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Abstract

Reliability is an important factor to consider when designing and deploying SSDs in storage sys-

tems. Both the endurance and the retention time of flash memory are impacted by the history of

low-level stress and recovery patterns to Flash cells, which are determined by the workload char-

acteristics, the time period over which the workload utilizes the SSD, and the FTL algorithms.

Accurately assessing SSD reliability requires simulating the workload behavior over timescales

that span several years, which is very time-consuming. This thesis presents a methodology that

uses snapshot-based sampling and clustering techniques to reduce the simulation time while main-

taining high accuracy. The methodology leverages the key insight that most of the large changes in

retention time occur early in the lifetime of the SSD, whereas most of the simulation time is spent

in the latter stages. This allows for simulation acceleration to be focused on the latter stages with-

out significant loss of accuracy. We show that our approach provides an average speedup of 12X

over detailed simulation with an error of 3.21% in the estimated mean and 6.42% in the estimated

standard deviation of the retention times of the blocks in the SSD.
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Chapter 1

Introduction

Flash memory based Solid State Drives (SSD) have gained tremendous popularity in recent years.

SSDs are widely used in a variety of computing devices, from phones and tablets to desktops and

servers. SSDs offer several advantages over Hard Disk Drives (HDDs) including higher perfor-

mance, lower power, improved acoustics and ruggedness. Despite these positives, a major concern

with SSDs is that the underlying flash memory technology has a limited lifetime, which affects both

the number of writes that can be reliably done to flash, referred to as endurance and quantified in

terms of Program/Erase (P/E) Cycles, and the retention time of the stored data. The retention time is

period of time during which data written to a flash memory cell can be read reliably [18]. The reten-

tion time decreases with the number of Program/Erase (P/E) cycles. These reliability concerns are

especially paramount in data centers where workloads are I/O intense, data integrity requirements

are high, and SSD replacement costs can be significant [2].

Accurate estimation of SSD reliability is important in data centers for several reasons. One of

the key factors that determines the Total Cost of Ownership (TCO) of a data center is the cost of

the IT equipment. Typically, hardware refresh cycles span a period of 3-5 years over which time

the computing equipment is expected to operate reliably. Having an accurate means of estimating

SSD reliability for the workloads to be hosted in a data center is important for calculating the TCO.

Since the data retention time decreases with cycling, knowledge of how the retention time of an

SSD changes overtime allows the storage system designer to make informed choices about how

best to use the SSD over its lifetime - as long-term storage vs. as a cache for short-term storage.
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Chapter 1. Introduction 2

There has been prior work on reducing the number of P/E cycles to ensure high endurance and

long data retention times [7] [24] [25]. While reducing cycling is beneficial, it has been shown

that merely counting the number of P/E cycles is insufficient to accurately model endurance and

retention time [18] [11] [3]. Both endurance and retention time are determined by not only stresses

(P/E cycles) to the flash memory cells but also a recovery process wherein the cell has the ability to

partially heal itself during idle times between stresses. Several recent publications have proposed

reliability and performance enhancements that leverage this observation [15] [19] [20] [17]. More

related works in this area are discussed in Chapter 2.

While SSD performance can be evaluated using relatively short workload traces, accurate reli-

ability assessments require capturing the impact of the workload access patterns on flash memory

over an extended period of time, typically on the order of years of simulated time. The reason for

this is because the reliability of the flash memory cells depends on the history of stresses and recov-

ery over time. Existing SSD simulators focus on performance modeling and use relatively simplistic

approaches to quantifying endurance, such as counting the number of P/E cycles [1] [14]. Also, all

of the prior works that attempt to quantify lifetime more accurately by using the physically real-

istic reliability models simulate a workload for only a very short interval of time or use simplistic

extrapolation of the results from a short simulation to a longer duration of time [5] [18]. Since reli-

ability is affected by the interplay of the workload behavior, the FTL algorithms for page mapping,

wear-leveling, and garbage collection, the distribution of stress and recovery events, any simplistic

extrapolation of a short-duration simulation over a longer timescale is inherently error-prone. On

the other hand, simulating a workload over a long time-scale is very time consuming. Having the

means to perform reliability assessments of SSDs for different workloads with low turnaround time

can help reduce the costs of capacity planning for deploying the storage systems.

Table 1.1 shows the simulation time of several data center workload traces [13] over a 5-year

timescale in the DiskSim simulator [4] with the SSD extension [1]. These simulations were run

on an 8-CPU quad-core 2.3 GHz Intel Xeon
TM

machine with 48 GB of RAM. We choose a 5-

year timescale since it represents the typical hardware refresh interval in a data center [17]. We

simulate 5 years worth of activity by repeatedly replaying the I/O traces, each of which capture one
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Workload MSNFS EXCHANGE DAPPS RADIUS
Simulation Time 185.93 127.51 86.52 49.31

(hours)

Table 1.1: Simulation time of enterprise workloads for 5 years

representative day’s I/O traffic. As the table indicates, detailed simulation of these workloads over

a multi-year timescale is very expensive in terms of time. In this work, we develop a methodology

for reducing this simulation time.

Accelerating simulation time has been studied in the field of computer architecture for processor

simulation [30] [22]. However, these prior techniques cannot be directly applied to SSD reliability

simulation. Architecture performance metrics, such as IPC, depend more on the instantaneous be-

havior of a workload running on a given microarchitecture whereas SSD reliability metrics depend

on the history of the utilization patterns. Moreover, as mentioned previously, the retention time

is a complex function of the workload, FTL, stress distributions, etc. As a result of these differ-

ences, direct application of techniques such as workload reduction or sampling can lead to large

inaccuracies.

The goal of this thesis is to present a methodology to accelerate reliability simulations of SSDs.

We accelerate the simulation by performing sampling over time. Detailed simulation is only per-

formed in sampling units, whereas fast forwarded simulation is performed between the sampling

units. In order to further reduce simulation time, we augment our sampling-based approach with a

clustering technique to reduce the size of the workload so that only a subset of requests are simulated

during the detailed simulation mode. Our simulation framework is able to drastically accelerate the

original simulation while still maintaining high accuracy. Moreover, our methodology is generic

and can be used for any workload or SSD architecture thereby allowing for flexible design-space

exploration studies.

This thesis makes the following specific contributions:

• We study the time-varying behavior of retention time and characterize its behavior of an SSD

over the entire lifetime. We show that data retention time changes rapidly early in the lifetime
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and tends to stabilize afterward and change very slowly.

• We show how we can exploit this trend in retention time variation by developing a sampling-

based approach to speedup the simulation.

• We characterize the spatial and temporal stress characteristics of the workloads and identify

further opportunities to reduce the simulation time by reducing the size of the workload to be

simulated. We develop and evaluate a clustering-based approach to trim down the workload

size. Overall, we find that the use of sampling and clustering provides a 12X speedup on

average over detailed simulation with errors in the estimated mean and standard deviation to

3.21% and 6.42% respectively.

The rest of the thesis is organized as follows. Chapter 2 provides an overview of SSDs and

flash memory reliability and dicusses the related work. Chapter 3 describes the experimental setup.

Chapter 4 characterizes the variation in the retention time over a multi-year timescale which moti-

vates the sampling-based acceleration approach and describes our simulation acceleration method-

ology. Chapter 5 presents the experimental evaluation of the speedup and accuracy of our approach.

Chapter 6 concludes the work and discusses about the future works.



Chapter 2

Background and Related Work

2.1 SSD Basics

A typical SSD consists of a host interface logic (e.g., PCI Express, SATA), a flash memory con-

troller, internal buffer, and several flash memory packages that are connected to the controller via

multiple channels [1] [6]. The flash controller translates incoming requests and issues commands

to the flash packages. The internal buffer holds pending data and metadata to/from flash. A flash

package is organized into one or more elements. Each element comprises of multiple planes, usu-

ally 4 or 8 in number. Each plane contains a large number of blocks (e.g., 8K). Each block in turn

consists of 64 or 128 flash pages that store data. Inside each page, a small region is reserved for

metadata, such as identification and error detection information.

The physical organization of an SSD is very different than that of a HDD. Since flash memory

does not support in-place writes, a mapping is required between the logical block address to phisical

media. Also SSDs need to move data aroound, so even data distribution inside SSD is required to

prolong the life of the SSD. To address the above issues, SSDs implement a software layer called

the Flash Translation Layer (FTL) to abstract the low-level implementation details [8]. The FTL

is primarily responsible for maintaining an address mapping table that maps upper-level logical

addresses to physical addresses in flash memory, performing garbage collection which cleans blocks

for reuse, and conducting wear-leveling to ensure flash blocks are evenly stressed [23].

Since NAND flash does not support efficient in-place writes, the FTL must maintain some

5



Chapter 2. Background and Related Work 6

mechanism that translates Logical Page Addresses (LPA) to Physical Page Addresses (PPA) [1]. In

general, there are two mapping strategies: static mapping and dynamic mapping. Static mapping

maps a LPA to a fixed PPA. Dynamic mapping does not pre-determine the mapping between LPA

and PPA. Instead, when handling a write request, the FTL computes the corresponding physical

position in flash on-the-fly according to the wear-leveling logic that takes into account the current

wear out conditions across the flash memory packages. In practice, a typical hybrid FTL design

often combines the two strategies by first mapping a portion of the LPA statically to a fixed pre-

determined pool of flash memory, which is referred to as Allocation Pool [1], and then mapping the

non-static portion of LPA dynamically to some physical address inside this specific allocation pool.

Therefore, for an incoming write request, its associated physical address is allocated from a fixed

allocation pool, which can be as small as a flash plane or as large as several flash packages based

on the specific implementation. Since the hybrid mapping policy is used most widely in practice,

our simulations use this policy.

2.2 Flash Reliability

Flash memory supports three types of operations: writes (programs), erases and reads. Writes and

erases are referred to as P/E cycles or stress events [17]. A NAND flash memory cell consists of

a Floating Gate Transistor (FGT) whose threshold voltage can be programmed by tunneling some

amount of charges into the floating gate and erased by tunneling charges out [19]. When data is

programmed into an FGT, the insulators surrounding the floating gate prevent the charges from

tunneling back out. This provides for non-volatility and thus the data stored in FGT can be sensed

during a read operation. During P/E cycling, charges that tunnel through the oxide can get trapped

in the insulator. When charges are trapped, it results in current leakage from the FGT, known as

Stress Induced Leakage Current (SILC). After most charges inside the FGT have leaked through the

insulator, read operations can no longer be guaranteed to return the correct data, thus rendering the

FGT unusable. The estimated time for charges to leak through the insulator determines the amount

of time data can be read reliably from a flash cell and is known as the data retention time. The
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endurance can be calculated by estimating the number of P/E cycles it takes to reach this reliability

limit.

In this work, we focus on data retention time to characterize flash reliability. We use the model

developed by Mohan et al. [17] to calculate the data retention time. We summarize the model below.

Data retention time, tretention, can be calculated by the following equation:

tretention =
(Qth,spread−C·δVth)

JSILC
(2.1)

where Qth,spread is the total charge stored in the FGT corresponding to a logical bit, C is the

capacitance between the control gate and the floating gate of a FGT, and δVth is the threshold voltage

shift due to stress events. C ·δVth can be viewed as the amount of charge trapped in the insulators.

JSILC is the leakage current. Therefore, data retention time tretention is the amount of time taken for

the charge to leak from the FGT. JSILC can be approximated as a constant value over time [17]. As

consequence, the threshold voltage shift δVth, which determines the amount of charges trapped in

the insulators, dominates the variation of retention time.

Mohan et al. [18] present a model to calculate the threshold voltage shift δVth. According to their

model, δVth increases with charge trapping in the insulators which is affected by the accumulation

of stress events and decreases with charge de-trapping which is caused by the recovery process.

Therefore, δVth can be expressed as follows:

δVth = ∆Vth,s−∆Vth,r (2.2)

where ∆Vth,s and ∆Vth,r are the threshold voltage shifts due to charge trapping and detrapping

respectively.
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Their study also shows ∆Vth,s has a power law relationship with the number of P/E cycles and

∆Vth,r is affected logarithmically by the length of the recovery time. δVth is a monotonically increas-

ing function. When δVth gets sufficiently large, a read operation can no longer distinguish between

different voltage levels and thus can no longer be reliably performed. The amount of time it takes

to reach this point is the data retention time.

2.3 Related Work

There has been prior work on reducing the number of P/E cycles to ensure high endurance and

long data retention times. CAFTL [7] explores an content-aware Flash Translation Layer(FTL)

design that is able to remove duplicate writes and extend available free flash memory space. Griffin

[24] improves lifetime of SSD by introducing a hybrid storage device that maintains a hard disk

drive as write cache for the associated SSD and migrates cached data periodically. [25] proposes a

hybrid architecture for the NAND flash storage that utilizes phase change random access memory

to enhance performance, energy, as well as lifetime.

While reducing cycling is beneficial, it has been shown that merely counting the number of

P/E cycles is insufficient to accurately model endurance and retention time [18] [11] [3]. Mohan et

al. [18] [17] have presented a model to characterize flash relianibility. Their model has indicated

that both endurance and retention time are determined by not only stresses (P/E cycles) to the flash

memory cells but also a recovery process wherein the cell has the ability to partially heal itself

during idle times between stresses.

Despite reliability being one of the most important metrics to consider when using an SSD,

there is a lack of tools that can provide accurate reliability estimates. Most of the current software

simulators focus on performance rather than endurance [1] [14] [9]. SolidSim is a kernel-level

simulator that is capable of providing insights for characterizing SSD endurance without the need

of collecting workload traces [12]. Although SolidSim models the Flash Translation-Layer (FTL)

in detail, the tool reports the endurance of the application relative to a sequential workload and does

not directly quantify reliability. Moreover, all the above works simulate the given workload for
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a short time interval and fail to provide measurement over a timescale long enough for reliability

issues to appear. Recent work [5] has tried to estimate long-term reliability via linear extrapolation.

However, their approach overly-simplifies the relation of flash reliability over time. In this thesis,

we evaluate one of the over simplistic extrapolation approaches and show that their results have a

large divergence with the detailed simulation results.



Chapter 3

Experimental Setup

Our simulations are carried out using Disksim [4] with the SSD extension module developed in

Microsoft Research [1]. We have modified Disksim to record statistics that impact reliability, such

as the recovery time between successive stresses to flash and augmented it with reliability models to

calculate the retention time [18] [17]. We simulate an enterprise class 64GB 2-bit MLC SSD, whose

characteristics are given in Table 3.1. The FTL of this SSD uses a greedy-based garbage collection

approach with wear-leveling aware heuristics and cold data migration to evenly distribute stress

events across all blocks [1]. The FTL uses a hybrid page-mapping policy that combines static and

dynamic mapping mechanisms, with an allocation pool that operates at the granularity of a flash

element. Note that although we model a specific SSD in this work, our statistical acceleration

methodology is generic enough to be applied to other FTL or SSD organizations.

To the best of our knowledge, there are no recent publicly available workload traces that span

Elements per package 16
Planes per element 8
Blocks per plane 1024
Pages per block 128
Page size 4KB
Over-provisioning 10%
Cleaning threshold 5%

Table 3.1: Configuration of the simulated SSD

10
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Workload Trace Total Write Request
Duration I/Os Traffic Inter-Arrival
(hours) (millions) (GBs/day) average(ms)

Display Ads
24 1.09 44.06 79.63Platform Payload

Server (DAPPS)
Exchange Server 24 5.50 75.86 15.79(Exchange)

MSN File 6 2.22 83.21 9.78Server (MSNFS)
Radius

15 2.21 30.83 24.90Authentication
Server (RADIUS)

Table 3.2: Properties of Enterprise Workloads used for evaluation [17].

multiple years of activity. Cello [21] is the longest trace that we know of which spans one year.

However, it is relatively old and its I/O activity might not be representative of modern data center

workloads. The workloads we choose in this work consist of four enterpriseclass block I/O traces

captured from modern Microsofts data centers [13]. Each trace spans 6 hours to one day of repre-

sentative I/O activity. The key characteristics of these workloads are given in Table 3.2. Since there

are no publicly available workload traces that span multiple years of activity, we repeatedly replay

each I/O trace until the simulation time reaches 5 years, which aligns with the typical hardware

refresh period in a data center. This approach of replaying I/O traces for long timescales is similar

to those in prior work on reliability simulation [18] [15] [17] [5]. We believe that this approach is

reasonable since prior research has shown that disk I/O traffic exhibits spatial and temporal self-

similarity characteristics [10] [13].

In this work, we use data retention time as the metric for reliability. Data retention time is

the time during which data written to a flash memory cell can be read reliably. So larger data

retention time indicates higher reliability. We evaluate the accuracy of the simulation by comparing

the histograms of the data retention times of all the blocks in the SSD after a simulated period of 5

years for the accelerated variants to the detailed simulation. The speedup is measured by the ratio

of detailed simulation time to accelerated simulation time.



Chapter 4

Acceleration Methodology

In this chaper, we first study how data retention time varies over time and present an analysis of how

the distribution of retention time across flash memory blocks in an SSD vary with time. We then use

this analysis to formulate a sampling-based approach to reduce the simulation time. We explain how

we reduce the time required for reliability simulations using a sampling-based approach, leveraging

the insights about how retention time varies over time. We present an overview of our approach and

discuss each step of the simulation acceleration methodology in detail.

4.1 The Opportunity for Simulation Acceleration

The retention time of the flash memory cells are impacted by the pattern of stresses and recovery

periods over time. These patterns are governed by the workload, page-mapping, wear-leveling, and

cleaning operations in the FTL. In our simulator, we track the retention times at the granularity

of individual flash memory blocks. We simulate each of our workloads using the methodology

described in Chapter 3 for a 5-year period and take snapshots of the entire system state, including all

metrics related to retention time, every 15 days of simulated time. The histograms of the retention

times over each 15-day period for each of the four workloads are shown in Figure 4.1. Each curve

in the graph shows the histogram of the number of blocks in the SSD with a given retention time

value at each 15-day interval. Note that x-axis in the graph is retention time. As in Chapter 1,

retention time decreases as P/E cycles increase. So the curves on the right represent retention time

12
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histograms early in the lifetime of an SSD.

Figure 4.1: Retention Time Histograms over 5 Years of Simulated Time for EXCHANGE Curves
on the right represent retention time histograms early in the lifetime of an SSD.

For all four workloads, we can see that the retention times of the blocks drop rapidly early in the

lifetime (denoted as Phase I in the figures) and then the retention times decrease at a much slower

rate afterward (designated as Phase II). Note that the Phase I and Phase II markers in Figure 4.1 are

not the actual duration of these phases. Rather they show when the retention time distributions show

a marked change in trends. The key reason for this trend is that δVth,s has a power-law relationship
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Figure 4.2: Ratio of Simulation Time between Phase I and Phase II of the Retention Time Variation

with the number of P/E cycles as [18]:

δVth,s =
(A.cycle0.62+B.cycle0.3).q

Cox
(4.1)

where A and B are constants, cycle is the number of P/E cycles, q is the charge of an electron,

and Cox is the oxide capacitance. Therefore, the rate of change of the retention time decreases with

cycling. The ratio of the total simulated time in the two phases is shown in Figure 4.2.

The graphs highlight two key trends that directly influence the ability to accelerate the simula-

tion:

• It is important to simulate in detail the activity during Phase I. Otherwise, even small inaccu-

racies in the reliability estimation can potentially accumulate into large errors in the result.

• The bulk of the simulation time is spent in Phase II, where exists opportunity to potentially

skip regions of the simulation and extrapolate the behavior without resulting in large errors.

The RADIUS workload exhibits a different trend, where Phase I dominates the overall simulation

time. This is because this workload is not write-intense and therefore does not stress the flash

memory cells to the same extent as the others and also requires far less simulation time, as shown

in Table 1.1.
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We use these two observations to develop a sampling-based approach to accelerate the simula-

tion. This approach consists of two simulation modes: a detailed mode and a fast-forward functional

mode where the change in the reliability metrics are approximated. This bifurcated simulation ap-

proach is similar to those used for accelerating processor simulations [30] [22]. Detailed simulation

is only performed during certain intervals, which we refer to as sampling units, whereas functional

simulation is performed between the sampling units.

4.2 Overview of our Methodology

As mentioned in the previous section, our sampling-based simulation approach consists of two

modes: a detailed mode and a fast-forward functional mode, where the change in the reliability

metrics are approximated. To obtain high accuracy, sampling is only performed in Phase II of a

simulation, where the changes in the retention time stabilizes. To further reduce simulation time,

we augment our sampling-based approach with a clustering technique to reduce the size of the

workload so that only a subset of requests are simulated during the detailed simulation mode. We

will show that our trimmed workload is representative of the original workload in terms of their

stress behavior and impact on SSD reliability.

The overall simulation acceleration framework is shown in Figure 4.3. The framework consists

of three major components: simulator, workload trimmer and snapshots analyzer. The simulator,

integrated with reliability models, performs simulation in the detailed and fast-forward modes. It

takes workloads as inputs and periodically dumps snapshots to keep track of the reliability related

characteristics. The simulation flow in the simulator is also depicted in Figure 4.3. The simulation

begins with detailed-mode on the full workload (the dotted region) with no acceleration techniques

applied. The stress behavior collector in the workload trimmer collects information about the stress

patterns of the full workload as the simulation runs. As soon as sufficient information is collected,

the clustering analyzer in the workload trimmer is triggered to perform a clustering-based analysis

on the information collected and reduce the size of the workload by selecting representative requests

from the full workload. During simulation, the simulator consults the phase transition decider
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inside the snapshots analyzer periodically to see whether the simulation has entered Phase II and

whether sampling can be performed. The snapshots analyzer is also responsible for interpreting

the snapshots to report the reliability metrics. We can see that, except for the beginning of the

simulation (dotted region), the bulk of the simulation flow alternates between detailed simulation

on the trimmed workload (striped region) and the fast-forward functional simulation (blank region),

which speeds up the original simulation. We now discuss our approach in detail, including how

we quantify the phase transition, how we perform functional simulation, and how our workload

trimming algorithm works.

Figure 4.3: Overview of the Acceleration Framework
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4.3 Quantifying the Phase Transition

In order to develop a sampling-based technique, we first require a way to quantify the distance

between the retention time histograms. We use Earth Mover’s Distance (EMD) as the metric to

quantify this, which gives a measure of distance between histograms. Informally, if two histograms

are viewed as two different ways to pile up the same amount of dirt (the total number of blocks

inside an SSD in this case), EMD computes the minimum cost of moving one pile into the other,

where the cost is quantified as the amount of dirt moved times the distance by which it is moved [26].

EMD captures the shift along the x-axis of two histograms as well as the difference in shape of the

distributions. A precise mathematical definition of EMD between two histograms is given in [16].

We calculate the EMD between every pair of adjacent data retention histograms for each workload,

which gives a way to quantify the amount of variation in retention time distribution for every 15-day

simulation interval. The EMD results for the workloads are presented in Figure 4.4. The x-axis of

each graph plots time in terms of the ID of the each 15-day snapshot and the EMD between the

given snapshot and its following adjacent snapshot.

We can see that the EMD value is high early in the lifetime of the SSD and drops down to a

very low value later (except for RADIUS as explained previously), which captures the two phases

of behavior shown in the previous chapter. Therefore, we can choose a threshold value of EMD,

TEMD, to distinguish between Phase I and Phase II in an automated manner and use this threshold

to decide when to begin sampling the simulation. The choice of TEMD value provides a tradeoff

between simulation speedup and accuracy.

4.4 Sampling Strategy

Our acceleration framework consists of two simulation modes: (1) a detailed simulation mode

which simulates wear-leveling and garbage collection in the FTL, and (2) a fast-forward mode

which performs functional simulation. The detailed mode essentially runs full-fledged Disksim

whereas the fast-forward mode only updates flash reliability related statistics, such as the number

of stress events and the timestamp of the last stress to a block, and does not change other FTL
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Figure 4.4: Earth Mover Distance between two adjacent Data Retention Histograms

parameters such as the mapping between LPAs and PPAs over time. Compared to the detailed

mode, the fast-forward mode attempts to estimate the stress behavior instead of simulating the

complex FTL algorithm and requires far less simulation time.

Our sampling strategy works as follows:

• We first start with detailed simulation and take snapshots to record reliability related charac-

teristics at the granularity of blocks at short time intervals during the course of simulation.

We calculate the EMD between two adjacent data retention histograms from the information

in the snapshots.

• If the EMD between two adjacent snapshots drops below a pre-determined EMD threshold

TEMD, we consider it to be the entry point into Phase II and sampling is performed. In Phase

II, detailed simulation is only performed in chosen sampling units and fast-forward simulation
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is performed between the sampling units. We use a systematic sampling approach [30], where

simulation repeatedly alternates between d rounds of the detailed mode and f rounds of the

fast-forward mode. In our experiments, we set the d to f ratio to be 1 : 10.

4.4.1 Characterizing the Detailed Simulation Mode Behavior for Fast-Forwarding

While fast-forwarding can reduce simulation time, care needs to be taken to design it to minimize

inaccuracies. In general, the fast-forward mode needs to consider two key aspects of the stress

behavior: (1) spatial behavior, which is the distribution of stress events across various blocks in

the SSD, and (2) temporal behavior, which is the distribution of recovery times corresponding to

individual blocks. While prior work has also pointed out the need to model these two aspects [18],

their approach has been to use simplistic extrapolation techniques to estimate reliability.

We subdivide the SSD, which has M blocks, into m contiguous regions where each region has M
m

blocks. We also sub-divide the simulation time into n intervals. We compute a Stress Distribution

Matrix Smn (size m× n) of the spatial and temporal access patterns as follows. The ith row of

Smn corresponds to the spatial memory region which contains blocks numbered in the range [M
m ·

(i−1), M
m · i). Each row in Smn is a vector of length n, which we call the Temporal Vector, which

characterizes the temporal stress distribution of the associated sub portion of flash memory. Assume

T is the simulation time duration which Smn is collected and t corresponds to the start time of this

duration, the entry Si, j in the Stress Distribution Matrix is the number of stress events that fall

into the sub memory portion which contains blocks numbered from [M
m · (i−1), M

m · i) within time

interval [t + T
n · ( j−1), t + T

n · j).

In the detailed simulation mode, we construct the Smn for the sampling unit by recording the

stress into each memory region at each n time interval to capture the history of spatial and tem-

poral access patterns over that sampling unit. In the fast-forward mode, instead of simulating the

operation of the FTL algorithm with the workload, we use the Stress Distribution Matrix from the

immediately prior detailed-mode simulation interval to extrapolate/predict the workload’s stress be-

havior. Inside each entry of Smn (i.e., for the blocks within each flash sub-region), we assume an

uniform distribution for the stress behavior, similar to [18]. In this way, the fast-forward mode esti-



Chapter 4. Acceleration Methodology 20

mates the reliability related characteristics with information collected from the most recent detailed

simulation. In our experiments, we take snapshots every 15 days and choose an TEMD value of 0.1.

4.5 Using Clustering to Further Reduce Simulation Time

The systematic sampling technique discussed in the previous chapter can reduce simulation time

by avoiding the execution of the entire second phase of a workload in the detailed mode. We

now explore further opportunities to speed up the simulation. We conduct a detailed analysis of

the stress behavior of the workloads, both in terms of their spatial and temporal characteristics.

We carry out this analysis by recording the Stress Distribution Matrix of the detailed simulation

of each day’s worth of simulation. From these Stress Distribution Matrices, we characterize the

spatial stress behavior by generating a histogram of the number of stress events to various regions

of flash memory in the SSD. The frequency of the ith bin of the histogram, which corresponds to the

number of stresses that fall into the ith contiguous region of flash, is calculated by summing up all

the stress numbers across the ith row of the Stress Distribution Matrix. Similarly, we characterize

the temporal stress behavior by generating a histogram of the number of stress events to different

time intervals within the simulation time during which the data is collected, where the frequency of

each bin is calculated by summing up all the stress numbers down the corresponding column in the

Stress Distribution Matrix. We base our stress behavior analysis for each workload on the study of

the corresponding 15-day Stress Distribution Matrix generated by running the detailed simulation

for 15 days and adding up Stress Distribution Matrices for each trace-day. We choose to analyze

the accumulated stress behavior of 15 days for two reasons: (1) 15 days is the time duration any

two snapshots, and (2) we find that the data collected for 15 days is sufficient to capture the overall

stress patterns of the workloads.

Figure 4.5 shows the spatial stress distribution over 15 days of simulation of the workloads,

where the x-axis is the block number in the SSD and the y-axis is the number of stress events. Each

region of a specific color corresponds to the stress distribution for each flash element in the SSD. If

we examine the spatial stress distribution for EXCHANGE in the graph, we can see that Elements
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7 and 8 exhibit similar stress behavior but different from its other elements, all of which exhibit

similar behavior. MSNFS tends to have a uniform stress distribution across all the elements. While

DAPPS and RADIUS have more varied spatial stress behavior across the elements, we can still

observe similarities in the stress behavior between certain elements. For example, in DAPPS, we

can categorize elements exhibit similar stress distributions into 5 distinct groups: Group 1 contains

Elements 0-5, 10-12, 14, 15; Group 2 contains Element 6; Group 3 contains Element 7; Group 4

contains Elements 8, 9; And Group 5 contains Element 13.

Figure 4.5: Spatial Stress Distributions of the Workloads

If we look at the temporal stress distribution for each workload in Figure 4.6, we can again

observe similarities between the elements. The x-axis of Figure 4.6 is the sub-divided time interval

within the simulation time which the workload is analyzed and the value in y-axis corresponds

to the number of stress events that fall into the associated time domain. Each line in the graph

corresponds to the temporal stress behavior of each element in the SSD.
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Figure 4.6: Temporal Stress Distributions of the Workloads

The temporal stress behavior of the workloads again shows trends similar to the spatial stress

patterns. In EXCHANGE, Elements 7 and 8 share similar temporal stress behavior, which is dif-

ferent from the behavior of the other elements in the SSD. MSNFS exhibits a uniform temporal

stress behavior across all the elements and in DAPPS and RADIUS, there are groups of elements

that share similar temporal stress behavior.

From the above analysis, we can see elements in the SSD can be sub-divided into groups where

elements in each group share similar spatial and temporal stress behavior to each other. Another

important observation we make here is that at the element level, the short-term stress behavior in

Figure 4.5 and Figure 4.6 lines up closely with the long-term reliability behavior of SSD, which

we show in Figure 4.7. Figure 4.7 shows the mean and standard deviation of the retention time on

a per flash element basis after 5 years simulation time. For example, if we look at the reliability

behavior for EXCHANGE, we find that Elements 7 and 8 have similar mean and standard deviation
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of retention times, which are much lower than the values of the rest of the elements after 5 years

simulation, which is similar to the 15-day trend. Similarly, MSNFS has uniform reliability behavior

across various elements and Element 13 in DAPPS has a distinct reliability compared to the other

elements.

Figure 4.7: Mean and Standard Deviation of the Retention Time per Element after 5 years Simula-
tion

The reason why the short-term behavior of the workloads correlates well with the longer term

trend is as follows. The SSD uses a hybrid FTL where an incoming write request from the work-

load is statically mapped to a specific Allocation Pool. Since the Allocation Pool is maintained at

the granularity of flash elements and the longer timescale simulation is performed by repeatedly

replaying the same trace, there is an inherent periodicity in the workload access patterns to each

element. We exploit the above observation to further speed up the simulation by reducing the total

workload size that is simulated. We can divide Allocation Pools into different clusters according to
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their stress behavior over a short-term of detailed simulation and choose one Allocation Pool to be

the representative allocation pool in each cluster. By only simulating requests that fall into the rep-

resentative Allocation Pool, the workload is efficiently trimmed while still guaranteeing accuracy.

We now describe our workload trimming algorithm.

4.5.1 Workload Trimming Algorithm

Based on the above analysis, we develop the following workload trimming algorithm:

1. We run the detailed simulation for several trace days to collect the Stress Distribution Matrix

Smn, which is a matrix of m Temporal Vectors of length n.

2. We apply the K-Means clustering algorithm [28] on the Stress Distribution Matrix to classify

the Temporal Vectors into koptimal clusters.

3. We extract a Signature Vector Sig for each Allocation Pool based on the clustering result

of the second step. The Signature Vector provides a compact way to characterize the stress

behavior of each Allocation Pool.

4. We run a Hierarchical Clustering Algorithm [27] on the Signature Vectors of various Allo-

cation Pools, which divides Allocation Pools into several clusters. Within each cluster, Allo-

cation Pools share similar stress behavior. We choose the Allocation Pool with the smallest

index value as the representative Allocation Pool.

5. The workload is trimmed by only preserving requests that end in the representative Allocation

Pool chosen in Step 4. The reliability metrics of the Allocation Pools that are not chosen are

approximated with the result of the representative Allocation Pool in the associated cluster.

We now discuss each of these steps in detail.

Classifying Temporal Vectors Using K-Means Clustering: K-Means algorithm is a clustering algo-

rithm which partitions n observations into k clusters where each observation belongs to the cluster

with the nearest mean [28]. The common approach is to start with k random observations as cluster
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centers and iteratively refine the choice of the center until convergence is reached [22]. During each

iteration, we first assign the observation being clustered to the cluster with the shortest distance and

then update the cluster center to be the centroid of all observations in the cluster taken into account

the observation just added. The iteration reaches convergence until there is no membership change

among the clusters.

In order to classify the Temporal Vectors in the Stress Distribution Matrix, we quantify the

similarity and difference of two Temporal Vectors using the Manhattan Distance [29]. Manhattan

Distance between Temporal Vectors p and q is defined as follows:

ManhattanDistance =
n
∑

i=1
|pi−qi|, (4.2)

where n is the dimension of the Temporal Vector.

One problem that affects the quality of clustering of the K-Means algorithm is the choice of the

k value, which is the number of clusters. We apply the technique in [22] to calculate the optimal

value of k value - koptimal . In this approach, the K-Means algorithm is tried with various k values,

from 1 to the largest expected number of clusters (which is chosen to be 8 in our analysis, where

16 is the total number of elements in the SSD), resulting in a different clustering in each trial. To

compare between different clustering approaches, the Bayesian Information Criterion (BIC) is used,

which measures the “goodness of fit” of the clustering to the original data. The clustering with the

smallest k value whose BIC exceed 90% of the largest BIC value of all clusterings is chosen as the

optimal clustering, and its associated k value is regarded as koptimal . Our analysis shows that k = 7

is a suitable value for various workloads. Note that each Temporal Vector characterizes the tempo-

ral stress behavior for each region of flash memory. The clustering approach divides the temporal

stress behavior of the memory regions into koptimal categories.
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Extracting Signature Vector for Allocation Pools: In Step 2, Temporal Vectors are grouped into

koptimal clusters C1, C2, ..., Ckoptimal . We extract a Signature Vector, which is of length koptimal , for

each Allocation Pool based on the clustering result from the previous step. The Signature Vector

for Allocation Pool r Sigr is computed as follows. The ith entry in Sigr is the number of Temporal

Vectors in cluster Ci whose associated memory region is contained in Allocation Pool r. A Signa-

ture Vector denotes how much a region of memory in the Allocation Pool exhibits certain type of

temporal stress behavior. Therefore, a Signature Vector can be viewed as a compact way to charac-

terize the spatial and temporal stress behavior of each Allocation Pool. The Allocation Pools with

similar Signature Vectors tend to share similar stress behavior to each other.

Clustering Allocation Pools using an Hierarchical Clustering Algorithm: Finally, we need a

way to divide Allocation Pools into several clusters according to the similarity and difference of

their Signature Vectors. Similar to Temporal Vectors, the distance between two Signature Vectors

is quantified using Manhattan Distance as the metric. We choose the agglomerative Hierarchical

Clustering Algorithm because it is flexible and produces good results. The Hierarchical Clustering

Algorithm works in a bottom-up manner, where each Allocation Pool starts in its own cluster and

pairs of clusters are merged as we move up the hierarchy [27]. The merging terminates if the

distance between all the stand-alone clusters exceeds a pre-determined threshold, which we set to

be 20% of the maximum distance between two Signature Vectors in our analysis. Table 4.1 shows

the clustering result for the Allocation Pools and the representative Allocation Pools chosen for

various workloads.

Workload Clustering Result
{0, 1, 3, 4, 9, 10, 11, 12, 13, 15}

EXCHANGE {2, 5, 6, 14}
{7, 8}

{0, 1, 2, 3, 4, 5, 10, 11, 12, 14, 15}
DAPPS {6} {7} {8, 9} { 13}
MSNFS {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}

{0, 5, 7} {1} {2, 3, 8, 9, 10, 12, 13, 15}
RADIUS {4} {6} {11} {14}

Table 4.1: Clustering Results. The Representative Allocation Pools are underlined.
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Evaluation of the Acceleration Framework

In this chapter, we evaluate the accuracy of our acceleration techniques and the speedup achieved in

the simulation time. We evaluate accuracy by comparing the histograms of the data retention times

of the all the blocks in the SSD after a simulation period of 5 years for the accelerated variants to

the base case detailed simulation runs. The only exception is the EXCHANGE workload, which

we simulate only for 3.5 years. This is because this workload experiences block retention failures

that exceed the capacity of the over-provisioning space of the SSD with the FTL algorithm we

exploit. As mentioned earlier, we simulate the multi-year timescale by repeatedly playing back the

workload trace. We call each such repetition a simulation round.

Our acceleration framework allows the user to input 5 parameters: detailed simulation rounds

(sampling unit size) d, functional simulation rounds f , Earth Mover Distance threshold which de-

notes the workload phase transition TEMD, size of Stress Distribution Matrix m and n. As discussed

in Chapter 4, the ratio of d to f provides a tradeoff between simulation speed and estimation ac-

curacy. The choice of m and n determines how accurately a Stress Distribution Matrix can capture

the stress behavior in the detailed simulation mode. In our evaluation, we TEMD to be 0.1, d : f

ratio to be 1:10, and m and n to 131072 (the total number of blocks in our simulated SSD) and 96

respectively. We now discuss how to choose the appropriate sampling unit size (d).

27
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5.0.2 Choosing Appropriate Sampling Unit Size

In our sampling-based approach, detailed simulation is performed during sampling units during

which stress behavior of the given workload is captured using a Stress Distribution Matrix. In

functional mode, stress behavior is approximated using the information collected from the sampling

units. The sampling unit size can have an impact on the simulation speed and accuracy. A small

sampling unit size can reduce the number of rounds of detailed-mode simulation required. However,

too small of a sampling unit size might not be sufficient to capture the characteristics of the stress

behavior and thus resulting in a larger estimation error during functional simulation. Figure 5.1

and Figure 5.2 shows the error percentage with respect to the detailed simulation mode in the

estimated retention times across all the blocks after 5 years of simulation in terms of the mean and

standard deviation. The analysis is based on the trimmed workload. We vary the sampling unit size

from 1 through 64 simulation rounds. We can see that the choice of sampling unit size has more

significant impact on standard deviation than the mean. For standard deviation estimation, the error

is high when sampling unit size is small and drops down and stabilizes afterwards. MSNFS is an

exception where the error keeps falling and fails to stabilize within the range of sampling unit size

in our analysis. In order to understand why this happens, we analyze the spatial stress behavior

of the workloads within a sampling unit. Figure 5.3 shows the spatial stress behavior of MSNFS

at the flash plane level for two consecutive sampling units of size 16. We can observe that the

stress patterns between the two sampling units do not show any stable repetitive trend, whereas we

do find a repetitive trend for the other workloads. This inherent complexity and instability in the

stress behavior makes accurate approximation in the functional mode challenging for MSNFS at

this sampling unit size. The downward slope of the standard deviation curve for MSNFS in Figure

5.2 suggests that it might possible to increase the accuracy with a larger sampling unit size. In the

experiments that follow, we use d = 8, since the majority of the workloads stabilize at this value.

spatial distribution for MSNFS
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Figure 5.1: Error Percentage in Mean of Retention Times across the Blocks after 5 Years Simulation

Figure 5.2: Error Percentage in Standard Deviation of Retention Times across the Blocks after 5
Years Simulation
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Figure 5.3: Spatial Stress Distribution for MSNFS in two Consecutive Sampling Units of Size 16



Chapter 5. Evaluation of the Acceleration Framework 31

5.0.3 Evaluation of Accuracy and Speedup

Figure 5.4 compares the retention time distribution across blocks after 5 years of simulation time

between the detailed simulation mode, sampling simulation mode on full workloads, sampling sim-

ulation mode on trimmed workloads. We compare these to a simplistic extrapolation of retention

time after the detailed simulation phase, as is the approach used in prior work [18]. We can observe

that our simulation framework generates much closer estimation to detailed simulation compared to

the simplistic extrapolation in terms of the position, shape and height of the retention time distribu-

tion. The histograms of the accelerated versions are very similar to the detailed simulation versions

for DAPPS, EXCHANGE, and RADIUS. For MSNFS, the shape of the estimated distribution di-

verges with the original simulation due to the estimation bias in functional simulation as discussed

above. On average, our acceleration framework achieves a mean estimation error of 3.21% and a

standard deviation estimation error of 6.42%.

Figure 5.5 shows the speedup of sampling simulation mode on the full workload and trimmed

workload with respective to the detailed simulation mode. Significant speedup is achieved for all the

workloads, except RADIUS. RADIUS is not write intensive and does not incur as large a simulation

time as the other workloads. With our sampling framework on the trimmed workload, an average

of 12X speedup is achieved.
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Figure 5.4: Comparison of Retention Time Histograms between Detailed Simulation Mode, Sam-
pling Simulation Mode, Sampling Simulation Mode on the Trimmed Workloads and Simplistic
Extrapolation
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Figure 5.5: Speedup of Sampling Simulation Mode and Sampling Simulation Mode on Trimmed
Workload Compared to Detailed Simulation Mode
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Conclusion and Future Work

Accurate estimation of SSD reliability is important for data centers. However, accurately measur-

ing the reliability of SSD requires capturing the impact of the workload access patterns on flash

memory over timescales that span several years, which require long simulation times. Simplistic

extrapolation of reliability from short simulations is inherently error-prone and can lead to incorrect

conclusions and consequently adversely impact system availability and TCO. To address this prob-

lem, we present an acceleration framework to speedup SSD reliability simulation. This framework

uses sampling and clustering techniques to significantly reduce the simulation overheads while still

providing high accuracy.

While we believe that our framework is a good first step towards fast and accurate assessment

of SSD reliability, there are several limitations of our current approach that we plan to address in

future work:

• We model a workload’s execution over a long timescale by repeatedly replaying shorter du-

ration traces, leveraging the observations from prior work that disk I/O traffic tends to exhibit

self-similar characteristics [10] [13]. We resort to this approach since there are no publicly

available I/O traces that span large timescales. We believe that the growing attention being

paid in the storage systems and architecture communities on modeling flash reliability will

motivate capturing longer traces or traces that span various representative activities over long

timescales (e.g., I/O traces from online retail outlets that capture activity during the holiday

34
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shopping season vs. other times). In these cases, one can still use our methodology for each

such trace to construct the activity over the multi-year period.

• In our acceleration framework, we allow the user to input several parameters. The choice

of parameters provides a tradeoff between simulation performance and accuracy and we cur-

rently choose these values statically which may not be optimal for all workloads. In future

work, we plan to explore techniques that can automatically infer/tune the choice of parame-

ters for each workload.

• An alternative, and possibly complementary, approach to speeding up the simulation is to

construct a statistical black or gray-box model of the FTL so that one can infer the state of all

the blocks of the SSD given a set of workload and FTL parameters. We plan to explore the

development of such an approach in future work.
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