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Abstract

We establish Rezk completion functors for Θ𝑛-spaces with respect to each and all

of the completeness conditions. As a consequence, we obtain a characterization of

Dwyer-Kan equivalences between Segal Θ𝑛-spaces.
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Chapter 1

Introduction

Categories have become ubiquitous throughout mathematics, and in increasing

number of contexts, they also come equipped with the additional structure of higher-

dimensional morphisms. Especially in higher-dimensional contexts, the composition

operations of morphisms are often associative and unital only in a weak sense, which is

most conveniently described in the language of homotopy theory. The 𝑛-dimensional

(∞, 𝑛)-categories are prototypically defined as categories enriched in a suitable notion

of (∞, 𝑛 − 1)-categories, where (∞, 0)-categories should be understood as spaces.

However, the strictness at the object level of enriched categories is not well-behaved

with respect to homotopy theory, so different models based on presheaves are often

used instead.

In the one-dimensional case of (∞, 1)-categories, one of more studied models is

given by Rezk’s complete Segal spaces [Rez01], which are simplicial presheaves on

the simplex category ∆ subject to Segal and completeness conditions. The Segal

condition alone is sufficient to define the structure of a weak composition, but it

is generally not fully compatible with the natural homotopy-theoretic structure. In

order to obtain a homotopy theory for (∞, 1)-categories, an additional restriction

has to be imposed on the space of objects, which the completeness condition does

by asking that the space of objects is weakly equivalent to the space of invertible

morphisms via the inclusion of the identities.

In the category of simplicial spaces, it is common for categorical constructions,
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such as nerves, in their naïve form to satisfy the Segal condition but fail to be com-

plete; for example, the nerve of a category, although an (∞, 1)-category in the quasi-

category model on simplicial sets, is just a Segal space that is usually not complete

as a discrete simplicial space. However, the issue of incompleteness for Segal spaces

may often be solved via the use of Rezk’s completion functor [Rez01, §14], which is a

localization construction that is in many cases explicit in form. As an example, the

completion applied to the aforementioned discrete nerve gives the homotopy coherent

nerve known as the Rezk nerve or the classifying diagram [Rez01, 3.5].

The completion also has the additional property that the natural weak equivalence

from a Segal space to its completion is a DK-equivalence, which means that it is

essentially surjective and fully faithful in a suitably weak sense, preserving objects

up to equivalence and the enriched structure in spaces. This property creates a link

between weak equivalences in the complete Segal space model and DK-equivalences,

allowing us to better understand the completeness condition and DK-equivalences

between general Segal spaces. DK-equivalences mimic the behaviour of equivalences

of categories enriched in spaces and serve as weak equivalences also in other models

of (∞, 1)-categories based on Segal spaces [Ber05, MN24].

In order to model (∞, 𝑛)-categories for a general 𝑛, one may use the category of

simplicial presheaves on Joyal’s cell category Θ𝑛 [Joy97], which is an 𝑛-categorical

analogue of the simplex category ∆. Imposing Segal and completeness conditions for

each of the 𝑛 dimensions of morphisms gives the Θ𝑛-space model for (∞, 𝑛)-categories

developed by Rezk in [Rez10]. Like in the 1-dimensional case, many constructions in

the category of Θ𝑛-spaces satisfy the Segal conditions but usually fail all of the com-

pleteness conditions; for example, framed tangles studied in the context of topological

quantum field theories form a Segal Θ𝑛-spaces that is generally not complete [AF17,

3.12], [AF18, 0.26]. In the present thesis, we generalize Rezk’s completion functor to

each of the 𝑛 completeness conditions of Segal Θ𝑛-spaces.

Theorem 1.1. For each 1 ≤ 𝑘 ≤ 𝑛 there is a functor localizing Segal Θ𝑛-spaces with

respect to the completeness condition in dimension 𝑘 via a DK-equivalence.
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In somewhat more precise terms, here by localization we mean a fibrant replace-

ment in a certain model structure on the category of Θ𝑛-spaces, and the notion of

DK-equivalence encodes a weak form of essential surjectivity and fully faithfulness

defined more precisely in Definition 5.19. We prove Theorem 1.1 in its more precise

formulation as Theorem 7.2.

Rezk’s completion functor takes a Segal spaces to and equivalent complete one

by thickening the space of objects with higher dimensional simplices that encode

information about the invertible morphisms while keeping the space of morphisms

between any fixed pair of objects unchanged. When 𝑛, 𝑘 ≥ 2, our completion functor

acts similarly 𝑘 dimensions higher but also leaves morphisms of dimension 𝑘− 2 and

lower essentially unchanged. Thus the completion in dimension 𝑘 essentially only

affects morphisms in the single dimension of 𝑘 − 1, which allows us to combine the

completions for multiple values of 𝑘 into a single completion functor.

Theorem 1.2. There is a fibrant replacement functor localizing Segal Θ𝑛-spaces with

respect to all of the completeness conditions via a DK-equivalence.

We define this combined completion functor more precisely in Construction 7.15

and discuss its properties in Theorem 7.16.

As in the 1-dimensional setting, DK-equivalences here encode the prototypical be-

haviour of equivalences of (∞, 𝑛)-categories, and for complete Segal Θ𝑛-spaces they

were shown to indeed coincide with weak equivalences of the associated model struc-

ture by Bergner in [Ber24, 6.4] even when the first completeness condition is omitted.

Our combined completion functor allows us to provide a more direct proof of this

correspondence while also relaxing the remaining assumptions on completeness.

Theorem 1.3. A map between Segal Θ𝑛-spaces is a DK-equivalence if and only if it

is becomes a weak equivalence after localizing with respect to all of the completeness

conditions; in particular, a Segal Θ𝑛-space is complete if and only if it is local with

respect to the class of DK-equivalences.

We prove this result as Theorem 7.17.
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1.4 Overview. We use an inductive approach to prove Theorem 1.1, and for the base

case 𝑘 = 1, our proof strategy is essentially the same as Rezk’s for 𝑛 = 1. Rezk’s com-

pletion construction makes use of the Cartesian structure on the category of simplicial

spaces; however, DK-equivalences and the weak equivalences of the model structure

for complete Segal spaces are not generally compatible with the Cartesian structure

when considered between objects that are not fibrant, that is, complete Segal spaces.

In order to show that the inclusion of a Segal space into its thickening is both a

DK-equivalence and a weak equivalence, Rezk develops a stronger notion of equiva-

lence called categorical equivalence that implies the other two and is compatible with

the Cartesian structure. Our completion functors for higher values of 𝑘 is obtained

from the base case via a suspension construction that increases the dimension of all

morphisms by 1.

In Chapter 2 we discuss the background on the relevant categories and model

structures as well as some of the relationships to lower-dimensional cases. In Chapter

3 we recount some key properties of the enriched structure of Segal objects that are

essential for studying fully faithfulness part of DK-equivalences, and that allow us to

set up the inductive arguments for the higher-dimensional completions. In Chapter

4 we discuss notions of homotopy determined by interval objects, which we use to

generalize categorical equivalences to a more general setting. This framework also

allows us to compare categorical equivalences to weak equivalences and equivalences

of categories. In Chapter 5 we study DK-equivalences and their relationship to weak

and categorical equivalences. In Chapter 6 we define the inductive base case of our

completion functors and prove Theorem 1.1 for 𝑘 = 1. We also show a more restricted

version of Theorem 1.3 which too serves as a base case for induction. Finally, in

Chapter 7 we define our completion functors in the general case and prove all of our

main theorems.

The following diagram illustrates the various notions of equivalence that we con-

sider for the inductive base cases of our results, with the base case of Theorem 1.3 in
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the center:

Cplt(𝑆)-local

equivalence 2.9

Simplicial

homotopy

equivalence

Levelwise

weak

equivalence

Categorical

equivalence

4.18,

DK-equivalence

5.4

6.15Se

Cplt Cplt

4.14

Se

5.6
inj

Se

5.18

Se

4.22

Cplt

5.12

Cplt

where the implications with labels "inj", "Se", and "Cplt" hold for injective fibrant,

Segal, and Complete Segal objects, respectively. The numbers in the diagram indicate

the relevant definition or result showing the implication, whereas the implications

without numbers are either well-known or follow from the others.
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Chapter 2

Preliminaries

In [Rez10], where Θ𝑛-spaces are first studied as a model for (∞, 𝑛)-categories, the

localizations of the injective model structure encoding Segal conditions and complete-

ness are considered inductively, one dimension at a time. In Rezk’s approach these

localizations are also independent of the previous ones on the higher dimensional

structure and thus conveniently described in terms of a more general Θ-construction

rather than Θ𝑛 directly. The same level of generality is convenient for our inductive

arguments as well, so we adopt a similar approach. The Θ-construction was first in-

troduced by Berger in [Ber07, 3.1.] as a categorical wreath product, but the following

description is due to Rezk [Rez10, 3.2].

Definition 2.1. Let 𝐶 be a small category. Define a category Θ𝐶 with objects

[𝑚](𝑐1, . . . , 𝑐𝑚) where𝑚 ∈ ob(∆) and 𝑐1, . . . , 𝑐𝑚 ∈ ob(𝐶). A morphism [𝑚](𝑐1, . . . , 𝑐𝑚) →

[𝑙](𝑑1, . . . , 𝑑𝑙) in Θ𝐶 consists of

(1) a morphism 𝜙 : [𝑚] → [𝑙] in ∆, and

(2) morphisms 𝑓𝑖𝑗 : 𝑐𝑖 → 𝑑𝑗 for 𝑖 = 1, . . . ,𝑚 and 𝜙(𝑖− 1) < 𝑗 ≤ 𝜙(𝑖).

In particular, iterating the Θ-construction on the terminal category, which we

denote by *, produces Joyal’s cell categories Θ𝑛
∼= Θ𝑛(*). We now describe this

special case to build intuition for the Θ-construction.

Consider Θ1
∼= ∆ as a full subcategory of the category of small categories Cat,

and let Σ be the suspension functor that takes a strict (𝑛−1)-category 𝐴 to the strict
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𝑛-category with two objects 0 and 1, and Hom-(𝑛− 1)-categories

HomΣ𝐴(0, 1) = 𝐴,

HomΣ𝐴(0, 0) = {id0},

HomΣ𝐴(1, 1) = {id1}, and

HomΣ𝐴(1, 0) = ∅.

In essence, Σ introduces two new 0-cells and raises the dimension of all cells of 𝐴 by 1.

We may then consider Θ𝑛 as the full subcategory of the category strict 𝑛-categories

n-Cat on objects

[𝑚](𝜃1, . . . , 𝜃𝑚) ∼= Σ𝜃1⨿
[0]
Σ𝜃2⨿

[0]
· · · ⨿

[0]
Σ𝜃𝑚,

where each of the pushouts is with respect to the inclusion at 1 in the preceding term

and the inclusion at 0 in the following term, and 𝑚 ∈ ob(∆) and 𝜃𝑖 ∈ ob(Θ𝑛−1). As

an example the object [3]([2], [0], [1]) ∈ Θ2 is the 2-category generated by the data

0 1 2 3.

It may be useful to think of the objects of the more general Θ𝐶 as chains of suspended

objects from 𝐶. We refer the reader to [Rez10, §3] for further discussion on the Θ-

construction and to [OR23, §4] for discussion on its connection to the suspension.

Notation 2.2. Throughout this thesis we let 𝐶 be a small category with a fixed

terminal object 𝑡.

Let PSh(𝐶) = Fun(𝐶op,Set) denote the set valued presheaves and sPSh(𝐶) =

Fun(𝐶op, sSet) the simplicial presheaves on 𝐶. We write 𝐹 : 𝐶 → sPSh(𝐶) for

the discrete Yoneda embedding, that is, the usual Yoneda embedding 𝐶 → PSh(𝐶)

followed by postcomposition by the discrete inclusion Set → sSet. We may also view

elements of sPSh(𝐶) interchangeably as elements of PSh(𝐶 ×∆).

In the case 𝐶 = Θ𝑛, the inclusion Θ𝑛 → n-Cat has an extension along the discrete
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Yoneda embedding which we call the discrete nerve 𝑁𝑛 : n-Cat → sPSh(Θ𝑛), given

by the levelwise formula

𝑁𝑛(𝐴)𝜃,𝑝 = Homn-Cat(𝜃, 𝐴),

for 𝜃 ∈ Θ𝑛 ⊂ n-Cat and [𝑝] ∈ ∆. When 𝑛 = 1 we omit the superindex and write

𝑁 = 𝑁1.

We use arrows like →˓ for cofibrations, ↠ for fibrations, and decorate morphisms

that are weak equivalences with ∼ when relevant. Which model structure these types

of morphisms are considered with respect to varies by context.

Recall that the category sPSh(𝐶) has the injective model structure, where weak

equivalences are levelwise weak equivalences of simplicial sets in the model structure

for Kan complexes and cofibrations are monomorphisms. We also note that by a result

of Bergner and Rezk [BR13] the injective model structure on sPSh(Θ𝑛) coincides with

the Reedy model structure, where fibration may be described more explicitly, although

we do not need that description for our results.

The Θ-construction may be extended from the strict setting to the weak one via

the discrete Yoneda embedding as follows.

Definition 2.3. [Rez10, 4.4] The intertwining functor 𝑉 : Θ(sPSh(𝐶)) → sPSh(Θ𝐶)

is the left Kan extension of the discrete Yoneda embedding of Θ𝐶 along the Θ-

construction of the discrete Yoneda embedding of 𝐶 as illustrated in the diagram

Θ𝐶 sPSh(Θ𝐶).

Θ(sPSh(𝐶))

𝐹Θ𝐶

Θ(𝐹𝐶)
𝑉

The intertwining functor has the levelwise formula

𝑉 [𝑛](𝑋1, . . . , 𝑋𝑛)[𝑚](𝑐1,...,𝑐𝑚) =
∐︁

𝛿∈HomΔ([𝑚],[𝑛])

𝑚∏︁
𝑖=1

𝛿(𝑖)∏︁
𝑗=𝛿(𝑖−1)+1

(𝑋𝑗)𝑐𝑖 , (2.4)
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from which we can observe that the intertwining functor preserves monomorphisms

in each variable, since the finite products and coproduct in the levelwise formula

preserve injectivity.

Of particular interest is the functor 𝑉 [1] : sPSh(𝐶) → (𝐹 [0]
∐︀
𝐹 [0])/ sPSh(Θ𝐶),

which extends the suspension Σ when 𝐶 = Θ𝑛, but is well-defined for any 𝐶.

Proposition 2.5. [Rez10, 4.6] The functor 𝑉 [1] is left Quillen with respect to the

injective model structures.

In order to describe the Segal and completeness conditions for presheaves on Θ𝐶,

we need functors relating them to simplicial spaces where the conditions are well

understood. However, higher-dimensional comparisons are also of use to us for de-

scribing completeness in higher dimensions.

Fix the category 𝐶, let 𝑛 ≥ 𝑘 ≥ 0, and consider the unique functor 𝜋𝑛−𝑘
0 : Θ𝑛−𝑘𝐶 →

* to the terminal category; since Θ𝑛𝐶 has a terminal object, the functor 𝜋𝑛
0 has a

right adjoint 𝜏𝑛−𝑘
0 : * → Θ𝑛−𝑘𝐶 given by the constant functor at the terminal object.

Applying the Θ-construction 𝑘 times to these functors then gives an adjunction

Θ𝑛𝐶 Θ𝑘,

𝜋𝑛
𝑘

𝜏𝑛𝑘

⊥

where 𝜋𝑛
𝑘 forgets cells above dimension 𝑘 and 𝜏𝑛𝑘 adds only identities above dimension

𝑘.

Then recall that given a functor 𝑓 : 𝐶 → 𝐷 between small categories, the precom-

position functor 𝑓 * : sPSh(𝐷) → sPSh(𝐶) has a left adjoint 𝑓# and a right adjoint

𝑓* given by left and right Kan extension, respectively. Additionally, given an adjoint

pair of functors, the associated precomposition functors also form an adjoint pair. In

particular, we have a chain of adjoint functors
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sPSh(Θ𝑘) sPSh(Θ𝑛𝐶),

(𝜋𝑛
𝑘 )

*∼=(𝜏𝑛𝑘 )!

(𝜏𝑛𝑘 )*

(𝜋𝑛
𝑘 )*

∼=(𝜏𝑛𝑘 )*

(𝜋𝑛
𝑘 )!

⊥

⊥

⊥

where the natural isomorphisms follow by uniqueness of adjoints. The functor (𝜏𝑛𝑘 )
*

may be viewed as forgetting cells above dimension 𝑘 and (𝜋𝑛
𝑘 )

* as the inclusion giving

only trivial structure above dimension 𝑘. When 𝑛 = 𝑘 = 1 we omit the indices and

write 𝜏 = 𝜏 11 and 𝜋 = 𝜋1
1.

Definition 2.6. Given a presheaf 𝑊 ∈ sPSh(Θ𝑛𝐶), we call (𝜏𝑛𝑘 )*𝑊 ∈ sPSh(Θ𝑘)

the underlying Θ𝑘-space of 𝑊 , or the underlying simplicial space of 𝑊 in the case

𝑘 = 1.

Note that the functors (𝜋𝑛
𝑘 )

* may be used to extend the discrete nerves; in partic-

ular, we obtain a nerve functor of 1-categories

𝜋*𝑁 : Cat → sPSh(∆) → sPSh(Θ𝐶).

Next we describe the Segal and completeness condition and the associated model

structures in the language of Bousfield localizations.

Recall that the category of simplicial presheaves sPSh(𝐶) has a simplicial struc-

ture with mapping spaces given by

Map(𝑋, 𝑌 )𝑝 = Hom(𝑋 ×∆[𝑝], 𝑌 ),

where ∆[𝑝] is the representable simplicial set on [𝑝] ∈ ∆ viewed as a constant presheaf.

Definition 2.7. Let 𝑆 be a set of morphisms in sPSh(𝐶). We say that an object 𝑊

in sPSh(𝐶) is 𝑆-local if

𝑓 * : Map(𝑌,𝑊 ) → Map(𝑋,𝑊 )
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is a weak equivalence for all 𝑓 : 𝑋 → 𝑌 in 𝑆, and we say that 𝑊 is 𝑆-fibrant if it is

𝑆-local and injective fibrant.

Furthermore, we call a morphism 𝑔 : 𝑋 → 𝑌 an 𝑆-local equivalence if the mor-

phism

𝑔* : Map(𝑌,𝑊 ) → Map(𝑋,𝑊 )

is a weak equivalence for every 𝑆-fibrant 𝑊 .

The following theorem states the existence of a model structure, which may be

viewed as being obtained from the injective one by forcing elements of 𝑆 to be weak

equivalences in addition to levelwise weak equivalences.

Theorem 2.8. [Hir03, 4.1.1.] Let 𝑆 be a set of morphisms in sPSh(𝐶). Then there

is a model structure on sPSh(𝐶) where the cofibrations are monomorphisms, the weak

equivalences are 𝑆-local equivalences and the fibrant objects are 𝑆-fibrant objects.

We refer to this model structure as the 𝑆-local model structure.

The first collection of maps in sPSh(Θ𝐶) that we want to localize with respect

to are the Segal maps

Se𝐶 = {se[𝑚](𝑐1,...,𝑐𝑚) : 𝐹 ([1](𝑐1)) ⨿
𝐹 [0]

· · · ⨿
𝐹 [0]

𝐹 ([1](𝑐𝑚)) →˓ 𝐹 ([𝑚](𝑐1, . . . , 𝑐𝑚))|

[𝑚] ∈ ∆, 𝑐1, . . . , 𝑐𝑚 ∈ 𝐶},

which are induced by the spine inclusions

[1]⨿
[0]
· · · ⨿

[0]
[1] →˓ [𝑚],

where on the left-hand-side the endpoint of each arrow [1] is glued to the start of

the next, forming a chain of 𝑚 composable morphisms. For illustration, consider the

case 𝐶 = *, where each Segal map is directly obtained by applying the discrete nerve

𝑁 : Cat → sPSh(∆) to the colimit diagram defining the corresponding spine. Note

that the spine inclusions are isomorphisms in Cat, since there is a unique composite

for any chain of 𝑚 morphisms. However, the discrete nerve does not preserve colimits,
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so the Segal maps are not isomorphisms or even levelwise weak equivalences, but by

localizing with respect to them, we recover the structure of a composition operation

in a weaker, up to homotopy form. Allowing for general 𝐶 adds enrichment over

sPSh(𝐶).

Although Se𝐶-fibrant objects have a weak category-like structure, their homotopy

theory fails to capture equivalences within and thus also between such categorical

structures. However, by forcing an appropriate model for a walking equivalence to be

contractible, we may impose a relationship between objects and equivalences within

the categorical structure of Se𝐶-fibrant objects that resolves the issue. In the strict

setting of Cat equivalences may be encoded using the walking isomorphism 𝐼, and

the precomposition by the functor 𝐼 → * induces the inclusion of identities to iso-

morphisms. Using the discrete nerve 𝜋*𝑁 , we may pass to sPSh(Θ𝐶) where the

composition operation is weaker, making 𝜋*𝐸 := 𝜋*𝑁𝐼 the walking 1-equivalence.

The completeness map is defined as the discrete nerve applied to the functor

𝐼 → *:

cplt𝐶 = {𝜋*𝐸 → 𝐹 [0]}.

For the Segal maps together with the completeness map, we write

Cplt𝐶 = cplt𝐶 ∪ Se𝐶 .

The maps in Cplt𝐶 only encode information regarding 1-dimensional structure in

sPSh(Θ𝐶) introduced by the Θ-construction, and in order to additionally impose

structure encoded in 𝐶, we may consider a set of morphisms 𝑆 in sPSh(𝐶) and

suspend it to raise it in dimension.

Notation 2.9. We denote Se(𝑆) = Se𝐶 ∪𝑉 [1](𝑆) and Cplt(𝑆) = Cplt𝐶 ∪𝑉 [1](𝑆).

In particular in the presence of the iterated Θ-construction, we may suspend the

Segal and completeness maps to encode higher dimensional weak categorical struc-

ture. For Segal and combined Segal and completeness maps in multiple consecutive

dimensions we denote Se𝑛(𝑆) = Se(Se𝑛−1(𝑆)) and Cplt𝑛(𝑆) = Cplt(Cplt𝑛−1(𝑆)) for

13



brevity. More explicitly, we have

Se𝑛(𝑆) =

(︃
𝑛⋃︁

𝑘=1

SeΘ𝑛−𝑘𝐶

)︃
∪ 𝑉 [1]𝑛(𝑆)

and

Cplt𝑛(𝑆) =

(︃
𝑛⋃︁

𝑘=1

𝑉 [1]𝑘−1(cpltΘ𝑛−𝑘𝐶)

)︃
∪

(︃
𝑛⋃︁

𝑘=1

𝑉 [1]𝑘−1(SeΘ𝑛−𝑘𝐶)

)︃
∪ 𝑉 [1]𝑛(𝑆).

We refer to the locality with respect to 𝑉 [1]𝑘−1(cpltΘ𝑛−𝑘𝐶) as completeness in dimen-

sion 𝑘.

Definition 2.10. In the category sPSh(Θ𝑛𝐶), we call Se𝑛(𝑆)-fibrant objects Segal

objects and Cplt𝑛(𝑆)-fibrant objects complete Segal objects

We recall a key property of the model structures that we consider in this thesis.

Definition 2.11. A category 𝒞 is Cartesian closed if it has finite products and for

each object 𝑋 of 𝒞 the functor −×𝑋 has a right adjoint −𝑋 contravariant in 𝑋.

A model category ℳ is Cartesian if it is Cartesian closed as a category and the

two equivalent conditions hold.

(1) If 𝑓 : 𝑋 →˓ 𝑌 and 𝑔 : 𝑍 →˓ 𝑊 are cofibrations in ℳ, then the map induced by

𝑓 and 𝑔

𝑋 ×𝑊 ⨿
𝑋×𝑍

𝑌 × 𝑍 → 𝑌 ×𝑊

is a cofibration.

(2) If 𝑓 : 𝑋 ↠ 𝑌 is a fibration and 𝑔 : 𝑍 →˓ 𝑊 is a cofibration in ℳ, then the map

induced by 𝑓 and 𝑔

𝑋𝑊 → 𝑋𝑍 ×
𝑌 𝑍
𝑌 𝑊

is a fibration.

Proposition 2.12. [Rez10, 8.1, 8.5] Let 𝑆 be a set of morphisms in sPSh(𝐶). If

the 𝑆-local model structure on sPSh(𝐶) is Cartesian, then so are the Se(𝑆)-local and

Cplt(𝑆)-local model structures on sPSh(Θ𝐶).

14



Notation 2.13. In the remainder of this thesis we let 𝑆 be a set of morphisms in

sPSh(𝐶) such that 𝑆-local model structure is Cartesian.

The following proposition is a key tool for studying Quillen equivalences between

localized model structures.

Proposition 2.14. [Rez10, 2.16] Let

sPSh(Θ𝐶) sPSh(Θ𝐶 ′)

𝐿

𝑅

⊥

be a Quillen pair with respect to the injective model structures on sPSh(Θ𝐶) and

sPSh(Θ𝐶 ′), and let 𝑆 and 𝑆 ′ be sets of morphisms in sPSh(Θ𝐶) and sPSh(Θ𝐶 ′),

respectively. Then 𝐿 ⊣ 𝑅 is a Quillen pair with respect to the 𝑆-local and 𝑆 ′-local

model structures if and only if the two equivalent conditions are satisfied.

(1) The map 𝐿(𝑠) is a 𝑆 ′-local equivalence for each 𝑠 ∈ 𝑆.

(2) The object 𝑅(𝑋) is 𝑆-fibrant for all 𝑆 ′-fibrant 𝑋 in sPSh(Θ𝐶 ′).

Corollary 2.15. The functor 𝑉 [1] is left Quillen from the 𝑆-local model structure to

the Se(𝑆)-local model structure.

Remark 2.16. The adjunction (𝜋𝑛
𝑘 )

* ⊣ (𝜏𝑛𝑘 )
* forms a Quillen pair with respect to

the injective, Se𝑘-local, and Cplt𝑘-local model structures.

Localizing with respect to the Segal maps also forces other similar maps to be

weak equivalences.

Proposition 2.17. [Rez10, 5.3] Let 𝑋1, . . . , 𝑋𝑚 be objects of sPSh(𝐶) then the maps

𝑉 [1](𝑋1) ⨿
𝑉 [0]

· · · ⨿
𝑉 [0]

𝑉 [1](𝑋𝑚) ↦→ 𝑉 [𝑚](𝑋1, . . . , 𝑋𝑚)

are Se-local equivalences for all 𝑚.
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There is also an alternate description of the Segal condition: using the Yoneda

lemma we obtain isomorphisms Map(𝐹 ([1](𝑐𝑖),𝑊 ) ∼= 𝑊[1](𝑐𝑖) and Map(𝐹 ([𝑚](𝑐1, . . . , 𝑐𝑚),𝑊 ) ∼=

𝑊[𝑚](𝑐1,...,𝑐𝑚), and thus 𝑊 ∈ sPSh(Θ) is Se-local if and only if the maps

𝑊[𝑚](𝑐1,...,𝑐𝑚) → 𝑊[1](𝑐1) ×
𝑊[0]

· · · ×
𝑊[0]

𝑊[1](𝑐𝑚)

induced by the spine inclusions are weak equivalences.

Using the following classical result regarding homotopy pullbacks, we may also

note that the pullbacks on the above are, in fact, homotopy pullbacks if 𝑊 is injective

fibrant, since the pullbacks are with respect to maps induced by monomorphisms

𝐹 [0] →˓ 𝐹 [1](𝑐𝑖).

Proposition 2.18. [Lur09, A.2.4.4.] Let the following be a pullback square in a

model category ℳ:
𝑈 𝑋

𝑉 𝑌.

⌟
𝑓

If 𝑓 is a fibration, and 𝑉 and 𝑌 are fibrant, then the diagram is also a homotopy

pullback square.

The Segal condition allows us to reduce properties regarding all levels of an object

to just the levels that are zero or one 1-cells in length.

Proposition 2.19. Let 𝑓 : 𝑈 → 𝑉 be a map of Se(𝑆)-fibrant objects of sPSh(Θ𝐶).

Then 𝑓 is a levelwise weak equivalence if and only if it is a weak equivalence at level

0 and levels [1](𝑐) for all 𝑐 ∈ 𝐶.

Proof. It suffices to show the backwards direction. Let 𝑓 : 𝑈 → 𝑉 be a map of Se(𝑆)-

fibrant objects and suppose that 𝑓[0] and 𝑓[1](𝑐) are weak equivalences. Then the map

on the iterated homotopy pullbacks

𝑈[1](𝑐1) ×ℎ
𝑈[0]

· · · ×ℎ
𝑈[0]

𝑈[1](𝑐𝑚) 𝑉[1](𝑐1) ×ℎ
𝑉[0]

· · · ×ℎ
𝑉[0]

𝑉[1](𝑐𝑚)
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is also a weak equivalence for all 𝑐1, . . . , 𝑐𝑚. By injective fibrancy of 𝑈 and 𝑉 these

homotopy pullbacks are weakly equivalent to strict pullbacks. Now we have the

diagram

𝑈[𝑚](𝑐1,...,𝑐𝑚) 𝑉[𝑚](𝑐1,...,𝑐𝑚)

𝑈[1](𝑐1) ×
𝑈[0]

· · · ×
𝑈[0]

𝑈[1](𝑐𝑚) 𝑉[1](𝑐1) ×
𝑉[0]

· · · ×
𝑉[0]

𝑉[1](𝑐𝑚)

𝑓[𝑚](𝑐1,...,𝑐𝑚)

∼ ∼

∼

with the Segal maps vertically, so 𝑓[𝑚](𝑐1,...,𝑐𝑚) is also a weak equivalence by the two-

out-of-three property. Thus 𝑓 is a levelwise equivalence.

Higher-dimensional Segal conditions allow for similar reductions so that, for exam-

ple, a Segal Θ𝑛-space 𝑊 is determined by the levels [1]𝑘[0], which may be understood

us the spaces of 𝑘-cells in 𝑊 , for 0 ≤ 𝑘 ≤ 𝑛.
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Chapter 3

Mapping objects

We have seen that a Segal object 𝑊 in sPSh(Θ𝐶) is essentially determined by

its levels [0] and [1](𝑐) for 𝑐 ∈ 𝐶, where levels of the latter form may be viewed as

encoding information about morphisms in 𝑊 . As with usual categories, morphisms

in 𝑊 can be studied more tractably by fixing a source and a target, but also have

additional structure making 𝑊 enriched in sPSh(𝐶). In this chapter we recall some

key properties of these mapping objects.

Definition 3.1. Let 𝑊 be an object of sPSh(Θ𝐶), and 𝑥, 𝑦 ∈ 𝑊[0],0. We define the

mapping object of 𝑊 from 𝑥 to 𝑦 as the object of sPSh(𝐶) given at level 𝑐 as the

fiber
map𝑊 (𝑥, 𝑦)𝑐 𝑊[1](𝑐)

{*} 𝑊[0] ×𝑊[0].

⌟
(𝑑1,𝑑0)

(𝑥,𝑦)

(3.2)

We similarly define the homotopy mapping object of 𝑊 from 𝑥 to 𝑦 levelwise as the

homotopy fiber
hmap𝑊 (𝑥, 𝑦)𝑐 𝑊[1](𝑐)

{*} 𝑊[0] ×𝑊[0].

⌟ℎ
(𝑑1,𝑑0)

(𝑥,𝑦)

While the homotopy mapping objects are invariant under levelwise weak equiva-

lences, homotopy limits are generally less tangible than strict limits. However, when

𝑊 is injective fibrant, then the right vertical map in the diagram (3.2) is a fibration,
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which implies that the canonical map map𝑊 (𝑥, 𝑦) → hmap𝑊 (𝑥, 𝑦) is a levelwise weak

equivalence by Proposition 2.18.

In the cases where 𝑊 is not injective fibrant we use the following standard con-

struction for homotopy pullback, which can be found, for example, at [Lur25, 010B].

Lemma 3.3. Let 𝑊 be an object of sPSh(Θ𝐶) such that 𝑊0×𝑊0 is a Kan complex.

Then ℎ𝑚𝑎𝑝𝑊 (𝑥, 𝑦)𝑐 is weakly equivalent to the limit of the diagram

𝑊[1](𝑐)

(𝑊0 ×𝑊0)
Δ[1] 𝑊0 ×𝑊0

{*} 𝑊0 ×𝑊0,

𝑗*0

𝑗*1

(𝑥,𝑦)

where 𝑗*0 , 𝑗*1 are the precompositions by the two inclusions 𝑗0, 𝑗1 : ∆[0] → ∆[1].

We may also define a multiobject variant of the mapping objects map𝑊 (𝑥1, . . . , 𝑥𝑚) ∈

sPSh(𝐶×𝑚) levelwise as the fibers

map𝑊 (𝑥1, . . . , 𝑥𝑚)𝑐1,...,𝑐𝑚 𝑊[𝑚](𝑐1,...,𝑐𝑚)

{*} 𝑊𝑚+1
[0] .

⌟

(𝑥1,...,𝑥𝑚)

The Segal map 𝑊[2](𝑐,𝑐) → 𝑊[1](𝑐) ×𝑊[0]
𝑊[1](𝑐) can be restricted to the fibers to obtain

maps map𝑊 (𝑥, 𝑦, 𝑧)𝑐,𝑐 → map𝑊 (𝑦, 𝑧)𝑐 ×map𝑊 (𝑥, 𝑦)𝑐, which have homotopy inverses

natural in 𝑐 if 𝑊 is Se-fibrant. The Segal object 𝑊 then obtains a weakly unital and

associative composition operation as the composite

map𝑊 (𝑦, 𝑧)×map𝑊 (𝑥, 𝑦) map𝑊 (𝑥, 𝑦, 𝑧) map𝑊 (𝑥, 𝑧).

See for example [Rez10, 7.4] for further discussion on the composition.

For an object 𝑊 in sPSh(Θ𝑛𝐶) we may iterate the mapping object construction
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up to 𝑛 times. Given 𝛼, 𝛼′ ∈ map𝑘−1
𝑊 (𝛽, 𝛽′)[0],0 and 𝑘 = 1, . . . , 𝑛, we denote

map𝑘
𝑊 (𝛼, 𝛼′) := mapmap𝑘−1

𝑊 (𝛽,𝛽′)(𝛼, 𝛼
′),

where map0
𝑊 = 𝑊 . We refer to the objects map𝑘

𝑊 (𝛼, 𝛼′) as the 𝑘th iterated mapping

objects of 𝑊 .

The following lemma establishes an adjunction between the mapping objects and

the suspension.

Lemma 3.4. [Rez10, 4.12] Let 𝑊 be an object of sPSh(Θ𝐶) and 𝑋 an object of

sPSh(𝐶). Then there is a pullback square

Map(𝑋,map𝑊 (𝑥, 𝑦)) Map(𝑉 [1](𝑋),𝑊 )

{*} Map(𝑉 [1](∅),𝑊 ).
(𝑥,𝑦)

Corollary 3.5. The functor

map: (𝐹 [0]⨿𝐹 [0])/ sPSh(Θ𝐶) → sPSh(𝐶),

(︂
𝐹 [0]

∐︀
𝐹 [0] 𝑊

(𝑥,𝑦)
)︂

↦→ map𝑊 (𝑥, 𝑦)

is right adjoint to 𝑉 [1] and thus right Quillen with respect to the injective model

structures and Se(𝑆)-local and 𝑆-local model structures.

Corollary 3.6. Let 𝑊 be an injective fibrant object of sPSh(Θ𝐶). Then map𝑊 (𝑥, 𝑦)

is injective fibrant in sPSh(Θ𝐶) for all 𝑥, 𝑦 ∈ 𝑊[0],0.

Similarly, Se(𝑆)-fibrant objects have 𝑆-fibrant mapping objects. However, having

𝑆-fibrant mapping objects is also sufficient for 𝑉 [1](𝑆)-locality for Segal objects.

Proposition 3.7. Let 𝑊 be a Se-fibrant object of sPSh(Θ𝐶). Then 𝑊 is Se(𝑆)-

fibrant if and only if the mapping objects map𝑊 (𝑥, 𝑦) are 𝑆-fibrant in sPSh(𝐶) for

all 𝑥, 𝑦 ∈ 𝑊[0],0.
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For the proof of this proposition we recall the fiberwise characterization of ho-

motopy pullbacks, which follows from the naturality of the long exact sequence of

homotopy groups. See for example [MV15, 3.3.18] for further discussion.

Proposition 3.8. Let the following be a commutative square of simplicial sets:

𝑋 𝑍

𝑌 𝑊.

𝑓 𝑔

ℎ

Then the square is a homotopy pullback if and only if the induced map hofiber(𝑓)𝑦 →

hofiber(𝑔)ℎ(𝑦) is a weak equivalence for all 𝑦 ∈ 𝑌[0].

Proof of Proposition 3.7. Let 𝑊 be Se-fibrant and 𝑓 : 𝑋 → 𝑌 be in 𝑆, and consider

the diagram

Map(𝑉 [1](𝑌 ),𝑊 ) Map(𝑉 [1](𝑋),𝑊 )

Map(𝑉 [1](∅),𝑊 ) Map(𝑉 [1](∅),𝑊 ),

(𝑉 [1](𝑓))*

(3.9)

which is a homotopy pullback if and only if (𝑉 [1](𝑓))* is a weak equivalence, which

happens if and only if the maps induced on all homotopy fibers of the vertical arrows

are weak equivalences by Proposition 3.8. However, due to injective fibrancy of 𝑊

the homotopy fibers coincide with the fibers, which by Lemma 3.4 have the form

Map(𝑌,map𝑊 (𝑥, 𝑦)) Map(𝑋,map𝑊 (𝑥, 𝑦)).
𝑓*

Thus 𝑊 is 𝑉 [1](𝑆)-local if and only if map𝑊 (𝑥, 𝑦) is 𝑆-local for all 𝑥 and 𝑦.

The following lemma tells us that the underlying Θ𝑘-space functor is compatible

with the structure of mapping objects.

Proposition 3.10. Let 𝑊 be a an object of sPSh(Θ𝑛𝐶) and 1 ≤ 𝑚 ≤ 𝑘 ≤ 𝑛. Then

map𝑚
(𝜏𝑛𝑘 )*𝑊 (𝛼, 𝛼′) ∼= (𝜏𝑛−𝑚

𝑘−𝑚 )*map𝑊 (𝛼, 𝛼′)
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for all 𝛼 and 𝛼′.

Proof. It suffices to show that the left adjoints commute, that is,

𝑉 [1]𝑚((𝜋𝑛−𝑚
𝑘−𝑚 )*𝑋) ∼= (𝜋𝑛

𝑘 )
*𝑉 [1]𝑚(𝑋),

which can be further reduced to the case 𝑚 = 1 by iteration. Using the formula (2.4)

for the suspension we obtain the following natural isomorphisms:

𝑉 [1]((𝜋𝑛−1
𝑘−1 )

*𝑋)[𝑚](𝑐1,...,𝑐𝑚)
∼= {*} ⨿

(︃
𝑚∐︁
𝑖=1

((𝜋𝑛−1
𝑘−1 )

*𝑋)𝑐𝑖

)︃
⨿ {*}

= {*} ⨿

(︃
𝑚∐︁
𝑖=1

𝑋𝜋𝑛−1
𝑘−1 𝑐𝑖

)︃
⨿ {*}

∼= 𝑉 [1](𝑋)[𝑚](𝜋𝑛−1
𝑘−1 𝑐1,...,𝜋

𝑛−1
𝑘−1 𝑐𝑚)

= 𝑉 [1](𝑋)𝜋𝑛
𝑘 ([𝑚](𝑐1,...,𝑐𝑚))

= (𝜋𝑛
𝑘 )

*𝑉 [1](𝑋)[𝑚](𝑐1,...,𝑐𝑚)

proving the claim.
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Chapter 4

Homotopy relations

In this chapter we examine notions of homotopy equivalence on simplicial presheaf

categories and how they are related to equivalences of categories via the discrete

nerve functor. The notions of equivalence we are interested in arise as homotopy

equivalences in Cartesian model structures, so interval objects provide a good common

framework. Most of the results in this chapter are adapted from [DS95, §4] to the

Cartesian setting. Interval objects in the presheaf setting have also been extensively

studied in [Cis06, §1.3], for example.

Notation 4.1. In this chapter let ℳ be a Cartesian model category where all

monomorphisms are cofibrations. In particular, all objects of ℳ are cofibrant.

The three choices for ℳ that we are interested in are the injective and Cplt(𝑆)-

local model structures on sPSh(Θ𝐶) and the canonical model structure on Cat,

which was recorded by Rezk in [Rez96]. Note that we do not assume that every

cofibration in ℳ is a monomorphism as this is not the case in Cat.

Definition 4.2. We call an object 𝐽 in ℳ an interval object for ℳ if there is a

factorization
*

*
∐︀

* 𝐽 *.

*

∼
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For the remainder of this chapter let 𝐽 denote an arbitrary interval object for ℳ.

The following two examples are the standard interval objects for the respective

model structures.

Example 4.3. The constant presheaf ∆[1] is an interval object for the injective model

structure on sPSh(𝐶).

Example 4.4. The walking isomorphism 𝐼, which consists of two objects and an

isomorphism between them, is an interval object for the canonical model structure

on Cat.

Using the Cartesian structure on ℳ, an interval object determines functorial

cylinder and path objects in the sense of [DS95, §4].

Lemma 4.5. Let 𝑈 and 𝑉 be objects of ℳ with 𝑉 fibrant. Then 𝑈 × 𝐽 is a good

cylinder object for 𝑈 and 𝑉 𝐽 is a very good path object for 𝑉 , that is, there are

factorizations

𝑈

𝑈
∐︀
𝑈 𝑈 × 𝐽 𝑈

𝑈

∼ and

𝑉

𝑉 𝑉 𝐽 𝑉 × 𝑉

𝑉.

∼

pr1

pr2

Proof. Consider the factorization associated to the interval object 𝐽

*

*
∐︀

* 𝐽 *,

*

𝑗1

∼

𝑗2

(4.6)

and note that 𝑗1 and 𝑗2 are weak equivalences by the two-out-of-three property.

Using the Cartesian property of the model structure on ℳ, we can apply the
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functors 𝑈 ×− and 𝑉 − to the above diagram (4.6) to obtain the diagrams

𝑈

𝑈
∐︀
𝑈 𝑈 × 𝐽 𝑈

𝑈

∼

∼

and

𝑉

𝑉 𝑉 𝐽 𝑉 × 𝑉

𝑉,

∼

∼

pr1

pr2

respectively. By the two-out-of-three property the maps 𝑈 × 𝐽 → 𝑈 and 𝑉 → 𝑉 𝐽

are weak equivalences with the latter also a monomorphism, since it is the first of a

chain of maps composing to an isomorphism.

Definition 4.7. Let 𝑓, 𝑔 : 𝑈 → 𝑉 be maps in ℳ. We say that 𝑓 and 𝑔 are 𝐽-

homotopic if there is a map 𝐻 : 𝑈 ×𝐽 → 𝑉 that we refer to as 𝐽-homotopy such that

the following diagram commutes:

𝑈

𝑈 × 𝐽 𝑉,

𝑈

id×𝑗0
𝑓

𝐻

id×𝑗1
𝑔

where 𝑗0, 𝑗1 : * →˓ *⨿* →˓ 𝐽 are the two composites. By adjointness, a homotopy may

equivalently be defined as a map 𝐻 ′ : 𝑈 → 𝑉 𝐽 or 𝐻 ′′ : 𝐽 → 𝑉 𝑈 as in the diagrams

𝑉

𝑈 𝑉 𝐽

𝑉

𝐻′

𝑓

𝑔

𝑉 𝑗0

𝑉 𝑗1

and

*

𝐽 𝑉 𝑈 .

*

𝑗0
𝑓

𝐻′′

𝑗1
𝑔

For additional specificity we may refer to 𝐻 as a left homotopy and 𝐻 ′ as a right

homotopy.
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The primary goal of this chapter is to study the following notions of equivalence

for different interval objects.

Definition 4.8. We say that a map 𝑓 : 𝑈 → 𝑉 is a 𝐽-homotopy equivalence if there

are maps ℎ, ℎ′ : 𝑉 → 𝑈 and 𝐽-homotopies ℎ𝑓 ≃ id𝑈 and 𝑓ℎ′ ≃ id𝑉 , and we say that

𝑈 and 𝑉 are 𝐽-homotopy equivalent if there is a 𝐽-homotopy equivalence between

them.

The following is one of three notions of homotopy equivalence we are interested

in.

Example 4.9. In the category sPSh(𝐶) a ∆[1]-homotopy equivalence is precisely a

simplicial homotopy equivalence.

Next we recount some key properties of homotopy equivalences from [DS95] adapted

for interval objects.

Lemma 4.10. Let 𝑓, 𝑔 : 𝑈 → 𝑉 be 𝐽-homotopic and ℎ : 𝑉 → 𝑊 and ℎ′ : 𝑊 ′ → 𝑈

any maps. Then ℎ𝑓, ℎ𝑔 : 𝑈 → 𝑊 are 𝐽-homotopic, and 𝑓ℎ′, 𝑔ℎ′ : 𝑊 → 𝑉 are 𝐽-

homotopic.

Proof. Given a 𝐽-homotopy 𝐻 : 𝑈×𝐽 → 𝑉 between 𝑓 and 𝑔 with an adjoint 𝐻 ′ : 𝑈 →

𝑉 𝐽 , then ℎ𝐻 : 𝑈 × 𝐽 → 𝑊 is a 𝐽-homotopy between ℎ𝑓 and ℎ𝑔, and 𝐻 ′ℎ′ : 𝑊 → 𝑉 𝐽

is a 𝐽-homotopy between 𝑓ℎ′ and 𝑔ℎ′.

Lemma 4.11. If 𝐽 and 𝐽 ′ are interval objects for ℳ, and 𝑓, 𝑔 : 𝑈 → 𝑉 maps with

𝑉 fibrant, then 𝑓 and 𝑔 are 𝐽-homotopic if and only if they are 𝐽 ′-homotopic.

Proof. The interval objects 𝐽 and 𝐽 ′ give rise to the cylinder objects 𝑉 𝐽 and 𝑉 𝐽 ′

whose factorizations fit into the diagram

𝑉 𝑉 𝐽

𝑉 𝐽 ′
𝑉 × 𝑉.

∼

∼ ∃𝜙

Now since the left morphism is an acyclic cofibration and the right morphism a

fibration, there is a lift 𝜙 : 𝑉 𝐽 ′ → 𝑉 𝐽 that is compatible with the factorizations. Now
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for any right 𝐽 ′-homotopy 𝐻 : 𝑈 → 𝑉 𝐽 ′ between 𝑓 and 𝑔, the map 𝜙𝐻 : 𝑈 → 𝑉 𝐽 is

a right 𝐽-homotopy between the between 𝑓 and 𝑔. The argument is symmetric with

respect to 𝐽 and 𝐽 ′ proving the claim.

Lemma 4.12. Let 𝑈, 𝑉 and 𝑊 be objects in ℳ, and let 𝑓, 𝑔 : 𝑈 → 𝑉 be 𝐽-homotopic.

Then 𝑊 𝑓 ,𝑊 𝑔 : 𝑊 𝑉 → 𝑊𝑈 are 𝐽-homotopic.

Proof. If 𝐻 : 𝑈 × 𝐽 → 𝑉 is a left 𝐽-homotopy between 𝑓 and 𝑔, then 𝑊𝐻 : 𝑊 𝑉 →

𝑊𝑈×𝐽 ∼= (𝑊𝑈)𝐽 is a right 𝐽-homotopy between 𝑊 𝑓 and 𝑊 𝑔.

The following corollary tells us that homotopy equivalences determined by interval

objects are compatible with the Cartesian structure on ℳ.

Corollary 4.13. Let 𝑈, 𝑉,𝑊 ∈𝑀 , and let 𝑓 : 𝑈 → 𝑉 be a 𝐽-homotopy equivalence.

Then 𝑊 𝑓 : 𝑊 𝑉 → 𝑊𝑈 is a 𝐽-homotopy equivalence.

Note that if 𝑓 in the above corollary were a weak equivalence, we would generally

need 𝑊 to be fibrant in order to show conclude that 𝑊 𝑓 is a weak equivalence. This

broader compatibility of homotopy equivalence with the Cartesian structure is their

main utility to us. Furthermore, the following lemma ties homotopy equivalences to

weak equivalences when considered between fibrant-cofibrant objects.

Lemma 4.14. [DS95, 4.24.] Let 𝑓 : 𝑈 → 𝑉 be a map in ℳ with both 𝑈 and 𝑉

fibrant-cofibrant. Then 𝑓 is a 𝐽-homotopy equivalence if and only if it is a weak

equivalence in ℳ.

In the canonical model structure on Cat, weak equivalences are precisely equiva-

lences of categories and all objects are fibrant-cofibrant, giving us the following result.

Corollary 4.15. Two categories are equivalent if and only if they are 𝐼-homotopy

equivalent.

The following, rather technical result is key for showing that various functors,

such as our completion, preserve appropriate notions of equivalence.
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Proposition 4.16. Let ℳ′ be another Cartesian model category with monomor-

phisms included among cofibrations, and let 𝐽 and 𝐽 ′ be interval objects for ℳ and

ℳ′, respectively. Furthermore, let 𝐺 : ℳ → ℳ′ be a functor with the following two

properties.

(1) The functor 𝐺 takes the defining diagram for 𝐽 to the corresponding diagram

for 𝐽 ′ up to isomorphism:

𝐺

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

*𝑀

𝐽 *𝑀

*𝑀

𝑗0

𝑗1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
∼=

*𝑀 ′

𝐽 ′ *𝑀 ′ .

*𝑀 ′

𝑗′0

𝑗′1

(2) The canonical map 𝐺(𝑈 × 𝐽) → 𝐺(𝑈)×𝐺(𝐽) is a 𝐽 ′-homotopy equivalence for

all 𝑈 .

Then 𝐺 takes 𝐽-homotopic maps to 𝐽 ′-homotopic maps and 𝐽-homotopy equivalences

to 𝐽 ′-homotopy equivalences.

Proof. Let 𝐺 be as in the statement, 𝜙 : 𝐺(𝑈×𝐽) → 𝐺(𝑈)×𝐺(𝐽) the canonical map

with a weak left inverse 𝜓 : 𝐺(𝑈)×𝐺(𝐽) → 𝐺(𝑈 × 𝐽) with respect to 𝐽 ′-homotopy,

and 𝐻 : 𝑈 × 𝐽 → 𝑉 a 𝐽-homotopy between 𝑓, 𝑔 : 𝑈 → 𝑉 . These maps fit into the

following commutative diagram:

𝐺𝑈

𝐺𝑈 ×𝐺𝐽 𝐺(𝑈 × 𝐽) 𝐺𝑉.

𝐺𝑈

𝐺𝑓

𝐺(id𝑈 ×𝑗0)
id𝐺𝑈 ×𝑗′0

𝐺𝐻𝜙

𝐺𝑔

𝐺(id𝑈 ×𝑗1)
id𝐺𝑈 ×𝑗′1

Now since homotopy is compatible with composition by Lemma 4.10, we get the
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following chain of 𝐽 ′-homotopies:

𝐺𝑓 = 𝐺𝐻 ∘𝐺(id𝑈 ×𝑗0)

≃ 𝐺𝐻 ∘ 𝜓 ∘ 𝜙 ∘𝐺(id𝑈 ×𝑗0)

= 𝐺𝐻 ∘ 𝜓 ∘ (id𝐺𝑈 ×𝑗′0)

≃ 𝐺𝐻 ∘ 𝜓 ∘ (id𝐺𝑈 ×𝑗′1)

= 𝐺𝐻 ∘ 𝜓 ∘ 𝜙 ∘𝐺(id𝑈 ×𝑗1)

≃ 𝐺𝐻 ∘𝐺(id𝑈 ×𝑗1)

= 𝐺𝑔.

Thus 𝐺 takes 𝐽-homotopies to 𝐽 ′-homotopies. Then by functoriality of 𝐺, it also

takes 𝐽-homotopy equivalences to 𝐽 ′-homotopy equivalences proving the claim.

Next we move to our third and most important notion of homotopy.

Notation 4.17. Let 𝐸 = 𝑁𝐼 be the discrete nerve of the walking isomorphism in

sPSh(∆) and recall that it may also be viewed in sPSh(Θ𝐶) via the functor 𝜋*.

Definition 4.18. We say that two maps in sPSh(Θ𝐶) are categorically homotopic

if they are 𝜋*𝐸-homotopic. We say a map in sPSh(Θ𝐶) is a categorical equivalence

if it is a 𝜋*𝐸-homotopy equivalence.

Lemma 4.19. The object 𝜋*𝐸 is an interval object for the Cplt(𝑆)-local model struc-

ture on sPSh(Θ𝐶).

Proof. As an element of the set Cplt, the map 𝜋*𝐸 → 𝐹 [0] is, in particular, a

Cplt(𝑆)-local equivalence. The maps 𝑗0, 𝑗1 : 𝐹 [0] → 𝜋*𝐸 are induced by the in-

clusions 0, 1: * → 𝐼 and are monomorphisms since both the discrete nerve and 𝜋*

preserve monomorphisms as right adjoints.

Corollary 4.20. The functor 𝜋*𝑁 : Cat → sPSh(Θ𝐶) takes equivalences of cate-

gories to categorical equivalences.

Proof. The discrete nerve 𝜋*𝑁 takes the interval object 𝐼 to the interval object 𝜋*𝐸

by definition and preserves products as it is a composite of two right adjoints. Thus
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𝜋*𝑁 satisfies the hypotheses of Proposition 4.16 and takes 𝐼-homotopy equivalences

to 𝜋*𝐸-homotopy equivalences.

Using the facts that Cplt(𝑆)-fibrant objects are also injective fibrant and that

Cplt(𝑆)-local equivalences coincide with levelwise weak equivalences between fibrant

objects, we obtain the following corollary using Lemma 4.14.

Corollary 4.21. Let 𝑈 and 𝑉 be Cplt(𝑆)-fibrant objects of sPSh(Θ𝐶) and 𝑓 : 𝑈 →

𝑉 . Then the following properties are equivalent for 𝑓 :

(1) categorical equivalence,

(2) simplicial homotopy equivalence, and

(3) levelwise weak equivalence.

Proof. Lemma 4.14 tells us that between Cplt(𝑆)-fibrant objects, categorical equiva-

lences coincide with Cplt(𝑆)-local equivalences which further coincide with levelwise

weak equivalences giving us the equivalence (1) ⇔ (3). Since Cplt(𝑆)-fibrant ob-

jects are, in particular, injective fibrant, Lemma 4.14 tells us also that levelwise weak

equivalences coincide with simplicial homotopy equivalences, giving us the equivalence

(2) ⇔ (3).

Using the fact that the interval object 𝜋*𝐸 that defines categorical equivalence is

also used to define completeness, we can extend the relationship between homotopy

equivalences and weak equivalences from Lemma 4.14 to more general Segal objects.

The following result was shown for 𝐶 = * by Rezk in [Rez01, 13.6].

Proposition 4.22. If a map between Se(𝑆)-fibrant objects of sPSh(Θ𝐶) is a cate-

gorical equivalence, then it is a Cplt(𝑆)-local equivalence.

Proof. Let 𝑈, 𝑉,𝑊 ∈ sPSh(Θ𝐶) with 𝑈 and 𝑉 Se(𝑆)-fibrant, and𝑊 Cplt(𝑆)-fibrant,

and let 𝑓 : 𝑈 → 𝑉 be a categorical equivalence. Now by Corollary 4.13 𝑊 𝑓 is a

categorical equivalence between the Cplt(𝑆)-fibrant objects 𝑊 𝑉 and 𝑊𝑈 . Thus 𝑊 𝑓
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is a levelwise equivalence by Corollary 4.21, in particular at level 0. Thus the map

Map(𝑓,𝑊 ) ∼= Map(𝐹 [0],𝑊 𝑓 ) ∼= (𝑊 𝑓 )0

is a weak equivalence of spaces, which precisely means that 𝑓 is a Cplt(𝑆)-local

equivalence.

33



34



Chapter 5

DK-equivalences

In this chapter we study DK-equivalences, short for Dwyer-Kan equivalences,

which may be viewed as maps that induce equivalences of certain enriched homotopy

categories and behave like essentially surjective and fully faithful functors. We es-

tablish connections between DK-equivalences and weak and categorical equivalences.

DK-equivalences for Segal spaces were extensively studied by Rezk in [Rez01], and

both our results and techniques generalize those found there. Some of the key results

regarding DK-equivalence have been shown for Θ𝑛-spaces in slightly more restrictive

form also by Bergner in [Ber24] using alternate methods.

We start with a few results regarding homotopy categories which are used to define

the essential surjectivity part of DK-equivalences.

Definition 5.1. Let 𝑊 be a Se(𝑆)-fibrant object of sPSh(Θ𝐶). We define the

homotopy category of 𝑊 , denoted by Ho(𝑊 ), as the category with objects 𝑊[0],0 and

Hom-sets given by

HomHo(𝑊 )(𝑥, 𝑦) = 𝜋0(map𝑊 (𝑥, 𝑦)𝑡)

for objects 𝑥 and 𝑦. Recall that 𝑡 is a terminal object of 𝐶.

The homotopy category construction is functorial and provides a one-sided inverse

to the discrete nerve, giving us the following converse to Corollary 4.20.

Lemma 5.2. If two Se(𝑆)-fibrant objects of sPSh(Θ𝐶) are categorically equivalent,

then they have equivalent homotopy categories.
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Proof. First note that Ho𝜋*𝑁 ∼= idCat and in particular, Ho(𝜋*𝐸) ∼= 𝐼. The func-

tor Ho also preserves products, since 𝜋0 and evaluation at level ([0], 0) as maps

sPSh(Θ𝐶) → Set do so. Thus the functor Ho: sPSh(Θ𝐶) → Cat satisfies the

hypotheses of Proposition 4.16, which tells us that Ho takes categorical equivalences

to equivalences of categories.

We would like to understand the behaviour of isomorphisms in the homotopy cat-

egory. Given a Segal object 𝑊 , a point 𝑔 ∈ map𝑊 (𝑥, 𝑦)[0],0 represents an isomorphism

in Ho(𝑊 ) if there are points 𝑓, ℎ ∈ map𝑊 (𝑦, 𝑥)[0],0 such that 𝑔𝑓 and ℎ𝑔 are homo-

topic to the identities on 𝑦 and 𝑥, respectively. Such 𝑔 are referred to as homotopy

equivalences by Rezk, and they are closed under homotopy by [Rez01, 5.8]. As a

consequence we may consider the space 𝑊𝑒𝑞 ⊆ 𝑊[1](𝑡) consisting of their components.

The interval object 𝜋*𝐸 corepresents a stronger notion of equivalence, where the

two weak inverses 𝑓 and ℎ to 𝑔 are required to coincide. The following proposition

says that every homotopy equivalence is homotopic to one with equal left and right

weak inverse.

Proposition 5.3. [Rez10, 7.8] Let 𝑊 be a Se(𝑆)-fibrant object in sPSh(Θ𝐶). Then

the map

Map(𝜋*𝐸,𝑊 ) → Map(𝜋*𝐹 [1],𝑊 ) ∼= (𝜏 *𝑊 )1

induced by either inclusion [1] →˓ 𝐼 factors through 𝑊𝑒𝑞 ⊆ (𝜏 *𝑊 )1 and induces a weak

equivalence Map(𝜋*𝐸,𝑊 ) → 𝑊𝑒𝑞 of spaces.

For a Segal object 𝑊 the set of isomorphism classes of objects of Ho(𝑊 ) coincides

with the set of homotopy equivalence classes of objects of 𝑊 . However, when 𝑊

is complete, every homotopy equivalence is homotopic to an identity by Proposition

5.3, which implies that the set of isomorphism classes of objects may be computed as

𝜋0(𝑊[0]). Note that for a general Se(𝑆)-fibrant 𝑊 the set of homotopy equivalences

is a quotient of 𝜋0(𝑊[0]).

Definition 5.4. Let 𝑓 : 𝑈 → 𝑉 be a map between Se(𝑆)-fibrant objects of sPSh(Θ𝐶).

We say that 𝑓 is a DK-equivalence if
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(1) the functor Ho(𝑓) : Ho(𝑈) → Ho(𝑉 ) is an equivalence of categories, and

(2) the maps map𝑈(𝑥, 𝑦) → map𝑉 (𝑓(𝑥), 𝑓(𝑦)) are levelwise weak equivalences for

all 𝑥, 𝑦 ∈ 𝑈[0],0.

The second condition, which we refer to as 𝑓 being homotopically fully faithful,

implies that 𝑓 is fully faithful on homotopy categories, so the first condition is may

be reduced to

(1’) the functor Ho(𝑓) : Ho(𝑈) → Ho(𝑉 ) is essentially surjective.

Furthermore, since essential surjectivity is equivalent to surjectivity on isomorphism

classes of objects, condition (1’) can be reduced to the following when 𝑉 is Cplt(𝑆)-

fibrant:

(1”) the map 𝜋0(𝑓) : 𝜋0(𝑈[0]) → 𝜋0(𝑉[0]) is surjective.

A more general definition of DK-equivalences is provided in Definition 5.19.

Definition 5.5. Let 𝒲 be a class of morphisms in a category 𝒞. We say that 𝒲

satisfies the two-out-of-six property if for any sequence of morphisms

𝑋 𝑌 𝑍 𝑊
𝑓 𝑔 ℎ

if 𝑓𝑔 and 𝑔ℎ are in 𝒲 , then so are 𝑓, 𝑔, ℎ and 𝑓𝑔ℎ.

The two-out-of-six along with the two-out-of-three property is a useful tool for

obtaining new equivalences from old ones. As a classical example, weak equivalences

in any model category satisfy the two-out-of-six property, and since both levelwise

weak equivalences and equivalences of categories have the two-out-of-six and two-out-

of-three properties, so do DK-equivalences.

Next we examine the relationship of DK-equivalences to levelwise weak equiva-

lences.

Lemma 5.6. Let 𝑓 be a map between Se(𝑆)-fibrant objects of sPSh(Θ𝐶). Then 𝑓 is a

levelwise weak equivalence if and only if it is a DK-equivalence and a weak equivalence

at level [0].
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Proof. Let 𝑓 : 𝑈 → 𝑉 be a map of Se(𝑆)-fibrant objects such that 𝑓[0] is a weak

equivalence.

Then consider the diagram

𝑈[1](𝑐) 𝑉[1](𝑐)

𝑈[0] × 𝑈[0] 𝑉[0] × 𝑉[0],

𝑓[1](𝑐)

(𝑑1,𝑑0) (𝑑1,𝑑0)

𝑓[0]×𝑓[0]

∼

(5.7)

where 𝑓[0]×𝑓[0] is a weak equivalence, since the Kan-Quillen model structure is Carte-

sian. Furthermore, the objects 𝑈 and 𝑉 being injective fibrant implies that the verti-

cal arrows are fibrations, so the fibers are weakly equivalent to the homotopy fibers.

Thus the induced map on the homotopy fibers is

map𝑈(𝑥, 𝑦)𝑐 map𝑉 (𝑓(𝑥), 𝑓(𝑦))𝑐.
𝑓*

Now 𝑓 is a levelwise weak equivalence on the mapping objects if and only if the

squares (5.7) are homotopy pullbacks for all 𝑐 ∈ 𝐶, which happens if and only if 𝑓[1](𝑐)

is a weak equivalence. Now if we suppose that 𝑓 is a DK-equivalence, then 𝑓 is a weak

equivalence on levels [0] and [1](𝑐) for all 𝑐 which is sufficient for 𝑓 to be a levelwise

equivalence by Proposition 2.19.

Conversely, if 𝑓 is a levelwise weak equivalence then it induces levelwise weak

equivalences on all mapping objects and is a simplicial homotopy equivalence, the

latter of which implies that it induces an equivalence of homotopy categories. Thus

𝑓 is a DK-equivalence.

Between Segal objects levelwise weak equivalences are stronger than DK-equivalences,

since the essential surjectivity condition is too weak to control the behaviour of the

level [0]. However, the completeness condition allows us to control the level [0] in part

by using information on 1-cells. To establish this connection, we use the following

notion as a tool.

Definition 5.8. A map of Kan complexes is a homotopy monomorphism if it is
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injective on 𝜋0 and a weak equivalence restricted to each component.

Note that a component-wise weak equivalence that is bijective on 𝜋0 is a weak

equivalence.

Lemma 5.9. A map of simplicial sets is a weak equivalence if and only if it is a

homotopy monomorphism and surjective on 𝜋0.

The following lemma allows us to characterize homotopy monomorphisms in terms

of homotopy limits.

Lemma 5.10. Let 𝑓 : 𝑋 → 𝑌 be a map of Kan complexes. Then 𝑓 is a homotopy

monomorphism if and only if the following diagram is a homotopy pullback:

𝑋 𝑌

𝑋 ×𝑋 𝑌 × 𝑌.

Δ

𝑓

Δ

𝑓×𝑓
(5.11)

Proof. The diagram (5.11) is naturally weakly equivalent to

Map(∆[1], 𝑋) Map(∆[1], 𝑌 )

Map(∆[0]⨿∆[0], 𝑋) Map(∆[0]⨿∆[0], 𝑌 ),

𝑓*

𝑓*

where the vertical arrows are Kan fibrations since 𝑋 and 𝑌 are Kan complexes. The

objects on the top row are spaces of free paths in 𝑋 and 𝑌 , respectively, and thus the

fibers of the vertical morphisms are spaces of path with fixed endpoints. Furthermore,

two points 𝑥0, 𝑥1 ∈ 𝑋0 are in the same same component if and only if the space of

paths between them is non-empty, and similarly for 𝑓(𝑥0), 𝑓(𝑥1) in 𝑌0. Additionally,

for 𝑥0 and 𝑥1 in the same path component, the space of paths between them is weakly

equivalent to the based loop space on either of the points.

Thus the diagram (5.11) is a homotopy pullback if and only if 𝑓 induces weak

equivalences on all the path spaces with fixed endpoints, which in turn is equivalent
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to 𝑓 being injective on 𝜋0 and inducing weak equivalences on the loop spaces of all

components of 𝑋 and 𝑌 . However, a weak equivalence of loop spaces is equivalently

a map that induces isomorphisms on 𝜋𝑖 for 𝑖 ≥ 1. Since each component is also

connected, 𝑓 is a weak equivalences on the loop spaces of all components if and only

if it is a weak equivalence on all components. Thus the diagram (5.11) is a homotopy

pullback if and only if 𝑓 is a homotopy monomorphism.

Now we are ready to prove that between complete Segal objects DK-equivalences

coincide with levelwise weak equivalences and thus also with Cplt(𝑆)-local equiva-

lences, categorical equivalences and simplicial homotopy equivalences.

Proposition 5.12. A map between Cplt(𝑆)-fibrant objects in sPSh(Θ𝐶) is a level-

wise weak equivalence if and only if it is a DK-equivalence.

Proof. Due to Lemma 5.6 we only need to prove the reverse direction, where it suffices

to show that 𝑓[0] is a weak equivalence. Let 𝑓 : 𝑈 → 𝑉 be a DK-equivalence of Cplt(𝑆)-

fibrant objects. Since 𝑓 induces levelwise weak equivalences on all mapping spaces,

the following diagram is a homotopy pullback square for any 𝑐 ∈ 𝐶:

𝑈[1](𝑐) 𝑉[1](𝑐)

𝑈[0] × 𝑈[0] 𝑉[0] × 𝑉[0].

𝑓[1](𝑐)

(𝑑1,𝑑0)

⌟ℎ
(𝑑1,𝑑0)

𝑓[0]×𝑓[0]

Restricting the case 𝑐 = 𝑡 to the components consisting of homotopy equivalences, we

get the following diagram:

𝑈[0] 𝑉[0]

𝑈𝑒𝑞 𝑉𝑒𝑞

𝑈[0] × 𝑈[0] 𝑉[0] × 𝑉[0]

𝑓[0]

𝑠0 ∼ 𝑠0 ∼

𝑓𝑒𝑞

⌟ℎ

𝑓[0]×𝑓[0]

where the maps 𝑠0 are weak equivalences, since 𝑈 and 𝑉 are Cplt(𝑆)-fibrant. It

follows that the outer rectangle is also a homotopy pullback with diagonals as the
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vertical maps:

𝑈[0] 𝑉[0]

𝑈[0] × 𝑈[0] 𝑉[0] × 𝑉[0].

𝑓[0]

Δ

⌟ℎ
Δ

𝑓[0]×𝑓[0]

Since this diagram is a homotopy pullback, 𝑓[0] is a homotopy monomorphism by

Lemma 5.10. Due to the completeness of 𝑉 the essential surjectivity of 𝑓 on the

homotopy categories is equivalent to surjectivity on 𝜋0. Thus 𝑓[0] is both a homotopy

monomorphism and surjective on 𝜋0 and hence a weak equivalence by Lemma 5.9.

Our next goal is to establish a connection between DK-equivalences and categorical

equivalences also for Segal objects without completeness. To this end, we require a

few technical lemmata.

Lemma 5.13. Let 𝑊 be Se(𝑆)-fibrant object in sPSh(Θ𝐶). Then the following

diagrams are (homotopy) pullback squares:

𝑊[1](𝑐1) 𝑊[2](𝑐1,𝑐2) 𝑊[1](𝑐2) 𝑊[2](𝑐1,𝑐2)

𝑊[0] 𝑊[1](𝑐2) 𝑊[0] 𝑊[1](𝑐1).

𝑠1

𝑑0
⌟

𝑑0

𝑠0

𝑑1
⌟

𝑑2

𝑠0 𝑠0

Proof. In the left-hand diagram we can use the Segal condition to replace 𝑊[2](𝑐1,𝑐2)

by 𝑊[1](𝑐1) ×𝑊[0]
𝑊[1](𝑐2), and then perform the cancellations

(︂
𝑊[1](𝑐1) ×

𝑊[0]

𝑊[1](𝑐2)

)︂
×

𝑊[1](𝑐2)

𝑊[0]
∼= 𝑊[1](𝑐1) ×

𝑊[0]

𝑊[0]

∼= 𝑊[1](𝑐1).

Furthermore, the squares are also homotopy pullbacks due to injective fibrancy of 𝑊 .

The argument for the right diagram is similar.

The following lemma identifies a product decomposition for the suspension func-

tor.

Lemma 5.14. [Rez10, 4.9] Let 𝑋 and 𝑌 be objects of sPSh(𝐶). Then the following
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diagram is a pushout square:

𝑉 [1](𝑋 × 𝑌 ) 𝑉 [2](𝑋, 𝑌 )

𝑉 [2](𝑌,𝑋) 𝑉 [1](𝑋)× 𝑉 [1](𝑌 ),

𝑉 [𝛿1](id𝑋×𝑌 )

𝑉 [𝛿1](id𝑋×𝑌 )

⌜

(𝑉 [𝜎1](id𝑋),𝑉 [𝜎0](id𝑌 ))

(𝑉 [𝜎0](id𝑋),𝑉 [𝜎1](id𝑌 ))

where 𝛿𝑖 and 𝜎𝑖 denote the 𝑖th face and degeneracy maps, respectively.

Note that the inclusion of components 𝑊𝑒𝑞 ⊆ 𝑊[1](𝑡) is, in particular, a homotopy

monomorphism, which combined with the weak equivalence described in Proposition

5.3 gives us the following result.

Lemma 5.15. Let 𝑊 be a Se(𝑆)-fibrant object in sPSh(Θ𝐶). Then the maps

Map(𝜋*𝐸,𝑊 ) → Map(𝜋*𝐹 [1],𝑊 )

induced by the inclusions [1] →˓ 𝐼 are homotopy monomorphisms.

The next lemma tells us that the projections associated to the path objects for

the interval 𝜋*𝐸 are DK-equivalences, creating a link to categorical equivalences.

Lemma 5.16. Let 𝑊 be a Se(𝑆)-fibrant object of sPSh(Θ𝐶). Then the maps 𝑟* : 𝑊 →

𝑊 𝜋*𝐸 and (𝑗0)
*, (𝑗1)

* : 𝑊 𝜋*𝐸 → 𝑊 induced by 𝑟 : 𝜋*𝐸 → 𝐹 [0] and the inclusions

𝑗0, 𝑗1 : 𝐹 [0] → 𝐸 are DK-equivalences.

Proof. By the two-out-of-three property it suffices to show that 𝑟* is a DK-equivalence.

The map 𝑟 is given by a discrete nerve of an equivalence of categories and is thus a cat-

egorical equivalence, so Corollary 4.13 tells us that the induced map 𝑟* : 𝑊 → 𝑊 𝜋*𝐸

is also a categorical equivalence. Then the induced functor on homotopy categories

Ho(𝑊 ) → Ho(𝑊 𝜋*𝐸) is an equivalence by Lemma 5.2. We want to show that we have

levelwise weak equivalences on mapping objects map𝑊 (𝑥, 𝑦) → map𝑊𝜋*𝐸(𝑟*𝑥, 𝑟*𝑦),

which we do via the two-out-of-three property.
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Consider the inclusion 𝑖 : 𝐹 ([1](𝑡)) ∼= 𝜋*𝐹 [1] →˓ 𝜋*𝐸 and the map 𝑖* : 𝑊 𝜋*𝐸 → 𝑊 𝐹 ([1](𝑡))

it induces, which appears in the diagram

𝑊[1](𝑐) (𝑊 𝜋*𝐸)[1](𝑐) (𝑊 𝐹 ([1](𝑡)))[1](𝑐)

𝑊[0] ×𝑊[0] (𝑊 𝜋*𝐸)[0] × (𝑊 𝜋*𝐸)[0] (𝑊 𝐹 ([1](𝑡)))[0] × (𝑊 𝐹 ([1](𝑡)))[0].

𝑟*
[1](𝑐)

𝑖*
[1](𝑐)

𝑟*
[0]

×𝑟*
[0]

𝑖*
[0]

×𝑖*
[0]

(5.17)

Here the composites of the horizontal maps are given by the degeneracy 𝑖 ∘ 𝑟 =

𝜎0 : [1](𝑡) → [0], and the maps induced by 𝑖* are homotopy monomorphisms by Lemma

5.15, since via natural isomorphisms they correspond to the maps

Map(𝜋*𝐸,𝑊 𝐹 ([1](𝑐))) Map(𝜋*𝐹 [1],𝑊 𝐹 ([1](𝑐)))𝑖*

and

Map(𝜋*𝐸,𝑊 𝐹 [0]⨿𝐹 [0]) Map(𝜋*𝐹 [1],𝑊 𝐹 [0]⨿𝐹 [0]).𝑖*

By commutativity of homotopy limits, we also have levelwise homotopy monomor-

phisms on the homotopy fibers of the vertical maps of the right square in diagram

(5.17),

map𝑊𝜋*𝐸(𝑥, 𝑦) → map𝑊𝐹 ([1](𝑡))(𝑖*𝑥, 𝑖*𝑦).

Next we show that the large rectangle in the diagram (5.17) above is a homotopy

pullback for each 𝑐. To this end, consider the isomorphisms

𝑊[2](𝑡,𝑐) ×
𝑊[1](𝑐)

𝑊[2](𝑐,𝑡)
∼= Map(𝐹 ([2](𝑡, 𝑐)) ⨿

𝐹 ([1](𝑐))
𝐹 ([2](𝑐, 𝑡)),𝑊 )

∼= Map(𝐹 ([1](𝑐))×𝐹 ([1](𝑐)),𝑊 )

∼= (𝑊 𝐹 ([1](𝑐)))[1](𝑐),

the second of which follows from Lemma 5.14. Now the outer rectangle of (5.17) is
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equivalent to

𝑊[1](𝑐) 𝑊[2](𝑡,𝑐) ×𝑊[1](𝑐)
𝑊[2](𝑐,𝑡)

𝑊[0] ×𝑊[0] 𝑊[1](𝑡) ×𝑊[1](𝑡).

(𝑠0,𝑠1)

(𝑑1,𝑑0) (𝑑2 pr1 ,𝑑0 pr2)

𝑠0×𝑠0

Then, by viewing the products on the bottom row as fibered over the terminal object

∆[0], we can use commutativity of homotopy pullbacks with one another to decompose

the diagram into the three other diagrams below, which are seen to be homotopy

pullbacks in Lemma 5.13:

𝑊[1](𝑐) 𝑊[2](𝑡,𝑐) ×ℎ
𝑊[1](𝑐)

𝑊[2](𝑐,𝑡) 𝑊[1](𝑐) 𝑊[2](𝑐,𝑡)

𝑊[0] ×𝑊[0] 𝑊[1](𝑡) ×𝑊[1](𝑡) 𝑊[0] 𝑊[1](𝑡)

𝑊[1](𝑐) 𝑊[2](𝑡,𝑐) 𝑊[1](𝑐) 𝑊[1](𝑐)

𝑊[0] 𝑊[1](𝑡) {*} {*}.

(𝑠0,𝑠1)

(𝑑1,𝑑0) (𝑑2 pr1 ,𝑑0 pr2)

𝑠1

𝑑0

⌟ℎ
𝑑0

𝑠0×𝑠0 𝑠0

𝑠0

𝑑1

⌟ℎ
𝑑2

⌟ℎ

𝑠0

Since the homotopy pullback of the three homotopy pullbacks is precisely what ap-

pears in the top left corner of the top left square, it is a homotopy pullback. Thus

the outer rectangle of diagram (5.17) is also a homotopy pullback square, and hence

the induced map on the homotopy fibers is a weak equivalence.

Now we have the following commutative diagram on the mapping spaces:

map𝑊 (𝑥, 𝑦)𝑐 map𝑊𝐹 ([1](𝑡))(𝑠0𝑥, 𝑠0𝑦)𝑐

map𝑊𝜋*𝐸(𝑟*𝑥, 𝑟*𝑦)𝑐

(𝑠0)*
∼

(𝑟*)*
(𝑖*)*

.

In particular, (𝑠0)* = (𝑖*)*(𝑟
*)* is surjective on 𝜋0 and hence so is (𝑖*)* which then

is a weak equivalence by Lemma 5.9 as it is also a homotopy monomorphism. By

the two-out-of-three property, 𝑟* also induces weak equivalences on mapping spaces

levelwise and is thus a DK-equivalence.
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Proposition 5.18. If a map between Se(𝑆)-fibrant objects of sPSh(Θ𝐶) is a cate-

gorical equivalence, then it is a DK-equivalence.

Proof. Let 𝑓 : 𝑈 → 𝑉 be a categorical equivalence between Se(𝑆)-fibrant objects

with left and right weak inverses 𝑔, ℎ : 𝑉 → 𝑈 , respectively. Consider the categorical

homotopies 𝐻,𝐻 ′ as in the diagrams below:

𝑈 𝑉

𝑉 𝑈

𝑈 𝑈𝜋*𝐸 𝑉 𝑉 𝜋*𝐸

𝑈 𝑉.

ℎ 𝑓

𝑓

𝐻

(𝑗0)*

(𝑗1)*

𝑔

𝐻′

(𝑗0)*

(𝑗1)*

By Lemma 5.16 the maps (𝑗0)*, (𝑗1)* are DK-equivalences, as are the identities. Then

by the two-out-of-three property, 𝑓ℎ and 𝑔𝑓 are also DK-equivalences, and by the

two-out-of-six property so is 𝑓 .

The notion of DK-equivalence we have discussed so far is sufficient for results

regarding the completion in the horizontal direction in the next chapter; as such the

reader may want to defer the remainder of this chapter until Chapter 7 where we

need the more general notion of DK-equivalence that we discuss next.

Definition 5.19. Let 𝑓 : 𝑈 → 𝑉 be a map of Se𝑛(𝑆)-fibrant objects of sPSh(Θ𝑛𝐶)

and 𝑘 ≤ 𝑛. We say that 𝑓 is a DK-equivalence of Se𝑛(𝑆)-fibrant objects if

(1) the functor Ho(𝑓) : Ho(𝑈) → Ho(𝑉 ) is an equivalence of categories, and

(2) the maps map𝑈(𝑥, 𝑦) → map𝑉 (𝑓(𝑥), 𝑓(𝑦)) are DK-equivalences of Se𝑛−1(𝑆)-

fibrant objects for all 𝑥 and 𝑦,

where a DK-equivalence of 𝑆-fibrant objects is a levelwise weak equivalence.

45



Reductions for condition (1) may be done as in Definition 5.4.

Note that for maps between Se𝑛−𝑘(Cplt𝑘(𝑆))-fibrant objects we now have multiple

a priori distinct notions of a DK-equivalence, since we may take 𝐶 ′ = Θ𝑘𝐶 and

𝑆 ′ = Cplt𝑘(𝑆). In such a case we may ask that the morphisms that our map induces

on the (𝑛 − 𝑘)-fold iterated mapping objects are either levelwise weak equivalences

or DK-equivalences of Se𝑘(𝑆)-fibrant objects. However, in the case 𝑘 = 1 these two

notions coincide by Proposition 5.12, since the iterated mapping objects are Cplt(𝑆)-

fibrant, and by induction the two notions coincide also for higher values of 𝑘. In more

formal terms, we have the following result.

Lemma 5.20. A map of Cplt𝑛(𝑆)-fibrant objects of sPSh(Θ𝑛𝐶) is a DK-equivalence

of Se𝑛(𝑆)-fibrant objects if and only if it is a DK-equivalence of Se𝑛−𝑘(Cplt𝑘(𝑆))-

fibrant objects for any 𝑘 < 𝑛.

The case 𝑘 = 𝑛 − 1 is Definition 5.4, and because of the independence of 𝑘, we

may call a map satisfying the equivalent conditions in the lemma above simply a

DK-equivalence, extending the prior definition.

A straightforward induction may be used to show that this more general notion

of DK-equivalence also satisfies the two-out-of-three and two-out-of-six properties.

Between Cplt𝑛(𝑆)-fibrant objects our new definition of DK-equivalence coincides

with the prior one, which implies that Proposition 5.12 may be rephrased in the

following form.

Proposition 5.21. A map of Cplt𝑛(𝑆)-fibrant objects of sPSh(Θ𝑛𝐶) is a DK-equivalence

if and only if it a levelwise weak equivalence.

Note that as in the case 𝑛 = 1, levelwise weak equivalences are always DK-

equivalences, but for Se(𝑆)-fibrant objects the converse may fail at level [0]. For

Se𝑛(𝑆)-fibrant objects for general 𝑛, DK-equivalences may fail to be equivalences

at levels of dimension up to 𝑛 − 1, which are captured by the underlying Θ𝑛−1-

space. Recall, however, that for 𝑛 = 1 the completeness condition gives sufficient

control over the space of objects to obtain the converse implication, and in general

the completeness condition in dimension 𝑛 allows us to extend control of 𝑛-cells to
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control of (𝑛 − 1)-cells. Thus we obtain the following generalization of Proposition

5.6.

Proposition 5.22. A map of Se𝑛−1Cplt(𝑆)-fibrant objects of sPSh(Θ𝑛𝐶) is a lev-

elwise weak equivalence if and only if it a DK-equivalence and an equivalence of the

underlying Θ𝑛−2-spaces.

Proof. It suffices to show the backwards implication. Let 𝑓 : 𝑋 → 𝑌 be a DK-

equivalence of Se𝑛−1Cplt(𝑆)-fibrant objects that is a levelwise weak equivalence of

the underlying Θ𝑛−2-spaces. It follows by Proposition 5.12 that 𝑓 is a levelwise

equivalence on the (𝑛− 1)st iterated mapping objects. We use an inductive argument

to go down in dimensions. Using Proposition 3.10, we obtain the isomorphisms for

each 𝑘

map𝑛−𝑘
𝑋 (𝛼, 𝛼′)[0] ∼= (𝜏 𝑘0 )

*map𝑛−𝑘
𝑋 (𝛼, 𝛼′) ∼= map𝑛−𝑘

(𝜏𝑛𝑛−𝑘)
*𝑋(𝛼, 𝛼

′)

and similarly

map𝑛−𝑘
𝑌 (𝑓(𝛼), 𝑓(𝛼′))[0] ∼= map𝑛−𝑘

(𝜏𝑛𝑛−𝑘)
*𝑌 (𝑓(𝛼), 𝑓(𝛼

′)),

where the level [0] should be replaced by 𝑡 in the case 𝑘 = 𝑛. By assumption 𝑓 is a

levelwise weak equivalence on the underlying Θ𝑛−𝑘-spaces for each 𝑘 = 2, . . . , 𝑛, so

the above isomorphisms give us an equivalence

(𝑓*)[0] : map𝑛−𝑘
𝑋 (𝛼, 𝛼′)[0] ≃ map𝑛−𝑘

𝑌 (𝑓(𝛼), 𝑓(𝛼′))[0].

Now suppose that 𝑓 is a levelwise weak equivalence of (𝑛 − 𝑘)th iterated mapping

objects for some 𝑘 = 1, . . . , 𝑛− 1. It then follows by Lemma 5.6 that 𝑓 is a levelwise

weak equivalence of (𝑛−𝑘−1)st iterated mapping objects. Thus 𝑓 is a levelwise weak

equivalence by induction.
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Chapter 6

Horizontal completion

In this chapter we consider the completion in the lowest dimension, which serves

as an inductive base case for the more general completion constructions in the next

chapter.

We recall the following definition for our construction.

Definition 6.1. Let X be a simplicial object in sPSh(𝐶). We define the simplicial

diagonal of X as the object of sPSh(𝐶) given levelwise as

diag𝑞(X𝑞)𝑐,𝑝 := (X𝑝)𝑐,𝑝.

Given a Segal object 𝑊 in sPSh(Θ𝐶), a failure of completeness has to do with

incongruence between the space of objects 𝑊[0] and the space of equivalences 𝑊𝑒𝑞,

and it may be corrected for by encoding the equivalences into the space of objects. A

naïve attempt at this could be to replace 𝑊 by the object 𝑊 𝜋*𝐸, the object of maps

from the walking equivalence to 𝑊 . However, the object 𝑊 𝜋*𝐸 can be much larger

than 𝑊 , including on the set of objects in a way that makes it fail to be DK-equivalent

to 𝑊 .

A more refined approach is to extend the interval 𝜋*𝐸 into a cosimplicial object,

so that maps from it to 𝑊 become a simplicial resolution for 𝑊 which agrees with 𝑊

at level 0. Then taking the simplicial diagonal of this resolution in many cases results

in an object that is complete and DK-equivalent to 𝑊 . Let 𝐼(𝑝) be the category
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consisting of a chain of 𝑝 composable isomorphisms or equivalently the connected

groupoid on 𝑝 + 1 objects or the groupoid completion of [𝑝]. Then the discrete

nerves 𝜋*𝐸(𝑝) := 𝜋*𝑁𝐼(𝑝) assemble into a cosimplicial object in sPSh(Θ𝐶) with

𝜋*𝐸(0) = 𝜋*𝑁(*) ∼= 𝐹 [0].

Construction 6.2. Consider the functor on sPSh(Θ𝐶) that sends an object 𝑊 to

the simplicial object [𝑝] ↦→ T1
𝑝𝑊 := 𝑊 𝜋*𝐸(𝑝). We define the dimension 1 precomple-

tion functor ̃︀𝑇 1 : sPSh(Θ𝐶) → sPSh(Θ𝐶) as the simplicial diagonal of T1, which

may be described levelwise as

(̃︀𝑇 1𝑊 )𝜃,𝑝 = (𝑊 𝜋*𝐸(𝑝))𝜃,𝑝 ∼= Hom(𝐹 (𝜃)× 𝜋*𝐸(𝑝)×∆[𝑝],𝑊 )

for 𝜃 ∈ Θ𝐶 and [𝑝] ∈ ∆. In general, the simplicial diagonal may break injective

fibrancy, so we define the dimension 1 completion functor 𝑇 1 as the composite ℱ ̃︀𝑇 1

for a for a fixed functorial injective fibrant replacement ℱ .

Additionally, the morphisms 𝜋*𝐸(𝑝) → 𝐹 [0] induce natural maps 𝑊 ∼= 𝑊 𝐹 [0] →

𝑊 𝜋*𝐸(𝑝) whose diagonal followed by the fibrant replacement maps define a natural

transformation 𝜂1 : id ⇒ 𝑇 1.

While the functor 𝑇 1 is well defined for any presheaf in sPSh(Θ𝐶), we are only

interested in its behaviour on Segal objects, since only then is the completeness con-

dition meaningful.

In the case 𝐶 = *, the functor 𝑇 1 coincides with the Rezk completion [Rez01, §14],

and for 𝐶 = Θ𝑛−1, functor 𝑇 1 may also be viewed as an extension of the simplicial

completion of 𝑛-quasi-categories as we now explain.

Example 6.3. Consider 𝐶 = Θ𝑛−1 and let 𝜄 : PSh(Θ𝑛) →˓ sPSh(Θ𝑛) be the dis-

crete inclusion. Then ̃︀𝑇 1𝜄 is naturally isomorphic to the right adjoint of the Quillen

equivalence between 𝑛-quasi-categories and complete Segal Θ𝑛-spaces associated to

simplicial completion as described in [Ara14, 8.8]. Considering the same adjunction

with respect to model structures without completeness in dimensions above 1 shows

that ̃︀𝑇 1𝑊 is already injective fibrant for any 𝑊 in the image of fibrant objects under

the right adjoint, which includes all discrete Segal Θ𝑛-spaces.
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The injective fibrant replacement not being required in the above case is significant

as ̃︀𝑇 1 is a right adjoint and completely explicit in construction, unlike the injective

fibrant replacement functor ℱ .

These examples already show that the completions of certain objects are indeed

complete, and we show this to be the case for any Segal object as a part of the main

result of this chapter, Theorem 6.14.

We start by examining how the completion behaves with respect to categorical

equivalences by considering the completion of the interval object 𝜋*𝐸. We may reduce

the computation to the case of Segal spaces, where the precompletion of the discrete

nerve is known to coincide with the homotopy coherent nerve functor called the

classifying diagram as discussed in [Rez01, 14.2]. In particular, the classifying diagram

preserves weak equivalences, giving us the following result.

Lemma 6.4. [Rez01, 3.5] Let 𝐶 = * be the terminal category. Then the functor ̃︀𝑇 1𝑁

takes equivalences of categories to Cplt-local equivalences.

The (pre)completion also commutes with inclusions induced by enlarging the cate-

gory 𝐶, which the next lemma shows in the case when starting with simplicial spaces.

Lemma 6.5. Let 𝑋 ∈ sPSh(∆) be a simplicial space. Then ̃︀𝑇 1𝜋*𝑋 ∼= 𝜋* ̃︀𝑇 1𝑋.

Proof. Let 𝜃 ∈ Θ𝐶 and [𝑝] ∈ ∆, and recall that 𝜋* ∼= 𝜏!. Then using the adjunction

𝜋! ⊣ 𝜋* we obtain natural isomorphisms:

(̃︀𝑇 1𝜋*𝑋)𝜃,𝑝 ∼= HomsPSh(Θ𝐶)(𝐹 (𝜃)× 𝜋*𝐸(𝑝)×∆[𝑝], 𝜋*𝑋)

∼= HomsPSh(Δ)(𝜋!(𝐹 (𝜃)× 𝜏!𝐸(𝑝)×∆[𝑝]), 𝑋).

We may then observe that the functor 𝜋! commutes with finite products, since the

product as a left adjoint preserves left Kan extensions; see for example [Rie16, 6.3.2.]

for this fact. Additionally, on the representables we have the formula 𝜋!𝐹 ∼= 𝐹𝜋, and
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𝜋! acts as the identity on constant presheaves giving us further natural isomorphisms:

(̃︀𝑇 1𝜋*𝑋)𝜃,𝑝 ∼= HomsPSh(Δ)(𝜋!𝐹 (𝜃)× 𝜋!𝜏!𝐸(𝑝)×∆[𝑝], 𝑋)

∼= HomsPSh(Δ)(𝐹 (𝜋𝜃)× (𝜋𝜏)!𝐸(𝑝)×∆[𝑝], 𝑋)

∼= HomsPSh(Δ)(𝐹 (𝜋𝜃)× 𝐸(𝑝)×∆[𝑝], 𝑋)

= (̃︀𝑇 1𝑋)𝜋𝜃,𝑝

= (𝜋* ̃︀𝑇 1𝑋)𝜃,𝑝.

Corollary 6.6. The unique map 𝑇 1𝜋*𝐸 → 𝐹 [0] is a levelwise weak equivalence.

Proof. We utilize the two-out-of-three property using the commutative diagram

𝜋* ̃︀𝑇 1𝐸 ̃︀𝑇 1𝜋*𝐸 𝑇 1𝜋*𝐸

𝜋*𝐹 [0] 𝐹 [0],

𝜋*𝑟

∼= ∼

∼=

where 𝑟 : ̃︀𝑇 1𝐸 → 𝐹 [0] is the unique map to the terminal object, which is a levelwise

weak equivalence, since it is the Rezk nerve applied to the equivalence 𝐼 → [0].

The map 𝜋*𝑟 is then also a levelwise weak equivalence, since 𝜋* preserves levelwise

weak equivalences as a precomposition functor. The isomorphisms and the fibrant

replacement are levelwise weak equivalences, so then is the remaining vertical map

on the right by the two-out-of-three property as claimed.

Then since the inclusions 𝐹 [0] → 𝑇 1𝜋*𝐸 are cofibrations, we obtain the following

key results.

Corollary 6.7. The object 𝑇 1𝜋*𝐸 is an interval object for the injective model struc-

ture on sPSh(Θ𝐶).

Corollary 6.8. The completion functor takes categorical equivalences to levelwise

weak equivalences.
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Proof. The functor ̃︀𝑇 1 preserves products, so 𝑇 1 preserves them up to levelwise weak

equivalence or equivalently up to 𝑇 1𝜋*𝐸-homotopy equivalence by Lemma 4.11. Thus̃︀𝑇 1 takes 𝜋*𝐸-homotopy equivalences to 𝑇 1𝜋*𝐸-homotopy equivalence by Proposition

4.16 proving the claim.

In order to study the behaviour of the completion we also need some properties of

the simplicial diagonal. The following theorem, which is originally due to Bousfield

and Kan [BK72, Ch. XI, 2.6], characterizes the diagonal as a homotopy colimit.

Theorem 6.9. [Hir03, 18.7.4., 15.11.6.] Let X be an injective cofibrant simplicial

object in a simplicial model structure on sPSh(𝐶). Then there is a natural weak

equivalence

hocolim
𝑞∈Δ

X𝑞
∼→ diag𝑞 X𝑞

called the Bousfield-Kan map.

In particular, the diagonal commutes with other homotopy colimits and is homo-

topy invariant.

Corollary 6.10. Let 𝑓 : X → Y be a map between injective cofibrant simplicial

objects in a simplicial model structure on sPSh(𝐶) such that 𝑓𝑞 : X𝑞 → Y𝑞 is a

weak equivalence for all 𝑞. Then the induced map

diag𝑞 𝑓𝑞 : diag𝑞 X𝑞 → diag𝑞 Y𝑞

is a weak equivalence.

Note that in the model structures that we consider on sPSh(𝐶) the assumption

on cofibrancy is always satisfied.

Lemma 6.11. Let X be a simplicial object and 𝐴 a discrete object in sPSh(𝐶). Then

there is a natural isomorphism

Map(𝐴, diagX) ∼= diagMap(𝐴,X).
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Proof. Using the fact that evaluation at level 0 is left adjoint to the discrete inclusion

Set →˓ sSet, we get a chain of natural bijections giving us the desired isomorphism

levelwise:

Map(𝐴, diag𝑞 X𝑞)𝑝 ∼= HomsPSh(𝐶)(𝐴×∆[𝑝], diag𝑞 X𝑞)

∼= HomsPSh(𝐶)(𝐴, (diag𝑞 X𝑞)
Δ[𝑝])

∼= HomPSh(𝐶)(𝐴, ((diag𝑞 X𝑞)
Δ[𝑝])·,0)

∼= HomPSh(𝐶)(𝐴, ((diag𝑞 X𝑞))·,𝑝)

∼= HomPSh(𝐶)(𝐴, (X𝑝)·,𝑝)

∼= HomPSh(𝐶)(𝐴, ((X𝑝)
Δ[𝑝])·,0)

∼= HomsPSh(𝐶)(𝐴, (X𝑝)
Δ[𝑝])

∼= HomsPSh(𝐶)(𝐴×∆[𝑝],X𝑝)

∼= Map(𝐴,X𝑝)𝑝

∼= (diag𝑞 Map(𝐴,X𝑞))𝑝.

Despite being a homotopy colimit, the diagonal also has some compatibility with

limits and homotopy limits.

Lemma 6.12. The simplicial diagonal commutes with finite limits.

Proof. The result follows by direct computation using the fact that both the diagonal

and the limits are levelwise.

Lemma 6.13. [BR20, 8.20] Let X → Y be a map of simplicial objects of sPSh(𝐶)

such that, for every map [𝑞] → [𝑝] in ∆, the induced diagram

X𝑞 X𝑝

Y𝑞 Y𝑝
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is a levelwise homotopy pullback square. Then the diagram

X0 hocolim
𝑞∈Δ

X𝑞

Y0 hocolim
𝑞∈Δ

Y𝑞

is also a levelwise homotopy pullback square.

We are now ready prove that the dimension 1 completion satisfies properties anal-

ogous to the Rezk completion [Rez01, §14].

Theorem 6.14. Let 𝑊 be a Se(𝑆)-fibrant object in sPSh(Θ𝐶). Then

(1) 𝑇 1𝑊 is Cplt(𝑆)-fibrant,

(2) 𝜂1𝑊 is a Cplt(𝑆)-local acyclic cofibration, and

(3) 𝜂1𝑊 is a DK-equivalence.

Proof. We start with the second property by decomposing 𝜂1𝑊 into three maps, each of

which is a Cplt(𝑆)-local equivalence. All functors 𝐼(𝑞) → 𝐼(𝑝) induced by maps [𝑞] →

[𝑝] in ∆ are equivalences of categories and are thus taken to categorical equivalences

𝜋*𝐸(𝑞) → 𝜋*𝐸(𝑝) by the discrete nerve by Corollary 4.20. Then by Corollary 4.13

the maps 𝑊 𝜋*𝐸(𝑝) → 𝑊 𝜋*𝐸(𝑞) are also categorical equivalences between Se(𝑆)-fibrant

objects and hence Cplt(𝑆)-local equivalences by Proposition 4.22. In particular, when

𝑝 = 0 we get maps 𝑊 → 𝑊 𝜋*𝐸(𝑞) whose homotopy colimit in the Cplt(𝑆)-local model

structure then remains a Cplt(𝑆)-local equivalence

𝑊 = hocolim
[𝑞]∈Δ

𝑊
∼→ hocolim

[𝑞]∈Δ
𝑊 𝜋*𝐸(𝑞),

which is our first map in the decomposition. The second is the Bousfield-Kan map,

which applied in the Cplt(𝑆)-local model category, is a Cplt(𝑆)-local equivalence by

Theorem 6.9:

hocolim
[𝑞]∈Δ

𝑊 𝜋*𝐸(𝑞) ∼→ diag𝑞𝑊
𝜋*𝐸(𝑞).
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Finally we have the injective fibrant replacement, which is a levelwise equivalence and

hence also a Cplt(𝑆)-local equivalence:

diag𝑞𝑊
𝜋*𝐸(𝑞) = ̃︀𝑇 1𝑊

∼→ 𝑇 1𝑊.

The map 𝜂1𝑊 is the composite of the three maps above and thus a Cplt(𝑆)-local

equivalence.

Also note that for each 𝑞 the map 𝑊 → 𝑊 𝜋*𝐸(𝑞) is a monomorphism, since it has

a left inverse induced by any map 𝐹 [0] → 𝜋*𝐸(𝑞). Thus the map 𝑊 → diag𝑞𝑊
𝜋*𝐸(𝑞)

is also a monomorphism as it shares its levels with the preceding monomorphisms.

The injective fibrant replacement is also a monomorphism, which means that so is

𝜂1𝑊 . Thus 𝜂1𝑊 is a Cplt(𝑆)-local acyclic cofibration.

Next we consider the behaviour of 𝜂1𝑊 on mapping objects. The maps 𝑓 : 𝑊 𝜋*𝐸(𝑝) →

𝑊 𝜋*𝐸(𝑞) are categorical equivalences between Se(𝑆)-fibrant objects, so they are also

DK-equivalences by Proposition 5.18. Hence we have levelwise weak equivalences on

the mapping objects

𝑓* : map𝑊𝜋*𝐸(𝑝)(𝑥, 𝑦) map𝑊𝜋*𝐸(𝑞)(𝑓(𝑥), 𝑓(𝑦))
∼

and thus on their products as well. By Cartesianness of the Se(𝑆)-local model struc-

ture the objects 𝑊 𝜋*𝐸(𝑞) are Se(𝑆)-fibrant, so 𝑓 also induces levelwise weak equiva-

lences

map𝑊𝜋*𝐸(𝑝)(𝑥0, . . . , 𝑥𝑚) map𝑊𝜋*𝐸(𝑞)(𝑓(𝑥0), . . . , 𝑓(𝑥𝑚))
∼

for 𝑥0, . . . , 𝑥𝑚 ∈ (𝑊 𝜋*𝐸(𝑝))[0]. Then the square below is a homotopy pullback square

for any 𝑐1, . . . , 𝑐𝑚 ∈ 𝐶, since the levels of the above map are the ones induced on the

homotopy fibers of the vertical maps in the diagram

(𝑊 𝜋*𝐸(𝑝))[𝑚](𝑐1,...,𝑐𝑚) (𝑊 𝜋*𝐸(𝑞))[𝑚](𝑐1,...,𝑐𝑚)

(𝑊 𝜋*𝐸(𝑝))𝑚+1
[0] (𝑊 𝜋*𝐸(𝑞))𝑚+1

[0] .

𝑓[𝑚](𝑐1,...,𝑐𝑚)

⌟ℎ

𝑓𝑚+1
[0]
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Lemma 6.13 tells us then that taking the simplicial diagonal results in the left square

below also as a homotopy pullback:

𝑊[𝑚](𝑐1,...,𝑐𝑚) (̃︀𝑇 1𝑊 )[𝑚](𝑐1,...,𝑐𝑚) (𝑇 1𝑊 )[𝑚](𝑐1,...,𝑐𝑚)

𝑊𝑚+1
[0] (̃︀𝑇 1𝑊 )𝑚+1

[0] (𝑇 1𝑊 )𝑚+1
[0] .

⌟ℎ

(𝜂1𝑊 )[𝑚](𝑐1,...,𝑐𝑚)

∼

(𝜂1𝑊 )𝑚+1
[0]

∼

Since the horizontal maps are levelwise weak equivalences in the right square, it is

also a homotopy pullback as is the outer rectangle. Looking at the homotopy fibers

of the vertical maps, we get levelwise weak equivalences

(𝜂1𝑊 )* : map𝑊 (𝑥0, . . . , 𝑥𝑚) map𝑇 1𝑊 (𝜂1𝑊 (𝑥0), . . . , 𝜂
1
𝑊 (𝑥𝑚)),

∼

which for 𝑚 = 1 tells us that 𝜂1𝑊 induces weak equivalences on mapping objects, or

in other words, that 𝜂1𝑊 is homotopically fully faithful. For higher 𝑚 the left side

is weakly equivalent to the iterated product of the mapping objects and thus so is

the right side, which implies that 𝑇 1𝑊 is Se-fibrant. Since the mapping objects are

injective fibrant and levelwise weakly equivalent to the 𝑆-fibrant mapping spaces of

𝑊 , the completion 𝑇 1𝑊 is Se(𝑆)-fibrant.

Next we show that 𝑇 1𝑊 is Cplt-local. We can restrict the weak equivalences on

the mapping spaces to the components consisting of weak homotopy equivalences to

57



obtain the following diagram:

𝑊𝑒𝑞 (̃︀𝑇 1𝑊 )𝑒𝑞 (𝑇 1𝑊 )𝑒𝑞

𝑊[0] ×𝑊[0] (̃︀𝑇 1𝑊 )[0] × (̃︀𝑇 1𝑊 )[0] (𝑇 1𝑊 )[0] × (𝑇 1𝑊 )[0].

(𝑑1,𝑑0)

⌟ℎ

(𝜂1𝑊 )𝑒𝑞

(𝑑1,𝑑0)

∼

(𝑑1,𝑑0)

(𝜂1𝑊 )[0]×(𝜂1𝑊 )[0]

∼

Then using the discreteness of 𝜋*𝐸, we may commute the diagonal with mapping

spaces by Lemma 6.11 to obtain the following chain of natural isomorphisms:

Map(𝜋*𝐸, ̃︀𝑇 1𝑊 ) ∼= Map(𝜋*𝐸, diag𝑞𝑊
𝜋*𝐸(𝑞))

∼= diag𝑞 Map(𝜋*𝐸,𝑊 𝜋*𝐸(𝑞))

∼= diag𝑞(𝑊
𝜋*𝐸(𝑞)×𝜋*𝐸)[0]

∼= (diag𝑞(𝑊
𝜋*𝐸)𝜋

*𝐸(𝑞))[0]

= (̃︀𝑇 1(𝑊 𝜋*𝐸))[0]

∼= Map(𝐹 [0], ̃︀𝑇 1(𝑊 𝜋*𝐸)).

In particular, there is a weak equivalence (̃︀𝑇 1(𝑊 𝜋*𝐸))[0]
∼→ (̃︀𝑇 1𝑊 )𝑒𝑞 ⊆ (̃︀𝑇 1𝑊 )[1](𝑡),

and thus also (𝑇 1(𝑊 𝜋*𝐸))[0]
∼→ (𝑇 1𝑊 )𝑒𝑞. Now since the map 𝑊 → 𝑊 𝜋*𝐸(𝑞) induced

by 𝜋*𝐸 → 𝐹 [0] is a categorical equivalence, it becomes a levelwise equivalence on the

completions and at level [0] fits the following diagram on the left:

(𝑇 1𝑊 )[0] (𝑇 1(𝑊 𝜋*𝐸))[0] (𝑇 1𝑊 )𝑒𝑞,
∼

𝑠0

∼

which tell us precisely that 𝑇 1𝑊 is local with respect to the map 𝜋*𝐸 → 𝐹 [0], that

is, Cplt-local. Since we have already shown 𝑇 1𝑊 to be Se(𝑆)-fibrant, it is then
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Cplt(𝑆)-fibrant.

It remains to show that 𝜂1𝑊 is essentially surjective on homotopy categories. How-

ever, since we have shown the codomain to be Cplt(𝑆)-fibrant, it suffices to show

surjectivity on 𝜋0. Note that the precompletion acts as the identity on objects

𝑊[0],0 = (̃︀𝑇 1𝑊 )[0],0, and on higher simplicies of level [0] we have an injections

𝑊[0],𝑝 = Hom(∆[𝑝],𝑊 ) →˓ Hom(𝜋*𝐸(𝑝)×∆[𝑝],𝑊 ) = (̃︀𝑇 1𝑊 )[0],𝑝.

Thus the induced map on the space of paths in level [0] is an injection, which implies

that the precompletion is surjective: 𝜋0(𝑊[0]) ↠ 𝜋0((̃︀𝑇 1𝑊 )[0]). Additionally, the

injective fibrant replacement is, in particular, a weak equivalence at level [0], which

implies that composing with it retains surjectivity on 𝜋0 for 𝜂1𝑊 :

𝜋0(𝑊[0]) ↠ 𝜋0((𝑇
1𝑊 )[0]).

Thus 𝜂1𝑊 is a DK-equivalence, concluding the proof.

We can now prove a restricted variant of Theorem 1.3, where we assume fibrancy

of the mapping objects. For 𝐶 = Θ𝑛−1 and 𝑆 = Cplt𝑛−1, this theorem was proven

by Bergner in [Ber24, 6.4] via a comparison functor to a different model of (∞, 𝑛)-

categories based in sPSh(∆×Θ𝑛−1).

Theorem 6.15. A map between Se(𝑆)-fibrant objects of sPSh(Θ𝐶) is a DK-equivalence

if and only if it is a Cplt(𝑆)-local equivalence.

Proof. Let 𝑓 : 𝑈 → 𝑉 be a map of Se(𝑆)-fibrant objects of sPSh(Θ𝐶). Then we have

the following commutative diagram:

𝑈 𝑉

𝑇 1𝑈 𝑇 1𝑉.

𝑓

𝜂1𝑈∼ 𝜂1𝑉∼

𝑇 1𝑓

Now we have the following chain of equivalent statements:
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(1) 𝑓 is a Cplt(𝑆)-local equivalence,

(2) 𝑇 1𝑓 is a Cplt(𝑆)-local equivalence,

(3) 𝑇 1𝑓 is a levelwise equivalence,

(4) 𝑇 1𝑓 is a DK-equivalence, and

(5) 𝑓 is a DK-equivalence.

Here the equivalences (1) ⇔ (2) and (4) ⇔ (5) are due to two-out-of-three properties;

(2) ⇔ (3) follows from Cplt(𝑆)-fibrancy of 𝑇 1𝑈 and 𝑇 1𝑉 obtained by Theorem 6.14;

and (3) ⇔ (4) follows by Proposition 5.12.
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Chapter 7

Suspended completions

In this chapter, we inductively extend the completion functor to the higher di-

mensional completeness conditions, and prove that the higher dimensional completion

functors satisfy Theorem 1.1. We then use the completion to obtain a characteriza-

tion of each of the completeness conditions in terms of DK-equivalences, analogously

to Theorem 6.15 for dimension 1. The completions for different dimensions are suffi-

ciently compatible with each other so that we may apply the completions successively

to complete in all dimension and retain properties outlined in Theorem 1.2. Lastly, we

use the combined completion to characterize DK-equivalences between Segal objects

as stated in Theorem 1.3. All results in this chapter generalize those in the previous

one, and thus it suffices to prove the cases 𝑛 ≥ 2.

Construction 7.1. Consider the diagram 𝑄1 : Θ𝐶 ×∆ → sPSh(Θ𝐶) given by the

formula

𝑄1
𝜃,𝑝 = 𝐹 (𝜃)× 𝜋*𝐸(𝑝),

which may be thought of as a chain of 𝑝 equivalences of diagrams of the shape 𝜃.

Recall also that ̃︀𝑇 1𝑊𝜃
∼= diag𝑞 Map(𝑄1

𝜃,𝑞,𝑊 ). Suppose then that 𝑊 is an object of

sPSh(Θ𝑛𝐶). In order to elevate the completion to the mapping objects of 𝑊 , we

want to apply the left adjoint of the mapping object functor, that is, the suspension

𝑉 [1] to the diagram 𝑄1. However, in order to make the completion uniform on all

mapping objects in a way that is also compatible with the Segal conditions and to
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preserve objects, we instead have to use the more general intertwining functor 𝑉 for

the following recursive definition:

𝑄𝑛
[𝑚](𝜃1,...,𝜃𝑚),𝑝 := 𝑉 [𝑚](𝑄𝑛−1

𝜃1,𝑝
, . . . , 𝑄𝑛−1

𝜃𝑚,𝑝),

where now 𝑄𝑛 is a diagram Θ𝑛𝐶 ×∆ → sPSh(Θ𝑛𝐶).

We can then define the functorial simplicial object T𝑛𝑊 with levelwise formula

T𝑛
𝑞𝑊𝜃 = Map(𝑄𝑛

𝜃,𝑞,𝑊 ),

and similarly to the 𝑛 = 1 case, we define the dimension 𝑛 precompletion, denoted bỹ︀𝑇 𝑛, as the simplicial diagonal of T𝑛. More explicitly, we have the formula

̃︀𝑇 𝑛𝑊𝜃,𝑝 := T𝑛
𝑝𝑊𝜃,𝑝 = HomsPSh(Θ𝑛𝐶)(𝑄

𝑛
𝜃,𝑝 ×∆[𝑝],𝑊 ).

We define the dimension 𝑛 completion 𝑇 𝑛 as the composite ℱ ̃︀𝑇 𝑛 for a fixed injective

fibrant replacement functor ℱ .

Furthermore, the projections 𝐹 (𝜃) × 𝜋*𝐸(𝑝) → 𝐹 (𝜃) induce maps 𝑄𝑛
𝜃,𝑝 → 𝐹 (𝜃)

and via precompositions natural maps 𝑊 → T𝑛
𝑞𝑊 , whose diagonal we denote bỹ︀𝜂𝑛𝑊 : id → ̃︀𝑇 𝑛. Then by postcomposing with the fibrant replacement maps we obtain

a natural transformation 𝜂𝑛 : id → 𝑇 𝑛.

It may be verified that 𝑇 𝑛 is a simplicial functor and 𝜂𝑛 a simplicial natural

transformation.

Note that in addition to taking the simplicial diagonal of the objects T𝑛𝑊 , the

diagonal of ∆ into its 𝑚-fold product also implicitly appears in recursion formula and

breaks injective fibrancy in essentially all non-trivial cases.

We now state the precise formulation of Theorem 1.1, which generalizes the prop-

erties of the dimension 1 completion from Theorem 6.14 to general dimension 𝑛.

Theorem 7.2. Let 𝑊 be a Se𝑛(𝑆)-fibrant object in sPSh(Θ𝑛𝐶). Then

(1) 𝑇 𝑛𝑊 is Se𝑛−1Cplt(𝑆)-fibrant,
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(2) 𝜂𝑛𝑊 is a Se𝑛−1Cplt(𝑆)-local acyclic cofibration,

(3) 𝜂𝑛𝑊 is a DK-equivalence, and

(4) (𝜏𝑛𝑛−2)
*𝜂𝑛𝑊 is a levelwise weak equivalence of the underlying Θ𝑛−2-spaces.

Note that as an addition to the case 𝑛 = 1, the higher dimensional completions also

keep the lower dimensional structure essentially invariant. In order to better organize

the proof of this theorem, we separate each item into its own result. We start by

proving property (4) as Corollary 7.4 as it does not rely on the other properties.

The key to the remaining properties is Proposition 7.7, where we show that on the

mapping objects, the dimension 𝑛 completion essentially acts as the dimension 𝑛− 1

completion, which allows us to use induction with the properties from 𝑛 = 1 as the

base case. The property (1) then follows as Corollary 7.10.

We prove the property (2) as Proposition 7.11 in an indirect manner using two-

out-of-three and two-out-of-six properties. A key to this approach is considering the

second iteration of the completion and using the fact that the first iterate is already

complete to find weak equivalences in the naturality diagrams for the completion map.

The last property (3) then follows as Corollary 7.13 using the connection established

between DK-equivalences and weak equivalences in Theorem 6.15 together with the

recursive structure of the completions.

We prove property (4) by showing that the dimension 𝑛 precompletion preserves

the underlying Θ𝑛−2-space.

Lemma 7.3. Let 𝑊 be a Se𝑛(𝑆)-fibrant object in sPSh(Θ𝑛𝐶). Then

(𝜏𝑛𝑘 )
*T𝑛

𝑞𝑊
∼= (𝜏𝑛𝑘 )

*𝑊

for 𝑘 ≤ 𝑛− 2 and any [𝑞] ∈ ∆.

Proof. We proceed inductively; first note that 𝑄𝑙
[0],𝑞 = 𝑉 [0] ∼= 𝐹 [0] for any 𝑙 ≥ 2.

Suppose then that, for some 𝑘 ≥ 0, 𝑄𝑙
𝜏 𝑙𝑘𝜃,𝑞

∼= 𝐹 (𝜏 𝑙𝑘𝜃) for all 𝜃 ∈ Θ𝑘 . Now we have
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natural isomorphisms

𝑄𝑙+1

𝜏 𝑙+1
𝑘+1[𝑚](𝜃1,...,𝜃𝑚),𝑞

= 𝑄𝑛
[𝑚](𝜏 𝑙+1

𝑘 𝜃1,...,𝜏
𝑙+1
𝑘 𝜃𝑚),𝑞

= 𝑉 [𝑚](𝑄𝑙
𝜏 𝑙+1
𝑘 𝜃1,𝑞

, . . . , 𝑄𝑙
𝜏 𝑙+1
𝑘 𝜃𝑚,𝑞

)

∼= 𝑉 [𝑚](𝐹 (𝜏 𝑙+1
𝑘 𝜃1), . . . , 𝐹 (𝜏

𝑙+1
𝑘 𝜃𝑚))

∼= 𝐹 ([𝑚](𝜏 𝑙+1
𝑘 𝜃1, . . . , 𝜏

𝑙+1
𝑘 𝜃𝑚))

∼= 𝐹 (𝜏 𝑙+1
𝑘+1[𝑚](𝜃1, . . . , 𝜃𝑚)).

Thus by induction 𝑄𝑛
𝜏𝑛𝑘 𝜃,𝑞

∼= 𝐹 (𝜏𝑛𝑘 𝜃) for any 𝑘 ≤ 𝑛 − 2 and any 𝜃 ∈ Θ𝑘. Then we

obtain the following natural isomorphisms

((𝜏𝑛𝑘 )
*T𝑛

𝑞𝑊 )𝜃 = (T𝑛
𝑞𝑊 )𝜏𝑛𝑘 𝜃

∼= Map(𝑄𝑛
𝜏𝑛𝑘 𝜃,𝑞,𝑊 )

∼= Map(𝐹 (𝜏𝑛𝑘 𝜃),𝑊 )

∼= 𝑊𝜏𝑛𝑘 𝜃

= ((𝜏𝑛𝑘 )
*𝑊 )𝜃,

which prove the claim.

Taking the simplicial diagonal of the isomorphisms in the above lemma then yields

the property (4) of 7.2.

Corollary 7.4. Let 𝑊 be a Se𝑛(𝑆)-fibrant object in sPSh(Θ𝑛𝐶). Then the precom-

pletion induces an isomorphism

(𝜏𝑛𝑘 )
* ̃︀𝑇 𝑛𝑊 ∼= (𝜏𝑛𝑘 )

*𝑊,

and the completion induces a levelwise weak equivalence

(𝜏𝑛𝑘 )
*𝑇 𝑛𝑊 ≃ (𝜏𝑛𝑘 )

*𝑊

for 𝑘 ≤ 𝑛− 2.
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Note that in particular when 𝑘 = 0, we have that

(̃︀𝑇 𝑛𝑊 )[0] ∼= (T𝑛
𝑞𝑊 )[0] ∼= 𝑊[0] ≃ (𝑇 𝑛𝑊 )[0].

Note we also have the natural isomorphism (̃︀𝑇 𝑛𝑊 )𝜃,0 ∼= 𝑊𝜃,0, which we can use

to obtain the following example illustrating the necessity of the injective fibrant re-

placement for the higher-dimensional completions even for discrete objects.

Example 7.5. Consider the 3-category Σ2𝐼, which is gaunt in dimensions 1 and

2; that is, it has no non-identity isomorphisms in those dimensions, but it is not

gaunt in dimension 3. Thus 𝑁Σ2𝐼 ∼= 𝑉 [1]2𝐸 is Cplt2 Se-fibrant in sPSh(Θ3). Then

supposing Theorem 7.2, 𝑇 3𝑁Σ2𝐼 is Cplt(SeCplt)-fibrant, which ̃︀𝑇 3𝑁Σ2𝐼 cannot be,

since (̃︀𝑇 3𝑁Σ2𝐼)·,0 ∼= (𝑁Σ2𝐼)·,0 is not fibrant in the model structure on PSh(Θ3) with

completeness in dimension 3, and since the evaluation at simplicial level 0 is right

Quillen by [Ara14, 8.4.].

Lemma 7.6. Let 𝑊 be a Se-fibrant object in sPSh(Θ𝑛𝐶). Then 𝑇 𝑛𝑊 is Se-fibrant.

Proof. First consider the following expression for the levels of T𝑛
𝑞𝑊 :

T𝑛
𝑞𝑊[𝑚](𝜃1,...,𝜃𝑚) = Map(𝑄𝑛

[𝑚](𝜃1,...,𝜃𝑚),𝑞,𝑊 )

= Map(𝑉 [𝑚](𝑄𝑛
𝜃1,𝑞
, . . . , 𝑄𝑛

𝜃𝑚,𝑞),𝑊 ).

Since 𝑊 is Se-fibrant, we may decompose the intertwining functor into suspensions

by using the generalized Segal maps from Proposition 2.17 to obtain the middle weak

equivalence below:
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T𝑛
𝑞𝑊[𝑚](𝜃1,...,𝜃𝑚)

Map(𝑉 [𝑚](𝑄𝑛
𝜃1,𝑞
, . . . , 𝑄𝑛

𝜃𝑚,𝑞),𝑊 )

Map(𝑉 [1](𝑄𝑛
𝜃1,𝑞

),𝑊 ) ×
𝑊[0]

· · · ×
𝑊[0]

Map(𝑉 [1](𝑄𝑛
𝜃𝑚,𝑞),𝑊 )

T𝑛
𝑞𝑊[1](𝜃1) ×

T𝑛
𝑞𝑊 (𝑞)[0]

· · · ×
T𝑛

𝑞𝑊[0]

T𝑛
𝑞𝑊[1](𝜃𝑚),

∼=

∼

∼=

where we also use the fact that at level [0] we have isomorphisms by Corollary 7.4.

Now since the diagonal preserves finite limits, the diagonal of the composite of the

maps above is the corresponding Segal map for ̃︀𝑇 𝑛𝑊 :

̃︀𝑇 𝑛𝑊[𝑚](𝜃1,...,𝜃𝑚)
̃︀𝑇 𝑛𝑊[1](𝜃1) ×̃︀𝑇𝑛𝑊[0]

· · · ×̃︀𝑇𝑛𝑊[0]

̃︀𝑇 𝑛𝑊[1](𝜃𝑚),

which is also a levelwise weak equivalence as a diagonal of levelwise weak equivalences

by Corollary 6.10.

Then the Segal condition being preserved by levelwise weak equivalences implies

that 𝑇 𝑛𝑊 is Se-fibrant.

The next proposition establishes the recursive relation between the completion

functors.

Proposition 7.7. Let 𝑊 be a Se-fibrant object in sPSh(Θ𝑛𝐶). Then the map

𝜂𝑛𝑊 : 𝑊 → 𝑇 𝑛𝑊 induces on the mapping objects is the component of 𝜂𝑛−1 up to a

homotopy equivalence:

map𝑊 (𝑥, 𝑦) 𝑇 𝑛−1map𝑊 (𝑥, 𝑦)

map𝑇𝑛𝑊 ((𝜂𝑛𝑊 )[0](𝑥), (𝜂
𝑛
𝑊 )[0](𝑦)).

𝜂𝑛−1
map𝑊 (𝑥,𝑦)

(𝜂𝑛𝑊 )*
≃

66



Proof. By the definition of the objects T𝑛
𝑞𝑊 we have isomorphisms

Map(𝑉 [1](𝐹 (𝜃)),T𝑛
𝑞𝑊 ) ∼= Map(𝑄𝑛

[1](𝜃),𝑞,𝑊 )

∼= Map(𝑉 [1](𝑄𝑛−1
𝜃,𝑞 ),𝑊 ),

and by Corollary 7.4 pairs of objects agree:

Map(𝑉 [1](∅),T𝑛
𝑞𝑊 ) ∼= Map(𝑉 [1](∅),𝑊 ).

The levels mapping objects of T𝑛
𝑞𝑊 can then be computed as the fibers of the mor-

phism

Map(𝑉 [1](𝑄𝑛−1
𝜃,𝑞 ),𝑊 ) → Map(𝑉 [1](∅),𝑊 ), (7.8)

which by the suspension-map adjunction in Lemma 3.4 have the form

mapT𝑛
𝑞𝑊

(𝑥, 𝑦)𝜃 ∼= Map(𝑄𝑛−1
𝜃,𝑞 ,map𝑊 (𝑥, 𝑦)).

Taking the simplicial diagonal of the morphisms map𝑊 (𝑥, 𝑦) → mapT𝑛
𝑞𝑊

(𝑥, 𝑦) then

yields the dimension 𝑛− 1 precompletion:

map𝑊 (𝑥, 𝑦) → diag𝑞 mapT𝑛
𝑞𝑊

(𝑥, 𝑦) ∼= ̃︀𝑇 𝑛−1(map𝑊 (𝑥, 𝑦)).

Next, we consider the mapping objects of ̃︀𝑇 𝑛𝑊 . Since ̃︀𝑇 𝑛𝑊 is not necessarily

injective fibrant, the mapping objects may a priori differ from the homotopy mapping

objects, whereas only the latter are generally preserved by levelwise equivalences such

as the injective fibrant replacement.

For objects, Corollary 7.4 tells us that

Map(𝑉 [1](∅), ̃︀𝑇 𝑛𝑊 ) ∼= Map(𝑉 [1](∅),𝑊 ),

which is a Kan complex, so by using the formula for homotopy pullbacks in Lemma

3.3, we may compute the homotopy mapping objects of ̃︀𝑇 𝑛𝑊 as the limits of the
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diagrams

Map(𝑉 [1](𝐹 (𝜃)), ̃︀𝑇 𝑛𝑊 )

Map(𝑉 [1](∅),𝑊 )Δ[1] Map(𝑉 [1](∅),𝑊 )

{*} Map(𝑉 [1](∅),𝑊 ).

𝑗*0

𝑗*1

(𝑥,𝑦)

We may also use the fact that the diagonal is computed levelwise to obtain the

isomorphism

Map(𝑉 [1](𝐹 (𝜃)), ̃︀𝑇 𝑛𝑊 ) ∼= diag𝑞 Map(𝑉 [1](𝐹 (𝜃)),T𝑛
𝑞𝑊 ).

Now hmap̃︀𝑇𝑛𝑊 (𝑥, 𝑦) may be computed as the limit of the diagram of the diagonals

diag𝑞

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Map(𝑉 [1](𝐹 (𝜃)),T𝑛
𝑞𝑊 )

Map(𝑉 [1](∅),𝑊 )Δ[1] Map(𝑉 [1](∅),𝑊 )

{*} Map(𝑉 [1](∅),𝑊 )

𝑗*0

𝑗*1

(𝑥,𝑦)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and similarly map̃︀𝑇𝑛𝑊 (𝑥, 𝑦) as the limit of

diag𝑞

⎛⎜⎜⎜⎜⎝
Map(𝑉 [1](𝐹 (𝜃)),T𝑛

𝑞𝑊 )

{*} Map(𝑉 [1](∅),𝑊 )
(𝑥,𝑦)

⎞⎟⎟⎟⎟⎠ .

Using the commutativity of the diagonal with finite limits we then see that the canon-

ical map map̃︀𝑇𝑛𝑊 (𝑥, 𝑦) → hmap̃︀𝑇𝑛𝑊 (𝑥, 𝑦) is the diagonal of the corresponding maps

mapT𝑛
𝑞𝑊

(𝑥, 𝑦) → hmapT𝑛
𝑞𝑊

(𝑥, 𝑦). (7.9)
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However, the (homotopy) mapping objects of T𝑛
𝑞𝑊 can be computed in terms of the

(homotopy) fibers of the map (7.8), which is a fibration by injective fibrancy of 𝑊 ,

telling us that fibers are weakly equivalent to the homotopy fibers. Then the diagonal

of the weak equivalences (7.9) is also a levelwise weak equivalence by Corollary 6.10.

Now the fibrant replacement of ̃︀𝑇 𝑛𝑊 induces a levelwise weak equivalence on the

mapping objects by the two-out-of-three property:

diag𝑞(mapT𝑛
𝑞𝑊

(𝑥, 𝑦)) map̃︀𝑇𝑛𝑊 (𝑥, 𝑦) map𝑇𝑛𝑊 (𝑥, 𝑦)

diag𝑞(hmapT𝑛
𝑞𝑊

(𝑥, 𝑦)) hmap𝑐(𝑥, 𝑦) hmap𝑇𝑛𝑊 (𝑥, 𝑦).

∼=

∼ ∼

∼= ∼

In Lemma 7.6 we showed that 𝑇 𝑛𝑊 is Se-fibrant, so its mapping objects are

injective fibrant by Proposition 3.7. Thus the map induced by 𝜂𝑛𝑊 on the mapping

objects is isomorphic to

map𝑊 (𝑥, 𝑦) ̃︀𝑇 𝑛−1(map𝑊 (𝑥, 𝑦))
̃︀𝜂𝑛
map𝑊 (𝑥,𝑦)

followed by an injective fibrant replacement. The claim follows by the up-to-homotopy

uniqueness of fibrant replacements.

We then obtain property (1) of Theorem 7.2.

Corollary 7.10. Let 𝑊 be a Se𝑛(𝑆)-fibrant object in sPSh(Θ𝑛𝐶). Then 𝑇 𝑛𝑊 is

Se𝑛−1Cplt(𝑆)-fibrant.

Proof. We proceed by induction. The case 𝑛 = 1 is the item (1) of Theorem 6.14.

Suppose then that the claim is true for some 𝑘 ≥ 1 and let 𝑊 be Se𝑘+1(𝑆)-fibrant.

Now 𝑇 𝑘+1𝑊 is Se-fibrant by Lemma 7.6 with Se𝑘 Cplt(𝑆)-fibrant mapping objects.

Then 𝑇 𝑘+1𝑊 is Se𝑘 Cplt(𝑆)-fibrant by Proposition 3.7, completing the induction.

Next we show property (2) of Theorem 7.2.

Proposition 7.11. Let 𝑊 be a Se𝑛(𝑆)-fibrant object in sPSh(Θ𝑛𝐶). Then 𝜂𝑛𝑊 is a

Se𝑛−1Cplt(𝑆)-local acyclic cofibration.
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Proof. First consider cofibrancy. The maps 𝑊 → T𝑛
𝑞𝑊 are monomorphisms since

they are levelwise defined as precomposition by a retraction. Then the diagonal̃︀𝜂𝑛𝑊 : 𝑊 → ̃︀𝑇 𝑛𝑊 is also a monomorphism, since the diagonal preserves finite limits.

Then postcomposing with the injective fibrant replacement, which is also a monomor-

phism, gives the map 𝜂𝑛𝑊 : 𝑊 → 𝑇 𝑛𝑊 .

To show that 𝜂𝑛𝑊 is a Se𝑛−1Cplt(𝑆)-local equivalence, we use induction on 𝑛

with the base case 𝑛 = 1 being part (2) of Theorem 6.14. Suppose then that the

claim is true for some 𝑘 ≥ 1 and consider first 𝑊 a Se𝑘 Cplt(𝑆)-fibrant object of

sPSh(Θ𝑘+1𝐶). By Corollary 7.4 𝜂𝑘+1
𝑊 is a weak equivalence on level [0], and by

Proposition 7.7 together with the induction hypothesis, 𝜂𝑘+1
𝑊 induces a Se𝑘−1Cplt(𝑆)-

local acyclic cofibration on the mapping objects which are Se𝑘−1Cplt(𝑆)-fibrant by

assumption for 𝑊 and by Lemma 7.10 for 𝑇 𝑘+1𝑊 . Thus the map on mapping objects

is a levelwise weak equivalence implying that we have homotopy pullback squares

𝑊[1](𝜃) 𝑇 𝑘+1𝑊[1](𝜃)

𝑊[0] ×𝑊[0] 𝑇 𝑘+1𝑊[0] × 𝑇 𝑘+1𝑊[0]

(𝜂𝑘+1
𝑊 )[1](𝜃)

(𝑑1,𝑑0)

⌟ℎ
(𝑑1,𝑑0)

(𝜂𝑘+1
𝑊 )2

[0]

∼

for all 𝜃 ∈ Θ𝑘𝐶. However, since the bottom map is a weak equivalence, so is the

top map (𝜂𝑘+1
𝑊 )[1](𝜃). It follows by the Segal condition for 𝑊 and 𝑇 𝑘+1𝑊 that the

remaining levels of 𝜂𝑘+1
𝑊 are also weak equivalences, so 𝜂𝑘+1

𝑊 is Se𝑘−1Cplt(𝑆)-local as

a levelwise weak equivalence, concluding the case 𝑛 = 𝑘 + 1 for Se𝑘 Cplt(𝑆)-fibrant

𝑊 .

Consider then a Se𝑘+1(𝑆)-fibrant 𝑊 . By definition 𝜂𝑘+1
𝑊 is a Se𝑘−1Cplt(𝑆)-local

equivalence if the morphism

(𝜂𝑘+1
𝑊 )* : Map(𝑇 𝑘+1𝑊,𝑍) → Map(𝑊,𝑍)

is a weak equivalence for all Se𝑘 Cplt(𝑆)-fibrant 𝑍, which we employ the two-out-of-six
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property to show. Now we have the commutative diagram

Map(𝑇 𝑘+1𝑊,𝑍) Map(𝑇 𝑘+1𝑇 𝑘+1𝑊,𝑇 𝑘+1𝑍)

Map(𝑊,𝑍) Map(𝑇 𝑘+1𝑊,𝑇 𝑘+1𝑍)

Map(𝑊,𝑇 𝑘+1𝑍),

𝑇𝑘+1

(𝜂𝑘+1
𝑊 )* (𝑇𝑘+1𝜂𝑘+1

𝑊 )*

𝑇𝑘+1

(𝜂𝑘+1
𝑍 )*

(𝜂𝑘+1
𝑊 )*

(7.12)

where the commutativity of the top square follows from the functoriality of 𝑇 𝑘+1

and the bottom triangle by naturality of 𝜂𝑘+1 : id ⇒ 𝑇 𝑘+1. Note that (𝜂𝑘+1
𝑍 )* is a

weak equivalence since 𝜂𝑘+1
𝑍 is a levelwise weak equivalence by the inductive step for

Se𝑘 Cplt(𝑆)-fibrant objects shown above.

Similarly to the bottom triangle of the diagram (7.12), we also have

Map(𝑇 𝑘+1𝑊,𝑍) Map(𝑇 𝑘+1𝑇 𝑘+1𝑊,𝑇 𝑘+1𝑍)

Map(𝑇 𝑘+1𝑊,𝑇 𝑘+1𝑍),

𝑇𝑘+1

(𝜂𝑘+1
𝑍 )*

(𝜂𝑘+1

𝑇𝑘+1𝑊
)*

where both (𝜂𝑘+1
𝑍 )* and (𝜂𝑘+1

𝑇𝑘+1𝑊
)* are weak equivalences, since 𝑍 and 𝑇 𝑘+1𝑊 are

Se𝑘 Cplt(𝑆)-fibrant, using Corollary 7.10. Thus 𝑇 𝑘+1 is a weak equivalence on the

mapping space Map(𝑇 𝑘+1𝑊,𝑍) by the two-out-of-three property.

Next consider the map 𝑇 𝑘+1(𝜂𝑘+1
𝑊 ), which fits into the following commutative

diagram by naturality of 𝜂𝑘+1:

𝑊 𝑇 𝑘+1𝑊

𝑇 𝑘+1𝑊 𝑇 𝑘+1𝑇 𝑘+1𝑊,

𝜂𝑘+1
𝑊

𝜂𝑘+1
𝑊

𝜂𝑘+1

𝑇𝑘+1𝑊

𝑇𝑘+1𝜂𝑘+1
𝑊

where each component of 𝜂𝑘+1 is a weak equivalence on level 0 and so is then 𝑇 𝑘+1𝜂𝑘+1
𝑊

too by the two-out-of-three property. Furthermore, on the mapping objects the in-
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duced diagram is equivalent to the square in the following diagram by Proposition

7.7:
𝑇 𝑘 map𝑊 (𝑥, 𝑦)

map𝑊 (𝑥, 𝑦) map𝑇𝑘+1𝑊 (𝜂𝑘+1
𝑊 (𝑥), 𝜂𝑘+1

𝑊 (𝑦))

𝑇 𝑘 map𝑊 (𝑥, 𝑦) 𝑇 𝑘 map𝑇𝑘+1𝑊 (𝜂𝑘+1
𝑊 (𝑥), 𝜂𝑘+1

𝑊 (𝑦)),

∼

(𝜂𝑘+1
𝑊 )*

𝜂𝑘
map𝑊 (𝑥,𝑦)

𝜂𝑘
map𝑊 (𝑥,𝑦)

𝜂𝑘
map

𝑇𝑘+1𝑊
(𝑥,𝑦)

𝑇𝑘((𝜂𝑘𝑊 )*)

where each component of 𝜂𝑘 is a Se𝑘−1Cplt(𝑆)-local equivalence by the induction

hypothesis. Thus the two-out-of-three property tells us that 𝑇 𝑘+1𝜂𝑘+1
𝑊 is also a

Se𝑘−1Cplt(𝑆)-local equivalence on the mapping objects. However, the objects 𝑇 𝑘+1𝑊

and 𝑇 𝑘+1𝑇 𝑘+1𝑊 are Se𝑘 Cplt(𝑆)-fibrant by Corollary 7.10, so 𝑇 𝑘+1𝜂𝑘+1
𝑊 is a levelwise

weak equivalence by the same argument as the Se𝑘 Cplt(𝑆)-fibrant induction step.

Now we have weak equivalences in diagram 7.12 as indicated:

Map(𝑇 𝑘+1𝑊,𝑍) Map(𝑇 𝑘+1𝑇 𝑘+1𝑊,𝑇 𝑘+1𝑍)

Map(𝑊,𝑍) Map(𝑇 𝑘+1𝑊,𝑇 𝑘+1𝑍)

Map(𝑊,𝑇 𝑘+1𝑍),

𝑇𝑘+1

∼

(𝜂𝑘+1
𝑊 )* (𝑇𝑘+1𝜂𝑘+1

𝑊 )*∼

𝑇𝑘+1

(𝜂𝑘+1
𝑍 )*

∼
(𝜂𝑘+1

𝑊 )*

which implies that all of the maps in the diagram are weak equivalences by the two-

out-of-six property, in particular, the left vertical map. Thus 𝜂𝑘+1
𝑊 is a Se𝑘 Cplt(𝑆)-

local equivalence completing the inductive step.

The final part of Theorem 7.2 then inductively follows using the relation between

DK-equivalences and weak equivalences from Theorem 6.15.

Corollary 7.13. Let 𝑊 be a Se𝑛(𝑆)-fibrant object in sPSh(Θ𝑛𝐶). Then 𝜂𝑛𝑊 is a

DK-equivalence.

Proof. Proposition 7.11 tells us that 𝜂𝑛𝑊 is a Se𝑛−1Cplt(𝑆)-local equivalence, which
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implies that it induces Cplt(𝑆)-local equivalences

map𝑛−1
𝑊 (𝛼, 𝛼′) map𝑛−1

𝑇𝑛𝑊 (𝜂𝑛𝑊 (𝛼), 𝜂𝑛𝑊 (𝛼′))∼

between the iterated mapping objects. However, Cplt(𝑆)-local equivalences between

Se(𝑆)-fibrant objects coincide with DK-equivalences by Theorem 6.15. Additionally,

Corollary 7.4 tells us that 𝜂𝑛𝑊 is a levelwise weak equivalence of the underlying Θ𝑛−2-

spaces, which using Proposition 3.10 give us weak equivalences at level [0] of the lower

iterated mapping objects

map𝑘
𝑊 (𝛽, 𝛽′)[0] map𝑘

𝑇𝑛𝑊 (𝜂𝑛𝑊 (𝛽), 𝜂𝑛𝑊 (𝛽′))[0]
∼

for each 0 ≤ 𝑘 ≤ 𝑛 − 2. Applying 𝜋0 then give isomorphisms, which in particular

imply that 𝜂𝑛𝑊 is essentially surjective on the homotopy category of 𝑘-fold iterated

mapping objects for each 0 ≤ 𝑘 ≤ 𝑛 − 2. It follows by induction that we have

DK-equivalences of 𝑘-fold iterated mapping objects for all 𝑘, in particular for 𝑘 = 0,

proving the claim.

The following theorem tells us that localizing with respect to the dimension 𝑛

completeness condition inverts precisely those maps that are DK-equivalences and

essentially identity in dimension 𝑛− 2 and lower.

Theorem 7.14. A map between Se𝑛(𝑆)-fibrant objects of sPSh(Θ𝑛𝐶) is a DK-

equivalence and a levelwise equivalence of the underlying Θ𝑛−2-spaces if and only

if it is a Se𝑛−1Cplt(𝑆)-local equivalence.

Proof. The result follows by essentially the same argument as Theorem 6.15, replacing

𝑇 1 with 𝑇 𝑛.

Note that DK-equivalences here are also levelwise weak equivalences on the 𝑛th

iterated mapping objects, which implies that completeness in dimension higher than

𝑛 is preserved, if meaningful for the choice of 𝐶. Thus we may combine multiple

completion functors in the order of decreasing dimension.
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Construction 7.15. We define the total completion functor 𝑇 : sPSh(Θ𝑛𝐶) →

sPSh(Θ𝑛𝐶) as the composite

𝑇 := 𝑇 1 · · ·𝑇 𝑛−1𝑇 𝑛.

Note that we also have a natural transformation 𝜂 : id ⇒ 𝑇 with components

𝜂𝑊 := 𝜂1𝑇 2···𝑇𝑛𝑊 · · · 𝜂𝑛−1
𝑇𝑛𝑊𝜂

𝑛
𝑊 .

The total completion inherits properties similar to the individual completions.

Theorem 7.16. Let 𝑊 be a Se𝑛(𝑆)-fibrant object in sPSh(Θ𝑛𝐶). Then

(1) 𝑇𝑊 is Cplt𝑛(𝑆)-local,

(2) 𝜂𝑊 is a Cplt𝑛(𝑆)-local acyclic cofibration, and

(3) 𝜂𝑊 is a DK-equivalence.

Proof. Let 𝑊 be a Se𝑛(𝑆)-fibrant object. By iteratively applying Theorem 7.2, it

follows that 𝑇 𝑛−𝑘+1 · · ·𝑇 𝑛𝑊 is Se𝑛−𝑘 Cplt𝑘(𝑆)-fibrant for all 1 ≤ 𝑘 ≤ 𝑛. In particular,

when 𝑘 = 𝑛 we have that 𝑇𝑊 is Cplt𝑛(𝑆)-fibrant. Next, note that by Theorem 7.14,

for each 1 ≤ 𝑘 ≤ 𝑛, the map

𝜂𝑘𝑇𝑘+1···𝑇𝑛𝑊 : 𝑇 𝑘+1 · · ·𝑇 𝑛𝑊 → 𝑇 𝑘𝑇 𝑘+1 · · ·𝑇 𝑛𝑊

is a Se𝑘−1Cplt𝑛−𝑘+1(𝑆)-local and thus also a Cplt𝑛(𝑆)-local acyclic cofibration. Thus

the composite 𝜂𝑊 is a Cplt𝑛(𝑆)-local acyclic cofibration.

Furthermore, since each 𝜂𝑘
𝑇𝑘+1···𝑇𝑛𝑊

is a DK-equivalence by Corollary 7.13, so is

𝜂𝑊 .

Finally, we prove Theorem 1.3, which suggests that Segal Θ𝑛-spaces even without

completeness conditions exhibit certain behaviour similar to (∞, 𝑛)-categories.

Theorem 7.17. A map between Se𝑛(𝑆)-fibrant objects of sPSh(Θ𝑛𝐶) is a DK-

equivalence if and only if it is a Cplt𝑛(𝑆)-local equivalence.
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Proof. The result follows by essentially the same argument as the case 𝑛 = 1 in

Theorem 6.15, replacing 𝑇 1 with 𝑇 .

Corollary 7.18. A Se𝑛(𝑆)-fibrant object of sPSh(Θ𝑛𝐶) is Cplt𝑛(𝑆)-fibrant if and

only if it is local with respect to the class of DK-equivalences.
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