
person running the process would have to
extensively manually check each run to ensure
it parsed all the files.

My fix was to implement an error logging
feature to say which line in which file caused
the code to stop early. I stored these logs in the
Oracle database. I created two tables: a job log
and a job description log. The job log table had
the following columns:

 JOB_ID
 PROJECT_NAME
 NUM_FILES
 NUM_FILES_COMPLETED
 TIME_STAMP
 USERNAME (Database login

username)
 STATUS (Completed or failed)
 RUNTIME (Seconds)

The job description table had information on
each XER file and contained the columns:

 JOB_ID
 JOB_TYPE
 FILE_NAME
 COMPLETE (Y or N)
 NUM_TABLES_COMPLETE
 RUNTIME (Seconds)
 EXCEP (Error message)

The error logging feature collects and uploads
data into oracle at the end of parsing each file
and the end of the entire job. The error
message being logged would say which table
and which line contained a carriage return.
This removed manual checking but not manual
fixing of the input files. It also created a
backlog to see when, who, and how long
previous jobs took.

4. RESULTS
The construction .XER pipeline is still far
from fully polished, but the results of this work
were substantial. The initial runs of the
pipeline took over 24 hours just to run the first
step. The first step then needed tedious manual
checking for correctness and completeness.
The rest of the process only took about 3 hours.
The improvements made to step one
drastically reduced the total time to run the
pipeline. Step one now runs on the same data
in approximately 30 seconds. This is over a
280,000% increase in efficiency. On top of this
enhancement, the manual checking of a
complete parse at step one was now automatic.
Error logging allowed the user to immediately
see if a parse job was complete or where it
encountered issues.

5. CONCLUSION
The construction parsing pipeline is a tool used
by the Kroll Government Solutions team to do
work for the Kroll Construction Expert
Services Construction Disputes team. As a
result of the enhancements to the pipeline, the
turnaround time for parsing projects was
reduced from several days to several hours.
With this improved efficiency, the Expert
Services team had a higher throughput of
cases. Their clients would receive construction
schedule reports much quicker and have more
time to analyze them.

The enhancements also provided value for the
Kroll Government Solutions team running the
pipeline. With improved error logging, less
manual quality checks were required. Also,
there was less downtime between checking the
output and rerunning the parser to get the next
output because of the increased efficiency in
step 1. That means time that would be spent
waiting for code to run could be actively spent
quality checking, extracting new features, and
further improving the pipeline.

6. FUTURE WORK
The XER parsing pipeline still requires
manual correction of faulty input data. Future
work might include automating the correction
of inputs and handling of errors within the
pipeline. The XER parsing project is one step
in the analysis and representation of
construction scheduling data. The pipeline
could be built into a greater application that
takes in .XER files and automatically creates
reports, charts, graphs, and draws conclusions
about delays in the schedules. We could sell
this app/service to the Construction Expert
Services team, legal teams, or directly to
construction companies to find delays prior to
having disputes with their clients. Such an
application could also take advantage of
collecting data from its users. It could learn
common threads of a given company's delays
and give recommendations for improvements.

REFERENCES
[1] Blissett, L. (n.d) Writing to a File. O’Reilly
Media.
https://www.oreilly.com/library/view/python-
cookbook/0596001673/ch04s03.html#:~:text
=Calling%20writelines%20is%20much%20fa
ster,write%20repeatedly%20in%20a%20loop

[2] Djouallah, M. (2021, Oct.) Understanding
Primavera XER Files. Plan Academy Inc.
https://www.planacademy.com/understanding
-primavera-xer-
files/#:~:text=The%20XER%20file%20is%2
0one,that%20read%20a%20CVS%20file

[3] Eagle, D. (2014, July) Hi, I have just
figured it out too, it took me days. I am working
in SQL [Online forum post] Planning Planet.
http://www.planningplanet.com/forums/prima
vera-version-pm5-pm6/413006/p3ec-export-
xer-file-calendar-data-issue

[4] Winter, R. (2005, June) Those 5 digit
numbers are day numbers, beginning with
12/30/1899… [Online forum post] Planning

Planet.
http://www.planningplanet.com/forums/prima
vera-version-pm5-pm6/413006/p3ec-export-
xer-file-calendar-data-issue

