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Abstract

Measurement-based quantum computing [1] is a model of quantum computer that

begins with preparing a highly entangled quantum state, known as cluster state [2],

and is followed by performing measurements on this state to carry out the calcula-

tions. Cluster states are crucial resources for measurement-based quantum comput-

ing. Quantum optical frequency comb (QOFC), which consists of a lot of two-mode-

squeezed states created by an optical parametric oscillator (OPO), provides a highly

scalable platform to create continuous variable (CV) cluster state, which have been

generated in frequency domain [3], temporal domain [4, 5], spatial domain [6] and

hybrid time-frequency domain [7]. All these cluster states require interfering more

than one QOFCs.

Here we propose and fully analyze the simplest technique to generate CV cluster

states. We use a single QOFC and apply phase modulation to it at frequencies

multiple of the comb spacing. The cluster state generated using this method can

be n-hypercubic cluster state of arbitrary dimension n, among which 2 dimensional

cluster states are resources for universal one-way quantum computing [1].

I will also present the experimental design towards the cluster states generation

based on the method mentioned above. I will discuss the design for the optical phase

stabilization, the homodyne and heterodyne detection that can be used to perform

quadrature measurements.
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Chapter 1

Introduction

Quantum computing has gained tremendous attention and rapid development since

it was first proposed in the early 1980s. It is a type of computation that uses the

laws of quantum mechanics. Quantum computers are devices that perform quantum

computing.

In 1982, Richard Feynman first proposed using a quantum computer to simulate

quantum systems [8], which can’t be accomplished efficiently by classical computers.

A classical computer is binary computing based on calculation unit “bit”, which

can have values either 0 or 1. A system consists of n bits has 2n possible states

in total, but can only be one state at a given time. Meanwhile, for a quantum

computer, the calculation unit is “quantum bit” (qubit), which can be state |0〉,

|1〉 and linear combination of them |ψ〉 = α|0〉 + β|1〉, originated from quantum

superposition. |α|2 and |β|2 are the probabilities of getting a measurement result of

either |0〉 or |1〉. When there are n qubits that are all entangled, the system can

be in 2n states simultaneously, although they are not all simultaneously addressable

and this alone doesn’t explain the power of quantum computing. However, it is

possible to develop proper quantum algorithms that can solve certain problems faster

than classical computation [9, 10, 11]. For example, in 1994, Peter Shor proposed a

quantum algorithms for finding the prime factors of large integers [12], faster than a

classical computer. In 2019, Google announced achievement of quantum supremacy
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in sampling instances of a quantum circuit using a 53-qubit quantum system [13].

With these advantages demonstrated, quantum computing has attracted more and

more research and investment from facilities all around the world.

Over the past decades, several different physical implementations of quantum

computing platforms have been developed, such as trapped ions, nuclear spin, neutral

atoms, nitrogen-vacancy center, superconducting circuit [13], quantum optics includ-

ing both photons and squeezed light. In this thesis, I will focused on a squeezed

light system, which is used for continuous variable (CV) quantum computing (QC).

CV is the opposite to discrete variables (DV). If a QC unit is a two-level system, in

other words, the levels are discrete (like spin up or down, there is no other states

in between), the unit is qubit and used for DV quantum computing. If a quantum

computing unit has continuous basis, we call it qumode, used for CV QC. Squeezed

light system has advantages such as high scalability, operating at room temperature

and potential for being integrated on chips [14]. The discovery that CV QC can be

made fault tolerant at reachable squeezing levels makes it very promising [15, 16, 17].

More details about CV quantum computing can be found in Chapter 2.

Based on the methods that are used to apply quantum operators to achieve dif-

ferent quantum logical gates, there are two different models: circuit-based QC and

measurement-based QC. For the circuit-based QC [11], the qubits go through a se-

quence of quantum gates and measurements to give a calculation results at last. On

the other hand, for the measurement-based QC [1], a highly entangled quantum state,

named cluster state, is first prepared, and then by applying measurements on each

qubit to carry out calculations. Because the measurements will destroy the cluster

state, this kind of QC also known as one-way QC. In 2006, Nicolas Menicuci and

Peter van Loock proposed CV one-way QC by using CV cluster state as an analogue
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to qubit cluster state [18]. Therefore, cluster states are crucial resource for one-way

QC. A 2-d cluster state is required to perform universal quantum computing [1] and

a 3-d cluster state makes quantum error correction topological encoding possible [19].

Thesis plan

The work presented in this thesis mainly consists of 2 parts. The first part is the

theoretical work of generating higher dimensional CV cluster states using phase mod-

ulated quantum optical frequency comb. The second part introduces the experiment

and data processing methods toward generating and measuring the cluster states.

This thesis is organized as follows:

In Chapter 2, I introduce some basic concepts of quantum optics starting from

electromagnetic field quantization. Then I discuss the quantum system evolution

in three different pictures and present several commonly used quantum states and

operators. Also, I will give a brief introduction to CV QC.

Chapter 3 is the main chapter and I present the theoretical work of generat-

ing 1-d, 2-d and 3-d cluster states by phase modulated quantum optical frequency

comb. I provide the mathematical description of the generation process, including

the Gaussian state symplectic representation, graphical calculus for CV cluster state

and quantum model of phase modulation and analysis of the graph error caused by

omitting the spurious graph edges and finite squeezing.

Chapter 4 switches to the main experiment that is designed based on the the-

oretical work in Chapter 3. I focus on introducing the stabilization systems of this

experiment, including Pound-Drever-Hall locking, pump and probe beam phase lock-

ing and LO-probe beam phase locking.
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In Chapter 5, I discuss the method of using the quantum homodyne and hetero-

dyne detection combined with Fourier transform to measure the nullifiers of two-mode

squeezed state and extract the quadratures information. The mathematical derivation

of cluster state covariance matrix using quantum heterodyne detection and Fourier

transform is presented in Appendix A.

In Appendix B, I first present the design of virtually imaged phase array (VIPA)

to experimentally separate the light that has frequency difference of 1 GHz, which

provides the possibility of spatially separating qumodes with different frequencies.

Then I discuss how those parameter related to VIPA affects its output field based on

some simulation results.

In Appendix C, I analyze the super entanglement structure in a pulsed system,

with or without optical parametric oscillator, and show that the squeezing of this

super entangled mode can be leveraged to form a highly squeezed eigen-quadrature.
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Chapter 2

Quantum optics

In this chapter, I will first introduce some basic concepts of quantum optics. I will

start with electromagnetic field quantization and then present some commonly used

quantum states and operators. Finally, I will briefly summarize some basics of con-

tinuous variable quantum computing. Some good references are [20, 21, 22].

2.1 Field quantization

The classical electric field constrained in a physical volume V solved from Maxwell’s

equations is

E⃗(r⃗) = i
∑
j

√
h̄ωj

2ϵ0V
êj[aje

i(k⃗j ·r⃗−ωt) − a†je
−i(k⃗j ·r⃗−ωt)], (2.1)

where h̄ is the scaled Plank constant, ϵ0 is the electric permittivity of vacuum and j

is the mode number. A electric field mode is specified by the polarization, frequency

ω and wave vector k. For classical electromagnetic wave, the aj and a∗j are complex

Fourier amplitudes. The quantization of the electromagnetic field can be achieved

by defining aj and a∗j as mutually adjoint operators aj and a†j, satisfying the boson

communication relations

[aj, aj′ ] =
[
a†j, a

†
j′

]
= 0,

[
aj, a

†
j′

]
= δj,j′ . (2.2)
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The Hamiltonian for the electromagnetic field is

H =
1

2

∫
(ϵ0E

2 + µ0H
2)dV, (2.3)

where µ0 is the magnetic permittivity of vacuum and H is the magnetic field. Sub-

stituting the quantized E field and equivalent H field, the Hamiltonian is expressed

as

H =
∑
j

h̄ωj

(
a†jaj +

1

2

)
, (2.4)

where aj and a†j are the annihilation and creation operators for electromagnetic mode

j, indexed, e.g. for a plane wave, by wave vector, frequency, and polarization. The

photon number operator is defined as N = a†jaj. The Hamiltonian of quantum optical

field has the same form as the quantum harmonic oscillator. Each quantum mode j

has an independent Hilbert space Hj. The entire field is defined as tensor product of

the Hilbert space for all the different modes H = ⊗jHj.

With the definition of creation (a†) and annihilation (a) operators

a =

√
mω

2h̄

(
X̂ +

i

mω
P̂

)
. (2.5)

We take the parameter β =
√

mω
h̄

to have the dimension of inverse length and define

a dimensionless operators

Q = βX̂, (2.6)

P =
P̂

βh̄
, (2.7)

where Q is amplitude (or position) quadrature and P is phase (or momentum) quadra-
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ture. Then we have the photon creation and annihilation operator in the expressions

of

a =
1√
2
(Q+ iP ) , (2.8)

and

Q =
1√
2

(
a+ a†

)
, (2.9)

P =
1

i
√
2

(
a− a†

)
. (2.10)

The canonical commutator of amplitude and phase quadratures is

[Q,P ] = i, (2.11)

and they satisfy the Heisenberg uncertainty principle

∆Q∆P ≥ 1

2
. (2.12)

2.2 Evolution pictures in quantum mechanics

In quantum mechanics, the time evolution can be described mathematically in three

different pictures: Schrödinger picture, Heisenberg picture and interaction picture

(also known as Dirac picture).
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2.2.1 Schrödinger picture

In Schrödinger picture, the state vectors evolve with time and the operators are time-

independent initially. The state vector evolution is given by the Schrödinger equation

d |ψ〉
dt

= − i

h̄
H |ψ〉 , (2.13)

where H is the time-independent Hamiltonian of the system. The solution to the

Schrödinger equation equation is

|ψ(t)〉 = U(t, t0) |ψ(t0)〉 , (2.14)

where t0 and t are the initial time and final time of evolution. U(t, t0) is a unitary

operator

U(t, t0) = e−
i
h̄
H(t−t0). (2.15)

Therefore, the expectation value of an operator A0 is

〈A0〉 = 〈ψ(t)|A0 |ψ(t)〉

= 〈ψ(t0)|U †A0U |ψ(t0)〉 .
(2.16)

Here we use A0 to represent the initial operator which is defined for t = t0.

2.2.2 Heisenberg picture

In Heisenberg picture, the state vectors remain unchanged while the operators evolve

with time. Again, A0 is the initial operator. From Eq. (2.16), the time evolved
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operator at t is defined as

A(t) = U †A0U. (2.17)

Therefore, in Heisenberg picture with the unchanged wave function ψ(t0), the expec-

tation value of an operator is

〈A〉 = 〈ψ(t0)|A(t) |ψ(t0)〉

= 〈ψ(t0)|U †A0U |ψ(t0)〉 ,
(2.18)

which gives the same result as Eq. (2.16).

Using the expression of U in Eq. (2.15), taking the time derivative of the operator

A(t)
dA(t)

dt
=
dU †

dt
A0U + U †dA0

dt
U + U †A0

dU

dt

=
i

h̄
(U †HA0U − U †A0HU) + U †dA0

dt
U,

(2.19)

with the condition that [U,H] = [U †, H] = 0 and A0 is constant since taken at t = t0

so that dA0

dt
= 0, the Eq. (2.19) is simplified to

dA(t)

dt
= − i

h̄
[A(t), H]� (2.20)

which is known as Heisenberg equation describing the evolution of operator in Heisen-

berg picture.

2.2.3 Interaction picture

In interaction picture, also known as Dirac picture, both the state vectors and the

operators evolve with time. For simplicity, we consider the case that the Hamiltonian

can be written as H = H0 + V , where H0 is the Hamiltonian of single system (or a
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sum of single systems) and V is the Hamiltonian describing the interactions between

systems. H0 and V do not necessarily commute. Writing the Hamiltonian in this form

makes it convenient to define that the operators evolve only under the interaction

Hamiltonian V and the state vectors evolve only under H0. This definition is used to

calculate the parametric down conversion process (in Section 4.1.2) and the quantum

model of electro-optic modulations (in Section 3.3).

The operator in the interaction picture, AI(t), can be defined as

AI(t) = U0AH(t)U
†
0 = U0U

†A0UU
†
0 , (2.21)

where U0 = e−iH0t/h̄ and U = e−iHt/h̄. Here AH(t) is the operator that evolves with

total Hamiltonian H in Heisenberg picture. The time derivative of AI(t) is

dAI(t)

dt
=
dU0

dt
AHU

†
0 + U0AH

dU †
0

dt
+ U0

dAH

dt
U †
0

= − i

h̄
(H0U0AHU

†
0 − U0AHU

†
0H0) + U0

dAH

dt
U †
0

=
i

h̄
[AI , H0] + U0

dAH

dt
U †
0 .

(2.22)

Use Heisenberg equation Eq. (2.20) to rewrite the second term

U0
dAH

dt
U †
0 = − i

h̄
[AI , H0]−

i

h̄
[AI , V ]. (2.23)

Since H0 and V are Heisenberg-picture operators, when they commute with them-

selves at different times, the evolution equation of operators in interaction picture

is
dAI(t)

dt
= − i

h̄
[AI , V ]. (2.24)
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Since the state evolves only under H0, the state vector in the interaction picture,

|ψI〉, is defined as

|ψI(t)〉 = U0 |ψ(t0)〉 . (2.25)

The state vector evolution equation is

d |ψI(t)〉
dt

= − i

h̄
H0 |ψ(t0)〉 . (2.26)

2.3 Quantum state

In this section, I will describe several commonly used and important quantum optical

states: Fock state, coherent state and squeezed state.

2.3.1 Fock state

Fock states, also known as photon number states, are the eigenstates of the harmonic

oscillator Hamiltonian Eq. 2.4. Since this Hamiltonian has the photon number oper-

ator Nj = a†jaj, Fock states are also the eigenstates of the photon number operator

Nj. The eigenvalue of the photon number operator is nj, thus the eigenstates |nj〉

are

a†jaj |nj〉 = nj |nj〉 . (2.27)

Similarly, the the eigenequation of the harmonic oscillator Hamiltonian is

(Nj +
1

2
) |nj〉 = (nj +

1

2
) |nj〉 . (2.28)

Here we can review the meanings of operator aj and a†j. They are the lowering



12

and raising operators for the harmonic oscillator ladder of eigenstates. In terms of

photon number, aj and a†j are the annihilation and creation of a photon, which is

clear with the expression

aj |nj〉 =
√
nj |nj − 1〉 ,

a†j |nj〉 =
√
nj + 1 |nj + 1〉 .

(2.29)

The ground state of the harmonic oscillator is state with nj = 0. The state that

has 0 photon is also defined as vacuum state of the field mode. So the vacuum state

|0〉 is

aj |0〉 = 0. (2.30)

The higher exited states can be calculated from the vacuum by successive applications

of creation operator. The state vector is

|nj〉 =
(a†j)

nj√
(nj!)

|0〉 . (2.31)

The Fock states are orthogonal and complete

〈nj |nk〉 = δjk,

∞∑
nj=0

|nj〉 〈nj| = 1.
(2.32)

These Fock states form an orthonormal basis of the Hilbert space.
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Fock state in phase space

The expectation value of P and Q quadratures for Fock state are

〈nj|Q |nj〉 = 〈nj|
1√
2

(
aj + a†j

)
|nj〉 = 0,

〈nj|P |nj〉 = 〈nj|
1

i
√
2

(
a− a†

)
|nj〉 = 0.

(2.33)

The variance of Q and P quadratures for Fock state are

∆2Q = 〈nj|Q2 |nj〉 − 〈nj|Q |nj〉2 = nj +
1

2
,

∆2P = 〈nj|P 2 |nj〉 − 〈nj|P |nj〉2 = nj +
1

2
.

(2.34)

To represent Fock states in phase space, it is a disk centered at the origin with radius

∆P = ∆Q =
√
nj + 1/2 as shown in Fig.2.1. The vacuum state is the case when

nj = 0, which has ∆Q = ∆P = 1√
2
.

Figure 2.1: Fock state phase space representation.
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2.3.2 Coherent state

The coherent state |α〉 is defined as the the eigenstate of the annihilation operator a

a |α〉 = α |α〉 , (2.35)

where α is the eigenvalue and it is a complex number of the form

α = |α|eiϕ, (2.36)

with |α| and ϕ are the amplitude and phase of the state |α〉.

The coherent state can be generated by displacing the vacuum state. The dis-

placement operator is

D(α) = eαa
†−α∗a. (2.37)

Applying this displacement operator to vacuum state expressed in photon number

basis

|α〉 = D(α) |0〉 = e−
|α|2
2

∞∑
n=0

αn

√
n!

|n〉 . (2.38)

The expectation of photon number of a coherent state is

〈α|N |α〉 = |α|2, (2.39)

and its photon number standard deviation is

∆N =
√

〈α|N2 |α〉 − (〈α|N |α〉)2 = |α|. (2.40)
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The expectation of quadratures Q and P for a coherent state is

〈α|Q |α〉 = 1√
2
〈α| a+ a† |α〉 = 1√

2
(α + α∗) =

√
2|α|cosϕ, (2.41)

〈α|P |α〉 = − i√
2
〈α| a− a† |α〉 = − i√

2
(α− α∗) =

√
2|α|sinϕ. (2.42)

and its standard deviation is

∆Q =

√
〈α|Q2 |α〉 − 〈α|Q |α〉2 = 1√

2
, (2.43)

∆P =

√
〈α|P 2 |α〉 − 〈α|P |α〉2 = 1√

2
. (2.44)

The phase space graph of a coherent state is shown in Fig.2.2. Compared to vacuum

state in phase space shown in Fig.2.1, coherent state is a disk with diameter equal

to 1/
√
2, which is the standard deviation of quadratures Q and P . The center of the

disk is displaced from origin along a vector. The vector has the magnitude of
√
2|α|

and and its angle is the phase of the coherent state ϕ. The coordinates of the center

of the disk is (
√
2|α|cosϕ,

√
2|α|sinϕ), which are the expectation values of quadratures

Q and P as shown in Eq. (2.41).

Figure 2.2: Coherent state in phase space.
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2.3.3 Squeezed state

The vacuum states and coherent states have the same standard deviation in two

quadratures, ∆Q = ∆P = 1/
√
2. In this subsection, I will describe squeezed vacuum

states, which have less uncertainty than vacuum state in one quadrature and are

noisier in the other quadrature to hold the Heisenberg uncertainty. For now, I will

focus on the mathematical properties of squeezed state. The experimental generation

will be discussed in the Section 4.1.2.

Single-mode squeezed state

Single-mode squeezed states are generated by applying squeezing operator to the

vacuum state. In Schrödinger picture, the state vector is

|0, r〉 = S(r) |0〉 , (2.45)

where S(r) is the squeezing operator

S(r) = e
r
2
(a†

2−a2), (2.46)

with r being the squeezing parameter. The single-mode squeezed state is calculated

to be

|0, r〉 = 1√
coshr

∞∑
n=0

√
2n!

2nn!
tanhnr |2n〉 , (2.47)

which can only have even number of photons.
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In Heisenberg picture, the annihilation and creation operators evolutions are

a(r) = S†(r)aS(r) = acoshr + a†sinhr, (2.48)

a†(r) = S†(r)a†S(r) = a†coshr + asinhr, (2.49)

which are Bogoliubov transformations. Furthermore, the quadrature transformations

are given by

Q(r) = S†(r)QS = Qer, (2.50)

P (r) = S†(r)PS = Pe−r. (2.51)

Using these relations, we can calculate the mean photon number of single-mode

squeezed state

〈0, r|N |0, r〉 = 〈0| a†(r)a(r) |0〉 = sinh2r, (2.52)

and the standard deviation of photon number is

∆N =
√

〈0, r|N2 |0, r〉 − (〈0, r|N |0, r〉)2 = 1√
2
|sinh2r|. (2.53)

The squeezed vacuum state is not vacuum and it has nonzero photon number.

The quadrature expectation values of single-mode squeezed state are

〈0, r|Q |0, r〉 = 〈0, r|P |0, r〉 = 0, (2.54)
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and the standard deviations are

∆Q =
er√
2
, (2.55)

∆P =
e−r

√
2
. (2.56)

From Eq. (2.55), it is obvious that the noise of phase quadrature P is reduced less

than it of the vacuum state and the noise of amplitude quadrature Q is large than

it of the vacuum. This state is call phase squeezed vacuum state. The phase space

representation of phase squeezed vacuum state is shown in Fig.2.3.

Figure 2.3: Squeezed state in phase space.

Two-mode squeezed state

Single-mode squeezed state is a degenerate case that the quantum optical field has

only one frequency. If the states consist of two fields a and b with different frequencies,

it is called two-mode squeezed state. The two-mode squeezing operator is

Sab(r) = er(a
†b†−ab). (2.57)
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Two-mode squeezed vacuum state is obtained by

Sab(r) |0〉a |0〉b =
1

coshr

∞∑
n=0

tanhnr |n〉a |n〉b . (2.58)

In this wave vector expression in the Fock state basis, it is obvious to see that the

two modes always have the same photon number in two-mode squeezed state.

Solving the Heisenberg equation from the Hamiltonian driving the evolution of

Eq. (2.57), H = ih̄κ(a†b† − ab), and taking r = κt, we obtain the evolution equations

of the annihilation and creation operators of the quantum optical fields, i.e., the

Bogoliubov transformations for two-mode squeezing

a(r) = Sab(r)
†aSab(r) = acoshr + b†sinhr, (2.59)

a†(r) = Sab(r)
†a†Sab(r) = a†coshr + bsinhr, (2.60)

b(r) = Sab(r)
†bSab(r) = bcoshr + a†sinhr, (2.61)

b†(r) = Sab(r)
†b†Sab(r) = b†coshr + asinhr. (2.62)

The squeezed and anti-squeezed quadratures are then given by

Q+(r) = Qa(r) +Qb(r) = (Qa +Qb)e
r, (2.63)

Q−(r) = Qa(r)−Qb(r) = (Qa −Qb)e
−r, (2.64)

P+(r) = Pa(r) + Pb(r) = (Pa + Pb)e
−r, (2.65)

Q−(r) = Pa(r)− Pb(r) = (Pa − Pb)e
r, (2.66)
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with the standard deviations

∆Q+(r) =
er√
2
, (2.67)

∆Q−(r) =
e−r

√
2
, (2.68)

∆P+(r) =
e−r

√
2
, (2.69)

∆P−(r) =
er√
2
. (2.70)

Therefore, for two-mode squeezing, the sum of P quadratures and the difference of

Q quadratures are squeezed, the noise of which is reduced smaller than the noise of

vacuum, while the sum of Q quadratures and the difference of P quadratures are

anti-squeezed, the noise of which is greater than that of the vacuum.

2.4 Quantum operators

In the previous section Section 2.3, I introduced the displacement operator and

squeezed operator which are used to create coherent state and squeezed state from

vacuum. In this section, I will discuss some other commonly used quantum operators

including single-mode phase rotation operator and two-mode beam splitter.

2.4.1 Phase rotation operator

The unitary operator associated with field quantization Hamiltonian Eq. (2.4) is given

by

UR = e−iωt(a†a+ 1
2
). (2.71)
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Replacing the phase term ωt = θ and ignoring e−iωt
2 since it is a global phase term

and does not affect the state evolution, the unitary operator becomes

UR(θ) = e−iθ(a†a). (2.72)

We can view this evolution from the aspect of operators by solving the Heisenberg

equation. The evolution of annihilation and creation operators is given by

a(t) = U †
RaUR = e−iθa, (2.73)

a†(t) = U †
Ra

†UR = eiθa†, (2.74)

and therefore using Eq. (2.9) the quadratures evolve as

U †
RQUR = Qcosθ + P sinθ, (2.75)

U †
RPUR = −Qsinθ + P cosθ. (2.76)

From the quadrature evolution, we can see the meaning of operator UR is rotating

the quadratures of a certain state in phase space by an angle θ. Because this phase

rotation operator corresponds to free space evolution Hamiltonian, the experimental

implementation of phase rotation is changing the path length of a propagating wave.

2.4.2 Beam splitter

The beam splitter (BS) is an important element used in optics. From classical point

of view, it can split the incident light into reflected field and transmitted field with

reflection coefficient ρ and transmission coefficient τ . With energy conservation,

|ρ|2+|τ |2 = 1 must be satisfied. From quantum aspect, the beam splitter always has 2
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input port and two output port to make sure this transformation can be implemented

by a unitary operator. When there is only one beam incident on the beam splitter,

the field incident on the other input port will be considered as vacuum.

Fig.2.4 shows the quantum model of beam splitter. Because of field quantization,

we use annihilation operator a and b to represent the two input modes, c and d denote

the two output modes. The Hamiltonian of beam splitter is

Figure 2.4: Beam splitter with two input mode a, b, and two output mode c, d.

HBS = h̄κ(a†beiϕ − ab†e−iϕ), (2.77)

where κ is the interaction coefficient and ϕ is the phase difference of two input modes.

The unitary operator of beam splitter is therefore given by

UBS = e−iθ(a†beiϕ−ab†e−iϕ), (2.78)

where the phase θ = κt, with t being the interaction time of this beam splitter

evolution. Solving the Heisenberg equation to get the mode transformation and the
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two output modes c and d are

c
d

 =

U †
BSaUBS

U †
BSbUBS

 =

 cosθ eiϕsinθ

−e−iϕsinθ cosθ


a
b

 . (2.79)

Because the phase ϕ can be changed by single mode phase rotation, the beam splitter

transform matrix can have different forms. It is convenient to set ϕ = π, with ρ = cosθ

and τ = sinθ, the beam splitter transformation is in the form of

c
d

 =

ρ −τ

τ ρ


a
b

 =

ρa− τb

τa+ ρb

 . (2.80)

2.5 Continuous-variable quantum computing

In this section, I will introduce some basic concepts of continuous-variable quantum

computing (CVQC). The detailed discussion can be found in [22, 23, 24].

2.5.1 Measurement based quantum computing

There are two models for quantum computing (QC). The first one is circuit based QC

[11], in which computation is performed by a sequence of quantum logical gates and

measurements acting on initial input state. An example [11] is shown in Fig.2.5. State

|Φ〉+ = (|00〉+ |11〉)/
√
2 are input state of channel A and B, while |ψ〉 = α|0〉+ β|1〉

is the input state of channel C. Those input states go through a sequence of gates

(quantum operators) such as controlled X, Hadamard transform and measurements



24

to get the final results output state |ψ〉B, which is a process to teleport state |ψ〉 from

channel C to channel B.

Figure 2.5: Circuit-based quantum computing example [11].

The second model is measurement-based quantum computing. It was proposed

by Robert Raussendorf and Hans J. Briegel in 2001 [1]. Measurement-based QC is a

method that first prepares an entangled resource state and then performs single qubit

measurements on this state along with feedforward to neighboring qubits to process

quantum information. It is also called one-way quantum computing because the re-

source state is partially destroyed by the measurements. The entangled resource state

is usually a cluster state or a graph state, which is a highly entangled qubits lattice

with all the initial quantum information embedded in it. Fig.2.6 shows an example of

measuring qubit lattice cluster state [1]. Before the measurements, the qubits are in a

square grid cluster state. Quantum information is processed by measuring each qubit

in a certain order and basis. Different basis are represented by circles and arrows

in Fig.2.6: circle � represents measuring spin Z of the qubit resulting removing the

qubit from the state, vertical arrows are measurements of spin X and tilted arrows

means measurements in the spin x − y plane. Quantum information is propagated

horizontally and the qubits on vertical connections are used to realize quantum gates.

A simpler example of quantum information teleportation through measurement

on single qubit is shown in Fig.2.7. A simple two-qubit entangled state is created by



25

Figure 2.6: Quantum computing by measuring two-state qubit on lattice [1]. Circles
� symbolize measurements of σz, vertical arrows are measurements of σx, while tilted
arrows refer to measurements in the x-y plane.

applying CZ gate to qubit 1: |φin〉1 = a|0〉1 + b|1〉1 and qubit 2: |+〉2 = |0〉2 + |1〉2.

The state is a simple example of a cluster state

CZ(|φin〉1 ⊗ |+〉2) =|+〉1 [(a+ b)|0〉2 + (a− b)|1〉2]

+ |−〉1 [(a− b)|0〉2 + (a+ b)|1〉2] .
(2.81)

If the result of measuring spin X of qubit 1 projects to |+〉, qubit 2 must have the

output (a+ b)|0〉+ (a− b)|1〉 = a|+〉+ b|−〉. Therefore, the input information a and

b is teleported to qubit 2. Note that the basis changed from 01 to +-. This can be

fixed by an X Pauli gate, which is an example of “feedforward.”

Figure 2.7: Two-qubit state demonstrating the information teleportation.

2.5.2 Qubits and qumodes

In previous subsection, the basic unit used to perform QC is qubit. Qubit is a two-

state quantum system, such as spin-1
2

particle with the two states being spin up and

spin down, or the polarization of a photon the two states of which can be horizontal
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polarization and vertical polarization. The two-state basis is discrete and denoted as

{|0〉, |1〉}, which are the eigenstates of spin Z operator.

With the optical field quantization, the quantum optical field, also known as

qumode, can be used as another basic unit of quantum computing [25]. The basis

vectors of qumode are the eigenstates of amplitude quadrature Q, {|q〉}q∈R. Because

q is continuous, the quantum computing based on qumodes is also named continuous

variable quantum computing. Table 2.1 shows correspondences between the basis,

states and operators of quantum computing using qubits and qumodes.

2.5.3 Cluster state

Cluster state is crucial to measurement-based quantum computing. It is the resource

for all the embedded quantum information and processes. It is also proved that square

grid cluster state is essential to realize universal quantum computing [1]. In this

subsection, I will first summarize the definition and properties of qubit cluster state,

and then I will introduce qumode cluster states using the corresponding relations

given in Table 2.1.

Before showing the details of cluster state, I want to point out the difference

between “graph state” and “cluster state”. A qubit graph state is a special type of

multi-qubit state that can be represented by a graph. Each qubit is represented by

a vertex of the graph, and the edges represent the entanglement between qubits. A

graph state can have any graph but the term “cluster state” is usually reserved for

graph states that are sparse enough to allow measurement-based quantum comput-

ing [26, 27, 28]. In the rest of this thesis, I use the “cluster state” only as the states

we are discussing are sparse and adequate for one-way QC. I will also use the graph,
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Qubit Continuous variable

Basis {|0〉, |1〉} {|q〉q∈R}
〈n|m〉 = δn,m, n,m ∈ {0, 1} 〈q|q′〉 = δ(q − q′), q, q′ ∈ R

Conjugate
basis

Hadamard transformation Fourier transformation
|±〉 = 1√

2
(|0〉 ± |1〉) |p〉 = 1√

2π

∫
eipq|q〉dq

Single-
qubit/qumode
state

|ψ〉 = ψ0|0〉+ ψ1|1〉 |ψ〉 =
∫
ψ|q〉dq

Single-
qubit/qumode
operators

Pauli group Weyl–Heisenberg group
〈X,Z〉 〈{X(γ)}γ∈R, {Z(η)}η∈R〉

= 〈{e−iγP}γ∈R, {eiηQ}η∈R〉

X|j〉 = |j ⊕ 1〉, j = 0, 1 X(γ)|q〉 = |q + γ〉
Z|j〉 = eijπ|j〉, j = 0, 1 Z(η)|q〉 = eiηq|q〉

X|±〉 = ±|±〉 X(γ)|p〉 = e−iγp|p〉
Z|±〉 = |∓〉 Z(η)|p〉 = |p+ η〉

Two-
qubit/qumode
operators
(Controlled
gates)

CX |j〉1|k〉2 = |j〉1|k ⊕ j〉2 CX |q〉1|q′〉2 = e−iϵQ1P2 |q〉1|q′〉2
= |q〉1|q′ + ϵq〉2

CZ |j〉1|k〉2 = eiπjk|j〉1|k〉2 CZ |q〉1|q′〉2 = eiϵQ1Q2 |q〉1|q′〉2
= eiϵqq

′ |q〉1|q′〉2

Bipartite
entanglement

Bell state (unnormalized) EPR state (unnormalized)
|B00〉12 = |00〉+ |11〉 |EPR(0, 0)〉12 =

∫
|q〉1|q〉2dq

|B01〉12 = X1|B00〉12 |EPR(0, γ)〉12 = X1(γ)|EPR(0, 0)〉12
= |10〉+ |01〉 =

∫
|q + γ〉1|q〉2dq

|B10〉12 = Z1|B00〉12 |EPR(η, 0)〉12 = Z1(η)|EPR(0, 0)〉12
= |00〉 − |11〉 =

∫
eiηq|q〉1|q〉2dq

|B11〉12 = Z1X1|B00〉12 |EPR(η, γ)〉12
= −|10〉+ |01〉 = Z1(η)X1(γ)|EPR(0, 0)〉12

=
∫
eiη(q+γ)|q + γ〉1|q〉2dq

Table 2.1: Correspondence between qubit and CV quantum information. ⊕ is the
exclusive or gate which yields true if and only if the two inputs are the same.
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as defined above for graph state, to represent cluster state.

Qubit cluster state

A qubit cluster state is canonically defined the following way [2, 29]: prepare N

qubits in the state |+ 〉j = (| 0 〉j + | 1 〉j)/
√
2, denoted by graph vertices j, and apply

controlled Z gates (CZij
) between certain pairs of qubits to create entanglements

which are the graph edges (j, k) connecting qubit vertices j and k.

The stabilizers S of a cluster state |ψ〉 are the operators that leave the state

unchanged:

S|ψ〉 = |ψ〉. (2.82)

The stabilizers form a group of Pauli generators Xj

⊗
k∈Nj

Zk, where j=1,...,N de-

notes each graph vertex and Nj is the neighborhood of j, i.e., the set of all vertices

sharing an edge with j.

Figure 2.8: Two-qubit cluster state.

The simplest example is a two-qubit cluster state

CZ12 |+〉1|+〉2 =
1

2
(|0〉1|0〉2 + |1〉1|0〉2 + |0〉1|1〉2 − |1〉1|1〉2). (2.83)

The graph representation of this state is shown in Fig.2.8, with two vertices denoting

two qubit |+〉1 and |+〉2 and edge connecting vertices representing CZ gate. One
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stabilizer of this state is X1Z2 as

(X1Z2)CZ12 |+〉1|+〉2 =
1

2
[|1〉1|0〉2 − |1〉1|1〉2 + |0〉1|0〉2 + |0〉1|1〉2]

= CZ12 |+〉1|+〉2.
(2.84)

Continuous variable cluster state

Continuous variable (CV) cluster state are defined as the analogues of qubit cluster

state [30, 23, 22]. For the ideal CV cluster state, it is generated by first prepar-

ing N zero-momentum eigenstates |0〉
⊗

N
p , and then applying controlled-Z operators

CZ = exp(igQjQk) to qumode j and k, where g is the strength of the interaction

[31] indicated by the weight of the edge. Therefore, ideal CV cluster states can be

described by weighted graphs with real value weights, while qubit graph states are

described by unweighted graphs with edges (weighted 1) or without edges (weighted

0). We can define a symmetric adjacency matrix A = AT to mathematically repre-

sent the CV cluster state graph. The (j,k) element of the matrix Aj,k is the weight of

the edge connecting vertices j and k.

The ideal CV cluster state stabilizers are also the analogues of the stabilizers of

qubit cluster state. From Table 2.1, using

X → X(γ) = e−iγP , (2.85)

Z → Z(η) = eiηQ, (2.86)

the CV cluster state stabilizers are the generators of the Weyl-Heisenberg displace-

ment group

e−iγPj

⊗
k∈Nj

eiηQk = exp

−iγj

Pj −
∑
k∈Nj

ηk
γj
Qk

 . (2.87)
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It is easy to see that if the exponent part of the stabilizer N = 0, the definition

of a stabilizer Eq. (2.82) is satisfied. This exponent part N leads to the equivalent

definition of operators that multiply the state |ψA〉 by 0, as known as nullifiers,

N|ψA〉 = (P − AQ)|ψA〉 = 0, (2.88)

where P = (P1, P2, ..., PN)
T and Q = (Q1, Q2, ..., QN)

T are the column vector of

momentum and position operators.

The ideal CV cluster state we discussed so far are unphysical, because a zero-

momentum eigenstate requires the uncertainty of momentum quadrature P vanish,

which will only happen with infinite squeezing, i.e. r → ∞. Therefore, what is

used in reality is approximate CV cluster state, which belong to Gaussian pure states

[31]. The nullifiers of the approximate CV cluster states are measured close to 0. It

has been proved that fault-tolerant QC is theoretically possible for finitely squeezed

Gaussian states with non-Gaussian resources [15, 16]. A more detailed discussion

about approximate CV cluster states graphical calculations will be shown in Chapter

3.



31

Chapter 3

Hypercubic cluster states

generated by the phase modulated

quantum optical frequency comb

Cluster states are a crucial resource for measurement-based quantum computing (QC)

[1, 18]. Quantum optics provides a scalable platform for continuous-variable (CV)

universal QC, based on qumodes (e.g. quantum optical fields) cluster states [22, 32,

18, 33, 34]. The interference of shifted, two-mode-squeezed quantum optical frequency

combs (QOFCs), emitted by optical parametric oscillators (OPOs), has been shown to

generate cluster states [2, 30] in the spectral domain [35, 3, 36] and in the temporal

domain [37, 38, 4, 5], with thousands to millions of entangled qumodes. Spatial

interference of QOFCs to generate cluster states also have been accomplished [6] or

proposed [39, 40]. Hybrid time-frequency schemes were proposed as well [7]. It is

important to note that CVQC can be made fault tolerant at reachable squeezing

levels [15, 16, 17]. The aforementioned work in the temporal and spectral domains

relied on interfering two to four straddling squeezed QOFC, as originally proposed in

Refs. [41] and [42].

Our work shows that a single comb with phase modulation is in fact sufficient

to generate n-hypercubic cluster states of arbitrary dimension n. The dimension of
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the cluster graph is determined by the number of modulation frequencies and its

size is determined by their spacing. Such states are universal resources for quantum

computing for n = 2 [1]. For n = 3, they can also allow quantum error correction

topological encoding [19]. This work was published in [43].

This discovery was made possible by a general analysis of the generated Gaussian

graph state, factoring in concrete experimental parameters such as finite squeezing,

pump amplitude, and modulation depth [44]. Our results account for all graph er-

rors and allow us to drastically simplify experimental configurations, paving the way

to compact realizations of large-scale cluster entanglement using a single OPO on

chip [45, 46, 47, 48, 49].

In this chapter, I will first review the symplectic representation of Gaussian states

and the graphical calculus for CV cluster states. Then I will recall the quantum

description of phase modulation and theoretically n-hypercubic cluster states, with

the graph errors and full effects of finite squeezing are thoroughly analyzed.

3.1 Gaussian state evolution

Gaussian states are the states that have Wigner functions in the form of Gaussian

function. The Wigner function was first introduced by Eugene Wigner in 1932 [50] to

describe a quantum state using the quasiprobability distribution in phase space. For

a quantum state that has density operator ρ =
∑

j pj|ψj〉〈ψj|, where |ψj〉 is a pure
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state vector prepared with probability pj, the Wigner function is

W (q, p) =
1

π

∫ ∞

−∞
e2ipy〈q − y|ρ|q + y〉dy, (3.1)

where q and p are the eigenvalues of amplitude and phase quadratures.

Gaussian states can be completely determined by first (expectation values) and

second (covariance matrix) momentum of quadrature operators. A column vector

consists of amplitude and phase quadratures is defined as

x = (Q,P)T , (3.2)

where Q = (Q1, . . . , QN)
T and P = (P1, . . . , PN)

T . The covariance matrix σ will be

discussed later in Subsection 3.1.2. Here I will only give the expression of Wigner

function of a Gaussian

W (x) = 1

2π
√

det(σ)
e−

1
2
(x−⟨x⟩)σ−1(x−⟨x⟩)T , (3.3)

where 〈x〉 is the expectation value of x.

Gaussian operators are those that transform Gaussian states to Gaussian states.

The Gaussian states examples include vacuum state, coherent state, squeezed state,

etc. The Gaussian operators include displacement, phase rotation, squeezing, beam

splitter etc. Some good references to the Gaussian states are [51, 52]. In the following

part of this chapter, only Gaussian pure states will be discussed and the detailed

derivation can be found in [31].
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3.1.1 Symplectic representation of Gaussian unitary trans-

formation

For a N-mode state, in the Heisenberg picture, the action of an unitary operation U

makes the quadrature operators evolve as

Q′
j = U †QjU,

P ′
j = U †PjU,

(3.4)

where Qj and Pj are the quadratures of the state before the action and Q′
j and P ′

j

are the quadratures after the action. In terms of the vector x as defined in Eq. (3.2),

for Gaussian pure state, this evolution can be expressed with a symplectic matrix as

x′j = U †xjU =
2N∑
k=1

Sjkxk, (3.5)

where Sjk are complex numbers and the elements of a 2N × 2N matrix, which is

called symplectic matrix S. Therefore, the evolution of vector x is

x′ = Sx. (3.6)

The symplectic matrix S and the Gaussian unitary operator U are one-to-one corre-

spondent. There is a unique S for every U and there is a unique U for every S.

According to the mathematical definition of symplectic matrix

STΩS = Ω, (3.7)

where ST is the transpose of S and Ω is a nonsingular (Ω−1Ω = I), skew-symmetric



35

matrix (ΩT = −Ω), explicitly Ω = ( 0 1
−1 0 ), where 0 is a zero submatrix and 1 is an

identity submatrix. Next I will show that this symplectic nature of S is guaranteed.

The canonical multimode commutators [Qj, Pk] = iIδjk can be rewritten as

[x,xT ] = i

 0 I

−I 0

 = iΩ, (3.8)

where I is the identity matrix and the commutator of two vectors is defined as

[r, sT ] = rsT − (srT )T , (3.9)

which isn’t necessarily zero because the elements of vectors r and s are operators.

The transpose operator T only changes the index of the vector elements, for example

(sT )jk = skj. The transpose operator will not act on each operator element itself,

i.e. each operator will not be transposed. This makes [r, sT ] not necessarily be 0.

Using the condition that the quadrature commutation relation is unchanged under

the Gaussian operators, Ω statifies

iΩ = [x′,x′T ] = [Sx, (Sx)T ] = S[x,xT ]ST = iSΩST . (3.10)

Therefore it is proved that the matrix S is a symplectic matrix satisfying SΩST = Ω.
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A sequence of transformations

When a quantum state evolves under a sequence of unitary operations in order of

U1, U2, U3...Un, the quadrature operators change in Heisenberg picture

x′j = U †
1U

†
2 . . . U

†
nxjUn . . . U2U1. (3.11)

Using Eq. (3.5),

x′j = U †
1U

†
2 . . . U

†
n−1

(
2N∑
k=1

Sn jkxk

)
U †
n−1 . . . U2U1

=
2N∑
k=1

Sn jk (U †
1U

†
2 . . . U

†
n−1xkU

†
n−1 . . . U2U1)

=
2N∑
k=1

Sn jk (U †
1U

†
2 . . . U

†
n−2

(
2N∑
l=1

Sn−1 kl xl

)
Un−2 . . . U2U1)

=
∑
k,l

Sn jkSn−1 kl (U
†
1U

†
2 . . . U

†
n−2 xl Un−2 . . . U2U1).

(3.12)

Continuing the matrix element substitutions, we see that applying the unitary oper-

ator in an order of Un, Un−1...U1 to the quadrature operator yields an expression in

terms of symplectic matrix S1,S2, ...Sn as

x′ = SnSn−1 · · · S1x = Sx. (3.13)

Different from the order of the Heisenberg-picture unitary operators, the symplectic

matrix ordering is that of the Schrödinger picture.
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3.1.2 Symplectic representation of Gaussian pure state

Covariance matrix

A Gaussian pure state is uniquely represented by its covariance matrix. Covariance

matrix is defined as

(Cov x)jk = Cov[xj, xk] = 〈 (xj − 〈xj〉) (xk − 〈xk〉) 〉 . (3.14)

When the expectation 〈xj〉 = 0, the covariance matrix is simplified to [31]

Cov x =
1

2

〈{
x†,xT

}〉
, (3.15)

where the anticommutator product is defined as

{
x,yT

}
= xyT + (yxT )T . (3.16)

This anticommutator is required to symmetrize all products of operators which do

not commute. For example, the terms QjPj and PjQj do not commute, and they will

be replaced by a symmetrized term 1
2
(QjPj +PjQj). With the fact that any N-mode

Gaussian pure state can be generated from ground state of N harmonic oscillator by

applying Gaussian unitary operations, the corresponding quadrature vector x can be

expressed in terms of a total symplectic matrix S

x = Sx0, (3.17)
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where x0 is the quadrature vector of ground state (vacuum). The covariance matrix

of a vacuum state is

Cov x0 =
1

2
I. (3.18)

Therefore, the covariance matrix of a state which has the quadrature vector x is

Cov x = Cov (Sx0)

=
1

2

〈{
Sx†

0,SxT
0

}〉
=

1

2
S
〈{

x†
0,xT

0

}〉
ST

= S(Cov x0)ST

=
1

2
SST .

(3.19)

Z matrix representation

Any symplectic matrix S can be decomposed as [31]

S =

 I 0

V I


U−1/2 0

0 U1/2


X −Y

Y X

 . (3.20)

where U and V are N × N symmetric matrices. U is also positive definite (U =

UT > 0). The third matrix is orthogonal and in optical setting, it corresponds to

beamsplitters and phase shifter shown in Section 2.4, which has no effect on vacuum

state. Therefore, the third matrix does not affect the state that can be generated

from the ground state. For simplicity, it can be set that X = I and Y = 0. The
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symplectic matrix S then becomes [53]

S =

 U−1/2 0

VU−1/2 U1/2

 . (3.21)

The covariance matrix can be expressed in terms of U and V matrices

Covx =
1

2
SST =

1

2

 U−1 U−1V

VU−1 U + VU−1V

 . (3.22)

With the expression of covariance matrix, we can write the Wigner function and

further get the position-space wave function of a N-mode pure state as [31]

ψ(q) = π−N
4 (|U|

1
4 )exp

[
−1

2
qT (U − iV)q

]
. (3.23)

Form the equation above, it is possible to specify a Gaussian pure state only using V

and U. We define a complex matrix Z:

Z = V + iU (3.24)

to describe the state. This Z matrix is a complex-weighted adjacency matrix to an

undirected graph, which gives the graph representation for a Gaussian pure state. V

is the exact analog to the adjacency matrix of a qubit graph state (see subsection

2.5.3) [22] and U is the error matrix, which is used to analyze the error of graph

state with finite squeezing approximations compared to an ideal continuous variable

cluster state. The error analysis details will be addressed in the next part.

The evolution of an initial state Z to a final state Z′ under a symplectic transfor-
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mation of matrix S given by

S =

A B

C D

 , (3.25)

where A, B, C and D are N × N block matrices, is calculated using Möbius trans-

formation [53]

Z′ = (C + DZ)(A + BZ)−1. (3.26)

Nullifier formalism

From previous Section 2.5.3, the ideal CV cluster state can be defined by its nullifying

operators, or nullifiers [31], as shown in (P − AQ) |ψ 〉 = 0 |ψ 〉, which are the

logarithms of the stabilizers of |ψ 〉. The matrix A is the adjacency matrix of the

graph state with infinite squeezing. For a finite squeezed graph state, the adjacency

matrix Z satisfies limr→∞ Zr = A and the nullifiers are

(P − ZQ) |ψ 〉 = 0 |ψ 〉 . (3.27)

Note that the nullifier operators P−ZQ are the generators of an additive mathemat-

ical group: any linear combination of nullifiers is a nullifier. For example, multiplying

a complex number matrix M to the left of the nullifier can create a new nullifier for

the same state

M(P − ZQ) |ψ 〉 = 0 |ψ 〉 . (3.28)

The covariance matrix of the nullifiers is [31]

Cov [P − ZQ] = U. (3.29)
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If only calculate the covariance matrix of the real part of the Z matrix

Cov [P − VQ] =

(
−V I

)
(Cov x)

−V

I

 =
1

2
U. (3.30)

Because Z is complex in general, these nullifiers are non-Hermitian and cannot be

measured, which makes measurement-based quantum computing problematic since it

requires a measurable graph [23]. Thus, only Gaussian states with Z real, i.e. with

Z=V and U=0, are proper cluster states.

In summary, Z matrix of an approximate cluster state provide the information

that V is the graph of the ideal CV cluster state and U shows the error of the

approximated cluster state compared to the ideal cluster state.

3.2 Finite squeezing and graph errors

We deduce from Eq. 3.30 that an arbitrary Gaussian state of matrix Z can be

considered as a cluster state of matrix V if and only if:

(i), the error matrix U is diagonal [44] and,

(ii), it verifies Tr[U] → 0 in the limit of infinite squeezing [31].

In that case, the components of P − VQ are squeezed, uncorrelated Hermitian oper-

ators. Proper examination of U in light of requirements (i,ii) is crucial and will be

presented in this section.

While requirement (ii) has been systematically fulfilled in all previous realizations
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of CV cluster states [54, 35, 3, 38, 4, 5], requirement (i) had not been considered until

very recently [44], largely because all previous experimental realizations of cluster

states had, in theory, a diagonal U (in practice, they might not have). From Eq.

3.30, an off-diagonal element of U has the general physical meaning of a correlation

between two cluster-state nullifiers. Such covariances must be zero in order for the

cluster state to be adequate for one-way quantum computing. In this section, we

evaluate the contribution of off-diagonal elements of U and determine the precise

conditions under which they can be neglected, which amounts to relaxing requirement

(i) to

(i’), the error matrix U is diagonally dominant.

Before we deal with error matrix U, we first assume it fulfills both (i) and (ii)

and focus on the effect of the weak, undesirable edges in V that can be seen in Fig.3.7

but not in Fig.3.11.

3.2.1 Effect of a spurious graph edge: bipartite case

We first take the simplest example of a canonical cluster state: single mode squeezed

state. It is obtained by applying the squeezed operator S1 to a single qumode 1. In

the realistic case of finite squeezing with squeezing parameter r1, the exact nullifier

of this single-mode phase-squeezed (SMS) state is

Ns1 = S1(r1) a1 S
†
1(r1) = P1 − ie−2r1 Q1. (3.31)



43

Two phase-squeezed qumodes coupled by gate CZ = exp(iεQ1Q2) form a Gaussian

cluster state that has the nullifiers

N1 = CZ Ns1 CZ
† = P1 − ie−2r1 Q1 − εQ2 (3.32)

N2 = CZ Ns2 CZ
† = P2 − ie−2r2 Q2 − εQ1, (3.33)

From the nullifier expression Eq. 3.27, the Z matrix of this state is

Z =

ie−2r1 ϵ

ϵ ie−2r2

 , (3.34)

V =

0 ϵ

ϵ 0

 , (3.35)

U =

ie−2r1 0

0 ie−2r2

 . (3.36)

(3.37)

The adjacency graph of V matrix is shown in Fig. 3.1. It is a two mode state with

edge weighted ε. The U is diagonal and vanishes with increasing squeezing.

Figure 3.1: Two qumodes connected by a CZ gate with weak interaction strength ϵ.

We now ask the following question: if we wrongly assumed qumode 1 to be

isolated, however in fact linked to qumode 2 by a graph edge of small weight ε, how



44

large could ε be before its effects are detectable?

To answer this question, we must first relate it to the actual physical measure-

ments we can make on qumode 1.

Measurement noise induced by a spurious graph edge

Under the assumption that we have two single-mode phase-squeezed states, the lowest

measurement noise should be obtained by measuring the phase quadrature operator

P1, typically by homodyne detection. In the case of a phase-squeezed qumode 1,

observable P1 has squeezed noise given by

(∆P1)
2 = 1〈 0 |S1(r1)

† P 2
1 S1(r1) | 0 〉1 =

1

2
e−2r1 . (3.38)

We now assume P1 when qumode 1 also has a CZ graph edge of weight ε with qumode

2 (squeezed by r2), then we have

(∆P1)
2 = 12〈 00 |S†

2S
†
1CZ

† P 2
1 CZS1S2 | 00 〉12 (3.39)

= 12〈 00 | (P1 e
−2r1 − εQ2 e

2r2)2 | 00 〉12 (3.40)

=
1

2
e−2r1

[
1 + ε2 e2(r1+r2)

]
. (3.41)

Comparing Eqs. (3.38) & (3.41), we deduce the condition for neglecting a graph edge

of weight ε:

ε2 e2(r1+r2) � 1, (3.42)

which can be further clarified as

ε� εmin = e−(r1+r2), (3.43)
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where εmin is the edge weight at which the quantum noise is raised by 3 dB on a single

qumode quadrature measurement.

We now connect this reasoning to the formalism of Gaussian graphical calcu-

lus [31] and, in particular, Eq. 3.30. The procedure is the following: we define a

“trimmed” version of the original graph Z′ = V′+ iU′. The V′ is obtained by zeroing

all entries Vjk � εmin. In this case, it yields V′ = O and a diagonal error matrix

U′ = 2 cov[P − V′Q] (3.44)

= 2 cov[P] (3.45)

=

e−2r1
[
1 + ε2e2(r1+r2)

]
0

0 e−2r2
[
1 + ε2e2(r1+r2)

]
 (3.46)

with the general condition for each diagonal term in U′ satisfying U ′
jj → 0

ε� e−(r1+r2), (3.47)

identical to Eq. (3.43).

Effect of spurious edges on the cluster state and on quantum computing

Using the Gaussian CV version [23] of the Heisenberg picture evolution under Clifford

gates [55], it is straightforward to compute the evolution of the cluster state initially

defined by Eqs. (3.32) & (3.33) after the measurement of P1: the new nullifiers are

N ′
1 = P1 −ϖ111 (3.48)

N ′
2 = P2 − i[(e−2r2 + ε2e2r1)Q2 − ε e2r1 ϖ1], (3.49)
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where ϖ1 is the measurement result (which is corrected by feedforward in one-way

quantum computing). From Eq. (3.49), the effect of the spurious graph edge is

twofold:

- a decrease of the squeezing of qumode 2 (ε2 term), and

- an amplitude displacement of qumode 2 (ε term).

Both these effects are actually negligible under the exact same condition given by

Eqs. (3.43) & (3.47). This is obvious for the ε2 term. For the ε term, one need only

notice that ϖ1 ∼ e−r1 for a squeezed qumode and that the resulting displacement

of qumode 2 should be much smaller than the squeezing to be unnoticeable, i.e.,

ε er1 � e−r2 , which is equivalent to Eq. (3.43).

The exact same analysis can be conducted in the case of a spurious imaginary

(instead of real) graph edge, i.e., a residual off-diagonal element of U (instead of V).

To model that case, we just have to do ε 7→ iε in the nullifiers in Eqs. (3.32) &

(3.33) and in Eq. (3.49), which gives

N ′′
1 = P1 −ϖ111 (3.50)

N ′′
2 = P2 − ε e2r1 ϖ1 − i(e−2r2 − ε2e2r1)Q2, (3.51)

with the same type of effects as before (the displacement here being a phase one) and

the same condition of Eq. (3.43) for them to be negligible.

Unsurprisingly, spurious edges lead to the aforementioned general Gaussian noise

effects on the partner vertex after measurement of one vertex. One can also expect

these effects to compound, measurement after measurement, when several spurious

edges are present. However, this is not a concern because this type of effect is already

known to affect Gaussian quantum computing, as finite squeezing imposes an expo-
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nential decrease of the distance along which quantum information can be propagated

by quantum measurements down a linear cluster state [56]. Note that this happens

for U matrices that perfectly fulfill both requirements (i,ii), and is the reason for the

necessity of non-Gaussian resources (such as GKP states or PNR measurements) to

achieve universal quantum computing and fault tolerance [15].

Back to our case, we will now show that all detrimental effects of all spurious

edges in our cluster states can always be engineered to be at least one order of

magnitude smaller than the aforementioned effect of finite squeezing. This means

that the imperfections of our cluster state, which verifies requirements (i’,ii), cannot

be an obstacle to reaching fault tolerance.

3.2.2 Effect of spurious graph edges: multipartite case

For the multipartite case, it is hard to evaluate how the measurement noise of each

qumode changes with neglecting the spurious graph edges connected to it, as pre-

viously shown in the two-mode case. Instead, based on the properties of U, we

can derive a good quantitative estimate of the level at which spurious edges can be

neglected, for a given squeezing level (Tr[U]).

We define an error vector Γ:

Γj =
1

Ujj

∑
k ̸=j

|Ujk|. (3.52)

Assuming Ujj is of the order of a squeezing factor e−2rj (see Fig.3.8), which ensures
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(ii), then (i) can be fulfilled if each and every qumode j satisfies

Γj � 1. (3.53)

The meaning of Eq. (3.53) is straightforward but very important: the sum of the

magnitudes of all spurious edge weights is much smaller than the U diagonals, which

is squeezing factor, i.e., the combined effect of all spurious edges is essentially buried

in the squeezed noise.

This can even be relaxed a bit if one remember that local imperfections in cluster

states can be measured out: if a majority of qumodes verify Eq. (3.53), then the few

of them that don’t can be taken out of the graph by measuring Qj [30, 23].

The procedure of Eq. (3.44) can be straightforwardly applied to the multipartite

case: after zeroing out weak edges in V, we seek to diagonalize U by applying local

unitary operators, here Fourier transforms, and inspect the final U′. If diagonalization

wasn’t successful (it’s not always possible [44]), we evaluate Γ to assess the closeness

of the state to a perfect cluster state.

3.3 Phase modulation

Phase modulation (PM) is using a modulation signal to change the phase angle of

a carrier signal. A common device that applies phase modulation to optical field is

an electro-optical modulator (EOM). A monochromatic carrier field of frequency ωo

and amplitude A enters the EOM, the field of which is Aeiω0t. A sinusoidally varying

voltage served as modulation signal is applied to the EOM with frequency Ω and
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amplitude m. It changed the refraction index of EOM crystal thus adding a time

dependent phase term to the carrier field. This phase modulated field can be written

as sum of harmonic sidebands at frequencies ωn = ωo+nΩ (n ∈ Z) and of amplitudes

the Bessel functions of the first kind

Aei[ωot+m sin(Ωt+ϕ)] = Aeiωot

∞∑
n=−∞

Jn(m) ein(Ωt+ϕ), (3.54)

where m is the modulation index and ϕ the PM phase. In the small modulation index

limit, we have the approximation that only carrier (n = 0) and first order sidebands

(n = ±1) remain

Aei[ωot+m sin(Ωt+ϕ)] ≈ A
(
eiω0t +

m

2
ei(ω+)t+iϕ − m

2
ei(ω−)t−iϕ

)
, (3.55)

where the sidebands frequency ω± = ω0 ± Ω.

From the optical fields perspective, the process of this phase modulation is mod-

eled by a nonlinear interaction between two optical fields aj and aj+Ω, at two fre-

quencies differing by the the modulation frequency Ω ∈ N, and the radio frequency

field aR = αe−iϕ, α ⩾ 0, at the modulation frequency, which is assumed classical and

unchanged (neither depleted not amplified). Under these conditions, it is straight-

forward to show that the effective Hamiltonian of this interaction has a beamsplitter

form [57]

H = h̄
α

τ
e−iϕ

∞∑
j=−∞

aja
†
j+Ω + H.c., (3.56)

where α = m/2, τ is the interaction time in the phase modulator, and aj is the

annihilation operator of the qumode of frequency j in units of the qumode spacing,

i.e., of the free spectral range (FSR) of the optical parametric oscillator (OPO), which
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will be introduced in Section 4.1. Note that the interaction time τ is introduced

in Eq. (3.56) in order to make the results of Heisenberg equations be in terms of

modulation depth m as shown later in Eq. (3.59), which means τ is included in m in

the final solution. We take Ω in units of the FSR from Eq. (3.56) on, which means

Ω is an integer number of FSRs. Therefore, phase modulation can be modeled as a

frequency-domain, generalized beamsplitter [57], as illustrated in Fig.3.2.

Figure 3.2: Quantum model of phase modulation at frequency Ω by a 3×3 frequency-
domain beamsplitter, Eq.3.56 [57], symbolized by the unphysical gray element that
features two frequency-domain “reflective,” and one “transmissive,” possibilities for
each input beam (blue lines) at ω±=ωo±Ω. For simplicity, we didn’t draw modula-
tion sidebands of order greater than 1. An arbitrary input state is given in green,
containing 3 qumodes (red lines) indexed by their frequency. A key point is that the
carrier qumode at ωo is coupled by PM to the input vacuum modes. When |ψ 〉 is a
coherent state, the output remains a product of coherent states.

This yields the Heisenberg equations as

daj
dt

= −iα
τ

(
e−iϕaj−Ω + eiϕaj+Ω

)
, (3.57)

the solution of which is 

a′1

a′2
...

a′N


= M



a1

a2
...

aN


, (3.58)
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derived by diagonalizing Töplitz matrices, as is clear from Eq. (3.57) for Ω = 1. This

still applies for Ω > 1 because the matrix of the equation system Eq. (3.57) can always

be block-diagonalized into Töplitz blocks. Using the eigenvalues and eigenvectors of

Töplitz matrices [58], we find, for Ω = 1, the elements of M are

Mjk =
2

N + 1

N∑
m=1

ij−k sin j mπ

N + 1
sin kmπ

N + 1
exp

(
i2α cos mπ

N + 1

)
(3.59)

= Jk−j(2α)− (−1)j Jk+j(2α), (3.60)

for ϕ=π/2 in Eq. (3.57), where Jk±j(2α) are the Bessel functions of the first kind,

which describe the phase modulation spectrum generated from a single initial mode

in a coherent state. This gives the well-known phase modulation spectrum. From

now on, we define the modulation index m = 2α, which denotes the phase excursion

in radians and is the usual parameter convention for phase modulation. Note that

S(PM) may not be block-diagonal for other values of ϕ, which will lead to couplings

between amplitude and phase quadratures. These are therefore totally controllable

by setting the initial phase ϕ of radio frequency modulation signal experimentally.

For Ω > 1, we can get a similar result by block-diagonalizing M into Töplitz

blocks
Mjk ∝ is

∑N
m=1 sin ⌊ j

Ω
⌋mπ

⌊N
Ω
⌋+1

sin ⌊ k
Ω
⌋mπ

⌊N
Ω
⌋+1

exp
(
2iα cos mπ

⌊N
Ω
⌋+1

)
, for k − j = Ωs, s ∈ Z

Mjk = 0, else
(3.61)

where bXc is the integer part of X.

Fig.3.3 displays numerical calculations of the M matrix for Ω=1 and with re-

spective modulation depths and indices m=0.2 [Fig.3.3(a)] and m=1 [Fig.3.3(b)].
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Comparing Fig.3.3(a) and Fig.3.3(b), we see that a larger m yields, as expected,

more modulation sidebands, and therefore nonzero elements extending farther away

from the main diagonal. When applying phase modulation to a quantum optical fre-

quency comb to generate cluster state, those higher order modulation sidebands will

create spurious weak edges, the effect of which can be fully analyzed using methods

discussed in Section 3.2.

(a) (b)

Figure 3.3: EOM M matrix numerical plot. (a) EOM modulation frequency Ω = 1
FSR, m = 0.2. (b) EOM modulation frequency Ω = 1 FSR, m = 1.

The definition of the symplectic matrix S that we’ll use applies to the quadrature

vector x = (Q,P)T . The matrices S and M are then related by

S =

A B

C D

 ≡

 Re[M] i Im[M]

−i Im[M] Re[M]

 . (3.62)
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3.4 Phase modulated quantum optical frequency

comb

Unitarity of quantum mechanics requires there be as many input ports as there are

output ports, hence this beamsplitting operation will have vacuum field inputs at the

sideband frequencies ω±, Fig.3.4(a). Such inputs are undesirable as random vacuum

fluctuations will decorrelate squeezed quantum states. The use of a QOFC makes it

possible to suppress vacuum inputs, provided Ω is a multiple of the comb’s qumode

spacing, a.k.a. of the free spectral range of the OPO cavity, Fig.3.4(b).

Figure 3.4: Principle of cluster state engineering by phase modulation, whose action,
here in the limit of small modulation index (first-order sidebands only), is equivalent
to beamsplitter mode-coupling, as per the blue lines, of the initial quantum states,
in green; (a), classical phase modulation, in which vacuum sidebands couple in to the
initial quantum state |ψ 〉; (b), phase modulation of the QOFC at the mode frequency
spacing: there is no vacuum input and a complex unitary operation on initial state
|ψ 〉 is realized.

In this chapter, I will demonstrate cluster state generation by phase modulation

of the EPR QOFC emitted by a monochromatically pumped OPO below threshold.

Figure 3.5 depicts the experimental configuration. A doubly resonant OPO, the cavity

of which resonates both downconverted modes, is pumped at a single frequency ωp

such that frequency ωp/2 is set exactly halfway between 2 OPO mode frequencies

(usually by a phaselock loop [35, 3]), as per the green arrow in Fig.3.5. This generates

independent EPR qumode pairs in two-mode-squeezed (TMS) states [59, 60], a.k.a.



54

Figure 3.5: Phase modulation of a single QOFC. An OPO with a single pump fre-
quency, whose half is denoted by the green arrow, creates TMS qumode pairs as
indicated by the red dashed lines. Electro-optic phase modulation, or Kerr-medium
cross phase modulation, is then done at index m and frequencies Ω1,2,3, all multiple
of the comb tooth spacing

the EPR QOFC. While entanglement scalability is already present in this case, it

manifests itself only as the scaling of the number of copies of a bipartite EPR state,

rather than as the scaling of the size of a multipartite state. Phase modulation

by the EOM of the OPO QOFC will change that: by modulating at one, two or

three frequencies, we can knit up 1D, 2D (square-grid), 3D (cubic) cluster states.

We postulate that this extends to n-hypercubic cluster states, using n modulation

frequencies.

3.4.1 General procedure

In this part, I will show how we perform the numerical simulations of graphical

calculations to generate CV cluster states.

Step 1: Generation of QOFC

The squeezing in the QOFC will be directly generated by an optical parametric ampli-

fier (OPA), i.e., an OPO below threshold. The squeezing Hamiltonian of this system

is

H = ih̄
r

2τ

N∑
j=1

N∑
k=1

(2− δjk)Gjk a
†
ja

†
k + H.c., (3.63)
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where r is the squeezing parameter, τ is the interaction time, and aj and ak are the

annihilation operators of qumodes j and k, respectively. The N ×N matrix G is the

adjacency matrix of the H-graph [61]. In graph theory, an adjacency matrix element

Gjk 6= 0 denotes an edge of weight the element between vertices j and k. If the pump

is monochromatic, the G matrix has Hankel form, e.g., for ωp = ω1 + ωN ,

G =



0 · · · 0 1

... ... ... 0

0
... ... ...

1 0 · · · 0


. (3.64)

The H-graph state has the Z matrix [31]

Z = V + iU = ie−2rG (3.65)

Step 2: Evolution with EOM

The Heisenberg equation (Eq. 3.57) of phase modulation process, taking ϕ = −π
2
,

can be written in the form
dAT

dt
=
m

2τ
TAT (3.66)

where A = (a1, a2, ...aN) and T is a Töplitz matrix

T =



0 −1

1 0 −1

1 0 −1

. . .


(3.67)
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Diagonalizing T = RTdiagR−1, the solution A(t) = MA(0) is given by

M = R e
m
2

Gdiag R−1, (3.68)

which can be easily determined by numerical calculations. Therefore the symplectic

matrix Spm is obtained by using Eq. 3.62.

Step 3: π
2

phase shift

The final evolution process is to apply π/2 phase shift to properly selected modes.

In order to assess whether V is a valid graph adjacency matrix, we need to examine

Tr[U] and confirm that Tr[U] → 0. As was mentioned above, the minimization of

Tr[U] can be performed by applying local phase space rotations by π
2

to individual

qumodes, which cannot modify the entanglement. Finding an algorithm to carry

out this task had been an open question [31] but was recently solved by our group

[44], after we completed this work. The symplectic matrix of this single mode phase

rotation (see Section 2.4) is

Sπ
2
=

 0 1

−1 0

 . (3.69)

Here, we make use of the symmetry of the system, where a permutation symmetry

can be found for qumodes symmetrically placed away from the pump’s half-frequency,

which therefore belong to the same EPR pair. Heeding this, we chose to apply the

phase shifts (which are rotations in quantum phase space and therefore exchange Q

and P—to a sign left, of course—and can thus be thought of as Fourier transforms of

qumodes) to the first half of the N qumode set. This choice does lead to the desired

result.
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Step 4: Calculate the Z matrix of the final state

We used two different methods to calculate the Z matrix of the final state. First

method is to use the Möbius transformation Eq. (3.26), starting from Z of the QOFC,

to get the Z matrix after each evolution. Second method is using Eq. (3.22) to con-

struct the covariance matrix σ0 of QOFC from its Z and then evolving this covariance

matrix by

S = Sπ
2
Spm�ST

pmST
π
2
, (3.70)

from which the adjacency matrix V and error matrix U of the final graph state can

be obtained.

Note about intrinsically phase-modulated OPO

The four steps discussed above is for externally modulated OPO, for which the output

state is

| out 〉 = exp(− iτ
h̄
HPM) exp(− iτ ′

h̄
HTMS) | 0 〉⊗

N

, (3.71)

We also performed the calculations for an intrinsically phase-modulated OPO (e.g.

with intracavity electro-optic modulation—EOM), described by

| out 〉 = exp[− iτ ′

h̄
(HTMS +HPM)] | 0 〉⊗

N

. (3.72)

The general calculation procedure for an intrinsically phase-modulated OPO state is

the same as it of the externally modulated OPO discussed above, except that the
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Hamiltonian of the QOFC and the EOM are combined into one expression

H = Hs +Hpm

= ih̄
r

2τ

N∑
j=1

N∑
k=1

(2− δjk)Gjk a
†
ja

†
k + h̄

α

τ
e−iϕ

∞∑
j=−∞

aja
†
j+Ω + H.c..

(3.73)

Using this Hamiltonian to solve the Heisenberg equation to get the solution

d(A,A†)

dt
=

 T r
2
G

r
2
G T∗

 (A,A†)T . (3.74)

In all cases presented in the next section, i.e., the 1D, 2D, and 3D graphs, we

calculated both the extrinsic [Eq. (3.71)] and intrinsic [Eq. (3.72)] cases. We found

that both methods give the same graphs, with comparable edge weights, but that

the intrinsic method has a lower level of error (see the � plots in the following sub-

sections). Because of the experimental simplicity of just placing an EOM after an

OPO, I will present these extrinsic-OPO results thereby placing an upper bound on

the imperfections.

3.4.2 Generation of 1-d cluster state

The first case we study is the simplest, depicted in Fig.3.6: There is only one EOM

modulation frequency which is set to Ω = 1 in this case, with squeezing parameter

r = 2.3.
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Figure 3.6: Phase modulation of a single QOFC. An OPO with a single pump fre-
quency, whose half is denoted by the green arrow, creates TMS qumode pairs as
indicated by the red dashed lines. An EOM applies phase modulation with index m,
frequency Ω, and phase ϕ (irrelevant in this case).

Effect of modulation index

Following the steps in Section 3.4.1, we derive the complex adjacency matrix Z of the

created Gaussian state for m=0, 0.1, 0.2, 0.5, and 1 rad. Figure 3.7 displays the real

and imaginary parts of Z, V and U.

It is clear that phase modulation yields multipartite entanglement. We now ex-

amine the particular graphs that can be generated by this method, turning first to

the effect of the modulation index parameter m. The initial case m = 0 corresponds

to EPR pairs from the OPO with no phase modulation. When the latter is turned on,

additional edges are created, whose weights increase with m, as the EPR weights de-

crease. The classical FM spectra in the left column of Fig.3.7 give a good illustration

of the effect on the quantum graph of the oscillations with m of the Bessel-function

amplitudes.

The onset of next-nearest neighbor couplings in the quantum graph coincides,

with the growth of the first-order modulation sidebands, decrease of the carrier, and

rise of the second harmonic sidebands. Such nonlocal graph edges are a known hin-

drance to one-way quantum computing [26, 27, 28]. However, we will show later

that this problem can be circumvented upon closer, rigorous inspection of the edges’

weights, which can always be found to be too small to be observable, when m isn’t
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Modulation
index 𝑚 (rad) PM spectrum V graph U graph

1 2 3 4 5 6 7 8

910111213141516

0.1

0.2

0.5

0

1 2 3 4 5 6 7 8

910111213141516

1 2 3 4 5 6 7 8

910111213141516

1 2 3 4 5 6 7 8

910111213141516

1.0

1 2 3 4 5 6 7 8

910111213141516

1 2 3 4 5 6 7 8

910111213141516

= 1.00 0.02

= - 0.62

≤ 0.02- 0.02 ≤= 0.11

= 1.50

= - 1.50≤ 0.05- 0.05 ≤

1 2 3 4 5 6 7 8

910111213141516

= 0.02 = 0.035

= 0.078 ≤ 0.0054- 0.0054 ≤ = -0.032

= 0.99 = 0.10 = - 0.10
≤ 0.005- 0.002 ≤= 1.10

1 2 3 4 5 6 7 8

910111213141516

≤ 0.0220.020 ≤ ≤ 0.0001- 0.0001 ≤

1 2 3 4 5 6 7 8

910111213141516

= 0.020 = 0.025 ≤ 0.0005- 0.0005 ≤

= 0.96

≤ 0.013- 0.0013 ≤= 0.02

= 0.98= 1.20

≤ 0.220.20 ≤ ≤ -0.20-0.22 ≤

1 2 3 4 5 6 7 8

910111213141516

= 0.020 = 0.037 ≤0.004- 0.004 ≤

= 0.88 ≤ 0.770.71 ≤= 1.50

≤ 0.460.44 ≤ = 0.62

≤ - 0.44- 0.46 ≤

≤ 0.200.19 ≤

≤ 0.670.57 ≤= 2.00

≤ - 0.57-0.70 ≤≤ - 0.390.30 ≤

≤ - 0.20-0.37 ≤

Figure 3.7: V and U graphs for the state generated by OPO-extrinsic PM at Ω1=1 and
r=2.3, for different m. The pump frequency is equal to the sum of the frequencies of
all vertical qumode pairs in the V and U graph columns. Note that the mode labeled
“0” in the PM spectrum column is any of the QOFC qumodes in the V and U graph
columns. All self loops that have the same color in each U graph have a value of 0.02,
regardless of the value of m.
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too large. Note also that this optimal m will decrease as the squeezing parameter r

increases.

Remarkably, the imaginary part of the graph (rightmost column of Fig.3.7), given

by the error matrix U, complements the V graph, which clearly tends toward a

complete bipartite graph with increasing m. In a sense, the qumode correlations

described by U leave V globally invariant in terms of its bipartite structure, i.e.,

while V only connects qumode set {1, . . . , 8} to qumode set {9, . . . , 16} in Fig.3.7, U

only connects qumodes within each of these two sets.

It is important to prove that Tr[U] → 0 when r � 1, as illustrated in Fig.3.8,

where Tr[U] is plotted and shown to adhere to the theoretical value obtained ana-

lytically for two-mode squeezed states [31]. It means that PM of two-mode-squeezed

Figure 3.8: Plot of the average trace of U versus the squeezing parameter r, compared
to the function sech(2r). This U matrix is for the externally modulated QOFC at
Ω1=1.

pairs doesn’t detract from the fact that the overall cluster state error is solely deter-

mined by the amount of initial squeezing. Because of U being symmetric positive

semidefinite, it must tend to zero as a whole when its trace tends to zero as per
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requirement (ii). However, the requirement (i) remains crucial as we cannot reach

the infinite squeezing limit experimentally.

1-d ladder state

Following the procedures in Section 3.2.2, I will present here how the U changes when

the spurious edges are trimmed.

First, we analyzed the deviation, which is the trace of U (Tr[U]), to the cluster

state described by V. The V matrix trimming threshold value εmin for a given squeez-

ing level is depicted on Fig.3.9. We can see that truncation doesn’t change Tr[U] for

Figure 3.9: Effect of graph “trimming” (removing all graph edges smaller than εmin),
on the trace of U, in the case of the state shown in Fig.3.7 with m = 0.2.

low enough values of εmin, Tr[U] staying essentially at the squeezing level. As εmin

increases, Tr[U] rises because we are trimming graph edges which are now detectable

by quadrature measurements in the laboratory. Higher values of squeezing mandate

lower εmin: for example, εmin = 10−1 clearly raises the Tr[U] for squeezing > 10 dB
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(Fig.3.9). Any value of εmin above 1 should, of course, be nonsensical as the graph is

ultimately destroyed and the computed error rises sharply in confirmation of this.

The important conclusion from this graph is that there always exist an εmin such

that requirement (ii) is fulfilled. Hence, graph trimming can always be performed,

no matter how large the squeezing is, which ensures one can perform graph trimming

above the fault tolerance threshold. Unsurprisingly, εmin must decrease when r in-

creases. This will require lowering m in turn so as to keep the spurious edges weak.

While this also results in a trend of lower edge weights, also as the dimensionality of

the graph increases, note that our trimming procedure of increasing εmin, until just

before Tr[U] sharply increases, does ensure that the edges are significant, i.e., that

their measurement does yield a quantum processing effect.

Second, we computed the components of error vector Γ of U′ as plotted in

Fig.3.10, which addresses both cases of cascaded EPR pair generation and PM, and

integrated PM in the OPO. For both cases, unsurprisingly, trimming the graph yields

an increase of the error Γj (red dashed and solid lines) but, clearly, within manage-

able levels, because Γj are of the order 10−3 regardless of whether spurious edges are

trimmed or not.

At this point, we come to the result that the weak edges are ignorable in the whole

complex graph so that we can focus on the cluster states constructed by the dominant

edges. We only have to limit the modulation index m to low enough a value, keeping

the PM couplings nearest-neighbor so as not to get nonlocal edges. The resulting

graph is given by Fig.3.11(a). Swapping every other vertical pair of qumodes shows

the graph to be a 1D “ladder” whose rungs are the initial EPR-pair qumodes. This

dual graph structure connected by the initial EPR pairs will actually be a feature

of the 2D and 3D graphs as well. In order to simplify the graph rendering in this
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(a) m = 0.05, r = 2.3

(b) m = 0.1, r = 1.2

(c) m = 0.15, r = 0.4

Figure 3.10: Γ plot for PM either external or internal to the OPO. Ω1 = 1, εmin=0.01.
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Figure 3.11: (a), V graph of Fig.3.7, revealing its typical structure for 1D cluster
state. Two modes that are in the red dashed circle are the EPR-qumodes. (b),
compact representation of the graph using EPR macronodes.

case, we will bunch these EPR pairs into “EPR macronodes,” as in Fig.3.11(b). This

ladder state spans the whole phasematching bandwidth of the OPO, which can reach

10 THz in our previous work [62]. With a typical mode spacing of 1GHz [35, 3], this

yields on the order of 104 entangled qumodes in this linear cluster state.

As is well known, the 1D graph isn’t enough to generate the universal gate set

in one-way quantum computing, for which a 2D graph is required. I will discuss the

generation of 2D graph next.

3.4.3 Generation of 2-d cluster state

Figure 3.12: Phase modulation of one QOFC at two modulation frequencies Ω1 and
Ω2. Same conventions as Fig.3.6.

Based on configuration of making 1D graph as shown in Fig.3.6, we add another

modulation frequency to the EOM (Fig.3.12), which will give the EOM Hamiltonian
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in the form that

H = h̄

[
α1

τ
e−iϕ1

∞∑
j=−∞

aja
†
j+Ω1

+
α2

τ
e−iϕ2

∞∑
j=−∞

aja
†
j+Ω2

]
+ H.c., (3.75)

where τ is the interaction time, Ω1,2 are the two modulation frequencies. Here we set

ϕ1 = ϕ2 = π/2, α1 = α2, and follow the same procedure as in the 1D case, which

yields the square-grid cluster state of Fig.3.13.

(a) (b)

Figure 3.13: (a), square-grid cluster state created with Ω1=1, Ω2=10. Two modes
circled by red dashed lines are EPR-qumodes, one of which is on the upper layer and
the other one is on the bottom layer. (b), same graph, over EPR macronodes. The
width of this square lattice is the number of “spokes” in the graph: Ω2/Ω1 = 10.

The Γ vector plot for 2-d graph state are shown in Fig.3.14, which are correspond

to square-grid lattice generated with phase modulation frequencies Ω1 = 1, Ω2 = 10

at r equal to 2.3, 1.2 and 0.4. Here I only present the conclusion that the value Γ

remains small when those spurious edges are neglected. The details of this argument

will be discussed along with 3-d graphs in the next part.

One can interpret this case in the following way: PM at frequency Ω1=1 creates

next-neighbor coupling in the QOFC which forms a ladder graph; PM at frequency
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(a) r = 2.3. m = 0.01, εmin =0.001

(b) r = 1.2. m = 0.05, εmin =0.01

(c) r = 0.4. m = 0.1, εmin =0.01

Figure 3.14: Γ plot for PM either external or internal to the OPO. Ω1 = 1,Ω2 = 10.
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Ω2=10 then introduces additional coupling every 10 modes which is tantamount to

spiraling the ladder into the two-layer square-grid cluster state of Fig.3.13(a). As in

Fig.3.11(b), a more streamlined version of the graph can be obtained by considering

EPR macronodes, Fig.3.13(b).

As was mentioned earlier, the width of the square lattice, which is the number of

”spokes”, is simply the ratio Ω2/Ω1, the total number N of qumodes being determined

by the phasematching bandwidth of the OPO’s nonlinear medium. In the case of our

previous experiments [35, 3], for which we estimated N ∼ 104 [62], a 100 × 100

square cluster grid could therefore be created with PM at 1 and 100 GHz for a 1 GHz

mode spacing. Note also that, in this case, the quasi-phasematching bandwidth can

be further engineered to be larger.

This is an important result because the square-grid cluster state is a resource for

universal quantum computing. Note that this is true even though the cluster state

is a Gaussian state and that universal quantum computing requires non-Gaussian

resources for exponential speedup and quantum error correction. This is strictly

equivalent to the qubit case where cluster states stabilized by Pauli operators, globally

invariant under Clifford operations (just like CV clusters are stabilized by Weyl-

Heisenberg displacements, globally invariant under Gaussian operations), even though

non-Clifford resources are required to achieve exponential speedup. In both cases,

the necessary respective non-Gaussian and non-Clifford gates can be realized by like

measurements on the cluster state.
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3.4.4 Generation of 3-d cluster state

Adding another modulation frequency adds another dimension to the EPR-macronode

graph, extending this procedure to yield hypercubic cluster graphs. We illustrate this

in the 3D case, which is relevant to quantum computing because the 3D architecture

is a known base for implementing topological error encoding over cluster states [19].

With modulation frequencies {Ω1,Ω2,Ω3} = {1, 8, 80}, the quantum derivation

yields the graph state pictured over EPR macronodes in Fig.3.15. The 6-edge valence

Figure 3.15: Cubic cluster state, over N=400 EPR macronodes, obtained from
{Ω1,Ω2,Ω3} = {1, 8, 80}. Number of ”spokes”:10. Length: 8 macronodes. Spoke
length: 5 macronodes.

of each graph vertex is clear in their vast majority. Note that, as always for cluster

states, any local imperfections (graph center) in the graph can be removed by single-

qumode measurements [2, 30, 23].

Finally, the ratio of PM frequencies determines the graph’s structure, here cylin-

drical: the number of “spokes” is set by Ω3/Ω2 and the length of the cylinder is set
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by Ω2/Ω1. The radius of the spokes increases with the mode number N as N/Ω3.

In the example of Fig.3.15, a cubic cluster state is created over 400 macronodes in

cylindrical shape with 10 ”spokes”, 5 set of macronodes in the radial direction, and a

cylinder 8 macronodes long.

Now I will present how the U will change by trimmming the spurious edges. The

Γ vector plot for 3-d graph state are shown in Fig.3.16, which are correspond to cubic

graph generated with phase modulation frequencies Ω1 = 1, Ω2 = 8, Ω3 = 80 at

r equal to 2.3, 1.2 and 0.4. In every case, the effect of spurious graph edge stays

deeply buried in the squeezed noise. The components of error vector � of U′ were

computed for all 1000 qumodes in the state, which addresses both cases of cascaded

EPR pair generation and PM, and integrated PM in the OPO. In the former case

(black dashed lines), only a small portion of the graph (the center of Fig.3.15) has

values of Γj marginally larger than 0.1, and these can be measured out. Remarkably,

the values of Γj are close to zero for the vast majority of modes of the graph (0-400

and 600-1000), which corresponds to the bulk of the cubic lattice. Unsurprisingly,

trimming the graph yields an increase of the error Γj (red dashed lines) but, clearly,

within manageable levels.

In the case of PM intrinsic to the OPO (solid lines), the cubic graph is clearly

“cleaner” from the start as the values of � are much lower and trimming has much

less of an effect, while the graph edge weights (from V) are comparable.
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(a) r = 2.3. m = 0.01, εmin =0.001.

(b) m = 0.05, r = 1.2, εmin=0.01.

(c) r = 0.4. m = 0.1, εmin =0.01

Figure 3.16: Γ plot for PM either external or internal to the OPO. Ω1 = 1,Ω2 = 8,
Ω3 = 80
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Conclusion

We demonstrated that the “bare bone” resources constituted by a monochromatically

pumped, below-threshold OPO along with phase modulation at multiples on the

cavity spacing enable the generation of CV cluster states of arbitrary dimension, to

arbitrarily low error levels compatible with the fault tolerance threshold predicted for

CV quantum computing. The graph dimension is fully determined by the number

and the ratio of phase modulation frequencies. For all squeezing levels, there exist

modulation parameters that yield experimentally valid cluster states. Of particular

interest is the enhanced performance of phase modulation intrinsic to the OPO, as

opposed to external to it. This experimental configuration is remarkably simple

and compact and a marked simplification of all previous experimental realizations

of large-scale cluster states, CV or otherwise. Note that these cluster states are

deterministically and unconditionally generated, to the difference of other frequency-

comb approaches that propose probabilistic linear-optics quantum computing [63]

or employ postselected photonic qubits [64]. Note that the frequency bandwidth of

the fastest modulator involved dictates the final size of the generated cluster state.

Even though we have used, throughout this paper, the example of an EOM for the

phase modulator, even faster options exist such as cross phase modulation in a Kerr

medium. Finally, the conceptual simplicity of this approach makes it well suited for

implementations in integrated photonics.



73

Chapter 4

Optical system stabilization

Based on the theory in Chap. 3, we designed an experiment. The schematic experi-

mental setup is shown in Fig. 4.1. In this experiment, Laser 1 (L1) emits an IR beam

at 1064 nm. It is divided into 4 parts. First part of L1 passes through a doubling

crystal and generates a 532 nm light which is used as pump beam inserted into OPO.

The pump beam power is 550 mW and polarized at z direction with respect to zzz

PPKTP crystal, which is the second order nonlinear crystal inside the OPO cavity.

The PPKTP crystal converts one pump photon into 2 photons at 1064 nm, which

are the quantum light consists of a lot of two-mode squeezed photon pairs. The OPO

has a 4 mirror bow-tie cavity and emits QOFC with free spectral range equal to 1

GHz. The QOFC then passes through an EOM and interferes with local oscillator

(LO) to perform balanced heterodyne measurement. LO is the second part of L1.

The frequency of LO is shifted by 50 MHz using an acousto-optic modulator (AOM)

and LO power is 7.1 mW. The third part of L1 is locking beam which is used to

perform Pound-Drever-Hall locking to stabilize the OPO cavity lenght to make the

cavity resonant frequency at L1 frequency. It is inserted into OPO in the counter

propagate direction relative to the quantum light. The fourth part of L1 is the probe

beam which has the power 37.4 µW. It propagates in the same direction as the quan-

tum light. The probe beam is used to monitor the quantum light phase, which will

be discussed in details in the next chapter. In order to increase the system stabil-
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ity, two phase lock loops are used to stabilize the phase of the pump beam and LO.

Both the phase of pump and LO are locked to the probe beam through the ”Laser

Lock Box” instrument in Moku:Lab. Moku:Lab provided by Liquid Instrument is a

reconfigurable hardware platform that combines the digital signal processing power

of an FPGA with versatile analog inputs and outputs. It has multiple instrument

to perform different tasks. We also use the ”Laser Lock Box” to perform the PDH

locking for OPO.

Figure 4.1: Experimental setup. HWP: half wave plate. PZT: piezoelectric trans-
ducer. Moku: Moku:Lab. PC: personal computer. EOM: electro-optic modulator.
AOM: acousto-optic modulator. PDH: Pound-Drever-Hall locking.

In this chapter, I will first introduce the OPO that is used in our experiment.

Then I will discuss the methods that are use to perform the PDH locking, pump-

probe beam phase locking and LO-probe beam phase locking and present the locking

results.
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4.1 Optical parametric oscillator

Optical parametric oscillator (OPO) is an important tool in quantum optics used to

generate quantum optical frequency comb (QOFC), consisting of a large number of

two-mode squeezed state. OPO has two essential elements: an optical cavity and

nonlinear medium. I will review some basic knowledge about the optical cavity and

the nonlinear optics. Detailed derivations can be found in [65].

4.1.1 Optical cavity

Optical cavity is also known as optical resonator. For free-space optics, optical cavity

is constructed by at least two mirrors. Fig. 4.2 shows different kinds of cavities. A

four-mirror ring cavity Fig. 4.2 (c) is used for our OPO, in which the light propagates

in one direction during a round trip. Here I will take a two-mirror cavity (Fig. 4.2

(a)) as an example to illustrate some properties without loss of generality.

Figure 4.2: Different kinds of cavities. (a) Two-mirror cavity. (b) Three-mirror ring
cavity. (c) Four-mirror ring cavity.

Free spectral range

Considering a two-mirror cavity, the reflection coefficient of two mirrors are r1 and

r2. An incident optical field is E0 = |E0|ei2πνt+ϕ0 . The optical field inside the cavity
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as shown in Fig.4.3 is

E = E1 + E2 + E3 + · · ·. (4.1)

Infinitesimal fields can build up only when light wave can reproduce itself after each

Figure 4.3: Optical field inside, reflected and transmitted from a two-mirror cavity.
E0 is the input field. r1 and r2 are the reflection coefficient of those two mirrors.

round trip, so that all the fields inside the cavity have constructively interference.

The phase shift caused by each round trip of propagation must be multiples of 2π:

ϕ = kL =
2πνL

c
= 2πn, n = 1, 2, 3..., (4.2)

where the wave vector k = 2πν
c

, ν is the light frequency and L is the length of round

trip inside a cavity. Therefore, the frequency of the light that can be stored in the

cavity must satisfy

ν =
nc

L
, n = 1, 2, 3... (4.3)

The frequencies satisfy this condition forms a frequency comb as shown in Fig.4.4.

Each peak represents a cavity mode with different frequency. They are equally spaced

to form a frequency comb. The frequency difference between two nearest peak is called

the free spectral range (FSR) of the cavity

FSR = νn+1 − νn =
c

L
. (4.4)
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Figure 4.4: Frequency comb generated by a two-mirror cavity. The reflectance coeffi-
cients of two mirrors are r1 = r2 = 0.95. The y axis is the ratio between the intensity
of field inside the cavity (Eq. (4.7)) and the maximum value. The x axis is the phase
of the field given by Eq. (4.2).

Spectral linewidth

The cavity has losses caused by mirror reflections and the absorption in the medium.

The field will be attenuated after each round trip. The complex attenuation factor is

h = |r| e−iϕ. (4.5)

For a two-mirror cavity as shown in Fig.4.3, neglecting the medium absorption, r =

r1r2 and the phase change after a round trip given by Eq. (4.2) is ϕ = 2πνL/c. The



78

field after the first round trip E2 = hE1. The total field inside the cavity is

E = E1 + E2 + E3 + · · ·

= E1

(
1 + h+ h2 + · · ·

)
=

E1

1− h
.

(4.6)

The intensity of field inside the cavity is given by

I = |E|2

=
I1

1 + |r|2 − 2 |r| cosϕ

=
I1

1 + |r|2 − 2 |r|
(
1− 2sin2 ϕ

2

)
=

I1

(1− |r|)2
(
1 + 4|r|

(1−|r|)2 sin2 ϕ
2

) ,
(4.7)

where I1 = |E1|2. The plot of intensity versus the phase ϕ is shown in Fig.4.4. The

finesse is defined as

F =
π
√

|r|
1− |r|

. (4.8)

Therefore Eq. (4.7) becomes

I =
I1

(1− |r|)2
[
1 + (2F/π)2sin2 ϕ

2

] . (4.9)

When ϕ = nπ, n = 0, 1, 2..., the maximum intensity is

Imax =
I1

(1− |r|)2
. (4.10)
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When the phase term satisfies (2F/π)2sin2 ϕ
2
= 1, the intensity decreases to half of

the maximum. With F � 1, the full width of half maximum (FWHM) is

δν ≈ FSR
F

, (4.11)

because of Eq. (4.2) and δϕ ≈ 2π/F .

Cavity transmission and reflection coefficient

As shown in Fig.4.3, adding all the fields on the left side of the cavity gives the

reflected light of the cavity

Er = Er1 + Er2 + Er3 + · · ·

= −r1E0 + t21r2e
−iϕE0 + t21r2e

−iϕhE0 + t21r2e
−iϕh2E0 · ··

= −r1E0 +
t21r2e

−iϕ

1− h
E0

=
r2e

−iϕ − r1
1− h

E0.

(4.12)

The reflection coefficient of the cavity is

R =
Er

E0

=
r2e

−iϕ − r1
1− h

. (4.13)

Similarly, adding all the fields on the right side of the cavity gives the transmitted
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light of the cavity

Et = Et1 + Et2 + Et3 + · · ·

= t1t2e
−iϕ

2E0 + t1t2e
−iϕ

2 hE0 + t1t2e
−iϕ

2 h2E0 + · · ·

=
t1t2e

−iϕ
2

1− h
E0.

(4.14)

The transmission coefficient of the cavity is

T =
Et

E0

=
t1t2e

−iϕ
2

1− h
. (4.15)

4.1.2 Nonlinear crystal

Besides optical cavity, another important constituent of OPO is a nonlinear medium.

A nonlinear medium is used to generate the squeezed states. In our experiment, we

used a second order nonlinear crystal as nonlinear medium. I will introduce the basic

concepts of second order nonlinear optics. Some great references I used are [66, 67].

In a linear dielectric medium, the polarization P (t) in a unit volume is propor-

tional to the input optical field E(t)

P (t) = ϵ0χ
(1)E(t), (4.16)

where ϵ0 is the permittivity of free space and χ(1) is the linear susceptibility of the

medium. In a nonlinear dielectric medium, there is nonlinear relationship between P
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and E, so that P can be expressed as power series of E

P (t) = ϵ0
[
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + . . .

]
= P (1)(t) + P (2)(t) + P (3)(t) + . . . ,

(4.17)

where χ(2) and χ(3) are the second and third order nonlinear susceptibility, P (2)(t)

and P (3)(t) are the second-order and third-order nonlinear polarization. In general,

because the second-order nonlinear interaction is much stronger than the third-order

and other higher order nonlinear interaction, P (2)(t) � P (3)(t) � · · · , we consider

only the second-order effect and neglect all the higher order nonlinear interactions.

For the second order nonlinear interactions, three wave mixing happens. Consider

two optical fields with frequencies ω1 and ω2 and amplitude E1 and E2 inserted into

the nonlinear medium, the total field is

E(t) = E1e
−iω1t + E2e

−iω2t + c.c. (4.18)

The second order nonlinear polarization becomes

P (2)(t) =ϵ0χ
(2)E2(t)

=ϵ0χ
(2)
[
E2

1e
−2iω1t + E2

2e
−2iω2t + 2E1E2e

−i(ω1+ω2)t

+2E1E
∗
2e

−i(ω1−ω2)t + c.c.
]
+ 2ϵ0χ

(2) [E1E
∗
1 + E2E

∗
2 ] .

(4.19)

There are several components with difference frequencies which correspond to differ-

ent physical processes. The second-harmonic generation (SHG) is the process that
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makes the frequency ω1 and ω2 doubled. The SHG polarization is

P (2ω1) = ϵ0χ
(2)E2

1e
−2iω1t, (4.20)

P (2ω2) = ϵ0χ
(2)E2

2e
−2iω2t. (4.21)

Sum-frequency generation (SFG) is to generate the field with the sum frequencies of

two input fields. SFG polarization is

P (ω1 + ω2) = 2ϵ0χ
(2)E1E2e

−i(ω1+ω2)t. (4.22)

Difference-frequency generation (DFG) is to generate the field with the difference

frequencies of two input fields. DFG polarization is

P (ω1 − ω2) = 2ϵ0χ
(2)E1E

∗
2e

−i(ω1−ω2)t. (4.23)

Therefore, the second order nonlinear interaction is three wave mixing process.

Considering three optical filed with ω1, ω2 and ω3, with the condition ω3 = ω1 + ω2,

the coupled wave equation can be derived from Maxwell equations. In an ideal lossless

medium, the three couple wave equations is given by:

dE1

dz
=
iω1

cn1

χ(2)E3E
∗
2e

−i∆kz (4.24)

dE2

dz
=
iω2

cn2

χ(2)E3E
∗
1e

−i∆kz (4.25)

dE3

dz
=
iω3

cn3

χ(2)E1E2e
i∆kz (4.26)

where n1,2,3 are the linear index of refraction and ∆k = k1+k2−k3 is the wave vector

mismatch. Using different initial conditions to solve these coupled wave equations,
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we can get the wave evolution functions for different nonlinear process. Details of the

calculations can be found in [66]. Next, I will talk about parametric amplification

(same process as DFG) and spontaneous parametric down conversion, which are the

two main interaction in our experiment.

Parametric amplification

Parametric amplification happens when the pump field at frequency ω3 and a probe

beam with frequency ω1 are interated in a nonlinear medium. This process produces

on output wave at the different frequency ω2 = Ω3 − Ω1, and at the same time the

probe beam field will be amplified.

Consider a lossless nonlinear medium and assuming the pump beam is strong

enough to neglect the depletion, the pump field E3 can be taken as constant. For

perfect phase matching, with the initial boundary condition E1(0) is arbitrary con-

stant and E2(0) = 0, the solutions to Eq. (4.24) is

E1(z) = E1(0)coshκz, (4.27)

E2(z) = eiϕE∗
1(0)sinhκz, (4.28)

where ϕ is the phase related to the pump field and κ is the coupling constant propor-

tional to χ and E3, z is the interaction distance. We define the squeezing parameter

r = κz. For the degenerated case when ω1 = ω2, we get the total output field of the

probe beam has a general solution of the form

E(z) = E1(0)coshr + eiϕE∗
1(0)sinhr. (4.29)
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Therefore, probe beam power

P = |E(z)|2 = |E1(0)|2(cosh2r + sinh2r) + |E1(0)|2sinh2r cosϕ. (4.30)

When ϕ = 0, the probe beam power is amplifier to the maximum value

Pmax = |E1(0)|2(coshr + sinhr)2 = |E1(0)|2e2r, (4.31)

with the parametric amplification gain

Gmax = e2r. (4.32)

Spontaneous parametric down conversion

Spontaneous parametric down conversion (SPDC) happens when there is only pump

field ω3 inserted into the nonlinear medium. It occurs by the amplification of noise

photons generated by fluorescence. The initial conditions of SPDC is E1(0) = E2(0) =

0 and the Eq. (4.24) do not have solutions. This process can only be describe by

quantizing the field as shown in Section 2.1.

SPDC is a process that a pump photon of frequency ω3 is annihilated while a

signal photon at ω1 and an idler photon ω2 are created. The Hamiltonian of SPDC

then can be written as

H = H0 +HI =
∑

i=1,2,3

h̄ωi(a
†
iai +

1

2
) + ih̄

χ

2
(a3a

†
1a

†
2 − a†3a1a2), (4.33)

where the first term H0 is the free field evolution and HI is the interaction of three

fields. With negligible pump depletion, the pump field is treated as classical field,
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which is a coherent state shown in Section 2.3.2. With a3 → β, the interaction

Hamiltonian is given by

HI = ih̄
χ

2
(βa†1a

†
2 − β∗a1a2). (4.34)

The evolution equation in interaction pictures for the annihilation and creation op-

erators are
da1
dt

= κa†2,

da†1
dt

= κ∗a2,

da2
dt

= κa†1,

da†2
dt

= κ∗a1,

(4.35)

where κ = χβ. Solving these evolution equations, we get the Bogoliubov transforma-

tion

a1(t) = a1(0) coshr + a†2(0) sinhr, (4.36)

a†1(t) = a†1(0) coshr + a2(0) sinhr, (4.37)

a2(t) = a2(0) coshr + a†1(0) sinhr, (4.38)

a†2(t) = a†2(0) coshr + a1(0) sinhr, (4.39)

where r = κt is what we called the squeezing parameter and t is the nonlinear

interaction time. Compared to Previous section, this is two-mode squeezed state.

When ω1 = ω2, it is the degenerated case, single-mode squeezed state

a1(t) = a1(0) coshr + a†1(0) sinhr, (4.40)

a†1(t) = a†1(0) coshr + a1(0) sinhr. (4.41)
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4.1.3 4-mirror OPO used in the experiment

The OPO setup in this experiment is shown in Fig. 4.5. It consists of a four-mirror

bow-tie cavity and a periodically-poled KTiOPO4 (KTP) crystal (PPKTP).

Figure 4.5: Optical parametric oscillator consists of 4-mirror bow-tie cavity and a
nonlinear crystal PPKTP.

The four-mirror bow-tie cavity has two concave mirrors (R1, R2) and two flat

mirrors (R3, R4). The mirrors are all fabricated by Advanced Thin Films. The

two concave mirrors have 50 mm radius. Mirrors R1, R2 and R3 have near-zero

transmittance at 1064 nm and near-unity transmittance at 532 nm. The output

coupler R4 has 17% transmittance at 1064 nm and less than 0.01% transmittance

at 532 nm. This cavity has FSR at about 1 GHz. For 1064 nm light, the cavity

linewidth is 36 MHz. This cavity has two beam waists. One beam waist is 135 µm

at the middle between mirror R3 and R4. The other beam waist is 35 µm located at

the middle between mirror R1 and R2, where the PPKTP nonlinear crystal is placed.

The PPKTP crystal provided by Raicol, Inc. is x-cut with size 1× 2× 10 mm3.

The poling period is 9 µm at room temperature. It it a zzz crystal which makes the

pump, signal and idler beam are all in z-polarization. The crystal is anti-reflection

coated by Advanced Thin Films both at 1064 nm and 532 nm. The temperature of

crystal is stabilized to few tenths of a millidegree by servo loops to reach the maximum

quasi-phase matching bandwidth of 3.18 THz, the details of which can be found in
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[68, 69].

Quantum optical frequency comb

This OPO is pumped by 532 nm laser light. Its power is 550 mW, below the OPO

lasing threshold. The parametric down conversion process happens in the PPKTP

crystal and the pump photons are converted to idler and signal photons, the spectrum

of which is continuous over the quasi phase matching bandwidth (3.2 THz). The

two down-converted photons are correlated and form a two-mode squeezed state.

However, only the light of the OPO resonant frequencies can be build up and emitted

out of OPO. The emission spectrum of OPO is a quantum optical frequency comb as

shown in Fig.4.6. The green arrow denotes the half of the pump frequency. The red

dashed lines connect the two-mode squeezing mode pairs. Therefore, a QOFC consist

of a larger number of two-mode squeezing pairs that are equally distributed around

the half of pump frequency.

Figure 4.6: Quantum optical frequency comb.



88

4.2 Pound-Drever-Hall (PDH) locking

4.2.1 PDH locking principles

Pound-Drever-Hall (PDH) technique is a powerful approach for stabilizing the fre-

quency of the laser by locking to a stable cavity. It can also be used the other

way to lock an optical cavity so that the resonant frequency follows a specific laser.

PDH locking was first proposed by R. W. P. Drever et al. in 1983 [70] and the

detailed calculation can be found in [71]. See also [72] for simple fundamentals of

FM spectroscopy. Here I will briefly introduce the principles.

Figure 4.7: The basic layout for PDH locking. Solid lines are optical paths and dashed
lines are signal paths. The signal going to the laser controls its frequency [71].

A basic setup of PDH locking is shown in Fig.4.7. A laser emits light with single

frequency ω. After going through the Pockels cell, the light is phase modulated at

frequency Ω and the electric field is

Ei = E0e
i(ωt+βsinΩt), (4.42)
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where β is the modulation depth. With small β, we have the approximation

Ei ≈ E0

[
J0(β)e

iωt + J1(β)e
i(ω+Ω)t − J1(β)e

i(ω−Ω)t
]
, (4.43)

where Jn is the Bessel function of the first kind. The light is reflected by a cavity

with the reflection coefficient R(ω) Eq. (4.13). The reflected light field is

Er = E0

[
R(ω)J0(β)e

iωt +R(ω + Ω)J1(β)e
i(ω+Ω)t −R(ω − Ω)J1(β)e

i(ω−Ω)t
]
. (4.44)

The photodetector measures the reflected light power Pr = |Er|2. We ignore the DC

part and 2Ω terms in the expression. The Ω term include the phase of the reflected

beam is

Pr = 2J0J1P0 {Re [A] cosΩt+ Im [A] sinΩt} , (4.45)

where A = R(ω)R∗(ω + Ω)−R∗(ω)R(ω − Ω).

Now consider two cases: first, the modulation frequency is small compared to the

linewidth, so that we have the approximation

R∗(ω + Ω) ≈ R∗(ω) +
d

dω
R∗(ω)Ω (4.46)

R(ω − Ω) ≈ R(ω)− d

dω
R(ω)Ω. (4.47)

So, A becomes pure real number

A ≈ 2Re
{
R(ω)

d

dω
R∗(ω)

}
Ω ≈ d |R|2

dω
Ω. (4.48)
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The reflected power is

Pr = (constant) + 2J0J1P0
d |R|2

dω
ΩcosΩt+ (2Ωterms), (4.49)

with the approximation J0(β) ≈ 1, J1(β) ≈ β
2

and P0 = E2
0 . This reflected signal

mixed with cosΩt and with a low pass filter to keep only the DC terms, we have the

PDH error signal

ϵ = βP0
d |R|2

dω
Ω. (4.50)

With the expression of reflection coefficient Eq. (4.13), we can plot the error signal

for small modulation frequency Ω as Fig.4.8 (a).

(a) (b)

Figure 4.8: PDH error signal when (a) modulation frequency Ω is small (Ω ≈ half of
linewidth), (b) Modulation frequency is large (Ω = 20 linewidth).

Second, the modulation frequency is large compared to linewidth. Under this

condition, the sidebands are totally reflected R(ω ±Ω) ≈ −1. Then A becomes pure

imaginary:

A ≈ −2iIm {R(ω)} . (4.51)
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The cosine terms in Eq. (4.45) are negligible. After the mixer and low pass filter, the

error signal is given by the coefficient of sine term

ϵ = −4βP0Im {R(ω)} (4.52)

The plot for this error signal is shown in Fig.4.8 (b).

4.2.2 PDH locking setup

In the experiment, a problem with OPO locking was the long-term stability. We

observed that the OPO cavity length drifted slowly because of the reasons such as

temperature drifting. When the cavity length drifted out of the feedback signal

correction range. The OPO went off lock. With this issue, the OPO could only stay

locked for one minute. To solve this problem, we used the laser lock box instrument

in Moku:Lab to seperate the PDH error signal into two channels, the fast control and

the slow control. The slow control channel separates the low frequency components of

the error signal and sends them to a 0-340V high-voltage channel which can follow the

large drift excursion for a longer time. The fast frequency components are sent to the

previously used regular ±10V channel. to be amplified more. So that the feedback

control signal applied to the PZT mounted on the OPO mirror has larger amplitude at

low frequency to correct the long term drifting better. In the experiment, a problem

with OPO locking was the long-term stability. We observed that the OPO cavity

length drifted slowly because of the reasons such as temperature drifting. When the

cavity length drifted out of the feedback signal correction range. The OPO went off

lock. With this issue, the OPO could only stay locked for one minute. To solve this
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problem, we used the laser lock box instrument in Moku:Lab to seperate the PDH

error signal into two channels, the fast control and the slow control. The slow control

channel separated the low frequency components of the error signal and sent them to

a 0-340V high-voltage channel which can follow the large drift excursion for a longer

time. The fast frequency components were sent to the previously used regular ±10V

channel.

The PDH locking setup is shown in Fig.4.9 (a). The locking beam is injected

on the HR mirror and a photodetector detects the transmitted light from the output

coupler. The transmitted light signal connects to Moku:Lab input 1. The laser itself

has a 12 MHz phase modulation on the locking beam. This 12 MHz signal is connected

to Moku:Lab input 2. A 12 MHz signal that is phase locked to input 2 is generated

by Moku:Lab to mix with the signal from input 1. After a low pass filter, the error

signal is separated into two channels: fast control and slow control. The fast control

channel amplifies the signal up to 1.5 kHz and the slow control channel amplifies the

frequency smaller than 500 mHz.

One limit of the Moku:Lab is the output feedback signal has the maximum value

of 1 V. So the fast and slow control signals are further amplified before sent to the

PZT mounted on the OPO mirror. The fast control signal amplitude is amplified to

20 times by Vescent D125 laser servo proportional gain, and then sent to the lab built

PZT controller modulation channel, which has the gain of 1. The slow control signal

is sent to the ramp channel of the same PZT controller, which amplifies the slow

control signal by 35 times. Then the fast control signal from the modulation channel

and the slow control signal from the ramp channel are added together and applied

to the PZT mounted on one of the OPO mirror. The separation of fast and slow

control signal is needed because the ramp channel has only 1 kHz bandwidth so that
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PZT

Locking:
12MHz phase modulation

HR

OC

HR

12 MHzIn 1

In 2Moku

(a)

(b)

Figure 4.9: (a) The experimental setup of OPO PDH locking. (b) Moku:Lab control
panel. Upper part is the electronic scheme including mixer, low pass filter, fast and
slow controller. Lower part is the PDH locking error signal.
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it can only amplify the small control signal with frequency smaller than its bandwidth.

Compared to the old setup where all the feedback signal with a bandwidth of 3 kHz

only went through the modulation channel without amplification, the new setup with

small frequency feedback signal being amplified more makes the PZT on the OPO

mirror has longer tuning range. Therefore we observes that the OPO can stay locked

longer with slow drifting being better corrected.

Before locking, there is a triangle wave scan generated from output 2. With this

ramp, we got the error signal in Fig.4.9 (b) and the corresponding signal to noise

ratio is

SNR =
2
√
2Vpp

Vnoise
= 62.4, (4.53)

where Vpp is the peak-to-peak value of PDH locking error signal and Vnoise is the

peak-to-peak value of the noise in PDH locking error signal. With this slow control

correcting the low frequency drifting, the OPO can stay locked for 30 minutes before

the PZT reaching the length limits.

4.3 Pump and probe phase locking

In order to monitor the QOFC phase, we inserted a probe beam into the OPO in

the same propagating direction as the quantum light. As shown in previous section,

there is three-wave mixing effect among the pump beam, probe beam and quantum

light. The parametric down conversion generates the quantum light and the phase

satisfies ϕP − 2ϕq = 0, where ϕp is the pump phase and ϕq is the quantum light

phase. However the parametric down conversion starts from vacuum and there is no
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quantum light at the beginning which mean ϕq is defined only by ϕp. Therefore, to

get stable QOFC phase, the pump phase must be locked.

On the other hand, when the probe beam and pump beam phase satisfy ϕp−2ϕr =

0, where ϕr is the probe beam phase, parametric amplification makes the probe beam

power maximum as shown in Eq. (4.31). Therefore, if the pump phase is locked to

the probe beam phase to make ϕp − 2ϕr = 0, we can get stable quantum light phase,

which is the same as the probe beam phase.

In this section, I will first give theoretical calculations of getting error signal of

locking pump phase from the power of probe beam. Then I will show the design of the

circuit to get the probe beam power information using balanced homodyne detector.

Finally, I will present the pump-probe beam phase locking setup and results.

4.3.1 Theoretical calculation

I will show the derivation of pump-probe phase locking error signal in this section.

By scanning the PZT mounted on a mirror with a sinusoidal RF signal, the pump

light path is changed so that the pump phase becomes

ϕ = ϕ0 +msin(Ωt+ θ), (4.54)

where ϕ0 is the initial phase of the pump, m is the modulation depth, Ω is the

modulation frequency and θ is the initial phase of the RF signal. Assume m is

small, from Section 4.1.2, in the parametric process, the probe beam power shown in
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Eq. (4.30) becomes

P =|E1(0)|2(cosh2r + sinh2r) + |E1(0)|2sinh2r cosϕ

=|E1(0)|2(cosh2r + sinh2r) + |E1(0)|2sinh2rcos [ϕ0 +msin(Ωt+ θ)]

=|E1(0)|2(cosh2r + sinh2r)

+ |E1(0)|2sinh2r {cos(ϕ0)cos [msin(Ωt+ θ)]− sin(ϕ0)sin [msin(Ωt+ θ)]}

≈|E1(0)|2(cosh2r + sinh2r)

+ |E1(0)|2sinh2r {cos(ϕ0)− sin(ϕ0) [msin(Ωt+ θ)]}

=P0(cosh2r + sinh2r cosϕ0)−mP0sinh2r sinϕ0sin(Ωt+ θ),

(4.55)

where P0 = |E1(0)|2 is the initial power of probe beam. Using a high-pass filter to

get the AC term and mixing it with RF wave sin(Ωt+ δ):

mP0sinh2r sinϕ0sin(Ωt+ θ)× sin(Ωt+ δ)

=
1

2
mP0sinh2r sinϕ0cos(θ − δ) + (2Ω term),

(4.56)

with the 2Ω term filtered out and the RF signal initial phase difference θ− δ = 0, the

error signal of the pump-probe phase lock is

ϵ =
1

2
mP0 sinh2r sinϕ0. (4.57)

By scanning the pump phase ϕ0 with a 10 Hz ramp signal, we can get a sinusoidal error

signal. The locking point is ϵ = 0, which mean ϕ can be both 0 or π, corresponding

to amplification and deamplification. This can be checked by monitoring the probe

beam power to make sure probe beam power is locked at the maximum.
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4.3.2 Circuit design

To perform the pump-probe beam phase lock, it is important to detect the power

of the probe beam. Previously, we used balanced homodyne detector which sub-

tracts the photon current and cannot give the information of the power that each

photodiode detects. Based on the balanced homodyne detector circuit, we designed

a supplementary circuit to detect the probe beam power.

The circuit is shown in Fig.4.10. The first part in the blue rectangular frame is

the balanced homodyne circuit. Two photodiodes that are -5 V biased produce the

photo current I1 and I2. A capacitor selects the AC component of the photon current

difference and a transimpedance amplifier converts the current to AC output voltage

Vout = IinR, (4.58)

where R is the feedback resistor for the op-amp OPA686. An inductor filters the DC

component of the photon current and an op-amp (OPA27) voltage buffer output the

DC voltage

Vout = Vin. (4.59)

The supplementary part in the red frame is used to extract the single PD photon

current, which is proportional to the probe beam power. The photon current I2 is

sent to a transimpedance amplifier and converted to a voltage signal. The op-amp

used here is OPA686, powered by ±12 V voltage resource. The positive input of the

op-amp is connected to -5 V voltage source, which makes sure the PD is still properly

biased.

The single PD output signal of the probe beam power is shown in Fig. 4.11
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Figure 4.10: Detector circuit design. The AC and DC outputs are used for balanced
homodyne detection. The single PD output signal gives the power of probe beam.

(without the second order high pass filter shown in Fig.4.10). When there is no light,

the output voltage is -5.012 V which is the bias voltage of the PD. With light shining

on the PD, the output voltage absolute value increases and the voltage difference

represent the light power detected by single PD. When scanning the pump at 200 Hz,

the probe beam power changes with a period of 5.00 ms.The probe beam power, with-

out pump, shining on single PD is 17 µW with the output voltage increased by 24.8

mV. When parametric amplification condition was satisfied, the probe beam power is

amplified and the voltage absolute value increased by 96.9 mV. The parametric gain

is 3.91. Using Eq. (4.32), the squeezing parameter r = 0.681, corresponding to -5.92

dB of squeezing.

To get rid of the DC biased voltage of the single PD output signal, a second order

high pass filter is added to the output port. The second order high pass filter is built

by cascading two first order high pass filter with resistors and capacitors set to be
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No light
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Figure 4.11: Probe beam power changes with the pump phase scanning.

R1 = 10kΩ, C1=160 nF and R2 = 100kΩ, C2=16 nF. The cut off frequency of this

second order high pass filter is

f =
1

2πR1C1R2C2

=
1

2πR2C2

= 99.47Hz. (4.60)

The slope of this filter is -40 dB/decade.

4.3.3 Experimental setup and locking results

The schemetic setup for pump-probe beam phase locking is shown in Fig.4.12. The

pump phase is modulated by a 3 kHz RF signal generated by Moku:Lab, by applying

to a PZT to changing the pump path length. The single PD output signal went

through a band pass filter to get this 3 kHz signal which is sent to Moku:Lab input

1. After mixing with 3 kHz RF signal, the error signal is separated into fast and slow

control channels. The fast control amplifies the signal up to 200 kHz and the slow

control amplifies the signal smaller than 5 Hz.

When performing pump phase locking in the experiment, the single PD output
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Figure 4.12: Pump-probe beam phase lock set up.

signal is the beat signal between the probe beam and LO. LO frequency is shifted 50

MHz from probe beam frequency. The signal detected by the PD is

|Eprobe + ELO|2

=
∣∣E1e

ω1t+ϕ1 + E2e
ω2t+ϕ2

∣∣
=
∣∣E2

1

∣∣+ ∣∣E2
2

∣∣+ 2 |E1E2| cos (∆ωt+∆ϕ) ,

(4.61)

where ∆ω = ω1−ω2 = 50 MHz and ∆ϕ = ϕ1−ϕ2. Therefore, the beat signal amplitude

is proportional to the probe beam field amplitude. Fig.4.13 shows the locking result

by measuring the beat signal amplitude with LO power remains constant. Without

the pump phase locking, as shown by the red line, the beat signal amplitude kept

drifting. When the pump phase is locked, the beat signal amplitude stays at the

maximum value as shown by the blue line, which is a proof that the probe beam

power is locked to its maximum.



101

Figure 4.13: Probe beam and LO beat signal amplitude measured with and without
pump phase locking.

So, for now, it has been shown that the amplitude of 50 MHz beat signal between

probe beam and LO is stabilized by locking the pump phase to probe beam. In the

next section, I will present the stabilization of this beat signal phase by locking the

LO phase to probe beam.

4.4 Local oscillator and probe phase locking

We can derive the LO and probe beam phase lock error signal from Eq.4.61. This

beat signal is mixed with a 50 MHz RF signal

2 |E1E2| cos (∆ωt+∆ϕ)× cos (∆ω t+ θ)

=2 |E1E2| [cos(2∆ωt+∆ϕ+ θ) + cos(∆ϕ− θ)] ,

(4.62)
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where ∆ω = 50MHz, ∆ϕ is the initial phase difference between LO and probe beam,

θ is the initial phase of RF signal. After the low pass filter, we get the error signal

ϵ = 2 |E1E2| cos(∆ϕ− θ). (4.63)

The locking point is when ϵ = 0, which means ∆ϕ − θ = nπ/2. This works because

the relative phase between LO and probe beam needs to be stable and we don’t need

to know the exact LO phase value. So, the LO phase can be locked to any value.

Fig.4.14 shows the schematic setup of LO probe beam phase lock. The LO and

probe beam are linearly polarized in perpendicular direction and mixed by a polarized

beam splitter (PBS). A half wave plate (HWP) rotates their polarizations by 45◦ and

then a PBS is used to mixed then so that both output port of PBS have LO beating

with probe beam, which are detected by two photodiodes. The subtraction of two

photo currents gives only AC signal, which is sent to input one of Moku:Lab laser

lock instrument and mixed with a 50 MHz RF signal to generate the error signal.

This error signal is shown in Fig.4.15.

AOM HWP

HWP

OPO

PZT

zzz
PPKTP

HWP

HWPHWP

HWP

PZT

Moku 2

Laser 1

50 MHz

Figure 4.14: LO and probe beam phase lock experimental setup.
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Figure 4.15: LO and probe beam phase lock error signal.

With LO probe beam phase locked, the phase of the 50 MHz beat note is stabi-

lized. The meaning of this AC signal phase stabilization is confusing since the phase

at different time is not constant because of the ∆ωt evolution in the phase term.

However, the locking of this relative phase can give us the same phase when it is

measured at time interval equal to multiples of the period T = 1/∆ω. This is proved

with the results showing in Section 5.4.
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Chapter 5

Quadrature measurement by

homodyne/heterodyne detection

To measure cluster states, it is important to get the quadrature (P and Q) informa-

tion. One way to measure the cluster state is to measure its nullifiers by homodyne

detection, like the previous experiment of generating 60-mode cluster state [3]. Here

we need to clarify the meanings of homodyne and heterodyne detection. In the clas-

sical context of radio/optical measurements, a homodyne measurement refers to an

interferometric signal between the measured field and a calibrated local oscillator

(LO) of the same frequency, while a heterodyne measurement refers to the beat note

of the measured field with a frequency-shifted LO. In quantum optics, the latter case

yields undesirable contamination of the signal by “image-band” vacuum field modes

placed spectrally outside the signal and LO fields, at the same frequency spacing as

the beat frequency [73]. It is crucial for quadrature measurements (and for any quan-

tum optical measurement) to ensure that no such contamination by vacuum modes of

the quantum electromagnetic field occur. This can be ensured in different ways: (i),

by having the LO exactly at the same frequency as the modes to be measured, i.e.,

by frequency-homodyne detection, or (ii), in a two-mode measurement, by having

the LO frequency exactly halfway between the two modes. This is how the first-ever

squeezing measurement was made [74] and, even though it was a frequency-heterodyne
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measurement of a 482 MHz beat note, it was nonetheless termed a (quantum-) ho-

modyne measurement, because negligible vacuum contamination was present. We

will, from now on, use the terms homodyne and heterodyne in the quantum context,

meaning, respectively, with and without vacuum contamination. The former will

comprise both frequency-homodyne and frequency-heterodyne configurations, while

the latter will only comprise frequency-heterodyne configurations.

Here, we want to go beyond nullifier measurements and reconstruct the whole

covariance matrix, Eq. (A.9), in order to access the whole graph state, including

errors, i.e., Z=V+iU rather than just V. While quantum homodyne measurements

can be used to reconstruct nullifiers, which I will present in Section 5.3, they cannot

reconstruct the complete set of quantum correlations of the covariance matrix be-

cause quantum homodyne measurements suffer from fundamental limits due to their

symmetric field configuration [75]. For this reason, I have designed and implemented

a quantum heterodyne measurement scheme that will be presented in Section 5.4.

Frequency-heterodyne detection combined with Fourier transformation provide a

compact method to measure large scale multimode cluster state. In this chapter, I dis-

cuss the principles of this method and present some preliminary results of measuring

the two-mode squeezed state based on the experimental setup in chapter 4.

5.1 Fourier transform and sampling

5.1.1 Fourier transform basics

Fourier transform is a method that express a function by a sum of waves with different

frequencies, amplitudes and phases. It is used to convert the signal acquired in time
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domain to frequency domain so that a complex number associated with each frequency

mode can be calculated.

For an arbitrary one dimensional function in time domain f(t), Fourier transform

function at frequency ν is given by

F (ν) =

∫ ∞

−∞
f(t)e−i2πνtdt. (5.1)

f(t) can also be represented as a recombination of complex exponentials of all possible

frequencies, which is the Fourier inversion integral is

f(t) =

∫ ∞

−∞
F (ν)ei2πνtdν. (5.2)

The Fourier transform provides information on the sinusoidal components of a signal

because

ei2πνt = cos(2πνt) + isin(2πνt). (5.3)

For real valued f(t) and positive t, Eq. (5.2) becomes

f(t) = 2

∫ ∞

0

Re
[
F (ν)ei2πνt

]
dν

= 2

∫ ∞

0

{Re [F (ν)] cos(2πνt)− Im [F (ν)] sin(2πνt)} ,
(5.4)

where the complex Fourier coefficients F (ν) = FR(ν) + iFI(ν), with its magnitude

and phase:

|F (ν)| =
√
FR(ν)2 + FI(ν)2, (5.5)

ϕ = tan−1 FI(ν)

FR(ν)
. (5.6)
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This complex coefficients are related to the amplitude and phase quadrature when

doing heterodyne measurement which will be discussed in details later.

Convolution theorem

The convolution of two functions f(t) and h(t) is defined as

f(t) ∗ h(t) =
∫ ∞

−∞
f(ν)h(t− ν)dν. (5.7)

The convolution theorem is that the Fourier transform of a convolution of two func-

tions is the point-wise multiplication of their Fourier transforms

F [f(t) ∗ g(t)] = F [f(t)] · F [g(t)] . (5.8)

It can be proved that the Fourier transform of the product of two functions equals

to the convolution of the Fourier transforms of individual function, which is shown in

the following equation

F [f(t) · g(t)] = F [f(t)] ∗ F [g(t)] . (5.9)

These mathematical properties are used in the data acquisition and sampling theorem,

which will be discussed next.

5.1.2 Data acquisition

The signal generated in the experiment is continuous and can propagate for infinite

long time. However, when we acquire the data, we can only take it as discrete points
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within a finite time window. These are the problems that we need to consider when

performing data sampling.

Sampling

Sampling is the process that transform continuous signals f(t) into discrete signals,

as shown in Fig.5.1 (a). The sampling function is

δs(t,∆t) =
∑
n

δ(t− n ·∆t), (5.10)

which is a comb function with ∆t being the time interval between each discrete data

points, n being an integer. δ(t) is the Dirac delta “function” which we take to be

δ(t) = 1 when t = 0, and δ(t) = 0 for else. The sampling rate Fs = 1/∆t. The

mathematical expression of sampling process is

fs(t) = f(t) · δs(t,∆t) =
∑
n

f(n∆t)δ(t− n ·∆t), (5.11)

where fs(t) is the sampled function. The Fourier transform of this sampled function

is

F [fs(t)] = F [f(t) · δs(t,∆t)] = F [f(t)] ∗ F [δs(t,∆t)] , (5.12)

where the Fourier transform of a comb function is still a comb function

F [δs(t,∆t)] =

∫ ∞

−∞

∑
n

δ(t− n ·∆t)e−i2πνtdt

=
∑
n

e−i2πνn∆t

=
1

∆t

∑
n

δ(ν − n

∆t
).

(5.13)
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Figure 5.1: (a) Sampling a continuous function f(t) using a comb function with
sample interval ∆t, sampling rate Fs = 1/∆t. (b) Frequency spectrum of sampled
data. ∆ν is the bandwidth of signal.

Thus, Eq. (5.12) becomes

F [fs(t)] =
1

∆t

∑
n

[
δ(ν − n

∆t
) ∗ F (ν)

]
=

1

∆t

∑
n

F (ν − n

∆t
).

(5.14)

This equation shows that the sampling in time domain replicates the signal spectrum

in frequency domain as shown in Fig.5.1 (b). In the replicated spectrum, the repli-

cation frequency period is 1/∆t = Fs. If the signal f(t) has a bandwidth of ∆ν, to

avoid overlapping (aliasing), it must be satisfied that

Fs � ∆ν (5.15)
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Data acquisition time

Another fact that needs to be taken into account is the finite data acquisition time.

Although the signal function can propagate for infinitely long time, we can only

acquire data within a finite time ∆T , which is a window function

Π

(
t

∆T

)
=


1 if t ∈

[
−∆T

2
, ∆T

2

]
,

0 otherwise.
(5.16)

The sampled function within this time window becomes

G(t) = f(t) · δs(t,∆t) · Π(
t

∆T
). (5.17)

Fast Fourier transform (FFT) algorithm is based on the repetitive signal of G(t) as

shown in Fig.5.2 (a). This periodical signal has a Fourier series

f∆T (t) =
+∞∑

n=−∞

Dne
iω0t, (5.18)

with the coefficient Dn being the Fourier transform of f(t) in the expression of

Dn =
1

∆T

∫ ∆T

0

f(t)e−inω0tdt

=
1

∆T
F (nω0),

(5.19)

where ω0 = 2πν0 = 2π
∆T

. This means that the frequency spacing is the reciprocal of

data acquisition time as shown in Fig.5.2 (b). For example, in the experiment, if we

need to get the frequency separation of 10 kHz, data acquisition time needs to be

longer than 0.1 ms.
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Figure 5.2: (a) Periodic signal generated based on finite data acquisition time ∆T .
(b) Frequency domain data separation.

Intra-mode definition

In previous section, the cluster states are generated by phase modulated QOFC, the

lines of which are OPO cavity modes. In our experiment, the FSR of the OPO is 1

GHz. If we are going to use the frequency heterodyne detection method, introduced

in the next section Section 5.2, to measure the cluster state generated by the OPO

modes, which has signal bandwidth of much larger than 1 GHz, the sampling rate

needs to be larger than this signal bandwidth. However we have the data acquisition

card used in this experiment that has the maximum sampling rate of 2 GHz. It could

not be used to measure the cluster state generated by OPO modes here.

Considering the fact that each cavity mode has a linewidth of continuous spectrum

in frequency domain, we can treat it as discrete intra-mode with frequency spacing

1/∆T , where ∆T is the data acquisition time, as shown in Fig.5.3. Since the linewidth

of our OPO was 10 MHz and then increased to 30 MHz, the signal bandwidth of
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frequency heterodyne detection is around hundreds of MHz. Therefore, we measured

only the intra-mode cases and the results are presented in this chapter.

Figure 5.3: Intra-modes definition.

5.2 Quantum detection

5.2.1 Quantum-homodyne detection by balanced frequency-

homodyne detection

One method to measure the nullifiers of cluster state is balanced homodyne detection.

The general setup is shown in Fig.5.4. It consists of a 50:50 beam splitter (BS), the

Figure 5.4: Balanced homodyne detection setup.

reflection and transmission coefficient of which are r = t = 1√
2
. The signal mode
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a(t) = aeiω0t is incident on one of the BS input port. The local oscillator (LO)

b(t) = beiω0t, which in this case has the same frequency ω0 as the signal mode, is

incident on the other side of BS. Two photo diodes connected together are used

to detect two output beam of the BS, c(t) and d(t), and their photocurrents are

subtracted. Using the beam splitter matrix Eq. (2.80), we can get

c(t) =
1√
2
(a(t) + b(t)), (5.20)

d(t) =
1√
2
(a(t)− b(t)). (5.21)

So the photon numbers detected by the photo diodes are

Nc = c†(t)c(t) =
1

2
(a†a+ b†b+ a†b+ b†a), (5.22)

Nd = d†(t)d(t) =
1

2
(a†a+ b†b− a†b− b†a). (5.23)

Subtracting these two signals, the photon number difference N− is

N− = Nc −Nd = a†b+ b†a. (5.24)

Assuming the LO is a coherent state of light b = |β| eiθ and inserting the definition of

quadrature Q and P (Eq.2.9) for quantum signal, the photon number difference can

be expressed as
N− = |β| (a†eiθ + ae−iθ)

=
√
2 |β| (Qcosθ + P sinθ).

(5.25)

The photon number difference is amplified by the LO amplitude |β|, meanwhile the

LO phase θ defines which quadrature of the target mode is measured: Q quadrature

is measured when θ = nπ, and P quadrature is measured when θ = nπ/2, where n is
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an integer. The LO phase can be scanned by adding a PZT mounted mirror to the

LO light path to change its light path length.

5.2.2 Quantum-homodyne detection by balanced frequency-

heterodyne detection

The general setup for balanced heterodyne detection is shown in Fig.5.5. Compared

to the homodyne detection, balanced heterodyne detection also consists of a 50:50 BS,

with the signal and LO being incident onto two sides of BS. However, the difference

from homodyne detection is that the local oscillator used for heterodyne detection

has a different frequency from the signal. An example is shown in Fig.5.5 (b): the

frequency of LO is ω0, the signal consists of multiple frequencies ω±n = ω0 ± Ωn.

Figure 5.5: Balanced heterodyne detection (a) setup, and (b) frequency relation.

Taking Ω1 as an example, the signal has two frequencies ω±1 = ω0 ± Ω1. Taking

the LO as b = |β| eiθ and using the same calculations for homodyne detection, the
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photon number at two detectors in heterodyne detection are

Nc =
1

2
(a†+1 + a†−1 + βeiθ)(a+1 + a−1 + βe−iθ), (5.26)

Nd =
1

2
(a†+1 + a†−1 − βeiθ)(a+1 + a−1 − βe−iθ), (5.27)

where θ is the initial phase of LO. Because the initial phase of signal is taken as 0, θ

also means the initial phase difference between LO and signal fields. Subtracting Nc

and Nd to get the photon number difference

N− = β
[
(a+1e

iΩ1t + a−1e
−iΩ1t)eiθ + (a†+1e

−iΩ1t + a†−1e
iΩ1t)e−iθ

]
, (5.28)

Express N− in terms of quadrature Q and P as

N− =
√
2β(RcosΩ1t+ IsinΩ1t), (5.29)

where R and I correspond to the real and imaginary FT coefficients at frequency Ω1:

R1 = cosθ(Q+1 +Q−1)− sinθ(P+1 + P−1), (5.30)

I1 = sinθ(−Q+1 +Q−1) + cosθ(−P+1 + P−1). (5.31)

Furthermore, if the signal have more than two frequencies ω±n = ω0 ± Ωn, the

photon difference becomes the sum of all the frequency components

N− =
√
2β
∑
n

(RncosΩnt+ InsinΩnt). (5.32)
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Using FT, we can get the real (Rn) and (In) terms for each Ωn:

Rn = cosθ(Q+n +Q−n)− sinθ(P+n + P−n), (5.33)

In = sinθ(−Q+n +Q−n) + cosθ(−P+n + P−n). (5.34)

5.3 Quantum homodyne measurement of the en-

tangled comb

In previous section, we discussed about the heterodyne detection involving vacuum

mode because the LO frequency is shifted out of the range of OPO mode frequency,

making LO beat with quantum light and vacuum at the same time. In this section,

another case where the LO frequency is at the center of OPO mode and LO only

beats with quantum light (no vacuum mode is involved) will be discussed.

The experimental setup is shown in Fig.5.6. The OPO we used in this experiment

is an old version which has 10 MHz linewidth. The detals of this OPO setup can be

found in Chun-Hung’s thesis [76]. The LO frequency is the same as center frequency

Figure 5.6: Experimental setup for intra-mode squeezing measurement.



117

of an OPO mode, which equal to half of pump frequency. The frequency relationship

is shown in Fig.5.7. The linewidth of LO is 1 kHz. Therefore, LO beats with all the

intra-mode within the OPO linewidth. The modes that we measure are two modes

that have frequency ω0 ± Ω1 beating with LO, which are quantum mode only and

no vacuum is involved in this measurement. From Eq. (5.33) and Eq. (5.34), when

Intra-mode:

LO
Ω!

𝜔

𝜔"𝜔#!
Ω!
𝜔!

Figure 5.7: Intra-mode squeezing frequency relationship.

phase between LO and signal is θ = π/2, the Rn and In becomes the TMS squeezed

quadrature

Rn = −(P−n + P+n), (5.35)

In = −Q−n +Q+n. (5.36)

In the experiment, the phase θ can be tuned by applying different voltage to the PZT

mounted on the mirror to change the path length of LO.

The sampling rate is set to be 50 MHz, which is larger than the linewidth of the

cavity mode in order to avoid aliasing. One measurement lasts for 100 µs so that

the frequency domain resolution bandwidth is 10 kHz. We performed N measure-

ments and calculated the variance of squeezed quadrature shown in Eq. (5.35). The
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squeezing level is

SdB = 20log10

∆(Q+N −Q−N)signal
∆(Q+N −Q−N)shotnoise

= 20log10

∆(P+N + P−N)signal
∆(P+N + P−N)shotnoise

, (5.37)

where the signal quadrature was measured by interfering LO and quantum signal, and

the shot noise was measured by blocking the pump so that there was no quantum

light emitted by OPO and the LO was interfered with vacuum.

The intra-mode squeezed quadrature of is plotted as in Fig.5.8. The x axis is

the frequency difference between the two-mode squeezed pairs and the OPO center

mode, and y axis is the squeezing level canculated in Eq. (5.37). We measured the

maximum squeezing of 1 dB at 2 MHz. However, we expected the squeezing to be

around 3.2 dB, which is the level we measured before [3]. This was caused by the loss

and phase noise in this experimental setup. The careful investigation of these reasons

can be found in Chapter 5 of Chun-Hung’s thesis [76]. For the results that we have

here, it is obvious that the squeezing level decreases obviously at 5 MHz, which is

the half frequency of cavity mode linewidth, and the squeezing is not detectable at

frequency larger than 10 MHz. Fig.5.8 (a) shows the variance of 1875 measurements

and Fig.5.8 (b) shows the variance of 18750 measurements, which is more accurate

than the results in Fig.5.8 (a).

One problem of this measurement is the LO phase was not stabilized. If the

LO phase drifted away from π/2, the real and imaginary part of FT is a mixture of

squeezed and anti-squeezed quadrature, which resulted in a smaller squeezing level.

To solve this problem, a possible method is adding a probe beam and locking LO

phase to probe beam as discussed Section 4.4.

This method can only measure the squeezing quadrature which are the quadrature
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Figure 5.8: Two-mode squeezing inside an OPO cavity mode.

combinations of two modes. It is impossible to calculate the quadrature of each

mode using this method [75]. In order to measure the quadrature of each mode, LO

frequency needs to be shifted away from the center frequency of the OPO mode and

letting LO interfere with both quantum light and vacuum as discussed in Section 5.4.

5.4 Quantum heterodyne measurement of the en-

tangled comb

In this section, I will present some results of intra-modes quadrature measurements

using the experimental setup shown in Fig.4.1, with the EOM after OPO turned off.

Using an AOM to shift the LO frequency 50 MHz away from the center of OPO mode

frequency as shown in Fig.5.9. The OPO mode has 30 MHz FWHM. We are interested

in the signal within bandwidth of 100 MHz so that it allows LO beating with entire

OPO mode. Therefore, the sampling rate is set to be 2 GHz, which is 20 times larger
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than the signal bandwidth. We performed 1000 times of measurements with each

measurement lasted for 10−5 s, which gives the resolution (frequency spacing) of 100

kHz.

LO

𝜔!
Ω"

FWHM=30 MHz

𝜔#/2 Ω"
𝜔" 𝑣"

50MHz

Figure 5.9: Heterodyne measurement signal bandwidth.

5.4.1 Fourier transform spectrum

Fourier transform amplitude

The Fourier transform amplitudes of detected signals are shown in Fig.5.10. The x

axis are the frequency range from DC to 100 MHz and the y axis shows the average

value of signal’s the Fourier transform amplitude over 1000 times of measurements.

We first measured the dark noise spectrum (Fig.5.10 (a)). In this case, all the

light was blocked out. There are radio frequency signal pickups at 10 MHz, 50 MHz

and 80 MHz. The LO spectrum (Fig.5.10 (b)) was measured when only LO was

turned on. It has a weak 12 MHz signal coming from the laser phase modulation

which is used to do PDH locking. Comparing the dark noise and LO spectrum, the

photon detector has a detection bandwidth of 100 MHz.

Fig.5.10 (c) shows the spectrum of LO and probe beam beat note spectrum. The

frequency difference between LO and probe beam is 50 MHz and both LO and probe
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(a) (b)

(c) (d)

Figure 5.10: Fourier transform amplitude of different signals. (a) Spectrum of dark
noise, measured without any light. (b) Spectrum of LO. (c) Spectrum of LO and
probe beam without pump. (d) Spectrum of LO and probe beam with pump.
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beam have weak 12 MHz modulations The 50 MHz peak shown in this case contains

three components: beat between LO and probe beam, beat between LO and probe

beam’s ±1st order 12 MHz sidebands. Meanwhile, the 38 MHz and 62 MHz peaks are

LO carrier beating with the probe beam sidebands plus probe beam carrier beating

with LO sidebands. Because the LO power (7.1 mW) is much larger than probe

beam power (37.4 µW), the beating between LO carrier and probe beam has the

main contribution to those two peaks.

Fig.5.10 (d) shows the spectrum of LO and probe beat when pump is turned on

and pump phase locking with probe beam is engaged so that the probe beam power

is locked to maximum because of parametric amplification. Since the probe beam

power is amplified, the 50 MHz peak is 2.532 dB higher than the peak without pump

shown in Fig.5.10 (c), which corresponds probe beam power parametric gain is 3.21.

We can see that the OPO amplifies the probe field approximately by a factor of 1.79,

which would hint at a squeezing level of 4.94 dB.

Fourier transform phase

In chapter 4, I have already showed that relative phase between LO and probe beam

are locked. This means the initial phase of the 50 MHz signal, generated by beating

LO with probe beam, should be stable. I will discuss how this phase is related to the

Fourier transform phase we measured.

The FT phase of this 50 MHz signal from LO and probe beam beat with pump off

and on is shown in Fig.5.11. In this figure, the phase of 1000 time of measurements

are plotted and they are distributed at 5 different values. From subsection 5.4.2, this

FT phase is the initial phase difference between LO and probe beam. Because LO
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and probe beam phase was locked, the relative phase is stable. However, as we started

recording the data at different time, the initial phase has different values. Those 1000

times of measurements were performed in this way: each measurement lasted for 10−5

s, and the starting time of each measurement had an interval of ∆t = 1.00096× 10−4

s, which contains 5004.8 periods of 50 MHz signal. Therefore, if the first measurement

started with initial phase θ0, the second, third, fourth and fifth measurements initial

phases are θ0 +0.8× 2π, θ0 +1.6× 2π, θ0 +2.4× 2π, θ0 +3.2× 2π. Starting from the

sixth measurement, the initial phase is θ0 again. This is the reason why there are 5

different values of initial phase. Also, because the fact that the first measurement has

the same trigger level, the average value of each phase set keeps the same no matter

if pump turned on or off.

5.4.2 Quadrature measurement

Meaning of the initial phase

In order to solve the equations Eq. (5.33) and Eq. (5.34) to get Qn and Pn, it is

important to know the value of θ, which is the initial phase difference between LO

and the signal.

From Eq. (4.61), the relative phase ∆ϕ between LO and probe beam is the initial

phase (when t = 0) of their 50 MHz beat signal. A problem in the experiment is how

to define this initial phase since the light is propagating as free field and its phase is

different at different time or position. I will prove next that this initial phase ∆ϕ is

the FT phase θ and can be calculated using Eq. (5.6).

In this experiment (Fig.4.1), the mode a−1 in Eq. (5.28) is the probe beam, which

is treated as coherent state so that a→ |α| (its phase is considered as 0 for simplicity
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(a) (b)

(c) (d)

Figure 5.11: Fourier transform phase of 50 MHz beat signal between LO and probe
beam with pump turned on and off. (a) and (c) are 50 MHz phase distribution of
1000 times of measurements with pump turned on and off. There are 5 phase sets in
both cases. (b) and (d) show the 50 MHz phase average for 5 different phase sets with
pump turned on and off. Error bar shown the range including 95.8% data points.
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without the loss of generality). The mode a+1 in Eq. (5.28) is the vacuum mode so

that v → 0. Replacing the phase θ with the relative phase between LO and probe

beam ∆ϕ, the photon number difference Eq. (5.28) becomes

N− = β
[
(|α|eiΩt)ei∆ϕ + (|α|e−iΩt)e−i∆ϕ

]
= 2β [cosΩt(|α|cos∆ϕ) + sinΩt(|α|sin∆ϕ)] ,

(5.38)

where 2β|α|cos∆ϕ = R is the real part of FT and 2β|α|sin∆ϕ = I is the imaginary

part of FT. Using Eq. (5.6), the phase given by the FT is

∆ϕ = tan−1 I

R
. (5.39)

The free field evolution of the probe beam and LO introduces a phase shift in ∆ϕ→

∆ϕ′ = ∆ϕ+ δϕ. Therefore, ∆ϕ′ still can be calculated by the FT phase which means

the free field evolution phase is already included in the FT phase and the start point

defining the initial phase is when we start to acquire data.

Measuring quadratures of the probe beam

We can use the FT complex value of 50 MHz component to calculate the quadratures

of probe beam. The linear combinations of Eq.5.30 and Eq.5.31 give

R sinθ + I cosθ = sin2θ Qv + cos2θ Pv − Pa, (5.40)

R cosθ − I sinθ = −sin2θ Pv + cos2θ Qv +Qa, (5.41)

where R + iI is the FT complex number of 50 MHz signal, phase θ = tan−1 I
R

. Qa

and Pa are the amplitude and phase quadrature of probe beam. Qv and Pv are the
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amplitude and phase quadrature of vacuum mode. For n times of measurement, the

average of Pa and Qa are

〈Pa〉 = 〈R sinθ + I cosθ〉 − 〈sin2θ Qv〉 − 〈cos2θ Pv〉 , (5.42)

〈Qa〉 = 〈R cosθ − I sinθ〉+ 〈sin2θ Pv〉 − 〈cos2θ Qv〉 . (5.43)

The quadrature average of vacuum state satisfies 〈Pv〉 = 〈Qv〉 = 0 when n → ∞,

therefore

〈sin2θ Qv〉 ≤ 〈Qv〉 → 0, (5.44)

〈sin2θ Pv〉 ≤ 〈Pv〉 → 0, (5.45)

〈cos2θ Qv〉 ≤ 〈Qv〉 → 0, (5.46)

〈cos2θ Pv〉 ≤ 〈Pv〉 → 0. (5.47)

When n is large enough, the quadrature average of the probe beam is

〈Pa〉 = 〈R sinθ + I cosθ〉 = Asin2θ, (5.48)

〈Qa〉 = 〈R cosθ − I sinθ〉 = Acos2θ, (5.49)

where A is the FT amplitude, thus R = Acosθ and I = Asinθ. Using this method,

we can calculate the expectation and standard deviation of P and Q quadratures for

probe beam at different phase shown in Fig.5.11a. The results are shown in Fig.5.12.

The coordinates of each point correspond to the measured mean value of Q and P

with different phase set in Fig.5.11.

The error bar shows the range of mean value plus and minus the standard devi-

ation (∆Q and ∆P ). The quadrature averages are amplified when pump is turned
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on compared to pump turned off, which can be explained by Eq. (5.48) since A is

amplified by the pump. The error bars shown in Fig.5.12 are dominated by the

measurement errors. Form Eq. (5.48), the measured phase error contributes to the

quadrature errors and the errors of amplitude A can be neglected because the probe

beam power is stabilized by locking loops (the measured standard deviation of power

is about 50 time smaller than the phase standard deviation). Therefore, the quadra-

ture errors can be estimated as

∆P = 2Acos2θ∆θ, (5.50)

∆Q = 2Asin2θ∆θ, (5.51)

which explain that when 2θ → kπ, ∆Q is small and ∆P is large, while 2θ → (2k +

1)π/2, ∆Q is large and ∆P is small (k is integer).

Figure 5.12: Probe beam quadrature plot.

In this experiment (Fig.4.1), the signal we are measuring is the full spectrum of

single OPO mode, including the quantum light generated from spontaneous paramet-

ric down conversion and the probe beam being amplified by parametric amplification
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process. From the analysis in Section 4.3, when the pump phase is locked to the probe

beam phase to maximize the probe beam power, the initial phase of quantum light is

the same as the initial phase of probe beam. When the light propagates in the air,

the dispersion can be ignored. The measured phase between LO and probe beam is

the same as the phase between LO and the quantum light, which can’t be measured

accurately because the quantum light is too weak.

The heterodyne detection combined with FFT provides a method to measure

quadrature related properties of a cluster state, such as the nullifiers and covariance

matrix. In the next part, I will show the results of intra-mode squeezing nullifiers

and give an explanation why we currently can’t see squeezing. The covariance matrix

mathematical derivations from the FT complex number of the heterodyne detection

signal is presented in Appendix A.

Intra-mode squeezing measurement

Considering the LO frequency ω0, two-mode squeezed state (TMS) mode pairs are

mode a and b, which have frequency ω0−Ω1 and ω0−Ω2. The corresponding vacuum

mode are v and u, with frequencies ω0 + Ω1 and ω0 + Ω2.

The results of Fourier transform give the real and imaginary part of frequency

components Ω1 and Ω2. For frequency component Ω1:

R1 = cosθ(Qa +Qv)− sinθ(Pa + Pv), (5.52)

I1 = sinθ(−Qa +Qv) + cosθ(−Pa + Pv). (5.53)
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For frequency component Ω2:

R2 = cosθ(Qb +Qu)− sinθ(Pb + Pu), (5.54)

I2 = sinθ(−Qb +Qu) + cosθ(−Pb + Pu). (5.55)

Using the vacuum state quadrature relations Eq.A.1, the squeezed quadrature vari-

ance is

∆2(Qa −Qb) = ∆2 [(R1 −R2)cosθ − (I1 − I2)sinθ]− 1, (5.56)

∆2(Qa +Qb) = ∆2 [(R1 +R2)cosθ − (I1 + I2)sinθ]− 1. (5.57)

Using the equations above, the modes a and b being the intra-mode pairs whose

frequencies are symmetric to the mode center, the variance of Qminus = Qa−Qb and

Qplus = Qa +Qb are plotted in Fig.5.13. We performed 1000 times of measurements

and the resolution is 100 kHz. The blue and red traces were measured when pump

Figure 5.13: Intra-mode Qminus and Qplus variance plot.

was turned on, which were the signal of intra-mode two-mode squeezed states. It is
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important to compare this quantum signal with the case where there is no quantum

light but all the other conditions are kept the same. A straightforward method is

comparing the signal with pump turned on to the signal with pump turned off, which

is the shotnoise. However, in this experimental setup, the probe beam power is

amplified by the pump, so that we can’t make the comparison simply by turning on

or off the pump. A good calibration based on the parametric gain needs to be applied

to the signal when pump turned off. The yellow and purple traces in Fig.5.13 are

the calibrated variance of Qminus and Qplus for the LO and probe beam only with

pump off.

We expected that we could see squeezing in this plot at the frequency lower than

35 MHz within the OPO linewidth, which means the noise (variance) of the signal

quadratureQminus orQplus should be reduced smaller than the calibrated shotnoise.

However, we did not see this in our results. This could be due to several reasons. First,

there is too much classical noise from the LO and probe beam beat signal, including

the intensity noise and the phase noise. This classical noise is not well subtracted and

controlled making the quantum fluctuations buried and are not observable. Second,

the number of measurements is not large enough, making the residual noise, which

should be 0 with averaging infinite number of measurements, comparable with or even

larger than the quantum noise. We haven’t found the solutions to these problems due

to lab moving and other facility reasons. In order to observe the squeezing and even

measure other cluster states successfully in the future, these problems need further

investigation.
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Chapter 6

Conclusion

In this thesis, I have presented theoretical analysis of generating CV cluster states

of arbitrary dimension by a quantum optical frequency comb with phase modulation

at multiples of the comb frequency spacing. The dimension of this state is determined

by the number and the ratio of phase modulation frequencies. With careful error

analysis, it is proved that these CV cluster states can have low error levels which

make them compatible with the fault tolerance in CV quantum computing. Note that

the phase modulation can be performed both external to the OPO or intrinsic to the

OPO, which is a simple and compact approach compared to all previous generation

of cluster states.

Then, I have discussed the experimental works to stabilize the optical system

which was designed to generate the cluster state based on the theory work mentioned

above. The stabilization systems including using Pound-Drever-Hall locking tech-

nique to stabilize the OPO cavity length against both long term drifting and high

frequency perturbation, pump and probe beam phase locking to make the probe beam

power stay at the maximum value and LO-probe beam phase locking to stabilize the

relative initial phase between LO and probe beam.

Finally, I discuss the quadrature measurement using both quantum homodyne
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and heterodyne detection combined with Fourier transform. I presented the results of

intra-mode squeezing measurement using quantum homodyne frequency-heterodyne

method. I also presented the preliminary results using quantum heterodyne detection

to measure the intra-mode squeezing. Frequency-heterodyne detection with Fourier

transformation is a method towards reconstructing the whole large scale cluster state

by calculating the covariance matrix. Instead of only get the nullifiers, this method

provide a more direct access to the cluster state characterization, including graph

itself showing quantum correlations and their errors. Further investigations about

the reduction of classical noise are required in order to achieve this kind of fully

characterization of cluster states.
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Appendix A

Quadrature derivations in quantum

heterodyne detection

Based on the vacuum mode involved quantum heterodyne detection method discussed

in Section 5.4, using the FT results in Eq. (5.33) and Eq. (5.34), the mathematical

derivations cluster state covariance matrix, V and U matrices will be shown in this

appendix.

For the case where the LO beats with signal modes as well as the vacuum modes,

the average of the vacuum quadratures and the average of multiples of vacuum

quadratures are either 0 or constant value as below

〈Qv〉 = 〈Pv〉 = 0, (A.1)〈
Q2

v

〉
=

1

2

〈
(a+ a†)2

〉
=

1

2
, (A.2)〈

P 2
v

〉
= −1

2

〈
(a− a†)2

〉
=

1

2
, (A.3)

〈QvPv〉 =
i

2
, (A.4)

〈PvQv〉 = − i

2
. (A.5)

These conditions make it possible to get the expectations of quadratures for the modes

that we want to measure.
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For a N-mode cluster state, we construct a column vector x that contains all the

quadratures

x =

Q

P

 , (A.6)

where Q = (Q1, Q2...QN)
T and P = (P1, P2...PN)

T . For a Gaussian state that has

zero mean value, the unique covariance matrix is [31]

Cov x =
1

2

〈{
x†,xT

}〉
, (A.7)

where the anticommunicator product is defined as

{
x†,yT

}
= xyT + (yxT )T . (A.8)

The covariance matrix thus can be expressed as matrix blocks

Cov x =

Cov[Q,Q] Cov[Q,P]

Cov[P,Q] Cov[P,P]

 (A.9)
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with each block has the expression

Cov[Qi, Qj] = QiQj, (A.10)

Cov[Pi, Pj] = PiPj, (A.11)

Cov[Qi, Pj] =


QiPj for i 6= j,

1
2
(QiPj + PjQi) for i = j,

(A.12)

Cov[Pi, Qj] =


PiQj for i 6= j,

1
2
(PiQj + PjPi) for i = j.

(A.13)

For frequency component Ωi, the FT real and imaginary have the expression

Ri = cosθ(Qi +Qvi)− sinθ(Pi + Pvi), (A.14)

Ii = sinθ(−Qi +Qvi) + cosθ(−Pi + Pvi). (A.15)

where, Qi and Pi are the amplitude and phase quadrature of signal mode, Qvi and

Pvi are the quadratures of vacuum. Using the quadrature relations for vacuum state,

the signal mode quadrature combinations are given by

QiPj = (IiIj −RiRj)sinθcosθ −RiIjcos2θ + IiRjsin2θ, (A.16)

PiQj = (IiIj −RiRj)sinθcosθ +RiIjsin2θ − IiRjcos2θ, (A.17)

QiQj = −(RiIj + IiRj)sinθcosθ + IiIjsin2θ +RiRjcos2θ, (A.18)

PiPj = (RiIj + IiRj)sinθcosθ + IiIjcos2θ +RiRjsin2θ. (A.19)

Knowing the covariance matrix, it is easy to get the cluster state U and V matrices,
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which can be calculated as

U = 2Cov[Q,Q]−1, (A.20)

V = 2Cov[P,Q]U. (A.21)
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Appendix B

Virtually imaged phase array for

qumode separation

Virtually imaged phased array (VIPA) is an optical spectral disperser that was first

demonstrated by M. Shirasaki in 1996 [77]. Compared to the common diffraction

gratings, VIPA has the advantages including large angular dispersion, low dependence

of polarization, simple and compact structure.

In this chapter, I will first introduce the basic setup of VIPA and the Fresnel ap-

proximation model. Then, I will provide the simulation based on several parameters.

Finally, I will show the experimental design with preliminary results, and analyze the

possibility of being used to separate quantum modes.

B.1 Basic principles

B.1.1 Setup

VIPA can be described as a modified Fabry Perot etalon. The setup is shown in Fig.

B.1 [77]. It consists of two parallel glass plates separated by a distance of t. The
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the entry side glass plate has a small window that is anti-reflected (AR) coated with

reflectance R = 0 and other area is coated with reflectance R1 ≈ 1. The transmitted

glass plate is coated with R2 ⩾ 0.95. A collimated beam is focused by a cylindrical

lens. It enters the VIPA through the small AR coated window with an incident angle

θ and the beam waist position is at the transmitted plate. The laser beam is reflected

back and forth multiple times between two plates. The output fields can be viewed

as the interference between many diverging beams generated from virtual source of

individual virtual images of the beam waists, which are as a phase array. The phase

difference between the array elements (virtual sources) is frequency dependent, the

direction of the output beam varies with frequency, which makes the VIPA a spectral

disperser.

Figure B.1: VIPA setup [77]. A glass plate that is 100 mm thick has 95%-reflection
coating on the right surface and 100%-reflection coating on the left surface. There is
a window area on the left surface, which has antireflection coating (AR) instead of
100%-reflection coating. The glass plate produces many beams diverging from indi-
vidual virtual images of the beam waist. These beams interfere and form collimated
light.

The spectral dispersion law was derived based on different theories. One disper-

sion law was derived by Vega [78] using plane wave theory and tested to match well

with experimental data using relatively large incident angles (θ > 5◦). For small inci-
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dent angles, another modified dispersion law proposed by Shijun Xiao [79] is a result

from the Fresnel diffraction theory with paraxial wave approximation and Gaussian

beam model. It approaches to the same results as the plane wave theory for large

incident angle and the small angle results are also verified by experiments. In the next

part, I will briefly summarize the Gaussian beam based dispersion law from Shijun

Xiao’s work.

B.1.2 Fresnel approximation

Figure B.2: VIPA geometry [79]. θi is the incident angle. θλ is the dispersion angle
of the output light from VIPA. F is the focal length of the convex lens after VIPA.

Fig.B.2 shows the geometric relations of the virtual sources array. The displace-

ment of the nth virtual resource can be calculated from the geometric relations. The

transverse (∆xn) and longitudinal (∆yn) displacement are

∆xn = n02tsinθi, (B.1)

∆yn = n02tcosθi, (B.2)

where n = 0, 1, 2 · · · , θi is the incident angle, t is the distance two reflective plates,

n0 is the refraction index of the medium between two plates and from now on we will
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only consider the medium of air, which gives n0 = 1. The field of nth virtual source

is a Gaussian beam in the form of

En(x) = (Rr)nE0 exp
[
−(x−∆xn)

2

w2
0

]
, (B.3)

where R is the reflectance of the VIPA left plate and r is the reflectance of the VIPA

right plate. E0 is the initial amplitude. ω0 is the beam waist of the incident light.

A lens is used to focus the field, the focal length of which is F . Assuming the waves

are paraxial and using the Fresnel approximation, the spacial Fourier transform of a

thin lens gives the output field

Eout(xF , λ) =
i

λF
exp(−ikF )exp(−ikd)exp

[
iπ
d− F

λF 2
x2F

]
F(νx) (B.4)

where νx is the spacial frequency and F(νx) is the Fourier transform of the input

field. With far field approximation that F is very long, the output angle satisfies

θλ ≈ xF/F ≈ λνx. The Fourier transform is

F(νx) = F(
x

λF
) =

∫ ∞

−∞
Ein(x)exp

(
i2π

xFx

λF

)
dx. (B.5)

Considering the nth virtual source has the displacement

dn = F +∆yn (B.6)

Substituting Eq. (B.1), Eq. (B.3) and Eq. (B.6) into Eq. (B.4) to get the output field

of the nth virtual source and then summarizing all the virtual source output field to
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get the intensity distribution as

Iout(xF , λ) = |Eout(xF , λ)|2 ∝ exp
(
−2f 2x2F
F 2W 2

)
1

(1−R1R2)2 + 4R1R2sin2(k∆
2
)
, (B.7)

where

∆ = 2tcosθi − 2tsinθi
xF
F

− tcosθi
x2F
F 2
. (B.8)

With the Fresnel paraxial approximation, xF/F ≈ θλ. In Eq. B.7, when k∆ =

2mπ,m = 0, 1, 2 · · · , the intensity has the maximum value. The phase matching

equation is

k
[
2tcosθi − 2tsinθiθλ − tcosθiθ2λ

]
= 2mπ. (B.9)

We define the central wavelength λ0 when θλ = 0, so that

mλ0 = 2tcosθi. (B.10)

Therefore the output field wavelength λ depends on the output angle θλ as

λ− λ0 = −λ0[(tanθi)θλ +
1

2
θ2λ], (B.11)

and the spectral dispersion law is

dλ

dθλ
= −λ0[(tanθi) + θλ], (B.12)

which only depends on the incident angle θi.



154

B.2 Experimental and simulation results

B.2.1 Setup design

We built a VIPA using two flat mirrors with air between them to successfully sepa-

rated light at 1064 nm with frequency difference of about 979 MHz. The experimen-

tal setup is shown in Fig.B.3. The laser with frequency 1064 nm is phase modulated

Figure B.3: Schematic setup of VIPA.

at 979.087 MHz. VIPA has two flat mirrors with reflectance R1 = 99.99% and

R2 = 97.5%. The distance between these two mirrors is about 2 cm. A lens before

the first mirror focuses the beam waist to be exactly on the second mirror, the beam

waist of which is 84.86 µm. After R2, the fields are focused by a lens with focal

length F = 10 cm and a camera is used to observe the interference pattern. Fig.B.4

(a) shows the interference pattern when the EOM is turned off and all the fringes in

this picture have the same frequency. There are 4 orders of constructively interfered

fringes. Fig.B.4 (b) shows the pattern when EOM is turned on and the 979 MHz

sidebands appear as there are three bright fringes in each order.

However, the loss of this system is very large caused by two factors. The first

is the diffraction fringes. Since the flat mirrors used to built VIPA have thickness

of 5 mm and the incident beam is very close to the edges, this cause the diffraction

fringes both when EOM is on and off. The second factor is there are more than one
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Figure B.4: VIPA separates frequencies with difference of 979 MHz. (a) EOM turned
off. (b) EOM turned on.

orders of fringes, which are the higher orders of VIPA. I will show what parameters

can influence the higher order fringes by plotting simulation results of the intensity

distribution in the following part.

B.2.2 Discussion

There are several parameters that will influence the interference pattern of VIPA.

These parameters are the inserting angle θi, distance t, between two VIPA mirrors,

the reflectance of two mirrors R1 and R2, and the beam waist w. In this section, I will

shown how these parameters affect the interference pattern in terms of the angular

dispersion, FSR and linewidth, based on the experimental setup we have.

Spectral dispersion

Wavelength dispersion is given by Eq. (B.12). The spectral dispersion only depends on

the incident angle θi. Smaller incident angle gives a larger wavelength dispersion. Here

I present some numerical simulation results of the output field intensity distribution
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by setting R = 99.99%, r = 97.5%, t=2 cm, f = 10cm, W = 0.000349m and

changing the incident angle to 1◦, 2◦, 3◦ and 4◦. The intensity distribution is shown

in Fig.B.5. The bright lines indicate the constructively interfered pattern. The slope

of the bright line is the spectral dispersion. Small slope means that for the same

frequency difference, the angular separation is larger. It verifies that smaller the

inserting angle gives larger the spectral dispersion. Therefore, to separate the 1 GHz

frequency better, we need a smaller θi.

Figure B.5: VIPA intensity distribution for different incident angles.
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Free spectral range

Free spectral range (FSR) of a VIPA can be calculated from Eq. (B.9):

FSR =
c

t(2cosθi − 2θλsinθi − θ2λcosθi)
. (B.13)

For small θi and θλ, we have the approximation that FSR ≈ c
2t

, which is the expression

of an optical cavity. With R1 = 99.99%, R2 = 97.5%, f = 10cm and θi = 3◦ fixed,

Fig.B.6 shows the intensity distribution plots for t equal to 1 cm, 2 cm, 3 cm, 4

cm. The FSR of the VIPA is the frequency difference of the nearest two constructive

interference at the same angle. Increasing t results smaller FSR. In order to avoid the

case that multiple frequencies are mixed at the same output angle and one frequency

has constructively interference at different angles, larger FSR is needed.

Beam size

In VIPA setup, both the initial beam waist w and the focal length f of the lens

before VIPA will determine beam waist incidenting on the second mirror of VIPA and

further influence the size of the output interference field. With setting R1 = 99.99%,

R2 = 97.5%, t=2 cm, f = 10cm, θi = 3◦, for fixed f = 10cm, the intensity distribution

plots with different initial beam waist w = 349µm and w = 1396µm are shown

in Fig.B.7. Larger beam waist makes a larger interference field, making the single

frequency light distributed over a larger range of output angles, which corresponding

to the higher order fringes we observed in our experiment shown in Fig.B.4.

On the other hand, for fixed w = 349µm, the intensity distribution results are

pollted in Fig.B.8 for different focal length f = 10cm, 2cm. Smaller focal length makes



158

Figure B.6: VIPA intensity distribution for different distance t between two flat
mirrors.

Figure B.7: VIPA intensity distribution for different initial beam waist.
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the Gaussian beam diverging faster resulting a larger size of output field. Therefore,

to avoid interference at large output angle, small focal length is needed.

Figure B.8: VIPA intensity distribution for different focal length f before VIPA.

Finesse

The finesse of VIPA is determined by the reflectance of the second mirror r (which

is served as the output coupler in an optical cavity). With R = 99.99%, t=2 cm,

f = 10cm, θi = 3◦, f = 10cm fixed, changing the reflectance of two flat mirrors

r = 0.975, 0.5, the intensity distribution are plotted in Fig.B.9. Higher reflectance

gives a higher finesse, resulting the frequencies are better separated.
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Figure B.9: VIPA intensity distribution for different reflectance r.
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Appendix C

Pulsed-squeezing quantum states

Highly squeezed states are a crucial resource for quantum technologies such as quan-

tum sensing, quantum metrology [80, 81, 82] and quantum computing [37, 3]. Squeez-

ing can be defined as quantum noise reduction below the level of minimum uncertainty

with both variances equal (e.g. ∆Q = ∆P =
√
h̄/2) that defines the vacuum-induced

shot-noise limit of classical systems. Recently, record levels of quantum noise reduc-

tion have been obtained in widely different physical systems, such as spin squeezing

in cavity QED atomic systems (20 dB) [83], or quadrature squeezing in optical fields

in the optical parametric oscillator (OPO, 15 dB) [84]. These squeezing levels are

germane to the fault tolerance threshold of CV quantum computing, which is 20.5

dB of squeezing for an error rate of 10−6 [15].

The generation of highly squeezed states faces, as do other quantum resources such

as entanglement, the daunting challenge of overcoming decoherence. For example, any

residual absorption or scattering inside the OPO cavity is resonantly enhanced, which

degrades the quantum correlations and therefore the squeezing level, e.g., 50% total

loss limits total squeezing to 3 dB, 10% total loss limits total squeezing to 10 dB,

1% total loss limits total squeezing to 20 dB, etc. Intracavity losses are the main

limitation on the current squeezing performance mentioned above.

In this chapter, I will theoretically show that it is possible, by pumping the OPO

properly using a pulsed laser that has a frequency comb, to construct a large entangled
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mode, which can be leveraged to increase the squeezing in one mode at the expense

of all the others, by unitary redistribution. Furthermore, we generalized this discrete

frequency entangled mode to a case without OPO cavity. We found the specific

entanglement structure in a pulsed squeezing system, which forms super entangled

modes in broadband spectrum. The squeezing of the super entangled mode can also

be leveraged to form a highly squeezed eigen-quadrature.

C.1 Pulsed squeezing in optical parametric oscil-

lator

We consider the generation of squeezing using spontaneously parametric down con-

version in an OPO below threshold. The Interaction picture Hamiltonian for this

process with a classical undepleted pump field can be written as

H = ih̄
κ

2

N∑
i=1

N∑
j=1

Gij a
†
ia

†
j +H.c., (C.1)

where κ = βχ is the coupling coefficient, product of the pump field amplitude β by

the nonlinear susceptibility χ, and a1,...,N are the annihilation operators for N signal

modes (OPO eigenmode). The N×N mode-coupling matrix G is a symmetric matrix

whose entries can only be zero or one, called the adjacency matrix of the H-graph

[85]. N can be very large, defined by the OPO mirrors’ bandwidth and dispersion in

the nonlinear material [62]. Therefore the Heisenberg equations are

˙⃗
Q = GQ⃗ (C.2)
˙⃗
P = −GP⃗ (C.3)



163

where Q⃗=(Q1, . . . , QN)
T and P⃗=(P1, . . . , PN)

T . These equations are solved by diag-

onalizing G, the eigenvalues giving the squeezing parameter(s) and the eigenvectors

are the squeezed operator(s).

C.1.1 Single mode squeezing

Starting with the single-mode case (N=1), the corresponding G matrix is G = (1).

The H-graph is shown in Fig.C.1. The black dot is the OPO mode 0 and the green

line indicates the down-converted photon pair have the same frequency and populate

the mode 0, which is entangled with itself. The squeezed phase quadrature P1(r)

and anti-squeezed amplitude quadrature Q1(r) are given by solving the Heisenberg

equation,

Q1(r) = erQ1, (C.4)

P1(r) = e−rP1. (C.5)

The squeezing parameter is r.

Figure C.1: (a) Single-mode squeezing mode frequency relations. Dashed line indicate
the phase-matching bandwidth. Green arrow represents the half of pump frequency.
There is only one pump frequency in this case. (b) Single-mode squeezing H-graph.



164

C.1.2 N-fold single mode squeezing

The case of multimode (N ≥ 2) squeezing becomes quite interesting if we consider

the particular form of G that has all the elements equal to 1, Gij = 1, ∀(i, j). This

kind of multimode squeezing can be generated by adding more pump modes with

different frequencies to an OPO as shown in Fig.C.2 (a). The black dots on the axis

are the OPO modes with frequency spacing at the free spectral range (FSR) of OPO.

The arrows with different colors represent the half pump frequencies, which form a

frequency comb realized by a pulsed laser, with equal frequency spacing at the FSR.

The half of pump frequencies locate right at the resonance frequencies of OPO and the

middle between the resonance frequencies. In this case, if we take N resonance mode

of an OPO, there will be 2N +1 pump modes within the phase-matching bandwidth.

All the resonance modes will be entangled together as shown in the H-graph Fig.C.2

(b).

Figure C.2: (a) N-fold single-mode squeezing mode frequency relations. Dashed line
indicate the phase-matching bandwidth. Arrows represents the half of pump fre-
quency. (b) N-fold single-mode squeezing H-graph.

Solving the Heisenberg equations for this system, the eigenvalues of this N ×

N adjacency matrix G are (N, 0, . . . , 0), and the eigenvectors related to nonzero

eigenvalue is {(
∑N

i=1Qi), . . . , Qi −Qj>i, . . . } (and similarly for P ). Only the nonzero
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eigenvalue results squeezing

N∑
i=0

Qi(r) = eNr

N∑
i=0

Qi(0), (C.6)

N∑
i=0

Pi(r) = e−Nr

N∑
i=0

Pi(0). (C.7)

In this case, the only squeezed operator is the sum of all the phase quadrature,

squeezed by Nr, and the anti-squeezed operator is the sum of all the amplitude

quadrature, anti-squeezed by Nr. All other eigen-operators, associated with 0 eigen-

value, become constants of motion. It is important to note that no additional squeez-

ing is introduced that wasn’t there before, in line with Braunstein’s notion of irre-

ducibility [86]. One can view this as a squeezing redistribution from N modes into a

single one, effected by the unitary operation which diagonalizes G, i.e., an optical in-

terferometer [86]. Because this redistribution occurs outside the squeezing emitter, it

is not sensitive to the intrinsic physical limitations (e.g. intracavity losses in an OPO)

that define the value of r, and it thereby leverages the easily accessible scalability of

multimode squeezing. So we can call this state a N-fold single-mode squeezing.

For the N-fold single mode squeezing, the annihilation operator in Heisenberg

picture is

am(t) = e−iωmt 1

N

{
(coshNr − 1)

N∑
j=1

aj + sinhNr
N∑
j=1

a†j +Nam

}
, (C.8)

where m is the mode number in one super squeezed mode. Thus the total mean

photon number of the super squeezed vacuum is

〈
A†A

〉
=

1

N
sinh2Nr(

N∑
j=1

eiωjt

N∑
j=1

e−iωjt), (C.9)
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where A and A† are the sum of all the squeezed annihilation and creation operators.

C.2 Pulsed squeezing with nonlinear crystal

In the previous section, we have seen that use a frequency comb to pump a proper

OPO can generate large entangled modes with frequencies are equally spaced at the

FSR of OPO, which can be changed to get a confluent squeezing. In this section, we

are going to present the entanglement structure generated by frequency comb without

cavity, which will result in entangled states with unequally spaced frequency modes.

C.2.1 Two mode squeezing

Single mode squeezing we mentioned above is a degenerate case where the down-

converted photons have the same frequency, which is the resonance frequency of

the OPO. Considering the single pass nonlinear interaction (no OPO), it is more

convenient to see the continuous down-converted spectrum within the phase-matching

bandwidth. The two-mode squeezing, where the two down-converted photons have

different frequencies, is shown in Fig.C.3. The two down-converted photons have the

frequency ω0±Ω, where Ω varies in the full range of phase matching bandwidth. The

corresponding qumodes can be represented by aω0±Ω and a†ω0±Ω. This two modes are

entangled.

For two-mode squeezing, the adjacent G matrix of H-graph is

G =

0 1

1 0

 . (C.10)
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Figure C.3: (a) Two-mode squeezing mode frequency relations. Dashed line indicate
the phase-matching bandwidth. Green arrow represents the half of pump frequency.
(b) Two-mode squeezing H-graph.

Solving the Heisenberg equations, we get the squeezed quadrature to be

Q1(r) = erQ1, (C.11)

P1(r) = e−rP1, (C.12)

Q2(r) = e−rQ2, (C.13)

P2(r) = erP2, (C.14)

where Q1,2(r) = Qω0+Ω(r)±Qω0−Ω(r) and P1,2(r) = Pω0+Ω(r)±Pω0−Ω(r). In this case,

the the sum of phase quadrature and the different of the amplitude quadrature are

squeezed, otherwise the sum of amplitude quadrature and the different of the phase

quadrature are anti-squeezed, with the squeezing parameter r.

C.2.2 N-fold bipartite squeezing

Similar to the N-fold single mode squeezing mentioned before, using a frequency

comb as pump fields can generate a super entangled mode (without OPO), which

can be leveraged to achieve N-fold bipartite squeezing. As shown in Fig.C.4 (a), the

colored arrows represent the frequency comb of pump modes, with each pump mode

frequency equally separated by ω. The black dots represent qumodes. Two qumodes
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are entangled if they are connected by the arc lines with different colors. The qumodes

with frequencies 2nω±Ω (n is an integer) form a super entangled mode. Within one

super entangled mode, all the modes of frequencies 2nω + Ω are entangled with the

2nω −Ω modes, which form a bipartite entangled H-graph, as shown in Fig.C.4 (b).

However the modes in one super entangled mode are not entangled with other modes.

Figure C.4: (a) N-fold bipartite squeezing mode frequency relations. Dashed line in-
dicate the phase-matching bandwidth. Arrows represents the half of pump frequency.
(b) N-fold bipartite squeezing H-graph.

The G matrix for this N-fold bipartite entangled mode is now is a 2N × 2N
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matrix, with 2N + 1 pump modes taken into consideration,

G =



0 . . . 0 1 . . . 1

... . . . ... ... . . . ...

0 . . . 0 1 . . . 1

1 . . . 1 0 . . . 0

... . . . ... ... . . . ...

1 . . . 1 0 . . . 0


. (C.15)

The nonzero eigenvalues of this G matrix are ±N , with eigenvectors being

N∑
i=0

Qi,+Ω(r)±
2N∑

j=N+1

Qj,−Ω(r) (C.16)

respectively (similarly for P ). This multimode squeezing is leveraged into a N-fold bi-

partite squeezing, with squeezing parameter being increased toNr. The only squeezed

and anti-squeezed operators are

Q1(r) = eNrQ1, (C.17)

P1(r) = e−NrP1, (C.18)

Q2(r) = e−NrQ2, (C.19)

P2(r) = eNrP2, (C.20)

where
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Q1(r) =
N∑
i=0

Qi,+Ω(r) +
N∑
i=1

Qj,−Ω(r), (C.21)

P1(r) =
N∑
i=0

Pi,+Ω(r) +
N∑
j=1

Pj,−Ω(r), (C.22)

Q2(r) =
N∑
i=0

Qi,+Ω(r)−
N∑
j=1

Qj,−Ω(r), (C.23)

P2(r) =
N∑
i=0

Pi,+Ω(r)−
N∑
j=1

Pj,−Ω(r). (C.24)

The annihilation operator of the qumode with frequency ω0 + 2nω ± Ω can also be

solved in Heisenberg picture and the results are

an,±Ω(t) =e
−iωn,±Ωt

1

N

{
(coshNr − 1)

N∑
j=1

aj,±Ω

+ sinhNr
N∑
j=1

a†j,∓Ω +Naj,±Ω

}
.

(C.25)

The total mean photon number for one super squeezed vacuum mode is

〈
A†A

〉
=

1

N
sinh2Nr(

N∑
m=1

ei(mω0+Ω)t

N∑
j=1

e−i(mω0+Ω)t

+
N∑

m=1

ei(mω0−Ω)t

N∑
m=1

e−i(mω0−Ω)t),

(C.26)

where A and A† are the sum of all the squeezed annihilation and creation operators.

Since we have shown that the modes in different family sets are not entangled,

their optical field operators are not commute. The Hamiltonian of the whole pulsed

squeezed system is the summation of all the different family sets decided by the value
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of Ω,

Hall =

∫ ω

0

dΩH(Ω) (C.27)

Thus the total intensity of the out put pulsed squeezing signal is just the sum of all

the frequency modes in different family sets.

Conclusion

In this chapter, the entanglement structure of pulsed squeezing system was discussed.

We found here that, every field operator can be solved exactly and expressed only by

the frequency modes in one super entangled family set, with the squeezing parameter

being changed to Nr. N is related to the pump mode numbers and is the eigenvalues

of adjacency G matrix of H-graph. For a properly pulsed pumped OPO, the entan-

glement can be shown by a N-fold single-mode squeezing H-graph, while for a pulsed

pumped nonlinear crystal without optical cavity, the system is represented by N-fold

bipartite entangled H-graph.
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