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Abstract

A putative glycerol dehydrogenase (TM0423) from Thermotoga maritima was functionally

characterized using bioinformatic and biochemical techniques. Glycerol dehydrogenases (EC

1.1.1.6) catalyze the oxidation of glycerol to dihydroxyacetone (DHA) with the concomitant

reduction of NAD+ to NADH, which can be assayed at 340 nm. Enzymatic activity of TM0423

was verified at 65◦C in the presence of Zn2+. The use of other divalent cations, including Ni2+

and Co2+, led to reasonable albeit varying levels of enzymatic activity. Exposure to the chelat-

ing agent EDTA resulted in complete loss of activity while subsequent reintroduction of metal

co-factors to a metal-deficient reaction mixture restored function, suggesting that TM0423 is a

divalent metal cation-dependent dehydrogenase. Additional substrates were screened to shed

light on potential catalytic mechanisms. The thermostability and enzymatic activity of TM0423

makes it an attractive target for biofuel research.
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Chapter 1

The Structure Function Paradigm

1.1 The Basics of Enzyme Catalysis

The reaction of orotidine monophosphate (OMP) to uridine monophosphate (UMP) is the last

essential step in the biosynthesis of pyrimidine, an important precursor for the synthesis of

the nucleobases cytosine, thymine and uracil. If this reaction were to occur slowly, it would

severely limit the rate of DNA nucleotide biosynthesis, thereby hindering life as we know it.

The halflife (t1/2) of the uncatalyzed conversion of OMP to UMP has been determined to be

approximately 78 million years1, well beyond the lifetime of modern organisms. Fortunately

enzymes are a solution to this kinetics quandry. An enzyme is a protein which catalyzes a

chemical reaction. In vernacular, the enzyme “increases the rate” of a particular reaction. For

the OMP decarboxylation reaction, there is an OMP decarboxylase which reduces the reaction

t1/2 to the order of several milliseconds, which is well within the biological timescale of cellular

metabolism. According to transition state theory, enzymes thermodynamically stabilize the

transition state intermediate. The general energetics and reaction progress are shown in Figure

1.1. The Arrhenius relationship is given by:

k = A exp(−Ea/kBT ) (1.1)
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where k is the forward rate constant, A is a pre-exponential factor, Ea is the activation energy,

kB is the Boltzmann constant and T is the absolute temperature. This equation suggests that

there are two ways to increase the rate of a reaction, by reducing the activation energy (Ea),

or increasing the temperature (T ). Enzymes are capable of stabilizing the transition state inter-

mediate (lowering Ea) by having specific molecular interactions with the particular ligand (i.e.,

specificity). Over many generations, evolution has modified the 3D structure and dynamics of

enzymes to support specific interactions with a substrate.

Figure 1.1: An example reaction profile for a reaction as well as its enzyme catalyzed counter-
part. E represents the enzyme, S the substrate, ES the enzyme substrate complex, S‡ the transition
state of the substrate, ES‡ the transition state of the enzyme substrate complex, and P the product. The
activation free energies of both the catalyzed and uncatalyzed reactions are shown as ∆G‡◦. The acti-
vation energy for the uncatalyzed reaction is higher than that of the catalyzed reaction. The Arrhenius
relationship (Equation 1.1), relates the activation energy to the overall rate of reaction. As a result, the
catalyzed reaction will occur faster. Note that while the energy of the transition state is lowered, the
energies of the substrate and product do not change; the enzyme does not change the state of equilibria,
but rather only the kinetics to reach equilibrium.

1.2 Central Dogma, Enzyme Structure

In 1927 Nikolai Koltsov first proposed that genetic traits may be inherited via a “giant hered-

itary molecule”2. He described a giant double stranded molecule where, during cell division,

each strand serves as a template for the synthesis of an exact replica of itself. In 1952 Alfred
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Hershey and Martha Chase determined that DNA is the genetic material of the T2 phage3. With

the establishment of the fundamentals of modern genetics, the question now becomes: how is

the sequence information stored in DNA transferred to molecules with biological functions?

In 1958 Francis Crick first articulated the “central dogma” of molecular biology. This dogma

refers to the newly developed framework, the fundamental basis for our understanding of how

sequence information is transferred among the different types biopolymers (i.e., DNA, RNA,

protein). Put simply, the central dogma states that DNA is transcribed to RNA, which is then

translated to make proteins4. This final collection of proteins performs the myriad functions

that are necessary to sustain life.

Proteins are composed of amino acids covalently linked through the peptide bond. While

DNA can be transcribed to RNA using complementary nucleotide base pairing, it is less straight-

forward to understand how to translate RNA into a sequence of amino acids. Work done by

Nirenberg, Khorana, and Holley, awarded the Nobel Prize in Physiology or Medicine in 19685,

helped to elucidate the genetic code, that maps the language of nucleic acids (A, T, G, C) to the

language of proteins (20 amino acids). The genetic code is essentially a dictionary of codons

(a sequence of three nucleotides), defining which of the 20 natural amino acids correspond to

which codons. The “dictionary” function is performed by a complex macromolecule called the

ribosome which pairs the codon with the correct amino acid and links them through a peptide

condensation reaction6. After translation completes, the product is a polypeptide chain. The

amino acid sequence of the polypeptide defines its primary sequence.

Although the polypeptide is now chemically synthesized, the protein is still unable to

perform any catalytic function. Consider a thought experiment where we suppose that all of the

individual amino acids of a serine protease, which has a known catalytic mechanism relying on

the catalytic triad7, are placed in solution, along with a peptide of interest we wish to cleave.

Quickly we realize that in this scenario the reaction will likely never occur. This is because

the precise positioning and orientation of the catalytic residues are key to protein function.
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Proteins typically adopt some secondary and tertiary (3D) structure through a process called

protein folding8.

1.3 Forces at Play

Aside from the standard chemical covalent bond, which is electronic in nature, for a linear (un-

branched) polypeptide there is another major force at play. The amide group of the polypeptide

has multiple resonance forms, as shown in Figure 1.2a. This results in partial double bond

character for the peptide bonds, which restricts the rotation across the C-N of the peptide bond.

Given this restraint, each residue in the polypeptide has two (not three) rotatable bonds, as

shown in Figure 1.2b. The dihedral defined by C-N-Cα-C describing the rotation about the

N-Cα bond defines the φ torsion angle, while the dihedral defined by the atoms N-Cα-C-N

describing the rotation about the Cα-C bond defines the ψ torsion angle. Upon folding of the

peptide chain into a higher-order 3D structure, these (φ, ψ) pairs of torsion angles are not free

to adopt any arbitrary value between [0, 360◦] due to steric constraints within and between

peptide groups.

(a) (b)

Figure 1.2: (a) The resonance structures of the peptide bond. The peptide amide has multiple
resonance structures. This resonance causes the peptide bond to exhibit partial double bond character
restricting rotational movement. The restriction of rotational movement, results in two freely rotatable
bonds per amino acid residue. (b) Torsion angles for a peptide bond. The rotation about the N-Cα bond
defines the φ torsion angle while the rotation about the Cα-C bond defines the ψ torsion angle. Panel
(b) was generated and rendered using the PyMOL Molecular Graphics System9 showing an alanine
tripeptide where carbons are colored black, nitrogen blue, oxygen red, and hydrogen white.
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1.3.1 The Hydrogen Bond

One of the non-covalent effects that influence protein structure is the hydrogen bond, describ-

ing the attractive interaction between an electronegative atom covalently bonded to a hydrogen

which interacts with another electronegative atom. While the proton typically has very little

partial charge, the inductive effect of the electronegative atom covalently bonded to an (elec-

tropositive) hydrogen atom, which in turn interacts with another electronegative atom. This

positive charge can then interact with the partial negative charge of a nearby atom yielding an

attractive interaction. This simplistic model describes an interaction that is purely electrostatic;

however, experiments using NMR and Compton scattering have shown that hydrogen bonds do

contain partial covalent character10,11, although the amount of covalent character predicted by

experiments is still unclear12. Depending on the identity and character of the primary sequence

of a polypeptide, the backbone and amino acid side-chains may undergo extensive intramolec-

ular hydrogen bonding; this is part of what causes the polypeptide to adopt local secondary

structures.

While there are many variants of secondary structure motifs, the two most fundamental

are the α-helix and the β-sheet. The α-helix is a right-handed coiled conformation where for a

given amino acid i its backbone carbonyl will form a hydrogen bond with the backbone amino

nitrogen of residue i + 4. An alanine α-helix is shown with hydrogen bonding interactions

in Figure 1.3a. The β-sheet consists of β-strands that associate laterally via hydrogen bonds

between every other residue, as shown in Figure 1.3b. Any pair of β-strands can be oriented

parallel or anti-parallel, in terms of the N’→C’ peptide backbone direction. Multiple strands

can come together in this fashion to form a stable secondary structure. While secondary struc-

ture is important to the overall stability of the protein, most proteins are still unlikely to be active

until these secondary structures coalesce into a fully folded, compact 3D (tertiary) structure.
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(a) (b)

Figure 1.3: (a) A model alanine alpha helix secondary structure motif. In the α-helix we observe
that the C=O of residue i is interacting with the N-H of residue i+ 4. This creates a right-handed helix
stabilized by many hydrogen bonds. (b) An example of an antiparallel beta sheet from TM0423
(PDB ID: 1KQ3). The antiparallel hydrogen bonds between the peptide N-H and and adjacent strand
C=O are shown. Multiple β-strands can aggregate forming a stable secondary structure. Both (a) and (b)
were generated in PyMOL9 where carbon is shown in grey, hydrogen in white, oxygen in red, nitrogen
in blue, and hydrogen bonds shown in dotted yellow.

1.3.2 The Hydrophobic Effect

The hydrophobic effect denotes the observed tendency for non-polar substances to exclude wa-

ter in solution; essentially, water and oil tend to partition when brought together. While not fully

understood, this effect is thought to be driven mostly by entropy as the disruption of dynamic

hydrogen bonding between liquid water molecules causes them to form clathrate shells around

the non-polar solutes, thus decreasing entropy13,14. This entropy loss is mitigated by aggrega-

tion of the apolar moieties, minimizing the surface area-to-volume ratio15. For polypeptides

in solution, this phenomenon has major implications. For soluble proteins, or proteins which

are typically found in highly ionic aqueous environments, the hydrophobic residues will tend

to cluster together to minimize the solvent accessible surface area in an attempt to maximize

solvent entropy16. This process is termed “hydrophobic collapse”.
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During hydrophobic collapse, despite having little to no classical electrostatic interactions,

the non-polar residues will still “interact” with each other simply by virtue of being driven to-

gether by exclusion of aqueous solvent. As two atoms come together the overlay of their elec-

tron clouds will result in some electrostatic repulsion. Furthermore, in terms of quantum and

statistical mechanics, the spin-statistics theorem states that for any system of two indistinguish-

able particles, the wave function of the system will remain unchanged (symmetric) for particles

of integer spins (known as bosons) or inverted (antisymmetric) for particles of half-integer

spins (known as fermions). For antisymmetric systems, this implies that two indistinguishable

particles cannot occupy the same state17. In practice, since electrons have spin 1/2 they cannot

occupy the same quantum state18. Therefore, as two atoms come together there will be some

electrons forced into higher energy states. This transition requires additional energy, which is

manifested as a repulsive exchange interaction.

On the other hand, there is also a set of attractive forces collectively termed the van der

Waals force19. The van der Waals force term includes three different components. First the

Keesom force describes the electrostatic interactions between permanent dipoles, quadrupoles,

and other permanent higher-order multipoles. Second, the Debye force describes the interac-

tion of a permanent dipole and a corresponding induced dipole. Third, the London dispersion

force describes the interactions between a pair of transient induced dipoles20. While the van der

Waals force is relatively weak, when many such forces are present they can add up to a signif-

icant interaction. Overall, the combination of the Heisenberg exchange repulsion and the van

der Waals attraction is often modeled using the Lennard-Jones potential21 shown in Equation

1.2 where V (r) is the Lennard-Jones potential, ε describes the depth of the (attractive) potential

well, σ is the distance where the interparticle interaction is 0, and r is the interatomic distance.

The r−12 term is the repulsive term that reflects the effects of the of the Pauli repulsion while

the r−6 term describes the attractive dispersion-based interactions.
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V (r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
(1.2)

Figure 1.4: A schematic of the canonical Lennard-Jones potential where σ = ε = 1. The full
potential is shown in black while the attractive and repulsive contributions are shown in blue and red
respectively. The attractive potential dominates at long distances up until the minima at 21/6σ where
the repulsive contribution takes over. This potential is a model for Van der Waal’s forces as well as the
Heisenberg exchange repulsion of atoms.

1.3.3 Covalent Bridges

Another force potentially at play is the formation of covalent interactions. Native structures

may contain disulfide bridges, which are covalent bonds linking two cysteine thiol groups.

While in most eukaryotic cells the cytosol is a reducing environments and formation of disul-

fide bridges is not favorable. There exists a sulhydryl oxidase which is capable of facilitating
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the formation of disulfide bonds22. These disulfide bonds stabilize proteins in many ways. The

disulfide bond may bring together distant portions of the protein. While the entropy of the

protein decreases, it is compensated by the formation of additional native contacts increasing

enthalpic stabilization∗. This may be particularly important during hydrophobic collapse as the

disulfide bond constraint may form a nucleus for the condensing hydrophobic core23. In addi-

tion, disulfide bonds may link multiple chains of an oligomeric protein together locking it in its

quaternary structure. Another factor which influences quaternary structure is electrostatics.

1.3.4 Electrostatic Interactions

The electrostatic interaction between two charged particles can be described using Coulomb’s

law, shown in Equation 1.3, where V is the potential energy, ε0 is the permittivity of free

space, εr is the relative permittivity of the local environment to vacuum, q1 and q2 are the

partial charges of two objects. The Coulombs potential has an inverse (r−1) dependence on

the distance and is thus very long-ranged compared to the attractive potential from van der

Waals interactions, which vary as a function of r−6. In addition, there is a dependence on the

dielectric of the local environment. This has a potentially large effect on the strength of an

electrostatic interaction. Suppose there are two residues on the surface of a soluble protein

forming a salt bridge. The dielectric of the aqueous environment at 20◦C will be about ε ≈ 80.

For comparison, suppose there are two buried residues also forming a salt bridge. The dielectric

of this hydrophobic environment will be ε ≈ 2-3. This means that the salt bridge formed

in the hydrophobic environment will be ≈30-40× stronger than that formed in the aqueous

environment. While the two-body Coulomb’s law can be adapted to multi-body systems by

assuming linear superposition (“pairwise additivity”), Coulomb’s law does not directly account

for the heterogeneous dielectric of aqueous ionic solutions, and is a poorer approximation for

dynamic systems featuring high charge densities.

∗The concept of enthalpy-entropy compensation will be addressed more thoroughly in section 1.5.
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V (r) =
1

4πε0εr

q1q2
r

(1.3)

Continuum models of electrostatic interactions have been developed to help account for

the heterogeneous dielectric of biomolecular systems immersed in aqueous solvent or embed-

ded in hydrophobic environments. Classical treatment of electrostatic interactions are based on

the Poisson-Boltzmann equation (PBE; Equation 1.4):

~∇ ·
[
ε(~r)~∇Ψ(~r)

]
= −4πρf (~r)− 4π

∑
i

c∞i ziλ(~r) exp

[
−ziqΨ(~r)

kBT

]
(1.4)

where ε(~r) is the position-dependent dielectric, ~∇Ψ(~r) is the gradient of the electrostatic

potential (i.e., the electric field), ρf (~r) is the charge density of the solute, c∞i is the bulk con-

centration of ion i, zi is the valency of ionic species i, q is the elementary charge of a proton,

λ(~r) is a factor that describes the position-dependent accessibility of position r to the ions in

solution (shape function), kB is the Boltzmann constant, and T is the absolute temperature24,25.

Two approximations are commonly employed: under conditions of low ionic strength, the PBE

can be linearized to give the Debye-Hückle equation. Under conditions with no mobile ions

and a homogeneous dielectric field, equation 1.4 reduces to Coulomb’s law. Classical electro-

statics can be used to study electrostatic potentials, pH-dependent properties of proteins, and

the effects of solvation. While the PBE works well for many biological systems, it breaks

down for systems with high charge density. This is because the PBE models the solvent as a

dielectric continuum which responds linearly to applied fields. Under this model, strong fields

such as those present around nucleic acids and highly charged proteins may result in unrealis-

tically strong polarization of the solvent. Similarly, the PBE corresponds to only a mean field

approximation of ionic solutions, meaning that ions experience the average influence of other

charges in the system. For areas of high charge density, small fluctuations may be relevant to

the dynamics or function of a macromolecule, but is not captured by the PB model.26.
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1.4 The Protein Fold and the Sequence Paradox

The final structure of a protein depends on the properties of its primary sequence8. But sequence

space is astronomically vast: For a 100 residue protein, the number of possible sequences using

the 20 natural amino acids consists of 20100 ≈ 10130 possible sequences, which is greater than

the number of atoms in the known universe! Thus, it must be impossible for proteins to have

originated from random sequences. While this statement is partially correct, the probability of

randomly choosing a sequence that happens to be the same as OMP decarboxylase (§1.1) is

essentially zero. However, does the sequence need to be precisely the same to exhibit similar

activity?

As shown before, the function of a protein ultimately depends on the particular fold of a

protein, defined by the spatial arrangement of secondary structure elements. The particular fold

is what stabilizes the transition state intermediate to reduce the energy barrier. Thus, the entity

that is of interest is not so much a particular sequence but rather a 3D fold. While this is true,

there is a huge degeneracy in sequence space. A protein can often be mutated significantly with

only minor effects on its global fold (though its function may be compromised). In the extreme

limit, natural amino acids can be reduced down to two categories: polar and apolar. Within each

category, the amino acids are somewhat degenerate, this means that (again conceptually in the

extreme limit) hydrophobic amino acids can be exchanged for one another with little effect on

the overall fold, and similarly for polar residues. Using this binary alphabet, immediately the

astronomical problem has been reduced to 2100 ≈ 1030 sequences27,28. Note that in practice,

amino acid residues should be grouped into several, not just two, categories based upon their

chemical properties.

For soluble proteins, both computer modeling and experiments have shown that the hy-

drophobic effect largely drives the folding process. For an “average” globular protein, 1/3 of

its residues will reside in the hydrophobic core, while the other 2/3 will be polar and on the
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surface27. Nature needs only to conserve mostly the residues in the hydrophobic core, further

reducing the problem to 2100/3 ≈ 233 ≈ 1010. While this number still seems impossibly large,

nature deals with these kinds of numbers all the time (i.e., a mole is 6.02 × 1023 molecules).

For the OMP decarboxylase case study, assuming that in the primordial goo of life was around

100◦C, the corresponding t1/2 would be reduced to 10 years. Nature could plausibly scan se-

quence space for a primitive catalyst with modest affinity to drive the reaction at a reasonable

rate1,29.

Figure 1.5: A cartoon of a multidimensional protein folding energy landscape. The width of the
funnel represents the entropy while the depth of the funnel the enthalpy (or internal energy). The fraction
of native contacts is denoted Q. As the protein folds, the entropy decreases but is compensated by the
enthalpy of forming native contacts (Q=1.0). The protein folding process is not like a random, undirected
search through conformational space. Instead, it is guided by the underlying free energy landscape. For
funneled landscapes the folding process is akin to rolling a ball down a bumpy hill.
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1.5 The Folding Paradox and Energy Landscapes

Another combinatorial explosion, Levinthal’s Paradox30, arises when considering how a given

protein sequence folds to a particular 3D structure. The folding process cannot simply occur

by random search, as the conformational space is far too vast. Returning to our hypothetical

100 residue protein, each peptide bond has 4 preferred φψ angles, corresponding to alpha helix,

beta sheet, and two others, which leads to 4100 ≈ 1060 conformations.

The resolution to the above “paradox” is the fact that the folding process does not consist

of randomly scanning across every degree of freedom. Rather folding to the correct structure

is really a process guided by the interatomic forces outlined above. Thus, thermodynamics

can help us here27,31,32. If a system has n degrees of freedom χ = [χ1, χ2, . . . , χn], the stable

states of the system χ∗ = [χ∗1, χ
∗
2, . . . , χ

∗
n] correspond to the minima of the free energy function

E(χ) = E(χ∗1, χ
∗
2, . . . , χ

∗
n) that mathematically describes the energy landscape of protein fold-

ing. If the protein folding energy landscape is plotted, shown in Figure 1.5, the shape of the

landscape is funnel like. Suggesting that the process of folding is really guided by the forces

and interactions between the elements of the system. Initially, the system will be at high en-

tropy. As the protein begins to fold, the entropy decreases; however, the overall free energy,G◦,

is compensated by the favorable enthalpy changes accompanying formation of native contacts

in a process known as enthalpy/entropy compensation. Due to the enthalpy/entropy compen-

sation the net ∆G◦fold is small; Thus, proteins are only marginally stable. The protein folding

process is akin to rolling a ball down a bumpy hill rather than randomly rolling a ball on a flat

plane (hole-in-one)31.

1.6 Effects of Structural Mutations

Charles Darwin first proposed his theory of evolution in 1859, outlining the principle of natural

selection33. Natural selection describes the process in which nature enforces the “survival of
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the fittest”. From a biochemical perspective, the phenomenon of life exists due to the molecular

machinery of life, the synergy of an overwhelmingly large number of metabolic and catabolic

chemical as well as associated feedback and regulation pathways. The analogy between the

molecular machinery of life and a complex factory holds true in many regards. The removal

of the keystone gear in the factory will result in complete loss of production; in an organism

the deactivation of such a protein will result in organism death. Similarly, the addition of an

optimized component may boost productivity; while, the enhancement of a protein’s activity

may result in improved survival. Over many generations, gradual mutations in various proteins

may strengthen or weaken an organism. A weak organism may die before reproduction, thus

halting future generations for inheriting its poor genes; this is the basis for evolution defined as

survival of the fittest.

In humans, many disorders arising from mutations in a particular protein have been discov-

ered. One such disorder is the autosomal recessive metabolic genetic disorder phenylketonuria

(PKU), which is characterized by mutations in the phenylalanine hydroxylase (PheOH) protein

rendering it nonfunctional. PheOH normally catalyzes the reaction of phenylalanine to tyrosine

with the concommitant hydroxylation of tetrahydrobiopterin (BH4) all by breaking up molec-

ular oxygen. While there is a plethora of mutations and subsequent disease phenotypes,the

following discussion focuses on three specific mutations; F254I, E280K, ∆L364.

Although the catalytic mechanism of wild type PheOH is still not fully understood, some

insight has been gained through the use of structural biology as well as kinetics studies. One

scheme for the catalytic mechanism involves first the binding of both the phenylalanine as well

as the tetrahydrobiopterin in the active site near the nonheme iron. Molecular oxygen will

be cleaved hydroxylating the tetrahydrobiopterin and oxidizing the FeII to FeIV. The FeIV will

then deposit the additional oxygen onto the phenylalanine34. After some carbocation rearrange-

ment tyrosine is formed.

In wild type PheOH phenylalanine 254 is speculated to π-stack with the pterin ring of
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the BH4. The π-stacking interaction creates specificity for the BH4 as well as orients it in

the proper pose. The structure of PheOH highlighting F254 is shown in Figure 1.6. Mutating

Phe254 to isoleucine removes the capability to π-stack likely interfering with the binding of the

BH4 substrate. Due to the poor binding of the required BH4 cofactor, mutation F254I results

in a mild to severe PKU phenotype35. This is an example of an active site residue mutation

where the activity of the protein is significantly affected, but the overall fold is only marginally

changed. These critical active site residues are typically extremely conserved, as evolutionary

mutations often lead to a diseased phenotype and thus natural selection takes its effect.

Another well-studied mutation is E280K which causes mild to severe PKU. In PheOH

structures, glutamate 280 forms a hydrogen bond to histidine 146 as well as an important salt

bridge to arginine 158 (Figure 1.6). Furthermore, there are two charged glutamic acids in

the active-site of PheOH. The substitution of either of these amino acids results in a large

perturbation to the electrostatic potential of the active site which affects substrate affinity35.

While this mutation is similar to the F254I in that they both affect substrate affinity, E280K

also affects the overall fold of PheOH. The salt bridge between E280 and R158 holds the helix

and loop in the proper orientation. Disruption of the salt bridge may allow the helix and loop

to shift positions. This mutation results in PheOH having only 1% of the wild-type specific

activity in biochemical assays.

Finally, an extreme case of a mutation which disrupts the fold is ∆L364. Leucine 364

is positioned between two rigid prolines (362 and 366) and appears to be a necessary spacer

between the prolines; Without L364, the improper positioning of the prolines leads to a catas-

trophic perturbation of the global fold signified by loss of secondary structure in the area35.

PheOH with the ∆L364 mutation exhibits no activity in biochemical assays38. Thus, while

leucine 364 does not directly participate in the catalytic mechanism of PheOH, its deletion can

still have a large effect on the activity of the protein.

One can attempt to generalize that a particular residue is either structural (one that is nec-
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Figure 1.6: The structural basis of phenylketonuria. The structure of phenylalanine hydroxylase
is shown with residues H146, E280, R158, and F254 shown with oxygen in red, carbon in black and
nitrogen in blue. The observed mutation F254I likely interferes with the proper binding of the pterin and
phenylalanine substrates35. While the mutation of E280K causes mild to severe phenylketonuria. E280
is shown to hydrogen-bond to H146 and R158 maintaining the fold. In addition, there are two glutamate
residues in the active site, mutations in either results in a large change in electrostatic potential35. This
structure has been generated from the phenylalanine hydroxylase structure PDB: 1PAH36. Hydrogen
bonding networks were optimized using H++37 and the figure was rendered in PyMOL9.

essary to preserve structure), or catalytic (one that directly participates in stabilizing the transi-

tion state). However, due to the highly cooperative nature of protein dynamics and energetics, it

is difficult to separate and classify individual catalytic contributions into independent additive

components39. Thus, many computational and experimental methods have been developed to

aid in surveying the energetics of protein catalysis. Several computational and experimental

techniques will be addressed in this thesis.

1.7 Research and Dissertation Overview

Over the past decade, NIH-funded Protein Structure Initiative (PSI) centers have developed

several high-throughput structural genomics (SG) pipelines. These efforts have generated large

numbers of new protein 3D structures, distributed across all three domains of life (Figure 1.7).
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Yet, despite these technological achievements, much remains unknown about the natural (bio-

chemical) function and catalytic profiles of many of these now structurally characterized pro-

teins. Chapter 3 focuses on the determination of biological function of TM0423, a putative

metal-dependent glycerol dehydrogenase. This protein was previously structurally character-

ized via x-ray crystallography by JCSG (PDB: 1kq3)40. Characterization of the metal depen-

dence as well as the substrate specificity of TM0423 are presented in this thesis. Materials and

methods are included in the final appendix.

Figure 1.7: PDB growth over time. The number of structures in the protein data bank (PDB) yearly
since 1990 is shown. The total number of structures is shown in orange while the number of deposited
structures for a particular year is shown in blue. (Data from PDB.org)
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Chapter 2

Methods for Functional Prediction and
Characterization

2.1 Sequence Homology and Phylogenetics

Homology forms a basis for comparative biology. Two organisms are said to be homologous

if they are descendant from a common ancestor. As with species comparison, homology for

genetic or protein sequences is also defined in terms of shared ancestry. Shared ancestry for

a DNA sequence can arise from primarily two mechanisms: speciation, or gene duplication.

Given some protein Px from species X , if species X speciates into two species Y , Z both

containing mutated Px: Py, Pz respectively; Proteins Py and Pz are said to be orthologs, or

sequences separated by a speciation event, in this case species X would be the shared ancestor.

On the other hand, during a gene duplication event, where a gene is duplicated to occupy two

different positions in a genome, the resultant copies are paralogous. Another case of homology

can result from horizontal gene transfer between multiple species, termed xenologous genes.

Approximately 24% of the T. maritima genome is thought to be related to an archaeal xenolog1.

Furthermore even among various Thermogota strains there is a high degree of lateral gene

transfer2. By considering the homology of various genes or proteins, it is possible to obtain

unique insight into the way genomes evolve.
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This study of the evolutionary relationships of genes and proteins is called molecular phy-

logenetics. Given the branching nature of evolution, the natural visualization technique is the

phylogenetic tree. By using a well inferred phylogenetic tree, hidden relationships such as

a possible lateral gene transfer event maybe discovered. Typically the clustering of proteins

or clades are expected to generally obey trends such as Carl Woese’s three-domain system3.

Sometimes when exceptions are identified, there may be some significant evolutionary event

which occurred. The most popular methods to generate a phylogenetic tree fall under the cat-

egory of cladistics. These methods are dependent on some mathematical model describing the

probability of relationship. For genes and proteins, the most common approach to identifying

similarity for phylogenetic study is sequence alignments.

2.2 Sequence Based Methods

During the 1970’s both the Sanger4 and Maxam-Gilbert5 methods for sequencing DNA were

published independently. With the invention of these methods, it first became possible to se-

quence entire genomes of complex organisms. Shortly after in 1987, Applied Biosystems began

marketing the model ABI 370, the first automated sequencing machine. Since then, projects

such as the Human Genome Project6 have driven low-cost and high-throughput technologies.

This vast improvement in sequencing technology has allowed for the generation of an unprece-

dented amount of sequence information to be studied. Various sequence based methods of

analyzing this data have been and are being developed to this day.

The important question now becomes: what kinds of hidden information does this data

contain, and what may such information reveal about a putative enzyme and its potential cat-

alytic activity and mechanism? As presented in §1.1, the activity of an enzyme is determined

by how its 3D structure and dynamics are able to stabilize a transition state intermediate. While

just knowing the sequence current methods cannot perfectly predict the 3D structure. However

using techniques from the field of informatics, it is possible to extract information statistically
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using methods of differing rigor. The most straight simplistic method is the sequence align-

ment. A sequence alignment is performed by arranging the sequence of DNA, RNA, or protein

to identify regions of similarity. Sequences with greater degrees of conservation are expected

to exhibit similar biochemical characteristics. While exhaustive brute force calculation of the

sequence alignment is tedious and slow, software tools such as BLAST7 and Clustal[8] have

been optimized using computer science techniques such as dynamic programming. Blast and

Clustal can be used to create alignments of hundreds of sequences to create multiple sequence

alignments (MSA). By determining degree of amino acid conservation by comparing more

sequences, the statistical confidence is increased.

When simple visual comparison of general conservation is insufficient, it is possible to

use additional techniques from informatics such as hidden markov models (HMM)9,10 to statis-

tically analyze the probabilities of sequence similarity. Analysis by HMM of large databases

of sequences allows for the generation of conserved domain fingerprints. Essentially each fin-

gerprint serves as a best guess for some identifying amino acid sequence for enzyme family.

Databases of these domain fingerprints such as Pfam11 have been created to assist in identifying

conserved domains in sequences of unknown function.

Instead of relying on an informatics model to generate predictions, it is also possible to

perform so called ab initio protein structure prediction. The basic idea is to use an all-atom

model with a full molecular dynamics (MD) force field to simulate the natural folding pro-

cess12–14. Unfortunately due to the amount of simulation time to survey the vastness of fold

space, such a simulation is only possible for the smallest protein systems15. The amount of

computation can be reduced by reducing the number of degrees of freedom. One method to

reduce the degrees of freedom is the use of a coarse grain model16. Additional novel methods

such as the use of an online multiplayer game to harness human intellect to predict structures

have also been developed17. Further methods which reduce the amount of fold space through

the use of experimental constraints or statistical predictions can be done.
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Protein threading or homology modeling can greatly reduce the amount of simulation

time by eliminating the initial conformational search. As stated by Anfinsen’s dogma, the 3D

structure of a protein is dependent on its amino acid sequence18. Suppose we have a protein of

known structure (x) which has a similar sequence to a protein (y) with an unknown structure.

Because of the properties outlined in Anfisen’s dogma, we can use protein x as a template

to thread the sequence of protein y through to generate a basic model. This model can then

be enhanced through the application of different molecular mechanics (MM) force fields to

minimize the energy of the predicted structure. The accuracy of homology models is highly

dependent on the initial sequence similarity of the template and unknown. If the difference is

too vast, the resulting model is likely to contain significant error.

2.3 Structure Based Methods

While sequence comparisons can provide valuable information, ultimately it is the 3D structure

and dynamics which determine whether or not the transition state is stabilized or not. As a result

similarity in structure is more significant than sequence similarity (§1.4). The basic method of

structural comparison is by visual identification. While visually comparing a few proteins it is

possible for a normal human however, annotation of an entire library becomes difficult. SCOP a

popular visual based categorization relies on the protein knowledge and photographic memory

of Alexey Murzin19.

A basic computational structural alignment algorithm can be performed by simply calcu-

lating the average RMSD between matching amino acids of two protein structures. Unfortu-

nately such an algorithm has difficulty accounting for the additivity of structural deviations. For

example, if there is a protein family with a large hinge and two domains, in one structure if the

hinge is open and in the other the hinge is closed; than the RMSD based comparison will fail

at identifying the similarity. Fortunately additional computational structural alignment algo-

rithms have been devised such as DALI20, and VAST21 to calculate the probability of structural
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similarity taking into account some of the additivity of structural deviations.

While structural similarity can serve as a great guide to prediction of protein function,

structural similarity studies are still missing out on the entire dynamics picture. Fundamentally

the crystal structures used are at 0K and do not contain any dynamics information. This yields

significant problems in predicting actual kinetics where the hinge motion or fold opening can

greatly hinder or increase enzymatic turnover.

2.4 Experimental Characterization

2.4.1 Michaelis-Menten Enzyme Kinetics

Individual proteins may play key roles in a metabolic pathway. Information regarding the spe-

cific reaction, substrate specificity, turnover, and efficiency of the protein provides one pixel of

insight towards what occurs in the mass synergy of chemical compounds that is life. Because

many of these parameters are difficult to computationally predict, to characterize the function

of a protein of interest, often the protein is isolated and an attempt is made to biophysically

reconstitute the reaction in vitro to obtain kinetics information. The determined kinetics infor-

mation can be processed and fit to a enzyme kinetics model to extract the kinetics parameters.

The simplest model for enzyme kinetics is the Michaelis-Menten model.

Deriving the Michaelis-Menten Equation

The Michaelis-Menten model relies on two major assumptions: the rapid equilibrium approxi-

mation, and the quasi-steady-state approximation. Given the general enzyme substrate reaction

scheme:

E + S
k1−−⇀↽−−
k−1

ES
k2−→ E + P (2.1)
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where E is the free enzyme, S is the free substrate, ES is the enzyme-substrate complex, and

P is the product. The rapid equilibrium approximation states that:

k1[E][S] = k−1[ES] (2.2)

basically the enzyme and substrate and the enzyme-substrate complex are in rapid equilibrium.

This assumption guarantees that the overall reaction is dependent on only one step; thus, the

reaction rate can be denoted as:

v = k2[ES] (2.3)

where v is the rate of the reaction. Meanwhile, the quasi-steady-state approximation states that:

d[ES]

dt
= k1[E][S]− k−1[ES]− k2[ES] = 0 (2.4)

or that the concentration of the enzyme-substrate complex ([ES]) is constant with respect to

time. A simple rearrangement and defining the Michaelis constant: Km = k−1+k2
k1

leads to:

[ES] =
k1[E][S]

(k−1 + k2)
=

[E][S]

Km

(2.5)

Because the instantaneous free enzyme concentration ([E]) is difficult to measure experimen-

tally, the total enzyme concentration (ET ) which can be calculated as the sum of all terms
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containing enzyme: ET = [E] + [ES], is introduced.

[ES] =
(ET − [ES])[S]

Km

(2.6)

[ES] =
ET [S]− [ES][S]

Km

(2.7)

Km[ES] = ET [S]− [ES][S] (2.8)

[ES](Km + [S]) = ET [S] (2.9)

[ES] =
ET [S]

Km + [S]
(2.10)

Substituting the result for [ES] into the rate equation (2.3) yields:

v =
k2ET [S]

Km + [S]
(2.11)

Substituting in the definition of the maximal rate of reaction vmax ≡ k2ET results in the

Michaelis-Menten Equation22,23:

v =
vmax[S]

Km + [S]
(2.12)

Limitations to the Michalis-Menten Model

While the Michaelis-Menten model is applicable to many problems, the basic assumptions im-

pose some limitations on the set of systems it models correctly. The rapid equilibrium assump-

tion is based upon the law of mass action24, which only applies in conditions of free diffusion.

If the solvent is very viscous then the equilibration rate may be slowed greatly violating this

assumption. In cells the cytoplasm is more like a gel than a freely diffusing liquid. Therefore

kinetics in the cytoplasm cannot be modeled using the Michaelis-Menten model. On the other

hand, the quasi-steady-state assumption requires that [ES] is constant with respect to time.

This assumption is only valid if:
ET

ST +Km

<< 1 (2.13)
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where ET is the total enzyme concentration, ST is the total substrate concentration, and Km is

the Michaelis constant. The total enzyme concentration must be much less than the substrate

concentration. Thus, for weakly binding systems where Km is small, the Michaelis-Menten

model may not apply23.

Analyzing Experimental Data

When conducting a Michaelis-Menten kinetics experiment the reaction rate v is measured with

respect to varying substrate concentration [S]. Subsequently a Michaelis-Menten plot can be

generated by plotting the [S] against the v, shown in Figure 2.1. To determine the maximal

reaction rate vmax, and Michaelis constant Km (corresponding to the substrate concentration

resulting in half the maximal rate), non-linear fitting methods are then used to fit the data.

However, using non-linear methods was not always possible. In the past, non-linear fitting was

computationally inaccessible. As a result, multiple linearized representations of the Michaelis-

Menten equation were used to analyze data; These representations include the Lineweaver-

Burk25, Hanes-Woolf26, and Eadie-Hofstee27 plots.

The Lineweaver-Burk25 representation, shown in equation 2.14, can be derived by taking

the reciprocal of the Michaelis-Menten equation 2.12.

1

v
=

KM

vmax

1

[S]
+

1

vmax
(2.14)

While popular in older works, the Lineweaver-Burk plot is error prone and should not be used

to calculate kinetic parameters. Because the axes are hyperbolic, the error structure of the

original data is not properly preserved. Essentially the reciprocal of the data yields a non-

uniform distribution of data across the plot affecting the accuracy of the linear regression.

Aside from statistical errors for this model, there are also experimental constraints. Because

the independent variable (x-axis) is 1/[S]; To obtain small values of 1/[S] a large value of [S]

must be used. Due to solubility and cost constraints, often the high [S] data cannot be obtained.
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Figure 2.1: A ideal Michaelis-Menten plot. The substrate concentration [S] is plotted against the ex-
perimentally determined reaction rate, often measure spectrophotometrically. In this ideal example, the
vmax and Km were set to be 3.4mM and 0.4mM respectively. With respect to this representation of the
kinetics data, the maximal reaction rate, vmax, corresponds to the horizontal asymptote. The Michaelis
constant,Km, can be calculated by finding the substrate concentration corresponding to the half maximal
rate vmax/2. In the past, this style plot was used mostly for visual confirmation of Michaelis-Menten ki-
netics as non-linear fitting was computationally inaccessible. As a result, many linear representations of
the Michaelis-Menten were developed. With the advent of faster computers and algorithms, non-linear
fitting has become commonplace and is the more accurate method for calculation of kinetic parameters.

As a result, the extrapolation to obtain the x- and y-intercepts is large and error prone. The

Lineweaver-Burk plot’s primary utility is for fast visual inspection of kinetics data.

Additional linear representations have also been developed to ameliorate some of the sta-

tistical issues faced by the Lineweaver-Burk plot. One such representation is the Hanes-Woolf

which is simply the Lineweaver-Burk representation multipied by [S], as shown in equation

2.15.
[S]

v
=

1

vmax
[S] +

Km

vmax
(2.15)

The Hanes-Woolf plot (Figure 2.3) does not suffer from the same non-uniform distribution of

the dependent variable. The linear regression of the Hanes-Woolf theoretically gives −Km at
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Figure 2.2: A model Lineweaver-Burk plot, where Km is the Michalis constant, vmax maximal
reaction rate, [S] concentration of substrate, and v the reaction rate. The Lineweaver-Burk plot is a
linearized representation of the Michaelis-Menten equation (2.12). The y-intercept represents 1/vmax
while the x-intercept represents−1/Km, and the slope gives theKm/vmax. While the Lineweaver-Burk
plot is generally useful for quick visual inspection of kinetics data, the error model is not preserved.
Furthermore, because of the hyperbolic axes, the data is not uniformly distributed which is another
source of error.

the x-axis, Km/vmax at the y-axis, and 1/vmax for the slope. Unfortunately, the linear regres-

sion of the linear transformation is still not correct because it generates the fit based upon the

observed 1/v and calculated 1/vmax instead of v. Furthermore, neither axis of the representa-

tion is an independent variable and thus the correlation coefficient R is also not applicable. The

Hanes-Woolf like the Lineweaver-Burk plot was historically used for determination of kinetic

parameters but both have since been superseded by nonlinear regression methods. Although,

while nonlinear regression methods work well for systems exhibiting Michaelis-Menten kinet-

ics, additional factors affect some systems.

2.4.2 Inhibition Models

Moderation and balance is key to life! In nature, the myriad of complex metabolic pathways

must be regulated in some fashion. Without regulation, living organisms could not respond
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Figure 2.3: A model Hanes-Woolf plot, where Km is the Michalis constant, vmax maximal reaction
rate, [S] concentration of substrate, and v the reaction rate. The Hanes-Woolf plot is an improvement
upon the Lineweaver-Burk plot, as it does not overemphasize the data obtained at low [S]. However,
given neither the x- and y-axis represent independent variables, the correlation coefficient R is not
applicable. This figure is a modified version of the Hanes-Woolf Plot graphic from Wikipedia.

to stimuli and would die. An enzyme inhibitor is a molecule which interacts with a enzyme

and decreases its activity. While enzyme inhibition can occur irreversibly, this discussion with

focus on reversible inhibitors.

Reversible inhibitors bind to enzymes using the non-covalent interactions presented in

§1.3. Because there is no chemical reaction between a reversible inhibitor and the enzyme,

the inhibitor can be removed using dilution or dialysis. There are four mechanisms in which

a reversible inhibitor interacts with the enzyme: competitive, non-competitive, mixed, and

uncompetitive.

Competitive Inhibition

In competitive inhibition, the substrate and inhibitor cannot occupy the active site at the same

time. Competitive inhibitors are often substrate analogs with some specificity for the active

site. Because the competitive inhibitor will reduce the effective concentration of free enzyme

[E], the apparentKm for the substrate will increase. At high concentrations of substrate relative
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to inhibitor, the substrate can out compete the inhibitor and the reaction will proceed as normal

(v is not affected)28,29. The model Lineweaver-Burk plot demonstrating competitive inhibition

is shown in Figure 2.4. It is clear that the vmax of the reaction is unchanged while the apparent

Km increases with increasing inhibitor concentration.

Figure 2.4: Competitive inhibition as portrayed by the Lineweaver-Burk plot. Note that the vmax
of the overall reaction does not change. This is because only the inhibitor or the substrate can be bound
to the enzyme at a given time. Once the substrate is bound, the rate of reaction is not affected. As
inhibitor concentration [I] is increased, the apparent Km given by the x-intercept (−1/Km) decreases.

Uncompetitive Inhibition

An uncompetitive inhibitor binds only to the enzyme substrate complex (ES + I −−⇀↽−− ESI).

The enzyme-substrate-inhibitor complex is not active and effective activated enzyme-substrate

complex [ES] concentration is decreased. When factored into equation 2.3, the rate of reaction

v will decrease. Given that the inhibitor is reducing the effective [ES], the Km will decrease

based upon Le Chatelier’s principle. Uncompetitive inhibition is not to be confused with non-

competitive inhibition which is a form of mixed inhibition!
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Mixed Inhibition and Non-competitive Inhibition

A mixed inhibitor differs from an uncompetitive inhibitor in that the inhibitor can bind to an

enzyme with or without the substrate bound. While it can bind both E or ES, the affinities

for each are different. Often mixed type inhibitors are allosteric inhibitors. The binding of the

inhibitor will perturb the conformation of the enzyme leading to varying affinity and turnover

of the substrate. Mixed inhibitors can interfere with substrate binding (increasing Km) and/or

hinder catalysis (decrease vmax). The model Lineweaver-Burk plot demonstrating mixed inhi-

bition is shown in Figure 2.5.

Figure 2.5: Mixed inhibition shown using a Lineweaver-Burk plot. In a mixed type inhibited
system, the binding of the inhibitor will typically confer some conformational change in the enzyme.
This conformational change may hinder catalysis, shown by a decrease in vmax. Furthermore, through
the allosteric effect, the affinity for the substrate may also be affected, shown by the increased Km.

One particular form of mixed inhibition is non-competitive inhibition. In this system, the

binding of the inhibitor affects the activity but does not affect the binding of the substrate. As

a result, the apparent vmax will decrease however the Km will remain the same. An example of

a non-competitively inhibited system is shown using a Lineweaver-Burk plot in Figure 2.6.
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Figure 2.6: Non-competitive inhibition shown using a Lineweaver-Burk plot. In a non-
competitively inhibited system, the binding of the inhibitor reduces the activity but does not affect
the binding of the substrate. As the inhibitor concentration [I] is increased the apparently vmax will
decrease. This is reflected in the plot in the y-intercept which shows 1/vmax.

Substrate Inhibition

Substrate inhibition is a special case where there is a progressive decline of activity as high sub-

strate conditions. This type of inhibition was originally thought to be caused by artificially high

substrate laboratory conditions, and thus not physiologically relevant. Since the first discov-

ery of substrate inhibition, many systems such as tyrosine hydroxylase, acetylcholinesterase,

phosphofructokinase, DNA methyl transferase, among many others have been identified to be

substrate inhibited30. Recent estimates state that approximately 20% of all known enzymes are

substrate inhibited31; Furthermore, that substrate inhibition is a biologically relevent method

of regulation. This is evidenced by three primary reasons: First, many enzymes operate under

substrate concentrations higher than that of vmax. Second, structural studies have identified

secondary allosteric substrate binding sites. Third, increasing evidence supports that substrate

inhibition plays a key role in regulation of some metabolic pathways30.

There are primarily two simple mechanisms for substrate inhibition. For any substrate
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inhibited system, the active enzyme complex ES can further bind another substrate S to form

SES. In one model, the SES intermediate can still turnover to form product. This process can

be described by the three reactions:

E + S
k1−−⇀↽−−
k−1

ES
k2−→ E + P (2.16)

ES + S
k3−−⇀↽−−
k−3

SES (2.17)

SES
k4−→ E + P + S (2.18)

Where E is the free enzyme, S is the free substrate, ES is the enzyme-substrate complex, P

is the product, and SES is the inhibited enzyme-substrate complex. A rate equation can be

derived for this system:
v

ET
=

k2[S] + k4
S2

Ki

Ka + [S] + [S]
k1Ki

+ [S]2

Ki

(2.19)

Where ET is the total enzyme concentration, [S] the substrate concentration, Ka is the equilib-

rium constant k−1

k1
, and Ki is the inhibition equilibrium constant constant k−3

k3
.

For this thesis, a second model where the SES intermediate is catalytically inactive as pro-

posed by Haldane32. This type of system can be described by the following reaction schemes:

E + S
k1−−⇀↽−−
k−1

ES
k2−→ E + P (2.20)

ES + S
k3−−⇀↽−−
k−3

SES (2.21)

A rate equation can be derived by employing similar assumptions analogous to the Michaelis-

Menten derivation.

v = k2[ES] (2.22)
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The total concentration of enzyme must be conserved.

E0 = E + ES + SES (2.23)

The equilibrium approximation becomes slightly more complex to account for the additional

ESS complex. We define the following variables Ka and Ki describing the equilibrium con-

stants as follows:

Ka =
k−1
k1

=
[E][S]

[ES]
(2.24)

Ki =
k−3
k3

=
[ES][S]

[SES]
(2.25)

Subsequently it follows that:

[ES] =
[E][S]

Ka

(2.26)

[SES] =
[ES][S]

Ki

=
[E][S]2

KaKi

(2.27)

The relationship between [ES] and ET can be established as:

[ES]

ET
=

[ES]

[E] + [ES] + [ESS]
(2.28)

=

[E][S]
Ka

[E] + [E][S]
Ka

+ [E][S]2

KaKi

(2.29)

=
[S]

Ka + [S] + [S]2

Ki

(2.30)

[ES] =
ET [S]

Km + [S] + [S]2

Ki

(2.31)

Substituting back into equation 2.22 and substituting vmax = k2ET :

v =
k2ET [S]

Ka + [S] + [S]2

Ki

=
vmax[S]

Ka + [S] + [S]2

Ki

(2.32)
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J.B.S. Haldane’s rate equation for substrate inhibited kinetics results32. Using l’Höpital’s rule

the limit of equation 2.32 is determined to be 1
S

. Thus, as substrate concentration approaches

infinite, the reaction rate will drop to zero. Intuitively, this is because as substrate concentration

becomes infinite, Le Chatelier’s principle will drive all of the enzyme towards the inactive

ternary complex SES.
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Chapter 3

TM0423 a Putative Glycerol
Dehydrogenase

3.1 Introduction

Over the past century, issues such as global warming and sustainability of fossil fuels have

become societal concerns. As a result, the search for sustainable and environmentally conscious

fuels has become increasingly heated. One solution to the fossil fuel problem consists of using

biomass to produce biofuels and bioethanol. The traditional approaches for the production of

bioethanol involve the fermentation of either starch or cellulose1. However, as global demand

for ethanol fuels increases, other methods for the production of ethanol are becoming necessary.

During the production of biodiesel, fatty acids are reacted with alcohols in a transesterifi-

cation reaction to yield esters of fatty acids and glycerol. This crude glycerol byproduct can be

refined and marketed. However, with the dramatic increase in biodiesel production, the amount

of crude glycerol produced has also increased. This surplus crude glycerol has caused glycerol

prices to drop to the extent that many now consider glycerol a waste product2. Fortunately,

through anaerobic fermentative glycolytic pathways, higher value products such as ethanol and

butanol can be produced (Figure 3.1). These products represent an opportunity to bring more

economic value and sustainability to the biofuel production industry.
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Figure 3.1: Potential metabolic pathways towards the formation of higher value products. The
production of biodiesel results in large streams of waste glycerol. It is possible to refine this waste
glycerol then through the coupling of many metabolic enzymes, produce higher value products. Broken
lines represent pathways composed of several reactions2.

The first step of the proposed fermentative glycolytic pathway involves the oxidation of

glycerol to dihydroxyacetone (DHA) with the concomitant reduction of NAD+ to NADH. This

reaction is catalyzed by glycerol dehydrogenase (GDH) (Figure 3.2). GDH’s are members of
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the alcohol dehydrogenase superfamily which currently contains three structurally and catalyt-

ically different families. The first of these families is the Zn2+-containing ’long chain’ alcohol

dehydrogenases, of which horse-liver alcohol dehydrogenase is a member3. The second of

these families is the ’short chain’ or insect-type alcohol dehydrogenases4. Of most interest is

the third family of the alcohol dehydrogenases the so called ’iron-containing’ alcohol dehydro-

genases consisting of dehydrogenases from various bacteria and yeast. Many of the proteins in

this family are from extremophilic organisms. Extremophiles have been long been predicted to

be a valuable source of enzymes for industrial processes because of their resiliency5. Further-

more, bacteria and yeast have previously been engineered to manufacture valuable downstream

fermentative products such as ethanol6.

Figure 3.2: General mechanism of glycerol dehydrogenases (EC 1.1.1.6). Glycerol dehydrogenase
catalyzes the oxidation of glycerol to dihydroxyacetone with the concomitant reduction of NAD+ to
NADH.

Bacterial GDH’s in this family have been characterized from Escherichia coli, Schizosac-

charomyces pombe , Citrobacter freundii, Klebsiella pneumonia, Aerobacter aerogenes, Bacil-

lus megaterium, Cellulomonas sp. NT3060, and Bacillus stearothermophilus7–13. The proteins

in this family, including TM0423, (crystal structure shown in Figure 3.3) is a remarkable ex-

amples of protein domain hierarchy. TM0423 consists of two primary domains, a Rossman

fold domain14 as well as a multi helical domain. The two domains are separated by a deep cleft

where NAD+, Zn2+, and glycerol would bind.

In this study, sequence and structure based bioinformatics are applied to a putative glycerol

dehydrogenase from hyperthermophilic bacterium Thermotoga maritima TM0423. Generated
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Figure 3.3: The crystal structure of TM0423 (deposited in the Protein Data Bank with acces-
sion code 1KQ3). The monomer consists of 18 α-helices (α1-α18) and 8 β-sheets (β1-β8). TM0423
consists of a Rossman fold domain and a multihelical domain, colored in slate blue and bright orange,
respectively. The van der Waals surface of the Rossman fold domain is presented as a transparent sur-
face. The ligands NAD+ and glycerol (colored in grey with red oxygens and blue nitrogens) are shown
in the active site. The zinc cation is shown in orange and the Asp169, His252, and His269 chelating
residues are shown.

bioinformatic predictions were then validated experimentally. We show that while TM0423 is

a putative glycerol dehydrogenase it exhibits broad substrate specificity and is likely involved

in alternate dehydrogenase activity along the glycerol dismutation pathway. The intrinsic hy-

perthermostability of TM0423 is ideal for industrial applications such as biofuel production.

3.2 Results and Discussion

3.2.1 Bioinformatics

TM0423 is a member of the iron-containing alcohol dehydrogenase (Fe-ADH) family (Pfam:

PF00465) with two Fe-ADH Prosite signatures (Prosite motifs PS0060 and PS00913). A pro-

tein sequence BLAST against the set of proteins in the PDB revealed high sequence similarity to
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another member of the Fe-ADH family, a glycerol dehydrogenase from B. stearothermophilus

(BsGDH). The sequence alignment showed 49% sequence identity with an expectation value of

3×10−89, suggesting distant homology. Additional structure guided searches using the DALI15

server was performed using the crystal structure of TM0423 (PDB ID 1KQ3). As previously

noted BsGDH, exhibited high structural similarity to TM0423. The structural alignment be-

tween a BsGDH and TM0423 shows that many of the annotated catalytic residues are spatially

conserved between BsGDH and TM0423 (Figure 3.4). Based upon the sequence and structural

comparison, TM0423 was proposed to be a glycerol dehydrogenase (TmGDH).

3.2.2 Protein Activity Dependence on the Presence of Zinc Ion

The dependence of protein activity on the presence of Zn2+ was examined by adding increas-

ing concentrations of EDTA to reaction cocktails containing a constant ZnCl2 concentration.

Assuming that EDTA is a stronger Zn2+ chelator than TmGDH, the increase in EDTA concen-

tration would result in a net reduction of the total amount of Zn2+ ions available to TmGDH,

ultimately resulting in the complete elimination of Zn2+ ions in complex with TmGDH. As

EDTA concentration was increased, the specific activity of the protein was drastically reduced

(Figure 3.5). At high EDTA concentrations, TmGDH activity was not detected. Similarly,

when no zinc was added to the reaction, activity was not observed suggesting that TmGDH is

a divalent metal cation dependent glycerol dehydrogenase.

3.2.3 Metal Cofactor Specificity

TmGDH has a catalytic metal chelation site formed by residues His-269, His-252, and Asp-169

as well as by either water or a glycerol- like ligand in an approximately tetrahedral geometry.

This forms a high affinity metal binding site with broad metal specificity. To investigate the

specificity of the metal required for TmGDH activity, the kinetic assay was conducted using a

variety of divalent metals. TM0423 was found to be active with all metals tested (Zn2+, Ni2+,
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Co2+, Fe2+, and Mn2+). Hanes-Woolf plots (Figure 3.5) were used to calculate the apparent Km,

Vmax, and catalytic efficiency (kcat/Km) for Zn2+, Ni2+, and Co2+ (Table 3.1). Of these three

metals, TM0423 had the highest catalytic efficiency with Zn2+ as the metal cofactor (115.0

s−1M−1), with the least activity observed with Co2+.

Table 3.1: TmGDH Kinetic Parameters with Varying Metals

Although Fe2+ and Mn2+ were also tested, precise determination of the kinetic parameters

was hampered by the independent background reaction rate observed with these metals (Figures

3.5c,d). During the assay, a drastic shift in solution color was observed possibly due to metal

autoxidation with buffer conditions16. This color shift resulted in largely distorted kinetics

data associated with large error of measurement, which could not be modeled using a standard

Michaelis-Menten model; protein activity was observed for both the Fe2+ and Mn2+ systems,

however.

The relative catalytic efficiency observed (Zn2+ > Ni2+ > Co2+ > Fe2+ > Mn2+) is consis-

tent with the Irving-Williams series describing the relative stabilities of complexes formed by

a metal ligand complex (Mn2+ < Fe2+ < Co2+ < Ni2+ < Cu2+ > Zn2+). Given that the Irving-

Williams series describes general stability of complexes and not reactivity, it is reasonable to

suggest that the stability of the metal-protein complex has a large bearing on the overall reactiv-

ity of the protein. Furthermore the high enzymatic activity observed with zinc can be attributed

to the high Lewis acidity of Zn2+. The zinc ion is stable to oxidative and reductive effects due

to its filled d orbital. This 3d orbital also hybridizes with the 4s orbital to increase Lewis acid-

ity, better stabilizing negative charges during catalysis17. Overall this behavior is consistent
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with the predicted catalytic mechanism of the close structural homolog BsGDH. The increased

Lewis acidity of the metal allows for increased stabilization of the alkoxide intermediate, al-

lowing for deprotonation of the alcohol substrate by a proton relay mechanism18.

In addition to its ability to act as a Lewis acid catalyst, the coordination geometry of

the zinc ion is important. The filled d orbital of zinc results in a ligand-field stabilization

energy of zero in all directions. This allows for varying coordination numbers and thus complex

geometries. TmGDH may take advantage of this as the catalytic metal binding residues form a

short linker region of 18 residues between His-269, His-252 and a long linker region between

His-252 and Asp-169. This long linker region may provide plasticity for the protein to adopt

an entatic conformation conferring substrate specificity.

3.2.4 Substrate Specificity

Alcohol dehydrogenases typically exhibit broad substrate specificity or moonlighting functions

and are often involved in multiple, related metabolic pathways. The substrate specificity of

TmGDH was assayed by substituting glycerol in the standard assay with a variety of molecules

structurally similar to glycerol (Figure 3.6). The highest specific activity was observed for

1,2-propanediol, a result previously observed for glycerol dehydrogenases from Cellulomonas

sp. NT3060, and E. coli7,19. Additional substrates, including ethylene glycol, Tris, 2-propanol,

1-propanol, tert-butanol, 1-butanol, bis-tris propane, and 1,3-propanol, were also screened with

moderate to negligible activity.

Top substrates for TmGDH all contain a vicinal diol, a shared structural characterstic. The

substrate specificity of structural homolog BsGDH has also been studied, yielding a similar

conclusion: vicinal diols are key to GDH activity. Given that the ligand field stabilization

energy of the zinc ion is zero in all directions, it is possible that the coordination number of

the zinc ion can shift to stabilize multiple ligands. In the crystal structure of TmGDH, a Tris

buffer molecule was seen interacting with the zinc ion at both the amino and alcohol sites in
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the active site20. Similarly, the crystal structure of B. stearothermophilus shows a glycerol

molecule interacting with the zinc ion at both the O1 and O2 sites13. This suggests that the

substrate orientation in the active site may be stabilized by the zinc ion. Comparably , although

Tris and bis-Tris propane both contain vicinal diols, they lack a removable hydride at the usual

site of oxidation. This suggests that while Tris and bis-Tris propane likely have some affinity

to TmGDH, they cannot be turned over due to mechanistic complications.

Given the previously examined structural similarities to the well characterized glycerol

dehydrogenase BsGDH, which exhibits 77% activity with 1,2-propanediol compared to glyc-

erol, we expected that the specific activity for glycerol would be higher than that of other sub-

strates. However, 1,2-propanediol exhibited about 27% more activity than the glycerol assays.

To investigate the basis for this, additional kinetic parameters were determined for substrates

1,2-propanediol, glycerol, and ethylene glycol (Table 3.2). 1,2-propanediol appears to have a

Km of 4.3 mM, which is less than that of glycerol (calculated to be 28 mM). It was previously

observed for a GDH from Cellulomonas sp. NT3060 that bulky functional groups are sterically

unfavorable at the third position19. A similar steric bias may be present in TmGDH, actively

selecting for 1,2-propanediol which does not have an alcohol present at the third position.

Recently a new model for the anaerobic fermentation of glycerol was discovered in E.

coli. In this model methylglyoxal is converted to hydroxyacetone by an aldo-keto reductase.

The produced hydroxyacetone is then reduced to 1,2-propanediol by GDH (gldA) (Figure 3.7).

Given the observed high activity of TmGDH with 1,2-propanediol, in addition to the bioin-

formatic or previous experimental identification of enzymes catalyzing intermediate reactions,

the reverse reaction from hydroxyacetone to 1,2-propanediol with the concomitant oxidation

of NADH was also surveyed. Substrate inhibited kinetics was observed for hydroxyacetone

activity (Figure 3.8). The experimental data was fit with a basic model for substrate inhibition:
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v0 =
vmax[S]

Ka + [S] + [S]2

Ki

(3.1)

where v0 is the initial rate, Vmax is the maximum turnover rate, KA is the affinity constant,

Ki is the inhibition constant, and S is the substrate concentration. In addition a plot of the initial

rate relative to the log([S]) shows a clear bell-shape describing substrate inhibited kinetics. This

result yields little information regarding the product of 1,2-propanediol oxidation for TmGDH.

Instead it is reasonable to suggest that the hydroxyacetone intermediate to 1,2-propanediol

evolution is not likely to be the catalyzed by TmGDH.

3.3 Broader Impacts

After over a century of metabalome mapping, it is still unknown exactly how all of the proteins

in an organismal system interact. Determination of the natural function of these SG proteins

will lead to a more comprehensive understanding of the metabalome and how the molecular

machinery of cells work. As our understanding increases, we can rely less and less upon differ-

ential equation based kinetics models and more on accurate atomistic models of interactions;

eventually leading to the simulation of an entire cell! Such simulations can allow us to under-

stand the plethora of effects a minor change on a system component will have on the system

whole. This has applications ranging from predicting the secondary effects of drugs to allowing

studies on better engineering organisms to be more efficient.
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Figure 3.4: (a) Structural alignment of TM0423 and GDH from Bacillus stearothermophilus
(PDB ID 1JPU, 1JQ5, 1JPA) generated using RMSD based structural alignment provided by Py-
MOL. The catalytic residues are shown in color with substrates glycerol and NAD+ in yellow and pink,
respectively. (b) A zoomed in representation of the active site alignment. Residues colored in light
green are NAD+ binding; orange are substrate binding, and blue are metal binding. NAD+ is shown in
grey and substrate glycerol in yellow. Oxygens are highlighted in red. The RMSD of TM0423 to GDH
from B. stearothermophilus was 0.907Åand the RMSD of the catalytic residues was 0.751Å.
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Figure 3.5: (a) Hanes-Woolf representation of TM0423 activity with metals Zn2+, Co2+, and Ni2+.
The divalent metal cation dependence of TM0423 was examined at pH 8.0, and 65◦C. Extracted kinetic
parameters suggest that Zn2+ is the primary cation by having the highest catalytic efficiency. (b) Specific
activity of TM0423 with glycerol in the presence of varying concentrations of EDTA. As EDTA
concentration is increased, there is a sharp inflection point where protein activity drops, thus suggesting
that TM0423 is metal dependent. (c) Activity of TM0423 with Fe. The concentration of NADH
relative to the time of the reaction is shown. The reaction was run at 400 nM TM0423, 0.3 mM Fe
or Zn, 165 mM glycerol, 0.375 mM NAD+, 150 mM NaCl in 50 mM phosphate buffer . Blank controls
were run without glycerol. (d) Activity of TM0423 with Mn. The concentration of NADH relative
to the time of the reaction is shown. The reaction was run at 400 nM TM0423, 0.3 mM Mn2+, 90 mM
glycerol, 0.375 mM NAD+. The blank control was run without glycerol.
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Figure 3.6: Specific activity of TM0423 with multiple substrates with a Zn2+ co-factor. TM0423
activity was assessed with alternate substrates, 1,2-propanediol, ethylene glycol, tris, 2-propanol, 1-
propanol, tert-butanol, 1-butanol, bis-tris propane, and 1,3-propanediol to investigate the catalytic mech-
anisms. 1,2-propanediol exhibits the highest specific activity, followed by glycerol then ethylene glycol.
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Table 3.2: TmGDH Kinetic Parameters with Varying Substrates
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Figure 3.7: Alternate model for anaerobic fermentation of glycerol in E. coli GlyDH catalyzes
the conversion of glycerol (GOL) to dihydroxyacetone (DHA) with the concomitant reduction of
NAD+. To redox-balance this reaction, a 1,3-propanediole dehydrogenase (1,3-PDODH) converts 3-
hydroxyporpanal (3-HPA) to 1,3-propanediol (1,3-PDO). The DHA product can then be phosphorylated
by dihydroxyacetone kinase (DHAK) to form dihydroxyacetone phosphate (DHAP). Alternatively GOL
can be converted to glycerol-3-phosphate (G3P) by glycerol kinase (GK). Then the G3P to DHAP by
a glycerol-3-phosphate dehydrogenase (G3PDH). DHAP can then be used in glycolysis or alternatively
converted to methylglyoxal (MG) by a methylglyoxal synthase (MGS). MG has then been observed to
either be converted to lactaldehyde (LAL) by a methylglyoxal reductase (MGR) or to hydroxyacetone
(HA) by an aldo-keto reductase (AKR) in E. coli21. Finally either HA or LAL can be catalyzed to
1,2-propanediol (1,2-PDO) a terminal waste product.
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Figure 3.8: (a) Hanes-Woolf plot of TM0423 with substrates glycerol, ethylene glycol, and 1,2-
propanediol. Reaction conditions were 400 nM TM0423, 0.3 mM Zn, 1-165 mM substrate, 0.375
mM NAD+, 150 mM NaCl in 50 mM phosphate buffer . 1,2-Propanediol was observed to be the best
substrate, followed by glycerol and ethylene glycol. (b) Michaelis-Menten plot of the substrate con-
centration relative to the initial rate of the reaction for TM0423 with hydroxyacetone and NADH
as substrates. A substrate inhibited Michaelis-Menten model was used to fit the experimental data
(shown as a solid line). The parameters derived from the inhibited model were used to plot the ideal
Michaelis-Menten kinetics (shown as a dotted line). The inset is a plot of the logarithmic substrate con-
centration compared to the initial rate. The observed kinetics fits the bell-shaped curve of the inhibited
model shown in the solid line, while the uninhibited form is shown using the dotted line.



BIBLIOGRAPHY 56

Bibliography

(1) Marchetti, J.; Miguel, V.; Errazu, A. Renewable and Sustainable Energy Reviews Aug.

2007, 11, 1300–1311.

(2) Yazdani, S. S.; Gonzalez, R. Current opinion in biotechnology June 2007, 18, 213–9.

(3) Al-Karadaghi, S.; Cedergren-Zeppezauer, E. S.; Hövmoller, S. Acta crystallographica.

Section D, Biological crystallography Nov. 1994, 50, 793–807.

(4) Joernvall, H.; Persson, B.; Krook, M.; Atrian, S.; Gonzalez-Duarte, R.; Jeffery, J.; Ghosh,

D. Biochemistry May 1995, 34, 6003–6013.

(5) Niehaus, F.; Bertoldo, C.; Kähler, M.; Antranikian, G. Applied microbiology and biotech-

nology June 1999, 51, 711–29.

(6) Shams Yazdani, S.; Gonzalez, R. Metabolic engineering Nov. 2008, 10, 340–51.

(7) Tang, C. T.; Ruch, F. E.; Lin, C. C. Journal of bacteriology Oct. 1979, 140, 182–7.

(8) Daniel, R.; Stuertz, K.; Gottschalk, G. Journal of bacteriology Aug. 1995, 177, 4392–

401.

(9) LIN, E. C.; MAGASANIK, B. The Journal of biological chemistry June 1960, 235,

1820–3.

(10) Scharschmidt, M.; Pfleiderer, G.; Metz, H.; Brümmer, W. Hoppe-Seyler’s Zeitschrift für

physiologische Chemie July 1983, 364, 911–21.



BIBLIOGRAPHY 57

(11) Yamada, H.; Nagao, A.; Nishise, H.; Tani, Y. Agricultural and Biological Chemistry

1982, 46, 2333–2339.

(12) Chen, H.; Nie, J.; Chen, G.; Fang, B. Sheng wu gong cheng xue bao = Chinese journal

of biotechnology Feb. 2010, 26, 177–82.

(13) Ruzheinikov, S. N.; Burke, J.; Sedelnikova, S.; Baker, P. J.; Taylor, R.; Bullough, P. a.;

Muir, N. M.; Gore, M. G.; Rice, D. W. Structure (London, England : 1993) Sept. 2001,

9, 789–802.

(14) Rao, S.; Rossman, M. Journal of Molecular Biology May 1973, 76, 241–250.

(15) Holm, L.; Rosenström, P. Nucleic acids research July 2010, 38, W545–9.

(16) Welch, K. D.; Davis, T. Z.; Aust, S. D. Archives of biochemistry and biophysics Jan.

2002, 397, 360–9.

(17) Dudev, T.; Lim, C. en Annual review of biophysics Jan. 2008, 37, 97–116.

(18) Hammes-Schiffer, S.; Benkovic, S. J. en Annual review of biochemistry Jan. 2006, 75,

519–41.

(19) Leichus, B. N.; Blanchard, J. S. Biochemistry Dec. 1994, 33, 14642–9.

(20) Brinen, L. S. et al. Proteins Feb. 2003, 50, 371–4.

(21) Gonzalez, R.; Murarka, A.; Dharmadi, Y.; Yazdani, S. S. Metabolic engineering Sept.

2008, 10, 234–45.



APPENDIX A. MATERIALS AND METHODS 58

Appendix A

Materials and Methods

A.1 General materials, micro-organisms, and plasmids

The plasmid construct containing TM0423 (JCSG Clone: TmCD00084978; GenBank: AAD35508)

cloned from T. maritima strain MSB8, was kindly provided by JCSG1. Protein was expressed

in an E. coli HK100 expression strain (JCSG, derived from DH10B Genehogs by Invitrogen).

Unless otherwise specified, all other reagents were from Sigma-Aldrich.

A.2 Protein overexpression and purification

The plasmid was transformed into chemically competent E. coli HK100 cells using heat shock2.

Cultures of transformed E. coli were grown in Luria-Bertani (LB) medium containing 100 mg/L

ampicillin at 37řC; protein expression was induced by addition of arabinose to 0.02% during

log phase growth (OD600 = 0.8). Following four hours of induction, cells were harvested by

centrifugation at 10,000 x g at 4◦C for 20 minutes. The cell pellet was resuspended in lysis

buffer (50 mM phosphate buffer pH 8.0, 150 mM NaCl, 2 mM MgCl2ů6H2O) and lysed using

an M-110L pneumatic microfluidizer (Microfluidics).

The whole cell lysate was clarified by centrifugation at 10,000 x g at 4◦C for 20 minutes.

The cleared supernatant was collected, heated to 60◦C for 15 minutes to thermally precipitate
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host cell proteins, and cleared again by centrifugation. The resulting supernatant containing

TM0423 protein was loaded into a Ni-NTA agarose resin (Bio-Rad) column (2.67 mL of 50%

resin slurry per liter of cell culture) which was previously washed with at least 10 column

volumes dH2O and equilibrated with 10 column volumes lysis buffer. The column with bound

protein was washed with 15 column volumes wash buffer (50 mM phosphate buffer (pH 8.0),

150 mM NaCl, 60 mM imidazole); protein was eluted with 5 column volumes of elution buffer

(50 mM phosphate buffer pH 8.0, 150 mM NaCl, 600 mM imidazole). The successful over-

expression and purification of the target protein was monitored by sodium dodecyl sulfate-

polyacrylamide gel (Bio-Rad) electrophoresis (SDS-PAGE)3. To remove excess metal chelated

from the column resin, the sample was dialyzed against dialysis buffer 1 (50 mM phosphate

buffer (pH 8.0), 150 mM NaCl, and 10 mM EDTA) overnight. A second dialysis against

dialysis buffer 2 (50 mM phosphate pH 8.0, 150 mM NaCl) was then performed to remove

EDTA.

A.3 Enzymatic assays

For all kinetic assays, the change in NADH absorbance was monitored at 340 nm using a

PerkinElmer LAMBDA 25 UV/Vis spectrometer equipped with a PTP-1+1 Peltier System

(Perkin Elmer, Waltham, MA). The extinction coefficient of 6220 M−1cm−1 for NADH was

used to calculate changes in NADH concentration. The Michaelis-Menten enzyme kinetics

model was used to determine the apparent values of Vmax, kcat, and Km. Unless otherwise

specified all assays were run at 65◦C. under standard assay conditions of 50 mM phosphate

buffer (pH 8.0), 1-165 mM substrate, 0.375 mM NAD+, and 400 nM TM0423.

A.4 Protein quantification and progress curves

Protein concentration was determined by absorbance at 280 nm in a ND-1000 NanoDrop R©spectrophotometer

using the molar extinction coefficient of 22,265M−1cm−1 for TM0423 (calculated by ExPASy
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ProtParam4). Activity progress curves were generated by monitoring the increase in absorbance

at 340 nm resulting from the TM0423-dependent conversion of NAD+ to NADH. The optimal

TM0423 concentration of 400 nM was used for all assays.

A.5 Metal dependence assay

Metal dependence was monitored in the standard reaction with 15-165 mM Glycerol. Five dif-

ferent divalent metals were tested at 0.3 mM to determine the metal dependence of the enzyme:

ZnCl2, NiCl2·6 H2O, CoCl2·6H2O, FeCl2·4H2O, and MnCl2.

A.6 EDTA deactivation assay

To assay the dependence of TM0423 on divalent metals, EDTA was titrated into a reaction

mixture and activity was observed. ZnCl2 at 0.3 mM was added to the standard reaction mixture

and the concentration of EDTA was varied between 0-400 µM.

A.7 Substrate analog assays

The specific activity of TM0423 was tested with various glycerol analogs including 1,2-propanediol,

ethylene glycol, tris, 2-propanol, 1-propanol, 2-methyl-2-propanol, 1-butanol, bis-tris propane,

and 1,3-propanediol. Each substrate was tested independently in the standard reaction with the

substrate analogs at 120 mM.

Additional kinetic assays were run under standard condition for analogs 1,2-propanediol

and ethylene glycol to obtain kinetic parameters. In addition, a kinetic assay was run to survey

the reduction of hydroxyacetone to 1,2-propanediol by TM0423 with the concomitant oxidation

of NADH to NAD+. The reaction conditions for this assay were 50 mM phosphate buffer (pH

8.0), 15-165 mM hydroxyacetone, 0.375 mM NADH, and 400 nM TM0423.
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