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Professor Zongli Lin, Professor Mäıté Brandt-Pearce and Professor Stephen G. Wilson. Their

academic insights and technical discussions on the research were important for me to finish this work.

Their suggestions and comments significantly improve the quality of the dissertation. And special
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Abstract

Finding coding schemes that approach the Shannon capacity limit has been the central theme during

the development of error-control coding (ECC). In recent years low-density parity-check (LDPC)

codes, due to their remarkable performance under iterative decoding, have received extensive study

and have been adopted by many modern advanced communication systems.

LDPC codes can be further extended to generalized LDPC (GLDPC) codes and doubly-

generalized LDPC (DGLDPC) codes. GLDPC and DGLDPC codes are supersets of LDPC codes

that possess more generic code structures. GLDPC and DGLDPC codes are more flexible than

LDPC codes, since a richer variety of check nodes (CNs) or variable nodes (VNs) offers additional

options and flexibility, which enable many advantages over LDPC codes in numerous scenarios.

In this dissertation we focus on improved design methods for finite-length (FL) GLDPC and

DGLDPC codes. The first research topic is the error floor behavior of FL-GLDPC and FL-DGLDPC

codes. In GLDPC and DGLDPC codes, the existence of generalized CNs and VNs requires more

careful management of edge connections for achieving low error floors. In this work the approximate

cycle extrinsic message degree (ACE), a cycle parameter used in LDPC codes that reflects the

resilience of the cycle to the noise, is generalized to extended ACE (eACE) for GLDPC and DGLDPC

codes. By integrating eACE into the progressive-edge-growth (PEG) algorithm and adding more

constraints on the connectivity of nodes, the error floor performance of GLDPC and DGLDPC

codes can be greatly improved.

In practice, designing codes capable of fast encoding is an important issue. Efficiently-encodable

(EE) GLDPC and DGLDPC codes are studied and a self-consistent unified framework is proposed

for constructing EE iteratively-decodable block codes, including EE-LDPC, EE-GLDPC and EE-

DGLDPC codes. The competing nature of the fast encoding speed and the low error floor performance

iv



Abstract v

is analyzed and verified via various simulation results.

EE codes are systematic and suitable for puncturing; therefore, they are good candidates for

rate-compatible (RC) data transmissions. Based on the characteristics of GLDPC and DGLDPC

codes, we devise several systematic puncturing algorithms to provide good puncturing patterns

for them. It is shown that we can significantly improve the code performance compared with

random puncturing. Over a wide range of code rates, RC EE-GLDPC and EE-DGLDPC codes

show advantages over EE-LDPC codes, especially at high signal-to-noise ratios (SNRs).
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Chapter 1

Introduction

In this chapter, we first give a brief introduction to digital communication and the history of channel

coding techniques. After reviewing the existing research literature, the motivations of this work are

presented. The outline of the dissertation is summarized at the end of this chapter.

1.1 Digital communication and channel coding

“The fundamental problem of communication is that of reproducing at one point either exactly or

approximately a message selected at another point.” [1]. The classical end-to-end communication

system model involves three essential constituent units: source, channel and sink, where source

produces information (data, speech, video, image, etc.), and channel can be referred to as any

medium (coaxial cable, optical link, wireless, storage system, etc.), which carries and transports

information; during the transmission the information is also corrupted by the noise. The sink

receives information and tries to reconstruct the transmitted information with as little distortion as

possible.

In his landmark paper [1], Claude E. Shannon discovered an important parameter for the

noisy channel: channel capacity C, and proved the channel capacity theorem, that as long as

the transmitted information rate R (in bits per channel use) is below C (R < C), then reliable

communication is achievable. Conversely if R > C it is impossible to achieve error-free transmission.

Shannon also demonstrated that when R < C, one has to properly encode the information (or in

other words, add memory and redundancies), in order to attain error-free transmission.
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The channel capacity theorem, together with source coding theorem [1], constitutes the so-called

“the source-channel separation theorem”, which is commonly adopted as the design concept by most

modern digital communication systems, as shown in Fig. 1.1. In Fig. 1.1, the source data is first

Figure 1.1: An end-to-end digital communication model.

sampled, digitalized and losslessly compressed to reduce the information rate (source coding), then

in the second step redundancies are added (channel coding, or equivalently, error control coding

(ECC)) to combat noise. At the receiver, channel decoding and source decoding are consecutively

implemented to try to recover original data with best effort.

Shannon’s channel capacity theorem, however, is essentially a non-constructive existence proof:

in order to achieve channel capacity C, one has to use randomly-selected codes of infinite length,

and adopt maximum likelihood (ML) decoding or “typical-set decoding”, all of which are extremely

difficult, if not impossible, to implement in practice. It remains a challenging task for people to

design good practical channel codes and at the same time efficiently decode them, and the main

theme in the history of coding theory is essentially finding capacity-approaching ECC techniques

with affordable decoding complexity.

Channel codes can be roughly categorized into block codes and convolutional codes (CCs). For

block codes, the encoded codeword only depends on the current information block, whereas in

CCs the encoded output depends on not only the current information input, but also previous ν

inputs, where ν is called “memory length” or “constraint length” of CCs. A block code C(n, k) has

a blocklength of n bits, among which k bits are information bits, and the remaining n− k bits are

parity bits. The values of k information bits uniquely determine the values of n bits. The code rate

is defined as R = k/n, denoting the number of information bits carried per channel code bit.

A block code is a linear code if and only if (iff) any linear combination 1 of arbitrary number of

codewords is another valid codeword. In the binary case, the weight of a codeword is defined as the

number of “1”s in the codeword. The Hamming distance between two codewords is defined as the

number of bit positions two codewords differ from each other, and the minimum Hamming distance

1over the field of the code symbols
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dmin of a code is defined as the minimum of Hamming distances among all possible codeword pairs.

It can be shown that for linear codes, dmin equals the smallest codeword weight in the code [8].

Channel codes designed in the 1950s and 1960s include Hamming codes [2], Reed-Muller codes [3],

Bose-Chaudhuri-Hocquenghem (BCH) codes [4, 5] and Reed-Solomon (RS) codes [6]. The invention

of Viterbi decoder [7] in 1970s enabled ML decoding of CCs. The concatenation of CC and RS

codes was used 1980s. All the above codes evolved towards reducing the gap from channel capacity,

as shown in Fig. 1.2.

Fig. 1.2 shows the ECC codes used from 1950s to 1990s by NASA in deep-space communications.

From Fig. 1.2 it can also be observed that, even for the concatenated codes, there is still about 3

dB gap from channel capacity. This is due to the decoding complexity constraint: ML decoding has

a decoding complexity growing as 2min ((n−k),k) (for block codes) or 2ν (for CCs) and at that time

a near-ML decoding algorithm is unknown. Before the appearance of Turbo codes it was widely

believed that a 2-3 dB gap from capacity was essentially inevitable.

Figure 1.2: The development of ECC techniques.

The invention of Turbo codes [9] in 1993 is a landmark event in coding history. Turbo codes

are composed by two or more constituent codes, which are concatenated by interleaver(s), either
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in parallel or serial fashion. During decoding, constituent soft-in soft-out (SISO) decoders passes

extrinsic soft values to each other, in an alternating manner. It turns out that such low-complexity

iterative decoding shows near-ML performance in cases of long blocklengths, as shown in Fig. 1.2. A

length-65536 rate-0.5 Turbo code has the performance only about 0.7 dB away from capacity, at bit

error rate (BER) around 10−5.

Low-density parity-check (LDPC) codes, which were first discovered by Gallager in the 1960s,

are another class of capacity-approaching codes. Before the emergence of iterative decoding,

they were ignored by most researchers. A carefully-designed long-blocklength LDPC code can

achieve performance within a few tenths or even hundredths of decibels of capacity under iterative

decoding [12]. Compared with Turbo codes, LDPC codes have the advantages such as low error

floor, parallel processing and simple early-termination criterion. LDPC codes have been adopted as

ECC solutions in many modern communication standards such as IEEE 802.3an [18], DVB-S2 [19],

WiMAX [20] and IEEE 802.11n [21].

1.2 Motivation of dissertation

LDPC codes can be further extended to generalized LDPC (GLDPC) codes [31–41]. GLDPC codes

usually have good minimum distance properties [32, 33], compared with LDPC codes, and they

generally have faster convergence speed, and have better error floor behavior. GLDPC codes can be

further extended to doubly-generalized LDPC (DGLDPC) codes [42–50], and it is shown in [44,46]

that DGLDPC codes have better performance than LDPC codes in both waterfall region and error

floor region. Waterfall region refers to the region in which the error curve decreases quickly with

the increase of signal-to-noise ratio (SNR), and error floor region is where error curve falls more

slowly with the increase of SNRs, which usually happens when SNR is high.

GLDPC and DGLDPC codes are more flexible relative to LDPC codes since they are supersets

of LDPC codes, and can exhibit many advantages over LDPC codes in numerous scenarios. In

addition, GLDPC and DGLDPC codes constitute a bridge between classical algebraic codes and

modern iteratively-decodable codes. Study of GLDPC and DGLDPC codes helps understand better

the inherent mechanism and nature of the iterative decoding, which will greatly contribute to the

modern coding theory.
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In existing research literature, people usually focus on the asymptotic behavior of DGLDPC

codes and build very long blocklength codes [44,46], or moderate-length DGLDPC codes with the

same check node (CN) types [50]. For general short-to-moderate length GLDPC and DGLDPC

codes, the research on designing those codes with low error floor is lacking.

In practice, finding efficiently-encodable (EE) codes is an important issue. The brute-force

encoding method has the complexity O(N2), where N is the code length, whereas some carefully-

designed codes enjoy linear or even sub-linear encoding complexity. There are a few papers on

constructing EE-GLDPC codes with specific structures [37–39], however, the systematic design of

EE-GLDPC codes and EE-DGLDPC codes are still open issues.

Another topic related to EE codes is the design of rate-compatible (RC) codes. Using RC codes

as ECC schemes is a popular method for time-varying channel (e.g. in wireless communications).

In addition, RC codes can also conveniently provide a range of “fixed” code rates, which could

be an important feature in ECC systems. In existing studies, RC-LDPC codes are widely studied

in [54–66], nevertheless there are few studies on RC-GLDPC and RC-DGLDPC codes, making it an

unexplored research area.

The above three inadequacies of existing research are the main research topics of this work. In

this work we first propose a new concept, namely eACE, to help improve the error floor behavior

of finite-length (FL) GLDPC and DGLDPC codes. We also propose systematic design principles

and algorithms for designing EE-GLDPC and EE-DGLDPC codes, providing an across-the-board

solution for EE block codes. Finally, systematic puncturing algorithms are devised for EE-GLDPC

and EE-DGLDPC codes to improve performance of variable rate transmission.

1.3 Summary of dissertation

Chapter 2 provides the preliminary background on this work. It first gives the description of LDPC,

GLDPC and DGLDPC codes, then the iterative decoding algorithms are presented. Next, density

evolution, extrinsic information transfer (EXIT) charts and differential evolution (DE), which are

useful tools for determining and optimizing the decoding thresholds of code ensembles, are discussed.

Finally we present the progressive-edge-growth (PEG) algorithm and the notion of approximate

cycle extrinsic message degree (ACE) for designing FL-LDPC codes.
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Chapter 3 is on designing short-length GLDPC and DGLDPC codes with good error floors.

For GLDPC and DGLDPC codes, ACE is generalized to extended ACE (eACE). We propose two

modified PEG algorithms incorporating eACE, and it is shown that by doing so better error floor

behavior can be obtained. In the end, we offer the evidence that for shorter DGLDPC codes, eACE

plays a more important role than the traditional girth property.

Chapter 4, 5 and 6 focus upon designing EE-GLDPC and EE-DGLDPC codes. By generalizing

the idea of irregular-repeat accumulate (IRA) and efficiently-encodable rate-compatible (EERC)

LDPC codes, principles and algorithms for EE-GLDPC codes are devised and discussed in detail in

Chapter 4. We show that the well-known IRA-LDPC and EERC-LDPC codes are two special cases

of EE-LDPC codes when some specific recovery vector n’s are applied. We also give some examples

of simple EE-GLDPC codes and illustrate the encoding processes in detail. Simulations show that

the additional EE property does not degrade the code performance: EE-GLDPC codes have similar

performance with ordinary GLDPC codes.

Chapter 5 further extends EE-GLDPC to EE-DGLDPC codes. The existence of super variable

nodes (SVNs) makes the design of EE-DGLDPC codes more involved: each SVN contains a certain

number of constrained and free edges; these should be treated differently when building the EE-

DGLDPC codes. Due to the existence of constrained and free edges, if the same decoder structure

is used for decoding, we need to permute the edges connected to SVNs and super check nodes

(SCNs) to ensure accurate decoding. The encoding processes of toy codes are also provided for

better understanding.

The encoding speed and error floor behavior of EE codes are discussed in Chapter 6. Theoretically

we can design EE codes with any encoding time complexity, such as O(log2N) or even O(1);

nonetheless, the incurred expense of faster encoding speed is the poorer error floor performance.

The tradeoff between encoding speed and error floor is verified by both theoretical analysis and

extensive simulation results, for EE-LDPC, EE-GLDPC and EE-DGLDPC codes.

Compared with LDPC codes, the SCNs and SVNs in GLDPC and DGLDPC codes exhibit

more complicated decoding behaviors. The systematic puncturing algorithms for EE-GLDPC

and EE-DGLDPC codes are topics of Chapter 7. A good puncturing algorithm can to a large

degree resolve the rate constraint issue of traditional sGLDPC codes, i.e. sGLDPC codes are not

suitable for designing high-rate codes. Simulation results show that our systematic puncturing has
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considerable performance improvement over random puncturing. In addition, the punctured codes,

like their mother codes, maintain the advantage of good error floor performance, which can be

a very important feature in practical applications. Simulation results indicate that EE-GLDPC

and EE-DGLDPC codes show competitive advantages over EERC-LDPC and IRA-LDPC codes,

especially at high SNRs, over a wide range of code rates.

Chapter 8 is the conclusion of dissertation and some open topics are brought up for future

research.
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Chapter 2

Preliminaries on LDPC, GLDPC and

DGLDPC Codes

2.1 Code structures and representations

2.1.1 LDPC codes

LDPC codes, first introduced by Gallager in [10], are linear block codes which can be specified by

a sparse parity-check matrix HM×N [i][j], where H has M rows and N columns. In this work, we

only consider binary LDPC codes. Let x be a binary vector of length N . Then x is a valid LDPC

codeword iff it satisfies all the parity-check constraints imposed by H, i.e. xHT = 0 (in modulo-2

sense). In other words, a LDPC code is the collection of vectors in the null space of H.

If H has full row rank, we have K = N −M independent bits, and the remaining M bits

are completely and uniquely determined by these K bits. In this case such LDPC code has K

information bits and M parity bits, and the corresponding code rate R = (N−M)
N . We define

the design code rate as Rd = (N−M)
N , in certain cases the rows of H are not necessarily linearly

independent therefore we have R > Rd. In practice, if the PEG algorithm is used to generate an

LDPC code, we usually have R = Rd or a rate very close to Rd, while for some special subclasses of

LDPC codes such as geometric LDPC codes [22], the actual code rate is usually much higher than

the design rate.

The row weight of a certain row of H matrix is the number of “1”s in this row, similarly we have
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the column weight of a column. If an H matrix has a constant column weight dv and a row weight

dc, it is called a regular LDPC code, denoted by “a (dv, dc)-regular LDPC code”, the corresponding

code rate R ≥ (1 − dv
dc ). If row weight or column weight are not constants, then it is called an

irregular LDPC code.

In (2.1) we give a simple (2, 4) regular LDPC code with N = 10 and M = 5.

H =



1 0 1 0 0 0 0 1 0 1

0 1 0 1 1 0 0 0 1 0

0 1 1 0 1 0 1 0 0 0

0 0 0 1 0 1 0 1 0 1

1 0 0 0 0 1 1 0 1 0


(2.1)

The LDPC code defined in (2.1) has K = 4, which is smaller than (N −M) = 5. This is because

the rows are not independent: if we sum all the rows we obtain an all-zero vector. In addition,

the H matrix has 40% “1”s and 60% “0”s. Strictly speaking, it cannot be called a “LDPC code”,

nonetheless we show this small matrix for illustration’s sake. Practical codes have much lower

density of “1”s in H matrix. In Fig. 2.1 the H matrix of a (N = 1008,K = 504)(3, 6)-regular LDPC

code is shown, the dots in the figure are “1”s. The density of “1”s is 3/504 ≈ 0.595%. The sparsity

of LDPC codes enables low-complexity iterative message-passing decoders, which makes near-ML

decoding possible.

LDPC codes can also be represented by a bipartite graph, or Tanner graph [31]. A Tanner graph

contains two disjoint classes of nodes: variable nodes (VNs) and check nodes (CNs). An HM×N [i][j]

matrix corresponds to a Tanner graph with N VNs and M CNs. There is an edge connecting the

jth VN and ith CN iff H[i][j] = 1. In the Tanner graph, each VN denotes a bit in the codeword,

and each CN imposes a single parity-check (SPC) constraint on the set of VNs incident to it. The

Tanner graph and parity-check matrix H are essentially equivalent to each other. The corresponding

Tanner graph of H matrix in (2.1) is shown in Fig. 2.2.

For LDPC codes, given the VN degree vector dv = (2, 3..., dvmax) and CN degree vector

dc = (2, 3..., dcmax), where dvmax and dcmax are the maximum degrees of VNs and CNs, the

degree distribution (λ
.
= (λ2, λ3, ..., λdvmax),ρ

.
= (ρ2, ρ3, ..., ρdcmax)) prescribes the way edges connect

9



Figure 2.1: The structure of H matrix of a (1008, 504)(3, 6)-regular LDPC code.

VNs and CNs, namely, in the Tanner graph a λi fraction of edges are incident to VNs with degree

dv = i, where i = 2, 3...dvmax, and a ρj fraction of edges incident to CNs with degree dc = j, where

j = 2, 3...dcmax. The degree distribution generating polynomials λ(x) and ρ(x) are commonly used

to describe the LDPC code. These are defined as

λ(x) =

i=dvmax∑
i=2

λix
i−1

ρ(x) =

j=dcmax∑
j=2

ρjx
j−1.

(2.2)

It can be directly obtained that [14]

λ(1) = ρ(1) = 1

Rd = 1−
∫ 1
0 ρ(x)dx∫ 1
0 λ(x)dx

= 1−
∑j=dcmax

j=2
ρj
j∑i=dvmax

i=2
λi
i

(2.3)
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Figure 2.2: The Tanner graph of a (10,5) LDPC code.

2.1.2 Important graph properties

The iterative decoding of LDPC codes is essentially performed by message passing on the Tanner

graph, therefore the decoding performance is considerably affected by the graph properties. Several

important graph parameters are listed below.

Cycle: A length-l cycle in Tanner graph can be defined as a length l path, starting from a certain

node s, traversing (l − 1) unique nodes, and ending in the same node s. In Fig. 2.2, the bold

black lines represent a length-4 cycle: the path starts from CN 1, after traversing VN 8, CN 4

and VN 10, ends in CN 1 again. Similarly, the red lines in Fig. 2.2 form a length-6 cycle. It is

straightforward to see that for Tanner graph the lengths of cycles are always even; furthermore, if

no parallel edges between two nodes are allowed (which is a basic principle in iteratively-decodable

codes), the shortest cycle length is 4.

Girth of a Tanner graph: The shortest cycle length in the Tanner graph.

The neighbors of a node: The neighbor set of a node s, N (s), is defined as N (s)
.
= {t| there is

an edge directly connecting s and t}

Local tree: For a certain node s, a level-l local tree rooted in s can obtained recursively as follows:

take s as the root, unfold once the Tanner graph in a breadth-first fashion, so that all the nodes in
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Figure 2.3: The level-3 local tree rooted in VN 1.

N (s) are traversed; this is level-1 local tree rooted in s, and s is called the parent node of the nodes

in the 1st-layer. For each node in N (s), unfold the Tanner graph breadth-first again so that all

the neighbors of nodes in N (s), excluding the parent node s, are traversed, then we obtain level-2

local tree rooted in s; the nodes in N (s) are parent nodes of 2nd-layer nodes. The procedure is done

recursively until the level-l local tree is established. For LDPC code in (2.1), Fig. 2.3 shows a level-3

local tree rooted in VN 1.

Practical codes will inevitably contain cycles [74]. The existence of cycles in the Tanner graph

will cause a dependence of messages during the belief-propagation (BP) decoding, which is the root

of the suboptimality of BP algorithm. Generally speaking, short cycles will cause a poorer error

floor, and should be avoided when designing an iteratively-decodable code. Nevertheless, short

cycles do not necessarily always degrade the decoding; other factors can also possibly affect the

code performance. A code with larger girth could possibly have a poorer error floor behavior than

its counterpart with a smaller girth. Such phenomenon will be discussed in detail in Chapter 3.
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Figure 2.4: The Tanner graph of GLDPC codes.

2.1.3 GLDPC codes

In the Tanner graph of a LDPC code, each CN puts an SPC constraint on the edges incident to it,

in other words, a CN with degree n requires that the incident edge variables be a valid codeword of

SPC(n, n− 1). If a CN imposes the constraint that the incident edge variables be a valid codeword

of some linear code C(n, k) other than SPC(n, n− 1), such CN is referred to as super check node

(SCN). A GLDPC code can be obtained by replacing some or all SPC-CNs by SCNs in LDPC

Tanner graph. Fig. 2.4 illustrates the structure of the Tanner graph of GLDPC codes.

The H matrix equivalent to the Tanner graph of a GLDPC code is commonly known as the

adjacency matrix, denoted by Hadj . An edge connects the jth VN and ith CN iff Hadj [i][j] = 1. A

row in Hadj corresponding to a C(n, k) SCN (a C(n, k)-SCN row), imposes n−k parity checks on the

codeword, and C(n, k) is usually referred to as the component code. Finally, the parity-check matrix

of C(n, k), is denoted by Hcomp throughout this dissertation; a GLDPC code is fully described by

its adjacency matrix and Hcomp’s of all the SCNs.

The parity-check matrix of a GLDPC code, HSPC , can be attained through row expansion [44]:

for a C(n, k)-SCN row, the ith “1” in the row is replaced by the ith column of Hcomp, for i = 1, 2..., n,

and each “0” in the row is replaced by an all-zero column of length (n− k). HSPC is obtained after

all SCN rows are expanded. As an example, (2.4) gives a Hadj where the second row is a SCN row,

which is shown in bold font.
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Hadj =



0 1 0 0 1 1 0

1 0 0 1 0 1 1

0 1 1 1 1 0 0

1 0 1 0 1 0 1


(2.4)

Suppose Hcomp is

Hcomp =

1 1 1 0

0 1 1 1

 (2.5)

After row expansion, HSPC is

HSPC =



0 1 0 0 1 1 0

1 0 0 1 0 1 0

0 0 0 1 0 1 1

0 1 1 1 1 0 0

1 0 1 0 1 0 1


(2.6)

In this work, we call a GLDPC code “strict-sense” if all the CNs use the same linear code as

their component codes, denoted by ”sGLDPC code” [32–37], otherwise it is called a hybrid GLDPC

code, denoted by ”hGLDPC code” [40,41].

The code rate of GLDPC codes can be obtained by calculating the rank of HSPC , or using

(2.16). For an sGLDPC code using C(n, k) as its component code, let dv be the average degree of

VNs. The design code rate can be concisely written as

Rd = 1− dv · (n− k)

n
(2.7)

For GLDPC codes, the existence of SCNs can improve the code minimum distance [33], relative

to LDPC codes. In addition, SCNs have more powerful error correcting capability than SPC

codes, therefore GLDPC codes generally show better error floor behaviors than LDPC codes. One

drawback of GLDPC codes is the so-called “rate loss under iterative decoding”, which refers to

the fact that GLDPC codes suffer from a certain degree of decoding threshold degradation under

iterative decoding [15,16, 36]. The rate loss issue is more prominent on sGLDPC codes, which can
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Figure 2.5: The Tanner graph of DGLDPC codes.

be addressed by (1) using hGLDPC codes, (2) generalizing GLDPC codes to DGLDPC codes, or

(3) efficient puncturing, which will be discussed in Chapter 7.

2.1.4 DGLDPC codes

In the Tanner graph of LDPC and GLDPC codes, each VN puts a repetition (REP) constraint

on the edge variables incident to it; equivalently, a VN with degree n requires that the incident

edge variables be a valid codeword of REP(n, 1). If a VN imposes the constraint that the incident

edge variables be a valid codeword of some linear code C(n, k) other than REP(n, 1), such VN is

referred to as super variable node (SVN). A DGLDPC code can be obtained by replacing some or

all REP-VNs by SVNs in the LDPC or GLDPC Tanner graph. Fig. 2.5 illustrates the structure of

the Tanner graph of DGLDPC codes.

In the Tanner graph of DGLDPC codes, for a SVN using C(n, k) as its component code, the edge

variables incident to this SVN should be a valid codeword of C(n, k), and it has k edges connected

to the communication channel. Note that for REP it has one edge coupled with the channel, as

shown in Fig. 2.5, however such edges are commonly omitted in the Tanner graphs of LDPC (Fig.

2.1) and GLDPC codes (Fig. 2.4). The H matrix equivalent to the Tanner graph of a DGLDPC

code is also referred to as adjacency matrix, denoted by Hadj . The generator matrix of C(n, k),

Gcomp, is necessary to describe the specific structure of SVN.
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For LDPC and GLDPC codes, a column with weight n corresponds to one codeword bit, and the

values of n bits in the column are the same (REP constraint); whereas for DGLDPC codes a column

in Hadj corresponding to a SVN using C(n, k) as its component code (a C(n, k)-SVN column), has

weight-n and represents k codeword bits, and the values of n bits in the column are usually different,

since they are determined by Gcomp using these k codeword bits (C(n, k) constraint).

The parity-check matrix of a DGLDPC code HSPC , can be obtained by first a row expansion

then a column expansion [44]: The row expansion is done first exactly the way done in GLDPC

codes. Then the column expansion is carried out as follows: for a C(n, k)-SVN column, the ith “1”

in the column is replaced by the ith row of GTcomp, the transposed matrix of Gcomp, for i = 1, 2...n,

and each “0” in the column is replaced by an all-zero row of length k. Finally HSPC is obtained

when all the SVN columns are expanded. As an example, (2.8) gives a Hadj where the second row

is a SCN row, shown in bold font, and the fifth column is a SVN column, shown in red color.

Hadj =



0 1 0 0 1 1 0

1 0 0 1 0 1 1

0 1 1 1 1 0 0

1 0 1 0 1 0 1


(2.8)

Suppose Hcomp is defined by a (4, 2) code:

Hcomp =

1 1 1 0

0 1 1 1

 (2.9)

After row expansion, we have

H̃ =



0 1 0 0 1 1 0

1 0 0 1 0 1 0

0 0 0 1 0 1 1

0 1 1 1 1 0 0

1 0 1 0 1 0 1


(2.10)
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Suppose Gcomp is a (3, 2) code:

Gcomp =

0 1 1

1 0 1

 (2.11)

After column expansion we have

HSPC =



0 1 0 0 0 1 1 0

1 0 0 1 0 0 1 0

0 0 0 1 0 0 1 1

0 1 1 1 1 0 0 0

1 0 1 0 1 1 0 1


(2.12)

producing an (8, 3) code.

It should be noted that a DGLDPC code is fully described by its Hadj , the Gcomp’s of all the

SVNs and the Hcomp’s of all the SCNs. If Gcomp assumes a different form, it may change the

DGLDPC code. For example, if we use another Gcomp as

Gcomp =

1 0 1

1 1 0

 (2.13)

we will have another DGLDPC code, which contains a weight-6 codeword, while the code defined in

(2.12) has a maximum codeword weight 5. Similarly if Hcomp is changed, the code could also be

possibly changed. On the other hand, in the viewpoint of asymptotic analysis, the permutation of

columns of Hcomp will not affect the decoding threshold of a code ensemble, but the permutation of

columns of Gcomp will, which will be discussed in detail in subsection 2.3.2.

In the following, for the sake of clarity and simplicity, the term ”REP-VN” denotes a REP VN

and “VN” can refer to either SVN or REP-VN, similarly ”SPC-CN” denotes a SPC CN and “CN”

can refer to either SCN or SPC-CN. Lastly we want to point out that the decoding of GLDPC and

DGLDPC codes, are commonly implemented on Hadj instead of HSPC ; this is because Hcomp and

Gcomp usually contain many length-4 cycles, which degrade the performance of iterative decoding.

Graph properties such as cycles, girth and local trees, have exactly the same definitions on Hadj .
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A comprehensive way to characterize iteratively-decodable block codes

The VN and CN types are greatly enriched in GLDPC and DGLDPC codes. In order to have a

concise description of the properties of iteratively-decodable codes (LDPC,GLDPC and DGLDPC

codes), the following notations are introduced: denote by TV and TC the sets of VN and CN types,

respectively. Let IV and IC be the sets of indices for the VN and CN types, respectively. For

i ∈ IV (j ∈ IC), let nvi (ncj), kvi (kcj), and rvi (rcj) denote the code length, the information length

and the rate of type-i (type-j) component code on the VN (CN) side. Define the degree profile

(λ,ρ)
.
= ((λ1, λ2, ..., λi, ..., λ|TV |), (ρ1, ρ2, ..., ρj , ..., ρ|TC |)), where λi (ρj) denotes the fraction of edges

connected to the type-i (type-j) component code on the VN (CN) side. Finally define:

λ(x)
.
=
∑
i∈IV

λix
nvi−1

ρ(x)
.
=
∑
j∈IC

ρjx
ncj−1

(2.14)

Let C be a bipartite-graph based code and Hadj have dimension NC ×NV , i.e. there are NC CNs

and NV VNs in the bipartite graph. The code length N of code C, and the number of parity-check

equations M can be calculated as follows [45]:

N =
NV∫ 1

0 λ(x)dx
·
∑
i∈IV

λikvi
nvi

M =
NC∫ 1

0 ρ(x)dx
·
∑
j∈IC

ρj(ncj − kcj)
ncj

(2.15)

The design code rate Rd, which is a generalization of (2.3), can be calculated as:

Rd = 1−
∑

j∈IC ρj(1− rcj)∑
i∈IV λirvi

(2.16)

2.2 Decoding algorithms

In iterative decoding, VNs and CNs exchange extrinsic information in an alternating manner hoping

to find a valid codeword. In this work we focus on BP decoding on the additive white Gaussian

noise (AWGN) channel, nonetheless the algorithms described here can be readily applied to other
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channels which yield multi-level quantized outputs or real outputs. Decoding GLDPC/DGLDPC

codes on binary erasure channels (BEC) can be found in [36,45–47].

2.2.1 SPA for LDPC codes

The BP decoding of LDPC codes can be implemented in either probabilistic domain [11], or

log-likelihood ratio (LLR) domain, and both are essentially identical in principle. LLR is a

characterization of the random variable (RV) assuming two values, defined as the logarithm of

Likelihood Ratio (LR), where LR is the ratio between the probability of a RV is 0 and the

probability is 1. For example, if a RV assumes “0” or “1” equiprobably, the corresponding LLR is

log (0.5/0.5) = 0.

In this work we only describe sum-product algorithm (SPA), which is a special form of LLR-BP

decoding. Consider a (N,K) LDPC code, a codeword c = (c1, c2, ..., cN ), where (ci ∈ {0, 1}) is

modulated using unit-energy binary phase-shift keying (BPSK) into x = (x1, x2, ..., xN ), where

xi ∈ {−1,+1}. The mapping rule is xi = 1 − 2 · ci, so the Boolean 1 is mapped to −1 and 0 to

+1. The codeword is transmitted on AWGN channel. At the receiver, let y = (y1, y2, ..., yN ) be the

received real-valued sequence, and yi = xi + ni, i = 1, 2, ..., N . ni’s are independently, identically

distributed (i.i.d.) Gaussian RV with zero mean and variance N0/2.

The “channel LLR” for xi (in LLR form), provided by the channel data, is calculated as

Yi = log(
P (xi = 0|yi
P (xi = 1|yi

) =
4yi
N0

(2.17)

Let R
(l)
ji be the so-called extrinsic message (in LLR form) from CN j to VN i in the lth iteration,

similarly define Q
(l)
ij the extrinsic LLR message from VN i to CN j in the lth iteration. For the lth

iteration, the update of VN is

Q
(l)
ij =

∑
k∈N (i)\j

R
(l−l)
ki + Yi (2.18)

where N (i)\j denotes the set of CNs which are neighbors of VN i, excluding CN j. Note that the

soft-output maximum-likelihood (SOML) decoding of a REP-VN i given R
(l−1)
ij and Yi is given by

W
(l−1)
i =

∑
k∈N (i)

R
(l−1)
ki + Yi (2.19)
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The VN update rule (2.18) and (2.19) indicate that the extrinsic message Qij can be obtained from

SOML decoding result Wi, which is the sum of all incoming LLR messages and channel LLR, after

subtracting the intrinsic message (or a-priori message) Rji.

At the beginning of decoding, since Rki = 0, (2.18) is initialized as

Q
(1)
ij = Yi (2.20)

For CN update in the lth iteration, it can be written as

tanh (
R

(l)
ji

2
) =

∏
k∈N (j)\i

tanh(
Q

(l)
kj

2
) (2.21)

where tanh(·) is hyperbolic tangent function. It is worth noting that the extrinsic message Rji

obtained by (2.21) is derived from the SOML decoding of the SPC-CN. (2.18) has the form of “sum”

and (2.21) has the form of “product”, therefore it is called “sum-product algorithm” (SPA).

SPA is a special form of BP algorithm when SOML decoding is used on both REP-VNs and SPC-

CNs. (2.21) involves nonlinear operations, therefore in practice many simplified BP algorithms such

as “min-sum” [23], “normalized min-sum” [24] and “off-set min-sum” [24] are proposed. Compared

with SPA, they reduce the iterative decoding complexity to certain degree at the expense of a

slightly degraded decoding performance.

Finally, we give the procedures of SPA below. The maximum number of iterations is denoted by

L. In practice L is usually chosen in the range 20-200. After L iterations if ĉ ·HT 6= 0, we say that

SPA fails to achieve successful decoding and take ĉ as the decoding output.
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SPA procedure

1. Initialization: l = 1, initialize Q
(l)
ij = Yi, for j ∈ N (i), i = 1, 2..., N.

2. Horizontal Step: update R
(l)
ji by tanh (

R
(l)
ji

2 ) =
∏
k∈N (j)\i tanh(

Q
(l)
kj

2 )

3. Vertical Step: update Q
(l+1)
ij by Q

(l+1)
ij =

∑
k∈N (i)\j R

(l)
ki + Yi

4. Codeword Check: calculate a-posteriori probability (APP) W
(l)
i =

∑
k∈N (i)R

(l)
ki +Yi.

Decide ĉi = 0 if Wi ≥ 0, else ĉi = 1. If ĉ = (ĉ1, ĉ2, ..., ĉN ) does not satisfy ĉ ·HT = 0 and

l < L, then l = l+ 1 and goto step 2, otherwise stop and output ĉ as the decoding result.

2.2.2 Iterative decoding of GLDPC and DGLDPC codes

For GLDPC and DGLDPC codes, the extrinsic messages sent from SCNs and SVNs are needed to

be calculated based on the incoming messages. The SOML decoding of SCN/SVN involves more

complicated procedures than SPC-CNs/REP-VNs. For the sake of clarity, we adopt the following

notations. Let NV and NC be the number of VNs and CNs in the Tanner graph, the jth CN uses

C(ncj , kcj) as its component code, similarly the ith CN uses C(nvi, kvi) as its component code.

Let codeword b = (b1, b2, ..., bNV ), where bi = {bi,1, bi,2, ...bi,kvi} (bi,j ∈ {0, 1}), is modulated

by BPSK into c = (c1, c2, ..., cNV ), where c = 1 − 2 · b. At the receiver, y = (y1,y2, ...,yNV ) is

the received vector, Y = (Y1,Y2, ...,YNV ) is the channel LLR vector. For the ith VN, it receives

channel LLR Yi = {Yi,1, Yi,2...Yi,kvi}.

Enumerating edges from VNs’ side, define

• Q(l)
i,j is the extrinsic message (from VN to CN) on the jth edge of the ith VN in lth iteration.

• P (l)
i,j is the incoming message (from CN to VN) the jth edge of the ith VN in lth iteration.

Similarly enumerating edges from CNs’ side,

• R(l)
i,j is the extrinsic message (from CN to VN) on the jth edge of the ith CN in lth iteration.

• S(l)
i,j the incoming message (from VN to CN) on the jth edge of the ith CN in lth iteration.
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The vector forms can be written as

Q(l) = {Q(l)
1,1, Q

(l)
1,2, ..., Q

(l)
1,nv1

, Q
(l)
2,1, Q

(l)
2,2, ..., Q

(l)
2,nv2

, ..., ..., Q
(l)
NV ,1

, Q
(l)
NV ,2

, ..., Q
(l)
NV ,nNV

}.

P (l) = {P (l)
1,1, P

(l)
1,2, ..., P

(l)
1,nv1

, P
(l)
2,1, Q

(l)
2,2, ..., P

(l)
2,nv2

, ..., ..., P
(l)
NV ,1

, P
(l)
NV ,2

, ..., P
(l)
NV ,nNV

}.

R(l) = {R(l)
1,1, R

(l)
1,2, ..., R

(l)
1,nc1

, R
(l)
2,1, R

(l)
2,2, ..., R

(l)
2,nc2

, ..., ..., R
(l)
NC ,1

, R
(l)
NC ,2

, ..., R
(l)
NC ,nNC

}.

S(l) = {S(l)
1,1, S

(l)
1,2, ..., S

(l)
1,nc1

, S
(l)
2,1, S

(l)
2,2, ..., S

(l)
2,nc2

, ..., ..., S
(l)
NC ,1

, S
(l)
NC ,2

, ..., S
(l)
NC ,nNC

}.

(2.22)

Denote by Π the permutation between edges from VNs and CNs. Without loss of generality, we

assume

S(l) = Π(Q(l))

R(l) = Π(P (l))

(2.23)

The relationship between Q, P , S and T is depicted in Fig. 2.6.

Figure 2.6: The relationship between Q, P , S and T during the DGLDPC decoding.

Let {xi} be the codeword of the component code used by the ith CN, and xi,j the jth bit in the

codeword. The ith CN update using SOML decoding can be written as

R
(l)
i,j = log

∑
xi:xi,j=0

nci∏
p=1,p 6=j

e−S
(l)
i,p·xi,p

∑
xi:xi,j=1

nci∏
p=1,p 6=j

e−S
(l)
i,p·xi,p

(2.24)
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Let {zi} be the codeword of the component code used by the ith VN, and zi,j the jth bit in the

codeword. The ith CN update using SOML decoding can be written as

Q
(l+1)
i,j = log

∑
bi:zi,j=0

(
nvi∏

p=1,p 6=j
e−P

(l)
i,p ·zi,p

kvi∏
p=1

e−Yi,p·bi,p

)
∑

bi:zi,j=1

(
nvi∏

p=1,p 6=j
e−P

(l)
i,p ·zi,p

kvi∏
p=1

e−Yi,p·bi,p

) (2.25)

At the beginning of iteration, P = 0, therefore the iterative decoding is initialized as

Q
(1)
i,j = log

∑
bi:zi,j=0

(
kvi∏
p=1

e−Yi,p·bi,p

)
∑

bi:zi,j=1

(
kvi∏
p=1

e−Yi,p·bi,p

) (2.26)

The SOML estimation W (l) = {W (l)
1 ,W

(l)
2 , ...W

(l)
NV
} for b, where W

(l)
i = {W (l)

i,1 ,W
(l)
i,2 , ...W

(l)
i,kvi
}.

W
(l)
i,j , after lth iteration, is

W
(l)
i,j = log

∑
bi:bi,j=0

(
nvi∏
p=1

e−P
(l)
i,p ·zi,p

kvi∏
p=1

e−Yi,p·bi,p

)
∑

bi:bi,j=1

(
nvi∏
p=1

e−P
(l)
i,p ·zi,p

kvi∏
p=1

e−Yi,p·bi,p

) (2.27)

W (l) can be obtained by arranging for W
(l)
i,j , where i = 1, 2, ...NV , j = 1, 2...kvi.

Based on (2.24), (2.25), (2.26) and (2.27), the iterative decoding of GLDPC/DGLDPC codes

can be formulated as follows. The maximum number of iteration is L.
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Iterative decoding of GLDPC/DGLDPC codes

1. Initialization: l = 1, initialize Q
(l)
i,j using (2.26). Form Q(l) based on Q

(l)
i,j , where

i = 1, 2..., NV , j = 1, 2, ..., nvi. And find S(l) = Π(Q(l)).

2. Horizontal Step: update R
(l)
i,j using (2.24). Form R(l) based on R

(l)
i,j , where

i = 1, 2..., NC , j = 1, 2, ..., nci. And find P (l) = Π−1(R(l)).

3. Vertical Step: update Q
(l+1)
i,j using (2.25). Form Q(l+1) based on Q

(l+1)
i,j ,

where i = 1, 2..., NV , j = 1, 2, ..., nvi. And find S(l+1) = Π(Q(l+1)).

4. Decision and output: calculate APP W
(l)
i,j using (2.27). Form W (l) based

on W
(l)
i,j , where i = 1, 2..., NV , j = 1, 2, ..., kvi. Decide b̂i,j = 0 if W

(l)
i,j ≥ 0, else b̂i,j = 1. If

b̂ formed by b̂i,j does not satisfy b̂ ·HT
SPC = 0 and l < L, then l = l + 1 and go to step 2,

otherwise stop and output b̂ as the decoding result.

It should be noted that (2.17), (2.18), (2.21) and (2.19) are special forms of (2.26), (2.25),

(2.24) and (2.27), respectively. Therefore for REP-VNs and SPC-CNs in GLDPC/DGLDPC codes,

the update rule can be simplified using (2.17), (2.18), (2.21) and (2.19). The trellis-based SOML

decoding algorithms such as BCJR [75] and one-sweep algorithm [76] can be directly used on solving

(2.24), the decoding complexity is O(min(2k, 2(n−k))) for a C(n, k) SCN, whereas for some special

codes such as Hamming codes and 1st-order Reed-Muller codes, fast SOML decoding algorithms

exist [77]. In practice, some low-complexity (of course inferior to SOML) soft-output decoding

algorithms such as Chase decoding [78] and generalized minimum distance (GMD) decoding [79]

can also be used. In addition it is worth noting that, if the SVN adopts a systematic form of Gcomp,

the decoding complexity of SVN can be reduced to that of SCN.

The decoding complexities in SVNs and SCNs imply that small component codes or high-rate

codes are preferred. In many cases such as hGLDPC and DGLDPC codes, the complexity increase

is modest since there is only a small percentage of edges connected to SCNs and SVNs. With the

development of technology, the decoding complexity of GLDPC and DGLDPC codes will become
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more and more affordable for most practical uses.

2.3 Analysis and optimizing tools for code ensembles

Given blocklength N and a certain (λ,ρ), a collection of codes (LDPC, GLDPC and DGLDPC)

can be obtained from randomly permuting edges connecting VNs and CNs under the constraint of

(λ,ρ). This collection of codes is called an ensemble, denoted by CN (λ,ρ). When N → ∞, the

notation C∞(λ,ρ) is used.

The ensemble C∞(λ,ρ), or profile, is usually studied instead of individual LDPC codes. This is

because the following properties of the ensembles: the concentration property [13] states that with

N → ∞, the individual codes converge in probability exponentially to the average performance

of CN (λ,ρ). In addition the convergence property [13] states that with N → ∞ the average

performance of CN (λ,ρ) converges in probability to the performance of cycle-free C∞(λ,ρ) case.

Let P∞e (l) be the average BER of C∞(λ,ρ) after lth iterations. It is proved in [13] that given a

certain (λ,ρ), there exists a decoding threshold σ? = σ?(C∞(λ,ρ)), such that:

lim
l→∞

P∞e (l) = 0 if σ < σ?

lim
l→∞

P∞e (l) = η(σ) > 0 if σ > σ?
(2.28)

where η(·) is a positive real number, which is a function of σ. In general, σ and σ? can be regarded

as some noise level in the channel, such as the additive white Gaussian noise in AWGN channels or

erasure probability ε in BEC.

(2.28) states that if channel condition is better than σ?, a code in C∞(λ,ρ) can achieve error-

free decoding performance, otherwise the BER is always some positive value greater than 0. The

decoding threshold of a profile important in the sense that it is not only a critical parameter in

infinite blocklength case, but also a good indicator on the waterfall performance of a code in FL

ensemble CN (λ,ρ). In the following, we introduce several tools for determining and optimizing

code ensembles.
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2.3.1 Density evolution

Density evolution [13] is an effective and accurate tool for determining the threshold σ? of a given

LDPC profile with the degree distribution (λ
.
= (λ2, λ3, ..., λdvmax),ρ

.
= (ρ2, ρ3, ..., ρdcmax)). For

GLDPC and DGLDPC ensembles, density evolution on GLDPC and DGLDPC is too complicated

to implement since the efficient density evolution on SVNs and SCNs is still lacking. In practice

EXIT charts are used instead to evaluate the σ? of GLDPC/DGLDPC ensembles, which will be

discussed in the subsection 2.3.2.

Suppose the channel satisfies the symmetric condition [14], i.e. P (y|1) = P (−y|−1), then during

the iteration, the probability density function (PDF) of RVs sent from VNs and CNs also satisfies

the symmetric condition under the BP algorithm. Based on above properties we can hold the all-one

codeword assumption that the conditioned BER is independent of the specific codeword transmitted

so an all-one codeword can be used [14].

Let P0 be the PDF of channel LLR, and P
(l)
i be the PDF of extrinsic message RV sent from VN

with degree dv = i in the lth iteration. Also define Q
(l)
j the PDF of extrinsic message RV sent from

CN with degree dc = j in the lth iteration. The average PDF sent from VNs P (l), and from CNs

Q(l), are calculated as

P (l) =

dvmax∑
i=2

λi · P (l)
i

Q(l) =

dcmax∑
j=2

ρj ·Q(l)
j

(2.29)

The incoming messages are assumed i.i.d. with PDF Q(l), since the blocklength is infinite.

According to (2.18), P
(l)
i can be calculated as

P
(l)
i = P0 ~

(i−1)︷ ︸︸ ︷
Q(l−1) ~Q(l−1) ~ ...~Q(l−1) (2.30)

where ~ denotes the ordinary convolution, and P
(1)
i = P0.

For calculating Q
(l)
i , one has to convert P (l) into a function Γ(·) on GF (2)× [0,+∞] [14], where

GF (2) denotes the sign part and [0,+∞] is the magnitude part, then apply convolution (i − 1)
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times on GF (2)× [0,+∞] , then use Γ−1(·) to obtain Q
(l)
i . For more details, readers are referred

to [14]; on the other hand, the calculation of P
(l)
i and Q

(l)
i can also be done by look-up table (LUT)

instead of convolution operations.

The density evolution updates P (l) and Q(l) alternatingly, and after a sufficiently large number

of iterations, say L, the evolved PDF will indicate if C∞(λ,ρ) can converge or not under a given σ:

if P (L) has a distribution that no probability mass can be found at X ≤ 0, C∞(λ,ρ) can converge

under σ, otherwise it cannot.

As an example, Table 2.1 [14] lists the code rate, σ?’s of several regular LDPC profiles, and the

corresponding maximum σC prescribed by the capacity of binary-input AWGN (BIAWGN) channel,

the equivalent SNRs (in dB) of thresholds and capacity are also given. It can be seen that all the

thresholds have some gaps from the corresponding capacity, and they all have fairly good decoding

thresholds. Among the rate-0.5 regular profiles, the (3, 6) profile has the best threshold, which is

0.923 dB away from channel capacity.

Table 2.1: The code rates and σ?’s of regular LDPC profiles, and the corresponding maximum σC
prescribed by the capacity of BIAWGN channel.

Regular LDPC profile code rate σ? (Eb/N0)? (dB) σC (Eb/N0)C (dB)

(3,6) 0.5 0.88 1.110 0.979 0.187

(4,8) 0.5 0.83 1.618 0.979 0.187

(5,10) 0.5 0.79 2.047 0.979 0.187

(3,5) 0.4 1.0 0.969 1.148 -0.236

(4,6) 0.333 1.01 1.674 1.295 -0.507

(3,4) 0.25 1.26 1.003 1.549 -0.793

2.3.2 EXIT charts

The EXIT chart is another efficient tool for evaluating σ? of a given C∞(λ,ρ). In density evolution

the system calculates the averaged PDF of extrinsic messages, which can be very complicated in

terms of both calculation and storage. As an accurate and robust statistic, mutual information is

used and tracked in EXIT chart during the decoding iterations. Compared with density evolution,

EXIT charts [67–71] have the advantages of low computational complexity and straightforward

visual effect. For a lucid illustration, we give the decoding model with two encoders below, which is

based on [69]:
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Figure 2.7: A decoding model with two encoders for EXIT analysis.

In Fig. 2.7, the information sequence u of length k is encoded into x of length m and v of length

n, therefore it is a (m+ n, k) code. x and v are transmitted over the communication and extrinsic

channel, respectively; the decoder receives y (c in LLR form) and w (a in LLR form). The decoder

implements soft-output maximum-a-posteriori (SOMAP) based on y and w, and gives soft output

d and e, where d is the APP of v.

We now demonstrate that Fig. 2.7 is a generic model for the components codes of many

iterative-decodable codes. In the following, an uppercase letter denotes the RV, and lowercase letter

the realization of such RV. Let wi be the observed value in ith position in w, and similarly define

yi, ai, di and ci. v[i] denotes the vector v with the ith entry removed.

The SOMAP decoder computes di (in LLR form)

di = log
P (Vi = 0|y,w)

P (Vi = 1|y,w)
(2.31)

where

P (Vi = 0|y,w) =
∑

u:vi(u)=0

P (u|y,w)

=
∑

u:vi(u)=0

P (u)P (w|u)P (y|u,w)

P (y,w)

=
∑

u:vi(u)=0

P (u)P (w|v(u))P (y|x(u))

P (y,w)

=
P (wi|Vi = 0)

P (y,w)

 ∑
u:vi(u)=0

P (u)P (w[i]|v[i](u))P (y|x(u))



(2.32)
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The expression for P (Vi = 1|y,w) can be similarly obtained as

P (Vi = 1|y,w) =
P (wi|Vi = 1)

P (y,w)

 ∑
u:vi(u)=1

P (u)P (w[i]|v[i](u))P (y|x(u))

 (2.33)

Substitute (2.32) and (2.33) into (2.31), notice that

ai = log
P (wi|Vi = 0)

P (wi|Vi = 1)
(2.34)

and

ei = log
P (Vi = 0|y,w[i])

P (Vi = 1|y,w[i])

= log

∑
u:vi(u)=0

P (u)P (w[i]|v[i](u))P (y|x(u))∑
u:vi(u)=1

P (u)P (w[i]|v[i](u))P (y|x(u))

(2.35)

Finally the di can be written as the sum of extrinsic message ei and a-priori message ai.

di = ai + ei (2.36)

We give several examples for the model in Fig. 2.7. Consider Turbo codes using parallel-

concatenated-convolutional-code (PCCC) structure; then both component codes have extrinsic

and communication channels, and u=x. For LDPC, GLDPC, and DGLDPC codes, there is no

communication channel for CNs, and a CN with degree dc receives w of length dc from the extrinsic

channel. For REP-VN, u=x with k = 1, while for a C(nv, kv)-SVN, u=x with length kv, and it

receives w of length nv from the extrinsic channel. The final remark is that (2.35) is the generic

expression for calculating extrinsic messages, which encompasses all previous node update rules

such as (2.18), (2.21), (2.25), (2.24).

The averaged a-priori mutual information IA and the averaged extrinsic mutual information IE

are defined as:

IA
.
=

1

n

n∑
i=1

I(Vi;Ai)

IE
.
=

1

n

n∑
i=1

I(Vi;Ei)

(2.37)
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A EXIT curve can be obtained by plotting IE as a function of IA, note that in binary case 0 ≤ IE ≤ 1

and 0 ≤ IA ≤ 1.

EXIT curves for LDPC codes

For a BEC with erasure probability q, suppose a REP-VN with degree dv receives the extrinsic

information IA = 1− p. Then IE is

I
(dv)
E = 1− q(1− IA)dv−1 (2.38)

whereas for a SPC code with degree dc receiving IA = 1 − p, since there is no communication

channel, IE is

I
(dc)
E = (IA)dc−1 (2.39)

For the AWGN channel, the EXIT curve is calculated based on the fact that the PDF of extrinsic

message (in LLR form) can be approximated by a Gaussian RV which satisfies the consistency

condition [72]. Let X ∈ {±1} be the modulated random bit, and Υ be the PDF of extrinsic message,

then the mutual information I(X; Υ) can be approximated by a Gaussian RV N (0, σ2) such that σ

satisfies

I(X; Υ) = J(σ) = 1−
∫ ∞
−∞

e−
(ξ−σ2/2)

2

2σ2

√
2πσ2

· log2

(
1 + e−ξ

)
dξ (2.40)

Based on the “sum” update rule of REP-VN, the I
(dv)
E of a REP-VN with degree dv can be

calculated as

I
(dv)
E = J

(√
(dv − 1) ·

[
J−1

(
I
(dv)
A

)]2
+ 8R · Eb

N0

)
(2.41)

where 8R · EbN0
is sometimes also denoted by σ2ch, which is the variance of channel LLR. Based on

the duality property [70], the SPC-CN with degree dc, I
(dc)
E is

I
(dc)
E ≈ 1− J

(√
(dc− 1) · J−1 (1− IA)

)
(2.42)

In LDPC codes, the IA and IE of VNs are commonly written as IA,V and IE,V , and for CNs

they are IA,C and IE,C . For a VN with degree dv, we write I
(dv)
E,V as I

(dv)
E,V = I

(dv)
E,V (dv, EbN0

, R, IA,V ).
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Similarly for a CN with degree dc, I
(dc)
E,C = I

(dc)
E,C(dc, IA,C). Finally the averaged EXIT curves of VNs

and CNs can be obtained as

IE,V =
dvmax∑
i=2

λi · I(i)E,V (i,
Eb
N0

, R, IA,V )

IE,C =
dcmax∑
j=2

ρj · I(j)E,C(j, IA,C)

(2.43)

EXIT charts

In bipartite-graph based codes, we have IA,V = IE,C and IE,V = IA,C . The EXIT chart can be

obtained by plotting IE,V (IA,V ) and IE,C(IA,C) in the same graph. We usually plot the inverse

function of IE,C(IA,C) (i.e. IA,C(IE,C)) to make EXIT chart more informative: if under a certain

σ (equivalently, SNR), IE,V (IA,V ) > IA,C(IE,C) ∀IA,V ∈ [0, 1), the EXIT chart is said to have an

“open tunnel”, which means for an infinite blocklength code we can achieve successful decoding under

σ, since IE,V can achieve IE,V = 1 after a sufficient number of iterations; otherwise, if IE,V (IA,V )

and IA,C(IE,C) first intersect at x ∈ [0, 1), it means the decoder will get stuck at x and fail in

decoding. Given a degree profile (λ,ρ), an EXIT chart can efficiently and accurately determine if

it can converge or not under a certain σ (or SNR). In Fig. 2.8 the EXIT chart of a (3, 6) regular

LDPC ensemble on AWGN channel is shown: at Eb
N0

= 1.5 dB, the VN curve is always above the

CN one so the code ensemble can converge at Eb
N0

= 1.5 dB; whereas at Eb
N0

= 0.5 dB two curves first

intersect at the point around (0.11,0.61), which means the decoding will fail at Eb
N0

= 0.5 dB.

EXIT curves for SCNs and SVNs

EXIT curves on BEC: Fig. 2.7 is still a valid model for analysis of SVNs/SCNs in GLDPC

and DGLDPC codes. The EXIT chart under BEC is analyzed first: for SVN using C(n, k) as

its component code and using Gcomp as the generator matrix of C(n, k), let Ik be the (k × k)

identity matrix, the ẽg,h is called the (g, h)-th un-normalized split information function, which can

be calculated via the summation over the rank of all the possible submatrices obtained by selecting

g (0 ≤ g ≤ n) columns in Gcomp and h (0 ≤ h ≤ k) columns in Ik. Suppose the channel has the

erasure probability q and IA,V = 1− p, then IE,V can be calculated as [69]:
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Figure 2.8: The EXIT chart of the (3, 6) LDPC ensemble under different SNR’s.

IE,V (p, q) = 1− 1

n

k∑
h=0

(1− q)hqk−h
n∑
g=1

(1− p)g−1pn−g · [g · ẽg,h − (n− g + 1) · ẽg−1,h] (2.44)

whereas for SCN of C(n, k), we denote by ẽg of C(n, k) the g-th un-normalized information function,

which can be calculated via the summation over the rank of all the possible submatrices obtained

by taking g, 0 ≤ g ≤ n columns in Gcomp. Let IA,C = 1− p, IE,C can be calculated as:

IE,C(p) = 1− 1

n

n∑
g=1

(1− p)g−1pn−g · [g · ẽg − (n− g + 1) · ẽg−1] (2.45)

(2.45) can also be obtained by letting q = 1 in (2.44). In order to calculate ẽg,h and ẽh of a

certain code C, a brute-force method is commonly used. For instance, the {ẽg} for SCN using a

Hamming(15, 11) code is

{ẽg} = {0, 15, 210, 1365, 5460, 15015, 30030, 45045, 51465, 44940, 29715, 14490, 4970, 1155, 165, 11}
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As an example for SVN node, Table 2.2 shows the {ẽg,h} of a SPC(6, 5) SVN node using systematic

Gcomp

Gcomp =

[
1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1

]
(2.46)

Table 2.2: The {ẽg,h} of a SPC(6, 5) SVN node using systematic Gcomp.

ẽg,h h = 0 h = 1 h = 2 h = 3 h = 4 h = 5

g = 0 0 5 20 30 20 5

g = 1 6 55 160 210 130 30

g = 2 30 200 500 600 345 75

g = 3 60 350 800 890 480 100

g = 4 60 325 690 720 370 75

g = 5 30 150 300 300 150 30

g = 6 5 25 50 50 25 5

It should be noted that if Gcomp adopts another form, {ẽg,h} will be different, resulting in a

different EXIT curve, which is not the case with SCN (i.e. {ẽg} is not changing with different

Gcomp). If the SPC(6, 5) uses the so-called “cyclic” Gcomp where

Gcomp =

[
1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1

]
(2.47)

and Table 2.3 shows the {ẽg,h} of a SPC(6, 5) SVN node using cyclic Gcomp. The examples above

indicate that for DGLDPC codes, Gcomp constitutes another degree of freedom in optimizing the

ensemble. When describing a DGLDPC profile, it is not enough to give the SVN type, but Gcomp is

also needed.

Table 2.3: The {ẽg,h} of a SPC(6, 5) SVN node using cyclic Gcomp.

ẽg,h h = 0 h = 1 h = 2 h = 3 h = 4 h = 5

g = 0 0 5 20 30 20 5

g = 1 6 58 168 216 130 30

g = 2 30 213 531 618 345 75

g = 3 60 370 838 908 480 100

g = 4 60 335 705 726 370 75

g = 5 30 150 300 300 150 30

g = 6 5 25 50 50 25 5

In [46], Paolini et al proposed a recursive algorithm for calculating the averaged EXIT function of

an expurgated ensemble G?(n, k) for SVN and SCN, where G?(n, k) = {C(n, k)| C(n, k) has a dmin ≥
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2}. The EXIT curves of G?(n, k) adds more flexibility when designing the profile: we can use the

EXIT charts analyzing for the ensemble E using component codes randomly picked from G?(n, k),

which is an expanded ensemble from the traditional ensemble using fixed node types. As an example,

the {ẽg,h} of G?(6, 5) is shown in Table 2.4.

Table 2.4: The {ẽg,h} of G?comp(6, 5).

ẽg,h h = 0 h = 1 h = 2 h = 3 h = 4 h = 5

g = 0 0 5 20 30 20 5

g = 1 6 59.0323 174.1935 226.4516 135.4839 30

g = 2 30 217.7419 557.4194 655.1613 358.0645 75

g = 3 60 377.4194 873.5484 943.2258 490.3226 100

g = 4 60 338.7097 716.1290 735.4839 372.5806 75

g = 5 30 150 300 300 150 30

g = 6 5 25 50 50 25 5

Fig. 2.9 gives three SVN EXIT curves at channel erasure probability ε = 0.65: (6, 5) SPC

code using systematic Gcomp, (6, 5) SPC code using cyclic Gcomp and G?(6, 5). Note the obvious

dependence of EXIT curves on the specific forms of Gcomp’s.

Figure 2.9: SVN EXIT curves of (6,5) SPC codes of various forms at channel erasure probability
ε = 0.65.
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EXIT curves on AWGN channels: For AWGN channel, it is generally impossible to have a

closed-form expression for IE,C and IE,V of code C(n, k), except for some very simple codes [44], so

Monte-Carlo simulations are frequently used. Fig. 2.10 depicts the SCN EXIT curves of several

linear codes on AWGN channel obtained by Monte-Carlo simulation. Also in Fig. 2.11 the SVN

EXIT curves of several linear codes on AWGN channel at channel-symbol-to-noise ratio Es
N0

= 0 dB

are drawn.

Figure 2.10: EXIT curves of several SCNs on AWGN channel.

Besides the Monte-Carlo approach, the EXIT function of SCN and SVN on AWGN channel can

also be approximated by an infinite series, where each term depends on the EXIT function for a

BEC [71]. For SCNs employing a high-rate C(n, k),

IAWGN
E

(
Eb
N0

)
∼=

1

ln 2

∞∑
i=1

1

(2i− 1)(2i)
IBECE (εi) (2.48)

where

εi = 1− Φi

([
J−1(IA)

]2
2

)
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Figure 2.11: SVN EXIT curves of several linear codes on AWGN channel at Es
N0

= 0 dB.

and

Φi(m) =

∫ +1

−1

2t2i

(1− t2)
√

4πm
e−

((ln 1+t
1−t )−m)

2

4m dt

For SCNs employing a low-rate code, according to the duality property, it can be approximated

by [71]

IAWGN
E

(
Eb
N0

)
∼= 1− 1

ln 2

∞∑
i=1

1

(2i− 1)(2i)
I⊥,BECE (εi) (2.49)

where

εi = 1− Φi


[
J−1(1− J

(√
8R · EbN0

)]2
2


For SVNs, the EXIT curve can be approximated as [50]

IAWGN
E

(
IA,

Eb
N0

, R

)
∼= 1− 1

ln 2

∞∑
i=1

1

(2i− 1)(2i)
I⊥,BECE (εi, ηi) (2.50)

where εi = 1− Φi

(
1
2

[
J−1(1− IA)

]2)
and ηi = 1− Φi

(
1
2

[
J−1

(
1− J

(√
8REb/N0

))]2)
.
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It should be noted that for moderate rate component codes, the infinite series approximation

((2.48), (2.49) and (2.50)) is not as accurate as their high-rate/low-rate counterparts. In this case

Monte-Carlo simulation seems to be the best solution.

EXIT charts for GLDPC/DGLDPC codes: For GLDPC/DGLDPC codes, the averaged

EXIT curves of VN and CN can then be obtained after we have EXIT curves for each component

code:

IE,V =
∑
i∈IV

λi · I(i)E,V

IE,C =
∑
j∈IC

ρj · I(j)E,C

(2.51)

where I
(i)
E,V (I

(j)
E,C) is the EXIT function of type-i(type-j) component code in VN(CN). Note that

the rationale for doing the averaging is the random permutation of edges between VNs and CNs.

Therefore, if under a certain SNR, IE,V (IA,V ) > IA,C(IE,C) ∀IA,V ∈ [0, 1), then for an infinite

blocklength code we can achieve successful decoding with channel quality σ.

2.3.3 Differential evolution for optimizing profiles

Density evolution and EXIT charts are used to determine the threshold of a given profile (λ,ρ).

If node types are the only parameters given, there will be a set of candidate profiles Φ =

{(λ,ρ) | (λ,ρ) satisfies (2.16)}. Φ has approximately the dimension of <D[0, 1], D = |TV |+|TC |−3,

therefore it is rather difficult to implement a direct optimization on Φ to identify (λ,ρ)best ∈ Φ,

such that σ?(λ,ρ)best > σ?(λ,ρ), ∀(λ,ρ) ∈ Φ, (λ,ρ) 6= (λ,ρ)best. On the contrary, heuristic

algorithms such as DE are still adequate tools for determining σ?(TV , TC , R), the decoding threshold

of (λ,ρ)best.

DE [80] belongs to the class of heuristic methods that try to find the optimal solution to the

problem by iteratively generating improved candidates, under some carefully designed measures;

therefore they are frequently used to perform optimizations on complicated combinatorial problems

where direct optimization methods are unsuitable or inapplicable (e.g. many NP-hard problems).

Heuristic methods include many algorithms such as hill climbing, genetic algorithm (GA) [82],

simulated annealing (SA) [83], etc. As a powerful tool in the family, DE is widely used in the

optimization of the degree profiles of LDPC codes [14,84,85]
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DE first generates N random candidates (λ,ρ)i, i = 1, 2..., N in Φ, then updates them over

iterations to make gradual improvements in order to achieve (λ,ρ)best. We first describe below the

rules for updating candidates, which is the core part occurring during one iteration in DE.

• Mutation

FOR i = 1, 2...N

1. Randomly choose three numbers j, k and l from {1, 2, ..., N}, such as i 6= j 6= k 6= l

2. (λ,ρ)newi = (λ,ρ)j + F · ((λ,ρ)k − (λ,ρ)l)

END

• Selection

FOR i = 1, 2...N

1. if (λ,ρ)newi is “better” than (λ,ρ)i, (λ,ρ)i = (λ,ρ)newi ;

2. else (λ,ρ)i = (λ,ρ)i;

END

In the mutation step, F ∈ (0, 1) is a parameter controlling the degree of mutation, making F

too large will make the algorithm have difficulty finding the global optimum, whereas F too small

will cause slow convergence or trapping at a local optimum. In practice it usually assumes a value

between 0.2 and 0.8. In the selection step, a measure is needed to judge the goodness of (λ,ρ),

which can be chosen as the minimum difference between VN and CN EXIT curves, i.e. “the width

of the narrowest part of the tunnel”. It should be noted that the update algorithm described above

is only one of many possible update rules of DE. We can as well choose other forms of mutation

rules described in [81] and a crossover step can also be integrated into the update [80].

Under a given σ, the updating iterations are performed many times until one of the N candidates

can converge, or the maximum number of iterations is reached. In the former case we claim that

σ < σ?(TV , TC , R) and σ > σ?(TV , TC , R) otherwise. Finally, in order to find σ?(TV , TC , R), an

outer loop over σ is needed, where we start from a relatively small σ, and increase it gradually until

σ = σ?(TV , TC , R).
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As an example of DE, Table 2.5 gives the optimized (λ,ρ)’s of rate-0.5 LDPC profiles, and their

thresholds on the BEC derived by DE, under the constraints of different dvmax’s. The Shannon

limit for rate-0.5 codes is ε? = 0.5, and with the increase of dvmax the threshold is approaching

this limit.

Table 2.5: Optimized distributions of some rate-0.5 LDPC profiles and their thresholds on BEC.

dvmax λ(x) ρ(x) Threshold (ε)

3 0.3836x+ 0.6164x2 0.9590x4 + 0.0410x5 0.4488

4 0.4788x+ 0.5212x3 0.5457x4 + 0.4543x5 0.4638

6 0.4175x+ 0.1684x2 + 0.4141x5 0.0095x4 + 0.9892x5 + 0.0013x6 0.4773

8 0.3625x+ 0.2518x2 + 0.3857x7 0.5862x5 + 0.4075x6 + 0.0063x7 0.4844

Another DE example for DGLDPC codes uses TV ={(8, 1)REP, (6, 5)SPC (cyclic Gcomp)} and

TC={SPC(6, 5), Hamming(15, 11)}, Fig. 2.12 gives a R = 0.5 (λ,ρ) optimized by DE with decoding

threshold ε? = 0.4840 on BEC channel, where

λ = (0.4825, 0.5175)

ρ = (0.2087, 0.7913)

It can be observed that VN EXIT curve is always above CN curve but with a very narrow open

tunnel exists between them.

2.4 Tools for constructing finite-length codes

2.4.1 PEG (progressive edge growth) algorithm

PEG [25] is a semi-random graph algorithm for constructing FL codes. It begins with an empty

Tanner graph, and appends the edges sequentially. During the appending, it tries to connect the

current VN with the best CN candidate so that the girth of the partial Tanner graph is maximized;

this procedure continues until all the edges have been appended.

When building a blocklength N LDPC code, one needs to specify the VN degree vector

{dv1, dv2, ..., dvN} before implementing PEG, whereas the CN degree vector is left open. PEG tends

to generate a concentrated CN-degree profile (i.e. only two CN degrees in the profile), due to its

connecting feature during the process, which we will see in the following.
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Figure 2.12: The EXIT chart of an optimized DGLDPC profile (λ,ρ) with decoding threshold
ε? = 0.4840.

The PEG algorithm is as follows

• FOR VN 1, 2,...,N , do the following

1. For the first edge of the VN i, connect it to the CN whose current degree is the smallest,

randomly choose one if there are many of them.

2. For the remaining edges of the VN i, according to the current partial Tanner graph,

expand the local tree rooted in i until the case 2.1 or 2.2 is met. Note that 2.1 and 2.2

are mutually-exclusive.

Case 2.1. The local tree cannot cover all the CNs in the Tanner graph, i.e. some CNs, denoted

by CN (∞), are never reachable by expanding the local tree, or

Case 2.2. The local tree can cover all the CNs in the Tanner graph. Let CNs, denoted by

CN (2l), be those not reachable by the local tree down to (2l − 3)th level, but

appearing in the (2l − 1)th level.
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3. If case 2.1, connect the edge to the CN with the smallest degree in CN (∞), randomly

choose one if there are many of them. If case 2.2, connect the edge to the CN with the

smallest degree in CN (2l), randomly choose one if there are many of them.

Case 2.1 usually happens at the early stage of PEG, when the Tanner graph is not fully populated,

therefore by appending the edge to CN (∞) will not incur any cycles. Case 2.2 usually happens

at the later stage of PEG, when the Tanner graph is almost fully connected, therefore appending

the edge will inevitably introduce cycles. PEG tries to connect the VN to the farthest CN in the

local tree so as to maximize the cycle length; by appending the edge to CN (2l) will incur cycles of

length-2l.

As a simple example, the PEG procedures for a small LDPC code with N = 4 and M = 3 is

shown below. The VN degree vector is {2, 2, 2, 2}.

1) The 1st edge of VN 1 can be connected to any CNs since the Tanner graph is empty, choose a

CN at random, say CN 1.

2) For the 2nd edge, expand the local tree, and it cannot reach CN 2 or 3; choose a CN at

random, say CN 2, append the edge to CN 2. VN 1 is done.

3) The 1st edge of VN 2 can be connected to any CNs; choose the CN with the small degree,

which is CN 3.

4) For the 2nd edge, expand the local tree, and it cannot reach CN 1 or 2, whose degree are both

1; choose a CN at random, say CN 1, append the edge to CN 1. VN 2 is done.

5) The 1st edge of VN 3 can be connected to any CNs. Both CN 2 and 3 have the smallest

degree 1, choose one at random, say CN 2.

6) For the 2nd edge, expand the local tree. Since it can cover all the CNs, the “farthest” CN is

CN 3 in level-5, append the edge to CN 3, a length-6 cycle is formed. VN 3 is done.

7) The 1st edge of VN 4 can be connected to any CNs. Since all the CNs have degree 2, choose

one at random, say CN 1.

41



8) For the 2nd edge, expand the local tree. Since it can cover all the CNs, the farthest CNs are

CN 2 and 3 with the same degree in level-3. Choose one at random, say CN 2, append the

edge to CN 2, a length-4 cycle is formed. VN 4 is done.

After the PEG procedure, a girth-4 Tanner graph is constructed, shown in Fig. 2.13. Notice that

the CN degree vector is {3, 3, 2}, which is a concentrated CN degree profile.

Figure 2.13: The Tanner graph of a N = 4, M = 3 LDPC code constructed by PEG.

2.4.2 EMD and ACE

PEG tries to maximize the girth of Tanner graph, which reduces the dependence of messages

during the iteration. A further study shows that cycles, though of the same lengths, can have

various contributions to the error events. The introduction of extrinsic message degree (EMD)

and the approximate cycle EMD (ACE) [26] to LDPC codes enables a qualitative description

on this phenomenon. EMD of a REP-VN subset refers to the number of SPC-CNs which are

singly-connected to this subset. The larger the value of EMD is, the more information from outside

subset will be received; on the contrary, a subset with a small EMD will receive less information

and will more likely produce an error event.

In practice, it is more convenient to use ACE instead of EMD for a cycle: the ACE of a cycle

is defined as
∑
i

(dvi − 2), where dvi is the degree of ith REP-VN, and the summation is over the

REP-VNs in the cycle. The ACE is an upper bound on EMD and ACE=EMD iff no VNs in the

cycle connect to the same SPC-CN outside the cycle. A length-4 cycle with ACE = 4 is shown in

Fig. 2.14.
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Figure 2.14: A length-4 cycle with ACE = 4.

The ACE of a REP-VN with degree dv, is defined as (dv − 2) and the ACE of a SPC-CN is

always 0. A cycle with smaller ACE is more susceptible to noise since it takes in less information

from outside the cycle. When designing FL-LDPC codes, short cycles with small ACE should be

avoided. The ACE and PEG can be combined to offer a further improvement on the error floor [27].
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Chapter 3

Finite-Length GLDPC and DGLDPC

Codes with Low Error Floors

The term “error floor”, refers to the phenomenon happening in the high SNR region during the

iterative decoding, where the error curve decreases more slowly than it does in the waterfall region.

The error floor is mainly caused by poor local structures in the Tanner graph. When PEG is

employed to construct FL codes, there are many factors such as VN orderings and ACE which will

greatly affect the code error floor performance. In addition, for GLDPC and DGLDPC codes which

contain more node types relative to LDPC codes, the error floor is more sensitive to the specific

connectivity of CNs and VNs. In this chapter, a new concept, eACE, is proposed to measure the

susceptibility of cycles to the channel noise, and two modified PEG algorithms are devised based on

eACE to improve the error floor performance of GLDPC and DGLDPC codes.

3.1 Variable node ordering in the PEG

When using PEG to create a FL code, the cycle lengths in the Tanner graph during the PEG process

evolve as follows: in the early stage of PEG, there is no cycle (i.e. girth is ∞) since the graph is

sparse, whereas in the later stage when the graph is nearly fully connected, cycles emerge and their

lengths decrease as edges are appended gradually. As an example, we build a (504, 252)(3, 6) regular

LDPC code using PEG. Fig. 3.1 shows the development of shortest cycle length, as PEG progresses.
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Figure 3.1: The shortest length of cycles as a function of VN i during PEG.

In Fig. 3.1, no cycle is generated when PEG traverses the first 125 VNs, and at 126th VN a

length-44 cycle is formed. The shortest length of cycles keeps decreasing until it finally reaches 8,

and this is the girth of the completed Tanner graph. Based on this observation and the notion of

ACE, it is preferable to sort the VNs in a way such that they satisfies dv1 ≤ dv2 ≤ dv3 ≤ ... ≤ dvN ,

in other words, rank the VNs from the lowest to highest degree. By doing so the shorter cycles

inevitably generated at the end of PEG will contain the highest degree VNs, which increases the

ACE of short cycles, so the error floor behavior can be improved.

Fig. 3.2 shows the performance of PEG-constructed length-1008 rate-0.5 irregular LDPC codes.

The degree profile is

λ(x) = 0.3332x+ 0.2404x2 + 0.4264x5

ρ(x) = 0.6734x5 + 0.3266x6
(3.1)

which is optimized by EXIT charts and DE, and it has a decoding threshold of 0.597 dB on the
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Figure 3.2: The effect of VN ordering in the PEG for irregular LDPC codes.

BIAWGN channel. In Fig. 3.2, we adopt different VN orders to verify the claim above. We use SPA

for decoding, and the maximum number of iterations Imax is set to 200. The notation “2346” in the

figure means that the PEG starts from deg-2 VNs, then deg-3, deg-4 and deg-6 VNs. “3246” and

”6432” are defined similarly. It can be observed that LDPC code with the order “2346” has the

best error floor performance, due to the higher ACE value of short cycles, whereas the code with

order ”6432” has the worst error floor. Fig. 3.2 also shows the sphere-packing bound (SPB) [28] for

AWGN channels for N = 1008, K = 504 FL codes. The SPB is the ultimate bound on the error

performance of FL codes; it approaches and becomes the capacity limit as the code length goes to

infinity. It can be seen that there is about 1.25 dB degradation of “2346” code from SPB at frame

error rate (FER) around 10−4, which is caused mainly by the suboptimality of iterative decoding

compared with ML decoding.

For a linear code C(n, k), let AC(n,k) =
∫ 1
0 IE(IA)dIA be the area below the EXIT curve of

C(n, k). We say a code C1 is “stronger” than C2 if AC1 > AC2 , otherwise C1 is “weaker”. Based on

these terms the principle of VN ordering in the LDPC-PEG can also be phrased as: start from the

weakest VNs, then second weakest VNs and so on, finally the strongest VNs.
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For DGLDPC codes with no SCNs in it, the principle above can be readily applied, i.e. order the

VNs in DGLDPC codes, according to A, from weakest to strongest. Such ordering of VNs offers the

best error floor behavior. Fig. 3.3 gives the performance of a PEG-constructed length-1200 rate-0.5

DGLDPC codes using SPC(3, 2) as its SVNs, with Gcomp of systematic form. The degree profile is

λ(x) = 0.0017x+ 0.3782x2 + 0.4156x5 + 0.2045x2(SPC(3, 2))

ρ(x) = 0.9825x5 + 0.0175x6,

which is optimized by EXIT charts and DE, and it has a decoding threshold of 0.55 dB, about 0.36

Figure 3.3: The effect of VN ordering in PEG for DGLDPC codes with no SCNs.

dB from capacity. MAP decoding is used on SPC(3, 2) and Imax = 200. In Fig. 3.2, the notation

“SVN236” means that the PEG starts from SPC(2,3), then deg-2, deg-3 and deg-6 VNs. “23SVN6”

and ”632SVN” are defined similarly. It can be seen that DGLDPC code following the above principle

(i.e. “SVN236”) has the best error floor performance, whereas the code with ”6432SVN” has the

worst error floor, and it becomes almost flat in high SNR region.
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3.2 Extending ACE to eACE and the modified PEG

In this section we discuss the treatment of CNs in the PEG. First we define a new concept, the

eACE of a cycle, defined as ∑
node i∈cycle

(dmin,i − 2) (3.2)

where dmin,i is the minimum Hamming distance of the ith node (VN or CN), and the summation is

over both VNs and CNs in the cycle. It can be observed that ACE is a special case of eACE, since

a deg-dv REP-VN has dmin = dv and a SPC-CN has dmin = 2, so the case of LDPC codes eACE

degenerates to ACE. In Fig. 3.4 we give an illustration of ACE and eACE.

Figure 3.4: ACE in LDPC codes and eACE in DGLDPC codes for some length-4 cycles.

The rationale for introducing the notion of eACE is the following: in GLDPC/DGLDPC codes,

SCNs have better error correcting capabilities than SPC-CNs, and when studying the susceptibility

of a cycle to noise, the error correcting capabilities of CNs should be considered. It is verified by

simulations that eACE is an effective qualitative property of cycle, which will be shown in the

following simulations.

We propose a modified PEG algorithm incorporating eACE and it is suitable for building

hGLDPC and DGLDPC codes. For simplicity, we assume that there is only one SCN type in the

CNs. i.e. CNs contain SPCs and SCNs using the same component code, typically the Hamming

(15, 11) code. In addition, if a SCN has degree n, we say it has n sockets; if there are l (l < n) edges

connected to it, we say this SCN has (n− l) empty sockets and l sockets have been filled up.

The modified PEG algorithm is as follows

• Order VNs from weakest to strongest. For VN 1, 2,...,N , do the following
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1. For the first edge of the VN i, connect it to the SCN which has empty sockets and the

current degree is the smallest; randomly choose one if there are many of them. If there is

no such SCN, connect it to SPC with the smallest degree; randomly choose one if there

are many of them.

2. For the remaining edges of the VN i, according to the current partial Tanner graph,

expand the local tree rooted at i until case 2.1 or 2.2 is satisfied.

Case 2.1. The local tree cannot cover all the CNs in the Tanner graph, i.e. some CNs, denoted

by CN (∞), are never reachable by expanding the local tree.

Case 2.2. The local tree can cover all the CNs in the Tanner graph. Let CNs, denoted by

CN (2l), be those not reachable by the local tree down to (2l − 3)th level, but

appearing in the (2l − 1)th level.

3. If case 2.1, connect the edge to the SCN which has empty sockets and the smallest degree

in CN (∞). If there is no such SCN, connect it to SPC with the smallest degree. If

case 2.2, connect the edge to the SCN which has empty sockets and has smallest degree

in CN (2l). If there is no such SCN, connect to SPC which has the smallest degree in

CN (2l).

The modified PEG is referred to as “SCNfirst-PEG” in this work. Similarly we consider

“SPCfirst-PEG” if we exchange “SPC” with “SCN” in the algorithm above. Notice that eACE

is naturally integrated into SCNfirst-PEG, since the connecting rules tend to generate the edges

connecting weak VNs and strong SCNs; in case 2.2, when the cycles of length-2l are formed, they

all contain SCNs instead of SPCs, therefore increasing the eACE of cycles. In addition, notice that

a SCN has a fixed number of sockets whereas a SPC has a flexible number of sockets. An ordinary

PEG may leave SCNs with some empty sockets in the final stage of PEG, hence the last several

edges have to connect to SCNs to fill up all the sockets of SCN, which possibly incurs some very

short cycles. In contrast, SCNfirst-PEG tends to fill up the sockets of SCNs in an earlier stage, and

at the end of PEG, by simply adjusting the degree of SPCs when necessary, the girth property of

the Tanner graph can remain uncompromised.

In Fig. 3.5, we give the simulation results of several length-1000 rate-0.5 hGLDPC codes, built

by SCNfirst-PEG and SPCfirst-PEG with different VN orderings. The degree profile of hGLDPC
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code is

λ(x) = 0.3881x+ 0.2681x2 + 0.0027x3 + 0.0034x4 + 0.3377x5

ρ(x) = 0.6303x6 + 0.1010x7 + 0.0061x8 + 0.0171x9 + 0.2456x14 (Hamming(15, 11))

which is optimized by EXIT charts and DE, and it has a decoding threshold of 0.50 dB. In the

experiment, we set Imax = 200, and use one-sweep MAP decoding on SCNs [76] and SPA on

SPC-CNs and REP-VNs. For the sake of fairness we also require that no modifications on SPC-CNs

are allowed, therefore all the codes have the same degree distribution after PEG.

Figure 3.5: Simulation results of length-1000 rate-0.5 hGLDPC codes, built by SCNfirst-PEG and
SPCfirst-PEG with different VN orderings.

In Fig. 3.5, the notation “23456 SCN” means that the VN ordering is “deg-2, deg-3,...,deg-6

REP-VNs”, and SCNfirst-PEG is used. The remaining notations are defined similarly. It can be

seen that code “23456 SCN” has the best error floor behavior, which agrees with the analysis above;

whereas “34562 SCN” and ”65432 SCN” have high error floors, due to the fact that deg-2 REP-VNs

have to connect to SPC-CNs at the end of PEG, generating short cycles with poor eACE values.
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3.3 Relaxation on the girth constraint to lower the error floor of

DGLDPC codes

We call a cycle with length ξ and ACE (or eACE) η a “(ξ, η)-cycle”. For two cycles with (ξ1, η1) and

(ξ2, η2) respectively, if ξ1 > ξ2 and η1 > η2, it is reasonable to conclude that the (ξ1, η1)-cycle is less

susceptible to channel noise than the (ξ2, η2)-cycle. However, if ξ1 < ξ2 and η1 > η2, it is not clear

which cycle is more noise-resilient, since ξ and η are merely qualitative measurements on cycles.

All the PEG algorithms above attempt to maximize the girth of partial Tanner graph during

the edge-appending, hence they tend to generate the cycles with large ξ’s, but not necessarily large

η’s. If we study the case 2.2 in the SCNfirst-PEG, it is very likely that there is no SCN in CN (2l),

so the generated cycles have poor eACE values. For DGLDPC codes, if SPC codes are used as

SVNs (they are even weaker than deg-2 REP-VNs), simulation shows that a cycle containing many

SPC-SVNs with a small η tends to cause decoder “trapping” even when ξ is large.

In view of this phenomenon, we further extend SCNfirst-PEG to “Girth-relaxed SCNfirst PEG”

(GR-SCNfirst-PEG). In GR-SCNfirst-PEG it is furthermore required that SPC-SVN must be

connected to SCNs. Adding such constraint generally decreases the girth of codes, but it will

increase the η of cycles containing SPC-SVNs. The GR-SCNfirst-PEG is largely the same with

SCNfirst-PEG, the only difference is in case 2.2: in GR-SCNfirst-PEG, if there is no candidate SCN

in CN (2l) and VN i is a SPC-SVN, connect the edge to the farthest SCN in the local tree which

has empty sockets and the smallest degree.

Fig. 3.6 depicts simulation results of length-1200, rate-0.5 DGLDPC codes, using SCNfirst-PEG,

SPCfirst-PEG and GR-SCNfirst-PEG with different VN orderings, and no modifications on SPC-CNs

is allowed. We choose SPC(4, 3) (systematic Gcomp) as SVNs and Hamming(15, 11) as SCNs. The

degree profile is

λ(x) = 0.1509x+ 0.0147x2 + 0.1834x3 + 0.2478x5 + 0.4032x3 (SPC(4, 3))

ρ(x) = 0.2323x5 + 0.0685x6 + 0.6992x14 (Hamming(15, 11))

which is optimized by EXIT charts and DE, and it has a decoding threshold of 0.434 dB. In these

DGLDPC codes, CN 1 to CN 119 are SCNs and VN 1 to VN 257 are SPC-SVNs. Imax is set to 200.
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It can be seen in Fig. 3.6 that GR-SCNfirst-PEG code, which contains 16 length-4 cycles, has the

best error floor performance, whereas the “SVN2346 SCNfirst” code, which has no length-4 cycles

and supposedly should have good error floor behavior, shows a very shallow error floor.

The trapping sets (TS’s) of “SVN2346 SCNfirst” code were then studied. If a TS contains l VNs

we call it a size-l TS. At Eb
N0

= 3.6 dB, we transmitted and decoded 300000 frames; after decoding,

956 erroneous frames are collected, all are invalid codewords, and there are 5930 erroneous bits in

them. Table 3.1 lists the number and the size of these 956 TS’s. It is worth noting that, among

5930 erroneous bits, only 6 are REP-VNs and the remaining 5924 bits are attached to SPC-SVNs.

Table 3.1: Distribution of 956 TS’s in the “SVN2346 SCNfirst” code at Eb
N0

= 3.6 dB.

TS size 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of TS’s 0 2 5 7 338 302 163 69 35 21 6 7 1

Figure 3.6: Simulation results of length-1200 rate-0.5 DGLDPC codes, built by SCNfirst-PEG,
SPCfirst-PEG and GR-SCNfirst-PEG with different VN orderings.

From Table 3.1 we can see that TS’s containing 5, 6 and 7 SPC-SVNs are dominant error events.

Of these 956 TS’s there are 146 different TS configurations. In Fig. 3.7, a typical size-5 TS which
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has shown up 94 times in the 956 TS’s is drawn. Notice that this cycle has ξ = 10 and η = 0, and

this TS is introduced by the girth-maximizing SCNfirst-PEG.

Figure 3.7: A length-10 cycle as a dominant TS in the “SVN2346 SCNfirst” code.

For GR-SCNfirst-PEG code, we find out that the smallest eACE of length-4 cycles is η = 6,

such cycle contains two SCNs, a SPC-SVN and a deg-6 REP-VN, which is shown in Fig. 3.8. In

addition, there are two additional edges of SPC-SVN connected to other SCNs outside the cycle.

Such connectivity enables the enhanced protection of SPC-SVNs, therefore improving the error floor

behavior.

The final remark on Fig. 3.6 is that “6432SVN SPCfirst” code also has a good error floor

behavior. Due to the fixed number of sockets of SCNs, many length-4 cycles are generated in the

final stage of PEG. It turns out that it contains 68 length-4 cycles, nonetheless every cycle contains

two SCNs, which increases η and lowers the error floor.

GR-SCNfirst-PEG essentially imposes a changeover point between SPC-SVNs and REP-VNs

during the PEG; for SPC-SVNs before the changeover a larger eACE is obtained at the expense of

a (possible) decrease in the girth, and SCNfirst-PEG is used on REP-VNs after the changeover,

with maximizing the girth as the primary objective. In practice, the switch point can be flexibly

adjusted and placed among VNs, for example it can be place between deg-2 and deg-3 REP-VNs.

The tradeoff between the waterfall and error floor performance as a function of this threshold is an

interesting topic for future study.

3.4 Summary

In this chapter we focus on the designing FL-GLDPC and DGLDPC codes with good error floors.

The main points are listed as follows:
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Figure 3.8: A length-4 cycle with eACE=6.

• The VN ordering is important in PEG, it is advisable processing VNs from the weakest to the

strongest.

• eACE is a generalization of ACE, which can be naturally fit into GLDPC and DGLDPC codes.

• SCNfirst-PEG is an effective PEG algorithm for building FL-hGLDPC codes.

• Shorter DGLDPC codes are more likely to have poor error floors. GR-SCNfirst-PEG is an

appropriate way to construct short DGLDPC codes with good error floors.
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Chapter 4

Design of EE-GLDPC Codes

In practice, encoding complexity is an important issue when designing channel codes. The brute-force

encoding method has the complexity O(N2), where N is the code length, while some carefully

designed codes enjoy linear-time or even sublinear-time encoding complexity. After the rediscovery

of LDPC codes under iterative decoding, one of the criticisms on LDPC codes is their higher

encoding complexity compared with Turbo codes [13]. Later on, the algorithm proposed in [17]

and the invention of IRA-LDPC [53] and EERC-LDPC codes [54] have largely solved the encoding

complexity issue of conventional LDPC codes. In this chapter and next two chapters, we propose

systematic design algorithms for EE-GLDPC and EE-DGLDPC codes, providing an across-the-board

solution for designing EE block codes.

4.1 Review of IRA-LDPC and EERC-LDPC codes

IRA-LDPC codes: the repeat-accumulate code [51] is the prototype of IRA-LDPC codes. In such

codes, the information bits are repeated q times, randomly-permuted, combined and accumulated

to generate parity check bits. All these procedures are easy to implement and they have linear-time

encoding complexity due to the accumulator. Repeat-accumulate codes are extended to irregular-

repeat-accumulate codes in [52] by allowing irregular degree of repetition on different information

bits, and can be further generalized to extended irregular-repeat-accumulate codes by allowing

irregular degree of combining. Throughout this work, we use the term “IRA-LDPC” to denote

extended irregular-repeat-accumulate codes.
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In IRA-LDPC codes, the parity-check matrix H of dimension M × N can be written as

H = [H1 H2], where the random submatrix H1 is M × (N −M) and the structured submatrix H2

is M ×M . The H2 matrix has a bi-diagonal form

H2 =



1

1 1

1 · · ·

1 1

1 1


(4.1)

with

H−T2 =



1 1 1 · · · 1

1 1 · · · 1

1 · · · 1

. . . 1


(4.2)

All the VNs in H2 except for the last one are deg-2 REP-VNs. Furthermore, no cycles exist in

H2, and H−T2 is an upper-triangular matrix. Notice that the generator matrix G can be written as

G = [I HT
1 H

−T
2 ], so the parity bits can be obtained by first passing information bits through the

irregular repeater and combiner (HT
1 ) then the accumulator (H−T2 ). Letting u be the information

sequence, the encoding process of IRA-LDPC code is depicted by the block diagram in Fig. 4.1.

After encoding, the codeword can written as c = [u p].

Figure 4.1: The encoding of an IRA-LDPC code.

Another way to encode IRA-LDPC codes is using an iterative erasure decoder. After inserting u

into the iterative erasure decoder, since in the first parity check equation only the value of the first

parity bit is unknown, therefore its value is found after the first iteration, in other words, the first
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parity bit is recovered. In the second iteration, only the value of the second parity bit is unknown in

the second parity check equation, so its value is found after the second iteration. This procedure is

done recursively until all the values of parity bits j, j = 1, 2, ...,M are determined, at this point the

codeword c = [u p] is found. It takes M iterations for the iterative erasure decoder to encode, still

linear-time encoding.

EERC-LDPC codes: EERC-LDPC codes are another class of EE-LDPC codes with faster

encoding. The VNs in H2 of EERC-LDPC codes are still all deg-2 REP-VNs (excluding the last

one, which is a deg-1 VN), and no cycles exist in H2. In addition, the CN degree profile in H2 of

EERC-LDPC codes is more irregular than IRA-LDPC codes. An example of H2 when M = 8 is

depicted in (4.3).

H2 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 1 0 1 0 1 0

0 0 0 1 0 1 1 1



(4.3)

EERC-LDPC codes can be encoded by a sliding-window encoder [54], and also an iterative

erasure decoder. Since EERC-LDPC codes impose more constraints on the possible positions of

“1”s in H2 matrix (4.3), so it can be encoded in fewer iterations than IRA-LDPC codes. During the

encoding, about half of the parity bits are recovered after the first iteration, about 1
4 of the parity

bits are recovered after the second iteration, and 1
8 after the third iteration, and so on. Since the

numbers of parity bits recovered in each iteration forms a geometric progression with common ratio

1
2 , It can be shown that the encoding time of EERC-LDPC codes is O(log2N).

Fig. 4.2 shows the H2 matrix structure of a (1024, 512) EERC-LDPC code. From Fig. 4.2 we

can see that the structure of H2 matrix ensures the encoding process finished in log2 512 + 1 = 10
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Figure 4.2: The structure of H2 matrix of a (1024, 512) EERC-LDPC code.

iterations, the number of parity bits recovered during each iteration is 256, 128, 64, 32, 16, 8, 4, 2,

1, and 1.

Extensions on IRA and EERC-LDPC codes IRA-LDPC and EERC-LDPC codes can be

regarded as special classes of LDPC codes with H = [H1 H2], where H2 has a general form shown

in Fig. 4.4:

H2 =



In1 0 0 · · · 0

In2 0 · · · 0

In3 · · · 0

0′s and 1′s
. . . 0

InD


(4.4)

In (4.4), H2 is a lower triangular matrix with the first (M − 1) VNs having degree 2 and the last

VN degree 1. Ini denotes an ni × ni identity matrix. From (4.4) we can see that
∑D

i=1 ni = M and

nD = 1. Define Sd =
∑d

i=1 ni, and let S0 = 0. For parity bit vj , j = 1, 2...M , let Sd−1 < j ≤ Sd. It
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is straightforward to obtain that the candidate CNs for connecting the second edge with parity bit

vj are from the CN set Cj with indexes {Sd + 1, Sd + 2, ...,M}.

We use Γ to denote the set of LDPC codes with such structure, and Γ to denote one certain

LDPC code in Π . We can show that IRA-LDPC codes and EERC-LDPC codes belong to Π. For

example, IRA-LDPC code has n = [n1, n2, ...nD] = [1, 1, ...1], and D = M ; EERC-LDPC code has

n = [n1, n2, n3, ...], and ni is determined by (4.9).

For the codes in Π, we have the following properties.

1. An iterative decoder can encode the codeword of Γ in D steps, where D is the length of n,

since an iterative decoder can recover n1 parity bits in the first step, n2 parity bits second

step, and so on.

2. The parity bit vj , Sd−1 < j ≤ Sd is a d-step recoverable (d-SR) node [62]; i.e. the bit vj is

recovered after dth iteration during the encoding. This is the direct result from property 1.

3. No cycles exist in H2 for any code Γ.

The special LDPC code class Π, provides helpful insight on designing EE-GLDPC and EE-

DGLDPC codes. In the next section we describe how to extend IRA-LDPC codes to IRA-sGLDPC

codes.

4.2 From IRA-LDPC to IRA-sGLDPC codes: a heuristic explo-

ration

If an erasure decoder is used to encode an IRA-LDPC code, the parity bits are recovered one by

one in H2, which means that, when recovering the jth bit in H2, the jth bit is regarded as “parity

bit” in current parity check equation. For sGLDPC codes, suppose C(n, k) is used as component

code, for each row of H2, we need to expand the last bit to an all-1 row vector of length (n− k), as

shown in (4.5). Notice that by doing this the last (n− k) bits are regarded as parity bits in each

SCN, so the last (n− k) columns of Hcomp should be linearly independent.
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

1

1

· · ·

1


→



1...1︸︷︷︸
n−k

1...1︸︷︷︸
n−k

· · ·

1...1︸︷︷︸
n−k


(4.5)

Now consider the treatment of 1’s on the secondary diagonal of IRA-LDPC codes. Two extreme

schemes exist: scheme 1 puts only one “1” on the secondary diagonal, while scheme 2 replaces the

single one by a row of (n− k) ones. Both schemes have obvious flaws: the first scheme does not

form cycles in H2, however it generates many deg-1 parity bits that worsen the code performance.

While the second scheme results in many length-4 cycles that worsen the code performance. In

order to verify the above claims, we build two (N = 1095,K = 511) EE-sGLDPC codes by PEG,

with Hamming(15, 11) as component codes. Fig. 4.3 shows the decoding performance of codes based

on these schemes, and both of them show very serious error floors.

Figure 4.3: Performance of IRA-sGLDPC codes with poor H2 structures.
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Now we discuss how to overcome these two types of flaws. Let Hadj be a MC ×N matrix. After

the expansion of the last bit to a all-1 row vector of length (n− k) for each row, for the jth parity

bit vj , let l = d( j−1n−k )e, and define CN set Cj with indexes {l + 1, l + 2, ...MC}, we argue that if the

second edge of parity bit vj is connected to one of the CNs from the set Cj , then the constructed

sGLDPC code has the EE property: when an iterative erasure decoder is used to encode, after the

first iteration parity bit 1, 2,...,(n− k) are guaranteed to be recovered; after the second iteration

parity bit (n − k + 1), (n − k + 2),...,2(n − k) are guaranteed to be recovered, and so on. All

MC(n− k) parity bits can be recovered in at most MC iterations, therefore the encoding time is

O(MC) = O (N(1−R)/(n− k)) = O(N).

In practice, in order to generate as many deg-2 VNs as possible while keeping girth relatively

large, for j = 1, 2...,MC(n− k), we try to make every VN vj have degree 2 by connecting it to some

CN selected from Cj , and PEG is used to help judge the goodness of CNs in Cj .

When j is small, the cardinality of Cj is large, and it decreases as j increases. At the end of a

codeword, some VNs are left with degree 1 in order to avoid length-4 cycles. A toy example with

(n− k) = 3 is shown as follows:

H2 =



. . . . . . . . . . . . . . .

. . . 000 000 000 000

· · · 111 000 000 000

· · · 010 111 000 000

· · · 100 010 111 000

· · · 001 001 010 111


(4.6)

In this example, the last four rows of the H2 matrix are shown. There are six deg-1 VNs in

total in the last three rows. For (MC − j)th row of IRA-sGLDPC codes, j = 0, 1 · · · (n − k − 1),

there are (n − k − j) deg-1 bits. The total number of deg-1 VNs in H2 can be calculated as∑n−k
1 j = 1

2(n− k + 1)(n− k), while the other VNs are deg-2 nodes. Due to the error correcting

capability of SCNs, a small portion of deg-1 parity bits basically does not degrade error floor

performance, as simulation results show.
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4.3 Construction of EE-GLDPC codes with recovery vector n

In this section we extend the IRA-sGLDPC codes to other EE-GLDPC (including EE-sGLDPC

and EE-hGLDPC) codes with flexible encoding speeds, providing a more general framework for

EE-GLDPC codes. These EE-GLDPC codes can be seen as GLDPC versions of code class Π. In

the following, we assume that the adjacency matrix Hadj = [H1 H2] has a dimension MC ×N . We

introduce the recovery vector n = [n1, n2, ...nD], where
∑D

i=1 ni = MC ; the recovery vector is a

design parameter controlling the encoding speed. If we design EE-GLDPC codes according to n

(the design algorithm is shown in the following), it is guaranteed that using an iterative erasure

decoder the encoding process can be finished after at most D iterations.

Define Sd =
∑d

i=1 ni and S0 = 0. Let ci be the ith CN in Hadj , i = 1, 2...,MC , and vj the

jth VN in Hadj , j = 1, 2..., N . For ci the linear code C(pi, qi) is used as the component code,

and Hc,i be the corresponding Hcomp. Based on n we define Ci as the set of CNs with indices

(Si−1 + 1), (Si−1 + 2), ..., Si, so the cardinality of Ci is |Ci| = ni, i = 1, 2..., D.

Let M =
∑MC

i=1 (pi − qi), we first give the definition of the envelope of the H2 matrix. It is a set

of “1”s which assume special positions in Hadj matrix, and is defined as:

{H(i, j) = 1 | (i, j) satisfies N −M +

i−1∑
l=1

(pl − ql) < j ≤ N −M +

i∑
l=1

(pl − ql)} (4.7)

Since the edges in the bipartite graph have a one-to-one mapping with the “1”s in Hadj matrix,

in the following we use the term “edge” and H(i, j) interchangeably. We call an edge “on the

envelope” iff its corresponding H(i, j) = 1 is an element of the envelope. An edge is “below the

envelope” iff the corresponding H(i, j) has the property that i = i0, j > j0, and “above the envelope”

iff i = i0, j < j0, where H(i0, j0) is the edge on the envelope. We also define Vi as the set of vj ’s

such that

{j | H(k, j) is on the envelope, ∀ k ∈ Ci} (4.8)

We also refer to the set of on-the-envelope edges with row indices i as “the envelope section of

ci”, and the number of edges in the envelope section of ci is (pi − qi). Now we consider the set of

codes Π satisfying the following constraining rules

1. An envelope exists in the H2 matrix.
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2. ∀ v ∈ Vi, i = 1, 2..., D the remaining edges of v can be connected to any CNs except those in

Cl, 1 ≤ l ≤ i.

3. For each Hc,i, the columns corresponding to the edges of the envelope section of ci are linearly

independent on GF (2).

Let Γ be an arbitrary code in Π. It can be straightforwardly argued that Γ can be efficiently-

encoded by an iterative erasure decoder using maximum-a-posteriori (MAP) decoding: based on

the values of information bits, the decoder can guarantee recovering all the unknown values of v’s in

V1 after the first iteration since all remaining edges of v’s are connected to Cl, l = 2, 3...D; then the

second iteration recovers all the values of v’s in V2, and so on, until all the parity bits are recovered.

In practice, it is possible that after the construction the actual recovery rate is slightly faster

than D iterations, for the reason that, according to constraining rule 2, the length of the actual n

could possibly be slightly decreased during the construction. So D becomes an upper bound on the

actual recovery time.

For constraining rule 3, the (pi− qi) independent columns ensure that the last (pi− qi) nodes are

parity bits in each super check equation during the iterations, therefore the MAP decoding can be

used to recover them [29]; furthermore, if these nodes do not form a stopping set, a belief-propagation

(BP) decoder can also be used; finally, if Hc,i is systematic and such columns form a (pi−qi)×(pi−qi)

identity matrix, then an erasure-filling decoder can be used, which is the simplest of the three

decoders.

Based on the above discussions, it can be concluded that the codes in Π have the following

properties: an iterative MAP decoder can encode the codeword of Γ in at most D steps. and the

parity bits in Vi are at worst i-SR nodes. Finally, it is straightforward to obtain that the code

set Π defined in previous section is a subset of Π, since besides EE-LDPC codes, Π also includes

EE-sGLDPC and EE-hGLDPC codes.

Application of recovery vector n: EERC-sGLDPC codes

n is a design parameter on EE codes, and in practice n can be flexibly adjusted to control the

encoding speed. EERC-sGLDPC codes, which have a logarithmic encoding speed as a function

of code length (i.e. log2N), can be obtained by choosing a special n. For a given MC , ni in n is
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determined recursively using the following formula [54]:

ni = bM − 1

2

i−1∑
j=0

njc 1 ≤ i ≤ D − 1, and n0 = M (4.9)

After determining n = [n1, n2, ..., nD], we use the above method to construct H2. The formula

in (4.9) indicates that n = [n1, n2, ..., nD] resembles a geometric progression with common ratio

0.5. Due to this property, a sequence of fractal triangles of 0’s can be found along the diagonal of

H2 of EERC-sGLDPC codes. In addition, the n in EERC-sGLDPC codes imposes a more strict

restriction on the CNs a parity bit vj can connect to. Compared with IRA-sGLDPC codes, fewer

CNs are available for a vj ∈ Ci to connect to, especially for the values of j that is slightly larger

than (n− k) · Sd.

For EERC-sGLDPC codes, 1
2(n− k + 1)(n− k) becomes a lower bound on the number of deg-1

VNs; this is because we usually do not have nD−(n−k)+1 = nD−(n−k)+2 = · · · = nD = 1 in n. For

example, when n− k = 3 and n = [· · · , 2, 1, 1], one possible H2 structure is

H2 =



. . . . . . . . . . . . . . .

. . . 111 000 000 000

· · · 000 111 000 000

· · · 100 010 111 000

· · · 010 100 010 111


(4.10)

Now there are seven deg-1 VNs in the H2 matrix, greater than 1
2(n− k + 1)(n− k) = 6. We can

decrease this number by one by splitting nD−2 = 2 into the vector [1, 1], however the length of n

will increase by one, which means it take one more step for the iterative decoder to finish encoding.

Generally, for a EE-sGLDPC code with n, the number of deg-1 VN, N1 can be calculated as

N1 = (n− k)nD +
D−1∑
i=t

n− k − D∑
j=i+1

nj

 · ni
 (4.11)
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where t satisfies 
(n− k) ≤

D∑
j=t

nj

(n− k) >
D∑

j=t+1

nj

In practical EE-sGLDPC code design, the number of deg-1 VNs usually only constitutes a very

small portion of VNs, so the tradeoff between the number of deg-1 VN and encoding time appears

to be a trivial issue. For hGLDPC and DGLDPC codes, usually SCNs corresponds to rows with

small indexes and SPC-CNs with large indexes, so the number of deg-1 VN is only nD.

The encoding time of EERC-sGLDPC codes is the length of n, also notice the fact that

n = [n1, n2, ..., nD] resembles a geometric progression and
∑D

i=1 ni = M , so the encoding time is on

the order of O(log2M), or O(log2N). It is worth noting that for the same code length and rate,

the number of rows of the adjacency matrix Hadj in GLDPC codes is (n− k) times smaller than its

counterpart in LDPC codes, which results in an even faster encoding time for EE-GLDPC codes.

Building IRA-LDPC and EERC-LDPC codes under generalized EE principle

IRA-LDPC and EERC-LDPC codes are also members of Π. Both codes have (pi− qi) = 1, ∀ i, since

all CNs are SPC codes. In the following we propose an extra rule on H2 of EE-LDPC codes, which

simplifies the H2 construction, and show that IRA-LDPC and EERC-LDPC codes are obtained by

applying this rule under some specific n. For the sake of simplicity we only consider the case that

all parity bits in H2, except the last nD positions, are deg-2 REP-VNs.

Without loss of generality, it is assumed that when constructing the H matrix of EE-LDPC

codes, the envelope of the H2 matrix is first generated and we proceed to append the second edges

of parity bits from left to right in H2 matrix. The extra rule is as follows: the second edge is

appended to the candidate CN with the smallest number of edges; if ties exist, choose the CN with

the smallest number of index (this guarantees the uniqueness of H2 matrix; if not done by so, many

possible variations of H2 exist in EERC-LDPC case). Another merit of this extra rule is it tries to

generate a CN degree distribution as uniform as possible, which helps lower the error floor at high

SNRs.
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As an example, we give a 8× 8 H2 matrix under constraint n = [3, 3, 2]: the red ‘1’s form the

envelope of H2, and the blue ‘1’s are the second edges which are all below the envelope satisfying

the extra rule above.

H2 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

1 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0

0 0 1 0 0 1 0 0

0 0 0 1 0 1 1 0

0 0 0 0 1 0 0 1



(4.12)

As special cases, it is readily seen that if n = [1, 1..., 1], by applying such rule we obtain

IRA-LDPC codes, and EERC-LDPC codes if the elements in n form a geometric progression with

common ratio 0.5.

The shape of H2 of EE-GLDPC codes

For EE-GLDPC codes, H2 itself must contain cycles, and the H2 matrix of EE-GLDPC codes have

more irregular structure compared with EE-LDPC codes. In Fig. 4.4, a blowup of the lower right

corner of the H2 matrix of an EE-hGLDPC code using n = [..., 16, 8, 8, 8, 4, 4, 4] is shown: the red

dots correspond to “1”s in H2 matrix. It can be observed that the distribution of red dots is fairly

irregular. Also note that n imposes some “triangular forbidden areas” below the envelope with the

dimension of the triangle determined by the elements of n.
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Figure 4.4: Blowup of the lower right corner of H2 matrix of a length-1000 EE-hGLDPC code using
n = [..., 16, 8, 8, 8, 4, 4, 4].

4.4 Encoding procedures and simple examples

We give a simple IRA-sGLDPC code using (7, 4) Hamming code as its component code to illustrate

the encoding process using an iterative erasure decoder. The IRA-sGLDPC code has a Hadj as



1 0 1 1 1
... 111 000 000 000

1 1 1 0 0
... 010 111 000 000

0 1 0 1 0
... 100 010 111 000

0 0 0 0 1
... 001 100 010 111


, (4.13)

and is a (17, 5) code. Suppose Hcomp has the form

Hcomp =


1 0 1 1 1 0 0

1 1 1 0 0 1 0

0 1 1 1 0 0 1

 (4.14)
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and the information sequence is u = 11101.

? 1st iteration: 11101→ 11101000. The red bits are regarded as information bits in Hcomp to

generate parity bits 000, so the first three parity bits of IRA-sGLDPC code are 000.

? 2nd iteration: 11101000→ 11101000010. Similarly, the red bits are regarded as information bits

in Hcomp to generate parity bits 010, so the fourth, fifth and sixth parity bits of IRA-sGLDPC

code are 010.

? 3rd iteration: 11101000010→ 11101000010011. Following the procedures above, the values of

7th, 8th and 9th parity bits of IRA-sGLDPC code are found as 011.

? Final iteration: 11101000010011→ 11101000010011011. The values of 10th, 11th and 12th

parity bits of IRA-sGLDPC code are also found as 011.

? Output: u = 11101 encoded as c = 11101000010011011, after four iterations.

It can be observed that this (17, 5) IRA-sGLDPC code is a systematic linear code: u = 11101

appears in the first five bits in c = 11101000010011011. Similarly, it is straightforward to obtain

that all the EE-GLDPC codes are systematic, and the information bits correspond to the columns

of H1 matrix.

As another example, we list below the H2 matrix of a simple EE-hGLDPC code.

H2 =



1 1 1 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0

0 0 1 1 0 0 1 0 0

1 0 0 0 1 0 1 1 0

0 1 0 0 0 1 0 1 1


. (4.15)

The envelope is formed by red “1”s. c1 and c2 are SCNs, they use some linear code C(n, n− 3) as

component codes, the remaining CNs are SPC codes. All VNs are deg-2 nodes except the last one.

We adopt n = [2, 1, 1, 1]. When encoding, 6 parity bits are recovered after the 1st iteration, then

the 7th, 8th and 9th parity bits after 2nd, 3rd and 4th iterations, respectively.
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4.5 Simulation results

The performance of EE-GLDPC codes is studied in this section. In the first experiment, we construct

a (1024, 640, 0.625) IRA-sGLDPC code π1 using Reed-Muller (3, 5) code as the component code.

The component code is a (32, 26) code so the adjacency matrix Hadj is 64 × 1024. The degree

distributions of π1 are:

λ(x) = 0.0103 + 0.9590x+ 0.0308x2,

ρ(x) = x31

The PEG algorithm is used to build π1, and it operates with decreasing indices of parity bit j,

since the cardinality of available CNs increases if j decreases. We remark that the PEG algorithm

does not specify the CN degree, whereas the Hadj matrix of sGLDPC codes should have a fixed

row weight. It could happen that in the final stages a very few shorter cycles may be formed due

to the lack of available sockets in SCNs, which slightly affects the cycle spectrum of code. In this

experiment, PEG can avoid length-4 cycles in Hadj so the girth of π1 is 6.

Fig. 4.5 shows the structure of Hadj matrix of π1. It can be seen that H1 has a random structure

and H2 is a lower-triangular matrix, which enables the EE property.

Fig. 4.6 shows the performance of π1 on the BIAWGN channel. For comparison, we designed

two length-1200, rate-0.5 EE-LDPC codes; one is an IRA-LDPC and the other an EERC-LDPC

code; for these codes we set dvmax = 6 and the profile is optimized by EXIT charts and DE as

λ(x) = 0.3332x+ 0.2404x2 + 0.4264x5

ρ(x) = 0.6734x5 + 0.3266x6

Due to existence of deg-1 VNs and the fixed structure of H2 matrix, the actual degree profile

(especially ρ(x)) obtained by PEG is slightly different from above. We puncture the first 200 parity

bits in the H2 matrix of EERC-LDPC code, which is optimal puncturing argued by [54], and 200

parity bits in the H2 matrix of IRA-LDPC code are also punctured using the method proposed

in [66]; therefore two punctured LDPC codes are (1000, 600) rate-0.6 codes. The maximum number

of iterations is set to Imax = 200 for three codes.

In Fig. 4.6, we can see that IRA-LDPC and EERC-LDPC punctured codes show slightly better
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Figure 4.5: The structure of Hadj matrix of π1.

waterfall performance over π1, by about 0.1 dB at BER= 10−3. This is due to the inherent rate loss

of sGLDPC codes. However, IRA-LDPC and EERC-LDPC punctured codes show a high error floor

compared with π1 at high SNR. π1 outperforms LDPC codes about 0.6 dB at BER= 10−7, with a

similar code length and a higher code rate. The low error floor of π1 is attributed to the powerful

error correcting capabilities of Reed-Muller (5, 3) codes at high SNR, and such low error floor is

achieved at the expense of a slightly degraded waterfall performance.

The EERC-sGLDPC code is studied in the second experiment: a (645, 301, 0.467) code π2 is

devised using a (15, 11) Hamming code as component code. The Hadj of π2 is 86× 645 and contains

no length-4 cycles. The recovery vector n is chosen as [43, 21, 11, 5, 2, 2, 1, 1], satisfying a geometric

progression. The degree profile of π2 are

λ(x) = 0.0085 + 0.9659x+ 0.0256x2

ρ(x) = x14
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Figure 4.6: Comparison of the (1024, 640, 0.625) IRA-sGLDPC code with IRA-LDPC and EERC-
LDPC punctured codes.

Fig. 4.7 shows the structure of Hadj of π2. It can be seen that the fractal triangles (forbidden

areas) along the diagonal of H2 make the logarithmic encoding speed feasible.

Fig. 4.8 compares the performance of π2 with ordinary GLDPC codes [33]. π2 and these ordinary

GLDPC codes are of slightly different lengths but use the same component code. From Fig. 4.8,

after taking the code-length difference into account, we conclude that, as a special class of GLDPC

codes, π2 offers a similar or slightly better performance over the ordinary sGLDPC codes. Moreover,

π2 exhibits a good error floor behavior at high SNRs, for both BER and FER.

Performance comparison of π2 with irregular LDPC code is done in the next experiment: we

puncture 42 parity bits from π2 to obtain π3, a (603, 301, 0.499) code. These 42 parity bits are

punctured in a way such that each SCN contains at most one punctured parity bits (i.e. uniform

puncturing). The reason for such puncturing pattern is explained in Chapter 7. In order to

illustrate the principle of uniform puncturing, we give the indices of first ten punctured bits:

[2, 8, 11, 14, 17, 21, 27, 29, 33, 39]. Note that the punctured bits are uniformly distributed among the

SCNs.
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Figure 4.7: The structure of Hadj matrix of a (645, 301) EERC-sGLDPC code.

The comparison of π3 with the irregular LDPC code of same length and rate is made in Fig. 4.9.

The irregular LDPC code devised in [30] has regular check degree 9 and the highest VN degree is 20.

At low SNR, the irregular LDPC code outperforms π3 a little because it enjoys a lower decoding

threshold. However, π3 behaves better after SNR passes through 2.2 dB. At BER = 10−6, π3 has

an improvement of 0.4-0.5 dB over irregular LDPC codes, and about 0.8 dB at BER = 10−7, gains

are likely to be even better for even lower error rates.

The last experiment involves the design of IRA-hGLDPC codes. EXIT charts and DE are used

to derive a good ensemble profile. The optimized profile has a decoding threshold Eb/N0 = 0.56 dB,

and has the degree distribution

λ(x) = 0.3740x+ 0.3050x2 + 0.0038x3 + 0.0035x4 + 0.3137x5

ρ(x) = 0.0741x5 + 0.5780x6 + 0.0317x7 + 0.0765x8 + 0.2397x14(Hamming(15, 11))

With the help of SCNfirst-PEG, we designed a (N,K,R) = (1024, 512, 0.5) IRA-hGLDPC

mother code Ch using the above optimized profile. Due to the randomness of PEG and the structure
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Figure 4.8: Performance comparison of EERC-sGLDPC code π2 with ordinary GLDPC codes.

of IRA-hGLDPC code, the actual degree distribution is slightly different. Hadj is 368× 1024 and

contains 48 SCNs, and there is no length-4 cycle in Hadj .

Fig. 4.10 shows the structure of Hadj of Ch. Notice that the envelope in H2 matrix has two

parts: the first part has a mild slope, which corresponds to envelope sections of SCNs, and the

second part has a steeper slope, which is composed of envelope sections of SPC-CNs.

The performance of Ch is compared with EERC-LDPC and IRA-LDPC codes. We construct a

EERC-LDPC code and a IRA-LDPC code of the same length and rate, with the same maximum

VN degree dvmax = 6 using PEG. The profiles of LDPC codes are also optimized by EXIT charts

and DE. After the PEG procedure, the actual degree distribution of the EERC-LDPC code is

λ(x) = 0.0003 + 0.3328x+ 0.2468x2 + 0.0012x3 + 0.4188x5

ρ(x) = 0.7367x5 + 0.2356x6 + 0.0075x7 + 0.0140x8 + 0.0062x9
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Figure 4.9: Performance comparison of EERC-sGLDPC code π3 with irregular LDPC code.

and the actual degree distribution of the IRA-LDPC code is

λ(x) = 0.0003 + 0.3328x+ 0.2468x2 + 0.0012x3 + 0.4188x5

ρ(x) = 0.7012x5 + 0.2988x6

For LDPC codes also no length-4 cycle exist in H matrix. Fig. 4.11 shows the performance

comparison of Ch and LDPC codes, with Imax = 200 for three codes. The SCNfirst-PEG causes

slight inferior waterfall performance of Ch compared with LDPC codes, nonetheless in the error

floor region the existence of SCNs in hGLDPC codes makes Ch have a good error floor: Ch has a 0.7

dB gain over EERC-LDPC codes at BER around 10−7. The low error floor of Ch is even better

reflected in FER, where FERs of IRA-LDPC and EERC-LDPC codes begin to flare out when SNR

is greater than 2.2 dB.

At the end of this chapter, we like to point out that more simulation results of EE-LDPC and

EE-GLDPC codes using various n’s will be presented in Chapter 6, where the tradeoff between n

and error floor performance is studied.
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Figure 4.10: The structure of Hadj matrix of a (1024, 512) IRA-hGLDPC code.

4.6 Summary

The principles for designing EE-GLDPC codes are discussed in this chapter. The main points are

listed below

• EE-LDPC codes can be extended to EE-GLDPC codes, using the generalized EE principle

(i.e. the three constraining rules).

• The H2 matrix in EE-GLDPC codes contains cycles and is more irregular than it is in

IRA-LDPC and EERC-LDPC codes.

• EE-GLDPC codes have very similar decoding performance with ordinary GLDPC codes.

• IRA-LDPC and EERC-LDPC codes are special EE codes which are obtainable by adding an

extra rule to the generalized EE principle.
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Figure 4.11: Performance comparison of the (1024, 512) hGLDPC code with IRA-LDPC and
EERC-LDPC codes.
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Chapter 5

Design of EE-DGLDPC Codes

The EE property described in Chapter 4 offers a basis for extending EE-GLDPC codes to EE-

DGLDPC codes. However the existence of SVNs requires that the H2 matrix should be further

modified to ensure EE property of DGLDPC codes. In this chapter, we present design prin-

ciples for EE-DGLDPC codes. The proposed algorithm encompasses a much wider scope of

iteratively-decodable block codes, providing an across-the-board solution for designing EE block

codes. Simulation results also indicate that, in addition to their EE property, EE-DGLDPC codes

also have performance nearly as good as ordinary DGLDPC codes.

5.1 Free edges vs. constrained edges

In previous chapter we have discussed the EE principle for sGLDPC and hGLDPC codes. We now

show how it can be extended from hGLDPC to the DGLDPC case. Consider a REP-VN with

degree n in GLDPC codes, when it is replaced by a SVN using C(n, k) as a component code. This

is equivalent to adding an extra k − 1 information bits to the code. If the original REP-VN was in

H1, then after substitution, all the k bits of SVN are information bits. On the other hand, if the

original REP-VN was in H2, then k − 1 bits are information bits and one bit is parity bit. In view

of this, for EE-DGLDPC codes designed in this work, information bits are generally not grouped

together as in the cases of EE-LDPC and EE-GLDPC codes.

Now the task is how to appropriately arrange the edges of SVNs in H2 matrix so that Hadj has

the EE property. In the following, we call a SVN in H2 “recovered” iff all the values of k information
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bits of C(n, k) are known, otherwise it is “not recovered”. Let Gcomp of dimension k × n be the

generator matrix used by the SVN. The SVN has n edges connected to CNs, notice that the message

carried by each edge is some linear combination of k information bits of C(n, k).

If only k − 1 information bits of the component code are known, some edges can still have

the messages carried by them recovered, since these messages can be linearly represented by these

k − 1 bits, while others can not. Based on such observation we have the following definitions for

constrained edges and free edges:

Definition: for a SVN in H2, once k− 1 information bits of the SVN are chosen, we call an edge

e a free edge if the message carried by e can be recovered by (k − 1) information bits with known

values; otherwise it is called a constrained edge.

It should be noted that the number of constrained and free edges depends on the specific choice

of k − 1 information bits. For example, consider Hamming (7, 4) code with generator matrix

Gcomp =



1 1 0 1 0 0 0

0 1 1 0 1 0 0

1 1 1 0 0 1 0

1 0 1 0 0 0 1


(5.1)

If we choose the first three information bits of the component code as known bits, then the 1st, 3rd

and 7th edges are constrained edges and the remaining four edges are free edges. On the other hand,

if the 1st, 2nd and 4th information bits are chosen as known bits, we will have four constrained

edges and three free edges.

Once constrained and free edges are defined, we can construct EE-DGLDPC codes as follows:

the envelope is defined the same way as it is done in EE-hGLDPC codes. For REP-VNs in H2, the

constraining rule 2 in section 4.3 still applies. For SVNs in H2, one of the constrained edges is one of

the elements forming the envelope and the remaining constrained edges need to satisfy constraining

rule 2, whereas for free edges they can be placed anywhere (above or below the envelope) as long as

no parallel edges are formed.

The efficient encodability of EE-DGLDPC codes can be argued as follows: the free edges carry

known values during all iterations so they can be placed in any row, since they do not add extra

78



unknowns in parity-check or super check equations. The iterative decoder can still recover all the

VNs and SVNs in Vi after the ith iteration, as it did in hGLDPC codes.

It is worth noting that, the EE principle for DGLDPC codes is a generalized form of EE-hGLDPC

codes. In EE-hGLDPC codes, all the VNs are REP-VNs, and notice that the generator matrix of a

deg-n REP-VN has the form

Gcomp =

n︷ ︸︸ ︷
[1, 1, ..., 1]

so all edges are constrained edges and needed to be placed below the envelope. Therefore there is

no edge above the envelope for EE-LDPC, EE-sGLDPC and EE-hGLDPC codes, as shown in Fig.

(4.2), (4.4), (4.5), (4.7) and (4.10).

5.2 Permutations of edges of SVNs and SCNs

The more intricate structure of SVN, namely free edges and constrained edges, entails additional

handling in the EE-DGLDPC iterative decoder design, which is reflected in the requirement for

permuting columns for both Gcomp of SVNs and Hcomp of SCNs. In this section an external-

permutation solution is proposed to tackle this issue.

Permutation of edges of SVN

The requirement to permute the columns of the generator matrix of the SVN is caused by nature

of the free edges. Suppose there are l constrained edges and n − l free edges in the SVN. When

building the code, due to the additional constraints on graphical properties, such as maximizing the

girth, there could be an arbitrary number (0 to n− l) of free edges below the envelope. Generally

speaking, we can not guarantee finding a fixed Gcomp = [G1, G2, ..., Gn] and cleverly choosing k − 1

information bits such that the last l+ f columns of Gcomp always contain l constrained edges and f

free edges, for all f = 0, 1, ...n− l.

Let us assume there are f (0 ≤ f ≤ (n− l)) free edges under the envelope. A permutation σ is

mapping (1, 2, ..., n)→ (p1, p2, ...pn) such that G′ = [Gp1 , Gp2 , ...Gpn ] satisfies that the last (f + l)

columns correspond to f free edges and l constrained edges. There are two ways to implement the

SVN decoder: the first one simply uses G′ as the generator matrix of SVN, however by doing so
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in most cases we can not have a uniform decoder over SVNs. The second way is adding a fixed

permutation of order n between the C(n, k)-SVN and CNs: when messages arrive from CNs to the

SVN, the edges are permuted using σ, and from SVN to CNs it is σ−1, as shown in Fig. 5.1. The

external permutation mechanism provides a practical solution for using a uniform Gcomp over SVNs.

In practice, the permutation is simply a one-time rewiring to each SVN’s sockets.

Figure 5.1: The external permutation mechanism in SVN.

As an example of the claim above, consider the Gcomp in (5.1). Suppose the seven edges of SVN

1 in H2 matrix has the form [...1...1..1...1...1...1...1...]T , and SVN 2 is [...1...1..1...1...1...1...1...]T ,

where the red “1” means that this “1” is on the envelope. After the examination we know that

no matter how we carefully pick k − 1 = 3 information bits in SVN 1 and 2, there exists no such

Gcomp which at the same time satisfies that the last three columns of Gcomp correspond to three

constrained edges, and last four columns correspond to three constrained edges and one free edge.

In other words, we either need to use Gcomp and G
′
comp, where one is the column permutation of the

other, to decode SVN 1 and SVN 2 respectively, or one of the SVNs needs the external permutation

mechanism to have a uniform decoder.

Suppose SVN 1 chooses the first three information bits of the component code as known bits,

and uses Gcomp as

Gcomp =



1 1 0 0 1 0 0

1 0 1 0 0 1 0

1 0 0 1 1 1 0

0 0 0 0 1 1 1


.
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Notice that the last three columns of Gcomp correspond to three constrained edges. For SVN 2, if

the first three information bits of the component code are chosen as known bits, a possible G
′
comp

has the form

G
′
comp =



1 1 0 1 0 0 0

1 0 1 0 1 0 0

1 0 0 1 1 0 1

0 0 0 1 1 1 0


Now the last four columns of G

′
comp correspond to three constrained edges and one free edge. Now

if we want to use Gcomp to decode SVN 2, based on the relationship between Gcomp and G
′
comp,

then σ is σ[1, 2, 3, 4, 5, 6, 7] = [1, 2, 3, 5, 6, 7, 4] and σ−1[1, 2, 3, 4, 5, 6, 7] = [1, 2, 3, 7, 4, 5, 6].

Permutation of edges of SCN

The necessity to permute the edges of SCNs is also caused by the free edges of SVNs. In hGLDPC

codes, column permutation of Hc,i is not necessary since the envelope section of ci always corresponds

to the last (pi − qi) columns in Hc,i. As long as the last (pi − qi) columns in Hc,i are linearly

independent, a uniform Hc is good for SCNs with the same component code. For EE-DGLDPC

codes, the free edges can cause that the envelope section of ci does not corresponds to the linearly-

independent columns in Hc,i; in this case the EE-DGLDPC codes can become no longer efficiently-

encodable. In view of this, a permutation of columns is possibly needed to make sure the envelope

section has independent columns, this is especially the case when erasure-filling decoding is used: the

permutation should be done in such a way that the columns in Hc,i corresponding to the envelope

section of ci form an identity matrix.

Similar with SVNs, in order to correctly decode SCNs, we can either use different forms of

Hcomp’s for SCNs, which could possibly increase the overall complexity of the SCN decoders; or

have a uniform decoder using the same Hcomp for all the SCNs as long as the external permutation

method is employed. The permutation process is essentially the same with it in SVNs.

On the other hand, if a MAP decoder on SCN is applied, it is possible to permute Hcomp in a

way such that any pi − qi consecutive columns are linearly independent, and in such case a uniform

Hcomp can be used without any external permutation. For a Hamming (15, 11) code, such Hcomp
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can be found as

Hcomp =



1 0 1 1 0 0 1 0 0 1 0 1 1 1 0

0 1 1 1 1 0 0 1 0 1 0 0 0 1 1

1 0 0 1 0 1 0 1 1 1 0 0 1 0 1

0 1 1 0 0 0 1 1 1 1 1 0 1 0 0


(5.2)

Notice that any consecutive four columns are linearly independent.

Finally, for SPC-CNs, no permutation of Hcomp is needed since the Hcomp of a deg-n SPC-CN

has the form

Hcomp =

n︷ ︸︸ ︷
[1, 1, ..., 1]

5.3 Encoding procedures and examples

We first give a simple DGLDPC code example where no SCNs exist in the Hadj matrix. Let Hadj be

Hadj =



1 0 1 0
... 1 0 1 0

0 1 1 1
... 1 1 0 0

0 1 0 1
... 0 1 1 0

1 1 1 0
... 0 0 1 1


(5.3)

where the red column corresponds to a SVN using SPC(3, 2) as its component code, and choose

Gcomp as

Gcomp =

1 1 0

0 1 1

 (5.4)

It is also assumed that the first information bit in the SVN is the information bit of DGLDPC code.

After column expansion we have

HSPC =



1 0 1 0
... 1 0 10 0

0 1 1 1
... 1 1 00 0

0 1 0 1
... 0 1 11 0

1 1 1 0
... 0 0 01 1


(5.5)
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Notice that the values of “1”s in the red column with bold fonts are known (since these are

information bits of the DGLDPC code), and we can see that HSPC is essentially a (9, 5) IRA-LDPC

code with one information bit in H2 matrix. An iterative erasure decoder can encode this DGLDPC

code in four iterations.

In the next example, we present a simple (14, 7) rate-0.5 EE-DGLDPC code with one SCN in it.

Let Hadj be

Hadj =



1 0 1 1
... 1 0 0 0 0 1 0

0 1 0 0
... 1 1 1 1 0 1 0

1 0 1 0
... 0 1 0 0 1 0 0

0 1 1 1
... 0 0 1 0 1 1 0

1 1 0 0
... 0 0 0 1 0 1 1


(5.6)

where the first and the tenth columns are SVNs, denoted by SVN 1 and SVN 2 respectively, and

they use Gcomp,1 = [1 1 0; 0 1 1] and Gcomp,2 = [1 1 0 0; 0 1 1 0; 0 0 1 1], respectively. Also assume the

first two information bits in the SVN 2 are information bits of the DGLDPC code. The second row

is a SCN using (6, 3) shortened Hamming code with Hcomp as

Hcomp =


1 0 1 1 0 0

1 1 0 0 1 0

0 1 1 0 0 1



Let u = [u1, u2, ..., u7] be the information sequence. u1 and u2 belong to SVN 1 and u6 and u7

belong to SVN 2. Let p = [p1, p2, ..., p7] be the parity-bit sequence, and p6 belongs to SVN 2. After

encoding, the codeword c is a length-14 sequence with

c = [u1, u2, u3, u4, u5, p1, p2, p3, p4, p5, u6, u7, p6, p7]
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For the sake of clarity, we only do the column expansions on Hadj . After column expansions, H̃ is

H̃ =



u1u2 u3 u4 u5
... p1 p2 p3 p4 p5 u6u7p6 p7

10 0 1 1
... 1 0 0 0 0 100 0

00 1 0 0
... 1 1 1 1 0 110 0

11 0 1 0
... 0 1 0 0 1 000 0

00 1 1 1
... 0 0 1 0 1 011 0

01 1 0 0
... 0 0 0 1 0 001 1


(5.7)

Suppose u = 0110101. The encoding process is as follows

? 1st iteration: u1 = 0, u4 = 0, u5 = 1 and u6 = 0 are used in the first SPC equation to

determine the value of p1. We have p1 = 1.

? 2nd iteration: u3 = 1, p1 = 1 and u6 ⊕ u7 = 1 are regarded as known bits in Hcomp (they

correspond to the 1st, 2nd and 6th columns of Hcomp, respectively) to calculate p2, p3 and p4.

We obtain p2 = 0, p3 = 1 and p4 = 0.

? 3rd iteration: u1 ⊕ u2 = 1, u4 = 0 and p2 = 0 are involved in the third SPC equation to find

p5. p5 = 1.

? 4th iteration: u3 = 1, u4=0, u5 = 1, p3 = 1 and p5 = 1, therefore u7 ⊕ p6 = 0, and p6 = 1.

? 5th iteration: u2 = 1, u3 = 1, p4 = 0 and p6 = 1, so p7 = 1. After the 5th iteration, all the 7

parity bits are recovered.

? Output: c = [u1, u2, u3, u4, u5, p1, p2, p3, p4, p5, u6, u7, p6, p7] = [01101101010111];

Note that this EE-DGLDPC code is still systematic, nonetheless the information bits are not

clustered together but rather dispersed among the codeword bits. In addition, the Hadj structure

makes the p2, p3 and p4 not correspond to the last three columns in Hcomp, so it is necessary to

make sure that the 3rd, 4th and 5th columns of Hcomp are linearly independent; otherwise, if we
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use Hcomp as follows

Hcomp =


0 1 1 1 0 0

1 0 1 0 1 0

1 1 0 0 0 1


then in the second iteration the values of p2, p3 and p4 can not be determined, even if a MAP

decoder is used; in such case this DGLDPC code no longer has the EE property. Therefore, this

simple EE-DGLDPC example also verifies the necessity of permutations of SCN edges.

5.4 Simulation results

We next present simulation results of EE-DGLDPC codes and their comparisons with ordinary

DGLDPC codes and irregular LDPC codes. All the optimized profiles are obtained by EXIT charts

and DE. It should also be noted that the EXIT chart provides an optimistic estimation of the

threshold [73]; the actual threshold is slightly higher.

Table 5.1 lists the profiles used in the simulation. DGLDPC1, LDPC1 and DGLDPC3 are

rate-0.5 profiles and DGLDPC2 and LDPC2 are rate-0.75 profiles. The generator matrix Gcomp

of SPC-SVNs assume the systematic form, and n is chosen as the all-one vector. When decoding,

the sum-product algorithm (SPA) is used when updating REP-VNs and SPC-CNs, and the MAP

decoder based on the component code trellis [76] is adopted for the SCN decoding. As for SPC-type

SVNs, a simple update rule exists [50]. The maximum number of iteration Imax is set to 200, and

BER is calculated based on the information bits.

We first consider moderate-blocklength, rate 0.5 codes. Length N = 1200 EE-DGLDPC and

irregular LDPC codes are designed by PEG using profile DGLDPC1 and LDPC1, respectively. For

DGLDPC code, the number of SPC(3, 2) SVNs is 246 and the adjacency matrix Hadj is 600× 954.

The last column of Hadj of EE-DGLDPC code corresponds to a deg-1 VN in order to fulfill the EE

property, and all the SVNs are placed in the H2 part. Fig. 5.2 shows the structure of Hadj ; it can

be observed that there are many free edges above the envelope.

Fig. 5.3 gives the performance comparisons of EE-DGLDPC, ordinary DGLDPC and irregular

LDPC codes. The waterfall performance of EE-DGLDPC code is slightly better than irregular

LDPC codes, which agrees with the threshold difference. The ordinary DGLDPC code does not
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Table 5.1: Profiles and thresholds of LDPC and DGLDPC codes used in the simulations.

DGLDPC1 LDPC1 DGLDPC2 LDPC2 DGLDPC3 DGLDPC4

Variable Nodes

REP(2,1) 0.00180 0.33311 0.00132 0.27957 0.10005 0.15046

REP(3,1) 0.37785 0.24636 0.07021 0.00054 0.00085 0.00118

REP(4,1) 0.00010 0.00119 0.77462 0.71989 0.35247 0.03180

REP(6,1) 0.41592 0.41934 0.15612 0.33579

SPC(3,2) 0.20433 0.48077

SPC(4,3) 0.15385

SPC(5,4) 0.39051

Check Nodes

SPC(5,4) 0.00058 0.00005 0.00025

SPC(6,5) 0.98065 0.70142 0.00244 0.02274

SPC(7,6) 0.01749 0.29240 0.22403 0.27757

SPC(8,7) 0.00069 0.00468 0.00047

SPC(9,8) 0.00059 0.00145 0.00112

SPC(10,9) 0.00044 0.00124

SPC(11,10) 0.00244 0.00644

SPC(12,11) 0.98696 0.46560

SPC(13,12) 0.00748 0.52171

SPC(14,13) 0.00214 0.00202

SPC(15,14) 0.00054 0.00299

Ham.(15,11) 0.77169 0.69969

Threshold (by EXIT)

0.552 dB 0.567 dB 2.042 dB 2.059 dB 0.417 dB 0.429 dB

perform as well as EE-DGLDPC code in the waterfall region, but it has a slightly a steeper error

curve at higher SNRs. All three codes do not show error floors down to BER= 10−7.

Next we show the performance of N = 1200 and R = 0.75 high-rate codes built by PEG using

profile DGLDPC2 and LDPC2. The number of SPC(4, 3) SVNs is 139 and the dimension of Hadj is

300× 922. Likewise, all the SVNs are placed in H2. The performance of EE-DGLDPC, ordinary

DGLDPC and irregular LDPC codes are shown in Fig. 5.4. All three codes have nearly the same

waterfall curves (which also agrees with threshold analysis) and show good error floor performance.

Nonetheless under the close examination it can be observed that EE-DGLDPC code actually exhibits

a slightly better waterfall curve and a slightly worse BER at highest SNR.

In the next experiment we demonstrate the advantages of EE-DGLDPC codes over LDPC codes

at longer block lengths. We designed EE-DGLDPC codes with profile DGLDPC3 and irregular

LDPC codes with LDPC1, of lengths 104 and 5× 104. All codes are randomly-constructed except

that parallel edges and length-4 cycles are avoided. The threshold of LDPC1 is 0.15 dB worse than

that of DGLDPC3, and such gap is also reflected in Fig. 5.5: EE-DGLDPC codes outperform LDPC

codes over all SNRs; at BER= 3× 10−5, length 5× 104 EE-DGLDPC code outperforms about 0.09
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Figure 5.2: The structure of Hadj of a length-1200, rate-0.5 EE-DGLDPC code with no SCNs.

dB over the LDPC code; for length 104 and 5× 104 code, LDPC codes show serious error floors,

whereas EE-DGLDPC codes have much better error floor performance compared with LDPC codes.

The error floor advantages of EE-DGLDPC codes over irregular LDPC codes becomes more obvious

when FER is taken into account.

As a last experiment, we compare the EE-DGLDPC code with LDPC code at a short blocklength.

A length-1200 rate-0.5 IRA-LDPC code and a EERC-LDPC code of the same length and rate are

built by PEG according to profile LDPC1. The EE-DGLDPC code is built by GR-SCNfirst-PEG

using profile DGLDPC4, and the dimension of Hadj is 234 × 782. There are 418 SVNs and 122

SCNs in Hadj . Fig. 5.6 shows the structure of Hadj , in Fig. 5.6 we can see the free edges above

the envelope, envelope sections of SCNs and SVNs, and the effect of GR-SCNfirst-PEG: all the

SPC-SVNs are connected to SCNs. Finally, no length-4 cycles exist in these three codes.

Fig. 5.7 shows the performance comparison of three codes: though the EE-DGLDPC code has a

profile with better decoding threshold than the LDPC profiles, the connectivity constraint enforced

by GR-SCNfirst-PEG causes some degradation in the waterfall region, in exchange for a lower error

floor. At high SNR, EE-DGLDPC achieves about 0.5 dB gain over IRA-LDPC codes and 0.8 dB
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Figure 5.3: Performance comparison of length-1200, rate-0.5 irregular LDPC, EE-DGLDPC with no
SCNs, and ordinary DGLDPC codes.

gain over EERC-LDPC codes, at BER=2× 10−7. The low error floor of EE-DGLDPC code is more

visible on FER curve: at Eb
N0

= 2.5 dB, the FER of EE-DGLDPC code is more than two orders of

magnitude lower than EERC-LDPC code.

5.5 Summary

In this chapter designing EE-DGLDPC codes are discussed. The main points are listed below:

• For a C(n, k)-SVN in the H2 matrix, it corresponds to k − 1 information bits and one parity

bit of the DGLDPC code. Of n edges in the Tanner graph, some are free edges and the others

are constrained edges.

• When building an EE-DGLDPC code, constrained edges must be placed below the envelope

whereas free edges can be placed anywhere.

• Due to the existence of free edges, the permutation of edges of SVNs and SCNs are sometimes

necessary to ensure the EE property.
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Figure 5.4: Performance comparison of length-1200, rate-0.75 irregular LDPC, EE-DGLDPC with
no SCNs, and ordinary DGLDPC codes.

• EE-DGLDPC codes have a very similar decoding performance with ordinary LDPC codes.
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Figure 5.5: Performance comparison of rate-0.5, length 104 and 5× 104 EE-DGLDPC and irregular
LDPC codes.

Figure 5.6: The structure of Hadj of a length-1200 rate-0.5 EE-DGLDPC code with SCNs.

90



Figure 5.7: Performance comparison of the length-1200 rate-0.5 EE-DGLDPC code with SCNs,
with IRA-LDPC and EERC-LDPC codes.

91



Chapter 6

Encoding Speed and Error Floor

Theoretically, we can have a n of any length as long as
∑D

i=1 ni = MC , so designing EE codes with

any encoding time-complexity, even with O(1) is always possible. Nonetheless the shorter n is, the

more restrictions on the available positions where “1”s can be placed will be, which implies the

potential poorer error floor performance. In this chapter, we present both theoretical analysis and

simulation results to verify this claim. It is also demonstrated that the error floor performance of

EE-GLDPC codes are relatively more robust to the the length change of n.

6.1 The tradeoff between encoding speed and error floor

There are two major factors making EE codes subject to poor error floor effects: deg-1 VNs

and a dispersive CN distribution. The number of deg-1 VNs can be calculated using (4.11), given

n = [n1, n2, ...nD]; whereas the dispersive CN distribution is produced by a fast-diminishing sequence

n (e.g. n for EERC codes) [60]. Note that after appending all the constrained edges of all VNs in

Vi (i = 1, 2, ..., D), there is an average number of
∑j=|Vi|

j=1 (rj − 1)/
∑j=D

j=i+1 nj edges connected to

each CN in Cl, l = i+ 1, i+ 2, ...D, where rj is the number of constrained edges of jth VN in Vi.

Therefore the last several CNs tend to have very large degree if the elements in n diminish quickly,

resulting in a dispersive CN distribution. Such phenomenon can be alleviated by increasing nD,

however doing so will inevitably increase the number of deg-1 VNs.

Based on the analysis above, we see the competing effects of fast encoding (a short recovery

vector) and error performance in the error floor region. Generally speaking, a shorter length of
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n will imply either an increased number of deg-1 VNs or a more dispersive CN distribution, or

both. It is difficult to give a quantitative analysis for the dispersiveness, especially for GLDPC

and DGLDPC codes, due to the random nature of H2 matrix. As a qualitative illustration of the

tradeoff, we list below in Table 6.1 several n’s and their corresponding parameters, for EE-LDPC

codes using the extra rule (described in subsection 4.3) for the H2 matrix, when MC = 1024. It can

be observed in Table 6.1 that a smaller value of D involves either an increased value of nD, or a

larger degree of last CN, both of which are unfavorable for the error floor performance.

Table 6.1: Recovery vectors and their corresponding parameters for LDPC codes.

n D, or |n| nD last CN’s deg(to VNs in H2)

[1023, 1] 2 1 1024

[1000, 20, 3, 1] 4 1 50

EERC:[512, 256, ..., 4, 2, 1, 1] 11 1 11

[

31︷ ︸︸ ︷
32, 32, ...32, 16, 8, 4, 2, 1, 1] 37 1 7

[

16︷ ︸︸ ︷
64, 64, ..., 64] 16 64 2

[

128︷ ︸︸ ︷
8, 8, ..., 8] 128 8 2

IRA:[1, 1, ..., 1] 1024 1 2

6.2 Simulation results

In this section, experiments are carried out to study the effect of n, for LDPC, GLDPC and

DGLDPC codes. In all experiments, the MAP decoder is used for VNs and CNs (i.e. SPA for LDPC

codes). The maximum number of decoding iterations is set at Imax = 200. BER is calculated taking

into account both the erroneous information and parity bits, whereas FER counts errors anywhere

in the codeword.
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6.2.1 EE-LDPC codes

First, we study standard LDPC codes with maximum VN degree dvmax = 6. The optimized degree

distribution is

λ(x) = 0.33311x+ 0.24636x2 + 0.00120x3 + 0.41933x5

ρ(x) = 0.00005x4 + 0.70142x5 + 0.29240x6 + 0.00468x7 + 0.00145x8
(6.1)

It should be noted that the CN degree randomness caused by PEG and the number of deg-1 VNs (pre-

scribed by n’s) will slightly modify the degree distribution of actual EE codes. In the first experiment

length-1000, rate-0.5 codes with constant elements in n are built. Let La1, La4, La8, La16, La64 and

La128 be the EE-LDPC codes built by n = [1, 1, ...], [4, 4, ...], ...[64, 64, ...] and [128, 128, ...], respec-

tively. Due to the issue of divisibility in some cases nD could be different from ni, i = 1, 2, ..., (D−1).

In Fig. 6.1 the decoding performance of these codes is shown. It can be observed that with the

increase of elements in n (equivalently, shortening of n), error floors appear to be more serious; this

is primarily attributed to the increased number of deg-1 VNs.

Figure 6.1: Performance comparison of length-1000 EE-LDPC codes using constant elements in n.
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In the second experiment we study length-1024 rate-0.5 LDPC codes with irregular elements in

n. We designed 8 codes Li, i = 0, 1, ..., 7 with different length n’s, based on the profile in (6.1). The

parameters of these codes are listed in Table 6.2.

Table 6.2: EE-LDPC codes using different length n’s and their parameters.

n D(|n|) nD
L0 ordinary LDPC — —

L1 [128, 128, 128,

128︷ ︸︸ ︷
1, 1..., 1] 131 1

L2 [128, 128, 128,

63︷ ︸︸ ︷
2, 2..., 2, 1, 1] 68 1

L3 [128, 128, 128, 64, 32, 16, 8, 4, 2, 1, 1] 11 1

L4 EERC:[256, 128, 64, ..., 4, 2, 1, 1] 10 1

L5 [128, 128, 64, 64, 32, 32, 32, 16, 8, 8] 10 8

L6 [51, 51, 51, 51, 51, 51, 51, 51, 51, 53] 10 53

L7 [256, 128, 64, 32, 32, 32] 6 32

The performance of these 8 codes are shown in Fig. 6.2. It can be seen that when D is relatively

long (as in L1 and L2), there is little performance loss at high SNR, compared with ordinary LDPC

codes. However, when D is small, it is likely for codes to exhibit serious error floors, as in L4, L6

and L7. For the L4 (EERC) code it is due to the dispersion of CN distribution and for L6 and L7 it

is the deg-1 VNs.

Once D is fixed, some improvements on error floor performance can still be achieved when the

code is carefully designed: L5 has the same D with L4 and L6, and it shows a much better error

floor performance than L4 and L6 codes. In practice, empirical study may be needed to identify the

code with the best error floor behavior. It is also worth noting that, though some EE codes do not

show obvious error floors down to a certain BER (e.g. L1 and L2 at BER= 10−6), they are more

likely to show error floors than ordinary codes in the region beyond simulation capability, due to

the position restrictions imposed by n on them.

6.2.2 EE-GLDPC codes

EE-sGLDPC codes: We first study the effect of n on EE-sGLDPC codes. We choose the profile

as

λ(x) = 0.0667 + 0.7333x+ 0.2000x2

ρ(x) = x14 (Hamming(15, 11))

(6.2)
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Figure 6.2: Performance comparison of length-1024 EE-LDPC codes using irregular elements in n.

The average VN degree dv = 2, and the code rate is R = 0.4667. We designed (960, 448) EE-sGLDPC

codes with various n’s. The dimension ofHadj is 128×960, and n’s are [1, 1, ..., 1], [2, 2, ..., 2][4, 4, ..., 4],

[8, 8, ..., 8], [16, 16, ..., 16], [64, 32, 16, 8, 4, 2, 1, 1] and [32, 32, 16, 16, 16, 8, 4, 4]. The maximum number

of iterations is set to Imax = 50.

Fig. 6.3 shows the simulation results of these EE-sGLDPC codes. It can be observed that,

except for n = [16, 16, ..., 16], all the EE-sGLDPC codes have almost the same decoding performance,

though the lengths of n’s are quite different from each other. This indicates that the error floor

performance of EE-sGLDPC codes can remain good for a wide range of n lengths, this is due to the

error correcting capabilities of SCNs. On the other hand, if the length of n is too short, EE-sGLDPC

codes also shows serious error floors: for the code using n = [16, 16, ..., 16], it is due to the 64 deg-1

VNs in it.
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Figure 6.3: Performance of (960, 448) EE-sGLDPC codes with various n’s.

EE-hGLDPC codes: We also study the performance of EE-hGLDPC codes under various n’s.

The optimized profile is

λ(x) = 0.3893x+ 0.2682x2 + 0.0025x3 + 0.0026x4 + 0.3374x5

ρ(x) = 0.0014x5 + 0.6311x6 + 0.1011x7 + 0.0037x8 + 0.0166x9 + 0.2460x14 (Hamming(15, 11))

We first constructed a set of 4 codes: GL250, GL500, GL1000 and GL2000, of length 250, 500, 1000

and 2000 respectively. The n’s are chosen as [1, 1, ..., 1], [2, 2, ..., 2], [4, 4, ..., 4] and [8, 8, ..., 8], respec-

tively, so each code has encoding speed D = 89 cycles. (Note this provides a family with O(1)

encoding time, i.e. independent of code length N .) Fig. 6.4 gives the performance of these codes. It

can be seen that all codes show good error floor performance.

To further increase the encoding speed, another set of 4 codes: GL
′
250, GL

′
500, GL

′
1000 and GL

′
2000

are designed, the only difference with their previous counterparts is n’s are [4, 4, ..., 4, 5], [8, 8, ..., 8, 10],

[16, 16, ..., 16, 20] and [32, 32, ..., 32, 40], respectively, thus D = 22 for each code. From Fig. 6.5 we

see that the new codes also have very good error floor performance, and in fact performance barely
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Figure 6.4: Performance of four length-1000 EE-hGLDPC codes with fixed encoding speed D = 89.

changes from those with longer encoding time, due to the error correcting capability of Hamming

codes.

6.2.3 EE-DGLDPC codes

In this experiment, rate-0.5 EE-DGLDPC codes are built according to the following optimized profiles,

where SPC(5,4) codes (Gcomp matrix in systematic form) are used as SVNs and Hamming(15,11) as

SCNs.

λ(x) = 0.1000x+ 0.0009x2 + 0.3525x3 + 0.1561x5 + 0.3905x4 (SPC(5, 4))

ρ(x) = 0.0003x4 + 0.0024x5 + 0.2240x6 + 0.0005x7 + 0.0011x8 + 0.7717x14 (Hamming(15, 11))

Four length-10000 EE-DGLDPC codes DGL1, DGL2, DGL3 and DGL4 are designed using the

above distribution. The codes are randomly-constructed except that all length-4 cycles are removed.

The dimension of adjacency matrix Hadj is 1763 × 5086. The recovery vector n’s are chosen as

[1, 1, ..., 1], [2, 2, ..., 2, 1, 1, 1], [4, 4, ..., 4, 3, 2, 2] and [16, 16, ..., 16, 19], respectively. Fig. 6.6 gives the
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Figure 6.5: Performance of four length-1000 EE-hGLDPC codes with fixed encoding speed D = 22.

performance of four EE-DGLDPC codes.

It is interesting to observe in Fig. 6.6 that with the decrease of D, the waterfall performance

of EE-DGLDPC codes degrades slightly; this is probably because DGLDPC codes contains more

types of nodes, and the threshold of the ensemble is sensitive to the types of connectivity of edges

(as in multi-edge type codes). Again, a too-small D will significantly degrade the code performance.

6.3 Summary

The main points of this chapter are listed below:

• The recovery vector n can be of any length to make the encoding with any speed.

• A faster encoding speed tends to cause a poorer the error floor performance.

• The error floor performance of EE-GLDPC codes is relatively robust to the length change of

n.
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Figure 6.6: Performance of four length-104 EE-DGLDPC codes with various n’s.
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Chapter 7

Efficient Puncturing Algorithms for

Finite-Length EE Generalized Codes

Rate-compatible (RC) codes are commonly used in time-varying channels such as mobile and wireless

communications due to their flexibility and efficiency. In RC codes, codes of various rates are

nested together and the higher-rate codes can be obtained by puncturing parity bits in lower-rate

codes, i.e. the higher-rate codes are “embedded” in lower-rate codes. During the transmission, once

the decoder fails, the additional redundant bits are sent incrementally to the receiver to perform

decoding repeatedly until the codeword can be successfully decoded, therefore RC codes are suitable

for Type-II hybrid automatic repeat request (HARQ). In addition, RC codes can also conveniently

provide a range of “fixed” code rates obtainable from a common mother code.

EE-GLDPC and EE-DGLDPC codes are systematic codes, therefore they can be punctured all

the way up to rate R = 1 without causing any stopping sets in the punctured set. EE-GLDPC codes

are naturally suitable for puncturing and are able to address the rate constraint issue of ordinary

sGLDPC codes, i.e. the dedicated sGLDPC codes are constrained to relatively lower rate.

Compared with RC-LDPC codes, which have received wide-spread study, there are few studies on

RC-GLDPC and RC-DGLDPC codes in existing literature. Because GLDPC and DGLDPC codes

use more complicated component codes as SCNs and SVNs, it is not easy to design a straightforward,

yet efficient, puncturing algorithm for them. In this Chapter, we demonstrate that for EE-GLDPC

and EE-DGLDPC codes, we can design good puncturing patterns to improve the performance of
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punctured codes rather than randomly puncturing them. Simulations show that the punctured

EE-GLDPC and EE-DGLDPC codes can show a similar or even better performance than IRA-LDPC

and EERC-LDPC codes over a range of code rates and SNRs.

7.1 Backgrounds on the puncturing of LDPC codes

Studies on RC-LDPC codes can be found in [54–66]. In [59] and [61], RC-LDPC codes are constructed

from higher rates to lower rates by extending. In [57], the authors investigate the optimal puncturing

distribution based on the asymptotic analysis and show that it will result in little loss in decoding

threshold over a range of code rates. Such analysis nonetheless does not describe in detail how the

specific bits should be punctured. In [56] it is proved that there is a cutoff rate for the punctured

profile such that if the punctured rate is lower than the cutoff rate, the error free of decoding can

be achieved via a high-enough SNR, otherwise the error rate is always positive unless the channel is

noiseless. Finally, the performance of infinite-length punctured LDPC codes under ML decoding is

studied in [58].

When the code length is finite, the notion of l -step recoverable (l -SR) nodes is important. A

node is called a l -SR node if it is recovered after the lth iteration when the punctured codeword

is encoded by an erasure decoder. Note that in this case the known values of information bits

and unpunctured parity bits are provided to the erasure decoder. The l -SR node can also be

defined as follows: if the codeword is transmitted on AWGN channel, such node receives no extrinsic

information in the first l − 1 decoding iterations but receives the non-zero extrinsic information

from at least one of neighbor CNs in the lth iteration, and the non-zero extrinsic information can be

either correct or wrong on the true value of this l -SR node. The CNs providing extrinsic information

in the lth iteration are referred to as survived CNs in the lth iteration.

In [63], the number of survived CNs is considered when puncturing a l-SR node. In [62], Ha et

al. argues that, a punctured node j has a higher recovery error probability if more unpunctured

bits in the recovery tree are used to restore the value of j. In view of this, the authors propose an

greedy “group-and-sort” algorithm which tries to minimize the number of iterations required to

recover the whole codeword for a given rate, by sequentially maximizing the size of l-SR node group

for l = 1, 2...; inside each l-SR node group, the VNs are ranked according to the number of survived
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CNs they connect to, and the VNs with larger number of survived CNs are punctured earlier to

improve the puncturing performance. A modified version of [62] appears in [64], where the cost

functions of VNs and CNs are defined to further enhance puncturing performance. A puncturing

method for protograph-based LDPC codes is proposed in [65], where the notion of “puncturing

score” is introduced to speed up convergence, which is in accordance with the principle adopted

in [62].

IRA-LDPC and EERC-LDPC codes are systematic codes so they can also be punctured up to

R = 1. The optimized puncturing for EERC-LDPC codes is proposed in [54]: since the first bM2 c

parity bits are 1-SR nodes, the following bM4 c parity bits are 2-SR nodes, and so on, the optimized

puncturing for EERC-LDPC codes is simply puncturing parity bits sequentially from left to right in

H2 matrix to achieve the desired punctured code rate.

For IRA-LDPC codes, an optimized puncturing scheme is devised by Yue et al. [66]. The authors

propose a “reverse unpuncturing” algorithm to obtain good punctured IRA-LDPC codes. The

dedicated puncturing for a certain puncturing rate R is first defined: it is realized by evenly placing

the unpunctured parity bits of rate R code among the H2 matrix, in this way the L, which is the

number of iterations required to recover the whole codeword, is minimized.

The “reverse unpuncturing” algorithm is implemented as follows [66]

Step 1. Puncture the IRA-LDPC code to the highest desirable code rate Rh using dedicated puncturing.

Step 2. The punctured parity bits, based on the distance with the nearest unpunctured bits, are

categorized intoG = [G1, G2, ..., GL], where Gi is the group of i-SR nodes. Any two consecutive

parity bits in GL are assigned with label-1, and other parity bits in GL are assigned with

label-0.

Step 3. Randomly unpuncture a parity bit with label-1, update the recoverable steps for the VNs

affected by the unpuncturing. Repeat this procedure until there is no parity bit with label-1.

Then we begin to randomly unpuncture a parity bit with label-0, repeat until GL is empty.

Step 4. update G. If there are still punctured parity bits, repeat step 2 and 3 until we reach R = Rm,

where Rm is mother code rate.
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The point of the unpuncturing process is trying to fix the weakest punctured VNs in the current

punctured code. After the “reverse unpuncturing”, we have a set of RC codes with any puncturing

rates from R = Rm to Rh.

7.2 The complicated behavior of SCNs

Previous studies on the sequential puncturing of FL LDPC codes can be found in [54,62–66]. By

sequential puncturing we mean puncturing the bits one by one from mother code rate Rm to the

highest rate Rh, or unpuncturing from Rh to Rm [66]. In the following, let Gl denote the set of l-SR

nodes, and G0 be the unpunctured nodes. When designing a puncturing algorithm for LDPC codes,

it is desirable that the puncturing pattern have a smaller maximum value of l, i.e. the number

of iterations required to recover the whole codeword. We denote this number by L. Simulation

shows that this criterion is also applicable for EE-GLDPC codes. Before we present the puncturing

algorithm for EE-GLDPC codes, we will discuss several issues unique to GLDPC codes.

Assume a linear code C(n, k) with minimum Hamming distance dmin is used as the component

code of GLDPC code. Let E be the set of erased bits in the C(n, k), and |E| be the cardinality of E .

If the maximum likelihood (ML) decoder is used, then we have the following results:

1. |E| < dmin: all |E| erasures can be fully recovered.

2. dmin ≤ |E| ≤ (n− k): all |E| erasures may or may not be fully recovered.

3. |E| > (n− k): a portion of erasures could possibly be recovered, but not all of the erasures.

A justification of these results is given below. Let E be the complementary set of E , and col(E)

be the columns of parity-check matrix corresponding to E .

Fact 1 [29]: an erased bit v in E receives no extrinsic information (i.e. can not be recovered), if

and only if col(v) is in the vector space spanned by col({E\{v}}).

Fact 2 : an unerased bit v in E receives no extrinsic information if and only if col(v) is in the

vector space spanned by col({E}).

Since a SCN C(n, k) can recover up to n− k erasures, on AWGN channel another issue with

GLDPC codes is the reliability of extrinsic messages from the SCN. We can show that the reliability
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Figure 7.1: EXIT curves for various SPC codes, and |E| = 1, 2, 3, 4 in Hamming (15, 11) code.

of the extrinsic messages decreases as the number of erasures increases. As an example, assume

Hamming (15, 11) code is used as the component node, the EXIT curves of erased information bit(s)

for |E| = 1, 2, 3, 4 are drawn in Fig. 7.1. The EXIT curves of one erased bit for SPC(5, 4), SPC(6, 5)

and SPC(7, 6) are also shown in Fig. 7.1.

Based on this result, it is advisable to puncture in the way that bits in Gl be uniformly-connected

to as many SCNs as possible rather than being clustered in a small group of SCNs, although in

both cases all the bits in Gl can be recovered after l iterations.

In view of this, for GLDPC codes, we define the “deficiency of a CN” as the number of punctured

nodes connected to it, denoted by τ . A CN is called deficient iff τ > 0. Let T = (τ1, τ2, ...τM ) be

the deficiency vector of a punctured codeword, where M is the number of CNs in the adjacency

matrix Hadj and τi is the deficiency of CN i. In next subsection we will see that T serves as an

approximate and efficient auxiliary measure on the goodness of puncturing pattern.

Finally, for GLDPC codes we no longer have the result for LDPC codes on the relationship
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between the reliability of a recovered punctured node and the number of unpunctured VNs in its

recovery tree [62]. Again this is due to the decoding behavior difference of SPC and C(n, k): for

LDPC codes the “tanh” update rule on SPC guarantees that the extrinsic message emitted from

SPC is always less reliable than a-priori messages, but this is not the case with GLDPC codes.

For example in Fig. 7.1, when |E| = 1 it is possible that IE,C > IA,C as IA,C → 1. Though for

GLDPC codes there are cases that the extrinsic message is more reliable than the a-priori messages,

in practice due to the number of erasures in each CN and the actual range of IA,C , together with

the message dependence caused by the finite girth of the code, it is still important to minimize L

during the sequential puncturing.

7.3 Puncturing algorithms for EE-GLDPC codes

7.3.1 EE-sGLDPC codes

Compared with the SPC code used in LDPC codes, the component codes in GLDPC codes exhibit

a more complicated decoding behavior. We have found it difficult to find a simple algorithm such as

in [62], so a greedy algorithm is adopted to do the sequential puncturing for EE-sGLDPC codes.

This greedy algorithm uses a depth-first search strategy: at each puncturing step, the “best” node

is punctured, and this procedure is performed progressively until all parity bits are punctured.

Suppose we want to decide if a candidate VN v should be punctured or not. Define G =

[G1, G2, G3, ...GL] to be the recovery vector after v is punctured. Let |Gi| the number of VNs in Gi

and |G| =
∑
|Gi|, and T̃ be the deficiency vector obtained after (L− 1)th iterations, and |T̃ | be

the sum of elements in T̃ . The following factors are first considered, in order of descending priority:

1. the length of vector G after v is punctured.

2. the distribution of elements in G after v is punctured.

3. |T̃ |
|GL| , the mean value of elements in T̃ .

4. V ar(T̃ ), the variance of elements in T̃ .

The first criterion tries to minimize L, the maximum number of iterations to recover the whole

codeword. When there is more than one VN that results in puncturing patterns of the same L, it is
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desirable that more bits be recovered at earlier iterations, so based on the idea of exponentially-

weighted average we define the cost function W =
∑

2(i−1) |Gi| to provide a quantitative assessment

on the goodness of each pattern, and the VN with the smallest W will be selected (criterion 2). If

there are still ties among the VN candidates, the VN yielding the smallest mean value of elements

in T̃ is selected (criterion 3), since more reliable messages will be returning to the punctured bits in

GL.

We also adopt an additional auxiliary criterion 4 based on T̃ , if there are still ties after the sieve

of above-mentioned criteria. We use an example to illustrate criterion 4: Let G = [G1, G2, G3, ...GL]

and G ′ = [G
′
1, G

′
2, G

′
3, ...G

′
L] correspond to two different puncturing patterns P and P ′ , and T̃ and

T̃ ′ be the deficiency vectors obtained after (L− 1)th iterations. If V ar(T̃ ) < V ar(T̃ ′) then P is

presumed to be better than P ′ , where V ar(·) means the variance of vector elements. That is to say,

the elements in T̃ are desired to be as uniform as possible; by doing so we can increase the reliability

of VNs in GL, which are the most vulnerable nodes in the graph. Criterion 4 is very useful at early

stages of puncturing, since there are many ties even after the filters of first three criteria.

Let Hadj be the adjacency matrix of the EE-sGLDPC code, and Hcomp the component matrix

(Hcomp can be of different structures for each CN). During the puncturing, let PunctSet be the set

of punctured parity bits and V Nodes be the pool of remaining parity bits. The pseudocode for our

systematic puncturing algorithm is given as follows
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The systematic puncturing algorithm for EE-sGLDPC codes

Input: Hadj , Hcomp Output: PunctSet Initialization: VNodes = {all parity bits}.

BestNodes = ∅. PunctSet = ∅.

Process:

FOR {ii=1; ii<NumofParityBits; ii+1}

FOR {each parity bit v in VNodes}

PunctSetTemp = PunctSet ∪ v.

puncture all the bits in PunctSetTemp, use the erasure

decoder to calculate L, W , |T̃ ||GL| , and V ar(T̃ ).

END

BestNodes={best bits after the filter of four criteria}.

if |BestNodes| > 1, randomly choose a bit vbest from BestNodes

PunctSet= PunctSet ∪ {vbest}. VNodes= VNodes\ {vbest}. BestNodes = ∅.

END

RETURN PunctSet

As an example, we compare this systematic puncturing with random puncturing for a short

IRA-sGLDPC code (N,K) = (150, 70) code using Hamming (15, 11) as the component code. Fig.

7.2 plots L (the number of iterations required to recover the whole codeword) versus the number of

punctured parity bits for these two cases. Due to the tie-breaking of systematic puncturing, we give

two sample patterns for systematic puncturing. It can be observed that the L of random puncturing

is always greater than or equal to that of systematic puncturing, for any puncturing rate.

7.3.2 EE-hGLDPC codes

For hGLDPC codes, i.e the CN constraints contain both SCNs and SPCs, we will not have a good

puncturing pattern if we directly adhere to the above puncturing algorithm. This is due to the

fact that SCNs and SPCs have different error correcting capabilities. The EXIT curve is useful in

determining the error correcting capability of a given SCN or SPC-CN with deficiency τ . We define

A =
∫ 1
0 IE(IA, τ)dIA, which corresponds to the area below IE curve as a function of IA. A larger A

implies a larger error correcting capability and vice versa. For example, a Hamming (15, 11) code
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Figure 7.2: Recovery speed comparison of systematic and random puncturing of a (150, 70) IRA-
sGLDPC code.

of deficiency 1 is considered providing more reliable messages than a SPC(7, 6) code of the same

deficiency degree, as shown in Fig. 7.1. Therefore, when puncturing, it is desirable to puncture the

CNs with larger A(τ) first.

The above claim is supported by the following simulation. We construct a length-1000, rate-0.5

hGLDPC code using the profile

λ(x) = 0.3893x+ 0.2682x2 + 0.0025x3 + 0.0026x4 + 0.3374x5

ρ(x) = 0.0014x5 + 0.6311x6 + 0.1011x7 + 0.0037x8 + 0.0166x9 + 0.2460x14 (Hamming(15, 11))

and we adopt two puncturing schemes: “SPCpreferred” and “SCNpreferred”. Both schemes try to

first minimize L, then W , as defined above. After the two criteria when there are still ties among

the candidate VNs, the SPCpreferred scheme will puncture the VN which has more edges connected

to SPC-CNs and at the same time keep V ar(T̃ ) as small as possible, whereas SCNpreferred will

puncture the VN which has more edges connected to SCNs and at the same time keep V ar(T̃ ) as

small as possible.
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Fig. 7.3 shows the BER performance comparison of SPCpreferred, SCNpreferred and random

puncturing. It can be seen that SPCpreferred scheme suffers from a noticeable performance loss

compared with SCNpreferred scheme at lower rates, and at R = 0.6 it is even worse than the random

puncturing. This is due to the intentional puncturing on the weaker SPC-CNs first. Fig. 7.4 shows

the corresponding FER performance, and similar results can be observed.

Figure 7.3: BER performance comparison of SPCpreferred, SCNpreferred and random puncturing
for the hGLDPC code.

In order to give a quantitative measure on the quality of messages allowing recovery of the

punctured nodes, a numeric scoring system for (C(n, k), τ) and SPC(n, n− 1) is still needed. Due

to the dynamics of iterative decoding and the intersecting EXIT curves of various CNs, we find

it very difficult to determine the optimal scoring system, hence the heuristic approach is adopted

instead: for punctured bit p ∈ GL assuming binary value Xp = {0, 1}, let Qp be the RV representing

the APP of p after the Lth iteration. We define Ip = I(Xp, Qp), which is the mutual information

(MI) between Xp and Qp, and I = {I1, I2, ..., I|GL|} be the vector of MIs of the punctured bits in

GL. The following four criteria, in order of descending priority, are used for determining the best

candidate VN v.
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Figure 7.4: FER performance comparison of SPCpreferred, SCNpreferred and random puncturing
for the hGLDPC code.

1. minimize L after v is punctured.

2. minimize W after v is punctured.

3. maximize the mean of I after v is punctured.

4. minimize the variance of I after v is punctured.

In practice, I is still difficult to calculate, so we adopt an additional assumption that, during

the Lth iteration, CNs take the messages of some specific quality IA as their inputs and output the

recovery messages with quality IE to the nodes in GL. Or, assume that a uniformly-distributed IA

in some interval and calculate the average IE to the nodes in GL. The calculation of Ip = I(Xp, Qp)

can also simplified by the ordinary “sum” of all IE ’s to the VN instead of the nonlinear operation

depicted in (2.41). By such simplifications I can be calculated easily. The puncturing process for

hGLDPC codes is essentially the same with sGLDPC codes, except that the rules are modified to

accommodate the structure of hGLDPC codes. The puncturing algorithm stops when all parity bits

are punctured, where we obtain a set of RC codes from R = Rm to Rh = 1. The third criterion is
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very useful at the beginning of puncturing: criterion 3 will prefer SCNs over SPCs because they are

more powerful, resulting in a better puncturing performance, as verified by the simulation above.

7.3.3 Simulation results and discussions

In all simulations, we adopt one-sweep MAP decoding for decoding SCNs. The maximum number of

decoder iterations is set as Imax = 200. When calculating BER, only information bits are considered.

For EE-GLDPC codes, Hamming (15, 11) is used as the component code. Theoretically Hcomp can

have different structure for each SCN, but for the sake of simplicity we assume that Hcomp is the

same for all SCNs:

Hcomp =



1 0 0 1 1 0 1 0 1 1 1 1 0 0 0

1 1 0 1 0 1 1 1 1 0 0 0 1 0 0

0 1 1 0 1 0 1 1 1 1 0 0 0 1 0

0 0 1 1 0 1 0 1 1 1 1 0 0 0 1


EE-sGLDPC puncturing: in the first experiment, we study the performance of RC EE-sGLDPC

codes. We designed a (N,K,R) = (1095, 511, 0.467) IRA-sGLDPC code Cs of average VN degree

dv = 2, using the PEG algorithm. The degree distribution of Cs is

λ(x) = 0.0667 + 0.7333x+ 0.2000x2

ρ(x) = x14

In the simulation Cs is punctured to R = 0.5, 0.6, 0.7, 0.8 and 0.9, and this requires that

73, 243, 365, 456 and 527 bits are punctured, respectively. Table 7.1 list the number of punctured

bits and code length for this code. We use the algorithm described above to generate one systematic

puncturing pattern, or randomly create a puncturing pattern as a realization of random puncturing.

Due to the randomness of random puncturing, three random realizations are generated and simulated,

but it turns out that these random patterns have performance very close to each other. For the

sake of clarity we only show one random puncturing in the following. Table 7.2 lists the distribution

of G for random and systematic puncturing methods at R = 0.5, 0.6, 0.7 and 0.8. When R = 0.9, L

for systematic puncturing is 7 and random puncturing is 20.
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Table 7.1: Code lengths and number of punctured bits for the (1095, 511) IRA-sGLDPC code at
various puncturing rates.

R = 0.5 R = 0.6 R = 0.7 R = 0.8 R = 0.9

Code length(Num. punctured bits) 1022(73) 852(243) 730(365) 639(456) 568(527)

Table 7.2: G’s of systematic and random puncturing for the (1095, 511) IRA-sGLDPC code at
various puncturing rates.

G1 G2 G3 G4 G5 G6 G7 G8

systematic R = 0.5 73 0 0 0 0 0 0 0
random R = 0.5 73 0 0 0 0 0 0 0

systematic R = 0.6 243 0 0 0 0 0 0 0
random R = 0.6 213 29 1 0 0 0 0 0

systematic R = 0.7 365 0 0 0 0 0 0 0
random R = 0.7 223 98 35 9 0 0 0 0

systematic R = 0.8 279 168 9 0 0 0 0 0
random R = 0.8 149 105 70 54 40 29 7 2

Fig. 7.5 gives the performance of random and systematic puncturing patterns. It can be observed

that systematic puncturing always outperforms random puncturing; at BER= 10−5, systematic

puncturing has a gain of about 0.35 dB and 0.8 dB over random puncturing, for R = 0.7 and

R = 0.8, respectively. In addition, it is worth noting that at R = 0.5, both random and systematic

puncturing can recover all the punctured bits after one iteration, however simulations show that

systematic puncturing is always slightly better than random puncturing at all SNRs, this verifies

the effectiveness of criteria 3 and 4 used in puncturing algorithm.

We also constructed three dedicated sGLDPC codes with K = 511, of designed rates 0.5, 0.6

and 0.7, using Hamming (15, 11) code as its component code. Due to the constraints imposed

by SCNs, the closest code length N is 1023, 851 and 731 for dedicated codes, achieving the rates

0.4995, 0.6005 and 0.6990, respectively. The dv = 1.8768 for R = 0.4995, 1.4982 for R = 0.6005 and

1.1286 when R = 0.6990. We can not build dedicated codes of rate 0.8 and 0.9, since in such cases

dv < 1. In Fig. 7.5, rate 0.6 and 0.7 dedicated codes show a nearly flat performance curve, due

to the existence of a large portion of degree-1 VNs; this is the well-known rate constraint issue of

sGLDPC codes, i.e. sGLDPC codes are not suitable for designing high-rate codes. However our

proposed systematic puncturing algorithm achieves competitive performance for sGLDPC codes

even in the high-rate region.
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Figure 7.5: Performance comparison of systematic and random puncturing of (1095, 511) IRA-
sGLDPC code.

In the second experiment, we build using PEG a shorter (645, 301) IRA-sGLDPC code using

the profile above. In the simulation the code is punctured to R = 0.5, 0.6, 0.7, 0.8 and 0.9. Table

7.3 list the number of punctured bits and code length for this code. We compare the performance of

random and systematic puncturing methods. Table 7.4 lists the distribution of G for two methods

at R = 0.5, 0.6, 0.7 and 0.8. When R = 0.9, L for systematic puncturing is 7 and random puncturing

is 16. Fig. 7.6 gives the performance comparison of random puncturing and systematic puncturing.

We can see that systematic puncturing is better than random puncturing at all SNRs and rates. At

lower rate R = 0.5, the performance gap between the two is narrow (< 0.1 dB) and it widens as R

increases. At R = 0.7 and R = 0.8, the gap is about 0.6 dB and 0.9 dB, respectively, at BER= 10−5.

Table 7.3: Code lengths and number of punctured bits for the (645, 301) IRA-sGLDPC code at
various puncturing rates.

R = 0.5 R = 0.6 R = 0.7 R = 0.8 R = 0.9

Code length(Num. punctured bits) 602(43) 502(143) 430(215) 376(269) 334(311)
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Figure 7.6: Performance comparison of systematic and random puncturing of (645, 301) IRA-
sGLDPC code.

Table 7.4: G’s of systematic and random puncturing methods for the (645, 301) IRA-sGLDPC code
at various puncturing rates.

G1 G2 G3 G4 G5 G6 G7 G8

intent R = 0.5 43 0 0 0 0 0 0 0
random R = 0.5 43 0 0 0 0 0 0 0

intent R = 0.6 143 0 0 0 0 0 0 0
random R = 0.6 118 23 2 0 0 0 0 0

intent R = 0.7 215 0 0 0 0 0 0 0
random R = 0.7 112 68 28 7 0 0 0 0

intent R = 0.8 162 101 6 0 0 0 0 0
random R = 0.8 86 62 52 36 26 7 0 0
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EE-hGLDPC puncturing: Next, the puncturing performance of EE-hGLDPC codes is studied.

The optimized profile we use has a decoding threshold Eb/N0 = 0.56 dB, and has the degree

distribution

λ(x) = 0.3740x+ 0.3050x2 + 0.0038x3 + 0.0035x4 + 0.3137x5

ρ(x) = 0.0741x5 + 0.5780x6 + 0.0317x7 + 0.0765x8 + 0.2397x14(Hamming)

With the help of PEG, we designed a (N,K,R) = (1024, 512, 0.5) IRA-hGLDPC mother code Ch

using the above optimized profile. Due to the randomness of PEG and the structure of IRA-hGLDPC

code, the actual degree distribution is slightly different. We assume IA is uniform on the interval

[0.5, 1]. Ch is punctured to R = 0.6, 0.7, 0.8 and 0.9, corresponding to a total of 171, 293, 384 and

455 punctured bits, respectively. Similar with sGLDPC case we generate three random puncturing

patterns and their performance are very similar, so we only show one random case. Table 7.5 lists

the distribution of G for random and systematic puncturing methods at R = 0.5, 0.6, 0.7 and 0.8.

When R = 0.9, L for systematic puncturing is 5 and random puncturing is 16.

Table 7.5: G’s of systematic and random puncturing for the (1024, 512) IRA-hGLDPC code at
various puncturing rates.

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10

systematic R = 0.6 171 0 0 0 0 0 0 0 0 0
random R = 0.6 149 20 2 0 0 0 0 0 0 0

systematic R = 0.7 293 0 0 0 0 0 0 0 0 0
random R = 0.7 197 63 18 11 4 0 0 0 0 0

systematic R = 0.8 285 99 0 0 0 0 0 0 0 0
random R = 0.8 176 81 47 34 23 8 6 5 2 2

Fig. 7.7 compares the performance of random and systematic puncturing patterns. The

simulation results are similar to the results above. At BER= 10−5, systematic puncturing has a

gain of about 0.3 dB and 0.8 dB over random puncturing, for R = 0.7 and R = 0.8, respectively,

whereas at R = 0.9 it is about 1.1 dB.

Our next experiment involves the comparison of systematic punctured EE-GLDPC codes with

IRA-LDPC and EERC-LDPC codes. We construct by PEG a (1024, 512, 0.5) EERC-LDPC code and

an IRA-LDPC code of the same length and rate, under maximum VN degree constraint dvmax = 6.

The actual degree distribution of the EERC-LDPC code is
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Figure 7.7: Performance comparison of systematic and random puncturing of (1024, 512) IRA-
hGLDPC code.

λ(x) = 0.0003 + 0.3328x+ 0.2468x2 + 0.0012x3 + 0.4188x5

ρ(x) = 0.7367x5 + 0.2356x6 + 0.0075x7 + 0.0140x8 + 0.0062x9

and the actual degree distribution of the IRA-LDPC code is

λ(x) = 0.0003 + 0.3328x+ 0.2468x2 + 0.0012x3 + 0.4188x5

ρ(x) = 0.7012x5 + 0.2988x6

Fig. 7.8 gives the BER performance comparison of systematic punctured Cs, Ch, IRA-LDPC

and EERC-LDPC codes, at R = 0.5, 0.6 and 0.7. The four codes have virtually the same waterfall

performance, whereas Cs and Ch show significantly better error floor performance. At R = 0.5 it can

be reasonably estimated that Cs and Ch have a gain of 0.4 dB over EERC-LDPC code at BER=10−6,

and 0.8 dB at BER=10−7. At R = 0.7, Ch exhibits a slightly worse waterfall performance compared

with Cs and EERC-LDPC codes, but its BER is about 1
3 of EERC-LDPC code at high SNR (3.8 dB),

and gains are likely to be even better when BER is still lower. The low error floor of EE-sGLDPC
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Figure 7.8: BER performance comparison of EE-GLDPC codes, IRA-LDPC and EERC-LDPC
codes, R = 0.5, 0.6 and 0.7.

and EE-hGLDPC codes are more clearly reflected in terms of FER, as Fig. 7.9 shows.

At R = 0.8 and 0.9, Cs and Ch still preserve the good error floor performance, and outperform

IRA-LDPC and EERC-LDPC codes at high SNRs, as shown in Fig. 7.10. Fig. 7.11 depicts the

FER performance comparison, where advantages of GLDPC codes are more obvious at high SNRs.

However, it can be seen that Cs begins to show serious waterfall performance degradation, especially

at R = 0.9; there is about 0.7 dB loss compared with EERC-LDPC code at BER=10−5. We argue

this is due to the inherent weakness of sGLDPC codes at very high code rates.

Assume a sGLDPC code and a LDPC code have the same recovery time L at very high rates

(R ≥ 0.9). Since most of parity bits have been punctured, by some simple analysis we know that

on average each SCN recovers n− k parity bits in each iteration. A C(n, k) SCN with deficiency

τ = n− k suffers greatly from performance degradation; for example a Hamming (15, 11) component

code with τ = 4 has an EXIT curve nearly the same with SPC(8, 7), such a sGLDPC code at

R ≥ 0.9 is essentially equivalent to a heavily-punctured LDPC code with CN degree 8 and dv

around 2, which implies a poor decoding threshold; on the contrary. The EERC-LDPC code has
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Figure 7.9: FER performance comparison of EE-GLDPC codes, IRA-LDPC and EERC-LDPC
codes, R = 0.5, 0.6 and 0.7.

Figure 7.10: BER performance comparison of EE-GLDPC codes, IRA-LDPC and EERC-LDPC
codes, R = 0.8 and 0.9.
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Figure 7.11: FER performance comparison of EE-GLDPC codes, IRA-LDPC and EERC-LDPC
codes, R = 0.8 and 0.9.

dvmax = 6 and a large portion of SPC(6, 5) checks, both of which greatly help improving the

decoding threshold. As shown in Fig. 7.12, we designed a R = 0.467 IRA and EERC-LDPC codes

with dvmax = 6; IRA-LDPC codes are unpunctured from Rh = 1 using the method in [66]; at

puncturing rate R = 0.9, the average APP quality of parity bits in GL, measured in terms of MI,

are drawn for EERC-LDPC, IRA-LDPC code and Cs. We can see the quality of parity bits of Cs

are significantly inferior to LDPC codes, confirming the discussion above.

Finally, hGLDPC codes can be regarded as SCN-doped LDPC codes. The allowed higher degree

VNs in hGLDPC codes can overcome the drawback of sGLDPC codes at high code rates, as shown

in Fig. 7.10. In practice, the doping degree, i.e. the number of SCNs in hGLDPC codes, can be

easily and smoothly adjusted to encompass both advantages of sGLDPC and LDPC codes.
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Figure 7.12: The average APP quality of parity bits in GL, measured in terms of MI, for EERC-LDPC,
IRA-LDPC and Cs at R = 0.9.

7.4 Puncturing algorithms for EE-DGLDPC codes

7.4.1 EE-DGLDPC with no SCNs

For EE-DGLDPC codes with no SCNs, they can be regarded as EE-LDPC codes with information

bits existing in H2 matrix. Therefore, the systematic puncturing for such EE-DGLDPC codes can

be largely reduced to the systematic puncturing of EE-LDPC codes, the only difference is that in

EE-LDPC codes all parity bits are REP-VNs whereas in EE-DGLDPC codes, parity bits are either

REP-VNs or among the SPC-SVNs.

As an example, the length N = 1200, rate-0.5 IRA-DGLDPC code in subsection 5.4 is adopted

as a mother code for puncturing. The adjacency matrix Hadj is 600 × 954 and the number of

SPC(3, 2) SVNs is 246, so in H2 matrix parity bits are either deg-2 REP-VNs or in the SPC(3, 2)

SVNs. The IRA-DGLDPC code uses the degree profiles
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λ(x) = 0.00180x+ 0.37785x2 + 0.00010x3 + 0.41592x5 + 0.20433x2 (SPC(3, 2))

ρ(x) = 0.00058x4 + 0.98065x5 + 0.001749x6 + 0.00069x7 + 0.00059x8

Notice the H2 matrix for this code is essentially a double-diagonal matrix, as in IRA-LDPC

codes. So the reverse unpuncturing algorithm for IRA-LDPC codes can be directly applied. We

begin with the code from Rh = 1, and progressively unpuncture the parity bits until we reach

Rm = 0.5. The only extra rule we add here is: when there are both REP-VNs and SPC-SVNs in

label-1 (or label-0) nodes (see section 7.1) that can be unpunctured, we first unpuncture REP-VNs

then SPC-SVNs. We choose Imax = 200 for the decoding, and BER is calculated in information

bits only. Fig. 7.13 shows the BER performance comparison of systematic puncturing algorithm,

specifically the reverse unpuncturing algorithm, with three random puncturing patterns.

Figure 7.13: BER performance comparison of systematic puncturing and random puncturing for
DGLDPC code with no SCNs.

It can be observed that in 7.13 systematic puncturing shows significant performance gain over

random puncturing patterns, the gain is more noticeable for FER curves, which is shown in Fig.

7.14. It can also be seen that the punctured EE-DGLDPC code with no SCNs tend to exhibit a
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Figure 7.14: FER performance comparison of systematic puncturing and random puncturing for
DGLDPC code with no SCNs.

higher error floor compared with those GLDPC/DGLDPC codes with SCNs, this is because in such

EE-DGLDPC codes there are no component codes having powerful error correcting capabilities.

The final comment is at R = 0.6 and Eb
N0

= 3.2 dB, the systematic puncturing BER is worse than one

of the random puncturings; we believe this is because at this rate the punctured bits in systematic

puncturing are mostly SPC-SVNs, which are more prone to the noises.

7.4.2 EE-DGLDPC with SCNs

For EE-DGLDPC codes with SCNs, the parity bits usually contain REP-VNs and SVNs; the

corresponding VNs therefore have different error correcting capabilities. In view of this, we introduce

a scaling vector α = [α1, α2, ..., α|GL|], where αi is the scaling factor reflecting the error correcting

capability of the ith VN in GL.

Based on α, we define I ′
= I ·α = [α1I1, α2I2, ..., α|GL|I|GL|]. The following four criteria, in

order of descending priority, are used for determining the best candidate VN v.

1. minimize L after v is punctured.
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2. minimize W after v is punctured.

3. maximize the mean of I ′
after v is punctured.

4. minimize the variance of I ′
after v is punctured.

The above four criteria used for EE-DGLDPC with SCNs are essentially the same with those

for EE-hGLDPC codes, the only difference is that we use I ′
instead of I in criterion 3 and 4.

Simulation results

A length-1200 rate-0.5 IRA-DGLDPC code is built by GR-SCNfirst-PEG. The degree profile used

by the code is

λ(x) = 0.15046x+ 0.00118x2 + 0.03180x3 + 0.33579x5 + 0.48077x2 (SPC(3, 2), systematic Gcomp)

ρ(x) = 0.02274x5 + 0.27757x6 + 0.69969x14 (Hamming(15, 11))

which has a decoding threshold Eb/N0 = 0.429 dB. When puncturing the code, we choose α = 2 for

SPC-SVNs and α = 1 for REP-VNs, compared with the case that α = 0.5 for SPC-SVNs and α = 1

for REP-VNs, simulation results show that it can achieve relatively better decoding performance

at high puncturing rates, without causing degradation at low and moderate puncturing rates. In

addition, we assume IA is uniform on the interval [0.5, 1] to calculate I ′
. The IRA-DGLDPC code is

punctured to R = 0.6, 0.7, 0.8 and 0.9, corresponding to a total of 200, 343, 450 and 533 punctured

bits, respectively. We also generate three random puncturing patterns and obtain their performance.

Fig. 7.15 shows the BER performance comparison of systematic puncturing and three random

puncturing patterns. It can be seen that systematic puncturing outperforms random puncturing

in all puncturing rates, except that at R = 0.8, systematic puncturing has almost the same BER

performance with the best random puncturing. The advantage of systematic puncturing over random

puncturing is more visible in the FER comparison, which is shown in Fig. 7.16.

In the next experiment, we compare the systematic punctured IRA-DGLDPC code with EERC-

LDPC and IRA-LDPC codes. A (1200, 600, 0.5) EERC-LDPC code and an IRA-LDPC code of the
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Figure 7.15: BER performance comparison of systematic puncturing and random puncturing for
DGLDPC code with SCNs.

Figure 7.16: FER performance comparison of systematic puncturing and random puncturing for
DGLDPC code with SCNs.
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same length and rate are built by PEG. The actual degree distribution of the EERC-LDPC code is

λ(x) = 0.00027 + 0.33280x+ 0.24641x2 + 0.00106x3 + 0.41946x5

ρ(x) = 0.72568x5 + 0.24934x6 + 0.01489x7 + 0.00717x8 + 0.00292x10

and the actual degree distribution of the IRA-LDPC code is

λ(x) = 0.00027 + 0.33280x+ 0.24641x2 + 0.00106x3 + 0.41946x5

ρ(x) = 0.69856x5 + 0.30144x6

In the simulation, MAP decoding is used for VNs and CNs, and Imax = 200. Fig. 7.17 gives

the BER performance comparison of systematic punctured IRA-DGLDPC, IRA-LDPC and EERC-

LDPC codes, at R = 0.5, 0.6 and 0.7. At R = 0.5 and 0.6, these codes have almost the same

waterfall performance, and IRA-DGLDPC code shows better error floor behavior. For instance, at

R = 0.6 and BER= 10−7, IRA-DGLDPC has about 0.45 dB gain over EERC-LDPC code and a

0.7 dB gain over IRA-LDPC code. At R = 0.7 and BER= 10−4, IRA-DGLDPC code has waterfall

performance about 0.25 dB inferior to IRA-LDPC and EERC-LDPC codes, nonetheless it shows

better error floor than LDPC codes: at Eb/N0 = 4 dB, the BER of IRA-DGLDPC code is about

one order lower than those of LDPC codes. The low error floor of IRA-DGLDPC codes is more

clearly reflected in terms of FER, as Fig. 7.18 shows.

At R = 0.8 and 0.9, as Fig. 7.19 and Fig. 7.20 depict, IRA-DGLDPC code still shows good error

floor behavior, however it suffers from a serious waterfall performance degradation. For instance at

BER= 10−4, IRA-DGLDPC code has a gap about 0.6 dB and 0.8 dB from EE-LDPC codes for

R = 0.8 and 0.9, respectively. Though it is likely that the IRA-DGLDPC code can outperform

EE-LDPC codes at even lower error rates, such waterfall performance degradation remains an

interesting topic for future research.

We give several tentative explanations here: the first one is, for this specific IRA-DGLDPC

code, there are about 70% edges connected to SCNs, therefore at very high code rates the inherent

weakness of SCNs will cause the waterfall degradation, as EE-sGLDPC codes show in Fig. 7.10 and

Fig. 7.11. Another possible reason is that the IRA-DGLDPC code is built by GR-SCNfirst-PEG,

the constraints imposed by GR-SCNfirst-PEG make it more like a “multi-edge type” code, it is
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Figure 7.17: BER performance comparison of IRA-DGLDPC code, IRA-LDPC and EERC-LDPC
codes, R = 0.5, 0.6 and 0.7.

Figure 7.18: FER performance comparison of IRA-DGLDPC code, IRA-LDPC and EERC-LDPC
codes, R = 0.5, 0.6 and 0.7.
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possible that it has a poor cutoff puncturing rate [56] which results in poor performance at high

rates. The last explanation is that the proposed systematic puncturing algorithm still has room for

improving, this speculation is also supported by the small gap between systematic puncturing and

random puncturing curves in Fig. 7.15 and Fig. 7.16.

Figure 7.19: BER performance comparison of IRA-DGLDPC code, IRA-LDPC and EERC-LDPC
codes, R = 0.8 and 0.9.

7.5 Summary

In this chapter we study the systematic puncturing for RC-GLDPC and RC-DGLDPC codes. The

main points are listed below:

• SCNs and SVNs in GLDPC and DGLDPC codes show more complicated puncturing behaviors

than SPC-CNs and REP-VNs in LDPC codes.

• Systematic puncturing algorithms are proposed for EE-GLDPC and EE-DGLDPC codes,

which considerably improve the decoding performance compared with random puncturing.
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Figure 7.20: FER performance comparison of IRA-DGLDPC code, IRA-LDPC and EERC-LDPC
codes, R = 0.8 and 0.9.

• The punctured EE-GLDPC and EE-DGLDPC codes, like their mother codes, have good

error floor performance. They show competitive advantages relative to EERC-LDPC and

IRA-LDPC codes, especially at high SNRs, over a wide range of code rates.

• EE-sGLDPC codes suffer from a noticeable waterfall degradation at high puncturing rates,

which can be addressed by using hGLDPC or DGLDPC codes.
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Chapter 8

Conclusions

In this work, we focus on designing short-to-moderate-length generalized LDPC codes, including

GLDPC and DGLDPC codes.

For short GLDPC and DGLDPC codes, we extend the traditional cycle parameter ACE to a

more general form eACE in Chapter 3, which is a more general form measuring the robustness of a

cycle to the noise. The eACE can be naturally integrated into a modified PEG, which improves the

error floor performance of GLDPC codes. On the other hand, DGLDPC codes contain more node

types so the error floor is more sensitive to the specific connectivity of CNs and VNs, a girth-relaxed

version of PEG is proposed to enforce additional connectivity constraints so that the weakest VNs

in the cycle can be effectively protected against noise by a larger eACE. The girth-relaxed PEG

achieves a significantly better error floor performance than ordinary PEG for DGLDPC codes.

Designing GLDPC and DGLDPC codes with EE property is the second topic in this work, which

is discussed in-depth in Chapter 4 and 5. Based on existing IRA-LDPC and EERC-LDPC codes, we

generalize the EE principle to GLDPC and DGLDPC codes, and systematic algorithms for designing

EE-GLDPC and EE-DGLDPC codes are devised, providing an across-the-board solution for EE

iteratively-decodable block codes. When properly designed, these EE codes have nearly the same

performance with ordinary codes, in addition to their EE property. The free edges in EE-DGLDPC

codes adds more intricacies for the decoding, the simple one-time permutation can effectively solve

this issue.

The tradeoff between the encoding speed and error floor performance is also investigated in

Chapter 6 under both analysis and various simulation results. In practice this is an interesting and
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important issue in real applications: the encoding speed can be maximized given the required error

rate under a certain SNR, or the error floor performance can be optimized once the encoding speed

fixed. It is also shown that GLDPC codes are more resilient to the change of the encoding speed.

EE codes are systematic and suitable for puncturing, therefore they are good candidates for

variable rate designs. The final research topic dealt in Chapter 7 is designing the good puncturing

patterns for EE-GLDPC and EE-DGLDPC codes: several systematic puncturing algorithms are

devised to provide good puncturing patterns for EE-GLDPC and EE-DGLDPC codes, and it is shown

that it can significantly improve the code performance compared with random puncturing. Moreover,

RC EE-GLDPC and EE-DGLDPC codes show advantages over EERC-LDPC and IRA-LDPC codes,

especially at high SNRs, over a wide range of code rates.

At the end of this dissertation, we propose several interesting future research topics.

1. The tradeoff between waterfall and error floor performance of DGLDPC codes under various

PEGs and their parameters.

2. A unified theory on the finite-length puncturing, based on such theory we can generate

optimized puncturing patterns on all the EE iteratively-decodable block codes.

3. Finding good VN and CN type combinations to further improve the decoding threshold of

DGLDPC codes.

4. Design of EE convolutional GLDPC and DGLDPC codes.
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