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Abstract 

Each year, thousands of people must pass standardized exams to be certified in 

medical, legal, clinical, and technological fields. Unfortunately, the increasing number of 

examinees taking such tests seems to have been accompanied by an increase in the 

instances of reported cheating and the invention of more sophisticated cheating 

techniques. The stealing and sharing of proprietary test content, such as when items are 

recorded and then compromised via sharing, is associated with legal consequences for the 

culprit but can also have negative consequences for the integrity, reputation, and budget 

of a testing program. Compromised items represent a significant threat to the integrity of 

testing. The purpose of the present study was to detect items that were suspected to be 

compromised using a combination of Rasch and Item Response Theory model estimates, 

along with other item properties such as average response times and local dependence 

estimates, with Support Vector Machines (SVMs). In this study, we used this 

combination of methods to detect items of an international healthcare certification exam 

(N = 13,584) that were suspected to be compromised in screenshots or notes. The results 

showed that this method appeared to be somewhat accurate at classifying suspected 

compromised and suspected uncompromised items, but that the main factor driving these 

results appeared to be the relative size of the classes. The SVMs showed apparent bias 

towards predicting the items into the category of whichever item class was larger. Thus, 

the accuracy of the SVMs, balanced for class size, was much lower than desired. We 

hypothesized that the most important item features would be Rasch item infit and outfit, 

but the item feature results showed that the two most important features were the Rasch 

model standard error and the Rasch item difficulty. We also hypothesized that Rasch 
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estimates would outperform 3PL estimates, but the evidence for this hypothesis was 

mixed, with some Rasch estimates outperforming the 3PL estimates and others 

performing worse than the 3PL estimates. Our final hypothesis was that the 3PL 

discrimination would outperform the 3PL lower limit. The evidence for this final 

hypothesis was somewhat mixed, but discrimination outperformed the lower limit in the 

majority of the models.  However, the results of the feature weights in the current study 

should be interpreted cautiously for several reasons. The assessment of feature weights 

provides information on the importance of features in the data for deriving the 

classifications made by the models. In the current study, the classifications made by the 

models seemed to be biased by class size and were often inaccurate. Thus, the feature 

weights may contribute very little to the understanding of what item properties actually 

distinguish between suspected uncompromised and suspected compromised items. The 

current study combined Rasch and Item Response Theory model estimates with Support 

Vector Machines, bringing the disparate fields of psychometrics and machine learning 

together, and showing a promising future for the resulting hybrid method.  
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So Happy Together? Combining Rasch and Item Response Theory Model  

Estimates with Support Vector Machines to Detect Test Fraud 

Each year thousands of people must pass standardized certification exams to be 

certified in medical, legal, clinical, and technological fields. In 2014 alone, over 100,000 

U.S. medical licensing examinations were taken by M.D. and D.O. degree holders 

(United States Medical Licensing Examination Performance Data, 2014) and the number 

of examinees who take high-stakes standardized tests increases each year. Unfortunately, 

this increase in the pervasiveness of standardized testing seems to have been 

accompanied by an increase in the instances of reported cheating (Bliss, 2012; FairTest, 

2007; Simha, Armstrong, & Albert, 2012) and the invention of more sophisticated 

cheating techniques (Sorenson, 2010).  

Cizek (2003) broadly defines cheating in this context as any act that breaks an 

established rule about the administration or completion of a test or assignment, provides 

an unfair advantage to some students, or makes the interpretations of a score less 

accurate. Although cheating could consist of a variety of different behaviors, cheating 

specifically on tests is sometimes referred to as test fraud (Kingston & Clark, 2014). Test 

fraud is any prohibited or dishonorable action deliberately taken by an examinee in order 

to attain undeserved high scores on tests, or aid others in doing so (Thomas et al., 2016). 

Test fraud not only penalizes honorable test takers by allowing unscrupulous examinees 

to appear relatively more proficient (Fremer & Addicott, 2011), it can also damage the 

integrity and reputation of the testing program itself (Cizek, 1999; Dickison & Maynes, 

2014; Fremer & Addicott, 2011).  
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Although data on the prevalence of test fraud is understandably difficult to obtain, 

a meta-analysis of cheating in U.S. and Canadian college students found that reported 

cheating rates ranged from 9% to 95%, with an average of 70.4% of students admitting to 

some form of cheating while in college (Whitley, 1998). One might expect that the desire 

to cheat on standardized certification exams would be as high as the desire to cheat in 

college, but the rate of cheating on standardized exams to be lower due to stricter exam 

security measures and the potential legal consequences of being caught.  

Some of the more advanced test fraud tactics involve examinees recording test 

items, response options, and/or presumed test answers and sharing them with future test-

takers (Smith, 2004; Thomas et al., 2016). The result is examinees with pre-knowledge, 

so-called because the examinees have accessed exam content before they begin the exam. 

Like data on the prevalence of test fraud in general, data on the frequency of examinee 

pre-knowledge is challenging to obtain. Many testing companies who may have insights 

into the prevalence of examinee pre-knowledge do not provide this information, possibly 

due to their desire for confidentiality. One source suggests that answer keys may be 

accessed by more than 20% of the test-taking population of information technology 

certification exams, depending on the desirability of the certification (Maynes, 2008). 

However, it is unclear what evidence underlies this assertion, and if this result generalizes 

to certification exams in other career areas. 

The purpose of the present study was to detect items that were compromised, or 

leaked, using a combination of Rasch and Item Response Theory (IRT) models, common 

in education and psychology with Support Vector Machines (SVMs) from the field of 

machine learning. The investigated certification exam was compromised by screenshots 
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and notes that contained proprietary test items and answers. These screenshots and notes 

were discovered by the test publisher, creating a situation in which there were suspected 

item categories. These item categories consisted of suspected compromised items, which 

the test publisher discovered in the screenshots and/or notes, and suspected 

uncompromised items, which the test publisher did not discover in the screenshots and/or 

notes. The objective of the current study was to classify items as predicted compromised 

items or predicted uncompromised items according to their psychometric characteristics. 

Predicted compromised items were those that are suspected of being compromised in the 

screenshots and/or notes based on their properties and predicted uncompromised items 

are those that were not suspected of being compromised in the screenshots and/or notes. 

The predicted item categories were then compared to the suspected item categories.  

The Role of Statistics in Detecting Test Fraud 

Using statistical tools to detect test fraud is particularly important in cases of 

examinee pre-knowledge, as there may be no detectable, external signs of cheating 

because the proprietary test information may have been memorized (Bliss, 2012). 

Previous investigations into the detection of pre-knowledge (e.g. a student obtaining 

answers from a student who previously took the test; Hui, 2010; Shu, 2011) have focused 

largely on comparisons of person-fit indices (Clark et al., 2014; Karabatsos, 2003; 

Marianti, Fox, Avetisyan, Veldkamp, & Tijmstra, 2014; Sinharay, 2015). Additional 

comprehensive reviews of statistical methods used to detect various types of cheating are 

found in Kingston and Clark (2014), Bliss (2012), or Haney and Clarke (2007). 

Karabatsos (2003) assessed the performance of 36 person-fit indices in detecting 

aberrant response patterns, i.e., those that do not align well with expectations; for 
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example, a low ability individual answering difficult items correctly, but easy items 

incorrectly. In this study, Karabatsos (2003) used a Rasch model on simulated data that 

included five aberrant response patterns (cheating, creatively and uniquely interpreting 

item meanings and choosing answers accordingly, guessing, careless responding, and 

random responding). The top five best person fit statistics were identified; the best one, 

Ht (Sijtsma, 1986; Sijtsma & Mejer, 1992), compared conformity between an examinee’s 

response pattern and the response patterns of all other examinees (Karabatsos, 2003). 

However, the results of a similar study in which various IRT models were applied to 

simulated data to detect simulated cheaters' data showed that the best method, lco 

difference (Ferrando, 2007), a sum of squared, standardized residuals across items, was 

better than other methods, including Ht (Clark et al., 2014). However, all of the tested 

person-fit methods performed poorly on data with low rates of cheating. 

In the present study, we chose to focus on classifying items rather than focusing 

on analyses of person fit for several reasons. First, person fit statistics do not necessarily 

identify compromised items, given their person-centered focus, whereas the direct focus 

on items would likely play a vital role in addressing instances of test fraud and preventing 

future test fraud. If test publishers have information on which items are compromised, 

they can alter or remove those items. Some test publishers have even turned 

compromised items into Trojan Horse items, which are relatively easy, compromised 

items that have been slightly altered on the test so that examinees with pre-knowledge 

will respond incorrectly to these items (Caveon, 2008). For example, if the original 

compromised item reads “What is x4 + x3 – x if x2 = 16?”, the test publisher could alter the 

item to read “What is x4 + x2 – x if x2 = 16?” where the second term is now squared 
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instead of cubed, in hopes that examinees with pre-knowledge will overlook the small 

change in the item and select the correct answer for the original, compromised item, thus 

responding incorrectly to the altered item. Secondly, information on item classifications 

may be useful in accurately classifying examinees. This is because we expect examinees 

with pre-knowledge who are responding outside of their true trait level to show 

differential functioning on suspected compromised and suspected uncompromised items. 

Thus, if the predicted item categories are relatively accurate, differences in person 

performance that reflect the suspected item categories may be detected. For example, 

holding all other factors (e.g. item difficulty, trait level, etc.) constant, examinees with 

pre-knowledge may respond relatively faster on suspected compromised items than on 

suspected uncompromised items, but examinees without pre-knowledge may show no 

difference or a smaller difference. Additionally, examinees with pre-knowledge may 

respond more correctly on suspected compromised items than on suspected 

uncompromised items, but examinees without pre-knowledge may show no difference or 

a smaller difference, again holding all other factors (e.g. item difficulty, trait level, etc.) 

constant. These differences in person responses are most likely to be detectable when 

examinees with pre-knowledge are responding to items far from their trait level. For 

example, suppose that two examinees with average latent trait levels respond to a very 

difficult item. We expect both examinees to respond incorrectly, but suppose one answers 

the item correctly, and does so very quickly. This response pattern is unexpected, but 

could represent a number of circumstances besides pre-knowledge. The person could 

have studied a similar problem right before the test or been quickly guessing answers and 

happened to select the correct response. Thus, this unexpected response pattern on one 
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item may not indicate pre-knowledge, but over a number of items, these unexpected 

response patterns could provide evidence of pre-knowledge. Bear in mind that the 

estimated trait level of an examinee with pre-knowledge depends on many factors, 

including the examinee’s ability to memorize and recall answers to compromised items 

and the proportion of compromised items. Our philosophy is that item classifications are 

important for addressing instances of test fraud and could be useful for the classification 

of examinees. Additionally, when assessing person fit for the purpose of detecting test 

fraud in real data, there is rarely a way to check the accuracy of one’s results because 

information regarding which examinees have pre-knowledge and which do not is not 

typically available, as in the case with the current set of data. Thus, we will focus on 

predicting the suspected item categories.  

In the current study, we chose to focus on a combination of Rasch and Item 

Response Theory (IRT) models with Support Vector Machines (SVMs) for a number of 

reasons. First, Rasch and IRT model estimates provide valuable psychometric 

information about items and persons in a very detailed manner. For example, Rasch item 

infit and outfit estimates assess mismatch between a person’s expected response to an 

item and their actual response. This type of information is more complex than the 

information contained in many item statistics, such as item-total correlations, which 

simply indicate the direction and strength of the relationship between a response on an 

item and the total exam scores. Infit and outfit give more nuanced information by 

accounting for a person’s estimated ability level at the level of the item responses. These 

estimates could be valuable in detecting compromised items. Secondly, until now, many 

statistical analyses of test fraud have not been able to harness the power of data mining 
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techniques like SVMs because category information on the status, or suspected status, of 

items was not available, but is required in order to use an SVM. Thirdly, this combination 

of analyses offers advantages to the detection of test fraud that are not achieved by either 

analysis alone. Rasch and IRT model estimates provide detailed information about items, 

but the effect of item compromise on the interpretation of Rasch and IRT model estimates 

is often unclear. For example, high item infit estimates, which indicate a larger than 

expected difference between expected and actual responses, are often interpreted as 

indicating problems with the quality of the item (Bohlig, Fisher, Masters, & Bond, 1998). 

However, in the case of item compromise the interpretation is unclear, i.e., high item infit 

could indicate poor item quality or item compromise. Thus, using Rasch and IRT model 

estimates gives us detailed information on the functioning of the items in the sample and 

the performance of persons in the sample, but does not allow us to use that information to 

predict instances of item compromise. Through the combination of Rasch and IRT 

models with SVMs, it becomes possible to investigate the differences between suspected 

compromised and suspected uncompromised items on Rasch and IRT model estimates. 

The SVMs are an unsupervised process, which allows the data to drive the predictions. 

SVMs also have the advantage of not being limited to the investigation of linear 

relationships. The combination of these methods marries detailed information on items 

and persons with the advantages of a data-driven classifier. Previous research has shown 

that using a combination of cluster, correlational, and Rasch model analyses to classify 

items as predicted compromised or predicted uncompromised yielded accurate results. 

Thomas et al. (2016) found that 64 of the 65 items were correctly classified using a 

combination of statistical flags from cluster, correlational, and Rasch model analyses. 
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They also showed that correlational and Rasch model analyses generally performed better 

than cluster analyses. Using Rasch model estimates in the current study will allow us to 

replicate and expand their work. Additionally, Thomas et al. (2016) used statistical 

cutoffs to create flags, but the method used in the current study allow the estimates to 

serve as predictors of item compromise in their continuous state, without imposing the 

limitation of using cutoff scores. In other words, the estimates are free to predict item 

compromise without the researcher imposing constraints on the direction of prediction. 

Thus, the current study expands and improves the work of Thomas et al. (2016) in 

addition to bringing two fairly disparate fields together. In the current study, we believe 

that a combination of the Rasch and IRT models with Support Vector Machines may 

yield accurate item classifications, creating a happy union of the methods. 

If this combination method performs well, test publishers interested in detecting 

item compromise may be able to predict the status of their items even in the absence of 

suspected item categories. This would be a huge advantage for test publishers, who often 

pay for continual internet monitoring to detect proprietary test content online (Fremer & 

Addicott, 2011). Not only does internet monitoring represent a significant cost in terms of 

time and money, it is also an inefficient method for detecting compromised items as the 

amount of information that must be searched is potentially infinite. Moreover, proprietary 

content may be hidden behind paywalls, encrypted, or hidden from search functions in 

other ways. Once possible proprietary content has been found, the testing company must 

investigate to verify that the content in question is proprietary content and if it is, may 

begin an official investigation. However, if compromised items could be detected using 

the method proposed in this paper, then this method could be periodically applied to sets 
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of testing data for detection of compromised items. The test publishers could then alter or 

remove items that are predicted to be compromised. Furthermore, the method itself is 

flexible and could be used not only in the field of test fraud study, but also in any 

classification problem that could use Rasch and IRT model estimates as properties of 

units. This method could be used with persons, rather than items as the unit of interest. 

The features for the persons could be Rasch or IRT model person estimates (e.g. trait 

level, person infit, person outfit, etc.). For example, this method could be used to train a 

system to classify students who are in an English honors program or not, based on their 

performance on previous English tests. Next, the method could be used to classify other 

students into those who resemble the students in the honors program and those who do 

not. This type of analysis could be used to identify students who should be included in 

honors programs but are currently not.  

In the following sections, techniques that yield item properties that may be useful 

in detecting item compromise will be introduced and described including: Rasch model 

estimates, three-parameter logistic (3PL) IRT model estimates, item response times, 

Yen’s (1984) Q3 for identifying local dependence of items, and linear logistic test model 

(LLTM) estimates. Then the methods for using these item properties and the suspected 

item categories to create functions that can separate compromised items from 

uncompromised items, which, in the current study, are Support Vector Machines (SVMs) 

will be discussed. Item properties that will be used in the SVMs will be called features, in 

keeping with the literature on SVMs (Guyon, Weston, Barnhill, & Vapnik, 2002).  

The Rasch model  
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Broadly, the Rasch model (Rasch, 1960) estimates the probability of a person 

responding to an item in a certain category (here, with a correct response), given their 

latent trait level (θRasch) and the difficulty of the item (R Diff; See Equation 1). The Rasch 

model estimates item and person parameters on the same logit scale, which allows them 

to be easily compared (Rasch, 1960). The difficulty of the item (R Diff) is the location of 

the item on the logit scale and can be seen on the Item Characteristic Curve (ICC; see 

Figure 1). The Rasch model is superior to other models, such as the two-parameter 

logistic (2PL; Lord & Novick, 1968), and the three-parameter logistic (3PL, Birnbaum, 

1968) models, because it provides interval-scale measurement (Wright & Linacre, 1989) 

and double cancellation (Embretson & Reise, 2000). Double cancellation requires that the 

probability of answering an item correctly increases as person ability increases and 

decreases as item difficulty increases across ICCs (Embretson & Reise, 2000). When the 

property of double cancellation is achieved, the ICCs do not cross one another. The 2PL 

and 3PL models do not ensure double cancellation and are therefore considered lacking 

in important measurement properties by some psychometricians (e.g. Embretson & Reise, 

2000). The Rasch model was used in the current study because it is well-suited to 

analyzing scored test data and is flexible (Rasch, 1960). Additionally, previous research 

shows that item measures commonly obtained through Rasch model estimation are useful 

for the detection of test fraud (Thomas et al., 2016).  

The Rasch model can be represented as: 

Equation 1 

exp( )
( 1| , )

1 exp( )

j i

ij j i

j i

P X
 

 
 


 

   , 
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where j  represents person j’s latent trait score, i  represents the difficulty of item i, and 

P(Xij = 1) represents the probability that person j choses category X for item i, given i  

and j .  

 

 

Figure 1. An expected Rasch model Item Characteristic Curve (ICC). Note that the 

difficulty (R Diff = 0.87, in this case) is equal to the location at which the probability of 

getting the item correct is 0.50. 

 

Rasch model assumptions. The Rasch model assumes that items are unrelated to 

each other except through the underlying trait (local independence) and that the Item 

Characteristic Curves (ICCs; see Figure 1) are the same except for their location on the 

latent trait scale (Schmidt & Embretson, 2012). Other assumptions are unidimensionality, 

equal discrimination across items, and the absence of successful guessing. Some argue 

that the Rasch model also assumes that the latent ability measured by the study is 

quantitative in nature (Michell, 2008), although this is debated (Borsboom & 

Mellenbergh, 2004).  
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Rasch model estimates. The Rasch model item features used in the SVMs of the 

current study were item difficulty, standard error, standardized infit, and standardized 

outfit, which are described below. These estimates are commonly used, easily obtained, 

and may provide important information in detecting item compromise. It is important to 

note that the interpretation of many of these estimates may be influenced by the presence 

of compromised items and examinees with pre-knowledge. For more information on how 

these estimates may perform in cases of compromised items and examinees with pre-

knowledge, see Thomas et al. (2016). 

Item difficulty. Item difficulty (βRasch) represents the location of an item on the 

logit scale. More positive numbers represent relatively more difficult items and more 

negative numbers represent relatively less difficult items. The total number of correct 

items is a sufficient statistic for estimating item difficulty in the Rasch model because no 

other information is necessary to obtain item difficulty estimates. The scale of 

measurement for the items is often scaled such that the mean item difficulty is zero. 

Item standard error. The standard error of an item indicates the precision level 

associated with the item difficulty estimate for that item. Higher standard errors indicate 

lower precision and lower standard errors indicate higher precision. Item standard error 

can be expressed as: 

Equation 2 

𝑆𝐸𝑖 =
1

√∑(𝑃𝑛𝑖 (1 − 𝑃𝑛𝑖))
 

where 𝑆𝐸𝑖 represents the standard error of item i and 𝑃𝑛𝑖 represents the probability of a 

correct response on item i by persons with trait level n, summed over all trait levels.  
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Item infit. Item infit indicates the extent to which an individual’s responses 

deviate from their expected responses when the item measure and the individual’s 

estimated trait level are in similar locations on the logit scale (Wright, 1980; Wright & 

Masters, 1982). In the current study, z-standardized (Z-STD) item infit statistics were 

used. Underfit, indicated by more positive numbers, represents a larger than expected 

difference between expected and actual responses and overfit, indicated by more negative 

numbers, represents a smaller than expected difference between expected and actual 

responses. Standardized infit can be expressed as: 

Equation 3 

𝑍𝑆𝑡𝑑𝐼𝑛𝑖 = (𝑣
𝑖

1
3 − 1) (

3

𝑞𝑖
) + (

𝑞𝑖

3
)  

where ZStdIni represents the z-standardized infit for item i, vi represents the weighted 

mean square for item i, and qi represents the standard deviation of the mean squared infit 

for item i (Wright & Masters, 1982). Mean squared item infit can be expressed as: 

Equation 4 

𝑣𝑖 = ∑ 𝑤𝑛𝑖

𝑁

𝑛

𝑧𝑛𝑖
2 / ∑ 𝑤𝑛𝑖

𝑁

𝑛

 

where 𝑣𝑖 is the weighted mean square for item i, the persons range from n to N, 𝑧𝑛𝑖
2  

represents the standardized residual squared for person n on item i, and 𝑤𝑛𝑖 represents the 

variance of the score residuals for all persons n on item i. 

We hypothesize that item infit will outperform most of the other item features in 

the Support Vector Machines, because it contains more nuanced information than many 

of the item features. Infit gives more sophisticated information by accounting for a 

person’s estimated ability level in the individual responses, which allows the 
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unexpectedness of the response to be measured. The mismatch of the expected versus 

actual responses measured by item infit may be particularly useful in detecting test fraud. 

For example, suppose that an examinee with pre-knowledge has a high estimated trait 

level. The examinee’s estimated ability may be high largely because of their previous 

exposure to compromised items in situations in which the majority of items are 

compromised, the examinee studied the compromised items thoroughly, and the 

examinee used their knowledge of the compromised items on the test to answer most of 

the compromised items correctly. Accordingly, if a compromised item with a slightly 

higher difficulty level than the examinee’s trait level is administered to them, they may 

respond correctly, even though the expected probability of correct response suggests that 

the examinee should respond incorrectly. Item infit captures such patterns of unexpected 

responses across the entire sample of examinees and may therefore be valuable in 

identifying items with suspicious patterns of responses. However, the literature on 

properties that distinguish uncompromised from compromised items is minimal, so nine 

item features were tested to allow empirical testing of the relative importance of these 

features.  

Item outfit. Item outfit indicates the extent to which an individual’s responses 

deviate from their expected responses when an individual answers items that are far from 

the individual’s trait level on the latent dimension measured (Wright, 1980; Wright & 

Masters, 1982). In the current study, z-standardized (Z-STD) item outfit statistics were 

used. As in the case of item infit, underfit is indicated by more positive numbers and 

represents a larger than expected difference between expected and actual responses and 

overfit is indicated by more negative numbers and represents a smaller than expected 
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difference between expected and actual responses. Standardized outfit can be expressed 

as: 

Equation 5 

𝑍𝑆𝑡𝑑𝑂𝑢𝑡𝑖 = (𝑢
𝑖

1
3 − 1) (

3

𝑞𝑖
) + (

𝑞𝑖

3
) 

where ZStdOuti represents the z-standardized outfit for item i, ui represents the 

unweighted mean square for item i, and qi represents the standard deviation of the mean 

squared outfit for item i (Wright & Masters, 1982). The unweighted mean square can be 

expressed as: 

Equation 6 

𝑢𝑖 = ∑ 𝑧𝑛𝑖
2 /𝑁

𝑁

𝑛=1

 

where 𝑢𝑖 is the unweighted mean square for item i, the persons range from n = 1 to N, 

and 𝑧𝑛𝑖
2  represents the standardized residual squared for person n on item i. 

We hypothesize that item outfit, like item infit, will outperform most of the other 

item features in the Support Vector Machines. Item outfit captures complex information 

regarding the mismatch of the expected versus actual responses when items and persons 

are far apart on the logit scale. Suppose an examinee with pre-knowledge who has a high 

estimated trait level is administered a difficult compromised item that is located far above 

their estimated trait level. They may respond correctly even though the expected 

probability of correct response suggests that the examinee should respond incorrectly. 

Item outfit captures such patterns of unexpected responses across the entire sample of 

examinees and may prove valuable in identifying items with suspicious patterns of 

responses.  
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The Three-Parameter Logistic Model 

The three-parameter logistic model (3PL, Birnbaum, 1968) is an IRT model that 

estimates the probability of a person responding to an item in a certain category (here, 

with a correct response), given their latent trait level (θ3PL), the difficulty of the item (3PL 

Diff), the discrimination of the item (3PL Discr), and the lower limit of the item (3PL 

Lower) (see Equation 7). The 3PL, like the Rasch model, estimates item and person 

parameters on the same logit scale. The difficulty of the item (3PL Diff) is the location of 

the item on the logit scale. However, the Item Characteristic Curves (ICCs) (see Figure 2) 

in the 3PL framework may have varying slopes (discrimination) and lower asymptotes 

other than zero (lower limits), unlike the Rasch model ICCs. The 3PL can be represented 

as:  

Equation 7 

 

 

where 𝑋𝑖𝑗 is the response to item i by person j, 𝜃𝑗 represents the latent trait score for 

person j, 𝛽𝑖 represents the difficulty of item i, 𝛼𝑖 represents the discrimination for item i, 

and 𝛾𝑖 represents the lower limit for item i.  

  

𝑃(𝑋𝑖𝑗 = 1|𝜃𝑗 , 𝛽𝑖,  𝛼𝑖,  𝛾𝑖) = 𝛾𝑖 + (1 − 𝛾𝑖)
exp[𝛼𝑖(𝜃𝑗 − 𝛽𝑖)]

1 + exp[𝛼𝑖(𝜃𝑗 − 𝛽𝑖)]
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Figure 2. 3PL model Item Characteristic Curves (ICC). Note that the two items 

(represented by dashed and solid lines) have different slopes (the item represented by the 

dashed line has a higher discrimination parameter) and that the item represented by the 

solid line appears to have a non-zero lower limit. 

 

Three-Parameter Logistic Model assumptions. The 3PL model assumes that 

items are unrelated to each other except through the underlying trait (local independence) 

and has the assumption of unidimensionality. Unlike the Rasch model, the 3PL makes no 

assumptions about equal discrimination or the absence of successful guessing, as 

indicated in the parameters of the 3PL model. 

Three-Parameter Logistic Model estimates. The 3PL model item features used 

in the SVMs of the current study were item difficulty, discrimination, and lower limit, 

which are described below. It is important to note that the interpretation of many of these 

estimates may be influenced by the presence of compromised items and examinees with 

pre-knowledge; see Thomas et al. (2016) for additional information. 

Item difficulty. The difficulty of the item (β) is the location of the item on the 

logit scale. More positive numbers represent relatively more difficult items and less 
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positive numbers represent relatively less difficult items. The 3PL model item difficulties 

are not expected to equal the Rasch item difficulties because of the inclusion of 

discrimination and the lower limit parameters in the 3PL model. Thus, the number of 

correct responses is not a sufficient statistic for estimating item difficulty in the 3PL 

model. 

Item discrimination. Item discrimination (α) indicates the slope of an ICC (see 

Figure 2; Lord & Novick, 1968; Embretson & Hershberger, 1999) and represents how 

well an item distinguishes between low and high ability examinees. Highly 

discriminating items are represented by steeper ICC curves indicating that they are good 

at distinguishing low ability examinees from high ability examinees. Items with poor 

discrimination (very low, or negative) should be revised or deleted, according to 

Embretson and Hershberger (1999).  

Item lower limit. Item lower limits (c; Birnbaum, 1968) represent the lower 

bounds of the ICC for a single item (see Figure 2; Embretson & Hershberger, 1999). For 

example, if the lower part of an ICC curve asymptotes above 0.00, the probability of 

getting that item correct remains higher than 0.00, regardless of the estimated ability 

level. The lower limit parameter is sometimes called a lower asymptote or the pseudo-

guessing parameter. It is called the pseudo-guessing parameter because the lower limit is 

not necessarily the probability of a single answer choice being correct (e.g. .25 for a 

multiple choice item with four possible answers). For example, examinees may be able to 

rule out distractor response options before guessing, leading to a lower limit parameter of 

greater than .25.  
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The Rasch Model versus the Three-Parameter Logistic Model. The primary 

theoretical difference between the Rasch model and the 3PL is that the Rasch model does 

not allow the latent trait score of an examinee to be influenced by the characteristics of 

the items in the sample beyond item difficulty, but the 3PL does (as does the 2PL by Lord 

& Novick, 1968). For instance, in the Rasch model framework, two people with identical 

raw scores get identical latent trait estimates. If Examinee A and Examinee B both get 45 

of 50 items correct, they will receive the same latent trait score. In the 3PL framework, 

the latent trait scores of Examinee A and Examinee B depend on which of the 45 items 

they answered correctly and the characteristics of those items (difficulty, discrimination, 

and lower limit). If the 45 items that Examinee B answered correctly were more highly 

discriminating items than the 45 items Examinee A answered correctly, Examinee B’s 

latent trait score will be higher, holding item difficulty and lower limit constant. 

Remember that the 2PL and the 3PL do not achieve the property of double cancellation 

and therefore do not meet the criteria for objective measurement according to some 

psychometricians (Embretson & Reise, 2000). Hence, in the 2PL and 3PL models, the 

probability of a correct response for a particular pair of items ordered by difficulty but 

varying by discrimination could switch positions based on the order of trait level, which 

is not logical. In the current study, both Rasch and 3PL model estimates were used as 

item features because both may provide useful information about item compromise. 

Item Response Times 

In addition to investigating how Rasch and 3PL model estimates perform as 

features in SVMs predicting item compromise, item response time will be investigated by 

including average response time per item it as an additional feature. Thomas et al. (2016) 
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suggest that examinees with pre-knowledge may have response patterns that are 

identifiable by their item response times and correctness of item responses. Examinees 

with pre-knowledge may respond more quickly to suspected compromised items than to 

other items, because they were previously exposed to these items, and thus may spend 

less time reading and responding to them (Marianti, Fox, Avetisyan, Veldkamp, & 

Tijmstra, 2014). In contrast, examinees without pre-knowledge may respond more slowly 

to suspected compromised items than those with pre-knowledge. Thus, item response 

times may be instrumental for detecting item compromise. The benefits of including item 

response time will be assessed by comparing the relative weight, or contribution, of each 

item feature in the SVMs. If item response time does not perform as well as the other 

item features in the SVMs, that information is important as well, as it implies that the 

other item features are better predictors of item compromise than item response times.  

Yen’s Q3 Estimate of Local Dependence 

 Local independence is an assumption of the Rasch model, the 3PL model, and 

Support Vector Machines. However, in the case of item compromise, this assumption 

may be violated because examinees who viewed compromised content may have more 

responses in common with each other than can be explained by the latent trait alone. 

Therefore, in the current study, Yen’s Q3 statistic (Yen, 1984) for local dependence (LD) 

was calculated to use as an item feature that quantifies violations of this assumption. 

Yen’s Q3 provides a pairwise estimate of the relationship between the residuals of two 

items across all persons, controlling for the latent trait, and can be expressed as: 

Equation 8 

𝑄3𝑗𝑘
= 𝑟𝑑𝑗𝑑𝑘 
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where 𝑄3𝑗𝑘
 represents the 𝑄3 coefficient between item j and item k, d represents the 

residual of item j or item k depending on the subscript, and r represents the correlation 

between them. Q3 estimates range from -1 to 1.  

Once calculated, Q3 estimates can be interpreted in a number of ways. Yen (1993) 

states that Q3 values of +/- .20 or greater indicate local dependence. However, Chen and 

Thissen (1997) found that using a cutoff of .20 for Q3 estimates leads to lower power than 

other methods. De Ayala (2008) suggests that because the Q3 is a correlation coefficient, 

it can be squared to produce values similar to R2 that indicate the extent of local 

dependence. Squared Q3 values of .05 or greater, representing five percent or more shared 

variability between items, may indicate local dependence (De Ayala, 2008). In the 

current study, however, the SVMs require that each item feature contains one value per 

item (e.g. one item difficulty estimate per item), so the pairwise Q3 estimates needed to 

be condensed in order to use the Q3 as an item feature. Therefore, the Q3 estimates for 

each item were represented as a single summary statistic. The range (Max - Min) of Q3 

estimates was used as an item feature because the Q3 is an estimate of local dependence 

between items and more extreme Q3 estimates in either direction indicate strong 

relationships between items and therefore increased local dependence. The mean or 

standard deviation were not used because they are less useful for looking at extremes, as 

they would take into account the entire distribution of Q3 estimates. Additionally, the 

range of Q3 estimates for each item is unique and non-redundant, whereas other summary 

statistics that capture extremes, such as the minimum and maximum, are more likely to 

be redundant between items because of the pairwise nature of Q3 estimates. For example, 

the maximum Q3 for Item A might also be the maximum Q3 for Item B if the highest Q3 
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for both items is the Q3 for Item A with Item B. Note that the maximum for Item A and 

Item B is not necessarily redundant, as either item might have a higher Q3 estimate with 

another item.  

Linear Logistic Test Model 

The linear logistic test model (LLTM; Fischer, 1973) incorporates item stimulus 

features into the estimation of item difficulty. For example, suppose there are two items 

(Item A and Item B) on an English test. Suppose that the vocabulary in Item A is more 

challenging than the vocabulary in Item B, but Item B contains more complex syntax 

than Item A. The LLTM incorporates the knowledge of the item stimulus features into 

the estimates of item difficulty. The LLTM can be represented as: 

Equation 9 

𝑃(𝑋𝑖𝑠 = 1|𝜃𝑠, 𝜏𝑘) =
exp (𝜃𝑠 − ∑ 𝜏𝑘𝑞𝑖𝑘)𝑘

1 + exp (𝜃𝑠 − ∑ 𝜏𝑘𝑞𝑖𝑘)𝑘
 

where 𝑋𝑖𝑠 represents a response by person s to item i (here, a correct answer), 𝜃𝑠 

represents the trait level estimate for person s, 𝜏𝑘 represents the weight of stimulus factor 

k in item difficulty, 𝑞𝑖𝑘 represents the value of stimulus factor k in item i, and ∑k 

represents the sum of  𝜏𝑘 multiplied by 𝑞𝑖𝑘 over all of the stimulus factors (Embretson & 

Reise, 2000).  

In the current study, the item designs were unknown due to the proprietary nature 

of the data. However, the status of items as suspected compromised or suspected 

uncompromised was an unplanned item stimulus feature that may have impacted the item 

difficulty estimates. Thus, the LLTM was used to assess the effect of suspected 

compromised status on item difficulty. The outcome measures for this analysis were the 

LLTM difficulty estimates, because they represent the effect of the item status (suspected 
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compromised or suspected uncompromised) on the item parameter, i.e. how item 

compromise influences item difficulty. However, the LLTM assumes that the researcher 

has defined in the model a set of features that contribute to item difficulty for the items. 

The difficulty of the items probably cannot be explained entirely by the status of the 

items as compromised or uncompromised and no additional information about the nature 

of the items was provided, so the results of the LLTM should be interpreted cautiously.  

Item Features Summary 

 The item features calculated to classify suspected compromised and suspected 

uncompromised items into predicted compromised and predicted uncompromised items 

were: Rasch item difficulty, standard error, infit, and outfit, 3PL difficulty, 

discrimination, and lower limit, average item response times, the range of Yen’s (1984) 

Q3 pairwise estimates for each item, and LLTM difficulty estimates. The relative 

importance of these item features in the SVMs was assessed. Throughout this paper, the 

item features will be referred to by the abbreviations listed in Table 1.  
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Table 1 

 

Item Feature Abbreviations 

 

Item Feature Abbreviation 

Rasch Difficulty R Diff 

Rasch Standard Error R SE 

Rasch Infit R Infit 

Rasch Outfit R Outfit 

3PL Difficulty 3PL Diff 

3PL Discrimination 3PL Discr 

3PL Lower Limit 3PL Lower 

Q3 Range Q3 Range 

Average Item Response Time 

LLTM Difficulty 

Avg Time 

LLTM Diff 

 

 

Note. This table contains the abbreviations for each item feature that will be used in 

tables and plots. 

 

Support Vector Machines  

Support vector machines (SVMs) are analyses that classify distinct classes of 

scores in such a way that the classes are separated by the maximum possible margin of 

space (Cortes & Vapnik, 1995). This is accomplished by using a decision boundary, a 

line, plane, or hyperplane (depending on the dimensionality of the data) that divides the 

classes, and a margin, the space between the decision boundary and the nearest points 

(see Figure 3A). The data points that are nearest to the decision boundary and are on the 

margin are called support vectors. SVMs typically operate on subsets of the data; for 

instance, there is generally a subset of the data designated as a training set and the 

remainder of the data is designated as a test set. The optimal locations of the decision 

boundary and margin are selected based on a training set of data, which consists of 

feature scores and class membership. Then, the decision boundary and margin are used to 

classify a test set of data and the accuracy of the classifications made by the SVM on the 
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test set is assessed. Linear SVMs are used for linearly separable data, which are data with 

a clear, linear division between data points belonging to one class and another (see Figure 

3A), and non-linear SVMs are used for non-linearly separable data, data with no clear, 

linear division between data points belonging to one class and another (see Figure 3B). 

Note that non-linearly separable data does not indicate a lack of separability in all 

situations, as the data may be separable using non-linear SVMs. SVMs are often utilized 

in research paradigms that involve classification, regression, and novelty detection 

(Bishop, 2006, p. 325). They have the desirable property that any local solution for 

parameters is the global optimum for convex functions, i.e. any solution of parameters is 

equivalent to the best solution of parameters in a particular dataset (Bishop, 2006, p. 

325). For additional information on SVMs see Cortes & Vapnik (1995), Burges (1998), 

Cristianini and Shawe-Taylor (2000), and Müller, Mika, Rätsch, Tsuda, and Schölkopf 

(2001). 

 

 

Figure 3. Linear separability of data. A case of linearly separable (left) and non-linearly 

separable data (right). 
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The steps to running an SVM analysis can be represented as follows: 

1. Separate the data into a training set and a test set 

2. Scale the data 

3. Choose a kernel (similarity function that operates on pairs of data points) 

4. Choose parameters 

5. Train the SVM on the training set 

6. Test the SVM on the test set and assess the performance of the SVM 

Specific information on how these steps were accomplished in the current study is to be 

found in the SVM Analyses part of the Data Analyses section. Many of the steps listed 

above can be combined in modern software implementations of SVM analysis. For 

example, some functions are able to combine steps one, five, and six using cross-

validation. An example of cross-validation is K-fold cross validation, which splits the 

data into k equal subsamples and then trains the SVM on k-1 of the k subsamples, using 

the last subsample as a test set. This is repeated k times until every subsample has been 

used as a test set once (Mosteller & Tukey, 1968; Stone, 1974). The purpose of cross-

validation is to avoid a situation in which an SVM performs very well on the training set, 

but does not generalize well to other sets of data drawn from the same population, such as 

a test set or validation set. This problem is called overfitting and it can decrease the 

accuracy of the SVM. The opposite problem, underfitting, occurs when the SVM does 

not perform very well on the training data or on the test or validation set. Both overfitting 

and underfitting increase classification errors and decrease the accuracy of the classifier 

in the test set. Cross-validation is used to approximate the performance of an SVM 

outside of the training set in the case where there is not a separate validation set. In the 
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current study, 10-fold cross validation was used as described in the SVM Analyses part 

of the Data Analyses section. 

SVM assumptions. The assumptions of SVM are independent and identically 

distributed data, which are sometimes collectively called the i.i.d. or IID assumption 

(Dundar, Krishnapuram, Bi, & Rao, 2007). The assumption of independent data requires 

that the responses of one participant are unrelated to the responses of another. Identically 

distributed data are typically obtained in SVM by standardizing or scaling of the 

variables in the training set then using those same values to standardize or scale the 

variables in the test set (Hsu, Chang, & Lin, 2003).  

Choosing a kernel. A kernel is a similarity function that operates on pairs of data 

points (Hofmann, Schölkopf, & Smola, 2008). Kernel methods take the features of the 

data, sometimes called the input space, and map them into higher dimensional feature 

space. The dimensionality of the feature space depends on the number of support vectors. 

In other words, kernels are a mapping function that transforms the input data into a higher 

dimensional feature space. Kernel methods are computationally efficient because they do 

not require actual computation of the data coordinates in the feature space, which can be 

very high in dimensionality, unlike other methods (Burges, 1998). Kernel functions 

compute the inner products between pairs of data in the feature space, which allows for 

much faster computation (Burges, 1998). There are many types of kernels; for example, 

linear, radial basis function (RBF), polynomial (POLY), and sigmoid kernels.  

When conducting an SVM analysis, it is important to select a kernel that is 

appropriate for the data. For example, if the data are linearly separable, such as the data 

in Figure 3A, a linear kernel would probably be most appropriate. If the data are not 
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linearly separable, the most appropriate kernel would depend on the characteristics of the 

data. Generally, a good kernel to begin with is the radial basis function (RBF) kernel 

(Hsu, Chang & Lin, 2003), but other kernels may be used, depending on the data. The 

RBF is a good first kernel choice because it can handle non-linearly separable data but 

the linear kernel is actually a special case of the RBF kernel (Keerthi and Lin, 2003). 

Thus, separation in linearly separable or non-linearly separable data can be attained using 

the RBF kernel. The polynomial (POLY) kernel maps the input data into a polynomial 

feature space. Thus, data that were non-linearly separable in the input space may become 

linearly separable in the feature space. For example, suppose one class of data is 

surrounded by another in two-dimensional input space. If a two-degree polynomial kernel 

were used (i.e. a quadratic polynomial), then the classes could be linearly separable in the 

feature space as the classes would be mapped onto a higher-dimensional quadratic shape. 

The class of data points previously surrounded by the other class could now be higher or 

lower than the other class of data points, allowing the classes to be separated. In the 

current study, the RBF kernel and the POLY kernel were utilized to attempt to classify 

suspected compromised and suspected uncompromised items. 

SVM parameters. SVMs require that the researcher set various parameters, 

depending on the type of kernel that is used. For both the radial basis function (RBF) 

kernel and the polynomial kernel (POLY), researchers must set the C and ɤ (gamma) 

parameters, which are defined below (Meyer, Dimitriadou, Hornik, Weingessel, & 

Leisch, 2015). The POLY kernel also requires that a degree parameter be set. The degree 

parameter indicates if the mapping of the data into higher dimensional space is linear, 

quadratic, cubic, quartic, etc. To choose the best value for these parameters, researchers 
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generally vary each parameter through a range of values and assess which value of the 

parameter performs best. This process is called parameter tuning and is completed using a 

separate data set for validation or using cross-validation on the training set. (Shawe-

Taylor & Cristianini, 2004, p. 220). 

C parameter. C, sometimes referred to as cost or a slack variable, is a penalizing 

parameter that balances complexity of the resulting model with the frequency of error 

(Cortes & Vapnik, 1995). C parameters that are too large can cause overfitting to the 

training set but C parameters that are too small can cause underfitting to the training set 

(Alpaydin, 2004, p. 224). The best value for the C parameter depends on the data 

(Cherkassy & Ma, 2004).  

ɤ parameter. The ɤ, or gamma, parameter controls the influence of a single data 

point in the training set (Pedregosa et al., 2011). Low ɤ parameters indicate that a data 

point can have a large range of influence and high ɤ parameters indicate that a data point 

can have a small range of influence. Thus, C and ɤ both affect model complexity and 

accuracy.  

SVM Outcomes. First, a feature selection algorithm was used to assess the 

relative contributions of each feature to the SVMs and to investigate which item features 

have the highest weights in the SVM model variants and are therefore considered the 

most important item features for classification. Second, the accuracy of the resulting 

classifications was assessed in terms of overall accuracy, sensitivity, specificity, balanced 

accuracy, and positive and negative predictive values, which are described in detail 

below.  
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The overall accuracy (ACC) will be calculated as: 

 

𝐴𝐶𝐶 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑁
 . 

 

 

where N represents the total number of cases (True Positives + True Negatives + False 

Positives + False Negatives). 

  Sensitivity is the proportion of actual positive cases that are classified as positive 

cases (e.g. suspected compromised items that are classified as predicted compromised) 

(see Table 2). Sensitivity (Altman & Bland, 1994a) can be expressed as: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 . 

High sensitivity is desirable because it represents a low false negative (type II error) rate. 

Specificity is the proportion of actual negative cases that are classified as negative 

cases (e.g. suspected uncompromised items that are classified as predicted 

uncompromised) (see Table 2) (Altman & Bland, 1994a). Specificity can be expressed as: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 . 

High specificity is desirable because it represents a low false positive (type I error) rate.
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Table 2 

Possible Outcomes of a Two Group Classification Problem 

 True Condition: Positive True Condition: Negative 

Test Result: Positive True Positive False Positive 

Test Result: Negative False Negative True Negative 

 

Note. This table shows a matrix of possible outcomes in classification analyses for a two 

class problem. 

 

Balanced accuracy was developed to serve as a measure of accuracy when the 

class sizes are unequal (Brodersen, Ong, Stephan, & Buhmann, 2010). Unlike overall 

accuracy, it accounts for imbalanced data sets that have disparate base rates, or 

prevalence, for each class. For example, overall accuracy may show that a classifier is 

performing at high levels of accuracy, but the classifier may simply select the most 

prevalent class for every classification (Brodersen, Ong, Stephan, & Buhmann, 2010). 

Balanced accuracy accounts for this and can be expressed as: 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 . 

 

Positive predictive value (PPV) (Altman & Bland, 1994b) represents the 

proportion of positive test results that are actually true positive cases. That is, given a 

positive test result, the ratio answers the question, how likely is it that the case is a true 

positive? PPV can be expressed as: 

𝑃𝑃𝑉 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 . 
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The PPV represents the probability that a positive test result actually represents a positive 

case, so a high PPV is desirable.  

Negative predictive value (NPV) (Altman & Bland, 1994b) is the counterpart of 

PPV and represents the proportion of negative test results that are actually true negative 

cases. If a given test result is negative, the ratio answers the question, what is the 

probability that the case is a true negative? NPV can be represented as: 

𝑁𝑃𝑉 =
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 . 

The NPV represents the probability that a negative test result actually represents a 

negative case, so a high NPV is desirable.  

SVM Model Variants 

 In addition to investigating the performance of SVM models attempting to 

classify suspected compromised and suspected uncompromised items using the radial 

basis function (RBF) kernel and the polynomial (POLY) kernel, the effects of two other 

variables were investigated, sample size and uncompromised to compromised item split. 

Sample size (N) was varied over five values; starting from the original sample size of 

13,584 down to a sample size of 200 (see Table 3). Random selection of participants 

continued until the desired sample size was reached for each sample size. Then the item 

features were calculated for each set of randomly selected participants, yielding item 

feature estimates for each sample size. The item features for any given N were calculated 

from the same participants as every other model variants with that N. In other words, the 

200 participants used to calculate the item features in the RBF, N = 200, .25/.75 split 

model variant were the same as the 200 participants used to calculate the item features in 

the POLY, N = 200, .75/.25 split model variant and in every other model variant where N 
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= 200. The split of suspected uncompromised to suspected compromised items in the data 

was also varied. The original data had 61 suspected uncompromised items and 86 

suspected compromised items, yielding a split of .41 to .59. However, we also wanted to 

investigate cases in which each class of items was much more prevalent than the other, so 

we data sets were created with suspected uncompromised to suspected compromised item 

splits of .25/.75 and .75/.25. These splits are labelled Split 1, Split 2, and Split 3, as 

shown in Table 3. Split 1 was created by solving the following set of equations: 

Equation 10 

𝑥

𝑁
 =  .25 where 𝑥 ≤ 61 and 

𝑦

𝑁
 =  .75 where 𝑦 ≤ 86. 

In Equation 10, N represents the total number of items (147, in this case), x represents the 

number of suspected uncompromised items, and y represents the number of suspected 

compromised items. The stated conditions of 𝑥 ≤ 61 and 𝑦 ≤ 86 were used because 

there were only 61 suspected uncompromised items and 86 suspected compromised items 

in the original data that could possibly be selected. This set of equations was solved in 

such a way that allowed retention of the maximum possible number of items. The 

solution for Split 1 was to create a dataset with 29 suspected uncompromised items and 

all 86 suspected compromised items (115 total items).  

 Split 3 was created by solving the following set of equations: 

Equation 11 

𝑥

𝑁
 =  .75 where 𝑥 ≤ 61 and 

𝑦

𝑁
 =  .25 where 𝑦 ≤ 86. 

In Equation 11, N represents the total number of items (147, in this case), x represents the 

number of suspected uncompromised items, and y represents the number of suspected 

compromised items. The solution for Split 3 was to create a dataset with all 61 suspected 
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uncompromised items and 20 suspected compromised items (81 total items). These 

solutions gave us the desired item splits while retaining the maximum possible number of 

items. Items were randomly selected items until the desired number of suspected 

compromised items was reached. Similar to the consistency of the sample size variants 

within level, the items selected for any given split were the same for all model variants 

with that split. In other words, the 29 suspected uncompromised items in the RBF, N = 

200, Split 1 model variant were the same as the 29 suspected uncompromised items in the 

POLY, N = 500, Split 1 model variant and in every other model variant with Split 1. All 

model variants are crossed with the others leading to a total of 30 models (2 x 5 x 3) (see 

Table 3). The item features were the same for every model variant: Rasch item difficulty, 

standard error, infit and outfit, 3PL difficulty, discrimination, and lower limit, average 

item response time, the range of Q3 estimates, and LLTM difficulty estimates.  

Table 3 

 

SVM Model Variants 

 

 

Kernels (2) 

 

N (5) 

Uncompromised to Compromised 

Split (3) 

 

RBF 

POLY 

200 

500 

1,000 

5,000 

13,584 (ORIG) 

 

             Split 1: .25 / .75 

             Split 2: .41 / .59 (ORIG) 

             Split 3: .75 / .25 

 

Note. This table shows all of the SVM model variants investigated in the current study. 

Properties of the original data are denoted as “ORIG.” 

 

Hypotheses  

Of the item features in this study, we hypothesize that item infit and item outfit 

will have the highest feature weights in the SVMs. Item infit and outfit capture complex 
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information regarding the mismatch of the expected versus actual responses, as a function 

of the distance between an item’s difficulty location and a person’s expected response. 

Item infit and outfit statistics capture patterns of unexpected responses across the entire 

sample of examinees and may prove valuable in identifying items with suspicious 

patterns of responses.  

We also hypothesize that the Rasch model estimates will have higher feature 

weights than the 3PL estimates. Thus, we expect Rasch item difficulty, standard error, 

infit, and outfit to be more important (i.e. have higher feature weights) in the 

classifications than 3PL item difficulty, discrimination, and lower limit. This hypothesis 

is based on the results of Thomas et al. (2016) who found that Rasch item difficulty, 

mean-squared infit, and mean-squared outfit outperformed indices of discrimination and 

lower limit.  

Our final hypothesis is that the 3PL item discrimination will have a higher feature 

weight than the 3PL lower limit in distinguishing between suspected compromised and 

suspected uncompromised items. This hypothesis is also based on the results of Thomas 

et al. (2016), who found that items classified using traditional cutoffs for discrimination 

were more accurate than items classified using traditional cutoffs for the lower limit. 

Summary of the Introduction 

The primary purpose of this study is to pioneer a new exploratory data analysis 

procedure that uses a combination of Rasch and Item Response Theory models with 

Support Vector Machines. In the current study, this procedure was used to classify items 

into predicted compromised items (items predicted to be compromised in notes and/or 

screenshots) and predicted uncompromised items (items not predicted to be compromised 
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in notes and/or screenshots) based on their item properties (Rasch model: difficulty, 

standard error, infit, and outfit, 3PL: difficulty, discrimination, and lower limits, average 

item response times, the range of Q3 estimates of local dependence, and LLTM difficulty 

estimates). The weights of the item features in the SVMs will be examined to determine 

the features that are the most important predictors of item compromise. We hypothesize 

that item infit and outfit will have the highest feature weights, that Rasch model estimates 

will have higher feature weights than the 3PL estimates, and that the 3PL item 

discrimination will have a higher feature weight than the 3PL lower limit. The accuracy 

of the SVMs was investigated in terms of overall accuracy, sensitivity, specificity, 

balanced accuracy, and positive and negative predictive values to assess the performance 

of the SVMs in classifying predicted compromised and predicted uncompromised items. 

Additionally, the models were varied in terms of which kernel was used (RBF or POLY), 

the sample size, and the split of suspected uncompromised to suspected compromised 

items in the data. Although this procedure was used for detecting suspected compromised 

items in the current study, the hybrid method combining Rasch and Item Response 

Theory models with Support Vector Machines is flexible and could be used in a broad 

array of contexts.  

Method 

Participants 

The participants were 13,584 examinees from 423 schools who took an 

international healthcare certification exam. The participants were degree holders 

representing five different degrees. There were 13,508 examinees who took the exam 

once, 74 examinees who took the exam twice, and two examinees who took the exam 
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three times, resulting in a total of 13,662 exams. Data from exam re-takes were excluded 

to meet the assumption of local independence, leaving only data from examinees’ first 

exam sittings (N = 13,584 exams).  

Data 

Minimal information on the data provided because of the proprietary nature of the 

test. Item level data consisted of scored item responses, item order, and item response 

times in seconds. There were 160 items of various types, but data from all items that were 

not multiple choice, single answer items were excluded, leaving 147 items for analysis. 

Other item types were excluded to eliminate noise in the item features. For example, the 

average item response time might be different for multiple choice, multiple answer items 

than it would be for multiple choice, single answer items, which could cause the results to 

be influenced by unimportant differences in item types rather than showing meaningful 

differences in items reflecting their suspected compromised or suspected uncompromised 

status. Person level data (N = 13,584) consisted of a participant ID, testing session ID, 

school ID, and degree type. See Table 4 for a small example of the data including many 

of the key item features for this study and Appendix A for the full dataset of item features 

(N = 13,584, Split 2). 
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Table 4 

 

Example Data Set 

 

Item R 

Diff 

R  

SE 

R 

Infit 

R 

Outfit 

3PL 

Diff 

3PL 

Discr 

3PL 

Lower 

Q3 

Range 

Avg 

Time 

(secs) 

Suspected 

Item 

Category 

1= Comp 

1 0.80 0.02 0.48 0.92 1.96 0.45 0.14 0.09 50.00 1 

102 0.87 0.02 -0.70 0.09 2.51 0.68 0.25 0.16 75.59 0 

 

Note. This table shows two example rows of data for the current study. 

 

The publisher of this certification exam discovered screenshots and notes 

containing confidential test content. This created a situation in which there were two sets 

of items; items the test publisher discovered in screenshots and/or notes, called suspected 

compromised items, and items that the test publisher did not discover in screenshots 

and/or notes, called suspected uncompromised items. Of the 147 multiple choice, single 

answer items, 86 were suspected compromised items and 61were suspected 

uncompromised items. The researchers were given this information regarding the 

frequencies of item classes at the beginning of the study. 

Data Analyses 

Data Cleaning and Preparation 

As mentioned in the data section above, items that were not multiple choice, 

single answer items were excluded, leaving 147 items in the data, and exam re-takes were 

excluded to meet the assumption of independent data, leaving N = 13,584 participants 

and exams.  

Rasch Model Analyses  



 47 

The software program, Winsteps (Linacre, 2016), was used to obtain Rasch model 

estimates on the dichotomously scored items. Estimation in Winsteps (Linacre, 2016) is 

completed using the joint maximum likelihood estimation (JMLE) procedure. JMLE 

allows for missing data and uses all of the available information to produce estimates (An 

& Yung, 2014). The mean item difficulty was scaled to zero. 

3PL Model Analyses  

 The 3PL model was estimated using the “rasch.mml2” function in the “sirt” 

package of R (Robitzsch, 2015). The 3PL was estimated using the marginal maximum 

likelihood (MML) estimation procedure. The argument “center.b=TRUE” was used to 

scale the difficulty parameters such that the mean item difficulty was zero. Due to 

estimation challenges, the starting values of the difficulty, discrimination, and lower limit 

parameters were set to the values of the Winsteps estimate or index for each parameter to 

achieve convergence. Additionally, the minimum and maximum difficulty were set to 

negative eight and positive eight, respectively. 

Item Response Times 

Average item response times were calculated using the “colMeans” function in 

the “base” package in R (R Core Team, 2016) on the columns of item response times (in 

seconds). No data was excluded when calculating the average item response times, which 

means that any outliers could influence the results. It was believed that these outliers 

might contain meaningful information that could help distinguish suspected compromised 

items from suspected uncompromised items. However, if average item response time 

does not perform well as an item feature in the current study, that could indicate a high 
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level of noise in the item response time data, which could be addressed in future studies 

by removing extreme item response times before predicting suspected item compromise.  

Yen’s Q3 Analyses 

Yen’s (1984) Q3 estimates of local dependence were obtained using the “yen.q3” 

function in the “sirt” package of R (Robitzsch, 2015). The “yen.q3” function uses 

parameter estimates from the “rasch.mml2” function, also in the “sirt” package, which 

yields estimates that are identical to Winsteps when the argument “center.b=TRUE” 

(mean item difficulty equal to zero) is used (Robitzsch, 2015). 

LLTM Analysis 

The linear logistic test model was run using the “LLTM” function in the “eRm” 

package of R (Mair, Hatzinger, & Maier, 2015). The Q-matrix of stimulus factors was a 

vector of 1s and 0s indicating the specified and known levels of distinction among these 

items, that is, the status of each item as suspected compromised or suspected 

uncompromised. No other information was known on the design specifying the 

complexity of the items, due to their proprietary nature. 

SVM Analyses 

All SVM analyses were conducted in R (R Core Team, 2015), using the “svm” 

function in the “e1071” package (Meyer et al., 2015). The type of classification used was 

C-classification. C-classification differs from the other types of SVM models (e.g. nu-

classification, epsilon-SVM regression, or nu-SVM regression) in the formulation of the 

error term that is minimized by the SVM (StatSoft, Inc., 2013). For more information on 

other types of SVM models, see StatSoft, Inc. (2013). The argument “cross=10” was used 

in the “svm” function of the “e1071” package to achieve 10-fold cross validation.  
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Scaling. Hsu, Chang, and Lin (2003) showed that scaling the data prevents 

variables with larger ranges from dominating variables with smaller ranges. The variables 

were standardized using the default “scale=TRUE” command in the “svm” function 

(Meyer et al., 2015). This option scales the variables to a mean of zero and unit variance. 

Kernels. The radial basis function (RBF) kernel was investigated, as 

recommended by Hsu, Chang, and Lin (2003), as was the polynomial (POLY) kernel. 

The kernels were specified using the ‘kernel = “radial”’ and ‘kernel = “polynomial”’ 

arguments of the “svm” function in the “e1071” package of R, respectively. For more 

information on the parameters needed for each kernel see the Parameter Tuning section 

below.  

Parameter tuning. Cross-validation was used to select the best values for the 

SVM parameters. The argument “cross=10” was used in the “tune.svm” function of the 

“e1071” package to achieve 10-fold cross validation during the parameter tuning process. 

The parameters that are used in an SVM depend on the type of kernel. The RBF kernel 

and the POLY kernel both require C and ɤ (gamma) parameters. The POLY kernel also 

requires a degree parameter. The “tune.svm” function in the “e1071” package was used 

for parameter tuning (Meyer et al., 2015). This function uses a grid search over ranges of 

parameters provided by the researcher. There is minimal literature regarding what ranges 

should be searched to obtain SVM parameters, so fairly wide parameter ranges were used 

in the parameter tuning. The “tune.svm” function in the “e1071” package uses overall 

accuracy to calculate the classification errors (Meyer et al., 2015). Parameters with the 

smallest errors are considered the best parameters. Multiple parameter tunings were used 

in an attempt to improve the consistency and quality of the chosen parameters. The first 
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parameter tuning process tuned over a range of 2-4 to 24 for ɤ and a range of 2-4 to 24 for 

C (and a range of one to four for the degree parameter in the POLY kernel). Then the best 

30 unique sets of parameters were selected and tuning occurred over those parameters 

again. This tunes over a maximum of 900 parameter combinations for the RBF kernel (30 

ɤ x 30 C). Once again the best 30 unique sets of parameters were selected and tuning 

occurred over those parameters again. Then, the best combination of parameters 

identified by the final tuning were used as the parameters in the SVMs.  

 Tuning after the first tune cycle was limited to the best 30 unique sets of 

parameters for several reasons. The first is that choosing the number of best unique 

parameters sets using a constant value, rather than selecting a proportion of the results 

(e.g. selecting the best half of results), prevents the tuning process from growing 

exponentially in the number of parameter sets to tune over and helps to keep the time 

necessary for the tuning process feasible. Suppose, for example, that the best half of 

unique sets of parameters were selected, and the original tune provided 300 parameter 

sets. The best half should be about 150 parameter sets. The second tuning process would 

then cross every value of the 150 gamma parameters with every value of the 150 cost 

parameters (and with every value of the degree parameters for the POLY kernel), 

resulting in 22,500 parameter sets (150 x 150) to tune over for the second tune for the 

RBF kernel. If the best half of the results from that tuning were selected, there would be 

over 11,250 sets of parameters for the third tune. This exponential growth of the 

parameter tuning process when selecting a proportion of the results is problematic in 

terms of the time and computing power necessary to complete the tuning process. The 

number 30 was chosen somewhat arbitrarily as the constant value of parameter sets to 
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select because it seemed large enough to capture a variety of the best performing 

parameter sets, but limited the number of parameter sets to tune over, and the time 

required for the tuning process to reasonable amounts. However, other values (e.g. 40, 

50, 60, etc.) could have been chosen as the number of parameter sets to select. These 

constraints on the selection of tuning parameters were utilized to make the tuning process 

more computationally and temporally manageable. 

SVM Outcomes. An implementation of the Support Vector Machine Recursive 

Feature Extraction (SVM-RFE) feature selection algorithm (Guyon, Weston, Barnhill, & 

Vapnik, 2002) in the “e1071” package in R (Meyer et al., 2015) was used to assess the 

feature weights across the model variants. The calculation of the SVM outcomes was 

conducted in R, using true positive, false positive, true negative, and false negative values 

needed for the calculation of overall accuracy, sensitivity, specificity, balanced accuracy, 

and positive and negative predictive values from the prediction table obtained with the 

function “table” (“base” package; R Core Team, 2016) applied to the results of the 

“predict” function (“e1071” package; Meyer et al., 2015) and the suspected item 

categories.  

Results 

Item Feature Estimates 

 The item feature estimates for the original data of N = 13,584 with a suspected 

uncompromised to suspected compromised split of .41/.59 are presented below. The item 

features will be referred to by the abbreviations listed in Table 1. 

Rasch model. The Rasch model was fit to the data to obtain estimates of item 

difficulty, standard error, standardized infit, and standardized outfit. Descriptive statistics 
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on the item features, including the Rasch model estimates, for the original data of N = 

13,584 with a suspected uncompromised to suspected compromised split of .41/.59, can 

be seen in in Table 5. In general, the suspected uncompromised items were easier than 

the suspected compromised items, had a slightly larger range of standard errors, had 

lower infit estimates, and slightly lower outfit estimates. The standardized infit and outfit 

estimates for both suspected item categories had large ranges, indicating misfit between 

the actual and expected responses on the items.  

 

Table 5 

 

Item Features for Suspected Item Categories 

 

 Suspected Uncompromised  Suspected Compromised 

 M SD Min Max M SD Min Max 

R Diff -.19 .86 -2.45 2.85 .14 .86 -1.83 1.80 

R SE .02 .01 .02 .05 .02 .00 .02 .03 

R Infit .23 2.79 -7.41 8.81 .46 4.11 -9.90 9.90 

R Outfit .20 3.62 -9.28 8.87 .18 4.53 -9.90 9.90 

3PL Diff -.77 2.70 -8.00 8.00 .55 2.47 -4.22 8.00 

3PL Discr .50 .24 .16 1.31 .52 .21 .05 1.05 

3PL Lower  .10 .14 .00 .48 .13 .15 .00 .52 

Q3 Range .10 .03 .06 .16 .10 .05 .05 .38 

Avg Time 56.31 22.88 24.12 169.50 54.49 10.92 26.68 79.82 

 

Note. Descriptive statistics for the item features separated by suspected item category. 

 

3PL model estimates. The 3PL model was fit to the data to obtain estimates of 

item difficulty, discrimination, and the lower limit. Model level fit statistics indicated that 

the 3PL model fit the data better than the Rasch model, indicating that the items in the 

data exhibited varying discriminations and lower limits (see Table 6). However, the 

results of the Rasch model should not be discounted because of this, as the Rasch model 

is a measurement model for the development of scales that allow stable inferences to be 
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drawn (Linacre, 1996). The failure of the data to fit the Rasch model implies that the data 

displays undesirable qualities for objective measurement.  

The results of the 3PL model indicated that the suspected uncompromised items 

were, on average, easier than the suspected compromised items and had a larger range of 

item difficulty estimates (see Table 5). The average and variability of discrimination 

parameters was comparable across suspected item categories, but the suspected 

uncompromised items had a slightly larger range of discrimination parameters than the 

suspected compromised items. The suspected uncompromised items were similar to the 

suspected compromised items in terms of the average, variability, and range of lower 

limit parameters.  

 

Table 6 

 

Model Fit for Rasch and 3PL Models 

 

 Rasch 3PL 

AIC 2,242,588 2,233,936 

BIC 2,243,700 2,237,251 

 

Note. Model level fit statistics for the Rasch (left) and 3PL (right) models. 

 

Yen’s Q3. The pairwise Q3 estimates of local dependence in the original data (N = 

13584, .41/.59 split) ranged from Q3 = - .09 to Q3 = .32 (M = -.01, SD = .02) with 31.51% 

positive Q3 values and 68.49% negative Q3 values. Only one of the 10,731 calculated 

pairwise Q3 estimates was more extreme than Yen’s (1993) recommended cutoff of .20 or 

had a squared value above .05, indicating that local dependence was not problematic in 

this data set as assessed by traditional cutoff scores. The Q3 ranges for the suspected 

uncompromised items was largely equivalent to the Q3 ranges for the suspected 
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compromised items, but the suspected uncompromised items did exhibit slightly lower 

variability in Q3 range (see Table 5). 

Item response times. The raw, un-averaged response times in the original data (N 

= 13,584, Split 2) ranged from 0 seconds to 360,006 seconds (M = 55.24, SD = 422.61). 

This wide range could suggest suspicious test taking behaviors. The average item 

response times ranged from about 24 seconds to almost three minutes (see Table 5). The 

suspected uncompromised items exhibited a larger variability in average response times 

and a higher maximum average response time than the suspected compromised items.  

Linear logistic test model. The LLTM was fit to the data to obtain estimates of 

the difference in item difficulty between suspected uncompromised and suspected 

compromised items. The results of the LLTM indicated that the suspected compromised 

items were about 0.31 logits more difficult than the suspected uncompromised items, η = 

-.31, SEη = .003. However, recall that the LLTM assumes that the researcher has defined 

every important feature that contributes to item difficulty for the items, but the difficulty 

of the items probably cannot be explained entirely by the status of the items as suspected 

compromised or suspected uncompromised. Otherwise, all 86 suspected compromised 

items would have the same predicted item difficulty value, and all 61 suspected 

uncompromised items would have the same predicted item difficulty value. Thus, the 

results of the LLTM should be interpreted cautiously. As such, the results of the LLTM 

were assessed as a separate analysis and LLTM estimates were not used as item features 

in the SVMs. 

 Relationships between item features. The correlations between the item features 

for original data (N = 13,584; Split 2) can be seen in Table 7. Many of the item features 
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were significantly related to one another. For example, standardized infit and outfit were 

strongly, positively and significantly related to one another in an almost perfect 

correlation. It is important to note that Table 5 and Table 7 show the descriptive statistics 

and correlations for item features in the original data (N = 13,584; Split 2), but not for the 

other sample sizes or splits. Thus, the results displayed in Table 5 and Table 7 may not be 

true for all of the data sets in this study. 

 

Table 7  

 

Correlations between Item Features in Original Data 

 

 R  

Diff 

R  

SE 

R  

Infit 

R 

Outfit 

3PL 

Diff 

3PL 

Discr 

3PL 

Lower 

Q3 

Range 

R 

SE 

-.64***        

R  

Infit 

 .28*** -.10       

R 

Outfit 

 .38*** -.17*  .97***      

3PL 

Diff 

 .82*** -.42***  .23**  .22**     

3PL 

Discr 

-.06 .25** -.59*** -.65***  .29***    

3PL 

Lower 

 .28*** -.13  .09  .05  .56***  .44***   

Q3 

Range 

 .19* -.10 -.05 -.07  .22**  .16  .07  

Avg 

Time 

 .26** -.26**  .05  .11  .12 -.16 -.08 -.07 

 

Note. *** p < .001; ** p < .01; * p < .05 

 

Support Vector Machine Outcomes  

In the following sections, the results of the SVM analyses will be described in 

terms of the feature weights and the accuracy measures of the models. Recall that the 
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features that have the highest weights in the SVMs represent the most important features 

in the prediction of item compromise in the current data. The accuracy measure results 

described below are the overall accuracy, sensitivity, specificity, balanced accuracy, and 

positive and negative predictive values. The models were varied in terms of which kernel 

was used (RBF or POLY), the sample size, and the split of suspected uncompromised to 

suspected compromised items in the data (see Table 3).  

All of the SVMs were run under two additional conditions, one with class 

weights, representing the relative proportion of suspected compromised and suspected 

uncompromised items in the data, and one without class weights. The class weights were 

passed to the parameter tuning function and to the SVM function. The results presented 

below were obtained from the SVMs without class weights, as there appeared to be 

minimal differences (an average of about six percent difference for accuracy measures) 

between the SVMs with and without class weights. 

Feature weights. We hypothesized that item infit and outfit would be the most 

important item features (i.e. have higher feature weights than the other features), that 

Rasch model estimates would outperform the 3PL estimates, and that the 3PL item 

discrimination would outperform the 3PL lower limit. We investigated these hypotheses 

by using a feature selection algorithm, assessing the average absolute feature weights, 

and evaluating the ranks of the features across the models. See Appendix B for the 

feature weights for all model variants.  

The result of the Support Vector Machine Recursive Feature Extraction (SVM-

RFE) is a ranked list of the features, with lower numbers meaning higher relative 

importance (e.g. a feature ranked number one is considered the most important feature in 
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the data). This ranking is determined by the feature weights. According to the SVM-RFE 

feature selection algorithm, the most important features in this data were the Rasch item 

difficulty, Rasch item outfit, and Rasch standard error, in that order, as hypothesized. The 

least important features in the data, according to the SVM-RFE, were the Q3 range, 3PL 

item difficulty, and the average response time (see Table 8). However, it is important to 

note that the implementation of the SVM-RFE algorithm assessed feature importance 

using a linear kernel. Thus, the results of the feature selection algorithm were not used to 

limit the item features of the model variants for several reasons. First, the feature 

selection algorithm used a linear kernel, but the performance of the RBF and POLY 

kernels were assessed in the current study. The features that are considered best for one 

kernel may not be the best for another. Thus, there is no guarantee that the best features 

for a linear kernel would be the best features for either of the kernels investigated. 

Secondly, if the feature weights for each type of kernel used in the current study (RBF 

and POLY) were assessed and the features with the highest weights for each were 

selected, the resulting models would not be comparable as they would probably contain 

different item features for the RBF kernel than they would for the POLY kernel. Third, 

the SVMs do not appear to necessitate a reduction in features, so rather than limiting the 

features prior to analyses, all of the features were retained and their performance was 

compared. 
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Table 8 

 

SVM-RFE Results  

 

1 R Diff 

2 R Outfit 

3 R SE 

4 R Infit 

5 3PL Discr 

6 3PL Lower 

7 Avg Time 

8 3PL Diff 

9 Q3 Range 

 

Note. This table show the ranks of all the features as calculated by the SVM-RFE feature 

selection algorithm. 

 

The average absolute value of the feature weights for the RBF kernel model 

variants (across all item splits and sample sizes) showed that the Rasch standard error, 

Rasch difficulty, and 3PL lower limit were the three most important features in the data, 

and that the Rasch outfit, Rasch infit, and Q3 range were the three least important features 

in the data (see Table 9). The average absolute value of feature weights for the POLY 

kernel model variants (across all item splits and sample sizes), replicated the results of 

the RBF kernel, by also showing that the Rasch standard error, Rasch difficulty, and 3PL 

lower limit were the most important item features (see Table 9). 
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Table 9 

 

Average Absolute Feature Weights 

 

 R  

Diff 

R  

SE 

R 

Infit 

R 

Outfit 

3PL 

Diff 

3PL 

Discr 

3PL 

Lower  

Avg 

Time 

Q3 

Range 

RBF  5.24 

(4.99) 

7.44 

(5.93) 

2.12 

(2.14) 

1.90 

(2.65) 

3.63 

(4.47) 

3.59 

(3.59) 

4.60 

(5.45) 

2.92 

(3.17) 

2.27 

(2.80) 

POLY .20  

(.23) 

.21 

(.27) 

.18 

(.26) 

.13 

(.19) 

.18 

(.23) 

.13 

(.14) 

.20 

(.20) 

.16 

(.16) 

.11 

(.15) 

 

Note. Higher means indicate higher feature importance. The numbers in parentheses are 

the standard deviations for the distributions of absolute feature weights. 

 

However, it is also possible that high feature weights in a few model variants 

could have artificially inflated the average absolute feature weights. To account for this, 

the rank of the absolute feature weights was computed, from one to nine for every model 

variant, and then a sum of the ranks was calculated (see Figure 4). In this analysis, lower 

rank sums indicate higher importance.  

 

Figure 4. Rank sums for item features. These ranks sums are sorted from smallest to 

largest for the RBF kernel.  
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As can be seen in Table 9 and Figure 4, both the average absolute feature weights 

and the sum of the ranked feature weights suggest that the Rasch item difficulty and the 

Rasch standard error of the item difficulty were the two most important features for 

detecting item compromise in the present study in both RBF and POLY kernels, contrary 

to the hypothesis that Rasch infit and outfit would be the most important item features. 

The relative importance of the other feature weights did not appear to be as consistent. 

For example, the average absolute feature weights would suggest that the 3PL lower limit 

is almost as important as Rasch difficulty and standard error for RBF and POLY kernels 

(see Table 9), but the rank sums would suggest that 3PL discrimination is the feature that 

is closest to the importance of the Rasch difficulty and Rasch standard error in RBF and 

POLY models.  

Further inspection revealed that the order of the least important features in the 

RBF model variants were consistent; Rasch outfit was the least important, then Rasch 

infit, then Q3 range, and then average response time (in order of least important to more 

important). The least important feature in the POLY model variants was consistently the 

Q3 range, but the order of the other least important features varied. However, Rasch outfit 

and the average response time were consistently among the four least important features 

of the POLY model variants. These findings suggest that Rasch outfit, Q3 range, and 

average response times were generally the least important features for classifying 

suspected compromised and suspected uncompromised items in this data.  

The evidence for the support of the hypothesis that the Rasch estimates would 

outperform the 3PL estimates was mixed. The results of the SVM-RFE showed that the 

Rasch estimates did outperform all of the 3PL estimates, with Rasch estimates ranked 
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first through forth and 3PL estimates ranked fifth, sixth, and eighth (see Table 8). The 

results of the average absolute feature weights for the RBF kernel models showed that the 

Rasch item difficulty and standard error had higher feature weights than the 3PL 

estimates, but that Rasch infit and outfit had lower feature weights than the 3PL estimates 

(see Table 9). The results of the average absolute feature weights for POLY kernel 

models showed that the Rasch standard error had a higher feature weight than the 3PL 

estimates, but that the feature weights of the other Rasch estimates were tied with the 3PL 

estimates (see Table 9). Rasch difficulty had the same average absolute feature weight as 

the lower limit, Rasch infit had the same average absolute feature weight as the 3PL 

difficulty, and Rasch outfit had the same average absolute feature weight as 

discrimination. The rank sums for RBF kernel models showed that Rasch item difficulty 

and standard error had lower rank sums than the 3PL estimates, but Rasch infit and outfit 

had higher rank sums than the 3PL estimates (see Figure 4). The rank sums for POLY 

kernel models showed that Rasch item difficulty and standard error had lower rank sums 

than the 3PL estimates, but that discrimination had a lower rank sum than Rasch infit and 

outfit and that lower limit had a lower rank sum than Rasch outfit. Thus, there is not 

enough evidence to conclude that the Rasch estimates outperformed the 3PL estimates.  

The evidence for the hypothesis that the 3PL discrimination would outperform the 

3PL lower limit was somewhat mixed. The results of the SVM-RFE showed that 

discrimination outperformed lower limit, with feature ranks of five and six, respectively 

(see Table 8). The rank sums also showed that discrimination outperformed lower limit, 

with the sum of ranks for discrimination and lower limit at 72 and 79, respectively, for 

RBF kernel models, and 68 and 75, respectively, for POLY kernel models (see Figure 4). 
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However, the average absolute feature weights showed that discrimination was a less 

important feature than the lower limit, with average absolute feature weights of 3.59 and 

4.60, respectively, for the RBF kernel, and average absolute feature weights of .13 and 

.20, respectively, for the POLY kernel (see Table 9). Further investigation showed that in 

19 of the 30 models, the discrimination had a higher feature weight and was ranked lower 

than the lower limit, indicating that discrimination was a more important feature than the 

lower limit in those models. Thus, most of the models indicated that discrimination 

outperformed the lower limit, but not all.  

Overall Accuracy. Recall that overall accuracy is simply the number of correctly 

classified cases divided by the total number of cases. In general, the model variants with 

the RBF kernel slightly outperformed those with the POLY kernel in terms of overall 

accuracy, collapsing across sample size and suspected uncompromised to suspected 

compromised item splits (see Table 10). However, the variability of overall accuracy for 

models with POLY kernels was smaller than the variability of overall accuracy for 

models with RBF kernels. 
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Table 10 

 

SVM Outcomes by Kernel Type 

 

 RBF POLY 

Overall Accuracy .77 (.12) .72 (.07) 

Sensitivity .76 (.39) .68 (.47) 

Specificity .51 (.45) .40 (.44) 

Balanced Accuracy .64 (.16) .54 (.02) 

PPV .81 (.17) .76 (.16) 

NPV .92 (.10) .92 (.12) 

 

Note. The average outcomes are shown by kernel, with standard deviations of those 

outcomes in parentheses. Positive predictive value (PPV) and negative predictive value 

(NPV) are defined in the PPV and NPV sections below. 

 

The effect of sample size was investigated by aggregating the results for each 

sample size over the kernel type and the item split. In general, there did not appear to be 

consistent increases across the SVM accuracy outcomes based on sample size (see Table 

11). This is surprising, as one might think that accuracy would decrease with lower 

sample size. This decrease could indicate minimal change among the item features 

calculated under each sample size. Overall accuracy and balanced accuracy were slightly 

lower and less variable for sample sizes of 500 and 1,000 compared to the other sample 

sizes.  
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Table 11 

SVM Outcomes by N 

 N = 200 N = 500 N = 1,000 N = 5,000 N = 13,584 

Overall Accuracy .76  

(.14) 

.72  

(.08) 

.74 

(.06) 

.78  

(.14) 

.73 

(.11) 

Sensitivity .68 

(.50) 

.68 

(.49) 

.67  

(.50) 

.81 

(.38) 

.77 

(.39) 

Specificity .56 

(.48) 

.38  

(.48) 

.45 

(.44) 

.51 

(.43) 

.38 

(.48) 

Balanced Accuracy .62 

(.19) 

.53  

(.04) 

.56 

(.07) 

.66 

(.17) 

.57 

(.10) 

PPV .80  

(.19) 

.75 

(.16) 

.77 

(.15) 

.82 

(.18) 

.79 

(.18) 

NPV .92  

(.13) 

.88 

(.14) 

.91 

(.12) 

.94 

(.09) 

.94 

(.10) 

 

Note. The average outcomes by sample size, with standard deviations of those outcomes 

in parentheses. Positive predictive value (PPV) and negative predictive value (NPV) are 

defined in the PPV and NPV sections below. 

 

The effect of sample size was investigated by aggregating the results for each 

sample size over the kernel type and the sample size. There did appear to be differences 

in the accuracy outcomes based on item split (see Table 12), as overall accuracy and 

balanced accuracy were higher for Split 1 and Split 3 than for Split 2. Additionally, Split 

1 and Split 2 had perfect sensitivity on average, with little variance, and Split 3 had 

perfect specificity on average, with no variance. The nuances of these results will be 

investigated in the sections below. 
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Table 12 

 

SVM Outcomes by Item Split 

 

 Split 1 Split 2 Split 3 

Overall Accuracy .81 

(.08) 

.63 

(.04) 

.79 

(.07) 

Sensitivity 1.00 

(.00) 

1.00 

(.01) 

.16 

(.28) 

Specificity .25 

(.32) 

.12 

(.12) 

1.00 

(.00) 

Balanced Accuracy .63 

(.16) 

.56 

(.06) 

.58 

(.14) 

PPV .80 

(.08) 

.62 

(.03) 

1.00 

(.00) 

NPV 1.00 

(.00) 

.98 

(.03) 

.79 

(.06) 

 

Note. The average outcomes are shown by item split, with standard deviations of those 

outcomes in parentheses. Positive predictive value (PPV) and negative predictive value 

(NPV) are defined in the PPV and NPV sections below. 

 

As can be seen from Figure 5, the results of the SVMs with both the RBF and 

POLY kernels indicate that Split 2 models generally exhibit lower overall accuracy than 

Split 1 or Split 3 models. This suggests that the SVMs may be more accurate when the 

classes are more imbalanced in the data, which will be investigated further in the sections 

below. 
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Figure 5. Overall accuracy of SVM models. The results for the RBF kernel are on the left 

and the results for the POLY kernel are on the right.  

 

Sensitivity and Specificity. Sensitivity is the proportion of actual positive cases 

(suspected compromised) that are classified as positive cases (predicted compromised). 

Specificity is the proportion of actual negative cases (suspected uncompromised) that are 

classified as negative cases (predicted uncompromised). Sensitivity and specificity were 

generally higher for models with RBF kernels (SensitivityRBF = .76 and SpecificityRBF = 

.51) than models with POLY kernels (SensitivityPOLY = .68 and SpecificityPOLY = .40) (see 

Table 10). The results of the SVMs indicate that in Split 1 and Split 2 models, which are 

those with a majority of suspected compromised items (75% and 59%, respectively), 

sensitivity is generally much higher than specificity (see Figure 6). This indicates that 

these SVMs are classifying a large proportion of the suspected compromised items as 

predicted compromised, but a very small proportion of the suspected uncompromised 

items are being classified as predicted uncompromised. Thus, these SVMs seemed to be 

biased towards classifying items as predicted compromised.  
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The results of the SVMs for Split 3 models, which are those with a majority of 

suspected uncompromised items (75%), show the opposite results, indicating that 

specificity is much higher than sensitivity (see Figure 6). Thus, these SVMs appear to be 

biased as well, but in the opposite direction of the Split 1 and Split 2 models. The Split 3 

models showed apparent bias towards classifying items as predicted uncompromised. 

These results seem to indicate that the classifications of the SVMs were biased by the 

relative size of the classes.   
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Figure 6. Sensitivity and specificity of SVM models. Sensitivity (top) and specificity 

(bottom) for the RBF (left) and POLY (right) kernels. Missing bars indicate a value of 

zero. The numbers under each bar represent the number of items in each model variant 

that were predicted compromised for sensitivity and predicted uncompromised for 

specificity. 

 

The average number of items predicted into each predicted item category for each 

split can be viewed in Table 13. These findings indicated that Split 1 and Split 2 models, 

on average, classified the majority of the items as predicted compromised, but Split 3 

models, on average, classified the majority of the items as predicted uncompromised. 
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Table 13 

Number of Items Classified into Predicted Item Categories 

 Average Number  

Predicted Compromised 

Average Number  

Predicted Uncompromised 

Split 1 107.70 7.30 

Split 2 139.40 7.60 

Split 3 3.30 77.70 

 

Note. For Split 1, there were 29 suspected uncompromised items and 86 suspected 

compromised items, for Split 2 there were 61 suspected uncompromised items and 86 

suspected compromised items and for Split 3 there were 61 suspected uncompromised 

items and 20 suspected compromised items. 

 

Balanced accuracy. The balanced accuracy is the average of sensitivity and 

specificity and shows the accuracy of the classifier after accounting for class size. The 

results show that the balanced accuracies of the models are much lower than the overall 

accuracy would suggest (see Figure 7). The balanced accuracies were generally higher in 

models with RBF kernels (64%) than in models with POLY kernels (54%), but the 

balanced accuracies were also more variable for models with RBF kernels (SDRBF = .16) 

than for models with POLY kernels (SDPOLY = .02) (see Table 10).  
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Figure 7. Balanced accuracy of SVM models. The results for the RBF kernel are on the 

left, the results for the POLY kernel are on the right. 

 

PPV. Positive predictive value (PPV) represents the proportion of positive test 

results (predicted compromised) that are actually true positive cases (suspected 

compromised). A PPV of one indicates that every item that was predicted compromised 

was a suspected compromised item. The average PPV was slightly higher for models 

with RBF kernels (PPVRBF = .81) than for models with POLY kernels (PPVPOLY = .76), 

but the variability of PPV was equivalent across kernels (see Table 10). PPV was 

generally higher for the Split 3 model variants than for the Split 1 and Split 2 model 

variants, with seven of the 10 Split 3 model variants exhibiting a PPV of one (see Figure 

8). These PPV results indicate that items that were predicted compromised in the Split 3 

models, which were previously found to show apparent bias towards predicting the 

majority of items as suspected uncompromised, were more likely to actually represent 

suspected compromised items than the items that were predicted compromised in other 

models (Split 1 and Split 2). This may be because the items that were classified as 



 71 

predicted compromised in the Split 3 models were those that were most different from the 

predicted uncompromised items and therefore the predicted compromised items were 

more likely to represent suspected compromised items.  

The observant reader might notice that three Split 3 models (RBF, N = 1,000; 

POLY, N = 200; POLY, N = 500) exhibited a PPV of zero, which seems to contradict the 

previously stated idea that when models are biased in one direction, cases classified in the 

opposite direction are more likely to represent actual differences. However, in these three 

models, zero items were classified items as predicted compromised, resulting in a PPV of 

zero. Thus, it is important to note that PPV does not take into account the number of 

items in each predicted category. For example, the RBF, N = 200, Split 3 model classified 

only one item as predicted compromised and that item was indeed a suspected 

compromised item, resulting in a PPV of one.  
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Figure 8. PPV of SVM models. The results for the RBF kernel are on the left, the results 

for the POLY kernel are on the right. Missing bars indicate a value of zero. 

 

NPV. Negative predictive value (NPV) represents the proportion of negative test 

results (predicted uncompromised) that are actually true negative cases (suspected 

uncompromised). The average NPV and the spread of the NPVs was generally equivalent 

for models with RBF and POLY kernels (see Table 10). NPV was generally higher for 

Split 1 and Split 2 model variants than for Split 3 model variants, with 16 of the 20 Split 

1 and Split 2 models exhibiting a perfect NPV of one (see Figure 9). An NPV of one 

indicates that every item that was predicted uncompromised was a suspected 

uncompromised item. The NPV results indicate that items classified as predicted 

uncompromised in Split 1 and Split 2 models, which were previously found to show 

apparent bias towards predicting the majority of items as suspected compromised, were 

more likely to actually represent suspected uncompromised items than items that were 

predicted compromised in other models (e.g. Split 3). In the two Split 1 or Split 2 models 

exhibiting an NPV of zero (RBF, N = 500, Split 1 and Split 2), no items were classified 
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as predicted compromised. The results of NPV, combined with the results of PPV, seem 

to suggest that in models that are biased towards a larger class, cases that are classified in 

the minority class are more likely to represent actual minority cases.  

 

 
 

Figure 9. NPV of SVM models. The results for the RBF kernel are on the left, the results 

for the POLY kernel are on the right. Missing bars indicate a value of zero. 

 

Consistency of Correct Classifications 

The accuracy of the SVM models was further investigated in such a way that 

accounted for the number of items in each predicted category. This was done by 

calculating the number of times each item was classified correctly across the models. 

This analysis was conducted for each item split individually as the number of items in the 

data varied by split. For example, Split 1 had all 86 suspected compromised items and 29 

suspected uncompromised items, but Split 3 had 20 suspected compromised items and all 

61 suspected uncompromised items. The results for each split were consistent across 
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models with RBF and POLY kernels, so the results in the following section are collapsed 

over kernel. There were 10 models per split. 

The results for Split 1 indicated that all 86 suspected compromised items were 

correctly classified in all 10 models (see Figure 10). The majority of suspected 

uncompromised items were classified incorrectly in most of the Split 1 models, but three 

of the suspected uncompromised items were correctly classified in eight or nine of the 

models.  

 

 
Figure 10. Frequency of correct classifications for Split 1. The x-axis represents the 

number of correct classifications for any given item for the Split 1 models (ranging from 

zero to 10) and the y-axis represents the number of items that fall into those categories. 
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The results for Split 2 are similar to the results for Split 1, with the suspected 

compromised items correctly classified most of the time (see Figure 11). However, an 

increased proportion of suspected uncompromised items were incorrectly classified in all 

10 Split 2 models, as compared to Split 1 models. Additionally, the distribution of correct 

classification of suspected uncompromised items was more spread out, with more items 

spread across more levels of correct classifications. These findings indicate that in the 

Split 1 and Split 2 models, the suspected compromised items were generally classified 

correctly but the suspected uncompromised items were not.  

 

 
Figure 11. Frequency of correct classifications for Split 2. The x-axis represents the 

number of correct classifications for any given item for the Split 2 models (ranging from 

zero to 10) and the y-axis represents the number of items that fall into those categories. 
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The results for the Split 3 models show results in the opposite direction of the 

Split 1 and Split 2 models, with all of the suspected uncompromised items correctly 

classified in all the models and most of the suspected compromised items incorrectly 

classified (see Figure 12).  

 
Figure 12. Frequency of correct classifications for Split 3. The x-axis represents the 

number of correct classifications for any given item for the Split 3 models (ranging from 

zero to 10) and the y-axis represents the number of items that fall into those categories. 

 

Table 14 contains the percentage of correct classifications for suspected 

compromised and suspected uncompromised items for each model variant.  

  



 77 

Table 14 

Correct Classifications by Suspected Item Category 

   Percentage of Correct Classifications 

 N Split Suspected 

Compromised 

Suspected 

Uncompromised 

RBF N = 200 1 100% 100% 

 N = 500 1 100% 0% 

 N = 1000 1 100% 10% 

 N = 5000 1 100% 69% 

 N = 13584 1 100% 10% 

 N = 200 2 100% 16% 

 N = 500 2 100% 0% 

 N = 1000 2 98% 41% 

 N = 5000 2 99% 18% 

 N = 13584 2 100% 3% 

 N = 200 3 5% 100% 

 N = 500 3 10% 100% 

 N = 1000 3 0% 100% 

 N = 5000 3 80% 100% 

 N = 13584 3 55% 100% 

 

POLY 

N = 200 1 100% 14% 

 N = 500 1 100% 14% 

 N = 1000 1 100% 14% 

 N = 5000 1 100% 14% 

 N = 13584 1 100% 7% 

 N = 200 2 100% 7% 

 N = 500 2 100% 15% 

 N = 1000 2 100% 7% 

 N = 5000 2 100% 8% 

 N = 13584 2 100% 5% 

 N = 200 3 0% 100% 

 N = 500 3 0% 100% 

 N = 1000 3 5% 100% 

 N = 5000 3 5% 100% 

 N = 13584 3 5% 100% 

 

Note. The percentages are calculated based on the number of items in each suspected 

category. For Split 1, there were 29 suspected uncompromised items and 86 suspected 

compromised items, for Split 2 there were 61 suspected uncompromised items and 86 

suspected compromised items and for Split 3 there were 61 suspected uncompromised 

items and 20 suspected compromised items. 
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Separability of Item Features 

 To investigate the separability of the item features in the input space, the 

distributions of item features were plotted for suspected compromised and suspected 

uncompromised items in the original data (N = 13,584; Split 2). The distributions of these 

features for the suspected item categories were largely overlapping, indicating that these 

features were not separable in the raw data (see Figures 13-21).  

 
Figure 13. Rasch difficulty density distributions. The density distributions for suspected 

compromised (dark grey) and suspected uncompromised items (light grey). Medium grey 

hues indicate overlap of the distributions. The lines represent a normal distribution 

around the suspected compromised items (solid) and the suspected uncompromised 

(dashed) items. 
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Figure 14. Rasch standard error density distributions. The density distributions for 

suspected compromised (dark grey) and suspected uncompromised items (light grey). 

Medium grey hues indicate overlap of the distributions. The lines represent a normal 

distribution around the suspected compromised items (solid) and the suspected 

uncompromised (dashed) items.  
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Figure 15. Rasch infit density distributions. The density distributions for suspected 

compromised (dark grey) and suspected uncompromised items (light grey). Medium grey 

hues indicate overlap of the distributions. The lines represent a normal distribution 

around the suspected compromised items (solid) and the suspected uncompromised 

(dashed) items. 
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Figure 16. Rasch outfit density distributions. The density distributions for suspected 

compromised (dark grey) and suspected uncompromised items (light grey). Medium grey 

hues indicate overlap of the distributions. The lines represent a normal distribution 

around the suspected compromised items (solid) and the suspected uncompromised 

(dashed) items. 
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Figure 17. Three-parameter logistic difficulty density distributions. The density 

distributions for suspected compromised (dark grey) and suspected uncompromised items 

(light grey). Medium grey hues indicate overlap of the distributions. The lines represent a 

normal distribution around the suspected compromised items (solid) and the suspected 

uncompromised (dashed) items. 
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Figure 18. Three-parameter logistic discrimination density distributions. The density 

distributions for suspected compromised (dark grey) and suspected uncompromised items 

(light grey). Medium grey hues indicate overlap of the distributions. The lines represent a 

normal distribution around the suspected compromised items (solid) and the suspected 

uncompromised (dashed) items. 
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Figure 19. Three-parameter logistic lower limit density distributions. The density 

distributions for suspected compromised (dark grey) and suspected uncompromised items 

(light grey). Medium grey hues indicate overlap of the distributions. The lines represent a 

normal distribution around the suspected compromised items (solid) and the suspected 

uncompromised (dashed) items. 
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Figure 20. Average response time density distributions. The density distributions for 

suspected compromised (dark grey) and suspected uncompromised items (light grey). 

Medium grey hues indicate overlap of the distributions. The lines represent a normal 

distribution around the suspected compromised items (solid) and the suspected 

uncompromised (dashed) items. 
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Figure 21. Range of Q3 estimates density distributions. The density distributions for 

suspected compromised (dark grey) and suspected uncompromised items (light grey). 

Medium grey hues indicate overlap of the distributions. The lines represent a normal 

distribution around the suspected compromised items (solid) and the suspected 

uncompromised (dashed) items. 

 

 

SVM Parameters 

The gamma, cost, and, for POLY kernels, degree parameters that were selected 

for each of the thirty models by the multi-step tuning process for the SVM can be viewed 

in Table 15. Recall that cost is a penalizing parameter that balances complexity of the 

resulting model with the frequency of error (Cortes & Vapnik, 1995). Cost parameters 

that are too large can cause overfitting to the training set but cost parameters that are too 

small can cause underfitting to the training set (Alpaydin, 2004, p. 224). Additionally, the 
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gamma parameter controls the influence of a single data point in the training set 

(Pedregosa et al., 2011.). Low ɤ parameters indicate that a data point can have a large 

range of influence and high ɤ parameters indicate that a data point can have a small range 

of influence. The degree parameter in the POLY kernels indicates if the mapping of the 

data into higher dimensional space is linear (degree = 1), quadratic (degree = 2), cubic 

(degree = 3), or quartic (degree = 4). 

The relationships between parameters were assessed to investigate if the 

parameter tuning process selected independent or related parameters. The correlation 

between gamma and cost was not statistically significant for the models collapsed across 

kernel, r (28) = .10, p = .599, or within either kernel, RBF r (13) = .22, p = .439 and 

POLY r (13) = .15, p = .588. In the POLY kernel, degree was not statistically 

significantly related to cost, r (13) = .17, p = .554, or gamma, r (13) = -.05, p = .869. 

The relationships between overall accuracy and balanced accuracy with the 

selected parameters were assessed to investigate the effects of the parameters on the 

accuracy of the models. In the RBF kernel, neither gamma nor cost was a statistically 

significant predictor of overall accuracy (see Table 16). However, cost was a statistically 

significant, strong, positive predictor of balanced accuracy in RBF kernel models (see 

Table 17). In the POLY kernel, gamma was a statistically significant, strong, negative 

predictor of overall accuracy (see Table 17), but none of the parameters were statistically 

significant predictors of balanced accuracy (Table 18).  
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Table 15 

 

Parameters for SVM Models 

 

Kernel N Split Gamma Cost Degree 

RBF 200 1 4 8 NA 

RBF 200 2 0.0625 4 NA 

RBF 200 3 0.0625 0.0625 NA 

RBF 500 1 4 4 NA 

RBF 500 2 1 2 NA 

RBF 500 3 0.0625 0.0625 NA 

RBF 1000 1 0.125 2 NA 

RBF 1000 2 0.125 4 NA 

RBF 1000 3 0.0625 0.0625 NA 

RBF 5000 1 1 2 NA 

RBF 5000 2 0.0625 0.0625 NA 

RBF 5000 3 0.5 16 NA 

RBF 13584 1 0.0625 2 NA 

RBF 13584 2 0.125 8 NA 

RBF 13584 3 0.25 8 NA 

POLY 200 1 0.125 0.5 3 

POLY 200 2 4 0.125 3 

POLY 200 3 0.25 0.125 1 

POLY 500 1 1 0.0625 2 

POLY 500 2 0.25 0.25 2 

POLY 500 3 0.0625 0.0625 1 

POLY 1000 1 2 0.0625 2 

POLY 1000 2 4 0.125 2 

POLY 1000 3 0.25 0.5 4 

POLY 5000 1 0.25 0.0625 3 

POLY 5000 2 1 1 4 

POLY 5000 3 0.5 0.5 4 

POLY 13584 1 1 0.125 2 

POLY 13584 2 2 8 3 

POLY 13584 3 0.5 0.0625 4 

 

Notes. The parameters for every model variant are given in the table above. NA is listed 

under RBF Models since degree parameters were not part of the model.  
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Table 16 

 

Regression of RBF Parameters on Overall Accuracy 

 

 β t p 

Gamma .28 1.11 .289 

Cost .39 1.56 .145 

 

Note. DV is overall accuracy. *** p < .001; ** p < .01; * p < .05 

 

Table 17 

 

Regression of RBF Parameters on Balanced Accuracy 

 

 β t p 

Gamma .22 1.00 .339 

Cost .59 2.67 .020* 

 

Note. DV is balanced accuracy. *** p < .001; ** p < .01; * p < .05 

 

 

Table 18 

 

Regression of POLY Parameters on Overall Accuracy 

 

 β t p 

Gamma -.59 -2.85 .016* 

Cost -.35 -1.69 .119 

Degree -.05 -.24 .817 

 

Note. DV is overall accuracy. *** p < .001; ** p < .01; * p < .05 

 

Table 19 

 

Regression of POLY Parameters on Balanced Accuracy 

 

 β t p 

Gamma .02 .06 .952 

Cost -.18 -.60 .560 

Degree .12 .41 .689 

 

Note. DV is balanced accuracy. *** p < .001; ** p < .01; * p < .05 
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Discussion 

This study combined Rasch and Item Response Theory estimates, along with 

other item features such as average response times and local dependence estimates, with 

Support Vector Machines (SVMs) to classify suspected compromised and suspected 

uncompromised items. The overall accuracy seemed to show that the models were 

somewhat accurate at classifying suspected compromised and suspected uncompromised 

items, but the relative size of the classes seemed to be strongly related to the 

classifications of the models. Specifically, the results indicated that models with a 

majority of suspected compromised items (Split 1 and Split 2) showed apparent strong 

bias towards classifying items as predicted compromised and that models with a majority 

of suspected uncompromised items (Split 3) showed apparent strong bias towards 

classifying items as predicted uncompromised. Thus, the imbalance of the classes 

appeared to be strongly related to the classifications of the models and the accuracy of the 

SVMs, balanced for class size, was much lower than desired. However, cases that were 

classified in the opposite direction of the apparent bias were more likely to be correct 

classifications. For example, items that were predicted compromised items in Split 3 

models, which appeared to be biased towards predicting items as predicted 

uncompromised, were more likely to represent suspected compromised items. This result 

may indicate that when models are biased in a particular direction, only the items that are 

the most different from the predominant class are classified into the other predicted 

category.  

The SVM model variants with radial basis function (RBF) kernels slightly 

outperformed the models with polynomial (POLY) kernels on average and both kernels 
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exhibited similar variability in the results, with the exception of POLY kernels exhibiting 

less variability in overall accuracy and balanced accuracy. There did not appear to be 

consistent differences in the accuracy outcomes between models with differing sample 

sizes. This may be because the results of the SVMs seemed to be mostly driven by the 

class sizes, rather than separations in the item features. There were consistent differences 

in the outcomes of the SVMs based on the item split, representing the previously 

discussed opposite directions of apparent bias for models with a majority of suspected 

compromised items (Split 1 and Split 2) and models with a majority of suspected 

uncompromised items (Split 3).  

The relationships between the SVM parameters (cost, gamma, and degree for 

POLY kernels) were assessed to gain insight into the parameter selections of the tuning 

process. The results showed that the parameters were unrelated to one another for both 

the RBF and POLY kernel models. In the RBF kernel models, cost (a penalizing 

parameter that balances complexity of the resulting model with the frequency of error) 

was positively related to balanced accuracy, but unrelated to overall accuracy. Thus, 

models with higher cost parameters generally had higher balanced accuracy. However, 

large cost parameters can cause overfitting to the training set (Alpaydin, 2004, p. 224), so 

it is unclear if the models with high cost parameters in the current study would exhibit 

more accurate results in a separation validation set than models with low cost parameters 

or if the link between cost parameters and balanced accuracy is caused by overfitting in 

the current data. In the POLY kernel models, gamma (a parameter that controls the 

influence of a single data point) was negatively related to overall accuracy, but unrelated 

to balanced accuracy. Thus, models with lower gamma parameters, allowing a single data 
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point to have more influence, generally had higher overall accuracy. This finding may 

also be the result of overfitting to the current data, and would be best addressed by testing 

the models in a separate validation set.  

We hypothesized that the item features with the highest weights would be Rasch 

item infit and outfit, but the item feature results showed that the two most important 

features for distinguishing between suspected compromised and suspected 

uncompromised items were the Rasch model standard error and the Rasch item difficulty. 

The three least important features in the SVMs were the Rasch outfit, Q3 range, and 

average response times. The relatively high importance of Rasch difficulty estimates in 

predicting compromise is consistent with the findings of Thomas et al. (2016), who found 

that item difficulty was the most important Rasch model predictor of item compromise. 

We also hypothesized that Rasch estimates would outperform 3PL estimates, but the 

evidence for this hypothesis was mixed. Consistent with this hypothesis, the results of the 

SVM-RFE feature selection algorithm showed that Rasch estimates had lower rank than 

the 3PL estimates. However, analyses of average absolute feature weights and rank sums 

of features showed that Rasch estimates of item difficulty and standard error had higher 

feature weights than the 3PL estimates, but Rasch estimates of infit and outfit had lower 

feature weights than the 3PL estimates, with the exception of the average absolute feature 

weights results for the POLY kernel models. Thus, there was not enough evidence to 

conclude that the Rasch estimates outperformed the 3PL estimates. Finally, we 

hypothesized that 3PL discrimination would outperform the 3PL lower limit. The results 

of a feature selection algorithm and analyses of rank sums for the features showed that 

discrimination did have a higher feature weight than the lower limit, but the average 
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absolute feature weights showed that discrimination had a lower feature weight than the 

lower limit. Further investigation showed that in 19 of the 30 models, the discrimination 

had a higher feature weight and was ranked lower than the lower limit, indicating that 

discrimination was a more important feature than the lower limit in those models. Thus, 

the majority of the models indicated that discrimination outperformed the lower limit, but 

not all. The results of the current study appeared to replicate the finding of Thomas et al. 

(2016) that discrimination is more accurate at distinguishing suspected compromised 

items from suspected uncompromised items than the lower limit. However, the results of 

the feature weights in the current study should be interpreted cautiously for several 

reasons. The assessment of feature weights provides information on the importance of 

features in the data for deriving the classifications made by the models. In the current 

study, the classifications made by the models showed apparent bias depending on the 

relative class sizes and were often inaccurate. Thus, the feature weights may contribute 

very little to the understanding of what item properties actually distinguish between 

suspected uncompromised and suspected compromised items. 

The current study successfully combined Rasch and Item Response Theory model 

estimates with Support Vector Machines to address a classification problem. This method 

marries measurement models from the field of psychometrics with unsupervised 

techniques from the field of machine learning. Additionally, this method could be used 

for any situation in which the researcher believes that Rasch or Item Response Theory 

model estimates may be important in the classifications of units (e.g. items or persons). 

However, there were limitations in the application of this method in the current study, 

which are discussed in more detail below.  
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Limitations of the Current Study 

There are many possible reasons that the SVMs in the current study exhibited 

lower than desired accuracy and apparent bias in classifications, but in the paragraphs 

below, limitations in the following areas will be addressed: the parameter tuning process, 

the quality of the suspected item categories, and how separable the suspected item 

categories were based on the item features. 

 Firstly, the parameter tuning process of the current study had limitations in the 

number of tunings, the assessment of performance, and the selection of best parameters. 

Each SVM model variant in the study was analyzed once, rather than a large number of 

times. This means that only one multi-step parameter tuning process took place per model 

variant. Future research could address this limitation by running each model variant 

multiple times. Alternatively, simulations could be used to investigate the best ranges of 

parameters to tune over as well as what are reasonable and unreasonable parameters for 

various kernels, given the characteristics of a particular data set. Such research would 

contribute greatly to the literature on the usage of SVMs. Additionally, the parameter 

tuning function used the overall accuracy to calculate the performance of the parameters. 

Thus the best parameters may represent those that were best in terms of overall accuracy, 

but better parameters may have been obtained by using the balanced accuracy, or other 

accuracy measures, to assess performance in the tuning process. Finally, the constraints 

that were utilized to make the parameter tuning process more computationally and 

temporally manageable, such as selecting only the 30 best results for each parameter to 

tune over in the next step, may have decreased the quality of the resulting best 

parameters. Therefore, the parameters selected for the SVMs by the parameter tuning 
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process may not have been the best possible parameters. Other parameter tunings may 

have led to different parameters being selected for use in the SVMs, which may have 

improved the accuracy of the models.  

Secondly, the quality of the suspected item categories from the testing company 

cannot be verified by the researchers. It is possible that the suspected item categories do 

not reflect actual compromised and uncompromised items. For example, suppose that 

screenshots of an item were found but the item was never shared or posted online. Or the 

items could have been posted online but very viewed by few examinees. The unknown 

extent of the item compromise is a confounding factor in the results of this study. Thus, it 

is possible that this combination of methods is performing as best as it can given the 

weaknesses of the suspected item categories. This may explain why the analysis of item 

features did not show the expected results, that Rasch item infit and Rasch item outfit 

would be the most important features. If the suspected item categories do not represent 

actual differences in the level of item compromise, the feature weights would not be valid 

estimates of the importance of the features in predicting compromise. They would instead 

represent the importance of the item features in distinguishing between items that the 

testing company deemed suspected compromised and suspected uncompromised, which 

is not particularly useful in detecting item compromise. Several methods for overcoming 

this limitation are discussed in the Directions for Future Research section below.  

Thirdly, another reason for the low performance of the SVMs could be that the 

items are not separable in the feature space, either because of the relatively small number 

of items (N = 147) or because these nine item features are simply not useful in 

distinguishing suspected compromised from suspected uncompromised items. Future 
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research should attempt classification on a larger pool of items in data that includes 

suspected categories in addition to addressing the previously discussed limitations of the 

models. Once these limitations are addressed, the question of whether or not these item 

features are useful in distinguishing suspected compromised from suspected 

uncompromised items can and should be reexamined.  

Directions for Future Research 

The reason that SVMs were able to be used in the current study was because 

suspected item categories were obtained from the test publisher. However, the quality of 

the suspected item categories cannot be verified by the researchers. Thus, it is possible 

that this combination of methods was performing well, given the poor quality of the 

suspected item categories. One way to address this limitation in future research would be 

to mimic item compromise in a laboratory setting. All participants would take a 

computerized test, but participants in an experimental condition would be allowed to 

study half of the test items, with answers, for some amount of time before beginning the 

test. The control condition participants would not receive any test items or answers. The 

participants would then complete the test and a brief survey about psychological and 

educational factors that may impact their performance on the exam. Not only could the 

statistically identified compromised items be compared to the actual compromised items 

at the conclusion of the study, but the statistically identified examinees with pre-

knowledge could be compared to those who did indeed have access to test answers. If this 

experiment were successful, subsequent experiments could use the same paradigm to 

investigate other aspects of cheating by manipulating the accuracy of the answer key, the 

amount of time participants had to study the answer key, or the presence of distractor 
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tasks between studying the answer key and taking the test. The greatest benefit of such an 

experiment would be that the correct status of examinees would be known, unlike in most 

cases of test fraud, allowing a direct evaluation of the accuracy of various statistical 

methods for identifying examinees with pre-knowledge to be assessed. Such analyses 

would greatly contribute to the literature on test fraud.  

It is important to the science of the detection of test fraud that future researchers 

directly compare the performance of a wider variety of item properties for detecting item 

compromise. This would allow the most important item properties for detecting item 

compromise in various circumstances to be identified. These item properties could then 

be used to predict the status of their items even in the absence of suspected item 

categories. This would be more efficient than continual internet monitoring to detect 

proprietary test content online, which is currently a common method used to detect item 

compromise (Fremer & Addicott, 2011). Not only does internet monitoring represent a 

significant cost in terms of time and money, it is also an inefficient method for detecting 

compromised items as the amount of information that must be searched is potentially 

infinite. Moreover, proprietary content may be hidden behind paywalls, encrypted, or 

hidden from search functions. However, if compromised items could be detected using a 

predictive method, like the one proposed in this paper, then this method could be 

periodically applied to sets of testing data for detection of compromised items. 

Conclusions 

In summary, this study used a combination of Rasch and Item Response Theory 

estimates, and other item properties such as average response times and local dependence 

estimates, with Support Vector Machines. The results showed that this method appeared 
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to be somewhat accurate at classifying suspected compromised and suspected 

uncompromised items, but that the main factor driving these results was the relative size 

of the classes. The SVMs showed apparent bias towards predicting the items into the 

category of whichever item class was larger. Thus, the accuracy of the SVMs, balanced 

for class size, was much lower than desired. However, cases that were classified in the 

opposite direction of the apparent bias were more likely to be correct classifications. 

The item feature results showed that the two most important features were the 

Rasch model standard error and the Rasch item difficulty. However, the results of the 

feature weights in the current study should be interpreted cautiously for several reasons. 

The assessment of feature weights provides information on the importance of features in 

the data for deriving the classifications made by the models. In the current study, the 

classifications made by the models appeared to be biased by class size and often 

inaccurate. Thus, the feature weights obtained in this study may contribute very little to 

the understanding of what item properties actually distinguish between suspected 

uncompromised and suspected compromised items.  

The current study pioneered a flexible, hybrid method that combines the disparate 

fields of psychometrics and machine learning, and can be adapted for application in a 

variety of contexts. This method has a promising future as the age of big data continues 

and the need for classifications persists. 
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Appendix A 

Item 

 

R 

Diff 

R 

SE 

R 

Infit 

R 

Outfit 

3PL 

Diff 

3PL 

Discr 

3PL 

Lower 

Q3 

Range 

Avg 

Time 

Suspected 

Item 

Category 

(1 = 

Comp) 

1 0.80 0.02 0.48 0.92 1.96 0.45 0.14 0.09 50.00 1 

2 0.81 0.02 -3.45 -3.53 1.25 0.47 0.00 0.06 62.74 1 

3 0.45 0.02 6.42 6.08 3.38 0.55 0.46 0.10 50.99 1 

4 0.51 0.02 4.49 4.53 2.20 0.40 0.28 0.06 54.56 1 

5 0.62 0.02 3.87 3.32 3.03 0.87 0.43 0.08 59.65 1 

6 -0.23 0.02 2.01 3.24 -2.64 0.27 0.00 0.09 62.98 1 

7 -0.22 0.02 0.22 0.09 -0.99 0.41 0.08 0.08 60.02 1 

8 1.20 0.02 9.90 9.90 8.00 0.05 0.00 0.10 36.95 1 

9 0.17 0.02 5.09 5.32 3.27 0.50 0.52 0.09 52.47 1 

10 0.43 0.02 4.16 4.26 -0.23 0.27 0.00 0.15 68.39 1 

11 -1.12 0.03 -0.70 -1.28 -2.61 0.51 0.00 0.06 45.76 1 

12 0.87 0.02 -1.96 -2.15 2.23 0.54 0.18 0.13 67.78 1 

13 -0.58 0.02 0.68 1.92 -3.22 0.31 0.00 0.09 60.97 1 

14 -1.01 0.03 -0.83 -1.64 -2.24 0.53 0.00 0.09 56.17 1 

15 0.09 0.02 -4.81 -5.64 0.88 0.78 0.22 0.08 50.19 1 

16 -0.04 0.02 4.53 5.59 -4.22 0.16 0.00 0.09 52.85 1 

17 0.68 0.02 0.61 0.82 1.77 0.47 0.17 0.10 40.59 1 

18 0.68 0.02 6.75 6.79 3.11 0.43 0.33 0.07 62.43 1 

19 0.20 0.02 -1.73 -2.47 1.51 0.68 0.34 0.09 67.34 1 

20 -1.14 0.03 -0.98 -2.05 -2.11 0.59 0.00 0.07 45.05 1 

21 0.10 0.02 0.63 0.68 -0.63 0.37 0.01 0.06 43.73 1 

22 -0.03 0.02 0.01 -0.48 0.06 0.45 0.18 0.09 78.80 1 

23 0.84 0.02 9.90 9.90 4.67 0.42 0.38 0.08 39.04 1 

24 0.92 0.02 6.06 5.88 1.56 0.26 0.00 0.08 75.18 1 

25 -0.32 0.02 0.55 0.84 -1.94 0.35 0.00 0.08 79.82 1 

26 -0.02 0.02 -5.17 -6.63 0.99 0.93 0.29 0.17 35.09 1 

27 -0.31 0.02 -1.08 -1.91 -0.44 0.53 0.15 0.08 47.81 1 

28 -0.08 0.02 1.25 2.32 -1.60 0.31 0.00 0.08 45.63 1 

29 0.64 0.02 -4.94 -5.25 1.84 0.72 0.22 0.09 64.94 1 

30 0.43 0.02 3.31 3.15 2.10 0.43 0.31 0.13 67.40 1 

31 0.92 0.02 -9.90 -9.90 1.94 0.92 0.16 0.11 64.85 1 

32 1.19 0.02 2.24 3.24 3.26 0.59 0.22 0.07 63.01 1 

33 1.32 0.02 1.37 2.45 3.43 0.61 0.21 0.10 43.31 1 
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34 -1.00 0.03 0.10 0.37 -3.74 0.36 0.00 0.07 53.72 1 

35 -1.32 0.03 -0.87 -3.04 -0.49 0.75 0.51 0.07 56.78 1 

36 -1.83 0.03 -0.55 -1.67 -3.25 0.60 0.00 0.06 49.98 1 

37 1.32 0.02 4.21 5.23 4.03 0.64 0.27 0.09 64.73 1 

38 0.75 0.02 -1.62 -1.02 2.19 0.63 0.23 0.07 42.09 1 

39 1.52 0.02 1.09 1.46 3.61 0.39 0.07 0.07 61.63 1 

40 0.95 0.02 -3.88 -3.39 2.41 0.75 0.22 0.08 53.82 1 

41 -1.38 0.03 -1.33 -3.34 -2.02 0.69 0.00 0.08 41.17 1 

42 0.59 0.02 2.36 2.24 0.56 0.34 0.00 0.09 43.98 1 

43 -0.16 0.02 -7.80 -9.90 0.38 1.05 0.08 0.16 41.64 1 

44 0.16 0.02 -0.55 -1.32 1.93 0.81 0.44 0.10 44.88 1 

45 -1.42 0.03 -1.89 -5.66 -1.12 0.94 0.14 0.10 28.07 1 

46 0.84 0.02 6.16 5.99 3.35 0.50 0.31 0.08 60.73 1 

47 1.07 0.02 -2.07 -1.67 2.03 0.45 0.04 0.07 38.30 1 

48 -0.81 0.02 -1.44 -2.61 -1.68 0.56 0.00 0.09 57.26 1 

49 -1.08 0.03 -0.82 -1.15 -2.61 0.49 0.00 0.07 59.06 1 

50 0.19 0.02 -4.45 -4.82 0.16 0.57 0.00 0.07 61.32 1 

51 -0.69 0.02 -0.23 -0.55 -2.36 0.41 0.00 0.06 52.96 1 

52 1.03 0.02 -2.31 -2.57 1.75 0.43 0.00 0.10 63.45 1 

53 0.23 0.02 -0.77 -1.06 0.80 0.51 0.19 0.08 42.02 1 

54 -1.07 0.03 -1.53 -3.61 -1.38 0.69 0.09 0.09 46.42 1 

55 1.47 0.02 3.01 3.84 4.22 0.41 0.15 0.38 52.31 1 

56 -0.67 0.02 -0.35 -0.72 -2.20 0.43 0.00 0.07 47.98 1 

57 -1.17 0.03 -0.78 -2.11 -2.46 0.54 0.00 0.08 45.45 1 

58 -0.74 0.02 -2.84 -5.64 -0.19 0.88 0.24 0.13 26.68 1 

59 0.98 0.02 8.27 7.85 1.83 0.23 0.00 0.10 54.05 1 

60 0.31 0.02 -6.43 -6.90 0.68 0.68 0.06 0.14 74.23 1 

61 -1.46 0.03 -0.92 -3.09 -2.35 0.65 0.00 0.06 45.37 1 

62 0.54 0.02 -8.50 -8.63 1.55 0.87 0.21 0.12 57.19 1 

63 -0.81 0.02 -0.59 -0.51 -2.34 0.45 0.00 0.09 64.12 1 

64 -0.37 0.02 -0.61 -1.22 -0.61 0.49 0.17 0.08 46.33 1 

65 0.21 0.02 3.31 3.89 -1.03 0.27 0.00 0.09 55.17 1 

66 1.19 0.02 1.98 2.19 2.74 0.39 0.08 0.10 65.50 1 

67 -0.29 0.02 2.15 3.33 -3.56 0.23 0.00 0.12 62.71 1 

68 0.83 0.02 2.76 3.08 1.25 0.34 0.00 0.05 63.04 1 

69 0.35 0.02 -2.53 -3.30 2.01 0.89 0.39 0.10 71.18 1 

70 -0.27 0.02 0.67 0.87 -2.03 0.33 0.00 0.11 43.61 1 

71 -0.41 0.02 0.60 0.63 -1.97 0.35 0.08 0.12 45.02 1 
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72 0.73 0.02 -1.38 -1.91 2.31 0.63 0.26 0.10 44.22 1 

73 1.03 0.02 -0.57 -0.37 2.25 0.48 0.10 0.06 60.15 1 

74 0.51 0.02 6.42 6.48 -0.14 0.23 0.00 0.08 65.12 1 

75 0.84 0.02 7.46 7.29 1.23 0.24 0.00 0.12 59.24 1 

76 0.98 0.02 4.83 5.13 3.25 0.44 0.24 0.36 48.71 1 

77 -0.60 0.02 -1.44 -2.45 -1.41 0.54 0.00 0.12 44.63 1 

78 0.60 0.02 -8.70 -8.91 1.80 0.93 0.25 0.09 65.21 1 

79 -1.17 0.03 -1.60 -3.81 -1.64 0.71 0.00 0.14 61.75 1 

80 -0.40 0.02 -2.59 -3.77 -0.81 0.60 0.00 0.14 58.98 1 

81 -1.32 0.03 -1.50 -3.27 -1.92 0.70 0.00 0.13 49.15 1 

82 -0.47 0.02 1.27 1.96 -3.11 0.29 0.00 0.07 53.46 1 

83 -0.28 0.02 2.36 3.86 -3.69 0.22 0.00 0.11 54.26 0 

84 0.45 0.02 -7.41 -7.65 1.01 0.70 0.09 0.12 46.00 0 

85 0.34 0.02 5.18 5.65 -0.81 0.24 0.00 0.06 65.06 0 

86 -2.45 0.05 -0.74 -5.28 -1.77 1.12 0.21 0.14 31.22 0 

87 0.47 0.02 3.03 3.39 0.86 0.34 0.11 0.06 54.54 0 

88 -0.07 0.02 -4.56 -5.64 0.23 0.71 0.10 0.11 58.94 0 

89 -0.15 0.02 -3.54 -4.97 0.55 0.76 0.24 0.14 37.69 0 

90 -0.44 0.02 1.38 2.06 -3.11 0.29 0.00 0.10 42.13 0 

91 0.12 0.02 1.24 0.84 2.25 0.71 0.48 0.08 44.01 0 

92 -0.58 0.02 0.25 0.77 -2.58 0.36 0.00 0.07 54.38 0 

93 -0.01 0.02 1.09 1.00 -1.31 0.32 0.00 0.13 70.28 0 

94 1.14 0.02 8.81 8.76 2.78 0.18 0.00 0.11 50.32 0 

95 0.04 0.02 1.13 1.45 -1.05 0.34 0.00 0.15 55.62 0 

96 0.21 0.02 -4.51 -5.15 0.64 0.65 0.11 0.10 46.14 0 

97 0.76 0.02 3.94 3.94 2.29 0.40 0.19 0.10 39.53 0 

98 0.52 0.02 -0.48 -0.66 1.88 0.61 0.27 0.13 72.53 0 

99 -0.41 0.02 -2.14 -3.50 -0.13 0.66 0.21 0.11 47.67 0 

100 -1.29 0.03 -1.42 -3.66 -1.83 0.71 0.00 0.10 39.96 0 

101 0.04 0.02 2.85 3.26 -1.84 0.25 0.00 0.09 48.02 0 

102 0.87 0.02 -0.70 0.09 2.51 0.68 0.25 0.16 75.59 0 

103 -0.41 0.02 -0.70 -1.80 0.56 0.65 0.40 0.07 41.36 0 

104 0.22 0.02 0.74 0.84 0.36 0.42 0.12 0.14 39.29 0 

105 0.41 0.02 0.53 1.14 0.13 0.37 0.00 0.16 75.67 0 

106 0.22 0.02 -0.12 -0.09 0.55 0.46 0.15 0.08 52.73 0 

107 -0.40 0.02 -3.29 -4.64 -0.47 0.70 0.04 0.10 44.38 0 

108 0.17 0.02 -0.76 -1.12 0.21 0.46 0.09 0.09 53.98 0 

109 -2.41 0.04 -0.62 -3.60 -2.62 0.89 0.00 0.09 29.68 0 
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110 -0.60 0.02 -0.47 -0.62 -2.02 0.43 0.00 0.09 52.87 0 

111 -0.17 0.02 -3.67 -4.27 -0.31 0.64 0.00 0.13 55.26 0 

112 0.33 0.02 2.49 2.67 -0.34 0.31 0.00 0.07 51.45 0 

113 0.02 0.02 0.57 0.81 -0.85 0.38 0.00 0.07 63.57 0 

114 0.33 0.02 -3.25 -3.44 0.30 0.50 0.00 0.10 69.89 0 

115 0.22 0.02 3.67 4.60 -1.16 0.25 0.00 0.11 43.47 0 

116 -0.56 0.02 -1.22 -1.49 -1.51 0.50 0.00 0.10 51.75 0 

117 -0.76 0.02 -1.02 -1.16 -1.82 0.52 0.00 0.07 44.40 0 

118 -0.02 0.02 0.50 0.69 0.23 0.43 0.22 0.10 49.49 0 

119 0.24 0.02 -0.23 -0.66 1.85 0.66 0.38 0.06 60.98 0 

120 -1.07 0.03 0.16 1.17 -4.06 0.35 0.00 0.07 70.95 0 

121 1.25 0.02 8.47 8.87 4.79 0.71 0.35 0.09 49.36 0 

122 0.16 0.02 0.77 0.67 -0.37 0.38 0.02 0.06 102.53 0 

123 0.33 0.02 1.85 2.06 1.61 0.44 0.29 0.08 63.91 0 

124 0.18 0.02 1.01 0.70 1.80 0.57 0.39 0.09 45.06 0 

125 -1.39 0.03 -0.10 -0.07 -3.93 0.42 0.00 0.07 52.78 0 

126 -0.64 0.02 -5.47 -9.28 0.03 1.19 0.12 0.16 38.85 0 

127 -0.37 0.02 3.08 4.53 -6.19 0.16 0.00 0.10 48.63 0 

128 -0.44 0.02 -2.29 -4.14 0.48 0.80 0.36 0.14 49.49 0 

129 0.33 0.02 0.76 0.48 1.92 0.56 0.35 0.07 59.02 0 

130 -1.09 0.03 0.86 3.22 -7.69 0.21 0.00 0.07 46.04 0 

131 -0.53 0.02 -0.62 0.06 -1.87 0.43 0.00 0.07 74.66 0 

132 -1.00 0.02 -0.81 -1.00 -2.44 0.49 0.00 0.10 56.18 0 

133 0.26 0.02 1.24 1.40 -0.31 0.36 0.00 0.07 67.23 0 

134 -0.73 0.02 -0.30 -0.28 -2.48 0.41 0.00 0.08 46.89 0 

135 -0.33 0.02 0.34 0.64 -1.87 0.36 0.00 0.09 70.67 0 

136 -1.04 0.03 0.54 2.49 -5.60 0.27 0.00 0.08 36.96 0 

137 -0.67 0.02 -0.47 -0.79 -2.03 0.45 0.00 0.08 38.62 0 

138 1.70 0.02 -2.59 -2.70 3.06 0.63 0.05 0.12 56.38 1 

139 0.74 0.02 9.90 9.90 4.00 0.20 0.25 0.10 71.55 1 

140 0.41 0.02 8.69 8.86 4.17 0.56 0.52 0.06 55.77 1 

141 1.80 0.02 1.51 3.21 4.31 0.67 0.18 0.13 51.23 1 

142 -1.85 0.03 -0.21 0.33 -5.08 0.42 0.00 0.06 35.40 0 

143 0.02 0.02 3.56 4.61 -2.27 0.23 0.00 0.08 63.04 0 

144 0.07 0.02 1.28 1.78 -0.99 0.33 0.00 0.08 137.62 0 

145 -2.05 0.04 0.18 1.63 -8.00 0.28 0.22 0.07 24.12 0 

146 -0.08 0.02 -0.85 -0.99 -0.42 0.47 0.07 0.08 169.50 0 

147 2.85 0.03 2.21 7.69 8.00 1.31 0.13 0.10 72.98 0 
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Appendix B  

Kernel N Split 
R  

Diff 

R  

SE 

R 

Infit 

R  

Outfit 

3PL 

Diff 

3PL  

Discr 

3PL 

Lower 

Q3 

Range 

Avg 

Time 

RBF 200 1 -10.25 15.07 -5.73 -3.13 1.59 12.09 17.95 -1.57 -5.84 

RBF 200 2 7.92 -15.45 3.19 -2.91 1.26 -1.71 -3.78 -1.48 -6.87 

RBF 200 3 -0.03 0.04 0 0.01 -0.01 0.02 0.03 -0.05 0.01 

RBF 500 1 -6.94 10.23 -3.84 -2.08 1.2 8.26 12.27 -0.88 -9.95 

RBF 500 2 15.62 -15.66 4.13 0.47 5.49 -6.39 -6.3 3.54 -4.05 

RBF 500 3 -0.04 0.05 -0.01 -0.01 -0.02 0.03 0.02 -0.05 0.01 

RBF 1000 1 -0.96 4.32 -0.63 -0.11 -0.84 2.02 -0.03 -0.43 -0.63 

RBF 1000 2 3.92 -12.25 4.28 0.84 7.53 -6.18 4.56 2.57 -6.51 

RBF 1000 3 -0.03 0.04 -0.05 -0.04 -0.03 0.03 -0.01 -0.1 -0.01 

RBF 5000 1 -3.43 5.77 -0.94 -0.5 -2.3 3.33 0.71 -0.63 -2.34 

RBF 5000 2 0.19 -0.26 0.08 -0.01 0.25 -0.05 -0.03 0.18 -0.22 

RBF 5000 3 -11.53 8.65 5.68 8.22 -12.15 -6.72 -5.36 -6.54 -0.24 

RBF 13584 1 -1.26 4.46 -0.54 0.17 -0.39 2.57 -0.43 -0.75 -0.68 

RBF 13584 2 7.44 -13.11 0.57 -7.36 11.81 -2.42 9.84 6.9 -4.28 

RBF 13584 3 -9.08 6.3 2.13 2.67 -9.53 -2.04 -7.71 -8.42 -2.21 

POLY 200 1 0.3 -0.99 -0.41 -0.2 -0.16 -0.31 -0.19 -0.48 0.26 

POLY 200 2 0.02 0.02 0.03 0.01 0.01 0.03 0 0.01 0.01 

POLY 200 3 0 0 0 0 0 0 0 0 0 

POLY 500 1 -0.07 0.07 0.02 0.06 -0.04 -0.01 0.06 0.01 -0.11 

POLY 500 2 0.37 -0.28 0.22 -0.12 -0.74 -0.39 -1.52 0.36 -0.25 

POLY 500 3 -0.01 0 -0.01 0.01 0 0.01 -0.01 0 0 

POLY 1000 1 -0.03 0.06 -0.02 -0.02 0 0.02 0.07 -0.01 -0.18 

POLY 1000 2 0.16 -0.22 0.07 0.13 0.06 -0.06 -0.03 -0.17 0.22 

POLY 1000 3 -0.73 0.62 0.25 0.11 -0.47 -0.15 0.13 0.09 -0.22 

POLY 5000 1 0.03 -0.15 -0.01 0.03 -0.04 -0.12 -0.09 -0.02 0.01 

POLY 5000 2 -0.31 -0.19 0.12 -0.03 -0.18 -0.07 0.22 -0.02 -0.63 

POLY 5000 3 0.02 -0.03 -0.22 -0.19 0.17 0.29 0.25 0.29 0.07 

POLY 13584 1 0.24 -0.21 0.25 0.3 0.18 -0.19 0.08 0.07 -0.16 

POLY 13584 2 -0.61 0.33 0.99 0.76 -0.58 -0.36 -0.29 0.03 -0.25 

POLY 13584 3 -0.08 0.01 -0.03 -0.03 -0.07 0 -0.04 0.08 -0.02 

 


