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Abstract

The control problem of robotic manipulators has drawn increasing attention dur-

ing the past twenty years. Adaptive control, with its great potential for dealing with

systems in uncertain environments, becomes a powerful tool in this area. Existing

research focuses more on the convergence theorems, however, few literature concerns

about the overall system performance.

This thesis first proposes a new dynamic prediction error based adaptive con-

troller for robotic manipulators with uncertain parameters. Unlike most prediction

errors used in the robotics literature, a dynamic prediction error is generated from an

adaptive predictor of a parametrized and dynamic manipulator model. A multiple-

model adaptive control scheme is then developed using multiple prediction errors and

multiple controllers, incorporated with multiple parameter estimators and a control

switching mechanism. The use of an adaptive dynamic predictor for parameter es-

timation leads to a new, effective and simple control structure. Multiple controllers

are constructed with different parameter estimators, and a most appropriate control

signal is selected by the control switching mechanism which is designed to find the

model that best approximates the manipulator dynamics. Closed-loop system sta-

bility and output tracking are proved and the detailed analysis is given. Simulation

results demonstrate the desired control system performance.
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Chapter 1

Introduction

In the past two decades, unprecedented development in sensing, communications

and computation has turned plenty of impossible ideas into real. Innovative technolo-

gies grow fast, changing the way we collecting and processing information. Robots,

as a combination of knowledge from different fields such as mechanics, electronics,

sensing and computing, have stimulated much interest among researchers. Important

scientific results have emerged regarding to different aspects of robots.

The control problem has always been one of the most essential aspects in research

related to robotic manipulators. Being an important methodology in control area,

adaptive control is frequently considered to be a solution to this problem. In this

thesis, we comprehensively discuss the adaptive control of robotic manipulators, and

combine multiple-model control method with the existing control scheme to improve

control effect. We will explore different aspects of the robotic manipulator’s control

problem in the following chapters.

1
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1.1 Research Motivation

Since the number of robotic manipulators used in industry increases significantly

these years, control methods of manipulators have become important research areas.

Different control methods have been considered in order to obtain better control ef-

fect under different circumstances. One of the most important characteristics of robot

manipulators, which makes them difficult to control, is the high nonlinearity of their

dynamics. Although it is possible to design a controller to achieve good performance

if we known a precise model of the system [11], this controller is not capable of han-

dling any changes and uncertainties in the system. However, a robot manipulator

often has to interact with different environments such as grabbing or carrying dif-

ferent objects with unknown mass, dimensions, or orientations, which consequently

makes it impractical to identify system parameters with sufficient accuracy at every

circumstance.

When dealing with system uncertainties, adaptive control lends itself a powerful

tool, and the problem of designing adaptive control laws for rigid robot manipulators

that ensure asymptotic trajectory tracking has interested researchers for many years.

The basic idea of adaptive control is to update the values of adaptive gains or param-

eters in the control laws according to some on-line algorithms corresponding to the

changes and uncertainties happening to the system. The adaptive controller keeps

updating itself until desired control objective is achieved. This control approach is es-

pecially useful for robot manipulators, since they usually execute repetitive tasks, and

the tracking performance of adaptive controllers can be improved with time through

the adaptation for each successive operation [37].

Since in all control algorithms, the convergence theorems are based on asymptotic

arguments, very little is said about the transient behavior of the resulting system [7].
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This is partly due to the fact that these algorithms are required to satisfy performance

criteria, which are themselves asymptotic in nature. When large load variations hap-

pen, the transient tracking errors can be large and oscillatory, leading to poor overall

performance. This is obviously an undesirable situation, especially when tracking

requirements are stringent. Therefore, more research should be conducted to change

this circumstance, and multiple-model control may be one of the solutions.

1.2 Literature Review

This section is concerned with current contributions to the research of robot con-

trol problem, including adaptive control of robotic manipulators, multiple-model and

switching, and multiple-model control of robotic manipulators. Our goal is to provide

a complete introduction to the most important concepts and research results in these

subjects, and lay the foundation for the following work and discussion.

Adaptive control of robotic manipulators. In the literature related to adap-

tive robot control, many algorithms have been proposed these years. According to the

signals researchers use to generate the parameter update laws, these algorithms can

be classified into three categories: direct, indirect, and composite adaptive control.

The direct adaptive control algorithms drive parameter update laws using the

tracking error, which is the error between desired output and actual output. Slotine

and Li proposed a direct adaptive control algorithm in 1986, in which the global

tracking convergence of an adaptive feedforward-plus-PD controller is established [33].

In the same year, Craig and others also proposed a direct adaptive controller based

on computed-torque control and showed its global convergence [9], but this algorithm

requires both measurements of the joint acceleration and modification of the adaptive

algorithm to insure boundedness of the inverse of the estimated inertia matrix. In
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1987, Kelly and others proposed an adaptive impedance control algorithm, which

removes the requirement on boundedness of the estimated inertia matrix [14]. Ortega

and Spong proposed an adaptive motion controller with a new parameter update law

in 1988, which is also capable of eliminating the requirement of boundedness of the

estimated inertia matrix [31].

The indirect adaptive control algorithms, on the other hand, use the prediction

error to generate update laws, which is the error between estimated parameter and

true parameter. Middleton and Goodwin designed an indirect adaptive control algo-

rithm composed of a modified computed-torque controller and a modified least-square

estimator, and proved the global tracking convergence of this controller [22]. This al-

gorithm does not require the measurement of the joint acceleration, but still need

boundedness of the inverse of the estimated inertia matrix. Slotine and Li devel-

oped a globally convergent indirect adaptive controller in 1989, which removes the

boundedness requirement [21].

The composite adaptive control algorithm uses both tracking error in the joint

motion and prediction error in the predicted filtered torque to drive the parameter

update laws. Proposed by Slotine and Li in 1987 [34], [35], the algorithm is based on

the observation that the parameter uncertainty is reflected in both tracking error and

prediction error, hence it is preferable to get the information from both sources. This

algorithm also creates an automatic way of modulating the adaptive gains according

to the excitation of the desired trajectory.

Multiple-model and switching. While many adaptive robot controllers have

been proposed in the literature, tracking error convergence in these adaptive control

algorithms are based on asymptotic arguments, as a result, the transient tracking er-

rors may be quite large and oscillatory under large parametric uncertainties. For the

purpose of improving overall tracking performance, adaptive control using multiple-
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model and switching is proposed. It is a general methodology for the design of adap-

tive control systems which can learn to operate efficiently in dynamical environments

prossessing a high degree of uncertainty [24]. By describing the different environ-

ments using multiple models and switching to an appropriate controller followed by

tuning or adaptation, the control effect would be efficiently improved. Multiple-model

and switching is a rapidly growing area which has been investigated in detail since

1991. Researchers extended this methodology to both linear and nonlinear systems.

In linear adaptive control, researchers aimed to develop stable and efficient switching

schemes to obtain better transient response [25], [26]. In nonlinear systems, most

research was focused on identifying and controlling dynamical systems using neural

networks when only inputs and outputs are accessible [18], [19], [27].

The use of multiple-model and switching is not new in control theory. There are

mainly three methods of adaptive control using multiple-model. The first is indirect

adaptive control using multiple models, which was originally used by Middleton in

1988 [22]. These results were extended to adaptive control of discrete-time systems

using multiple models by Narendra in 1998 [28] and the global stability in this case

was proved in 2000 [29]. The second is direct adaptive control using multiple models.

In 1986, Fu developed this type of controller for adaptive stabilization without a

minimum-phase assumption and without knowledge of the sign of the high-frequency

gain [12]. The third is weighted multipel models control, and this controller structure

was came up with by Badr and Binder in discrete-time systems in 1985 [2]. This

concept was extended to MIMO systems [1] and was later applied to a nonlinear

thermal process [3].

Multiple-model control of robotic manipulators. Multiple-model and switch-

ing could attain its full potential in adaptive control of robot manipulators, because

tracking performance of rigid robot manipulators is mainly determined by the accu-
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racy of initial values of parameters estimates and the choices of adaptive gains. When

executing tasks with uncertainty, such as grabbing or carrying different objects with

unknown masses, dimension, or gripping points, these parameters may vary greatly.

If a single model scheme is used, the robot control system will have to adapt itself to

a new environment every time system parameters change before appropriate control

action can be taken. The slowness of the adaptation may result in a large transient

error. Multiple-model and switching will allow us not only to identify the different

environments, but also to control them rapidly [24].

In 1994, Ciliz firstly combined multiple-model and switching with robot manipu-

lators, and proved the effect of this methodology in practical situations [5], [7]. Some

experimental tests were successfully carried out on a two-link SCARA type direct

drive arm in 1995 [6]. Ciliz utilized an adaptive control scheme which eliminated the

acceleration vector by a first-order strictly proper filter (proposed by Middleton in

1988 [23]). To compensate for the effect brought by the filter, two items were added to

structure of the controller, making it complicated and hard for calculation. Also, the

positive definite and invertible property of the estimate of inertia matrix has not been

proved. In this thesis, we will introduce a new simple prediction-based algorithm for

adaptive robot control using multiple-model and switching to solve these problems.

1.3 Thesis Outline

This thesis proposes a new prediction-based adaptive control scheme for robotic

manipulators, which does not need the measurement of acceleration information or

compensation terms in the control input signal. The guarantee of positive definite

and invertible property of the inertia matrix will also be implemented in this thesis.

We will combine this scheme with multiple-model control and switching to solve the
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undesired transient problem, and conduct simulation to verify the enhancement of

this new algorithm.

The content of this thesis is organized as follows.

In Chapter 2, we introduce some existing algorithms of adaptive robot control,

which represent the development and main contributions at this stage. Some basic

background information about multiple-model control is also presented here as an

overview for this research area.

In Chapter 3, we develop the innovative adaptive robot control scheme using

single-model control to deal with system uncertainties. Stability analysis is provided

to demonstrate the effectiveness of our control scheme, and simulation results are

discussed subsequently to analyze its performance.

For improvement of the system performance, this single-model control scheme is

expanded to a multiple-model control scheme in Chapter 4. Necessarily, stability

analysis of the adaptive multiple-model control system is also completed here. In

order to help readers better understand our design, comparison study is provided,

together with supportive simulation results under different cases.

Finally, conclusions for this thesis and potential future work are discussed in

Chapter 5. The contributions this thesis have made are presented in this chapter.



Chapter 2

Overview

Before starting to discuss the adaptive control of robotic manipulators based on

multiple-model and switching, an overview of the previous results in adaptive robot

control will be presented. In this chapter, a system model will be introduced first.

Then, a discussion of four existing algorithms will follow, with two for direct adaptive

control, and two for indirect adaptive control. The background knowledge of multiple-

model control and switching will also be introduced in the last section of this chapter.

2.1 Manipulator System Model and Control Ob-

jective

To derive the dynamic equations of the robotic manipulator, we may refer to the

Euler-Lagrange equations for a rigid-body mechanical system [37]:

d

dt

∂L

∂q̇
− ∂L

∂q
= u, (2.1)

8
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where q = [q1, · · · , qn]T is the vector of position variables of n joints of the robotic

manipulator, u = [u1, · · · , un]T is the applied joint torque, and L is the Lagrangian

defined as L = K − P , which is the difference between the kinetic energy K and the

potential energy P of the form:

K =
1

2
q̇TD(q)q̇, P = P (q), (2.2)

with D(q) ∈ Rn×n being the symmetric and positive definite inertia matrix.

Robotic manipulator model. Letting dij be the ijth element of D(q) and

φ(q) = ∂P (q)
∂q

representing the gravitational effects, and substituting (2.2) into (2.1),

we obtain the manipulator dynamic equation as follow:

D(q)q̈ + C(q, q̇)q̇ + φ(q) = u, (2.3)

where C(q, q̇) ∈ Rn×n is a matrix representing the Coriolis and centrifugal effects,

and the kjth element of C(q, q̇) is

ckj =
n∑
i=1

1

2
(
∂dkj
∂qi

+
∂dki
∂qj

+
∂dij
∂qk

)q̇i. (2.4)

Properties of the manipulator model. There are three important properties

of the manipulator dynamics equation (2.3):

Property 2.1: The inertia matrix D(q) is positive definite.

Property 2.2: The manipulator dynamic equation can be linearly parameterized,

written as

D(q)q̈ + C(q, q̇)q̇ + φ(q) = Y (q, q̇, q̈)p, (2.5)

where Y ∈ Rn×m is the nonlinear regressor matrix and p ∈ Rm is the m-dimensional
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parameter vector. This parameterization can be different since the choice of the pa-

rameter vector p is not unique.

Property 3: The matrices D(q) and C(q, q̇) are not independent:

xT (M(q, q̇)− 2C(q, q̇))x = 0, ∀x ∈ Rn, (2.6)

where M(q, q̇) = dD(q)
dt

whose ijth element is (
∂dij
∂q

)T q̇.

Adaptive control objective. Our objective is that given a bounded desired

trajectory qd(t) along with its bounded derivatives q̇d(t) and q̈d(t), design a feedback

control input signal u(t) for the manipulator system (2.3) without using the knowledge

of the system parameters in D(q), C(q, q̇) and φ(q), so that all signals in the closed-

loop system are bounded and the joint position q(t) tracks qd(t) asymptotically.

If we choose a specific control strategy for this manipulator dynamic model:

τ = D(q)(q̈d −Kvė−Kpe) + C(q, q̇)q̇ + φ(q), (2.7)

which would result in

ë+Kvė+Kpe = 0, (2.8)

where e = q−qd, ė = q̇−q̇d, andKp andKv are positive definite diagonal gain matrices.

This control strategy is usually referred to as the computed torque control. The error

equation in (2.8) are globally stable, and desired performance can be achieved by

appropriate choices of Kp and Kv. However, the model used in the above control law

is based on a static model of the manipulator, and hence if the load changes, the error

equation is no longer homogeneous.

Some related preliminaries. We present some basic signal spaces and system
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operation definitions, and some key signal convergence properties for future use.

Definition 2.1. A vector signal x(t) ∈ Rn is said to belong to the L2 signal space,

denoted as x(t) ∈ L2, if
∫∞

0
(x2

1(t) + · · ·+ x2
n(t))dt <∞.

Definition 2.2. A vector signal x(t) ∈ Rn is said to belong to the L∞ signal space,

denoted as x(t) ∈ L∞, if supt≥0 max1≤i≤n |xi(t)| <∞.

It follows that x(t) ∈ L2 or x(t) ∈ ∞ if and only if xi(t) ∈ L2 or xi(t) ∈ L∞,

i = 1, 2, ..., n.

To represent the dynamic system operations, for a stable transfer function H(s),

z(t) = H(s) [w] (t) or z = H(s) [w] denotes the output z(t) of H(s) with input w(t).

Lemma 2.1. If e(t) ∈ L2 and ė(t) ∈ L∞, then limt→∞ e(t) = 0.

Lemma 2.2. For a stable strictly proper transfer function H(s), if w(t) ∈ L2, then

z(t) = H(s) [w] (t) ∈ L2, ż(t) ∈ L2, z(t) ∈ L∞, and limt→∞ z(t) = 0.

We assume that a manipulator is executing pick-and-place type tasks with load

variations, during which major uncertainties would arise. That is, when the load

changes, the parameters of the robot manipulator would change a lot due to the

change of inertial properties and its load. This makes adaptive control a useful ap-

proach in this situation.

Adaptive control is a control methodology used by a controller which must adapt

to a control system with parameters which vary, or are initially uncertain. There are

two different approaches of adaptive control – direct and indirect adaptive control,

depending on the signal they use to generate adaptive laws. Global stability of both

approaches under certain assumptions has been proved by various researchers.
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2.2 Direct Adaptive Control Design

In direct adaptive control, we will discuss two typical algorithms, one of which

requires the acceleration information, and the other does not. Notice that the adaptive

laws used in direct adaptive control of robotic manipulators are driven by the tracking

error e(t).

2.2.1 Design with Knowledge of the Acceleration q̈(t)

With knowledge of the acceleration vector q̈, this algorithm, proposed by Craig

et al. in 1987 [10], is based on the state feedback linearization concept and requires

inversion of the estimated inertia matrix.

Control input signal. The control input signal is given as

u = D̂(q)v + Ĉ(q, q̇)q̇ + φ̂(q), (2.9)

where v = q̈d − Kvė − Kpe, D̂, Ĉ and φ̂ are the estimates of D, C and φ in (2.3)

respectively.

Error equation. Substituting the control signal (2.9) into the manipulator dy-

namic equation (2.3) will result in an error equation:

D̂(q)(ë+Kvė+Kpe) = D̃(q)q̈ + C̃(q, q̇)q̇ + φ̃ = Y (q, q̇, q̈)p̃, (2.10)

where p̃ = p − p̂ is the parameter error vector, with p̂ being the parameter estimate

vector, and D̃ = D − D̂, C̃ = C − Ĉ, φ̃ = φ− φ̂.
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Assuming D̂ is positive definite, we may obtain

ë+Kvė+Kpe = D̂−1Y (q, q̇, q̈)︸ ︷︷ ︸
Φ

p̃ = Φp̃. (2.11)

Express the error equation in state vector form for a clear expression as

ẋ =

 0 I

−KP −Kv


︸ ︷︷ ︸

A

x+

0

I


︸︷︷︸
B

Φp̃, (2.12)

with x = [e, ė]T , and Φ = D̂(q)−1Y (q, q̇, q̈).

Adaptive law. Design the adaptive law as

˙̃p = −Γ−1ΦTBTPx, (2.13)

where Γ and P are positive definite matrices and P is the solution of the Lyapunov

equation ATP +PA+Q = 0. This assures the global convergence of the error vector

x, which will be shown in the stability analysis.

Stability analysis. The global stability of this algorithm can be proved as fol-

lows.

Theorem 2.1. The adaptive control scheme (2.9) - (2.13) guarantees that all the

closed-loop signals are bounded, and limt→∞ e(t) = 0.

Proof: This theorem holds because the positive definition function

V = xTPx+ p̃TΓp̃ (2.14)
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has the property

V̇ = −xTQx ≤ 0, (2.15)

from which we get that

e(t) ∈ L∞, e(t) ∈ L2, ė ∈ L∞, p̃ ∈ L∞. (2.16)

Therefore, the adaptive scheme is stable. O

2.2.2 Design without Knowledge of the Acceleration q̈(t)

Slotine and Li developed an adaptive controller which can achieve the asymptotic

tracking of a given trajectory qd(t) by the robot joint vector q(t) without using the

knowledge of the acceleration vector q̈(t) [34]. This algorithm employs a variable

transformation to convert the second-order dynamic system to a first-order error

dynamic system in terms of a new error signal. The stability analysis of this algorithm

is based on the property (2.6).

Control input signal. Using the variable transformation proposed in [34], we

choose KD as an n×n constant matrix whose eigenvalues all have positive real parts,

and define

q̈r = q̈d +KDė, q̇r = q̇d +KDe, r = ė+KDe. (2.17)

Then the control input signal is chosen as

u = D̂(q)q̈r + Ĉ(q, q̇)q̇r + φ̂(q) +Kvr, (2.18)

where Kv is positive definite gain matrix.

Error equation. After the variable transformation and substituting the equation
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(2.18) into the manipulator dynamic equation (2.3), we get a new equation as

D(q)ṙ + C(q, q̇)r +Kvr = D̃(q)q̈r + C̃(q, q̇)q̇r + φ̃, (2.19)

where q̈ = q̈r − ṙ and q̇ = q̇r − r.

Parameterizing (2.19), an error equation is obtained:

D(q)ṙ + C(q, q̇)r +Kvr = Y (q, q̇, q̈r, q̇r)p̃, (2.20)

where p̃ = p− p̂.

Adaptive law. Design the adaptive law as

˙̃p = −Γ−1Y T (q, q̇, q̈r, q̇r)r, (2.21)

with Γ ∈ Rr×r being an adaptation gain matrix such that Γ = ΓT > 0.

Stability analysis. The global stability of this algorithm can be proved as fol-

lows.

Theorem 2.2. The adaptive control scheme (2.18) - (2.21) guarantees that all the

closed-loop signals are bounded, and limt→∞ e(t) = 0.

Proof: This theorem is true because the positive definition function

V =
1

2
(rTDr + p̃TΓp̃), (2.22)

in which D = D(q(t)), has the property:

V̇ = −rTKvr ≤ 0, (2.23)
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from which we conclude that

r(t) ∈ L∞, r(t) ∈ L2, p̃ ∈ L∞, (2.24)

and, from r = ė+KDe, that

e(t) ∈ L∞, e(t) ∈ L2, ė(t) ∈ L∞. (2.25)

Hence we have limt→∞ e(t) = 0, and from (2.17) (2.18), u and ṙ(t) are bounded, so

that limt→∞ r(t) = 0 and in turn limt→∞ ė(t) = 0. Therefore, this theorem holds. O

2.3 Indirect Adaptive Control Design

For indirect adaptive control design, the identification part and control part are

separated. First, an identification model is used for error prediction of the manip-

ulator, then the parameters will be estimated and the joint torque vector will be

generated. What is different from the direct adaptive control is that adaptive law is

driven by the torque prediction error, instead of the tracking error.

2.3.1 Design with Knowledge of the Acceleration q̈(t)

If it is assumed that the acceleration information is available, an identification

model can be simply established using the position, velocity and acceleration infor-

mation as follows. The prediction error, obtained from the the difference between the

system output and the identification model, will be used for designing the adaptive

law.
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Identification model. The identification model is built up as

τ̂ = D̂(q)q̈ + Ĉ(q, q̇)q̇ + φ̂(q) = Y (q, q̇, q̈)p̂. (2.26)

This identification model can be used in parallel with the plant dynamics to generate

the torque prediction error.

Prediction error equation. The prediction error can be generated as

τ̃ = u− τ̂ = Y (q, q̇, q̈)p− Y (q, q̇, q̈)p̂ = Y (q, q̇, q̈)p̃, (2.27)

where u is the actual torque input of the manipulator.

Adaptive law. Choose the adaptive law as

˙̃p = −ΓY T (q, q̇, q̈)τ̃, (2.28)

with Γ being a symmetric positive definite matrix.

Control input signal. The control input signal can be expressed as

u = D̂(q)v + Ĉ(q, q̇)q̇ + φ̂(q). (2.29)

Stability analysis. The global stability of this algorithm can be proved as fol-

lows.

Theorem 2.3. The adaptive control scheme (2.26) - (2.29) guarantees that all the

closed-loop signals are bounded, and limt→∞ e(t) = 0.
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Proof: To prove this theorem, consider the positive definition function

V =
1

2
p̃TΓ−1p̃, (2.30)

which has

V̇ = −τ̃T τ̃ ≤ 0, (2.31)

from which we conclude that

p̃ ∈ L∞, τ̃ ∈ L2. (2.32)

Since we have the prediction error equation as τ̃ = Y (q, q̇, q̈)p̃, resulting to the con-

clusion that τ̃ ∈ L∞, and from (2.26) we can obtain

τ̃ = D̂(q)(ë+Kvė+Kpe), (2.33)

which means

e(t) = (s2I +Kvs+Kp)D̂
−1(q)τ̃. (2.34)

Recalling that e = qd − q and qd, q̇d is bounded, we obtain the desired property:

e(t), ė(t) ∈ L2, e(t) ∈ L∞. (2.35)

So the theorem holds. O

2.3.2 Design without Knowledge of the Acceleration q̈(t)

Identification model. The identification model is chosen as

τ̂ = D̂(q)q̈ + Ĉ(q, q̇)q̇ + φ̂(q) = Y (q, q̇, q̈)p̂. (2.36)
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To generate an indirect adaptive control algorithm without using acceleration

information, a method is proposed by Middleton and Goodwin (1988) that the iden-

tification model can be filtered by a first-order strictly proper filter H(s) = α
s+α

, with

α > 0. That is, for a term of the form θ̈2f(θ1) in the regressor matrix Y (q, q̇, q̈), it is

true that

H(s)
{
θ̈2f(θ1)

}
= sH(s)

{
θ̇2f(θ1)

}
−H(s)

{
θ̇1θ̇2

∂f(θ1)

∂θ1

}
, (2.37)

from which a filtered equation can be generated as

τ̂f = H(s)τ̂ = H(s)Y (q, q̇, q̈)︸ ︷︷ ︸
Yf

p̂ = Yf (q, q̇)p̂, (2.38)

where the filtered regressor matrix Yf (q, q̇) contains only position and velocity mea-

surements, and the acceleration signal q̈ is eliminated by filter H(s).

Prediction error equation. The prediction error is defined as

eI = τf − τ̂f = Yf (q, q̇)p̃, (2.39)

where p̃ = p− p̂, and τf = H(s)u is the actual filtered torque.

Adaptive law. The adaptive law is then chosen as

˙̃p = −ΓY T
f (q, q̇)eI , (2.40)

with a symmetric positive definite matrix Γ.
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Control input signal. Generate the torque vector as

u = D̂(q)(q̈d +Kvė+Kpe) + Ĉ(q, q̇)q̇ + φ̂− 1

α
Yf ˙̃p− D̂(q)

α

[
d

dt
(D̂−1(q))

]
eI . (2.41)

The last two terms are included to deal with terms which arise in the adaptive case

due to the commuting of time varying operators.

Stability analysis. The global stability of this algorithm can be proved as fol-

lows.

Theorem 2.4. The adaptive control scheme (2.36), (2.38) - (2.41) guarantees that

all the closed-loop signals are bounded, and limt→∞ e(t) = 0.

Proof: To prove this theorem, consider the positive definition function

V =
1

2
p̃TΓ−1p̃, (2.42)

which has

V̇ = −eTI eI ≤ 0, (2.43)

from which we conclude that

p̃ ∈ L∞, eI ∈ L2. (2.44)

Since we have

H−1(s)eI =
s+ α

α
eI = eI +

1

α
ėI = Yf p̃+

1

α
Ẏf p̃+

1

α
Yf ˙̃p

=
s+ α

α
Yf p̃+

1

α
Yf ˙̃p = Y p̃+

1

α
Yf ˙̃p

= u− τ̂ +
1

α
Yf ˙̃p, (2.45)

and if the identification model (2.35) and torque vector (2.40) are substituted into
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equation (2.44), we get

H−1(s)eI = eI +
1

α
ėI

= D̂(q)(q̈d +Kvė+Kpe) + Ĉ(q, q̇)q̇ + φ̂− 1

α
Yf ˙̃p− D̂(q)

α

[
d

dt
(D̂−1(q))

]
eI

− D̂(q)q̈ − Ĉ(q, q̇)q̇ − φ̂+
1

α
Yf ˙̃p

= D̂(q)(ë+Kvė+Kpe)−
D̂(q)

α

[
d

dt
(D̂−1(q))

]
eI . (2.46)

Thus we have

D̂(q)H−1(s)
[
D̂−1(q)eI

]
= D̂(q)

{
D̂−1(q)eI +

s

α

[
D̂−1(q)eI

]}
= eI +

1

α
ėI +

D̂(q)

α

[
d

dt
(D̂−1(q))

]
eI

= D̂(q)(ë+Kvė+Kpe), (2.47)

from which the error equation can be obtained as

H−1(s)
[
D̂−1(q)eI

]
= ë+Kvė+Kpe. (2.48)

Therefore, we get

e(t) = (s2I +Kvs+Kp)
−1(s+ a)

[
D̂−1(q)eI

]
(t). (2.49)

Since D̂−1(q) is assumed to be nonsingular and we have already got eI ∈ L2, we can

conclude that e→ 0 as t→∞. So the theorem holds. O
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2.4 Multiple-Model Control

Multiple-model control is a general methodology for the design of adaptive control

systems which can learn to operate efficiently in dynamical environments possessing a

high degree of uncertainty. Multiple models are used to describe the different environ-

ments and the control is effected by switching to an appropriate controller followed

by tuning or adaptation. This methodology is based on the use of multiple mod-

els, switching and tuning. In this section, we present the basic concepts involved in

multiple-model control, and demonstrate how this problem can be posed mathemat-

ically. For better understanding, a multiple-model design based on adaptive robot

control, which is proposed by Ciliz and Narendra in 1996 [7], will be included.

2.4.1 General Methodology

First, we introduce basic definitions and concepts about multiple-model control.

Then the structure of the overall system and its operation will be briefly described.

System model. A model is considered as the representation of the essential parts

of a system in a convenient form [24]. A model may have different forms depending

on its purpose. Mathematical models are often used here because of their usefulness

of representing the behavior of a system.

Environment. The behavior (or the input-output characteristics) of a system

may change in different environments. Assume a system described by a set of differ-

ential equations:

ẋ(t) = f [x(t), u(t), p] ,

y(t) = h [x(t), p] . (2.50)
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Obviously, the equations contain both the control plant and the external environ-

ments. If functions f and h are assumed to be fixed, different environments can be

expressed by different values of the constant parameter vector p. Hence, different

kinds of system uncertainties, such as variations of parameters, sensor and actuator

failures, and external disturbances, can be considered as different environments.

Multiple models. A complex system is required to operate in different environ-

ments. When the environment changes, the input-output characteristics of the system

will probably change rapidly. For a single-model control system, it has to adapt itself

to the new environment before an appropriate control action can be taken. Such

adaptation may be possible, but a large transient error may happen because of the

slowness of adaptation process. Therefore, multiple-model control is used to identify

the different environments as well as to control them rapidly. In some environments,

different models may be available whose accuracy depends on the region in the state

space where the system trajectories lie. Hence, multiple models may be preferable to

a single model in many different situations.

Parametrization of models and controllers. To obtain a precise definition of

the control problem, we assume that the plant model and the identification models

can be parametrized in the same form. If S is a closed bounded set in a finite

dimensional parameter space, we assume that the plant parameter vector p and the

model parameter vectors p̂i belong to S. Hence, the plant parameter vector can

assume an infinite number of values and the objective is to improve the performance

using a finite number of models.

Corresponding to each model parameter vector p̂i there exists a neighborhood

Si ⊂ S (also called the ith environment), which has following properties: for all

p ∈ Si, the controller Ci yields a tracking error which, according to some criterion
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function J , is smaller than a constant ε0. This ε can be considered as the maximum

error that will using a fixed controller Ci, when p ∈ Si.

If p ∈ Si, the error criterion J can be reduced by tuning the controller. To this

end, the controller Ci can be considered as providing initial condition for an adaptive

controller. The objective of adaptation is to determine a controller C∗i such that the

tracking error is smaller than a constant ε1 � ε0. Since the plant parameter vector

p can lie anywhere in S, it is necessary to determine which controller Ci must be

used at every instant, and when switching should happen. Multiple identification

models can be used at any instant in a control problem, but only one control input

can be chosen. Hence, switching and tuning have to be carried out on the basis of

identification errors rather than tracking errors.

Control system structure. In the structure of a multiple-model control system,

there are N identification models denoted by {Ii}Ni=1 with corresponding outputs

{yi}Ni=1. The identification errors ei = ŷi − y is measured at every instant by using a

cost function Ji(t), i = 1, 2, ..., N , and the model corresponding to the smallest Ji(t)

is chosen to be the control input at that instant to the plant.

Adaptive and learning control. An anticipated environment is a subset Si ⊂ S

which satisfies the above conditions, and the corresponding p̂i is a known parameter

vector. If
⋃N
i=1 Si = S, then every possible plant belongs to some anticipated environ-

ment. This corresponds to the case when learning concerning the plant is complete.

In practice, this is rarely the case, and all the parameters p̂i, ε0, ε1 (and hence Si)

have to be learned on-line. These give rise to a host of theoretical questions, many of

which are, as yet, unanswered.

The adaptive and learning control problem can be considered as a case where a

finite number of models with parameter vectors {p̂i}Ni=1, corresponding to N antici-
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pated environments {Si}Ni=1, have already been learned. If at an instant the controller

Ci is used and the plant switches to an environment Sj 6= Si, i ≤ j ≤ N , the perfor-

mance index Jj of the jth model will be the minimum of the set {Ji}Ni=1 and hence the

controller will switch from Ci to Cj. Adaptation of p̂j then takes place within the set

Sj. If, however, the new plant parameter vector p /∈
⋃N
i=1 Si, this corresponds to an

unanticipated situation. In such a case, a new identification model IN+1 (described

by p̂N+1) and the corresponding environment SN+1 have to be learned on-line. This

is accomplished by continuing the adaptation process until the steady state error is

smaller than ε1. Once p̂N+1 is determined. SN+1 becomes an anticipated environment

for all future performance of the system. As might be expected, the transient error

while learning the appropriate control for unanticipated situations may be substan-

tially greater than ε0.

Switching scheme. The function of the switching scheme is to monitor a per-

formance index Jj(t) based on the identification errors ej for each model Ij and to

switch to the controller corresponding to the model with the smallest value for Jj(t).

Our assumption in this strategy is that a small identification error leads to a small

tracking error. The choice of the performance index is usually motivated by observa-

tions which can reliably estimate identifier accuracy. A general choice of performance

index incorporating this feature has the form

Jj(t) =

∫ t

0

e−λ(t−τ)e2
j(τ)dτ. (2.51)

Here λ > 0 is free deign parameters, which determine the long-term memory of the

index. The final control signal u(t) will be chosen corresponding to the smallest value
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of the performance index, which can be expressed as

u(t) = u(i)(t), i = argk=1,2,...,N Jk(t). (2.52)

2.4.2 Multiple-Model Design of Indirect Adaptive Control

The indirect adaptive control design using filtered prediction model (introduced

in 2.3.2), which was proposed by Ciliz and Narendra in 1996 [7], was further extended

to a multiple-model adaptive control scheme. In this subsection, we will describe it

as an example for multiple-model control design of robotic manipulators.

This adaptive controller architecture utilizes the same structural dynamic model

with their single model control scheme, but with different initial estimates of the

inertial parameters of the manipulator and its load. Denote N adaptive identification

models by Ij with j = 1, ..., N , and corresponding controllers Cj, which use parameter

estimates obtained from the identification models Ij. The main idea is to choose a

model among Ij that closely approximates the manipulator at that instant to generate

the control vector u.

Prediction errors. The filtered plant model τf was used to construct a set of

multiple prediction signals τ̂f(i):

τ̂f(i) = Yf (q, q̇)p̂(i), (2.53)

where p̂(i) are the multiple adaptive estimates of p, for i = 1, 2, ..., N , with N being a

positive integer of interest. Generate the prediction errors as

τ̃f(i) = τf − τ̂f(i) = Yf (q, q̇)p̃(i), (2.54)
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where p̃(i) = p− p̂(i), and τf = H(s) [τ ].

Adaptive laws. The adaptive laws for updating the parameter estimates p̂(i)(t)

are chosen as

˙̂p(i) = −Γ(i)Y
T
f (q, q̇)τ̃f(i), Γ(i) = ΓT(i) > 0, i = 1, 2, ..., N, (2.55)

where p̂(i)(0) are chosen from different locations in the parameter space Rm, i =

1, 2, ..., N , one of them is closer to the true parameter vector p than others.

Control input signals. With the prediction errors (2.54), adaptive laws (2.55)

and different choices of p̂(i)(0), multiple estimates p̂(i) can be obtained, which are used

to construct the multiple adaptive estimates D̂(i)(q), Ĉi(q, q̇) and φ̂(i)(q). Under the

assumption that D̂(i)(q(t)) = D̂(i)(p̂(t), q(t) are assumed to be nonsingular for all t,

and d
dt

(D̂−1
(i) (p̂(t), q(t))) are well-defined for all i = 1, 2, ..., N , the above signals are

employed to generate a set of control input signals as

u(i) =D̂(i)(q)(q̈d −Kv(i)ė−Kp(i)e) + Ĉ(i)(q, q̇)q̇ + φ̂(i)(q)

− 1

α
Yf ˙̃p(i) +

D̂(i)(q)

α

[
d

dt
(D̂−1

(i) )

]
τ̃f(i), (2.56)

where e(t) = q − qd, ė = q̇ − q̇d, and Kp(i) and Kp(i) are diagonal and positive definite

gain matrices, i = 1, 2, ..., N .

Stability analysis. Each estimate p̂(i) and corresponding prediction error τ̃f(i) =

τf − τ̂f(i) can guarantee the desired properties: p̂(i) ∈ L∞, τ̃f(i) ∈ L2, i = 1, 2, ..., N .

And if τ(t) = τ(i)(t), t ≥ 0, for any chosen i, the closed-loop system is stable and

limt→∞ e(t) = 0.
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Proof: For each identification model, there is a Lyapunov function

V(i) =
1

2
p̃T(i)Γ

−1p̃(i), (2.57)

which has a property that

V̇(i) = −τ̃Tf(i)τ̃f(i). (2.58)

So they concluded that τ̃f(i) ∈ L2 and p̃(i) ∈ L∞ for all i = 1, ..., N .

The control input (2.55) results in the following error equation:

H−1(s)D̂−1
(i) (q)τ̃f(i) = ë+Kvė+Kpe. (2.59)

Since D̂−1
(i) ∈ L∞, then D̂−1

(i) τ̃f(i) ∈ L2, so that e, ė → 0 as t → ∞ with all signals

remaining bounded, and τ̃f(i) ∈ L2∩L∞. Also, from (2.55), (2.58) and q̈ ∈ L∞, it can

be obtained that ˙̃τf(i) ∈ L∞, since Yf , p̃(i), Ẏf , ˙̃p(i) ∈ L∞. Hence, τ̃f(i) → 0 as t→∞

since it is bounded and uniformly continuous. Therefore, desired properties can be

proved. O

Performance indexes. Due to the uncertainty of p̂(i)(0) relative to the true

parameter vector p ∈ Rm, a single-model adaptive control scheme may not provide a

satisfying transient response. To improve the tracking performance, Ciliz and Naren-

dra proposed a switching rule to choose an appropriate one among the set of con-

trollers. Their selection criterion is to choose a controller with the smallest prediction

error τ̃f(i)(t) = τf (t)− τ̂f(i)(t), since a smaller error would yield a better performance.

The quadratic performance index they chose is:

J(i)(t) = γτ̃Tf(i)(t)τ̃f(i)(t) + β

∫ t

0

τ̃Tf(i)(ζ)τ̃f(i)(ζ)dζ, (2.60)
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where γ > 0 and β > 0 are weights that can be tuned experimentally by monitoring

the tracking performance. Hence if they know there would be sudden dynamical

changes in the robot system, the parameter γ could be increased to generate an

abrupt change in τ̃f(i)(t) which could be identified easily. However, increasing γ may

not be sufficient to detect a sudden change in τ̃f(i)(t) if the integral term dominates

J(i)(t) substantially in some cases, so a modified performance criterion is given as

J(i)(t) = γτ̃Tf(i)(t)τ̃f(i)(t) + β

∫ T

t−T
τ̃Tf(i)(ζ)τ̃f(i)(ζ)dζ, (2.61)

where T can be experimentally chosen. With this modification, the integral of the

error square would be computed over a sliding window, so that capturing the longterm

error effects (depending on the length of T ) makes it possible to detect the transient

peaks in τ̃Tf(i)(t)τ̃f(i)(t).

Based on this performance indexes, the final control signal τ(t) is chosen as

τ(t) = τ(i)(t), i = arg min
k=1,2,...,N

J(k)(t), (2.62)

which means that τ(t) is set to be τ(i)(t) with J(i)(t) being the minimum of J(k)(t) for

all k = 1, 2, ..., N .

2.5 Problem Statement

After understanding those existing algorithms, we found that the main drawbacks

of these algorithms are:

Some of them requires the information of acceleration vector, which is

difficult to measure, and may bring large errors to the control system in

practical issues;
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or, some of them do not have the basic structure for development to

multiple-model control scheme, which makes it impossible for performance

improvement;

or, some of them have complex compensation terms in the control input

signal, leading to difficulties in computing and analyzing system parame-

ters;

and none of them provides a way to guarantee the crucial property for

stability analysis, which is that the estimate of inertia matrix is invertible.

In this thesis, our aim is to propose a new multiple-model adaptive control scheme

based on system prediction for robotic manipulators. This scheme is derived from

Slotine’s algorithm, since the variable transformation method will also be used to

eliminate the requirements of acceleration vector. However, we plan to use a different

control design to solve or avoid all the problems mentioned above.

Thesis goals. The specific control objective can be defined as follows. This

thesis is dedicated to design a multiple-model adaptive control scheme, which has

the potential to choose an appropriate control signal u(t) for the robotic manipulator

system (2.3) with unknown system parameters in matrices D(q), C(q, q̇) and φ(q) to

achieve trajectory tracking. That means, under this control scheme, all the signals

in the closed loop system are bounded, the joint position q(t) tracks the desired joint

position qd(t) asymptotically, and the transient performance is improved. We will

approach this goal step by step.



Chapter 3

A Dynamic Prediction Error Based

Adaptive Control Scheme

Since the algorithms introduced in Chapter 2 have some drawbacks, in this chap-

ter, we design a new dynamic prediction error based adaptive control scheme, whose

parameter estimation scheme is different from those estimator-based adaptive con-

trol algorithms in the literature. This adaptive control scheme contains the needed

basic structure for developing multiple-model adaptive control design, and can avoid

drawbacks mentioned above. After understanding this single-model adaptive control

scheme, it will be used as the baseline control scheme for our multiple-model design

in next chapter.

3.1 Nominal Controller

A nominal controller is a controller designed for a system whose parameters are

known. Nominal controllers are used for the design of adaptive controllers.

31
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Using variable transformation as

v = q̇d − Λ(q − qd), u s = q̇ − v, e = q − qd (3.1)

where Λ is chosen as an n × n constant matrix whose eigenvalues all have positive

real parts. Substituting equation (3.1) into (2.3) and we obtain

D(q)ṡ+ C(q, q̇)s = u−D(q)v̇ − C(q, q̇)v − φ(q). (3.2)

In this expression, s = ė + Λe, ṡ = q̈ − v̇, and s, v, v̇ depend only on q, qd, q̇, q̇d, q̈d

and not on the joint acceleration vector q̈(t). The term of ṡ = q̈ − v̇ is related to the

joint acceleration vector, but it is not needed in our control design.

Then we introduce the parametrization as

D(q)v̇ + C(q, q̇)v + φ(q) = Y (q, qd, q̇, q̇d, q̈d)θ
∗ (3.3)

where θ∗ ∈ Rm is a parameter vector containing all unknown parameters in the

manipulator system for some m > 0, and Y (q, qd, q̇, q̇d, q̈d) is an n×m regressor matrix

of known functions. Y (q, qd, q̇, q̇d, q̈d) is bounded for all bounded signals q, qd, q̇, q̇d, q̈d.

After the variable transformation (3.1) and parametrization (3.3), an parametrized

system model without requirement of the joint acceleration vector q̈(t) is presented

as

D(q)ṡ+ C(q, q̇)s = u− Y (q, qd, q̇, q̇d, q̈d)θ
∗. (3.4)

Control Design for known θ∗. For this parametrized system model, a nominal
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controller may be designed with knowledge of the parameter vector θ∗:

u(t) = C(q, q̇)s(t) + Y (q, qd, q̇, q̇d, q̈d)θ
∗ −D(q)Λ1s(t) (3.5)

where Λ1 is an n× n constant matrix whose eigenvalues all have positive real parts.

This controller would result in a desired closed-loop system as

D(q)(ṡ(t) + Λ1s(t)) = 0, (3.6)

which means ṡ(t) + Λ1s(t) = 0 since D(q) is nonsingular. Consequently, s(t) is

bounded and limt→∞ s(t) = 0 exponentially, so that all system signals are bounded

and limt→∞ e(t) = 0.

3.2 Adaptive Parameter Estimation Design

In the cases where the system parameters are unknown, an adaptive predictor for

the error signal s(t) is necessary to estimate the unknown parameters in D(q), C(q, q̇),

and θ∗ to generate the adaptive version of the controller (3.5). An adaptive parameter

adaptive law is also needed for generating and updating desired parameter estimates.

Bounded parameter errors would be achieved with appropriate choice of the adaptive

law. What different from other algorithms in the literature is we use parameter pro-

jection to guarantee that the matrix D̂(q) will remain positive definite and invertible

during the adaptation process.

3.2.1 Parameter Estimation

The parameter estimation scheme consists of an adaptive predictor for the error

signal and adaptive parameter adaptive laws.
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Adaptive predictor. In order to construct a parameter estimation scheme based

on the system model (3.4), the first step is to introduce an adaptive dynamic predictor

to generate a prediction signal ŝ(t) for the error signal s(t), so the system model (3.4)

becomes

D̂(q) ˙̂s+ Ĉ(q, q̇)ŝ = u− Y (q, qd, q̇, q̇d, q̈d)θ +K0s̃, (3.7)

where θ is an adaptive estimate of θ∗, D̂(q) and Ĉ(q, q̇) are estimates of D(q) and

C(q, q̇), K0 ∈ Rn×n is a design parameter matrix with the property thatK0 = KT
0 > 0,

and s̃(t) = s(t) − ŝ(t) is the dynamic prediction error (the signal ŝ(t) may be called

as a posteriori prediction of the signal s(t), based on information available up to time

t when s(t) is also available).

Use equation (3.4) and (3.7), we may get the prediction error equation

D(q) ˙̃s+ C(q, q̇)s̃ = D̃(q) ˙̂s+ C̃(q, q̇)ŝ+ Y (q, qd, q̇, q̇d, q̈d)(θ − θ∗)−K0s̃, (3.8)

where

D̃(q) = D̂(q)−D(q), C̃(q, q̇) = Ĉ(q, q̇)− C(q, q̇). (3.9)

Parametrization of D(q) ˙̂s and C(q, q̇)ŝ. Next step is to properly parametrize

D(q) ˙̂s and C(q, q̇)ŝ to estimate the parameters of D(q) and C(q, q̇) and generate stable

estimates of D(q), C(q, q̇) and an invertible estimate of D(q). So we parametrize

C(q, q̇)ŝ as

C(q, q̇)ŝ = YC(q, q̇, ŝ)θ∗C (3.10)

for some known signal matrix YC(q, q̇, ŝ) ∈ Rn×nc and unknown parameter vector

θ∗C ∈ Rnc . Signals ŝ(t) and ˙̂s are available from the predictor (3.7).
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The parametrization of D(q) ˙̂s(t) is more complicated. We first express D(q) as

D(q) = {dij(q)} , dij(q) = θ∗Tij φij(q), (3.11)

where dij(q) is the ijth element of D(q), θ∗ij ∈ Rmij is some unknown parameter vector,

and φij(q) ∈ Rmij is some known signal vector, i, j = 1, , 2, ..., n. Our goal is to have

θ∗ij appearing explicitly for all i, j = 1, 2, ..., n after parametrization of D(q) ˙̂s, so that

the estimates θij of θ∗ij can be used to construct the estimate D̂(q) =
{
θTijφij(q)

}
of

D(q) =
{
θ∗Tij φij(q)

}
. This explicit D̂(q) is necessary to implement an adaptive version

of D(q)Γ1s(t) in the nominal controller (3.5).

To this end, we introduce the following expressions for ˙̂s(t) =
[

˙̂s1(t), ˙̂s2(t), ..., ˙̂sn(t)
]T

:

θ∗i =
[
θ∗Ti1 , θ

∗T
i2 , ...θ

∗T
in

]T
, i = 1, 2, ..., n

θ∗D =
[
θ∗T1 , θ∗T2 , ..., θ∗Tn

]T
φsi(t) =

[
φTi1(t) ˙̂s1(t), φTi2(t) ˙̂s2(t), ..., φTin(t) ˙̂sn(t)

]T
YD(q, ˙̂s) = diag

{
φTs1(t), φTs2(t), ..., φTsn(t)

}
(3.12)

and do parametrization of D(q) ˙̂s as

D(q) ˙̂s = YD(q, ˙̂s)θ∗D, (3.13)

where YD(q, ˙̂s) ∈ Rn×nD (nD =
∑n

i=1

∑n
j=1mij) is a matrix of known parameters

(whose off block diagonal elements are all zero) and θ∗D ∈ RnD is a vector of unknown

parameters. Thus, we would get an important property that the estimate D̂(q) of

D(q) can be directly obtained from the estimate θD(t) of θ∗D as

D̂(q) = D̂(q, θD) =
{
d̂ij(q, θij)

}
, d̂ij(q, θij) = θTijφij(q), (3.14)
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where d̂ij(q) are the ijth element of D̂(q), and θij are the estimates of θ∗ij, as the

components of θD, i, j = 1, 2, ..., n, corresponding to θ∗ij in θ∗D.

With the parametrization scheme, we have

D(q) ˙̂s+ C(q, q̇)ŝ = YD(q, ˙̂s)θ∗D + YC(q, q̇, ŝ)θ∗C (3.15)

and the estimated version correspondingly,

D̂(q) ˙̂s+ Ĉ(q, q̇)ŝ = YD(q, ˙̂s)θD + YC(q, q̇, ŝ)θC (3.16)

where θD(t) and θC(t) are the estimates of θ∗D and θ∗C . Subtract equation (3.16) from

(3.15) as

D̃(q) ˙̂s+ C̃(q, q̇)ŝ = YD(q, ˙̂s)(θD − θ∗D) + YC(q, q̇, ŝ)(θC − θ∗C). (3.17)

Then the error equation (3.8) becomes

D(q) ˙̃s+ C(q, q̇)s̃ =YD(q, ˙̂s)(θD − θ∗D) + YC(q, q̇, ŝ)(θC − θ∗C) (3.18)

+ Y (q, qd, q̇, q̇d, q̈d)(θ − θ∗)−K0s̃.

Remark 3.1. Notice that we did parametrization not only in equation (3.3): D(q)v̇+

C(q, q̇)v+φ(q) = Y (q, qd, q̇, q̇d, q̈d)θ
∗, but also in equation (3.10): C(q, q̇)ŝ = YC(q, q̇, ŝ)θ∗C

and equation (3.13): D(q) ˙̂s = YD(q, ˙̂s)θ∗D. The reason of such a reparametrization is

to reduce the total number of parameters to be estimated. Because for D̃(q) ˙̂s, C̃(q, q̇)ŝ

and Y (q, qd, q̇, q̇d, q̈d)(θ− θ∗) in the former error equation (3.8), the reparametrization

allows us to combine the parameters of D(q) in D(q) ˙̂s and those of D(q) in D(q)v̇

together, and similarly, allows us to combine the parameters of C(q, q̇) in C(q, q̇)ŝ and
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those of C(q, q̇) in C(q, q̇)v together. Thus, parameters in θ∗ could be reduced and

contain the parameters of φ(q) only, in this way we obtain a more efficient adaptive

scheme. �

Adaptive laws. Based on the error equation (3.18), we choose the adaptive laws

for θD(t), θC(t) and θ(t) as

θ̇D(t) = −ΓDY
T
D (q, ˙̂s)s̃(t) (3.19)

θ̇C(t) = −ΓCY
T
C (q, q̇, ŝ)s̃(t) (3.20)

θ̇(t) = −ΓY T (q, qd, q̇, q̇d, q̈d)s̃(t) (3.21)

where ΓD ∈ RnD×nD ,ΓC ∈ RnC×nC and Γ ∈ Rr×r are adaptive gain matrices chosen

to satisfy ΓD = ΓTD > 0,ΓC = ΓTC > 0 and Γ = ΓT > 0.

These adaptive laws are chosen to guarantee the desired properties of this adaptive

parameter estimation scheme. Detailed proof is shown as follows.

Lemma 3.1. The adaptive scheme consisting of (3.19)–(3.21) ensures that the pre-

diction errors s̃(t) = s(t)− ŝ(t), and the parameter errors θD(t)− θ∗D, θC(t)− θ∗C and

θ(t)− θ∗ are all bounded, and s̃(t) ∈ L2.

Proof: Consider the positive definite function

V (s̃, θ̃D, θ̃C , θ̃) =
1

2
(s̃TDs̃+ θ̃TDΓ−1

D θ̃D + θ̃TCΓ−1
C θ̃C + θ̃TΓ−1θ̃). (3.22)

With the previous error equation (3.8) and the choices of adaptive laws (3.19)–(3.21),
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differentiating V (s̃, θ̃D, θ̃C , θ̃) yields

V̇ = s̃TD ˙̃s+
1

2
s̃T Ḋs̃+ θ̃TDΓ−1

D
˙̃θD + θ̃TCΓ−1

C
˙̃θC + θ̃TΓ−1 ˙̃θ

= s̃T (D ˙̃s+ Cs̃)− (θ̃TDY
T
D + θ̃TCY

T
C + θ̃TY T )s̃

= s̃T (YDθ̃D + YC θ̃C + Y θ̃ −K0s̃)− (θ̃TDY
T
D + θ̃TCY

T
C + θ̃TY T )s̃

= −s̃T (t)K0s̃(t) ≤ 0. (3.23)

Consequently we have

θ̃D(t), θ̃C(t), θ̃(t) ∈ L∞, s̃(t) ∈ L∞ ∩ L2, (3.24)

so that the lemma holds. O

In the adaptive control scheme we present above, the parametrization of D(q) ˙̂s

may be compacted using some property of D(q), and further compaction may be

made for some special cases.

3.2.2 Compact Parametrization of D(q) ˙̂s

Since we know that D(q) is a symmetric matrix, which means that dij(q) = dji(q),

or that θ∗ij = θ∗ji and φij(q) = φji(q) from equation (3.11), we can obtain a more

compact adaptive control scheme for all i, j by modifying the way of parametrization.
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kjConsider a 2-link planar manipulator, whose inertia matrix D(q) is

d11(q) = M1l
2
c1 +M2(l21 + l2c2 + 2l1lc2 cos(q2)) + I1 + I2

= M1l
2
c1 +M2(l21 + l2c2) + I1 + I2 + 2M2l1lc2 cos(q2) (3.25)

d12(q) = d21(q) = M2(l2c2 + l1lc1 cos(q2)) + I2

= M2l
2
c2 + I2 +M2l1lc2 cos(q2) (3.26)

d22(q) = M2l
2
c2 + I2. (3.27)

The associated parameter vectors are

θ∗11 =
[
M1l

2
c1 +M2(l21 + l2c2) + I1 + I2, 2M2l1lc2

]T
, φ11(q) = [1, cos(q2)]T (3.28)

θ∗12 =
[
M2l

2
c2 + I2,M2l1lc2

]T
, φ11(q) = [1, cos(q2)]T (3.29)

θ∗22 = M2l
2
c2 + I2, φ22(q) = 1, (3.30)

which contains five parameters: θ∗111, θ
∗
112, θ

∗
121, θ

∗
122, θ

∗
22. However, this model can be

expressed using only three parameters:

θ∗D = [θ∗D1, θ
∗
D2, θ

∗
D3]T (3.31)

=
[
M1l

2
c1 +M2(l21 + l2c2) + I1 + I2,M2l1lc2,M2l

2
c2 + I2

]T
. (3.32)

Thus, dij(q) can be expressed as

D(q) ˙̂s(t) =

 ˙̂s1(t) (2 ˙̂s1(t) + ˙̂s2(t)) cos(q2) ˙̂s2(t)

0 ˙̂s1(t) cos(q2) ˙̂s1(t) + ˙̂s2(t)



θ∗D1

θ∗D2

θ∗D3

 . (3.33)

We can see that the parametrization is further simplified, comparing with (3.36) and
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(3.42)–(3.44).

3.2.3 A Parameter Projection Scheme

In the analysis of nominal closed-loop control system (3.6): D(q)(ṡ(t) + Λ1s(t)) =

0, where −Λ1 is an n×n constant and stable matrix, we obtain the desired properties

based on the condition that D(q) is nonsingular. In the predictor-based adaptive ver-

sion in Section 3.2, the closed-loop control system would become D̂(q)( ˙̂s(t)+Λ1ŝ(t)) =

0. To guarantee the desired properties that ŝ(t) is bounded and limt→∞ ŝ(t) = 0 ex-

ponentially, the estimate D̂(q) of D(q) needs to be nonsingular for all time t during

the adaptation process. We know that the matrix D̂(q) will remain positive definite

and invertible if we insure that all parameters dij remain within a sufficiently small

range near the true values.

1With this motivation, we use parameter projection to restrict our estimates of

the parameters to lie within bounds, and correspondingly, the adaptive law for θD(t)

is redesigned as

θ̇D(t) = −ΓDY
T
D (q, ˙̂s)s̃(t) + fD(t) (3.34)

where Γ = diag {γD1, γD2, ..., γDnD}, with γDi > 0 for i = 1, 2, ..., nD, and fD(t) =

[fD1(t), ..., fDnD(t)]T is the parameter projection vector whose components fDi(t) are

designed as follows.

Denote θ∗D =
[
θ∗D1, ..., θ

∗
DnD

]T ∈ RnD , and let θ∗Di ∈
[
θaDi, θ

b
Di

]
, where θaDi, θ

b
Di are

bounds of the unknown parameter θ∗Di such that the following assumption holds:

Assumption 3.1. For any parameter θDi ∈
[
θaDi, θ

b
Di

]
, i = 1, 2, ..., nD, the param-

eter vector θD =
[
θD1, ..., θDnD

]T
ensures that the estimate D(q) = D̂(q(t), θD) is

nonsingular for all t ≥ 0.

Projection signals. The parameter bounds θaDi, θ
b
Di and partial knowledge of
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the parameters of D(q) can be obtained for a specific manipulator system. We first

denote a signal gD(t) using the knowledge of the parameter bounds θaDi and θbDi as

gD(t) = −ΓDY
T
D (q, ˙̂s)s̃(t) = [gD1(t), gD2(t), ..., gDnD(t)]T , (3.35)

and then choose θDi(0) ∈
[
θaDi, θ

b
Di

]
, i = 1, 2, ..., nD. Now we can set the projection

signals fDi(t) as

fDi(t) =



0 if θDi(t) ∈ (θaDi, θ
b
Di), or

if θDi(t) = θaDi, gDi(t) ≥ 0, or

if θDi(t) = θbDi, gDi(t) ≤ 0,

−gDi(t) if otherwise.

(3.36)

Choosing fDi(t) as above ensures that the estimate θDi(t) ∈
[
θaDi, θ

b
Di

]
, i =

1, 2, ..., nD, so that θD(t) ∈ L∞. Furthermore, this choice of fDi(t) guarantees that

(θDi(t)− θ∗Di)fDi(t) ≤ 0, 1 ≤ j ≤ nD, (3.37)

so that with θ̃Di(t) = θDi(t)− θ∗Di and θ̃D(t) =
[
θ̃D1(t), ..., θ̃DnD(t)

]T
= θD(t)− θ∗D, we

can conclude that

θ̃TD(t)Γ−1
D fD(t) =

nθ∑
j=1

θ̃Dj(t)γ
−1
DjfDj(t) ≤ 0. (3.38)

With this parameter projection scheme, the following desired properties can be

guaranteed.

Lemma 3.2. The adaptive parameter estimation scheme consisting of (3.20), (3.21)
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and (3.48) with (3.49)-(3.50) ensures that the prediction errors s̃(t) = s(t)− ŝ(t), the

parameter errors θD(t) − θ∗D, θD(t) − θ∗C and θ(t) − θ∗ are bounded,x s̃(t) ∈ L2, and

D̂(q) = D̂(q(t), θD(t)) is nonsingular for all t ≥ 0.

Proof: From the parameter projection property we have θDi(t) ∈
[
θaDi, θ

b
Di

]
, i =

1, 2, ..., nD, this property leads to a nonsingular D̂(q) as specified in Assumption 3.1

from the conditions on the intervals
[
θaDi, θ

b
Di

]
, and from the positive definite function

V (s̃, θ̃D, θ̃D, θ̃) in (3.22), which has the property that its time-derivative as

V̇ = −s̃T (t)K0s̃(t) + θ̃TDΓ−1
D fD(t). (3.39)

With the property (3.52) of parameter projection, we have V̇ ≤ −s̃T (t)K0s̃(t), so

that the desired properties of Lemma (3.1). O

Notice that in the parametrization (3.11): D(q) = {dij(q)} , dij(q) = θ∗Tij φij(q),

the specific forms of the function φij(q) are not unique, instead, they depend on a

specific manipulator system model, and so do the parameter bounds θaDk and θbDk of

the true parameter component θ∗Dk of θ∗D (which is the bounds of the components

of θ∗ij). Such functions and associated parameter bounds may not be unique for a

parametrization scheme (3.11). An ideal design should choose θ∗ij and φij(q) with as

lower dimensions as possible.

3.3 Adaptive Controller

With the parameter estimation scheme and parameter projection we proposed in

section 3.2, an adaptive control signal u(t) can be chosen as

u(t) = Y (q, qd, q̇, q̇d, q̈d)θ(t)−K0s̃− D̂(q)Λ1ŝ(t) + Ĉ(q, q̇)ŝ(t), (3.40)
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where D̂(q) is constructed as in (3.14) and Ĉ(q, q̇)ŝ(t) = YC(q, q̇, ŝ)θC as parametrized

in (3.16).

This choice of adaptive law guarantees the desired closed-loop properties for an

adaptive control manipulator system, which are stated in the following theorem.

Theorem 3.1. The adaptive control law (3.54), updated by the adaptive parameter es-

timation scheme consisting of (3.48), (3.20) and (3.21), combined with the prediction

algorithm (3.7) applied to the manipulator system (2.3), ensures that all signals in

the closed-loop system are bounded and the tracking error e(t) = q(t)−qd(t) converges

to zero as time goes to infinity.

Proof: By applying this control law, the prediction signal equation (3.7) becomes

D̂(q)( ˙̂s+ Λ1ŝ(t)) = 0. (3.41)

With parameter projection, we could ensure that D̂(q) is positive definite and

invertible for all t ≥ 0, so that

˙̂s(t) + Λ1ŝ(t) = 0, (3.42)

from which we can conclude that ŝ(t) is bounded and limt→∞ = 0 exponentially, in

other words, we obtain ŝ(t) ∈ L2.

Consequently, the prediction signal s(t) = s̃(t) + ŝ(t) is bounded, and s(t) ∈ L2,

since both s̃(t) and ŝ(t) have same properties. From the variable transformation

s = ė + Λe, we obtain that e(t) is bounded and e(t) ∈ L2, ė(t) is bounded and

ė(t) ∈ L2, and in turn u(t) in (3.54) is bounded. Finally, the properties that e(t) ∈ L2

and ė(t) is bounded lead to limt→∞ e(t) = 0. So the theorem holds for all t ≥ 0.



44

3.4 Simulation Study

In this section, we present some simulation results to verify the desired perfor-

mance of our prediction error based adaptive control scheme in single-model cases.

In our simulation study, we consider a 2-link planar manipulator as the controlled

plant for the robot system modeling, parametrization, and simulation.

3.4.1 Simulation System

The manipulator configuration may be described as: there are two revolute joints,

one on the top of the other, with joint angles q1, q2, and two links with masses m1,

m2, lengths l1,l2, distances lc1, lc2 from the joints to the mass centers, and rotational

inertias I1, I2.

System equations. The dynamics equation of the rigid robot manipulator is

given in equation (2.3). For a 2-link planar manipulator used in our simulation study,

a more specific model can be obtained as follows. The inertia matrix D(q) should be:

D(q) =

d11 d12

d21 d22


with

d11 = m1l
2
c1 +m2(l21 + l2c2 + 2l1lc2 cos(q2)) + I1 + I2

d12 = d21 = m2(l2c2 + l1lc2 cos(q2)) + I2

d22 = m2l
2
c2 + I2. (3.43)
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The matrix C(q, q̇) representing Coriolis and centrifugal effects should be:

C(q) =

c11 c12

c21 c22


with

c11 = −m2l1lc2 sin(q2)q̇2

c12 = −m2l1lc2 sin(q2)(q̇1 + q̇2)

c21 = m2l1lc2 sin(q2)q̇1

c22 = 0. (3.44)

The gravity matrix φ(q) should be:

φ(q) =

(m1lc1 +m2l1)g cos(q1) +m2lc2g cos(q1 + q2)

m2lc2g cos(q1 + q2)

 . (3.45)

Parametrization. After using variable transformation (3.1) and parameterizing

the manipulator model into (3.4), we have the parameter vector θ∗ as

θ∗ = [θ∗1, θ
∗
2, θ
∗
3, θ
∗
4, θ
∗
5]

=
[
m1l

2
c1 +m2l

2
1 +m2l

2
c2 + I1 + I2,m2l

2
c2 + I2,m2l1lc2, (m1lc1 +m2l1)g,m2lc2g

]T
,

(3.46)
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and the regressor matrix Y (q, qd, q̇, q̇d, q̈d) as

Y (q, qd, q̇, q̇d, q̈d) = Y0(q, q̇, v, v̇) =

v̇1 v̇2

0 v̇1 + v̇2

cos(q2)(2v̇1 + v̇2)− sin(q2)q̇2v1 − sin(q2)(q̇1 + q̇2)v2 cos(q1) cos(q1 + q2)

cos(q2)v̇1 + sin(q2)q̇1v1 0 cos(q1 + q2)

 (3.47)

where v = [v1, v2]T .

We may also parametrized C(q, q̇)ŝ and D(q) ˙̂s as

C(q, q̇)ŝ = YC(q, q̇, ŝ)θ∗C

=

− sin(q2)q̇2ŝ1 − sin(q2)(q̇1 + q̇2)ŝ2

sin(q2)q̇1ŝ1

 (m2l1lc2) (3.48)

D(q) ˙̂s = YD(q, ˙̂s)θ∗D

=

 ˙̂s1
˙̂s2 2 ˙̂s1 cos(q2) + ˙̂s2 cos(q2)

0 ˙̂s1 + ˙̂s2
˙̂s1 cos(q2)



m1l

2
c1 +m2l

2
1 +m2l

2
c2 + I1 + I2

m2l
2
c2 + I2

m2l1lc2

 .
(3.49)

Note that for a 2-link robot manipulator, parametrization of D(q) ˙̂s can be simplified

into three parameters instead of five as above.

Control signal. The control input signal u(t) we choose for this robot system is

given in (3.54): u(t) = Y (q, qd, q̇, q̇d, q̈d)θ(t)−Kds̃(t)− D̂(q)Λ1ŝ(t) + Ĉ(q, q̇)ŝ(t).
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System parameters. The nominal values for the inertial parameters can be

obtained as follows: m1 = 6.5225kg,m2 = 2.0458kg, l1 = l2 = 0.26m, lc1 = 0.0983m,

lc2 = 0.0229m, I1 = 0.1213kgm2, and I2 = 0.0116kgm2. Hence we could get the true

values of parameter vectors θ∗, θ∗D and θ∗C :

θ∗ =

[
0.3353 0.0127 0.0122 11.5078 0.4596

]T
θ∗D =

[
0.3353 0.0127 0.0122

]T
θ∗C = 0.0122. (3.50)

3.4.2 Simulation Results

In the simulation study, we tested our prediction error based adaptive control

scheme in two cases, where different desired trajectories were used to verify the track-

ing error convergence. The simulation results show that in both cases, our control

objective could be achieved.

Simulation conditions. We assumed the robot manipulator is executing a

trajectory-tracking task in our tests. The initial joint positions were set as q1(0) =

π/6, q2(0) = π/3 for both cases. Initial values of other parameters were chosen as

q̇1(0) = π/4, q̇2(0) = π/4, ŝ1(0) = 1, ŝ2(0) = 1, θ1(0) = 0.3, θ2(0) = 0.01, θ3(0) = 0.01,

θ4(0) = 10, θ5(0) = 1, θD1(0) = 0.01, θD2(0) = 0.01, θD3(0) = 0.01, θC(0) = 0.01.

Choose design parameters as Kd = I2, Λ = I2, and Λ1 = 0.8I2, and adaptive gains as

ΓD = 0.1I3, ΓC = 0.1I1, Γ = 10I5 for simulation.

Notice that for the purpose of parameter projection, we need to restrict θ̂D1, θ̂D2

and θ̂D3 to lie on chosen ranges so that D̂(q) remains invertible. Based on priori
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knowledge, we set the parameter bounds as

0.28 < θ̂D1 < 0.55

0.0125 < θ̂D2 < 0.0410

0.0085 < θ̂D3 < 0.0125. (3.51)

In Case I, the desired trajectory was chosen as q1d = π, q2d = π/2, testing the

system performance in set-point control. In Case II, the desired trajectories were

chosen as q1d(t) = π/3 + sin(t), q2d(t) = π/6 + cos(t) along with their first and second

derivatives.

System responses. The simulation results of Case I are shown in Figures 3.1 -

3.3, and results of Case II are shown in Figures 3.4 - 3.6. According to the system

responses, we found that in both cases, with the adaptive control laws and the pre-

diction error based algorithm applied to the manipulator system, the tracking errors

e(t) = q(t) − qd(t) converge to zero, and the parameter estimation errors θ(t) − θ∗,

θD(t)− θ∗D, θC(t)− θ∗C are all bounded.
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Figure 3.1: Tracking errors e(t) = q(t)− qd(t) for the single-model scheme (Case I).

0 5 10 15 20
−6

−4

−2

0

2

4

(a) Parameter error θ1 − θ1
* in kgm2/sec

0 5 10 15 20
−4

−2

0

2

4

(b) Parameter error θ2 − θ2
* in kgm2/sec

0 5 10 15 20
−4

−2

0

2

4

(c) Parameter error θ3 − θ3
* in kgm2/sec

0 5 10 15 20
−2

−1

0

1

2

3

(d) Parameter error θ4 − θ4
* in kgm2/sec

0 5 10 15 20
−0.5

0

0.5

1

(e) Parameter error θ5 − θ5
* in kgm2/sec

Figure 3.2: Parameter errors of θ(t) for the single-model scheme (Case I).
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Figure 3.3: Parameter errors of θD(t) and θC(t) for the single-model scheme (Case I).
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Figure 3.4: Tracking errors e(t) = q(t)− qd(t) for the single-model scheme (Case II).
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Figure 3.5: Parameter errors of θ(t) for the single-model scheme (Case II).
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Figure 3.6: Parameter errors of θD(t) and θC(t) for the single-model scheme (Case
II).
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3.5 Simulation Discussion and Summary

From the simulation results shown in Figure 3.1 - 3.6, we found that the pro-

posed adaptive control scheme is effective in solving the control problem of robotic

manipulators executing trajectory tracking tasks. In Case I, the tracking errors and

parameter errors converge after 6 seconds. And in Case II, it takes around 10 sec-

onds. We also notice that there are undesirable overshoots in the system responses.

For tracking errors, overshoots are around 0.2 rad/sec in Case I, and 0.3 rad/sec in

Case II. It is our goal to improve the system performance by expanding this prediction

error based adaptive control scheme to multiple-model control scheme.

The dynamic prediction error based adaptive control scheme we designed in this

chapter contains the basic structure for development to multiple-model control scheme,

which has the potential for system performance improvement. As a result, the method

and steps of parameter estimation, compact parametrization, and adaptive controller

design will be followed in our multiple-model design in next chapter. The parameter

projection scheme designed in this chapter will also play an important role in stability

analysis for multiple-model control scheme.



Chapter 4

A Multiple-Model Adaptive

Control Scheme

In this chapter, our objective is to devise an algorithm for the trajectory tracking

of robotic manipulators, which deal with uncertain environmental conditions. What

different from the content of last chapter is an additional constraint that the transient

behavior of the tracking error is as desired as we want. In order to achieve improve-

ment in overall performance, we use the adaptive control scheme proposed in last

chapter as a baseline to develop a multiple-model control scheme. Simulation study

is also presented in this chapter to verify the improvement of transient performance.

4.1 Problem Statement

From the content of last chapter, we know that the main technical issue of de-

signing an adaptive control scheme is that due to the uncertainty of θ∗, we cannot

decide which is the most suitable choice of the initial parameter estimate θ(0) and

the adaptation gain matrix Γ. Although the desired control system stability (signal

boundedness) and asymptotic tracking limt→∞ e(t) = 0 of the adaptive control scheme

53
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can always be guaranteed whatever θ∗ and Γ we choose, different choices would lead

to different system transient responses.

Our goal is to develop a multiple-model based adaptive control scheme for the

robot manipulator system (2.3), which can incorporate different initial conditions

θ(0) and different adaptation gains Γ to select a most suitable control signal among

the chosen collections. With a particular θ(0) and a particular Γ, improved system

performance would be achieved, as compared with a single-model adaptive control

scheme.

4.2 Multiple-Model Adaptive Design

Adaptive prediction signals. Based on the plant signal identity we proposed

in (3.4), multiple adaptive prediction signals can be first designed as

D̂(i)(q) ˙̂s(i) + Ĉ(i)(q, q̇)ŝ(i) = u− Y (q, qd, q̇, q̇d, q̈d)θ(i) +K0(i)s̃(i), (4.1)

with multiple adaptive estimates D̂(i)(q) and Ĉ(i)(q, q̇) of D(q) and C(q, q̇), multiple

estimates θ(i)(t) of θ∗, and with multiple n×n gain matrices K0(i) = KT
0(i) > 0, where

s̃(i)(t) = s(t)− ŝ(i)(t) are the multiple prediction error signals, i = 1, 2, ..., N .

Notice that the initial values of the estimates D̂(i)(q), Ĉ(i)(q, q̇) and θ(i)(t) at

t = 0 should be chosen from different representative locations in the parameter space,

and a desired choice of the number N of the multiple controllers can be determined

according to a specific application system.

According to the prediction signals (4.1) and (3.4), we can obtain the multiple
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prediction error equations

D(q) ˙̃s(i) +C(q, q̇)s̃(i) = D̃(i)(q) ˙̂s(i) +C̃(i)(q, q̇)ŝ(i) +Y (q, qd, q̇, q̇d, q̈d)(θ(i)−θ∗)−K0(i)s̃(i),

(4.2)

where

D̃(i)(q) = D̂(i)(q)−D(q), C̃(i)(q, q̇) = Ĉ(i)(q, q̇)− C(q, q̇). (4.3)

Parametrization of Ĉ(i)(q, q̇)ŝ(i) and D̂(i)(q) ˙̂s(i). Similar to the parametrization

scheme presented in Section 3.2.1, which is (3.10): C(q, q̇)ŝ = YC(q, q̇, s̃)θ∗C and (3.13):

D(q) ˙̂s = YD(q, ˙̂s)θ∗D, we can express the parametrization in multiple-model scheme as

C(q, q̇)ŝ(i) = YC(q, q̇, ŝ(i))θ
∗
C (4.4)

Ĉ(i)(q, q̇)ŝ(i) = YC(q, q̇, ŝ(i))θC(i) (4.5)

D(q) ˙̂s(i) = YD(q, ˙̂s(i))θ
∗
D (4.6)

D̂(i)(q) ˙̂s(i) = YD(q, ˙̂s(i))θD(i) (4.7)

where θD(i) and θC(i) are multiple estimates of θ∗D and θ∗C . With these new expressions,

the error equation (4.2) becomes

D(q) ˙̃s(i) + C(q, q̇)s̃(i)

=YD(q, ˙̂s(i))(θD(i) − θ∗D) + YC(q, q̇, ŝ(i))(θC(i) − θ∗C)

+ Y (q, qd, q̇, q̇d, q̈d)(θ(i) − θ∗)−K0(i)s̃(i). (4.8)

Adaptive laws. According to the parameter estimation and parameter projec-

tion scheme in last chapter, we choose the adaptive parameter update laws for θD(i)(t),
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θC(i)(t) and θ(i)(t), i = 1, 2, ..., N as

θ̇D(i)(t) = −ΓD(i)Y
T
D (q, ˙̂s(i))s̃(i)(t) + fD(i)(t) (4.9)

θ̇C(i)(t) = −ΓC(i)Y
T
C (q, q̇, ŝ(i))s̃(i)(t) (4.10)

θ̇(i)(t) = −Γ(i)Y
T (q, qd, q̇, q̇d, q̈d)s̃(i)(t), (4.11)

where ΓD(i) = diag
{
γD(i)1, γD(i)2, ..., γD(i)nD

}
, with γD(i)j > 0 for j = 1, 2, ..., nD,ΓC(i) ∈

RnC×nC and Γ(i) ∈ Rr×r are such that ΓC(i) = ΓTC(i) > 0 and Γ(i) = ΓT(i) > 0,

and fD(i)(t) =
[
fD(i)1(t), ..., fD(i)nD(t)

]T
is the parameter projection vector whose

components are defined in a way similar to that given in (3.50) to ensure that

D̂(i)(q) = D̂(i)(q(t), θD(i)) is nonsingular for all t. Also, similar to the property we

described in (3.52), for multiple-model scheme, we have

θ̃TD(i)(t)Γ
−1
D(i)fD(i)(t) =

nθ∑
j=1

θ̃D(i)j(t)γ
−1
D(i)jfD(i)j(t) ≤ 0, (4.12)

for the components θ̃D(i)j(t) of θ̃TD(i)(t).

The initial parameters for multiple-model adaptive laws θD(i)(0), θC(i)(0) and

θ(i)(0), i = 1, 2, ..., N , are chosen at different representative locations in the parameter

space where their true values θ∗D, θ∗D and θ∗ belong to. As a result, the minimum

norm of the initial parameter errors θD(i)(0) − θ∗D, θC(i)(0) − θ∗C and θ(i)(0) − θ∗,

i = 1, 2, ..., N , can be made as small as possible for uncertain parameters θ∗D, θ
∗
C ,

and θ∗. To understand this claim, we consider the multiple sets of initial param-

eters
{
θD(i)(0), θC(i)(0), θ(i)(0)

}
, one set of them is the same with the one used for

single-model adaptive controller, so that this set of initial parameters is as close to

(θ∗D, θ
∗
C , θ

∗) as that for a single-model scheme. Hence, with more sets of initial pa-

rameters being considered, some of
{
θD(i)(0), θC(i)(0), θ(i)(0)

}
may be made closer to
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(θ∗D, θ
∗
C , θ

∗), and a control switching mechanism may be eligible to choose the control

signal with a closer set of initial parameters.

Adaptive control signals. The multiple adaptive control signals u(i)(t) is de-

fined as

u(i)(t) = Y (q, qd, q̇, q̇d, q̈d)θ(i)(t)−K0(i)s̃(i)(t)−D̂(i)(q)Λ1(i)ŝ(i)(t)+Ĉ(q, q̇)ŝ(i)(t), (4.13)

where Λ1(i) ∈ Rn×n is a constant matrix such that −Λ1(i) is stable, which requires the

eigenvalues of this matrix all have negative real-part. D̂(i)(q) and Ĉ(i)(q, q̇)ŝ(i)(t) are

obtained from

D̂(i)(q) = D̂(i)(q, θD(i)) =
{
d̂jk(i)(q, θjk(i))

}
, (4.14)

where d̂jk(i)(q, θjk(i)) = θTjk(i)φjk(q), and

Ĉ(i)(q, q̇)ŝ(i) = YC(q, q̇, ŝ(i))θC(i), i = 1, 2, ..., N. (4.15)

Performance index. For the ith prediction error s̃(i)(t) = s(t) − ŝ(i)(t), we

introduce the performance index J(i)(t) as follow:

J(i)(t) =

∫ t

0

e−λ(t−τ)s̃T(i)(τ)s̃(i)(τ)dτ, i = 1, 2, ..., N, (4.16)

for some constant λ ≥ 0. We then set the control signal u(t) at every instant as

u(t) = u(i)(t), i = arg min
k=1,2,...,N

J(k)(t). (4.17)

That is, u(t) is set to be u(i)(t) with J(i)(t) being the minimum of J(k)(t) for all

k = 1, 2, ..., N .
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4.3 Adaptive Control System Analysis

In this section, we analyze the closed-loop system stability and output tracking

properties of the above multiple-model adaptive control scheme applied to the ma-

nipulator system (2.3) with parameter uncertainties. We first show that the multiple

parameter estimation scheme has the following desired properties.

Lemma 4.1. For each i = 1, 2, ..., N , the adaptive parameter estimator consisting

of (4.9) with a parameter projection signal fD(i)(t), (4.10) and (4.11) ensures that

s̃(i)(t) = s(t)− ŝ(i)(t), θD(i)(t)− θ∗D, θC(i)(t)− θ∗C and θ(i)(t)− θ∗ are bounded, s̃(i)(t) ∈

L2, and D̂(i)(q) = D̂(q(t), θD(i)(t)) is nonsingular for all t ≥ 0.

Proof: For i = 1, 2, ..., N , from the parameter projection property: θD(i)j(t) ∈[
θaDj, θ

b
Dj

]
, j = 1, 2, ..., nD, we have a nonsingular D̂(i)(q) from the conditions on the

intervals
[
θaDj, θ

b
Dj

]
as specified in Assumption 3.1. For the positive definite function

V(i)

(
s̃(i), θ̃D(i), θ̃C(i), θ̃(i)

)
=

1

2

(
s̃T(i)Ds̃(i) + θ̃TD(i)Γ

−1
D(i)θ̃D(i) + θ̃TC(i)Γ

−1
C(i)θ̃C(i) + θ̃T(i)Γ

−1
(i) θ̃(i)

)
,

(4.18)

we derive its time-derivative as

V̇(i) = −s̃T(i)(t)K0(i)s̃(i)(t) + θ̃TD(i)(t)Γ
−1
D(i)fD(i)(t). (4.19)

With the property (4.12) of parameter projection, we can obtain the desired property:

V̇(i) ≤ −s̃T(i)(t)K0(i)s̃(i)(t) ≤ 0. From this result, it follows that s̃(i)(t) = s(t)− ŝ(i)(t),

θD(i)(t) − θ∗D, θC(i)(t) − θ∗C and θ(i)(t) − θ∗ are bounded, and that s̃(i) ∈ L2. These

desired properties hold for all adaptive predictors (4.1) with parameter estimators

(4.9), (4.10) and (4.11), for i = 1, 2, ..., N . O
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Thus we have shown that each parameter estimator has the desired properties:

θD(i)(t), θC(i)(t) and θ(i)(t) are bounded, D̂(i)(q) = D̂(q(t), θD(i)(t)) is nonsingular for

all t ≥ 0, and s̃(i)(t) ∈ L2, for i = 1, 2, ..., N . Such multiple estimators generates

parameters for implementing the multiple control signals u(i)(t) in (4.13). If u(t) =

u(i)(t), t ≥ 0, for any chosen i, the closed-loop system is stable and limt→∞ e(t) = 0,

as shown in Chapter 3.

Now we have the proof of stability for adaptive controllers without control switch-

ing, then a theorem should be stated to analyze the stability and tracking properties

of the closed-loop system with multiple-model and switching control scheme.

Theorem 4.1. The multiple-model adaptive control scheme defined by the system

equation (2.3), prediction error equations (4.8), control signals (4.13) updated by the

adaptive laws (4.9)-(4.11), and the performance index (4.16) ensures that all signals

in the closed-loop system are bounded, and the tracking errors e(t) = q(t) − qd(t)

converge to zero as t→∞.

Proof: The proof of stability has similar procedures with proof in the single-model

case, with the additional requirement that with the control switching mechanism

driven by the performance index Ji(t), all signals would remain bounded. Since

Lemma 4.1 holds independently for every parameter estimator, which is used to gen-

erate the controller at any instant, the closed-loop stability can be guaranteed for

every control signal ui(t), where i = 1, 2, ..., N . For the multiple-model scheme,

the control switching mechanism is designed to improve the transient performance,

without destabilizing the system, so that the parameter variations caused by control

switching need to be small enough in an average sense. To achieve this goal, we use

a waiting time Tmin between successive control signal switches to prevent fast chang-

ing, which may cause system chattering. Also, we stop the control switching when

Ji ≤ ε0 for all i = 1, 2, ..., N for some pre-chosen, arbitrary and small ε0 > 0. Thus,
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with the convergence of Ji(t) to zero, there is a finite time T ∗ such that the control

switching stops for t > T ∗, so the average switching frequency would be small, and

the parameter variations caused by the control switching would be decreased as much

as possible.

Moreover, when a control switch happens, a new control signal u(j)(t) is selected

corresponding to the minimal cost function Jj(t). That is, if Jj(t1) < Jk(t1),the

control switching mechanism switches from u(k) to u(j) at a time instant t1, that is,

the control signal change from

u(t) = u(k)(t)

= Y (q, qd, q̇, q̇d, q̈d)θ(k)(t)−K0s̃(k)(t)− D̂(k)(q)Λ1ŝ(k)(t) + Ĉ(k)(q, q̇)ŝ(k)(t)

(4.20)

to

u(t) = u(j)(t)

= Y (q, qd, q̇, q̇d, q̈d)θ(j)(t)−K0s̃(j)(t)− D̂(j)(q)Λ1ŝ(j)(t) + Ĉ(j)(q, q̇)ŝ(j)(t),

(4.21)

so that the change of the control signal caused by the control switching is

∆u(t) = u(j)(t)− u(k)(t)

= Y (θ(j)(t)− θ(k)(t))−K0(s̃(j)(t)− s̃(k)(t))− Λ1(D̂(j)ŝ(j)(t)− D̂(k)ŝ(k)(t))

+ (Ĉ(j)ŝ(j) − Ĉ(k)ŝ(k))

= Y (θ(j)(t)− θ(k)(t))−K0(s̃(j)(t)− s̃(k)(t))− Λ1(YD(j)θD(j)(t)− YD(k)θD(k)(t))

+ (YC(j)θC(j)(t)− YC(k)θC(k)(t)). (4.22)
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From Lemma 4.1, we have that s̃(i), θ(i)(t)−θ∗, θD(i)(t)−θ∗D and θC(i)(t)−θ∗C are all

bounded, and s̃(i)(t) ∈ L2 for all t ≥ 0, so the variations of the control signal during

control switching are small. As a result, the desired signal boundedness property in

Lemma 4.1 will also holds for multiple-model scheme under the control switching. In

other words, the L2 properties of the adaptive laws given in Lemma 4.1 is reserved

under the control switching mechanism.

Since the parameter projection works under multiple-model and switching scheme,

D̂(i)(q) = D̂(q(t), θD(i)(t)) remains nonsingular during the switching process. With

s̃(i)(t) ∈ L2 always holds, we conclude that the control input signal u(t) = u(i)(t),

generated from the parameter estimators are also bounded, is also bounded under

switching, which results in the closed-loop stability, together with the tracking error

limt→∞ e(t) = 0. O

4.4 Comparison Study

From what we have discussed in this chapter, the basic idea of multiple-model

adaptive control is that when dealing with parameter uncertainties, the use of control

signal switching among multiple controllers has the potential to be more effective than

single-model adaptive control. This is the reason why multiple-model is considered

as a method to improve system stability and tracking performance.

In the single-model control scheme, a prediction error signal s̃(t) generated in (3.8)

can be used to characterize certain system error in the presence of the uncertainty

of the parameters θ∗D, θ∗C and θ∗. If it happens to be θD(t) = θ∗D, θC(t) = θ∗C and

θ(t) = θ∗, then it follow from (3.8) that

D(q) ˙̃s+ C(q, q̇)s̃ = −K0s̃, (4.23)



62

which leads to limt→∞ s̃(t) = 0 exponentially. When θD(t) 6= θ∗D, θC(t) 6= θ∗C and

θ(t) 6= θ∗, the prediction error signal s̃(t) also satisfies equation (3.8): D(q) ˙̃s(t) +

C(q, q̇)s̃ = D̃(q) ˙̂s+ C̃(q, q̇)ŝ+Y (q, qd, q̇, q̇d, q̈)(θ− θ∗)−K0s̃. What more important is

that s̃(t) depends on the parameter errors (also called parameter uncertainties) θD(t)−

θ∗D, θC(t)− θ∗C and θ(t)− θ∗. In other words, the effect of the parameter uncertainties

is reflected by the prediction error signal s̃(t). Generally, smaller parameter errors

θD(t) − θ∗D, θC(t) − θ∗C and θ(t) − θ∗ lead to a smaller prediction error signal s̃(t).

However, ”generally true” represents that this scenario happens almost usually but

not always necessarily. The adaptive laws for updating the parameters θD(t), θC(t)

and θ(t) are chosen to ensure the properties stated in Lemma 3.1, and the eventual

convergence: limt→∞ s̃(t) = 0. In this sense, the smaller s̃(t) is, the smaller parameter

uncertainty would be. Since the prediction error s̃(t) is the only way to quantitatively

characterize or measure the parameter uncertainties by a known signal, we have to

compromise on the fact that the improvement of transient performance may not be

always necessarily true.

The value of the prediction error s̃(t) depends on the initial parameter values

θD(0), θC(0) and θ(0) of the adaptive law for θD(t), θC(t) and θ(t). From what we

have discussed above, it is generally that the closer the initial values θD(0), θC(0) and

θ(0) are to the true values θ∗D, θ
∗
C and θ∗, the smaller the prediction error s̃(t) would be.

Hence, multiple-model adaptive control generate multiple prediction errors s̃(i)(t), i =

1, 2, ..., N , to provide more measurements of the uncertainties of θ∗D, θ
∗
C and θ∗. These

multiple prediction errors s̃(i)(t) use parameter adaptive laws initialized with different

representative initial values θD(0), θC(0) and θ(0) to generate the multiple sets of

parameter estimates θD(i)(t), θC(i)(t) and θ(i)(t) and the corresponding multiple control

signals u(i)(t). Therefore, we use cost function J(i)(t) to choose a desired control signal

u(t) corresponding to the smallest prediction error, and a better system performance
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would be probably obtained.

To comprehensively understand the possible system performance ensured by a

multiple-model adaptive controller, we consider a single-model scheme initialized with

θD(0), θC(0) and θ(0) far away from θ∗D, θ
∗
C and θ∗, and a multiple-model adaptive

control scheme initialized with multiple θD(i)(0), θC(i)(0) and θ(i)(0), some of which

can be closer to θ∗D, θ
∗
C and θ∗. For the single-model case, such an undesired choice of

initial parameter values would lead to unsatisfying system transient and steady-state

performance. For the multiple-model case, its control switching mechanism selects

the control signal corresponding to the smallest prediction error, which usually results

in the best performance (achieved by the best individual controller among the set of

controllers), sometimes results in some sub-optimal performance (when the smallest

prediction error or its cost function does not correspond to the smallest parameter

uncertainty effect), or even results in the worst performance (when a smaller cost

function happens to be related to a larger effect of parameter uncertainties for some

time interval). However, undesired performance would also occur with a single-model

adaptive controller, because the corresponding initial parameters can also have the

chance to be used as the initial parameters of a single-model adaptive controller. In

this sense, a multiple-model adaptive controller will not make the system transient

worse, but can generally improve system performance.

4.5 Simulation Study

In this section, simulation results of our multiple-model adaptive control scheme

are presented and discussed to verify its advantages over the single-model adaptive

scheme developed in last chapter. We use the same 2-link robot manipulator model as

the one used in single-model cases for comparison. As a result, the simulation system
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will not be introduced again, since the system equations, parametrization, control

signal, and system parameters in this simulation study are all the same as those in

last chapter. Therefore we are able to analyze different control effects between single-

model adaptive control and multiple-model adaptive control without concern about

system parameters’ influences.

4.5.1 Simulation Results

Recall the simulation study of single-model control scheme in Chapter 3, we did

simulation for two cases with different desired trajectories. In this section, we analyze

the control effects of multiple-model scheme in the same two cases.

Simulation conditions. In order to test our multiple-model adaptive control

design, we chose arbitrarily scattered three parameter estimators with different sets

of initial values θ(0) to develop three adaptive controllers. For the first controller, the

initial values are chosen as θ1(0) = 0.3, θ2(0) = 0.01, θ3(0) = 0.01, θ4(0) = 10, θ5(0) =

1, θD1(0) = 0.01, θD2(0) = 0.01, θD3(0) = 0.01, θC(0) = 0.01, which are the values

we used in the simulation of single-model adaptive control scheme. For the second

controller, we chose the initial values as θ1(0) = 0.1, θ2(0) = 1, θ3(0) = 1, θ4(0) =

1, θ5(0) = 1, θD1(0) = 1, θD2(0) = 1, θD3(0) = 1, θC(0) = 1. The initial values cho-

sen for the third controller are θ1(0) = 0.35, θ2(0) = 0.013, θ3(0) = 0.012, θ4(0) =

11, θ5(0) = 0.5, θD1(0) = 0.35, θD2(0) = 0.013, θD3(0) = 0.012, θC(0) = 0.012.

The desired trajectory was chosen as q1d = π, q2d = π/2 for Case I, and q1d(t) =

π/3 + sin(t), q2d(t) = π/6 + cos(t) for Case II, along with their first and second

derivatives. The initial joint positions, design parameters and adaptive gains are the

same as those in simulation of single-model cases: q1(0) = π/6, q2(0) = π/3, Kd = I2,

Λ = I2, Λ1 = 0.8I2, ΓD = 0.1I3, ΓC = 0.1I1, and Γ = 10I5.
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For the cost function Ji(t) defined in equation (4.16), we chose λ = 0.5 for simula-

tion. Besides, we use waiting time Tmin = 0.5sec to prevent arbitrarily fast switching.

System responses. The simulation results obtained from Case I are shown in

Figures 7-10, and results obtained from Case II in Figures 11-14. From the transient

performance of the multiple-model adaptive control shown in Figures 7-9 and Figures

11-13, we find that our control objective could be achieved in both cases, since the

tracking errors e(t) = q(t) − qd(t) both converge to zero, and parameter estimation

errors θ(t)− θ∗, θD(t)− θ∗D, θC(t)− θ∗C are all bounded.

We also notice that in both cases, the control switching index i switches from 1

to 3 after a short time interval, as shown in Figure 10(a) and Figure 14(a), which

means the manipulator system takes advantage of the first controller at the very

beginning, and then switches to the third controller because it has the smallest cost

function among these controllers. Related information can be found in Figure 10(b)

and Figure 14(b), from which we could find that J3 (represented by the solid curve)

always has the smallest value so that the third controller is applied to the manipulator

system after the waiting time, and no more switch would happen afterwards.
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Figure 4.1: Tracking errors e(t) = q(t) − qd(t) for the multiple-model scheme (Case
I).
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Figure 4.2: Parameter errors of θ(i)(t) for the multiple-model scheme (Case I).
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Figure 4.3: Parameter errors of θD(i)(t) and θC(i)(t) for the multiple-model scheme
(Case I).

0 5 10 15 20
0

1

2

3

4

(a) Control switching index i

0 5 10 15 20
0

1

2

3

4

(b) Cost function J1(t) (dotted), J2(t) (dashed) and J3(t) (solid)

Figure 4.4: Control switching index i and cost functions Ji(t) of the multiple-model
scheme (Case I).
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Figure 4.5: Tracking errors e(t) = q(t) − qd(t) for the multiple-model scheme (Case
II).
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Figure 4.6: Parameter errors of θ(i)(t) for the multiple-model scheme (Case II).
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Figure 4.7: Parameter errors of θD(i)(t) and θC(i)(t) for the multiple-model scheme
(Case II).
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Figure 4.8: Control switching index i and cost function Ji(t) of the multiple-model
scheme (Case II).

Discussion. Since the initial joint positions and adaptive gains in multiple-model
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control scheme are chosen to be the same as those in single-model control scheme for

every controller, a reliable comparison could be made. For Case I, it takes around 10

seconds for tracking errors with single-model scheme to converge to zero, while with

multiple-model scheme, it only takes around 4 seconds. Overshoot in tracking errors

is avoided as well with multiple-model scheme. For Case II, trajectory tracking and

parameter convergence are achieved more quickly, and a much smaller overshoot could

also be observed with multiple-model scheme. To conclude, significant performance

improvements are obtained in both cases compared with the single-model scheme.

These simulation results agree with our assumption in Chapter 4 that smaller

prediction errors probably mean smaller parameter errors, and smaller parameter

uncertainties and errors lead to better system performance.

4.5.2 Additional Simulation Results

Since the cost function is based on the prediction errors, the control switching

mechanism would select the control signal corresponding to the smallest prediction

errors. However, as we mentioned before, the selected control signal is probably, but

not certainly the one which could lead to the best performance. In the simulation

study of multiple-model scheme, we did meet undesirable results in some cases. One

of them is presented as follows to illustrate this uncertainty of multiple-model scheme.

Simulation conditions. The three sets of initial values for controllers in this

case are chosen as following: θ1(0) = 0.3, θ2(0) = 0.01, θ3(0) = 0.01, θ4(0) = 10,

θ5(0) = 1, θD1(0) = 0.01, θD2(0) = 0.01, θD3(0) = 0.01, θC(0) = 0.01 for the first one;

θ1(0) = 1, θ2(0) = 1, θ3(0) = 1, θ4(0) = 1, θ5(0) = 1, θD1(0) = 1, θD2(0) = 1, θD3(0) =

1, θC(0) = 1 for the second one; θ1(0) = 0.35, θ2(0) = 0.013, θ3(0) = 0.012, θ4(0) =

11, θ5(0) = 0.5, θD1(0) = 0.35, θD2(0) = 0.013, θD3(0) = 0.012, θC(0) = 0.012 for the
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third one. Choose the desired trajectory in Case II: q1d(t) = π/3 + sin(t), q2d(t) =

π/6 + cos(t). The other conditions are exactly the same as those in Case I and II.

System responses. The tracking errors e(t), control switching index i and cost

functions Ji(t) are shown in Figures 15-16. We find that the system use the second

controller after a short time interval. This is because the cost function J2 becomes

the smallest one in this case, as shown in Figure 16(b). However, the transient

performance of multiple-model scheme in this case is not better than single-model

scheme, which means the smallest prediction errors may not lead to the best transient

performance, but at least, multiple-model control will not perform worse than the

worst controller.
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Figure 4.9: Tracking error e(t) = q(t)− qd(t) for multiple-model scheme case III.
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Figure 4.10: Control switching index i and cost function Ji(t) of multiple-model
scheme case III.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

The multiple-model adaptive control scheme proposed in this thesis is a promising

method to solve the control problem of robotic manipulators, and to improve its

overall tracking performance. The work presented here is a complete study of a general

control methodology, which strictly consists of prediction, adaptive laws, control input

signals, stability analysis. It represents an attempt to demonstrate that switching

between multiple models can be used effectively for performance improvement in

trajectory-tracking tasks of robotic manipulators.

The algorithms introduced in Chapter 2 briefly summarize the main contributions

in the field of adaptive robot control, as well as the basic concepts of multiple-model

control. The drawbacks and limits of these existing algorithms motivated us to gen-

erate a novel control scheme to solve or avoid these problems.

The controller we designed in Chapter 3 is based on the dynamic prediction error,

with a parameter projection scheme proposed to verify the stability of this adaptive

control algorithm. This new scheme can be used as a basic structure for multiple-

73
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model adaptive control design, and the development and expansion are stated in

Chapter 4.

The multiple-model control scheme makes use of multiple prediction signals of

the manipulator and a switching scheme that determines the specific torque input to

drive the joint actuators. The main idea is to generate a torque vector that is based

on a model that best approximates the manipulator dynamics at every instant. The

global system stability could be obtained under the switching rule, which provides

demonstration of the effectiveness of our algorithm. Therefore, we conclude that this

multiple-model adaptive control scheme is possible to achieve desired performance

improvement.

Simulation studies on a two-link robotic manipulator were also carried out in

both Chapter 3 and Chapter 4. The results confirmed those properties predicted by

the theoretical analysis, and demonstrated that the proposed algorithm improves the

overall tracking performance over the single-model-based adaptive controller.

Consequently, the problem stated in Section 2.5, which is to design a control

scheme for robotic manipulators to achieve trajectory tracking with desired perfor-

mance, can be solved by the combination of adaptive control and multiple-model

control.

5.2 Future Research Topics

Adaptive multiple-model switching control of robotic manipulators is a promising

area to solve undesired transient performance, as discussed in this thesis. However,

this research area is not mature enough, and challenges still exist, needing to be

overcome. In this section, we introduce several potential extensions as future research

topics of our research.
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Guarantee of desired system performance. The multiple-model adaptive

control scheme proposed in Chapter 4 is based on the assumption that a smaller pre-

diction error leads to smaller system parameter uncertainties, which would correspond

to better system performance. However, this assumption is not always true, which

means the multiple-model adaptive control cannot guarantee performance improve-

ment in every situation. Therefore, it is worth investigating whether there would be

a better way to quantitatively measure the parameter uncertainties so that optimal

control effect will always be achieved using multiple-model control. There are sev-

eral researchers preferred composite adaptive control for robot manipulators, where

both tracking error and prediction error are used to reflect the parameter uncer-

tainty [34], [35]. This may be a feasible method for enhancement of our control

scheme.

Multi-layer multiple-model control design. The control scheme proposed

in this thesis can be further expanded to a multi-layer multiple-model control de-

sign, which uses multiple groups of adaptive controllers for further improving system

performance. Each group is designed from expanding one basic controller to a set

of controllers initialized from different parameter subregions (which we have already

done in this thesis), or to a different set of controllers update by different adaptation

gains (which has been discussed but not simulated in this thesis), or to a combina-

tion of both groups of controllers to form a two-layer multiple-model control scheme

(which has not been constructed in this thesis). By a control switching mechanism

selecting the control input signal corresponding to the minimal performance index

from much more multiple control signals, faster and more steady transient response

would probably be achieved.

This thesis intends to lay the groundwork for multiple-model adaptive control
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scheme for robotic manipulators. It would be significant if more research will be done

in this potential area, strengthening the framework of adaptive control methodology.
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