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Abstract
Though playing an essential role in smart home systems, smart
speakers are vulnerable to voice spoofing attacks. Passive
liveness detection, which utilizes only the collected audio
rather than the deployed sensors to distinguish between live-
human and replayed voices, has drawn increasing attention.
However, it faces the challenge of performance degradation
under the different environmental factors as well as the strict
requirement of the fixed user gestures.

In this study, we propose a novel liveness feature, array
fingerprint, which utilizes the microphone array inherently
adopted by the smart speaker to determine the identity of
collected audios. Our theoretical analysis demonstrates that
by leveraging the circular layout of microphones, compared
with existing schemes, array fingerprint achieves a more ro-
bust performance under the environmental change and user’s
movement. Then, to leverage such a fingerprint, we propose
ARRAYID, a lightweight passive detection scheme, and elab-
orate a series of features working together with array fin-
gerprint. Our evaluation on the dataset containing 32,780
audio samples and 14 spoofing devices shows that ARRAYID
achieves an accuracy of 99.84%, which is superior to existing
passive liveness detection schemes.

1 Introduction

Nowadays, voice assistance-enabled smart speakers serve as
the hub of popular smart home platforms (e.g., Amazon Alexa,
Google Home) and allow the user to remotely control home
appliances (e.g., smart lighter, locker, thermostat) or query in-
formation (e.g., weather, news) as long as it can hear the user.
However, the inherent broadcast nature of voice unlocks a
door for adversaries to inject malicious commands (i.e., spoof-
ing attack). Besides the classical replay attack [12,48], emerg-
ing attacks leveraging flaws in smart speakers are also pro-
posed by researchers. On the hardware side, the non-linearity
of the microphone’s frequency response provides a door for
inaudible ultrasound-based attacks (e.g., Dolphin attack [52]

and BackDoor attack [35]). For the software aspect, the deep
learning models employed by both speech recognition and
speaker verification are proved to be vulnerable to emerging
adversarial attacks such as hidden voice [7], Commander-
Song [50], and user impersonation [53]. Spoofing attacks
impose emerging safety issues (e.g., deliberately turn on the
smart thermostat [13]) and privacy risks (e.g., querying user’s
schedule information) on the smart speaker and therefore
cause great concern.

To defend against spoofing attacks, researchers have pro-
posed a variety of countermeasures. Almost all counter-
measures leverage the fact that voices in the spoofing at-
tack are played by electrical devices (e.g., high-quality loud-
speaker [48], ultrasonic dynamic speaker [52]). Thus, the
physical characteristics, which are different between humans
and machines, could be used as the “liveness” factors. The
existing countermeasures (aka., liveness detection) could be
divided into multi-factor authentication and passive scheme.
The former combines the collected audio and additional phys-
ical quantity (e.g., acceleration [15], electromagnetic field [9],
ultrasound [55], Wi-Fi [32], mm-Wave [14]) to distinguish
between the human voice and the machine-generated one. By
contrast, the passive scheme only considers the audio data
collected by the smart speaker. Its key insight is that the differ-
ence of articulatory manners between real humans (i.e., vocal
vibration and mouth movement) and electrical machines (i.e.,
diaphragm vibration) will result in the subtle but significant
differences in the collected audios’ spectrograms. Passive
schemes based on mono audio [3, 6] and two-channel au-
dio [5, 49] have already been proposed and could be directly
incorporated in the smart speaker’s software level.

However, the existing liveness detection schemes face a
series of challenges in the aspects of usability and efficiency,
which seriously hinder their real-world deployment in prac-
tice. On the one hand, to capture the liveness factor of a
real human, multiple-factor authentication either requires the
user to carry specialized sensors (e.g., accelerator, magne-
tometer) or actively emits probe signals (e.g., ultrasounds,
wireless signals), which adds additional burdens for users.



On the other hand, passive schemes leveraging sub-bass low-
frequency area (20~300 Hz in [6]) or voice area (below 10
kHz in [3]) of mono audio’s spectrum as liveness factor are
vulnerable to sound propagation channel’s change and the
spectrum modulated-based attack [48]. Another scheme [49]
aiming to extract audio’s fieldprint from two-channel audio re-
quires the user to keep a fixed manner to ensure the robustness
of such fingerprints. As a result, the scheme is difficult to be
deployed in many practical scenarios (e.g., users walking or
having gesture changes). Therefore, it is desirable to propose
a novel passive liveness detection scheme with the following
merits: (i) Device-free: performing passive detection only
relying on the collected audio; (ii) Resilient to environment
change: being robust to dynamic sound propagation channel
and user’s movement, (iii) High accuracy: achieving high
accuracy compared to existing works.

Motivations. To achieve a device-free, robust passive live-
ness detection, in this study, we propose ARRAYID, a micro-
phone array-based liveness detection system, to effectively
defend against spoofing attacks. ARRAYID is motivated from
the basic observation that the microphone array has been
widely adopted by the mainstream smart speakers (e.g., both
of Amazon Echo 3rd Gen [30] and Google Home Max [45]
having 6 microphones), which is expected to significantly
enhance the diversity of the collected audios thanks to the
different locations and mutual distances of the microphones
in this array. By exploiting the audio diversity, ARRAYID
can extract more useful information related to the target user,
which is expected to significantly improve the robustness and
accuracy of the liveness detection.

Challenges. To implement this basic idea, this study tries
to address the following three key challenges: (i) Theoreti-
cally, what is the advantage of adopting a microphone array
compared with a single microphone? (ii) Considering the dy-
namic audio propagation channel, how can we eliminate the
distortions caused by environment factors (e.g., dynamic air
channel and user’s position changes) by leveraging the micro-
phone array? (iii) Considering that our work is the first one to
leverage microphone array for liveness detection and there is
no large-scale microphone array-based indoor audio dataset
available so far, how can we demonstrate the effectiveness
and accuracy of the proposed scheme?

To solve the above three problems, we first build a sound
propagation model based on the wave propagation theory and
then leverage it to theoretically assess the impact of environ-
ment factors (e.g., articulatory gesture, sound decay pattern,
propagation path) on the final collected audio’s spectrum.
Secondly, after collecting multi-channel audio, we give a for-
mal definition of array fingerprint and discuss the theoretic
performance gain of adopting microphone array, which can
leverage the relationship among different channels’ data to
eliminate the distortions caused by factors including air chan-
nel and user’s position changes. Thirdly, we collect and build
the first array fingerprint-based open dataset containing multi-

channel voices from 38,720 voice commands. To evaluate
the effectiveness of ARRAYID, we compare ARRAYID with
previous passive schemes (i.e., CAFIELD [49], and VOID [3])
on both our dataset and a third-party dataset called ReMasc
Core dataset [18]. ARRAYID achieves the authentication accu-
racy of 99.84% and 97.78% on our dataset and ReMasc Core
dataset, respectively, while the best performance of existing
schemes [3,49] on these two datasets are 98.81% and 84.37%
respectively. The experimental results well demonstrate the
effectiveness and robustness of ARRAYID.

To the best of our knowledge, our work is the first to exploit
the circular microphone array of the smart speaker to perform
passive liveness detection in a smart home environment. The
contributions of this study are summarized as follows:

• Novel system. We design, implement and evaluate AR-
RAYID for thwarting voice spoofing attacks. By only
using audio collected from a smart speaker, ARRAYID
does not require the user to carry any device or conduct
additional action.

• Effective feature. We give a theoretical analysis of prin-
ciples behind passive detection and propose a robust
liveness feature: the array fingerprint. This novel feature
both enhances effectiveness and broadens the application
scenarios of passive liveness detection.

• Robust performance. Experimental results on both our
dataset and a third-party dataset show that ARRAYID
outperforms existing schemes. Besides, we evaluate mul-
tiple factors (e.g., distance, direction, spoofing devices,
noise) and demonstrate the robustness of ARRAYID.

• New large-scale dataset. A dataset containing 14 differ-
ent spoofing devices collected by microphone array will
be available to researchers, vendors, and developers for
evaluating further liveness detection schemes.

The rest of this paper is organized as follows. In Section 2,
we introduce the preliminaries of this study. In Section 3,
we propose the concept of the array fingerprint and proof its
advantages by both theoretical analysis and experiments. We
elaborate on the detailed design of ARRAYID in Section 4,
which is followed by evaluation, discussion, and related work
in Sections 5, 6, and 7, respectively. Finally, we conclude this
paper in Section 8.

2 Preliminaries

2.1 Threat Model
In this study, we focus on the voice spoofing attack, which
can be categorized into the following two types.

Classical replay attacks. To fool the voice assistance, the
attacker collects the legitimate user’s audio samples and then
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Figure 1: Sound generation and propagation in smart home.

plays it back with a high-quality loudspeaker [12]. The vic-
tim’s voice audio can be recorded or captured in many man-
ners, which is not limited to websites, daily life talking, phone
calls, etc. The replay attack is the most effective among vari-
ous spoofing approaches since it preserves the most compre-
hensive voiceprint of the victim and requires no cumbersome
hardware configurations and software parameter fine-tuning.

Advanced adversarial attacks. Even if attackers can only
collect a limited number of the target user’s voice samples,
by adopting the latest voice synthesized technique [8], it is
still feasible to attack existing speech recognition and speaker
verification systems. For instance, the adversary can craft
subtle noises into the audio (e.g., hidden voice [7], music [50]
or a broadcaster’s voice [53]) or inaudible ultrasounds [35,
52] to launch an attack without raising the victim’s concern.
Moreover, by carefully modifying the spectrum of spoofing
audio, the modulated attack [48] proposed by Wang et al.,
demonstrates the feasibility of bypassing existing mono audio-
based liveness detection schemes [6].

Similar to the previous works [3, 6, 49], in this study, the
adversary is assumed to already obtain the victim’s audio
samples and can remotely control the victim’s audio device
(e.g., smart TV, smartphone) to launch the voice spoofing
attack. In this study, we mainly investigate how to leverage
passive liveness detection to thwart replay attacks since most
of the existing voice biometric-based authentication (human
speaker verification) systems are vulnerable to this kind of
replay attack. We also study ARRAYID’s performance on
thwarting advanced attacks including modulated attack [48],
hidden voice [7], and VMask [53] in Section 5.4.3.

2.2 Sound Generation and Propagation
Before reviewing existing passive liveness detection schemes,
it is important to describe the sound generation and propaga-
tion process.

Sound generation. As shown in Figure 1(a), voice com-
mands are generated by a human or electrical device (i.e.,
loudspeaker). For the loudspeaker, given an original voice
command signal x( f , t), where f represents the frequency
and t is time, the loudspeaker utilizes the electromagnetic
field change to vibrate the diaphragm. The movement of the
diaphragm suspends and pushes air to generate the sound
wave s( f , t) = hdev( f , t) · x( f , t), where hdev( f , t) represents
the channel gain in the sound signal modulation by the device

as shown in Figure 1(b). Similarly, when a user speaks voice
commands, their mouth and lips also modulate the air and we
can use huser( f , t) to represent the modulation gain, where the
generated sound is s( f , t) = huser( f , t) · x( f , t) 1. Finally, the
generated sound s( f , t) is spread through the air and captured
by the smart speaker.

Sound transmission. Currently, smart speakers usually
have a microphone array (e.g., Amazon Echo 3rd Gen [30]
and Google Home Max [45] both have 6 microphones). For
a given microphone, when sound is transmitted to it, the air
pressure at the microphone’s location can be represented as
y( f , t) = hair(d, f , t) · s( f , t), where d is the distance of the
transmission path between the audio source and the micro-
phone and hair(d, f , t) is the channel gain in the air propaga-
tion of the sound signal.

Sound processing within the smart speaker. Finally,
y( f , t) is converted to an electrical signal by the microphone.
Since the microphones employed by mainstream smart speak-
ers usually have a flat frequency response curve in the fre-
quency area of the human voice, we assume smart speakers
save original sensed data y( f , t) which is also adopted by
existing studies [49]. Finally, the collected audio signal is
uploaded to the smart home cloud to further influence the
actions of smart devices.

2.3 Passive Liveness Detection
The recently proposed liveness detection schemes could be di-
vided into two categories: mono channel-based detection (e.g.,
Sub-bass [6] and VOID [3]) and fieldprint-based detection
(i.e., CAFIELD [49]).

2.3.1 Mono Channel-based Detection

Principles. As shown in Figure 1(a), the different sound gen-
eration principles between real human and electrical spoof-
ing devices could be characterized as two different filters:
huser( f , t) and hdev( f , t). If ignoring the distortion in the
sound signal transmission, hair(d, f , t) could be considered
as a constant value A. Thus, the received audio samples in
authentic and spoofing attack scenarios are yauth(d, f , t) =
A ·huser( f , t) ·x( f , t) and yspoo f (d, f , t) =A ·hdev( f , t) ·x( f , t),

1In the real-world scenario, there is no such x( f , t) during human voice
generation process. However, the concepts of x( f , t) and huser( f , t) are widely
used [6] and will help us understand features in Section 4.3.
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Figure 2: Spectrums of authentic and spoofing voices when
putting the smart speaker at different rooms.

respectively. Since A and x( f , t) are the same, it means that
the spectrograms of the received audio samples already con-
tain the identity of the audio source (the real user huser( f , t)
or the spoofing one hdev( f , t)). Figure 2(a) shows the spec-
trums of the voice command “OK Google” and its spoofing
counterpart. It’s observed that the sub-bass spectrum (20-300
Hz) between two audio samples are quite different even if
they are deemed similar, and this phenomenon is utilized by
mono channel-based schemes such as Sub-base [6].
Limitations. However, in a real-world environment,
hair(d, f , t) cannot always be regarded as a constant.
The surrounding object’s shape and materials, the sound
transmission path, and the absorption coefficient of air all
affect the value of hair(d, f , t). As shown in Figure 2(a) and
Figure 2(b), the spectrograms of authentic and spoof audio
samples change drastically when putting the smart speaker in
different rooms. The experimental result from Section 5.2
and [3] demonstrates the performance of liveness detection
undergoes degradation when handling datasets in which
audios are collected from complicated environments (e.g.,
ASVSpoofing 2017 Challenge [23], ReMasc Core [18]).

2.3.2 Fieldprint-based Detection

Principles. The concept of fieldprint [49] is based on the
assumption that audio sources with different articulatory be-
haviors will cause a unique “sound field” around them. By
measuring the field characteristics around the audio source,
it is feasible to induce the audio’s identity. CAFIELD is the
typical scheme which deploys two microphones to receive
two audios y1( f , t) and y2( f , t), and defines the fieldprint as:

Field = log(
y1( f , t)
y2( f , t)

). (1)

Limitations. Measuring stable and accurate fieldprint re-
quires the position between the audio source and the print
measure sensors must be relatively stable. For instance,
CAFIELD only performs well when the user holds a smart-
phone equipped with two microphones close to the face in a
fixed manner. The fieldprint struggles in far distances (e.g.,
greater than 40 cm in [49]), making it unsuitable for a home
environment, in which users want to communicate with a
speaker across the room. The goal of this study is to propose
a novel and robust feature for passive liveness detection.

3 Array Fingerprint

In this section, we propose a novel and robust liveness fea-
ture array fingerprint and elaborate the rationale behind AR-
RAYID by answering the following critical questions:

RQ1: How can we model the sound propagation in smart
speaker scenarios and answer why existing features (e.g., field-
print) cannot be effective in such scenarios?

RQ2: How can we extract a useful feature from multi-
channel voice samples that is robust regarding a user’s loca-
tion and microphone array’s layout?

RQ3: What are the benefits of the array fingerprint? Is it
effective and robust to the distortions caused by environmental
factors?

3.1 Theoretical Analysis on Sound Propaga-
tion for Smart Speakers

To answer question RQ1, we give a theoretical analysis of
sound propagation in a smart speaker scenario by following
the model proposed in Section 2.2 and discuss the limitations
of the previous works.
Sound propagation model for smart speakers. Figure 3 il-
lustrates the scenario when audio signals are transmitted from
source to microphone array. The audio source is regarded as
a point with coordinate (L,0) and the microphones are evenly
distributed on a circle. Given the k-th microphone Mk, the
collected audio data is yk( f , t) = hair(dk, f , t) · s( f , t), where
dk is the path distance from the audio source to Mk. In the
theoretical analysis, to simplify the description of the channel
gain hair(dk, f , t), we apply the classic spherical sound wave
transmission model in air [19].2 Thus, hair(dk, f , t) can be
estimated as:

hair(dk, f , t) =Ce−αcdk =Ce−α(s( f ,t))dk , (2)

where C is the attenuation coefficient, and αc is the absorption
coefficient which varies with the signal frequency f . There-
fore, we replace αc with α(s( f , t)). Then, from Section 2.2,
the collected audio in Mk can be represented as:

yk( f , t) = hair(dk, f , t) · s( f , t) =Ce−α(s( f ,t))dk · s( f , t). (3)

Existing passive liveness detection schemes are vulnera-
ble to environmental changes. From equation 3, it is ob-
served that changing the relative distance between the micro-
phone and audio source will cause non-linear distortion on
the microphone’s collected signal. Such distortion is related
to the original s( f , t) and thus is hard to be eliminated. This
is the reason why mono channel-based detection schemes are
fragile to the change of propagation path.

2In real-world scenarios, sound decay in the air is correlated with many
factors such as temperature, medium, and surrounding objects. Using the
classical model simplifies the question and the effectiveness of ARRAYID
will be demonstrated by experiments in Section 3.3.



𝑀𝑀1

𝑀𝑀𝑁𝑁

𝑀𝑀𝑁𝑁−1

𝑀𝑀2

𝑟𝑟

𝑆𝑆0 (𝐿𝐿, 0)
𝑑𝑑2

𝑥𝑥

𝑦𝑦

𝜃𝜃
2𝜋𝜋/𝑁𝑁

𝑑𝑑1

𝑂𝑂𝑀𝑀𝑘𝑘 = 𝑟𝑟 ⋅ cos 𝜃𝜃 +
2𝜋𝜋(𝑘𝑘 − 1)

𝑁𝑁 , 𝑟𝑟 ⋅ 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃 +
2𝜋𝜋(𝑘𝑘 − 1)

𝑁𝑁

𝑂𝑂

Figure 3: Sound propagation in microphone array scenario.

For the fieldprint-based solution, from equation 1, the
extracted feature can be represented as log(yi/y j) =
−α(s( f , t)) · lg(e) · (di− d j). When the positions of the mi-
crophone pair are fixed (i.e., di− d j) can be regarded as a
constant), the above feature is a function of originally gen-
erated s( f , t) containing liveness factor as described in Sec-
tion 2.3. However, when the microphone’s position changes,
the di− d j will no longer be a stable value, and leveraging
such a feature becomes infeasible.

3.2 Advantage of Array Fingerprint: Defini-
tion and Simulation-based Demonstration

In this subsection, we answer RQ2 by defining the array fin-
gerprint and mathematically demonstrating its effectiveness.

From the theoretical analysis in Section 3.1, to achieve
robust liveness detection, the extracted channel feature has to
minimize the effects of the propagation factors such as C and
dk. Inspired by the circular layout of microphones in smart
speaker as shown in Figure 3, we define the array fingerprint
AF as below:

AF = std(log[y1,y2, ...,yN ])

= std(C−α(s( f , t)) · lg(e) · [d1,d2, ...,dN ])

=−α(s( f , t)) · lg(e) · std([d1,d2, ...,dk])

= AF(s( f , t),σd).

(4)

From equation 4, we know that the array fingerprint is
mainly dominated by source audio s( f , t) and standard de-
viation of propagation distances σd = std([d1,d2, ...,dN ]).
However, to effectively capture the audio’s identity, which
can be derived from s( f , t), the hypothesis that σd could be
regarded as a constant parameter must be proved.

To demonstrate the above hypothesis, the propagation dis-
tance between audio source S0 and each microphone should
be precisely determined. To achieve this goal, as shown in
Figure 3, we denote the center of the microphone array of the
smart speaker and the audio source (e.g., human or electrical
machine) as origin O and S0(L,0) respectively. For the k-th
microphone Mk, its coordinate can be represented as:

−−→
OMk = (r ·cos(θ+

2π(k−1)
N

), r · sin(θ+
2π(k−1)

N
)), (5)

where r is of the radius of the microphone array, N is the
number of microphones, and θ is the angle between M1 and

Figure 4: σd values when propagation path changes.

X axis. Thus the distance dk between S0 and Mk could be
represented as:

dk = |
−−−→
MkS0|= r

√
1+(

l
r
)2−2(

l
r
)cos(θ+

2π(k−1)
N

). (6)

To verify the robustness of σd , we performed a simulation
based on the multi-microphone speaker with a radius of 5 cm
used by Amazon Echo 3rd Gen [30]. The distance L varies
from 1 m to 3 m, the θ changes from 0 to 90 degrees. The
microphone number N are set as 8, 6, 4, and 2, respectively.

Figure 4 shows the simulation results under different micro-
phone numbers. When employing more than 4 microphones,
the σd converges to a constant value. For instance, when
N = 6, σd has an average of 3.38 cm with the range of only
7.9×10−4 cm. However, when N is set to 2 (i.e., the scenario
in fieldprint-based scheme [49]), the σd varies from 0 to 7.07
cm. Since the microphone array of the smart speaker usually
has more than four microphones, the σd which is almost un-
changed can be regarded as a constant parameter that merely
impacts the AF .

From the above theoretical analysis and simulation, it can
be derived that the array fingerprint is mainly related to the
source audio s( f , t) and thus resilient to the changes of en-
vironmental factors, especially for the distance. This is why
array fingerprint outperforms other features from mono or
two-channel audios [3, 6, 49].

3.3 Validation of Array Fingerprint

Besides theoretical analysis, to answer RQ3, we further vali-
date the effectiveness of the proposed array fingerprint via a
series of real-world case studies.

In the experiment, the participant is required to speak the
command “Ok Google" at distances of 0.6 m and 1.2 m, re-
spectively. Figure 5(a) shows the audio signal clips collected
by a microphone array with six microphones, and the au-
dio difference between different channels is obvious. When
employing the concept of fieldprint, it is observed from Fig-
ure 5(b) that the fieldprints extracted from microphone pair



0.2 0.4 0.6 0.8 1

Time (s)

-0.2

-0.1

0

0.1

0.2

V
oi

ce

60 cm

Mic 1
Mic 2

0.2 0.4 0.6 0.8 1

Time (s)

-0.1

0

0.1

120 cm

Mic 1
Mic 2

(a) Two original authentic audios.

0 200 400 600 800 1000 1200

Frequency (Hz)

-20

0

20

P
ow

er
 D

iff
er

en
ce

 (
dB

)

60 cm

Mic 1 & 2
Mic 1 & 5

0 200 400 600 800 1000 1200

Frequency (Hz)

-20

-10

0

10

20

120 cm

Mic 1 & 2
Mic 1 & 5

(b) Dynamic power differences in different microphone pairs.

0 2000 4000

Frequency (Hz)

0

0.5

1

A
rr

ay
 fi

ng
er

pr
in

t

60 cm

0 2000 4000

Frequency (Hz)

0

0.5

1
120 cm

(c) Stable array fingerprints.
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Figure 6: Differentiating human voice from two spoofing de-
vices via array fingerprints under different propagation paths.

(M1,M2) and (M1,M5) are quite different.3 Among different
distances, the fieldprints are also quite different. However,
from Figure 5(c) we can see that the array fingerprints for
different distances are very similar.4

To show the distinctiveness of array-print, we also con-
ducted replay attacks via smartphones and iPad (i.e., device
#8 and # 3 in Table 6 of Appendix B). The normalized array
fingerprints (i.e., FSAP in Section 4.3.1) are shown in Figure 6.
It is observed that the array fingerprints for the same audio
sources are quite similar, while array fingerprints for differ-
ent audio sources are quite different. Our theoretical analysis
and experimental results demonstrate the array fingerprint
can serve as a better passive liveness detection feature. This
motivates us to design a novel, lightweight and robust system
which will be presented in the next section.

4 The Design of ARRAYID

As shown in Figure 7, we propose ARRAYID, a robust live-
ness detection system based on the proposed array fingerprint
with other auxiliary features. ARRAYID consists of the fol-
lowing modules: Data Collection Module, Pre-processing
Module, Feature Extraction Module, and Attack Detection
Module. We will elaborate on the details of each module in
this section.

4.1 Multi-channel Data Collection

Currently, most popular smart speakers, such as Amazon Echo
and Google, employ a built-in microphone array to collect

3The real process of extracting fieldprint is more complicated. Figure 5(b)
shows the basic principle following the descriptions in equation 1.

4This array fingerprint is refined after extracting from equation 4. The
detailed calculation steps are described in Section 4.3.1.
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Figure 7: System overflow.

voice audio. However, due to privacy and commercial con-
cerns, the user of the smart speaker cannot access the original
audio data, only the transcribed text. To solve this problem,
we utilize open modular development boards with voice inter-
faces (i.e., the Matrix Creator [31] and Seeed Respeaker [42])
to collect the data. Since these development boards have simi-
lar sizes to commercial smart speakers, ARRAYID evaluations
on the above devices can be applied to a smart speaker with-
out any notable alterations. Generally speaking, given a smart
speaker with N microphones, a sampling rate of Fs, and data
collection time T , the collected voice sample is denoted as
VM×N , where M = Fs×T and we let Vi be the i-th channel’s
audio V (:, i). Then, the collected V is sent to the next module.

4.2 Data Pre-processing

As shown in equation 4, the identity (i.e., real human or spoof-
ing device) is hidden in the audio’s spectrogram. Therefore,
before feature extraction, we conduct the frequency analysis
on each channel’s signal and detect the audio’s direction.
Frequency analysis on multi-channel audio data. As de-
scribed in Section 3.2, the audio spectrogram in the time-
frequency domain contains crucial features for further liveness
detection. ARRAYID performs Short-Time Fourier Transform
(STFT) to obtain two-dimensional spectrograms of each chan-
nel’s audio signal. For the i-th channel’s audio Vi, which con-
tains M samples, ARRAYID applies a Hanning window to di-
vide the signals into small chunks with lengths of 1024 points
and overlapping sizes of 728 points. Finally, a 4096-sized
Fast Fourier Transform (FFT) is performed for each chunk
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Figure 8: Illustration of spectrogram array fingerprint feature FSAP extraction.

and a spectrogram Si is obtained as shown in Figure 8(a).
Direction detection. Given a collected audio VM×N , to deter-
mine the microphone which is closest to the audio source,
ARRAYID firstly applies a high pass filter with a cutoff fre-
quency of 100 Hz to VM×N . Then, for the i-th microphone Mi,
ARRAYID calculates the alignment errors Ei = mean((V (:
, i−1)−V (:, i))2) [39]. Finally, from the calculated E, AR-
RAYID chooses the microphone with minimum alignment
error as the corresponding microphone.

4.3 Feature Extraction

From equations 3 and 4, we observe that both audio spec-
trograms themselves and the microphone array’s difference
contain the liveness features of collected audio. In this mod-
ule, the following three features are selected by ARRAYID:
Spectrogram Array Fingerprint FSAP, Spectrogram Distribu-
tion Fingerprint FSDP, and Channel LPCC Features FLPC.

4.3.1 Spectrogram Array Feature

After obtaining the spectrogram S = [S1,S2, . . . ,SN ] from N
channels’ audio data V = [V1,V2, ...,VN ], ARRAYID firstly
exploits the array fingerprint which is proposed in Section 3.2
to extract the identity of the audio source. To reduce the
computation overhead, for Sk with size Ms ×Ns, we only
preserve the components in which frequency is less than
the cutoff frequency fsap. In this study, we empirically set
fsap as 5 kHz. The resized spectrograms are denoted as
Spec = [Spec1,Spec2, ...,Speck], where Speck = Sk(: Mspec, :
). In this study, with sampling rate Fs = 48kHz and FFT points
N f f t = 4096, the Mspec is [ fsap×N f f t

Fs
] = 426.

Figure 8(a) illustrates Spec of three channels of the com-
mand "OK Google." It is observed that different channels’
spectrograms are slightly different. However, directly using
such subtle differences would cause an inaccurate feature.
Thus, ARRAYID transforms Speck into a grid matrix Gk with

size MG×NG by dividing Speck into MG×NG chunks and
calculates the sum of magnitudes within each chunk. The
element of Gk could be represented as:

Gk(i, j) = sum(Speck(1+(i−1) ·SM : i ·SM,

1+( j−1) ·SN : j ·SN)),
(7)

where SM = [
Mspec
MG

] and SN = [
Nspec
NG

] are the width and length
of each chunk. Note that some elements of Speck may be
discarded, however, it does not affect the feature generation,
since ARRAYID focuses on the differences between spec-
trograms according to equation 4. In this study, MG and NG
are set to 100 and 20 respectively, and Figure 8(b) shows the
spectrogram grids from the first, third and fifth microphone.
The difference among elements in G = [G1,G2, ...,GN ] is
now very obvious. For instance, the grid values in the red
rectangles of Figure 8(b) are quite different.

Then, based on equation 4, ARRAYID calculates the array
fingerprint FG from the spectrogram G. FG has the same size
as Gk, and the elements of FG can be represented as:

FG(i, j) = std([G1(i, j),G2(i, j), ...,GN(i, j)]). (8)

Figure 8(c) illustrates the FG containing NG chunks calcu-
lated from spectrogram grids as shown in Figure 8(b). How-
ever, we find that in different time chunks, the FG(:, i) varies.
The reason is that different phonemes are pronounced by dif-
ferent articulatory gestures, which can be mapped to a differ-
ent huser( f , t) function in Section 2.2. To solve this problem,
we leverage the idea that even though different phonemes con-
tain different gestures, there are common components over
a long duration of time. Therefore, ARRAYID averages the
FG across the time axis, and Figure 8(c) shows the average
result FG. ARRAYID performs a 5-point moving average and
normalization on FG to remove noise and generate the spec-
trogram array fingerprint FSAP.

Figure 8(d) gives a simple demonstration about the effec-
tiveness of the FSAP feature generation process. We test three
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Figure 9: Spectrogram distributions between authentic human and spoofing device.

voice commands “OK Google”, “Turn on Bluetooth” and
“Record a video”, while the distances between the speaker and
microphone array are set as 0.6 m and 1.2 m in the first two
commands and the last command, respectively. In Figure 8(d),
it is observed that the different commands result in a similar
array fingerprint, and the feature difference between authentic
audio and spoofing audio is clear. Finally, since ARRAYID re-
quires a fast response time, the feature should be lightweight.
So, the FSAP is re-sampled to the length of NSAP points. In this
study, we empirically choose NSAP as 40.

4.3.2 Spectrogram Distribution Feature

Besides FSAP, as mentioned in equation 3, the spectrogram
distribution also provides useful information related to the
identity of the audio source. Thus we also extract spectrogram
distribution fingerprint FSDP for liveness detection. Given a
spectrogram Sk from the k-th channel, ARRAYID calculates
a NG-dimension vector Chk in which Chk(i) = ∑

Mspec
j=1 Sk( j, i),

where Mspec and NG are set as 85 and 20 respectively in this
study.5 For the audio with N channels, the channel frequency
strength Ch = [Ch1,Ch2, ...,ChN ] is obtained.

Figure 9(a) and 9(b) show channel frequency strength Ch1
and Ch4 of first and fourth channels from authentic and spoof-
ing audios. It is observed that Ch from real human and spoof-
ing device are quite different. Therefore, we utilize the av-
erage of channel frequency strengths Ch and re-sample its
length to NCh as the first component of FSDP. In this study,
Ch(i) = mean([Ch1(i),Ch2(i), ...,ChN(i)]) and NCh is set to
20. We can also find that for the same audio, Ch from dif-
ferent channels have slightly different magnitudes and distri-
butions. To characterize the distribution of Ch, for Chk from
the k-th channel, ARRAYID first calculates the cumulative
distribution function Cumk and then determines the indices µ
which can split Cumk uniformly. As shown in Figure 9(a) and
9(b), the Chk are segmented into 6 bands. ARRAYID sets the
T hr = [0.1,0.3,0.5,0.7,0.9], and the index µ(k, i) of the i-th
T hr for Chk satisfies the following condition:

Cumk(µ(k, i)≤ T hri ≤Cumk(µ(k, i)+1). (9)

After obtaining the N× 5 indices µ, we utilize the mean
value Dmean and standard deviation Dstd among different chan-
nels as a part of the spectrogram feature. Both Dmean and Dstd

5When calculating FSDP, we set the cutoff frequency as 1 kHz since most
human voice frequency components are located in the 0~1 kHz range and
the corresponding MSpec is 85 under the the parameters in Section 4.3.1.

are vectors with length of 5, where Dmean(i) = mean(µ(:, i))
and Dstd(i) = std(µ(:, i)). Finally, ARRAYID obtains the spec-
trogram distribution fingerprint FSDP = [Ch,Dmean,Dstd ]. Fig-
ure 9(c) illustrates the FSDP from authentic and spoofing au-
dios and demonstrates the robustness of FSDP.

4.3.3 Channel LPCC Features

The final feature of ARRAYID is the Linear Prediction Cep-
strum Coefficients (LPCC). Since each channel has unique
physical properties, retaining the LPCC which characterizes a
given audio signal could further improve the detection perfor-
mance. For audio signal yk(t) collected by microphone Mk,
ARRAYID calculates the LPCC with the order p = 15. Due to
page limit, the details of LPCC extraction is introduced in Fig-
ure 16 and Appendix A respectively. To reduce the time over-
head spent on LPCC extraction, we only preserve the LPCCs
from aduios in these two channels (Mi,Mmod(i+N/2,N)), where
Mi is the closet microphone derived from Section 4.2. Finally,
we generate the final feature vector X = [FSAP,FSDP,FLPC].

4.4 Classification Model
After generating the feature vector from the audio input, we
choose a lightweight feed-forward back-propagation neural
network to perform liveness detection. The neural network
only contains three hidden layers with rectified-linear activa-
tion (layer sizes: 64, 32, 16). We adopt a lightweight neural
network because it can achieve a quick response to the de-
cision, which is essential for the devices in the smart home
environment. We also discuss other possible classification
models in Appendix C.

5 Evaluations

5.1 Experiment Setup
Hardware setup. Since it is hard for users to obtain audio
files from popular smart speakers such as Google Home and
Amazon Echo, in this study, to collect multi-channel audios,
as shown in Figure 17 of Appendix B, we employ two open
modular development boards (i.e., Matrix Creator, and Seeed
ReSpeaker Core v2) with the sampling rate of 48 kHz to serve
as smart speakers. The number of microphones in the Matrix
and ReSpeaker are 8 and 6, respectively, and their radiuses
are 5.4 cm and 4.7 cm respectively. For the spoofing device,



we employ 14 different electrical devices with various sizes
and audio qualities whose detailed parameters are shown in
Table 6 of Appendix B.
Data collection procedure. In this study, 20 participants are
recruited to provide the multi-channel audio data. The data
collection procedure consists of two phases: (i) Authentic au-
dio collection: in this phase, the participant speaks 20 different
voice commands as listed in Appendix B and the experimen-
tal session can be repeated multiple times by this participant.
We pre-define four distances (i.e., 0.6 m, 1.2 m, 1.8 m, 2.4 m)
between the microphone array and the participant can choose
any of them in each session. For the speaking behavior, we
ask the participant to speak command as she/he likes and
did not specify any fixed speed/tone. (ii) Spoofing audio col-
lection: in this phase, similar to the manners adopted by the
previous works [3, 49, 54], after collecting the authentic voice
samples, we utilize the spoofing devices as listed in Table 6
to automatically replay the samples without the participant’s
involvement. When replaying a voice command, the electrical
device is placed at the same location as the corresponding
participant.
Dataset description. After finishing experiments, we utilize
pyAudioAnalysis tool to split the collected audio into mul-
tiple voice command samples.6 After removing incorrectly
recognized samples, we get a dataset containing 32,780 au-
dio samples. We refer to this dataset as MALD dataset and
utilize it to assess ARRAYID.7 The details of MALD dataset
are shown in Table 7 of Appendix B. For instance, user #7
provides 600 authentic samples at three different positions
(i.e., the distance of 0.6 m, 1.2 m and 1.8 m) and we uti-
lize these collected samples with three spoofing devices (i.e.,
SoundLink, iPad, iPhone) to generate 1,800 spoofing samples.
Training procedure. As mentioned in Section 4.4, AR-
RAYID needs to be trained with audio samples before de-
tecting spoofing attacks. When evaluating the overall per-
formance of ARRAYID on the collected MALD dataset in
Section 5.2, we perform the two-fold cross-validation. In each
fold (i.e., training procedure), half samples are chosen to gen-
erate a classifier and the validation dataset proportion is set as
30%. When evaluating the impact of other factors as shown in
Section 5.3 and Section 5.4, the training procedure depends
on the specific experiment, and we show the training dataset
before presenting the evaluation results.
Evaluation metrics. Similar to previous works [3, 32, 49], in
this study, we choose accuracy, false acceptance rate (FAR),
false rejection rate (FRR), true rejection rate (TRR), and equal
error rate (ERR) as metrics to evaluate ARRAYID. The accu-
racy means the percentage of the correctly recognized sam-
ples among all samples. FAR represents the rate at which a
spoofing sample is wrongly accepted by ARRAYID, and FRR
characterizes the rate at which an authentic sample is falsely

6PyAudioAnalysis website: https://pypi.org/project/pyAudioAnalysis/.
7MALD is the abbreviation of “microphone array-based liveness detec-
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Figure 10: Per-user breakdown analysis.

rejected. EER provides a balanced view of FAR and FRR and
it is the rate at which the FAR is equal to FRR.
Ethics consideration. The experiments are under the ap-
proval of the institutional review board (IRB) of our insti-
tutions. During the experiments, we explicitly inform the
participants about the experimental purpose. Since only the
voice data are collected and stored in an encrypted dataset,
there is no health or privacy risk for the participant.

5.2 Performance of ARRAYID

Overall accuracy. When evaluating ARRAYID on our own
MALD dataset, we choose two-fold cross-validation, which
means the training and testing datasets are divided equally.
ARRAYID achieves the detection accuracy of 99.84% and the
EER of 0.17%. More specifically, for all 32,780 samples, the
overall FAR and FRR are only 0.05% (i.e., 13 out of 22,539
spoofing samples are wrongly accepted) and 0.39% (i.e., 40
out of 10,241 authentic samples are wrongly rejected) respec-
tively. The results show that ARRAYID is highly effective in
thwarting spoofing attacks.
Per-user breakdown analysis. To evaluate the performance
of ARRAYID on different users, we show the FAR and FRR
of each user in Figure 10. Note that, for six users (i.e., users
#11, #12, #15, #16, #17, #18) which are not shown in this
figure, there is no detection error. When considering FAR,
it is observed that the false acceptance cases only exist in
6 users. Even in the worst cases (i.e., user #20), the false
acceptance rate is still less than 0.51%. When considering
FRR, the false rejection cases are distributed among 14 users.
It’s observed that only the FRRs of users #3 and #20 are above
1%. Although the performance of ARRAYID on different
users is different, even for the worst-case (i.e., user #20), the
detection accuracy is still at 99.0%, which demonstrates the
effectiveness of ARRAYID.
Time overhead. For a desktop with Intel i7-7700T CPU and
16 GB RAM, the average time overhead on 6-channel and 8-
channel audios are 0.12 second and 0.38 seconds, respectively.
Note that it is easy for the existing smart home systems(e.g.,
Amazon Alexa) to incorporate ARRAYID to their current in-
dustrial level solutions in the near future. In that case, both the
speech recognition and liveness detection can be done in the
cloud [30]. Therefore, by leveraging the hardware configura-
tion of the smart speaker’s cloud (e.g., Amazon Cloud [16]),



Table 1: The detection accuracy on both datasets.

Liveness feature Dataset
MALD dataset ReMasc dataset

Microphone array 99.84% 97.78%
Mono feature 98.81% 84.37%
Two-channel 77.99% 82.44%

Table 2: Performance when changing the distance.
Training position (m) 1.2 1.8 2.4

Accuracy (%) 99.41 99.53 99.66
EER (%) 1.11 0.93 0.69

which is much better than our existing one (CPU processor),
we believe that the time overhead can be further reduced and
will not incur notable delays.
Comparison with previous works. We further compare the
performance of ARRAYID with existing works to demon-
strate the superiority of the proposed array fingerprints. To
eliminate the potential bias in our collected MALD dataset,
we also exploit a third-party dataset named ReMasc Core
which contains 12,023 voice samples. from 40 different users.
8 We re-implement mono audio-based scheme VOID [3] and
two-channel audio-based scheme CAFIELD [49]. For a fair
comparison, we replicate their parameters and classification
models as shown in Appendix C.

As shown in Table 1, since MALD dataset is collected in
the indoor smart home environment and ReMasc is collected
in both indoor, outdoor, and vehicle environments, the detec-
tion accuracy varies among these two datasets. ARRAYID is
superior to previous works in both datasets. Especially for
the ReMasc Core dataset in which only half of the audio sam-
ples are collected in the indoor environment, ARRAYID is
the only scheme that achieves an accuracy above 98.25%.
The two-channel-based scheme CAFIELD, gets relatively low
performance on both the MALD dataset and ReMasc dataset.
It is quite natural since CAFIELD claimed it needs the user
to hold the device with fixed gestures and short distances. In
summary, these results demonstrate that compared with mono
audio-based or two-channel-based scheme, exploiting micro-
phone array-based feature achieves superior performance in
the liveness detection task.

5.3 Impact of Various Factors on ARRAYID

In this subsection, we evaluate the impact of various factors
(e.g., distance, direction, user movement, spoofing device, mi-
crophone array type) on ARRAYID.
Impact of changing distance. To evaluate the performance
of ARRAYID on a totally new distance, we recruit four partic-
ipants to attend experiments at three different locations (i.e.,

8We only consider the 12,023 audio samples collected by circular micro-
phone arrays in the ReMasc Core dataset.

Table 3: Performance under different directions.
Direction Front Left Right Back

# authentic samples 1020 1004 1195 1000
# spoofing samples 980 947 971 932

Accuracy (%) 100 99.69 99.31 99.74
EER (%) 0 0.59 1.08 0.43

1.2 m, 1.8 m, 2.4 m). We totally collect 2,410 authentic and
2,379 spoofing audio samples. For a given distance, the classi-
fier is trained with audios at this distance and tested on audios
at other distances. As shown in Table 2, compared with the
performance in Section 5.2, ARRAYID’s performance under-
goes degradation when the audio source (i.e., the human or the
spoofing device) changes its location. However, in all cases,
ARRAYID achieves an accuracy above 99.4%, which demon-
strates ARRAYID is robust to the training distance. This result
is also conform to the theoretical analysis in Section 3.2
Impact of changing direction. In Section 5.1, when collect-
ing audio samples, most participants face the smart speaker
while generating voice commands. To explore the impact of
the angles between the user’s face direction and the micro-
phone array, we recruit 10 participants to additionally collect
authentic voice samples in four different directions (i.e., front,
left, right, back) and then the spoofing device #8 in Table 6
is utilized to generate spoofing audios. As shown in Table 3,
we totally collect 4,219 authentic samples and 3,830 spoof-
ing samples. Then, we use the classification model trained in
Section 5.2 to conduct liveness detection. It is observed from
Table 3 that in all scenarios, ARRAYID achieves an accuracy
above 99.3%, which means ARRAYID is robust to the change
of direction.
Impact of user movement. As similar to the above para-
graphs, we recruit 10 participants to speak while walking.
Then, the participant walks while holding a spoofing device
(i.e., Amazon Echo) and plays spoofing audios. We collect
1,999 authentic and 1,799 spoofing samples, and the classifier
is the same as that in Section 5.2. The detection accuracy
is 98.2% which demonstrates that ARRAYID and the array
fingerprint are robust even with the user’s movement.
Impact of changing environment. To evaluate the impact of
different environments on ARRAYID, we recruit 10 partici-
pants to speak voice commands and use device #8 to launch
voice spoofing at a room different from that in Section 5.2. We
collect 1,988 authentic samples and 1,882 spoofing samples
respectively. When utilizing the classifier in Section 5.2, the
detection accuracy is 99.30%, which shows ARRAYID can
effectively thwart voice spoofing under various environments.
Impact of microphone numbers in the smart speaker.
Studying the relationship between ARRAYID’s performance
and the number of microphones could help the smart speaker
vendors to determine microphone configurations. Note that
the data in MALD dataset can be divided into six-channel
(collected by ReSpeaker) and eight-channel (collected by Ma-



Table 4: The FAR of each spoofing device.
Device # 1 4 8 9 10
FAR (%) 0.09 1.04 0.05 0.55 0.96
Device # 11 12 13 14 Others
FAR (%) 3.15 4.14 0.79 0.76 0

trix) audios. Then, we generate four-channel audio data from
the data collected by Matrix device by extracting data from
microphones (M1,M3,M5,M7).

For three audio groups with 4, 6, and 8 channels respec-
tively, after conducting two-fold cross-validation on each
group, the detection accuracies of ARRAYID are 99.78%,
99.82%, and 99.90% respectively. That means changing the
number of channels doesn’t cause a significant effect on AR-
RAYID’s performance. From the theoretical analysis in Sec-
tion 3.2 and Figure 4, the standard deviation of paths from
source to each microphone could be regarded as a constant
in a smart speaker scenario. Therefore, as long as the micro-
phone array has a circular layout, ARRAYID could provide
robust protection on thwarting voice spoofing.
Impact of Spoofing Devices. It is well known that different
devices have different frequency-amplitude response proper-
ties, and thus may have different attacker power. To evaluate
ARRAYID’s performance on thwarting different spoofing de-
vices, we conduct an experiment based on the MALD dataset
containing 14 spoofing devices as listed in Table 6 of Ap-
pendix B. As discussed in Section 6.1, to reduce the user’s
enrollment burden, we set the training proportion as 10%.

Table 4 illustrates the FAR of ARRAYID on each device
in this case. It is observed that among 14 devices, the overall
FAR is 0.58% (i.e., 117 out of 20,290 spoofing samples are
wrongly accepted). Besides, ARRAYID achieves overall 100%
detection accuracy on 5 devices (i.e., devices #2, #3, #5, #6,
#7). Even in the worst case (i.e., device #12 Megaboom), the
true rejection rate is still at 95.86%. Furthermore, as shown in
Section 5.2, when increasing the training proportion to 50%,
the false accept rate (FAR) of ARRAYID is only 0.05%. In
summary, ARRAYID is robust to various spoofing devices.

5.4 Robustness of ARRAYID
5.4.1 Handling the Incomplete Enrollment Prodecure

Similar to previous works [3,49,54], in Section 5.2, ARRAYID
requires the user to participate in the enrollment procedures
(i.e., providing both authentic and spoofing voice samples).
Considering that participating in enrollment is not always
feasible, we explore the robustness of ARRAYID in handling
the case that users who did not participate in the complete
enrollment procedures.
Case 1: handling users who did not participate in any en-
rollment procedure. In this case, we add an experiment to
evaluate the performance of ARRAYID on participants that
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Figure 11: Detection accuracy when the user did not partici-
pates in enrollment.

did not participate in the enrollment (i.e., unseen users). In the
experiment, for each user in the MALD dataset, we train the
classifier using other 19 users’ legitimate and spoofing voice
samples and regard the user’s samples as the testing dataset.
The detection accuracy of each user is shown in Figure 11.
We also show the results described in Section 5.2 when users
participate in the enrollment as a comparison.

From Figure 11, it is observed that the overall detection
accuracy decreases from 99.84% to 92.97%. In the worst
case (i.e., user #12), the detection accuracy decreases from
99.87% to 74.53%. The results demonstrate that ability of
ARRAYID on addressing unseen users varies with different
users. However, for 11 users, ARRAYID can still achieve
detection accuracies higher than 95%. The overall results
demonstrate that ARRAYID is still effective when addressing
unseen users.

The performance degradation when addressing unseen
users remains an open problem in the area of liveness de-
tection [3, 6, 32, 54]. To partially mitigate this issue, a prac-
tical solution is requiring the unseen users to provide only
authentic voice samples to enhance the classifier (i.e., case 2
discussed below).
Case 2: handling a user with only authentic samples
(without spoofing samples). In this case, we consider an-
other situation that the user partially participates in the en-
rollment and provides only authentic voice samples. We add
an experiment by leveraging the MALD dataset. Note that,
we assume the attacker only utilizes existing devices in the
smart home to conduct spoofing. Thus a total of 18 users are
selected (i.e., users #19 and #20 are excluded because their
spoofing devices are never used by others in MALD dataset),
whose spoofing devices are listed in Table 6 of Appendix B.
During the experiment, for each selected user, ARRAYID is
trained with this user’s authentic voice samples, and generic
spoofing samples provided by other 17 users. Then, in the
evaluation phase, we test the ability of ARRAYID to detect
attack samples of this user and calculate the corresponding
detection accuracy (i.e., TRR).

Figure 12 illustrates the detection accuracy under two dif-
ferent enrollment configurations. For all 18 users, the overall
accuracy (i.e., TRR) decreases from 99.96% in the classical
enrollment scenario described in Section 5.2 to 99.68% in this
partial enrollment scenario. For 11 users (i.e., user #4, #5, #8,
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Figure 12: Detection performance under partial enrollment.

#9, #11, #12, #14, #15, #16, #17, #18), the accuracy remains
100% in both scenarios. For the other 7 users, the accuracy
decreases slightly due to a lack of knowledge of the user’s
attack samples in the classifier, but all of them achieve the
accuracy of above 96%, which demonstrates the effectiveness
of ARRAYID in the partial enrollment scenario.

5.4.2 Liveness Detection on Noisy Environments

We add an experiment to evaluate the impact of background
noise. As shown in Figure 13(a), to ensure the noise level is
consistent when the user is speaking a voice command, we
place a noise generator to play white noise during the data
collection. We utilize an advanced sound level meter (i.e.,
Smart Sensor AR824) with an A-weighted decibel to measure
the background noise level. The strengths of noise level at
the microphone array are set as 45 dB, 50 dB, 55 dB, 60 dB,
and 65 dB respectively, and a total of 4,528 audio samples are
collected from 10 participants and the spoofing device #13
(i.e., Amazon Echo plus).

We utilize the classifier in Section 5.2 where the noise
level is 30 dB to conduct liveness detection. As shown in
Figure 13(b), when increasing the noise level from 45 dB
to 65 dB, the accuracy decreases from 98.8 % to 86.3 %.
It is observed that ARRAYID can still work well when the
background noise is less than 50 dB, which also explains
why ARRAYID can handle the audio samples of the ReMasc
Core dataset collected in an outdoor environment. However,
when there exists strong noise, since the feature of ARRAYID
is only based on the collected audios, the performance of
ARRAYID degrades sharply. We discuss this limitation in
Section 6.3 and leave it for future work.

5.4.3 Defending against Advanced Spoofing Attacks

Thwarting modulated attacks. In this subsection, we first
study the performance of ARRAYID under the emerging mod-
ulated attack [48]. By modulating the spectrum of replayed
audio, the modulated attack [48] identifies an important threat
to existing liveness detection schemes. To achieve this goal,
in the attack model, the adversary first needs to use a micro-
phone of the target device to collect the target user’s authentic
voice samples. 9 Then, the adversary physically approaches

9The attack assumption of the modulated attack [48] only considers the
voice interface with only one microphone.
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Figure 13: Performance under noisy environments.

0 1000 2000 3000 4000

Frequency (Hz)

0

0.5

1

F
F

T
 A

m
pl

itu
de

Authentic

0 1000 2000 3000 4000

Frequency (Hz)

0

0.5

1
Classic replay

0 1000 2000 3000 4000

Frequency (Hz)

0

0.5

1
Modulated

(a) Spectrums of authentic, replay, and modulated audios.

0 1000 2000 3000 4000

Frequency (Hz)

0.4

0.6

0.8

1

A
rr

ay
 fi

ng
er

pr
in

t
Authentic

0 1000 2000 3000 4000

Frequency (Hz)

0.4

0.6

0.8

1
Classic replay

0 1000 2000 3000 4000

Frequency (Hz)

0.4

0.6

0.8

1
Modulated

(b) Array fingerprints of authentic, replay, and modulated audios.

Figure 14: Spectrums and array fingerprints of audio signals.

the spoofing device to measure its frequency amplitude curve
and the corresponding inverse filter using the target micro-
phone. Finally, by applying the inverse filter on the authentic
audio and playback it via the spoofing device, for the target
microphone, the spectrum of the collected modulated audio
is similar to the collected authentic audio as shown in Fig-
ure 14(a). However, since the array fingerprint characterizes
the difference among the multiple microphones, it is feasible
for ARRAYID to thwart modulated attacks.

We conduct a case study to demonstrate the robustness of
the array fingerprint. We select an Amazon Echo and a Re-
Speaker microphone array as the spoofing and target device,
respectively, and follow the steps in [48] to re-implement
modulated attack. We recruit a volunteer to provide an authen-
tic voice command and then collect its corresponding classic
replay and modulated audios generated by the Echo device.

Figure 14 shows spectrums and array fingerprints of authen-
tic audio and its corresponding replay and modulated samples.
It is observed from Figure 14(a) that, for a given channel, the
spectrum of modulated audio (i.e., FFT Amplitude of the first
channel audio V1) is similar to that in the authentic audio,
which means it can bypass many existing liveness detection
schemes. However, since the human vocal organs and spoof-
ing devices cannot be regarded as a point sound source, the
sounds received in multiple microphones show the obvious



differences.10 And the difference between multiple channel
audios (i.e., six channels in this experiment) characterized by
array fingerprints still retains the audio’s identity. As shown
in Figure 14(b), the array fingerprint of the modulated sample
is still similar to that of classic replay audio, which shows it
is feasible for ARRAYID to thwart the modulated attack.

Then, we evaluate the effectiveness of ARRAYID on thwart-
ing the modulated attack. In the experiment, we choose three
different spoofing loudspeakers #3, #13, and #14 (i.e., Echo
Plus, iPad 9, and Mi 9). We recruit 10 participants to provide
authentic samples and follow the steps described in [48] to
generate 1,990, 1,791, and 1,994 modulated attack samples
for Echo, iPad, and Mi respectively. Due to the page limit, the
details of modulated attacks are shown in Appendix D.

When employing the classifier in Section 5.2, the accuracy
of ARRAYID on detecting the modulated samples among
Echo, iPad, and Mi are 100%, 92.74%, and 97.29% respec-
tively. In summary, ARRAYID can successfully defend against
the modulated attack, but the performance varies with differ-
ent spoofing devices. Considering combining ARRAYID with
the dual-domain detection proposed in [48] can further im-
prove the security of smart speakers.
Other adversarial example attacks. To validate AR-
RAYID’s robustness under adversarial attacks, we re-
implement hidden voice attacks [7] and VMask [53] which
breach speech recognition and speaker verification schemes,
respectively. For each type of attack, we conduct voice spoof-
ing 100 times, and the experimental results show that AR-
RAYID detects 100% of attack audios for both attacks. The
reason why ARRAYID could detect these attacks is that these
attacks only aim to add subtle noises into source audio to
manipulate the features (e.g., MFCC) interested by speech/s-
peaker recognition schemes but the array fingerprint cannot
be fully converted to that of the target victim.

6 Discussions

6.1 User Enrollment Time in Training
Impact of training dataset size. To reduce the user’s regis-
tration burden, we explore the impact of training data size
on the performance of ARRAYID. For our collected MALD
dataset, we set the training dataset proportion as 10%, 20%,
30%, and 50% respectively. The results are shown in Table 5.
It is observed that the detection performance increases from
99.14% to 99.84% when involving more training samples.
Note that, even if we only choose 10% samples for training,
ARRAYID still achieves the accuracy of 99.14% and EER of
0.96%, which is superior to previous works [54].
Time overhead of user’s enrollment. As mentioned in Sec-
tion 5.1, the participant does not need to provide spoofing
audio samples. Besides, as shown in Table 5, when setting the

10In the theoretical analysis of Section 3.1, to simplify the analysis of the
classic replay attack, we regard the human and loudspeaker as points.

Table 5: Enrollment times per user.
Training

proportion
Authentic
samples

Time
(mm:ss)

Accuracy
(%)

EER
(%)

10% 51 02:33 99.14 0.96
20% 103 05:09 99.47 0.55
30% 155 07:45 99.63 0.43
50% 263 13:09 99.84 0.17
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Figure 15: Feature separation of 5 different users.

training proportion as 10%, among 10,241 authentic samples
from 20 users, the average number of audio samples provided
by each user during the enrollment is only 51. Since the av-
erage time length of the voice command is smaller than 3
seconds, the enrollment can be done in less than 3 minutes.
Compared with the time overhead on deploying an Alexa
skill which is up to 5 minutes [20], requiring 3 minutes for
enrollment is acceptable in real-world scenarios.

6.2 Distinguish between Different Users
Since ARRAYID is designed for liveness detection, we mainly
consider the voice command generated by the electrical loud-
speaker as a spoofing sample in this study. This subsection
explores the feasibility of user classification.

We randomly select 250 authentic samples from 5 differ-
ent users and then utilize t-Distributed Stochastic Neighbor
Embedding (t-SNE) to reduce the dimension of their corre-
sponding features. As shown in Figure 15, the feature vectors
from different users are visually clustered after dimension re-
duction, which shows the feasibility of user classification. For
all 10,241 authentic samples from 20 users, by leveraging two-
fold cross-validation, ARRAYID achieves an overall speaker
recognition accuracy of 99.88%. Besides, the accuracy among
different users ranges from 98.5% to 100%, which validates
the effectiveness of ARRAYID on user authentication.

6.3 Limitations and Countermeasures
We discuss some limitations of ARRAYID in this subsection.
The user’s burden on the enrollment. We can incorpo-
rate the enrollment into daily use to reduce the user’s time
overhead on training ARRAYID. Firstly, the evaluation re-
sults from Section 5.3 show that ARRAYID is robust to the



change of user’s position, direction, and movement. That
means the user can participate in the enrollment anytime.
Then, to achieve this goal, we divide ARRAYID into working
and idle phases. In the working phase, when a user generates
a voice command, ARRAYID collects the audio and saves the
extracted features. During the idle phase, ARRAYID can auto-
matically update the classifier based on these new generated
features. These steps can be done automatically without hu-
man involvement, which means ARRAYID can continuously
improve its performance along with daily use. However, we
admit allowing the automatically continuous retraining pro-
cess may involve other potential risks. For instance, attackers
can launch poisoning attacks to reduce the performance of
speech recognition and speaker verification [1, 2, 11].
Impact of noise and other speakers. During the user’s en-
rollment, we assume the environment is silent and there is
no user who is talking. As shown in Section 5.4.2, since AR-
RAYID is a passive liveness detection that only depends on
audios, the strong noise or other speaker’s voice existing in
the collected audios will inevitably degrade its performance.
Therefore, the existence of noise and other users who are
talking will increase the enrollment time. Fortunately, since
ARRAYID is designed for the smart home or office environ-
ment, asking the users to keep a silent environment during
enrollment is a reasonable assumption. We leave this issue as
future work.
Temporal stability of array fingerprint. To evaluate the
timeliness of ARRAYID, we recruit a participant to provide
100 authentic voice commands and launch voice spoofing per
24 hours. When using the classification model as described in
Section 5.2 and the audio dataset collected by 24 hours and
48 hours later, ARRAYID still achieves over 98% accuracy.
We admit that the generated feature may be variant when the
participant changes her/his speaking manner or suffers from
mood swings. As mentioned in Section 6.3, a feasible solution
to address this issue is incorporating the enrollment into the
user’s daily use to ensure the freshness of the classification
model of ARRAYID.

7 Related Works

Attacks on smart speakers. The voice assistant is more vul-
nerable to the replay attack [4, 12, 21, 33]. Apart from the
classic replay attack, other advanced attacks are proposed.
Firstly, the attacker can leverage medias including ultrasonic
and laser to spoof voice assistance without incurring the
user’s perception [36, 41, 43, 52]. Secondly, the subtle noises
can be employed to generate the adversarial examples at-
tacks [7,24,26,38,46,50,59]. Thirdly, several attacking meth-
ods can activate the malicious app to threaten the security
of our smart home system [17, 25, 57, 58]. Finally, Wang et
al. [48]propose modulated attack, which is the latest advanced
voice spoofing method, and we evaluate it in Section 5.4.3.
Multi-factor based defenses. As for the detecting method,

some researches [15, 28, 29] are based on wearable devices.
Besides, several works utilize the Doppler effect [34, 37],
gestures according to sound [44], or other biometry charac-
teristics to deal with the security issue. Lei et al. [28] and
Meng et al. [32] proposed a wireless signal based method to
thwart voice spoofing. Lee et al. [27] proposed a sonar-based
solution to determine the user’s AoA (angle of arrival) to do
liveness detection. Zhang et al. [55, 56] and Chen et al. [9]
utilize the Doppler effect of ultrasonic and magnetic fields
from loudspeakers as the essential characteristic for detecting
attacks, respectively. However, these methods either require
the user to wear some specialized devices or utilize other de-
vices (e.g., wireless sensors) to measure the environmental
change caused by humans.
Defenses relying on the collected audios. Shiota et al. [40]
and Wang et al. [47] utilized the Pop noise when the human
speaks to differentiate the voice commands generated by real
humans and devices. Yan et al. [49] proposed the concept
of using a fieldprint to detect spoofing attacks. Furthermore,
Blue et al. [6] and Ahmed et al. [3] utilized spectral power
patterns to identify spoofing attacks alongside a single classi-
fication model to achieve lightness in authentication. Besides,
in terms of feature selection, Defraene et al. [10] and Kam-
ble et al. [22] propose novel spectrum-based features respec-
tively. We analyze these passive liveness detection schemes
in Section 3.1. Recently, Zhang et al. [51] propose EarArray
to defend against ultrasonic-based attacks (e.g., dolphin at-
tacks [52]), but it is not designed to detect spoofing audios
with human voice frequency.

8 Conclusion

In this study, we propose a novel liveness detection system
ARRAYID for thwarting voice spoofing attacks without any
extra devices. We give a theoretical analysis of existing popu-
lar passive liveness detection schemes and propose a robust
liveness feature array fingerprint. This novel feature both en-
hances effectiveness and broadens the application scenarios
of passive liveness detection. ARRAYID is tested on both
our MALD dataset and another public dataset, and the experi-
mental results demonstrate ARRAYID is superior to existing
passive liveness detection schemes. Besides, we evaluate mul-
tiple factors and demonstrate the robustness of ARRAYID.
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A LPCC Generation Process

For audio signal yk(t) collected by microphone Mk, to calcu-
late the LPCC with the order p = 15, we firstly calculate the
Linear Prediction Coding (LPC) as a:

a = LPC(yk(t), p), (10)

where p is the order of LPC, and the collected LPC can be
represented as a = [a0,a1, . . . ,ap]. Then, for the LPCC coef-
ficient c = [c0,c1, · · · ,cp], we have c0 = ln(p), and for other
elments could be calculated as:

cn =−ai−
i

∑
k=1

(1− k
i
)akci−k. (11)

In this study, the order p is set to 15, and the LPCCs on
each channel are shown in Figure 16. In this figure, when M1
is the closest microphone, for a microphone array with six
channels, the opposite microphone is M4. The LPCCs from
these two channels are selected as FLPC in Section 4.3.3.

B Dataset Descriptions

First, the spoofing devices’ information including manufactur-
ing, model, and size is shown in Table 6. Second, for each user,
the data collection conditions including spoofing devices, dis-
tances, audio samples are summarized in Table 7. The dataset
is collected by Matrix Creator and Seeed Respeaker core V2,
which are shown in Figure 17. Finally, we list the 20 voice
commands used in our experiments as below:

(1) OK Google.
(2) Turn on Bluetooth.
(3) Record a video.
(4) Take a photo.
(5) Open music player.
(6) Set an alarm for 6:30 am.
(7) Remind me to buy coffee at 7 am.
(8) What is my schedule for tomorrow?
(9) Square root of 2105?
(10) Open browser.
(11) Decrease volume.
(12) Turn on flashlight.
(13) Set the volume to full.
(14) Mute the volume.
(15) What’s the definition of transmit?
(16) Call Pizza Hut.
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Figure 16: LPCC in each channel.

Figure 17: Microphone array: Matrix Creator and Seeed ReS-
peaker core V2.

(17) Call the nearest computer shop.
(18) Show me my messages.
(19) Translate please give me directions to Chinese.
(20) How do you say good night in Japanese?

C Experimental Details of Comparison with
Existing Schemes

When comparing ARRAYID with prior works, we strictly
follow the steps described in VOID [3] and CAFIELD [49].
In this section, we take VOID as an example to show that
ARRAYID is superior to existing schemes under various con-
ditions. More specifically, we add an experiment to explore
the impact of different classifier models on the liveness detec-
tion performance of ARRAYID and VOID.

We choose four different classification models: neural net-
work, support vector machine with radial basis function kernel
(SVM-RBF), k-Nearest Neighbor (kNN), decision tree. We
fine-tune the parameters of each model. The results are shown
in Table 8. It observed that VOID achieves the best accuracy
of 98.81% when selecting SVM-RBF, which is the same as
the paper [3]. These results prove VOID is effective in detect-
ing spoofing samples on ARRAYID dataset. However, it is
observed that the performance of ARRAYID is better than that
of VOID under every classifier model. Besides, when applying
these schemes on the third-party ReMasc Core dataset [18],
the performance of ARRAYID (i.e., the accuracy of 97.78%)
is still better than that of VOID (i.e., the accuracy of 84.37%).
In summary, compared with the mono channel-based scheme,
exploiting multi-channel features achieves superior perfor-
mance in the liveness detection task.



Table 6: Loudspeaker used for generating spoofing attacks.
No. Type Manufacture Model Size (L*W*H in cm)
1 Loudspeaker Bose SoundLink Mini 5.6 x 18.0 x 5.1
2 Tablet Apple iPad 6 24.0 x 16.9 x 0.7
3 Tablet Apple iPad 9 24.0 × 16.9 × 0.7
4 Loudspeaker GGMM Ture 360 17.5 × 10.9 × 10.9
5 Smartphone Apple iPhone 8 Plus 15.8 x 7.8 x 0.7
6 Smartphone Apple iPhone 8 13.8 × 6.7 × 0.7
7 Smartphone Apple iPhone 6s 13.8 × 6.7 × 0.7
8 Smartphone Xiaomi MIX2 15.2 × 7.6 × 0.8
9 Loudspeaker Amazon Echo Dot (2nd Gen) 8.4 × 3.2 × 8.4

10 Laptop Apple MacBook Pro (2017) 30.4 × 21.2 × 1.5
11 Loudspeaker VicTsing SoundHot 12.7 x 12.2 x 5.6
12 Loudspeaker Ultimate Ears Megaboom 8.3 x 8.3 x 22.6
13 Loudspeaker Amazon Echo Plus (1st Gen) 23.4 x 8.4 x 8.4
14 Smartphone Xiaomi Mi 9 15.8 × 7.5 × 0.8

Table 7: Detailed information of MALD dataset.
User # # Authentic

Samples
# Spoofing
Samples

Distance (cm) Spoofing Devices

1, 7 1200 3600 60,120,180 SoundLink Mini, iPad 6, iPhone 8 Plus
2 600 1079 60,120,180 Ture360, iPhone 6s
3 533 904 60, 120, 180 Ture360, iPad9

4~6, 8 2305 6415 60, 120, 180 iPad9, Ture360, MIX2
9~12 3211 3198 60, 120,180, 240 Echo Plus (1st Gen)

13~18 1191 4577 180 iPad9, Mi 9, Echo Plus (1st Gen)
19 591 1767 60,120,180 iPhone 8, Echo Dot (2nd Gen), MacBook Pro (2017)
20 610 998 60, 120, 180 SoundHot, Megaboom

Table 8: Liveness detection performance under different clas-
sification models on the MALD dataset.

Classifier type Accuracy / EER (%)
ARRAYID Mono feature

Neural network 99.84 / 0.17 98.47 / 2.57
SVM-RBF 99.48 / 1.07 98.81 / 1.78

kNN 99.62 / 0.48 96.67 / 4.82
Decision tree 96.35 / 5.97 94.84 / 7.34

D Details of Modulated Attacks

When re-implementing the modulated attack and calculating
the detection accuracy of ARRAYID, we choose three spoof-
ing devices #3, #13 and #14 (i.e., iPad 9, Mi phone 9, and
Amazon Echo Plus) as spoofing devices and Respeaker micro-
phone array as the target device. To calculate the inverse filter
for each device, we follow the steps described in the modu-
lated attacks [48]. The frequency responses and their inverse
filters of three spoofing devices are shown in Figure 18.

Then, after applying calculated inverse filters into the au-
dios collected by the target device, we generate 1,990, 1,791,
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Figure 18: The amplitude responses of different spoofing
devices and their corresponding inverse filters.

and 1,994 modulated attack samples for Echo, iPad, and Mi
respectively.


