Thesis Portfolio

CARBON CAPTURE, UTILIZATION, AND STORAGE (Technical Report)

ACTOR NETWORK THEORY ANALYSIS OF WATER CRISES IN LOW-INCOME, UNITED STATES CITIES (STS Research Paper)

An Undergraduate Thesis

Presented to the Faculty of the School of Engineering and Applied Science University of Virginia • Charlottesville, Virginia

> In Fulfillment of the Requirements for the Degree Bachelor of Science, School of Engineering

> > Fiona Teevan-Kamhawi Spring, 2020

Department of Chemical Engineering

Table of Contents

Sociotechnica	ll Synthesis	5
Carbon Captu	re, Utilization, and Storage	6-71
I.	Summary	7-8
II.	Introduction	9-10
III.	Previous Work	11-12
IV.	Discussion of Design	13-33
A.	Carbon Separation Equipment	13-22
	1. Process Flow Diagram	18-19
В.	Reverse Water Gas Shift Reaction	22-27
C.	Fischer-Tropsch Reaction	27-33
V.	Final Recommended Design	34-39
А.	Process Flow Diagram	34-35
В.	Absorber and Stripper Design	35-37
C.	Reverse Water Gas Shift Reaction	37
D.	Fischer-Tropsch Synthesis	37-39
VI.	Economic Analysis	40-50
А.	Process Equipment Costs	40-41
B.	Capital Cost	41-42
C.	Operating Costs	42-46
	1. Raw Materials	42

	2. Labor	43
	3. Utilities	44-46
D.	Carbon Credit	46-47
E.	Revenue	47
F.	Alternate Design Scenario	47-48
G.	Cash Flow Analysis	48-50
VII.	Health, Safety and Environmental Considerations	51-57
А.	Overall HSE	52-54
В.	Carbon Separation Equipment	54-56
C.	Reverse Water-Gas Shift Reaction	57
D.	Fischer-Tropsch Reaction	57-58
VIII.	Conclusions and Recommendations	59
IX.	Acknowledgments	60
Х.	Nomenclature	61-62
XI.	Appendix	63-64
XII.	References	65-71

Actor Network Theory Analysis of Water Crises in Low-Income United States Cities	
Fable of Tomorrow	73-74
Introduction: Corrosion, an invisible challenge to public health	74-75
Literature Review	75-77
STS Framework & Research Method	78
Data Analysis	
Newark, New Jersey Water Crisis	79-80
Flint, Michigan Water Crisis	81-82
Discussion: The broken network of water crisis management	82-84
Conclusion	84-86
References	87-89

90-102

Sociotechnical Synthesis

The technical thesis, "Carbon Capture, Utilization, and Storage" focuses on the process of capturing carbon dioxide from a natural gas power plant and converting it into fuel via the Fischer-Tropsch process. The Pastoria Energy Facility, which produced 750 MW of electricity, is retrofitted with an amine scrubbing system to capture carbon dioxide leaving one of the stacks. The carbon dioxide is then sent to a reverse water-gas shift reactor and reacted with hydrogen gas to produce carbon monoxide and water. The remaining compounds are sent to the Fischer-Tropsch process which reacts carbon monoxide and hydrogen to produce diesel. The process is not a net carbon sink as expected because hydrogen must be bought from methane reforming or electrolysis, both of which produce carbon dioxide at some point in the hydrogen synthesis. We found that carbon storage, via compressing and burying the carbon dioxide produced by Pastoria, is more economically viable and environmentally beneficial.

The STS thesis focuses on the water contamination crises in Flint, Michigan and Newark, New Jersey. Actor Network Theory is used to discuss the actors that enabled the initiation and propagation of the lead contamination in these two cities. The water crisis in Flint began due to negligent decisions made by the Governor of Michigan, Rick Snyder, while the Newark crisis had no definite beginning. Both are examples of how the government on all levels failed the residents of a low-income community and how other actors must come in to support these communities. The network in this paper and the government's inability to recruit residents is explored in this thesis. The technical and STS theses are not related.